WO2023103324A1 - 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 - Google Patents
一种铝电解槽炉帮熔析过程模拟装置及其使用方法 Download PDFInfo
- Publication number
- WO2023103324A1 WO2023103324A1 PCT/CN2022/099512 CN2022099512W WO2023103324A1 WO 2023103324 A1 WO2023103324 A1 WO 2023103324A1 CN 2022099512 W CN2022099512 W CN 2022099512W WO 2023103324 A1 WO2023103324 A1 WO 2023103324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- simulation device
- cold wall
- temperature
- cooling
- air
- Prior art date
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 40
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 39
- 238000005868 electrolysis reaction Methods 0.000 title abstract description 7
- 238000010309 melting process Methods 0.000 title abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 55
- 239000003792 electrolyte Substances 0.000 claims abstract description 43
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 238000007711 solidification Methods 0.000 claims abstract description 3
- 230000008023 solidification Effects 0.000 claims abstract description 3
- 239000000112 cooling gas Substances 0.000 claims description 32
- 238000003723 Smelting Methods 0.000 claims description 22
- 239000007789 gas Substances 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052593 corundum Inorganic materials 0.000 claims description 6
- 239000010431 corundum Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 5
- 238000001556 precipitation Methods 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910001610 cryolite Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- -1 cryolite Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
- G05D23/22—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
Definitions
- the invention belongs to the technical field of aluminum electrolysis, and in particular relates to an aluminum electrolytic tank side melting process simulation device and a use method thereof.
- the large prebaked electrolytic cell used in the modern aluminum industry consists of four major parts: cathode structure, superstructure, busbar structure and electrical insulation.
- the cathode structure is the most important part of the electrolytic cell, which is the container for the electrolytic melt (including molten electrolyte and aluminum liquid), including the cell shell and the inner lining masonry it contains.
- the bottom of the lining masonry is built with carbon blocks, the side is made of carbon blocks or silicon carbide and other materials, and the lower part is made of refractory bricks, insulation bricks and other refractory, heat preservation and anti-seepage materials.
- the inner wall of the furnace can form a circle of solid electrolyte block formed by the condensation of molten electrolyte, which is called the furnace side in the industry.
- the side of the furnace is mainly composed of solid inorganic salts such as cryolite, alumina, calcium fluoride, etc. It continuously forms the chamber space with different thicknesses, and the electrochemical and physical and chemical reactions of aluminum electrolysis are carried out in this space to realize aluminum electrolysis process.
- the furnace side can protect the side wall of the tank from high-temperature corrosive electrolyte erosion; reduce the heat loss of the electrolytic tank and promote the heat preservation of the furnace; prevent the current from passing through the side of the tank and suppress the horizontal current; at the same time, the furnace side can adjust the heat balance and material balance of the aluminum electrolytic tank .
- a well-shaped furnace is important to achieve high current efficiency and productivity.
- researchers have developed a static/dynamic numerical simulation calculation method based on the analysis of the temperature field to calculate and analyze the properties of the furnace side of the aluminum electrolytic cell and its heat transfer.
- the actual The side shape and changing behavior are difficult to measure directly.
- the patent CN109283207B discloses a detection device for simulating the growth process of the furnace side of an aluminum electrolytic cell, which adopts a rotary body with a through hole in the center (the material is consistent with the side wall of an industrial electrolytic cell) to simulate the carbon block and artificial Stretch the legs, put it into the molten industrial electrolyte when in use, blow cooling air into the center hole to cool the inner wall of the hole, make the electrolyte solidify on the outer wall, and obtain a simulated furnace side.
- the cylindrical rotator structure used in this invention patent is slightly different from the shape of the plane side wall of the actual electrolytic cell.
- the heat transfer methods of the two are different, and it is impossible to truly simulate the heat dissipation of the actual electrolytic cell.
- the shape of the generated side is also different from the actual side.
- the simulation device is cooled by blowing air into the central through hole. Due to the small volume of the cooling cavity, the heat transfer of the device is slow and the temperature distribution on the outer wall is uneven. Therefore, in order to more realistically simulate the smelting behavior of the actual aluminum electrolytic cell furnace side, and to grasp the data of the furnace side formation, melting process, composition distribution, and microstructure, it is necessary to design a simulation device that can more accurately reflect the furnace side smelting process and methods.
- the invention provides a cooling cavity with a large volume and a side precipitation plane, which can accurately control the temperature.
- a simulating device for melting process of side of aluminum electrolyzer including simulating device body, air cooling system and temperature control system;
- the simulator body is an inverted T-shaped structure.
- the simulator body includes a base and a cuboid cold wall perpendicular to the base.
- a cuboid cooling cavity is provided in the cold wall, and a sealing rod is arranged on the top of the cooling cavity;
- the air cooling system is connected to the cooling cavity and cools the cooling cavity; specifically, the temperature of the cold wall is controlled to be lower than the initial crystal temperature of the electrolyte by passing circulating cooling gas into the cooling cavity, so that the electrolyte is solidified on the outside of the cold wall Precipitate to form furnace sides;
- the temperature control system is set in the cold wall and the molten electrolyte to measure the temperature of the cold wall and the molten electrolyte.
- the sealing rod is provided with a cooling gas inlet and a gas outlet
- the air cooling system is connected to the cooling gas inlet and the gas outlet, and the air cooling system delivers cooling gas into the cooling cavity through the cooling gas inlet, Then it is discharged through the gas outlet.
- the air cooling system includes a cold air source container, an air inlet pipe and an air outlet pipe, the cold air source container is connected with an air inlet pipe and an air outlet pipe, and the air inlet pipe extends into the cooling air through the cooling air inlet on the sealing rod.
- the gas outlet pipe is arranged in the gas outlet.
- the air intake pipe is provided with a flow meter and a cooling gas regulating valve, and the temperature of the cold wall can be precisely regulated by adjusting the flow rate of the cooling gas.
- the temperature control system is a thermocouple
- the thermocouple includes a first thermocouple and a second thermocouple
- the first thermocouple is arranged in the molten electrolyte
- the second thermocouple is pre-embedded in the cold wall.
- thermocouple is arranged at the center of the cold wall.
- the material of the simulation device body is the same as that of the side wall of the electrolytic cell, which is one of materials such as graphite, corundum, ceramics and silicon carbide; the inlet pipe and the outlet pipe are both stainless steel pipes or corundum.
- the air inlet pipe feeds argon, nitrogen or compressed air into the cavity of the cold wall through the air inlet to reduce the temperature of the cold wall.
- the simulation device also includes a high-temperature reactor and a crucible, the crucible is set in the high-temperature reactor, a molten electrolyte is set in the crucible, and the main body of the simulation device is located in the molten electrolyte.
- the above-mentioned method for using the furnace side smelting process simulation device of an aluminum electrolytic cell comprises the following steps:
- the present invention constructs a planar cold hearth side growth model simulation device based on the side wall planar heat dissipation structure of the actual aluminum electrolytic cell. This device can truly simulate the heat dissipation state of the electrolytic cell during operation, and the precipitation and solidification process of the electrolyte on the simulation device Similar to the actual side growth process, it has a better experimental simulation effect.
- a large-volume cooling cavity is processed in the simulation device of the present invention, and the cooling gas can be passed into it to effectively adjust the temperature of the cold wall. It has the characteristics of convenient adjustment, quick response, and uniform temperature, and can quickly obtain the Stove samples.
- the invention can simulate the growth form of the side of the electrolytic cell under different heat balance states, can provide guidance for the design optimization of the lining structure of the modern large-scale electrolytic cell and daily production management, and is helpful to realize efficient and stable operation of the aluminum electrolytic cell.
- Fig. 1 is a schematic diagram of the structure of the simulation device body of the furnace side smelting process simulation device of an aluminum electrolytic cell according to the present invention.
- Fig. 2 is a schematic diagram 2 of the structure of the simulation device body of the furnace side smelting process simulation device of the aluminum electrolytic cell according to the present invention.
- Fig. 3 is a structural schematic diagram of the sealing rod of the smelting process simulation device of the furnace side of the aluminum electrolytic cell according to the present invention.
- Fig. 4 is a schematic diagram of the use state of the aluminum electrolytic cell furnace side smelting process simulation device of the present invention.
- FIG. 5 is a photograph of a side sample obtained by using the side smelting process simulation device of an aluminum electrolytic cell in Example 1.
- FIG. 5 is a photograph of a side sample obtained by using the side smelting process simulation device of an aluminum electrolytic cell in Example 1.
- Fig. 6 is a real photo of the side of the side of the aluminum electrolytic cell obtained by using the side smelting process simulation device in Example 1 and a SEM image of the corresponding area.
- Figure 7 is the XRD pattern of the dense layer material on the cold wall side.
- Fig. 8 is an XRD spectrum of the substance in the porous layer on the molten salt side.
- the aluminum electrolytic cell furnace side smelting process simulation device of this embodiment includes a simulator body, an air cooling system and a temperature control system; the simulator body has an inverted T-shaped structure, and the simulator body It includes a base 1 and a rectangular parallelepiped cold wall 2 perpendicular to the base 1.
- a hollow interlayer is provided inside the cold wall 2, specifically a rectangular parallelepiped cooling cavity 4.
- a sealing rod 3 is arranged on the upper part of the cooling cavity 4. The sealing The rod 3 is provided with a cooling gas inlet and a gas outlet.
- the air cooling system is connected to the cooling cavity 4 and cools the cooling cavity 4; specifically, the temperature of the cold wall 2 is controlled to be lower than the primary crystal temperature of the electrolyte by passing circulating cooling gas into the cooling cavity 4, so that the electrolyte is The outer side of the cold wall solidifies and precipitates to form the side of the furnace.
- the air cooling system includes a cold air source container 8, an air inlet pipe 6 and an air outlet pipe 7, the cold air source container 8 is connected with an air inlet pipe 6 and an air outlet pipe 7, and the air inlet pipe 6 passes through the cooling gas inlet on the sealing rod 3 and extends into At the bottom of the cooling cavity 4, the air inlet pipe 6 is provided with a flow meter and a cooling gas regulating valve, and the temperature of the cold wall 2 can be precisely regulated by adjusting the flow rate of the cooling gas.
- the gas outlet pipe 7 is arranged in the gas outlet. The air-cooling system sends cooling gas into the cooling cavity 4 through the cooling gas inlet, and then discharges it through the gas outlet to export heat to reduce the temperature of the cold wall 2 .
- the material of the simulation device body is the same as that of the side wall of the electrolytic cell, which is one of materials such as graphite, corundum, ceramics and silicon carbide;
- the air inlet pipe 6 and the air outlet pipe 7 are stainless steel pipes or corundum pipes, and the air inlet pipe 6. Pass argon, nitrogen or compressed air into the cooling cavity 4 through the air inlet to reduce the temperature of the cold wall 2 .
- the cooling gas is nitrogen.
- the temperature control system is set in the cold wall 2 and the molten electrolyte 9 to measure the temperature of the cold wall 2 and the molten electrolyte 9 .
- the temperature control system is a thermocouple 5
- the thermocouple includes a first thermocouple and a second thermocouple
- the first thermocouple is arranged in the molten electrolyte 9
- the second thermocouple is embedded in the Cold Wall 2 central location.
- the simulation device also includes a high temperature reactor 10 and an iron crucible 11 , the iron crucible 11 is set in the high temperature reactor 10 , the iron crucible 11 is provided with a molten electrolyte 9 , and the body of the simulation device is located in the molten electrolyte 9 .
- the simulation experiment of the smelting process of the furnace side of the aluminum electrolytic cell is carried out in the high temperature reactor 10.
- the industrial aluminum electrolyte powder or the cryolite-based mixed salt prepared in a certain proportion is placed in the iron crucible 11, and then the iron crucible 11 is placed in the stainless steel In the reactor 10, in an argon protective atmosphere, heat to 300°C for 2 hours to dry the water, and then continue to slowly raise the temperature to the set temperature.
- the simulated device of this embodiment is immersed in the molten In the electrolyte 9, the cooling gas nitrogen is passed into the cooling cavity 4 through the air cooling system at a fixed flow rate, and the nitrogen gas is introduced into the bottom of the cooling cavity 4 by the inlet pipe 6 to cool the cold wall 2, and then the heat is discharged by the outlet pipe 7 to make the electrolyte 9 cool.
- the temperature of the cold wall 2 decreases; the flow rate of the cooling gas is observed through the flowmeter on the intake pipe 6, and the gas flow rate is regulated by the cooling gas regulating valve, and then the temperature of the cold wall 2 is adjusted to make it reach the set superheat value (compared to electrolyte temperature), after the side wall temperature is stabilized at the preset value, keep the gas flow rate stable for 1 hour, and then take out the simulation device to obtain a complete solidified furnace side sample.
- Fig. 5 is the solidified furnace side sample obtained under the conditions of 10° C. (i.e. degree of superheat) at which the temperature of the cold wall is lower than the temperature of the molten electrolyte by passing high-purity nitrogen into the cooling cavity of Example 1 at a flow rate of 30 L/min. It can be seen from Figure 5 that the shape of the side of the furnace obtained is continuous and regular, indicating that the overall temperature of the cold wall can be uniformly reduced by introducing the cooling gas into the cooling cavity, which better simulates the growth process of the side of the electrolytic cell.
- 10° C. i.e. degree of superheat
- cooling gas is passed into the cooling cavity of Example 1 to lower the temperature of the cold wall to about 20°C (superheat) below the temperature of the molten electrolyte, and the solidified side is precipitated after keeping it stable for 2 hours.
- the part close to the cold wall is in a columnar crystal state with a dense structure; the XRD results are shown in Figure 7, and its main component is cryolite (Na 3 AlF 6 ), while containing a small amount of sub-cryolite ( Na 5 Al 3 F 14 ).
- the outer layer of the side near the molten electrolyte has a loose structure and higher porosity.
- the melting point of sub-cryolite is only 737°C. Therefore, the outer side with sub-cryolite as the main phase has a low melting point.
- the degree of superheat increases slightly, the outer side will dissolve; when the degree of superheat decreases, the corresponding sub-cryolite will be precipitated from the melt. , forming the observed porous outer layer. That is to say, once the thermal balance of the electrolyzer system is broken, the porous crystalline layer of the side of the furnace responds rapidly, and corresponding melting/deposition changes occur.
- This law is consistent with the law observed in actual production practice. It shows that the application of this simulation device can better simulate the smelting process of the furnace side of the electrolytic cell, and is suitable for studying the influence of electrolysis process parameters such as superheat and molecular ratio on the side of the furnace.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
一种铝电解槽炉帮熔析过程模拟装置及其使用方法,该模拟装置包括模拟装置本体、气冷系统和温控系统;模拟装置本体呈倒T型结构,模拟装置本体包括底座(1)和垂直于底座(1)的长方体冷壁(2),冷壁(2)内开设有长方体状冷却空腔(4),冷却空腔(4)顶部设置有密封棒(3);气冷系统与冷却空腔(4)连接并为冷却空腔(4)进行冷却;温控系统设置在冷壁(2)和模拟装置本体外周的熔融电解质(9)中以测量冷壁(2)和熔融电解质(9)的温度。依据实际铝电解槽的侧壁平面式散热结构,构造了平面冷壁炉帮生长模型模拟装置,该模拟装置能够真实地模拟电解槽运行过程的散热状态,模拟装置上电解质的析出凝固过程与实际炉帮生长过程相似,具有较好的实验模拟效果。
Description
本发明属于铝电解技术领域,特别涉及一种铝电解槽炉帮熔析过程模拟装置及其使用方法。
现代铝工业采用的大型预焙电解槽由阴极结构、上部结构、母线结构和电气绝缘四大部分构成。其中,阴极结构是电解槽最重要的组成部分,是盛装电解熔体(包括熔融电解质与铝液)的容器,包括槽壳及其所包含的内衬砌体。内衬砌体的底部用炭块砌筑,侧部是用炭块或碳化硅等材料制成的板块砌筑,下部为耐火砖与保温砖及其它耐火、保温和防渗材料。铝电解槽启动运行后,炉膛内壁可形成由熔融电解质凝结成的一圈固态电解质块体,工业上称其为炉帮。炉帮主要由冰晶石、氧化铝、氟化钙等固态无机盐组成,它连续地以不同厚薄程度构成了槽膛空间,在此空间内进行着铝电解的电化学及物理化学反应,实现铝电解过程。炉帮能够保护槽侧壁免受高温腐蚀性电解质侵蚀;减少电解槽热量的流失,促进炉膛保温;阻止电流通过槽侧部,抑制水平电流;同时炉帮能够调节铝电解槽的热平衡和物料平衡。
良好形状的炉膛对于获得高电流效率和生产效率十分重要。目前,研究者开发了基于温度场分析的静/动态数值模拟仿真计算方法,对铝电解槽炉帮及其传热等性质进行计算分析,然而由于熔融电解质的高温腐蚀性,电解槽内实际的炉帮形状和变化行为难以直接测量。现有技术中,专利CN109283207B公开了一种模拟铝电解槽炉帮生长过程的检测装置,采用中心开通孔的回转体(材质与工业电解槽侧壁一致)模拟铝电解槽侧部炭块和人造伸腿,使用时将其放入熔融的工业电解质中,向中心孔鼓入冷却空气对孔内壁进行冷却,使电解质在外壁凝固,获得模拟炉帮。该发明专利采用的圆柱型回转体结构与实际电解槽的平面侧壁形状差距稍大,二者传热方式不同,无法真实模拟实际电解槽散热情况,生成炉帮形状也与实际的炉帮相差较大,且该模拟装置冷却采用向中心通孔中鼓风的方式,由于冷却空腔体积较小,会导致装置传热慢、外壁温度分布不均匀。因此,为更加真实地模拟实际铝电解槽炉帮的熔析行为,掌握炉帮的生成、熔化过程和成分分布、微观组织等数据,需要设计能够更加准确地反映炉帮熔析过程的模拟装置和方法。
发明内容
本发明为解决现有技术中的模拟装置不能真实地模拟实际铝电解槽炉帮的熔析行为 的问题,本发明提供了一种具有大体积冷却空腔和炉帮析出平面、可精确控温的铝电解槽炉帮熔析过程模拟装置及其使用方法。
为了实现上述目的,本发明的技术方案是:
一种铝电解槽炉帮熔析过程模拟装置,包括模拟装置本体、气冷系统和温控系统;
所述模拟装置本体呈倒T型结构,模拟装置本体包括底座和垂直于底座的长方体冷壁,所述冷壁内开设有长方体状冷却空腔,所述冷却空腔上部设置有密封棒;
所述气冷系统与冷却空腔连接并为冷却空腔进行冷却;具体的,通过向冷却空腔内通入循环冷却气体控制冷壁温度低于电解质初晶温度,使电解质在冷壁外侧凝固析出形成炉帮;
所述温控系统设置在冷壁和熔融电解质中以测量冷壁和熔融电解质的温度。
作为进一步的优选方案,所述密封棒上开设有冷却气体进口和气体出口,所述气冷系统与冷却气体进口和气体出口连接,气冷系统通过冷却气体进口向冷却空腔内输送冷却气体,再通过气体出口排出。
作为进一步的优选方式,所述气冷系统包括冷气源容器、进气管和出气管,所述冷气源容器连接有进气管和出气管,进气管穿过密封棒上的冷却气体进口伸入冷却空腔底部,所述出气管设置在气体出口中。
作为进一步的优选方案,所述进气管上设置有流量计和冷却气体调节阀门,通过调整冷却气体流速可以精准调控冷壁温度。
作为进一步的优选方式,所述温控系统为热电偶,所述热电偶包括第一热电偶和第二热电偶,所述第一热电偶设置在熔融电解质中,所述第二热电偶预埋在冷壁中。
更进一步的,所述热电偶设置在冷壁的中心位置。
作为进一步的优选方式,所述模拟装置本体的材料与电解槽侧壁材质相同,为石墨、刚玉、陶瓷和碳化硅等材料中的一种;所述进气管和出气管均为不锈钢管或刚玉管,进气管通过进气口向冷壁空腔中通入氩气、氮气或压缩空气,使冷壁温度降低。
所述模拟装置还包括高温反应器和坩埚,所述坩埚设置在高温反应器中,坩埚中设置有熔融电解质,所述模拟装置本体位于熔融电解质中。
上述的一种铝电解槽炉帮熔析过程模拟装置的使用方法,包括以下步骤:
(1)将模拟装置浸入熔融电解质中,通过气冷系统向冷却空腔通入冷却气体;
(2)通过改变冷却气体流速,调节冷壁温度,使冷壁温度与所测电解质温度的差值与实际电解槽的过热度或目标过热度一致;
(3)待温度保持稳定后,保持冷却气体流速不变,维持一定时间后取出模拟装置,获得完 整的凝固炉帮。
通过上述技术方案,本发明的有益效果为:
1.本发明依据实际铝电解槽的侧壁平面式散热结构,构造了平面冷壁炉帮生长模型模拟装置,该装置能够真实地模拟电解槽运行过程的散热状态,模拟装置上电解质的析出凝固过程与实际炉帮生长过程相似,具有较好的实验模拟效果。
2.本发明的模拟装置中加工有大体积的冷却空腔,向其中通入冷却气体,可有效调节冷壁温度,具有调节方便、响应迅速、温度均匀的特点,能够快速获得不同过热度下的炉帮样品。
3.本发明能够模拟不同热平衡状态下电解槽炉帮的生长形态,可为现代大型电解槽内衬结构设计优化和日常生产管理提供指导,有助于实现铝电解槽高效、稳定运行。
图1为本发明的铝电解槽炉帮熔析过程模拟装置的模拟装置本体的结构示意图一。
图2为本发明的铝电解槽炉帮熔析过程模拟装置的模拟装置本体的结构示意图二。
图3为本发明的铝电解槽炉帮熔析过程模拟装置的密封棒的结构示意图。
图4为本发明的铝电解槽炉帮熔析过程模拟装置的使用状态示意图。
图5为采用实施例1中的铝电解槽炉帮熔析过程模拟装置获得的炉帮样品照片。
图6为采用实施例1中的铝电解槽炉帮熔析过程模拟装置获得的炉帮实物照片与对应区域的SEM图。
图7为冷壁侧致密层物质的XRD图谱。
图8为熔盐侧多孔层物质的XRD图谱。
附图中,1为底座;2为冷壁;3为密封棒;4为冷却空腔;5为热电偶;6为进气管;7为出气管;8为冷气源容器;9为熔融电解质,10为高温反应器,11为铁坩埚。
下面结合附图和具体实施方式对本发明作进一步说明:
实施例1
如图1~4所示,本实施例的铝电解槽炉帮熔析过程模拟装置,包括模拟装置本体、气冷系统和温控系统;所述模拟装置本体呈倒T型结构,模拟装置本体包括底座1和垂直于底座1的长方体冷壁2,所述冷壁2内开设有空心夹层,具体为长方体状冷却空腔4,所述冷却空腔4上部设置有密封棒3,所述密封棒3上开设有冷却气体进口和气体出口。
所述气冷系统与冷却空腔4连接并为冷却空腔4进行冷却;具体的,通过向冷却空 腔4内通入循环冷却气体控制冷壁2温度低于电解质初晶温度,使电解质在冷壁外侧凝固析出形成炉帮。所述气冷系统包括冷气源容器8、进气管6和出气管7,所述冷气源容器8连接有进气管6和出气管7,进气管6穿过密封棒3上的冷却气体进口伸入冷却空腔4底部,所述进气管6上设置有流量计和冷却气体调节阀门,通过调整冷却气体流速可以精准调控冷壁2温度。所述出气管7设置在气体出口中。气冷系统通过冷却气体进口向冷却空腔4内输送冷却气体,再通过气体出口排出,导出热量使冷壁2温度降低。
所述模拟装置本体的材料与电解槽侧壁材质相同,为石墨、刚玉、陶瓷和碳化硅等材料中的一种;所述进气管6和出气管7均为不锈钢管或刚玉管,进气管6通过进气口向冷却空腔4中通入氩气、氮气或压缩空气,使冷壁2温度降低。本实施例中冷却气体采用氮气。
所述温控系统设置在冷壁2和熔融电解质9中以测量冷壁2和熔融电解质9的温度。具体的,所述温控系统为热电偶5,所述热电偶包括第一热电偶和第二热电偶,所述第一热电偶设置在熔融电解质9中,所述第二热电偶预埋在冷壁2中心位置。
所述模拟装置还包括高温反应器10和铁坩埚11,所述铁坩埚11设置在高温反应器10中,铁坩埚11中设置有熔融电解质9,所述模拟装置本体位于熔融电解质9中。
铝电解槽炉帮熔析过程模拟实验在高温反应器10中进行,将工业铝电解质粉或按一定比例配制的冰晶石基混合盐置于铁坩埚11中,然后将铁坩埚11放入在不锈钢反应器10,在氩气保护气氛中,加热至300℃保温2h以烘干水分,然后继续缓慢升温至设定温度,待熔盐熔化形成熔融电解质后,将本实施例的模拟装置浸入的熔融电解质9中,通过气冷系统向冷却空腔4中以固定流速通入冷却气体氮气,氮气由进气管6导入冷却空腔4底部对冷壁2进行冷却,再由出气管7排出导出热量使冷壁2温度降低;通过进气管6上的流量计观察冷却气体流速,并通过冷却气体调节阀门调节气体流速,进而调节冷壁2的温度,使其达到设定的过热度值(相较于电解质温度),待侧壁温度稳定在预设值后,保持气体流速稳定1小时,然后取出模拟装置,获得完整的凝固炉帮样品。
实施例2
图5为以30L/min的流速向实施例1的冷却空腔中通入高纯氮气冷却,使冷壁温度低于熔融电解质温度10℃(即过热度)条件下获得的凝固炉帮样品,从图5中可以看到获得的炉帮形状连续、规整,说明通过将冷却气体导入冷却空腔可使冷壁整体温度均匀降低,较好地模拟了电解槽炉帮的生长过程。
实施例3
图6中间为向实施例1的冷却空腔中通入冷却气体使冷壁温度降低至熔融电解质温度以下约20℃(过热度),保持稳定2h后析出的凝固炉帮。通过对其微观结构进行分析,发现贴近冷壁侧的部分呈柱状晶态,结构致密;XRD结果如图7显示,其主要成分为冰晶石(Na
3AlF
6),同时含有少量亚冰晶石(Na
5Al
3F
14)。靠近熔融电解质侧的炉帮外层结构疏松、孔隙率较高,由图8的XRD图谱可以看出,外层的主相为亚冰晶石。该炉帮的结构、成分与文献报道的500kA铝电解槽真实炉帮相近(张钦菘.电解质相变中传热传质过程对其影响[J]),说明本发明的模拟装置能够很好地模拟铝电解槽的真实炉帮。
相较于冰晶石的熔点(1009℃),亚冰晶石的熔点较低,仅为737℃。因此,主相为亚冰晶石的外层炉帮熔点低,当过热度发生小幅度增大时,外层炉帮即发生溶解;当过热度减小时,相应地亚冰晶石从熔体中析出,形成观察到的多孔外层。也就是说,一旦电解槽系统热平衡被打破,炉帮的多孔结晶层迅速响应,发生相应的熔/析变化。该规律与实际生产实践观察到的规律一致。说明应用本模拟装置能够较好地模拟电解槽炉帮的熔析过程,适用于研究过热度、分子比等电解工艺参数对炉帮的影响规律。
以上所述之实施例,只是本发明的较佳实施例而已,并非限制本发明的实施范围,故凡依本发明专利范围所述的构造、特征及原理所做的等效变化或修饰,均应包括于本发明申请专利范围内。
Claims (10)
- 一种铝电解槽炉帮熔析过程模拟装置,包括模拟装置本体、气冷系统和温控系统;其特征在于,所述模拟装置本体呈倒T型结构,模拟装置本体包括底座(1)和垂直于底座(1)的长方体冷壁(2),所述冷壁(2)内开设有长方体状冷却空腔(4),所述冷却空腔(4)上部设置有密封棒(3);所述气冷系统与冷却空腔(4)连接并为冷却空腔(4)进行冷却;所述温控系统设置在冷壁(2)和模拟装置本体外周的熔融电解质(9)中以测量冷壁(2)和熔融电解质(9)的温度。
- 根据权利要求1所述的一种铝电解槽炉帮熔析过程模拟装置,其特征在于,所述密封棒(3)上开设有冷却气体进口和气体出口,所述气冷系统与冷却气体进口和气体出口连接。
- 根据权利要求2所述的一种铝电解槽炉帮熔析过程模拟装置,其特征在于,所述气冷系统包括冷气源容器(8)、进气管(6)和出气管(7),所述冷气源容器(8)连接有进气管(6)和出气管(7),进气管(6)穿过密封棒(3)上的冷却气体进口伸入冷却空腔(4)底部,所述出气管(7)设置在气体出口中。
- 根据权利要求1所述的一种铝电解槽炉帮熔析过程模拟装置,其特征在于,所述进气管(6)上设置有流量计和冷却气体调节阀门。
- 根据权利要求1所述的一种铝电解槽炉帮熔析过程模拟装置,其特征在于,所述温控系统为热电偶(5),所述热电偶包括第一热电偶和第二热电偶,所述第一热电偶设置在模拟装置本体外周的熔融电解质(9)中,所述第二热电偶预埋在冷壁(2)中心位置。
- 根据权利要求1所述的一种铝电解槽炉帮熔析过程模拟装置,其特征在于,所述模拟装置本体采用石墨、刚玉、陶瓷和碳化硅中的一种制成;所述进气管(6)和出气管(7)均为不锈钢管或刚玉管。
- 根据权利要求1所述的一种铝电解槽炉帮熔析过程模拟装置,其特征在于,所述模拟装置还包括高温反应器(10)和坩埚(11),所述坩埚(11)设置在高温反应器(10)中,坩埚(11)中设置有熔融电解质(9),所述模拟装置本体位于熔融电解质(9)中。
- 权利要求1所述的一种铝电解槽炉帮熔析过程模拟装置的使用方法,其特征在于,包括以下步骤:(1)将模拟装置浸入熔融电解质中,通过气冷系统向冷却空腔通入冷却气体;(2)通过改变冷却气体流速,调节冷壁温度,使冷壁温度与所测熔融电解质温度的差值与实际电解槽的过热度或目标过热度一致;(3)待温度保持稳定后,保持冷却气体流速不变,维持一定时间后取出模拟装置,获得完整的凝固炉帮。
- 根据权利要求8所述的使用方法,其特征在于,所述冷却气体为氩气、氮气或压缩空气。
- 根据权利要求8所述的使用方法,其特征在于,步骤(1)中所述冷壁温度低于熔融电解质温度5℃~20℃;步骤(3)维持时间为1~2小时。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111509915.1 | 2021-12-10 | ||
CN202111509915.1A CN114280233A (zh) | 2021-12-10 | 2021-12-10 | 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023103324A1 true WO2023103324A1 (zh) | 2023-06-15 |
Family
ID=80871699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/099512 WO2023103324A1 (zh) | 2021-12-10 | 2022-06-17 | 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114280233A (zh) |
WO (1) | WO2023103324A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117935660A (zh) * | 2024-03-21 | 2024-04-26 | 东北大学 | 一种铝电解槽炉帮变化机理实验装置及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114280233A (zh) * | 2021-12-10 | 2022-04-05 | 郑州大学 | 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19930708A1 (de) * | 1999-07-02 | 2001-01-04 | Willi Kroes Gmbh | Galvanikbehälter |
JP2018193573A (ja) * | 2017-05-15 | 2018-12-06 | 株式会社東芝 | 電解液タンク、電解装置、および水素製造システム |
CN109283207A (zh) * | 2018-11-02 | 2019-01-29 | 中南大学 | 一种模拟铝电解槽炉帮生长过程的检测装置及方法 |
CN109570464A (zh) * | 2019-01-21 | 2019-04-05 | 中南大学 | 一种模拟薄带连铸结晶器初始凝固的装置及方法 |
CN213121688U (zh) * | 2020-07-31 | 2021-05-04 | 北京科技大学 | 一种评价高炉炉缸热面黏滞层性状的试验系统 |
CN213813437U (zh) * | 2020-12-24 | 2021-07-27 | 郑州轻冶科技股份有限公司 | 一种铝电解槽模拟试验装置及铝电解槽模拟试验系统 |
CN113432439A (zh) * | 2021-07-29 | 2021-09-24 | 东北大学 | 一种铝电解槽停止运作后的冷却方法 |
CN114280233A (zh) * | 2021-12-10 | 2022-04-05 | 郑州大学 | 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 |
CN216955917U (zh) * | 2021-12-10 | 2022-07-12 | 郑州大学 | 一种铝电解槽炉帮熔析过程模拟装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003054533A1 (en) * | 2001-12-13 | 2003-07-03 | Sokolowski Jerzy H | Method and apparatus for universal metallurgical simulation and analysis |
CN112595762A (zh) * | 2020-12-24 | 2021-04-02 | 郑州轻冶科技股份有限公司 | 铝电解槽模拟试验装置及铝电解槽模拟试验系统 |
-
2021
- 2021-12-10 CN CN202111509915.1A patent/CN114280233A/zh active Pending
-
2022
- 2022-06-17 WO PCT/CN2022/099512 patent/WO2023103324A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19930708A1 (de) * | 1999-07-02 | 2001-01-04 | Willi Kroes Gmbh | Galvanikbehälter |
JP2018193573A (ja) * | 2017-05-15 | 2018-12-06 | 株式会社東芝 | 電解液タンク、電解装置、および水素製造システム |
CN109283207A (zh) * | 2018-11-02 | 2019-01-29 | 中南大学 | 一种模拟铝电解槽炉帮生长过程的检测装置及方法 |
CN109570464A (zh) * | 2019-01-21 | 2019-04-05 | 中南大学 | 一种模拟薄带连铸结晶器初始凝固的装置及方法 |
CN213121688U (zh) * | 2020-07-31 | 2021-05-04 | 北京科技大学 | 一种评价高炉炉缸热面黏滞层性状的试验系统 |
CN213813437U (zh) * | 2020-12-24 | 2021-07-27 | 郑州轻冶科技股份有限公司 | 一种铝电解槽模拟试验装置及铝电解槽模拟试验系统 |
CN113432439A (zh) * | 2021-07-29 | 2021-09-24 | 东北大学 | 一种铝电解槽停止运作后的冷却方法 |
CN114280233A (zh) * | 2021-12-10 | 2022-04-05 | 郑州大学 | 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 |
CN216955917U (zh) * | 2021-12-10 | 2022-07-12 | 郑州大学 | 一种铝电解槽炉帮熔析过程模拟装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117935660A (zh) * | 2024-03-21 | 2024-04-26 | 东北大学 | 一种铝电解槽炉帮变化机理实验装置及方法 |
CN117935660B (zh) * | 2024-03-21 | 2024-05-24 | 东北大学 | 一种铝电解槽炉帮变化机理实验装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114280233A (zh) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023103324A1 (zh) | 一种铝电解槽炉帮熔析过程模拟装置及其使用方法 | |
Beck | A non-consumable metal anode for production of aluminum with low-temperature fluoride melts | |
Wang et al. | Influence of MgCl2 content on corrosion behavior of GH1140 in molten NaCl-MgCl2 as thermal storage medium | |
CN104562192B (zh) | 一种多晶硅锭的铸造方法 | |
US7731824B2 (en) | Measuring duct offgas temperatures to improve electrolytic cell energy efficiency | |
CN216955917U (zh) | 一种铝电解槽炉帮熔析过程模拟装置 | |
CN213813437U (zh) | 一种铝电解槽模拟试验装置及铝电解槽模拟试验系统 | |
CN104562193B (zh) | 一种多晶硅锭的铸造方法 | |
CN112210795B (zh) | 基于过热度的铝电解能量平衡调节方法、系统、铝电解槽 | |
CN109503197A (zh) | 一种六铝酸钙多孔陶瓷的制备方法 | |
Bao et al. | Effects of current density on current efficiency in low temperature electrolysis with vertical electrode structure | |
CN109283207B (zh) | 一种模拟铝电解槽炉帮生长过程的检测装置及方法 | |
Tkacheva et al. | Solid phase formation during aluminium electrolysis | |
CN100582309C (zh) | 一种铝电解惰性阳极预热-更换用保温包覆材料及制备方法 | |
CA1080151A (en) | Forming crust in electrolysis of salt charge of aluminium oxide content above eutectic point | |
Lora et al. | Solidification study of gray cast iron in a resistance furnace | |
Allard et al. | The impact of the cavity on the top heat losses in aluminum electrolysis cells | |
Crivits | Fundamental studies on the chemical aspects of freeze linings | |
Liu et al. | The structure of the smelting cell ledge under variable sidewall heat flow conditions | |
Kaya et al. | Directional cellular growth of Al-2 wt% Li bulk samples | |
Li et al. | Development and application of a structured/unstructured combined mesh scheme for global modeling of a directional solidification process of silicon | |
Ivanova et al. | Experimental studies of the dynamic formation of the side ledge in an aluminum electrolysis cell | |
Shang et al. | Directional solidification behavior of turbine blades in DZ125 alloy: design of blade numbers on assembly | |
Taylor et al. | Bath/freeze heat transfer coefficients: experimental determination and industrial application | |
CN221334280U (zh) | 一种保温坩埚装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22902762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |