WO2023102695A1 - 测量放松方法、装置、终端设备及存储介质 - Google Patents

测量放松方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2023102695A1
WO2023102695A1 PCT/CN2021/135809 CN2021135809W WO2023102695A1 WO 2023102695 A1 WO2023102695 A1 WO 2023102695A1 CN 2021135809 W CN2021135809 W CN 2021135809W WO 2023102695 A1 WO2023102695 A1 WO 2023102695A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
relaxation
criterion
bfd
rlm
Prior art date
Application number
PCT/CN2021/135809
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/135809 priority Critical patent/WO2023102695A1/zh
Priority to CN202180102174.7A priority patent/CN117941403A/zh
Publication of WO2023102695A1 publication Critical patent/WO2023102695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular to a measurement relaxation method, device, terminal equipment, and storage medium.
  • terminal equipment In order to ensure the reliability of communication, terminal equipment often needs to perform some measurements, for example: through radio link monitor (Radio Link Monitor, RLM) measurement to ensure the reliability of the wireless link; through beam failure detection (Beam Failure Detection, BFD) measurement to ensure the reliability of the beam.
  • RLM Radio Link Monitor
  • BFD Beam Failure Detection
  • Embodiments of the present application provide a measurement relaxation method, device, terminal equipment, and storage medium. Described technical scheme is as follows:
  • a method for measuring relaxation comprising:
  • the first measurement and the second measurement are two different measurements.
  • a measurement relaxation device includes: a criterion judging module and a measurement relaxation module;
  • the criterion judging module is configured to determine that the second measurement satisfies the measurement relaxation criterion based on that the first measurement satisfies the measurement relaxation criterion;
  • said measurement relaxation module for performing measurement relaxation on said first measurement and said second measurement
  • the first measurement and the second measurement are two different measurements.
  • a terminal device includes a processor
  • the processor configured to determine that a second measurement satisfies a measurement relaxation criterion based on the first measurement satisfying the measurement relaxation criterion;
  • the processor configured to perform measurement relaxation on the first measurement and the second measurement
  • the first measurement and the second measurement are two different measurements.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is used for execution by a processor, so as to implement the above measurement relaxation method.
  • a chip includes a programmable logic circuit and/or program instructions, and is used to implement the above measurement relaxation method when the chip is running.
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and a processor reads from the The computer-readable storage medium reads and executes the computer instructions, so as to realize the above measurement relaxation method.
  • Fig. 1 is a schematic diagram of a radio link failure (Radio Link Failure, RLF) counting process provided by an exemplary embodiment of the present application;
  • RLF Radio Link Failure
  • FIG. 2 is a schematic diagram of the process of RLM measurement from the physical layer to the high layer provided by an exemplary embodiment of the present application;
  • FIG. 3 is a schematic diagram of a beam failure recovery process provided by an exemplary embodiment of the present application.
  • Fig. 4 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application.
  • Fig. 5 is a flowchart of a method for measuring relaxation provided by an exemplary embodiment of the present application
  • Fig. 6 is a schematic diagram of a method for measuring relaxation provided by an exemplary embodiment of the present application.
  • Fig. 7 is a block diagram of a device for measuring relaxation provided by an exemplary embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a terminal device provided by an exemplary embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • PSCell Primary Secondary Cell
  • E-UTRA and NR Dual Connectivity E-UTRA-NR Dual Connectivity, EN-DC
  • RLM refers to monitoring and evaluating downlink channel quality of a serving cell, and RLM measurement is used to generate an In-Sync (IS) indication and an Out-of-Sync (OOS) indication.
  • IS In-Sync
  • OOS Out-of-Sync
  • RLM-RS Radio Link Monitor Reference Signal
  • BWP Bandwidth Part
  • RLM-RS Radio Link Monitor Reference Signal
  • the RLM-RS includes the synchronization signal block (Synchronization Signaling Block , SSB), Channel State Information-Reference Signal (Channel State Information Reference Signal, CSI-RS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the measurement time of the RLM measurement is in T SSB (no need to configure the measurement interval).
  • Frequency range 2 (FR2): Since T SSB may overlap with T SMTCperiod and MGRP, the measurement time needs to be extended; refer to 38.133Section8.5.2.2 for details.
  • T SSB refers to the period of the SSB
  • T SMTCperiod refers to the period of the SSB Measurement Timing Configuration (SSB Measurement Timing Configuration, SMTC).
  • the terminal device On each RLM-RS resource, the terminal device will estimate the quality of the downlink radio link and compare it with the thresholds Qout and Qin to monitor and evaluate the downlink channel quality of the serving cell.
  • Threshold Qin/Qout The thresholds of IS and OOS are related to the Block Error Rates (BLER) of the Physical Downlink Control Channel (PDCCH).
  • BLER Block Error Rates
  • the terminal device can determine the synchronous block error rate and the out-of-synchronization block error rate based on the following table. For details of the table, please refer to Table 8.1.1-1 in the relevant protocol standards.
  • the synchronous block error rate is recorded as BLER in and the out-of-synchronization for BLER out .
  • the threshold Qout is defined as the level at which the downlink radio link cannot be reliably received and corresponds to the out-of-sync block error rate (BLER out ) as defined in the table above.
  • BLER out block error rate
  • Qout_SSB is derived from the assumed PDCCH transmission parameters listed in Table 8.1.2.1-1 in the relevant protocol standard.
  • Qout_CSI-RS is derived based on the assumed PDCCH transmission parameters listed in Table 8.1.3.1-1 in the relevant protocol standards.
  • the threshold Qin is defined as the level at which the downlink radio link quality can be received with significantly higher reliability than Qout and should correspond to the block error rate for synchronization (BLER in ) defined in the table above.
  • Qin_SSB is derived from the assumed PDCCH transmission parameters listed in Table 8.1.2.1-2 in relevant protocol standards.
  • Qin_CSI-RS is derived based on the assumed PDCCH transmission parameters listed in Table 8.1.3.1-2 in relevant protocol standards.
  • the terminal device needs to send an L1 out-of-sync indication to the upper layer, and L3 performs L3 filtering on all indications within the evaluation period (Evaluation period).
  • the terminal device needs to send an L1 synchronization indication to the upper layer, and the L3 performs L3 filtering on all indications during the evaluation period.
  • T Indication_interval max(10ms, T RLM-RS, M ) or max(10ms, 1.5*DRX_cycle_length, 1.5*T RLM-RS, M ).
  • T RLM-RS, M refers to the shortest cycle among all configured RLM-RSs (such as SSB, CSI-RS) of the monitored cell;
  • DRX_cycle_length refers to the length of the discontinuous reception (Discontinuous Reception, DRX) cycle.
  • the method of L3 filtering, at the high level, is generally based on the forward convolution averaging method, which can be based on radio resource control (Radio Resource Control, RRC) configuration or network-based implementation.
  • RRC Radio Resource Control
  • the basic process of RLM and RLF in LTE and NR includes:
  • the network side pre-configures the threshold value for IS and OOS for the terminal device, and the threshold value is given in the form of BLER size.
  • the network side pre-configures RLM measurement resources for the terminal device, and the terminal device judges the current channel quality status by performing measurement on the given resource.
  • the terminal device detects that the RSs of all RLMs are smaller than Qout, the physical layer of the terminal device reports an L1 out-of-sync indication to the upper layer.
  • the terminal device detects that the RS of at least one RLM is greater than Qin, the physical layer of the terminal device reports an L1 synchronization indication to the upper layer.
  • the radio link monitoring configuration (RadioLinkMonitoringConfig) is configured through RRC signaling.
  • the terminal device must turn off Tx RF within 40ms.
  • FIG. 2 shows the whole process of RLM from the physical layer to the high layer.
  • the terminal device performs RS-level evaluation Qin/Qout, then executes cell-level evaluation IS/OOS, and then performs cell-level evaluation RLF. If RLF is not triggered, the T310 timer is released. When RLF is triggered, trigger Re-establishment, the re-establishment includes RRC connection re-establishment.
  • a beam failure recovery mechanism is designed for PCell and PSCell, and its main functional modules (or called main steps) are divided into the following four:
  • BFD Beam Failure Detection
  • New beam selection (New Beam Identification, NBI);
  • Beam Failure Recovery ReQest BFRQ
  • the terminal device measures the PDCCH to judge the link quality corresponding to the downlink transmission beam. If the quality of the corresponding link is very poor, it is considered that the downlink beam fails. Here, only when the quality of all the beams of the PDCCH is poor, it is considered that the beam failure occurs.
  • the terminal device will also measure a group of candidate beams, and select a beam meeting a certain threshold as a new beam. Then the terminal device notifies the network that a beam failure has occurred through the beam failure recovery request process, and reports a new beam.
  • the network After the network receives the BFRQ information sent by a terminal device, it knows that the terminal device has a beam failure, and chooses to send PDCCH from the new beam, and the terminal device receives the PDCCH sent by the network on the new beam, and considers that it has correctly received the response from the network side. information. So far, the beam failure recovery process is successfully completed.
  • the PCell and the PSCell are collectively referred to as the primary cell.
  • the terminal device shall evaluate the downlink radio link quality of the serving cell based on reference signals in the q0 set specified in TS 38.213 [3] in order to detect beam failures at:
  • SCell Secondary Cell (SCell) in SA, NR-DC, NE-DC, EN-DC modes.
  • the requirements in this clause apply to each SSB resource in the q0 set configured for the serving cell, provided that: during the entire evaluation period specified in clause 8.5.2.2 of the regulations, the SSB configured for beam failure detection Actual transmission within the active downstream BWP.
  • the requirements in this clause do not apply if the terminal equipment is required to perform beam failure detection on more than 1 serving cell per frequency band.
  • the BFD report needs to distinguish whether it is the measurement result of SSB or CSI-RS, and report each according to the periodic step.
  • RLM measures SSB and CSI-RS separately, if the terminal device is configured to measure SSB and CSI-RS at the same time, RS, it is allowed not to distinguish between CSI-RS and SSB, and to mix and report according to the cycle;
  • TEvaluate_out_SSB(ms) Max(200, Ceil(10xP)xT SSB );
  • TEvaluate_in_SSB(ms) Max(100, Ceil(5xP)xT SSB ).
  • TEvaluate_BFD_SSB Max(50, Ceil(5 ⁇ P) ⁇ T SSB ).
  • T SSB refers to the period of SSB.
  • the evaluation period of the RLM measurement (the lower limit is 200ms) is longer than that of the BFD measurement (the lower limit is 50ms), and BFD performs measurements more frequently and intensively.
  • RLM measurement max(10ms, T RLM-RS, M );
  • T RLM-RS, M is the shortest period among all configured RLM-RSs (such as SSB, CSI-RS) of the monitored cell.
  • ⁇ BFD measurement max(2ms, T SSB-RS, M ) or max(2ms, T CSI-RS, M ).
  • T SSB-RS M refers to the minimum period of the SSB
  • T CSI-RS M refers to the minimum period of the CSI-RS.
  • the interval for reporting continuous L1 indications by RLM measurement (the lower limit is 10 ms) is greater than the interval for reporting continuous L1 indications by BFD measurement (the lower limit is 2 ms).
  • the first measurement meets the measurement relaxation criterion and is applied to the second measurement, and measurement relaxation is performed on both the first measurement and the second measurement, so that it is not necessary to judge the second measurement based on the measurement results of the second measurement.
  • the second is to measure whether the measurement relaxation criterion is satisfied, and the logic judgment process is saved while the measurement is relaxed, so as to save energy for the terminal equipment.
  • FIG. 4 shows a schematic diagram of a communication system 400 provided by an embodiment of the present application.
  • the communication system 400 may include: a terminal device 10 and an access network device 20 .
  • the terminal equipment 10 may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • UE User Equipment
  • the terminal device 10 may also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (Wireless Local Loop, WLL) station, a Personal Digital Assistant (PDA) ), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the fifth generation mobile communication system (5th Generation System, 5GS) or future evolution
  • the terminal equipment in the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc. is not limited in this embodiment of the present application.
  • the devices mentioned above are collectively referred to as terminal devices.
  • the number of terminal devices 10 is generally multiple, and one or more terminal devices 10 may be distributed in a cell managed by each access network device 20 .
  • the access network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal device 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with access network device functions may be different.
  • they are called gNodeB or gNB.
  • the name "access network equipment” may change.
  • the above-mentioned devices that provide the wireless communication function for the terminal device 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal device 10 and the core network device.
  • the access network device 20 may be an Evolved Universal Terrestrial Radio Access Network (Evolved Universal Terrestrial Radio Access Network, EUTRAN) or one or more eNodeBs in EUTRAN;
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • the access network device 20 may be a radio access network (Radio Access Network, RAN) or one or more gNBs in the RAN.
  • RAN Radio Access Network
  • the access network device 20 and the terminal device 10 communicate with each other through a certain air interface technology, such as a Uu interface.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • 5G 5th Generation
  • 5G 5th Generation
  • 5G 5th Generation
  • FIG. 5 shows a flowchart of a measurement relaxation method provided by an embodiment of the present application, and the method is executed by a terminal device.
  • the method may include the steps of:
  • Step 502 Determine that the second measurement satisfies the measurement relaxation criterion based on the first measurement satisfying the measurement relaxation criterion.
  • the terminal device performs the first measurement and the second measurement at the same time, and when the terminal device determines that the first measurement satisfies the measurement relaxation criterion based on the current measurement result of the first measurement, the terminal device directly determines the second measurement The measurement relaxation criterion is also met without judgment based on the measurement results of the second measurement.
  • the first measurement and the second measurement are two different measurements.
  • the embodiment of the present application does not limit the specific type of measurement.
  • the measurement includes: RLM measurement and BFD measurement, the first measurement is RLM measurement, the second measurement is BFD measurement, or the first measurement is BFD measurement, The second measurement is the RLM measurement.
  • the first measurement and the second measurement have the following relationship:
  • the reference signals measured by the first measurement and the second measurement are the same, or there is an intersection between the reference signals measured by the first measurement and the second measurement, or the reference signal measured by the second measurement belongs to a subset of the reference signal measured by the first measurement set;
  • the measured quantities measured by the first measurement and the second measurement are the same, or, there is an intersection between the measured quantities measured by the first measurement and the second measurement, or, the measured quantities measured by the second measurement belong to a child of the measured quantities measured by the first measurement set;
  • the cell/carrier applicable to the first measurement and the second measurement are the same, or there is an intersection between the cell/carrier applicable to the first measurement and the second measurement, or the cell/carrier applicable to the second measurement belongs to the first measurement Subset of cells/carriers to which it applies.
  • the measurement relaxation criterion is a criterion for confirming whether to perform relaxation on the measurement.
  • the number of criteria specifically included in the measurement relaxation criteria there is no limitation on the number of criteria specifically included in the measurement relaxation criteria.
  • the measurement relaxation criterion includes one criterion.
  • the measurement relaxation criterion includes at least two criteria. If the measurement satisfies the above at least two criteria at the same time, the measurement is considered to meet the measurement relaxation criterion; or, if the measurement meets any one of the above at least two criteria, the measurement is considered to meet the measurement relaxation criterion.
  • Step 504 Perform measurement relaxation on the first measurement and the second measurement.
  • the terminal device Since the first measurement satisfies the measurement relaxation criterion, the terminal device performs measurement relaxation on the first measurement, and since the first measurement satisfies the measurement relaxation criterion and is applied to the second measurement, and the second measurement also satisfies the measurement relaxation criterion, the terminal device also Measurement relaxation is performed on the second measurement.
  • measuring relaxation includes at least one of the following aspects:
  • Measurement time may also be referred to as: measurement period, evaluation period, measurement evaluation time, and so on.
  • the first measurement meets the measurement relaxation criterion and is applied to the second measurement, and the measurement relaxation is performed on both the first measurement and the second measurement, so that there is no need to perform measurement based on the measurement results of the second measurement. It is judged whether the second measurement satisfies the measurement relaxation criterion, and the logic judgment process is saved while the measurement is relaxed, thereby saving energy for the terminal device.
  • the measurement relaxation criterion includes at least one of the following:
  • a first measurement relaxation criterion where the first measurement relaxation criterion is a criterion related to judging the mobility of the terminal device;
  • the second measurement relaxation criterion is a criterion related to judging the quality of the serving cell.
  • the first measurement relaxation criterion may be recorded as a low mobility criterion (lower mobility criteria); the second measurement relaxation criterion may be recorded as a good serving cell quality criterion (good serving cell quality criteria).
  • the measurement satisfies the first measurement relaxation criterion, that is, the measurement is considered to satisfy the measurement relaxation criterion, and measurement relaxation can be performed; in a possible implementation manner, if the measurement satisfies the second measurement relaxation criterion, That is, the measurement is considered to meet the measurement relaxation criterion, and measurement relaxation can be performed; in a possible implementation, if the measurement satisfies the first measurement relaxation criterion and the second measurement relaxation criterion at the same time, that is, the measurement is considered to meet the measurement relaxation criterion, and can be performed Measure relaxation.
  • the first measurement relaxation criterion includes at least one of the following criteria:
  • the reference signals suitable for RLM measurement include at least one of the following: L1SSB, L1CSI-RS and L3SSB.
  • Reference signals suitable for BFD measurement include at least one of the following: L1SSB, L1CSI-RS, L3SSB and L3CSI-RS.
  • ⁇ Measurable quantities applicable to RLM measurement include: RSRP.
  • ⁇ Measurements applicable to BFD measurement include: RSRP.
  • reference signals and measurement quantities applicable to RLM L1SSB, L1CSI-RS, L3SSB, measurement RSRP; reference signals and measurement quantities applicable to BFD: L1SSB, L1CSI-RS, L3SSB, L3CSI-RS, measurement RSRP.
  • the first measurement relaxation criterion is a criterion at UE level. As long as the measurement result of a certain PCell or PSCell satisfies the first measurement relaxation criterion, it is considered that all serving cells of the terminal device satisfy this criterion.
  • the threshold configured by the first measurement relaxation criterion includes: RSRP threshold and moving speed threshold. If the measured RSRP is lower than the RSRP threshold and the moving speed is lower than the moving speed threshold, the terminal device is considered to meet the first Measure relaxation criteria.
  • the measurement result of the SSB and the measurement result of the CSI-RS may be included at the same time.
  • the second measurement relaxation criterion includes at least one of the following criteria:
  • the reference signals suitable for RLM measurement include at least one of the following: L1SSB and L1CSI-RS.
  • Reference signals suitable for BFD measurement include at least one of the following: L1SSB and L1CSI-RS.
  • the measurement quantities applicable to RLM measurement include: SINR.
  • ⁇ Measurements applicable to BFD measurement include: SINR.
  • the reference signal and measurement quantity applicable to RLM L1SSB, L1CSI-RS, measure SINR
  • the reference signal and measurement quantity applicable to BFD L1SSB, L1CSI-RS, measure SINR
  • the serving cell includes: PCell, PSCell.
  • the second measurement relaxation criterion is a criterion at the cell level. If the measurement result of the PCell satisfies the first measurement relaxation criterion, it is considered that the PCell meets this criterion; if the measurement result of the PSCell satisfies the first measurement relaxation criterion, it is considered that the PSCell meets this criterion.
  • the threshold configured by the second measurement relaxation criterion includes: the sum of the synchronization threshold Qin and the first offset value; or the sum of the out-of-synchronization threshold Qout and the second offset value.
  • the above-mentioned first offset value and second offset value may be any positive value or negative value.
  • the measurement result of the SSB and the measurement result of the CSI-RS may be included at the same time.
  • the technical solution provided by this embodiment improves the criterion content of the first measurement relaxation criterion (ie, lower mobility criteria) and the second measurement relaxation criterion (ie, good serving cell quality criteria), so that the terminal device can clarify Whether it satisfies the measurement relaxation criterion.
  • the first measurement is: RLM measurement
  • the second measurement includes: BFD measurement.
  • the RLM measurement when it satisfies the measurement relaxation criterion, it can be applied to the BFD measurement.
  • the RLM measurement is the measurement on the PCell and the PSCell
  • the BFD measurement is the measurement on the PCell and the PSCell.
  • the RLM measurement on the PCell meets the measurement relaxation criterion, confirm that the BFD measurement on the PCell also meets the measurement relaxation criterion; if the RLM measurement on the PSCell meets the measurement relaxation criterion, confirm that the BFD measurement on the PSCell also Satisfy the measurement relaxation criteria.
  • the first measurement relaxation criterion is a UE-level criterion, if the RLM measurement on the PCell or the PSCell satisfies the first measurement relaxation criterion, then the BFD measurement on the PCell and the PSCell also meets the first measurement relaxation criterion.
  • the first measurement relaxation criterion is a UE-level criterion, it may also be confirmed that the BFD measurement on the SCell satisfies the first measurement relaxation criterion when the RLM measurement on the PCell or PSCell satisfies the first measurement relaxation criterion.
  • the second measurement relaxation criterion is a cell-level criterion, if the RLM measurement on the PCell meets the second measurement relaxation criterion, it is confirmed that the BFD measurement on the PCell also meets the second measurement relaxation criterion; the RLM measurement on the PSCell meets the second measurement relaxation criterion; In the case of the second measurement relaxation criterion, it is confirmed that the BFD measurement on the PSCell also satisfies the second measurement relaxation criterion.
  • the RLM measurement is the measurement on the PCell and the PSCell
  • the BFD measurement is the measurement on the SCell
  • the second measurement relaxation criterion is a cell-level criterion
  • the BFD measurement on the SCell still needs to continue to measure to determine the BFD measurement on the SCell. Whether the BFD measurement satisfies the second measurement relaxation criterion.
  • Perform measurement relaxation for the first measurement and the second measurement including:
  • the values of the first relaxation coefficient and the second relaxation coefficient depend on the measurement configurations corresponding to the first measurement and the second measurement; when the configurations corresponding to the first measurement and the second measurement are the same, the first relaxation coefficient and the second The relaxation coefficients are the same; if the measurement configurations corresponding to the first measurement and the second measurement are different, the first relaxation coefficient and the second relaxation coefficient are different.
  • measurement relaxation includes: measurement time elongation. Configure the first relaxation coefficient for the measurement time of the RLM measurement belonging to the first measurement, thereby lengthening the measurement time of the RLM measurement; configure the second relaxation coefficient for the measurement time of the BFD measurement belonging to the second measurement, thereby lengthening the measurement of the BFD measurement time.
  • the value of the first relaxation coefficient depends on the measurement configuration corresponding to the RLM measurement
  • the value of the second relaxation coefficient depends on the measurement configuration corresponding to the BFD measurement.
  • the measurement configuration includes at least one of the following: reference signal period configuration; measurement time period configuration.
  • Perform measurement relaxation for the first measurement and the second measurement including:
  • a fourth relaxation factor is configured for the L1 reporting interval of the second measurement.
  • the relaxation of measurement includes: increasing the interval for reporting the L1 indication. Configure the third relaxation factor for the L1 reporting interval of the RLM measurement belonging to the first measurement, thereby expanding the reporting interval of the L1 indication of the RLM measurement; configure the fourth relaxation factor for the L1 reporting interval of the BFD measurement belonging to the second measurement, thereby expanding the BFD The reporting interval indicated by L1 of the measurement.
  • the relaxation coefficient of the L1 reporting interval configuration of the RLM measurement in the first measurement or the second measurement is the first value
  • the first value is the relaxation coefficient of the measurement time of the SSB and the CSI-RS
  • the minimum of the relaxation coefficients of the measurement time of the measurement time; the relaxation coefficient of the L1 reporting interval configuration of the BFD measurement in the second measurement or the first measurement is the relaxation coefficient of the measurement time of the SSB or the relaxation coefficient of the measurement time of the CSI-RS.
  • the relaxation coefficients of the L1 reporting intervals respectively corresponding to the first measurement and the second measurement are independent.
  • the third relaxation coefficient of the configuration of the L1 reporting interval of the RLM measurement belonging to the first measurement is the smallest of the relaxation coefficient of the measurement time of the SSB and the relaxation coefficient of the measurement time of the CSI-RS, and belongs to the
  • the fourth relaxation coefficient of the L1 reporting interval configuration of the BFD measurement is the relaxation coefficient of the measurement time of the SSB or the relaxation coefficient of the measurement time of the CSI-RS.
  • the fourth relaxation coefficient depends on the third relaxation coefficient; when the first measurement is RLM measurement, the third relaxation coefficient is the first value, and the first value is the measurement time of SSB The minimum of the relaxation coefficient of the measurement time of SSB and the relaxation coefficient of the measurement time of CSI-RS; in the case that the first measurement is a BFD measurement, the third relaxation coefficient is the relaxation coefficient of the measurement time of SSB or the relaxation coefficient of the measurement time of CSI-RS coefficient.
  • the relaxation coefficient of the L1 reporting interval of the second measurement is determined by the relaxation coefficient of the L1 reporting interval of the first measurement.
  • the above-mentioned fourth relaxation coefficient depends on the third relaxation coefficient can also be understood as: the fourth relaxation coefficient reuses the third relaxation coefficient, the fourth relaxation coefficient inherits the third relaxation coefficient, and the fourth relaxation coefficient is calculated according to the third relaxation coefficient A value of and so on.
  • the third relaxation coefficient of the configuration of the L1 reporting interval of the RLM measurement belonging to the first measurement is the smallest of the relaxation coefficient of the measurement time of the SSB and the relaxation coefficient of the measurement time of the CSI-RS, and belongs to the
  • the fourth relaxation coefficient of the L1 reporting interval configuration of the BFD measurement depends on the third relaxation coefficient, for example, the fourth relaxation coefficient is equal to the third relaxation coefficient.
  • the L1 reporting interval of the RLM measurement is the second value, and the second value is the minimum of the minimum period of the SSB and the minimum period of the CSI-RS; or, the L1 reporting interval of the RLM measurement is the second value and the largest of the first lower limit values.
  • the first lower limit is 10ms.
  • the L1 reporting interval of the BFD measurement is the minimum period of the SSB; or, the L1 reporting interval of the BFD measurement is the minimum period of the CSI-RS; or, the L1 reporting interval of the BFD measurement is the minimum period of the SSB and the second lower limit or, the L1 reporting interval of the BFD measurement is the maximum of the minimum period of the CSI-RS and the second lower limit value.
  • the second lower limit is 2ms.
  • the technical solution provided by this embodiment can be applied to BFD measurement when the RLM measurement meets the measurement relaxation criterion, and the measurement relaxation is performed on both the RLM measurement and the BFD measurement, so that there is no need to judge BFD based on the measurement results of the BFD measurement Whether the measurement satisfies the measurement relaxation criterion, while the measurement is relaxed, saves the logical judgment process, thereby saving energy for the terminal equipment.
  • the first measurement is: BFD measurement
  • the second measurement includes: RLM measurement.
  • the BFD measurement when it satisfies the measurement relaxation criterion, it can be applied to the RLM measurement.
  • the RLM measurement is the measurement on the PCell and the PSCell
  • the BFD measurement is the measurement on the PCell and the PSCell.
  • the BFD measurement on the PCell meets the measurement relaxation criterion, confirm that the RLM measurement on the PCell also meets the measurement relaxation criterion; if the BFD measurement on the PSCell meets the measurement relaxation criterion, confirm that the RLM measurement on the PSCell also Satisfy the measurement relaxation criteria.
  • the first measurement relaxation criterion is a UE-level criterion, if the BFD measurement on the PCell, PSCell or SCell satisfies the first measurement relaxation criterion, then the RLM measurement on the PCell and PSCell also meets the first measurement relaxation criterion.
  • the second measurement relaxation criterion is a cell-level criterion
  • the BFD measurement on the PCell meets the second measurement relaxation criterion
  • the RLM measurement on the PCell also meets the second measurement relaxation criterion
  • the BFD measurement on the PSCell meets the second measurement relaxation criterion.
  • the RLM measurement on the PSCell also satisfies the second measurement relaxation criterion.
  • the RLM measurement does not satisfy the second measurement relaxation criterion
  • the RLM measurement does not satisfy the second measurement relaxation criterion.
  • the BFD measurement can replace the determination of the RLM measurement, if the BFD measurement on the PCell and the PSCell meets the second measurement criterion, then the RLM measurement on the PCell and the PSCell meets the second measurement criterion; if If the BFD measurement on the PCell and the PSCell does not satisfy the second measurement criterion, then the RLM measurement on the PCell and the PSCell also does not satisfy the second measurement criterion. In another possible implementation manner, the BFD measurement cannot completely replace the judgment of the RLM measurement.
  • the RLM measurement on the PCell and the PSCell meets the second measurement criterion; if If the BFD measurement on the PCell and the PSCell does not satisfy the second measurement criterion within a plurality of measurement times, then the RLM measurement on the PCell and the PSCell does not satisfy the second measurement criterion.
  • Perform measurement relaxation for the first measurement and the second measurement including:
  • the values of the first relaxation coefficient and the second relaxation coefficient depend on the measurement configurations corresponding to the first measurement and the second measurement; when the configurations corresponding to the first measurement and the second measurement are the same, the first relaxation coefficient and the second The relaxation coefficients are the same; if the measurement configurations corresponding to the first measurement and the second measurement are different, the first relaxation coefficient and the second relaxation coefficient are different.
  • measurement relaxation includes: measurement time elongation. Configure the first relaxation coefficient for the measurement time of the BFD measurement belonging to the first measurement, thereby lengthening the measurement time of the BFD measurement; configure the second relaxation coefficient for the measurement time of the RLM measurement belonging to the second measurement, thereby lengthening the measurement of the RLM measurement time.
  • the value of the first relaxation coefficient depends on the measurement configuration corresponding to the BFD measurement
  • the value of the second relaxation coefficient depends on the measurement configuration corresponding to the RLM measurement.
  • the measurement configuration includes at least one of the following: reference signal period configuration; measurement time period configuration.
  • Perform measurement relaxation for the first measurement and the second measurement including:
  • a fourth relaxation factor is configured for the L1 reporting interval of the second measurement.
  • the relaxation of measurement includes: increasing the interval for reporting the L1 indication. Configure the third relaxation coefficient for the L1 reporting interval of the BFD measurement belonging to the first measurement, thereby expanding the interval indicated by the reporting L1 of the BFD measurement; configure the fourth relaxation coefficient for the L1 reporting interval of the RLM measurement belonging to the second measurement, thereby expanding the RLM The reporting interval indicated by L1 of the measurement.
  • the relaxation coefficient of the L1 reporting interval configuration of the RLM measurement in the first measurement or the second measurement is the first value
  • the first value is the relaxation coefficient of the measurement time of the SSB and the CSI-RS
  • the minimum of the relaxation coefficients of the measurement time of the measurement time; the relaxation coefficient of the L1 reporting interval configuration of the BFD measurement in the second measurement or the first measurement is the relaxation coefficient of the measurement time of the SSB or the relaxation coefficient of the measurement time of the CSI-RS.
  • the relaxation coefficients of the L1 reporting intervals respectively corresponding to the first measurement and the second measurement are independent.
  • the third relaxation coefficient belonging to the configuration of the L1 reporting interval of the BFD measurement of the first measurement is the relaxation coefficient of the measurement time of the SSB or the relaxation coefficient of the measurement time of the CSI-RS, and belongs to the L1 of the RLM measurement of the second measurement.
  • the fourth relaxation coefficient of the reporting interval configuration is the smallest of the relaxation coefficient of the measurement time of the SSB and the relaxation coefficient of the measurement time of the CSI-RS.
  • the fourth relaxation coefficient depends on the third relaxation coefficient; when the first measurement is RLM measurement, the third relaxation coefficient is the first value, and the first value is the measurement time of SSB The minimum of the relaxation coefficient of the measurement time of SSB and the relaxation coefficient of the measurement time of CSI-RS; in the case that the first measurement is a BFD measurement, the third relaxation coefficient is the relaxation coefficient of the measurement time of SSB or the relaxation coefficient of the measurement time of CSI-RS coefficient.
  • the relaxation coefficient of the L1 reporting interval of the second measurement is determined by the relaxation coefficient of the L1 reporting interval of the first measurement.
  • the above-mentioned fourth relaxation coefficient depends on the third relaxation coefficient can also be understood as: the fourth relaxation coefficient reuses the third relaxation coefficient, the fourth relaxation coefficient inherits the third relaxation coefficient, and the fourth relaxation coefficient is calculated according to the third relaxation coefficient A value of and so on.
  • the third relaxation coefficient belonging to the configuration of the L1 reporting interval of the BFD measurement of the first measurement is the relaxation coefficient of the measurement time of the SSB or the relaxation coefficient of the measurement time of the CSI-RS, and belongs to the L1 of the RLM measurement of the second measurement.
  • the fourth relaxation coefficient of the reporting interval configuration depends on the third relaxation coefficient, for example, the fourth relaxation coefficient is equal to the third relaxation coefficient.
  • the L1 reporting interval of the RLM measurement is the second value, and the second value is the minimum of the minimum period of the SSB and the minimum period of the CSI-RS; or, the L1 reporting interval of the RLM measurement is the second value and the largest of the first lower limit values.
  • the first lower limit is 10ms.
  • the L1 reporting interval of the BFD measurement is the minimum period of the SSB; or, the L1 reporting interval of the BFD measurement is the minimum period of the CSI-RS; or, the L1 reporting interval of the BFD measurement is the minimum period of the SSB and the second lower limit or, the L1 reporting interval of the BFD measurement is the maximum of the minimum period of the CSI-RS and the second lower limit value.
  • the second lower limit is 2ms.
  • the technical solution provided by this embodiment can be applied to RLM measurement when the BFD measurement satisfies the measurement relaxation criterion.
  • Measurement relaxation is performed on both the BFD measurement and the RLM measurement, so that it is not necessary to judge the RLM based on the measurement results of the RLM measurement. Whether the measurement satisfies the measurement relaxation criterion, while the measurement is relaxed, saves the logical judgment process, thereby saving energy for the terminal equipment.
  • terminal devices In a communication system, in order to ensure the reliability of communication, terminal devices often need to perform some measurements. As shown in the figure above, the terminal device performs the first measurement and the second measurement for illustration.
  • Step 601 The terminal device performs a first measurement and a second measurement.
  • Both the first measurement and the second measurement measure the reference signal on the activated downlink BWP, and the measured reference signal includes at least one of the following: SSB and CSI-RS.
  • the first measurement is RLM measurement
  • the second measurement is BFD measurement
  • the first measurement is a BFD measurement
  • the second measurement is an RLM measurement.
  • Step 602 The terminal device determines that the first measurement satisfies the measurement relaxation criterion.
  • the terminal device obtains the measurement result corresponding to the first measurement, and determines that the measurement result corresponding to the first measurement satisfies the measurement relaxation criterion.
  • the measurement relaxation criterion is a criterion formulated for judging whether the measurement can be relaxed.
  • the measurement relaxation criteria include at least one of the following: low mobility criteria (lower mobility criteria); good serving cell quality criteria (good serving cell quality criteria).
  • Step 603 The terminal device performs the relaxed first measurement and the relaxed second measurement.
  • the terminal device If the first measurement satisfies the measurement relaxation criterion, the terminal device performs the relaxed first measurement, and the terminal device applies the first measurement satisfying the measurement relaxation criterion to the second measurement, and considers that the second measurement also satisfies the measurement relaxation criterion, A second measure of relaxation is also performed.
  • the terminal device can achieve the effect of saving energy, and the terminal device applies the first measurement to the second measurement that satisfies the measurement relaxation criterion, thereby saving the judgment of the second measurement.
  • the second is to measure whether the measurement relaxation criterion is met to further save energy.
  • FIG. 7 shows a block diagram of a device for measuring relaxation provided by an embodiment of the present application.
  • the apparatus has the function of implementing the above example method on the terminal device side, and the function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the apparatus may be the terminal device described above, or may be set in the terminal device.
  • the apparatus 700 may include: a criterion judgment module 702 and a measurement relaxation module 704;
  • the criterion judging module 702 is configured to determine that the second measurement satisfies the measurement relaxation criterion based on that the first measurement satisfies the measurement relaxation criterion;
  • the measurement relaxation module 704 is configured to perform measurement relaxation on the first measurement and the second measurement;
  • the first measurement and the second measurement are two different measurements.
  • the measurement relaxation criterion includes at least one of the following:
  • a first measurement relaxation criterion where the first measurement relaxation criterion is a criterion related to judging the mobility of the terminal device;
  • a second measurement relaxation criterion where the second measurement relaxation criterion is a criterion related to judging the quality of the serving cell.
  • the first measurement includes: radio link monitoring (RLM) measurement
  • the second measurement includes: beam failure detection (BFD) measurement.
  • RLM radio link monitoring
  • BFD beam failure detection
  • the first measurement includes: BFD measurement
  • the second measurement includes: RLM measurement
  • the criterion judging module 702 is configured to determine that the RLM measurement does not satisfy the second measurement relaxation criterion based on that the BFD measurement does not satisfy the second measurement relaxation criterion within a single measurement time ;
  • the criterion judging module 702 is configured to determine that the RLM measurement does not satisfy the second measurement relaxation criterion based on that the BFD measurement does not satisfy the second measurement relaxation criterion within a plurality of measurement times.
  • the RLM measurement is the measurement on the primary cell PCell and the primary secondary cell PSCell; the BFD measurement is the measurement on the PCell and the PSCell.
  • the RLM measurement is the measurement on the PCell and the PSCell
  • the BFD measurement is the measurement on the secondary cell SCell
  • the criterion judgment module 702 is configured to determine that the BFD measurement on the SCell satisfies the first measurement relaxation criterion based on that the RLM measurement on the PCell or the PSCell satisfies a first measurement relaxation criterion;
  • the device also includes: a measurement module
  • the measurement module is configured to perform the BFD measurement on the SCell to determine whether a second measurement relaxation criterion is met;
  • the measurement relaxation module 704 is configured to execute for the BFD measurement on the SCell under the condition that the BFD measurement on the SCell satisfies the first measurement relaxation criterion and the second measurement relaxation criterion Measure relaxation.
  • the measurement relaxation module 704 is configured to configure a first relaxation coefficient for the measurement time corresponding to the first measurement
  • the measurement relaxation module 704 is configured to configure a second relaxation coefficient for the measurement time corresponding to the second measurement
  • the values of the first relaxation coefficient and the second relaxation coefficient depend on the measurement configuration corresponding to the first measurement and the second measurement; in the configuration corresponding to the first measurement and the second measurement In the same case, the first relaxation coefficient and the second relaxation coefficient are the same; in the case of different measurement configurations corresponding to the first measurement and the second measurement, the first relaxation coefficient and the The second relaxation coefficient is different.
  • the measurement configuration includes at least one of the following:
  • the measurement relaxation module 704 is configured to configure a third relaxation coefficient for the L1 reporting interval of the first measurement
  • the measurement relaxation module 704 is configured to configure a fourth relaxation coefficient for the L1 reporting interval of the second measurement
  • the relaxation coefficient of the L1 reporting interval configuration of the RLM measurement in the first measurement or the second measurement is a first value
  • the first value is the relaxation coefficient of the measurement time of the synchronization signal block SSB and the channel State information-the smallest of the relaxation coefficients of the measurement time of the reference signal CSI-RS
  • the relaxation coefficient of the L1 reporting interval configuration of the second measurement or the BFD measurement in the first measurement is the measurement time of the SSB Relaxation factor or relaxation factor of the measurement time of the CSI-RS.
  • the measurement relaxation module 704 is configured to configure a third relaxation coefficient for the L1 reporting interval of the first measurement
  • the measurement relaxation module 704 is configured to configure a fourth relaxation coefficient for the L1 reporting interval of the second measurement
  • the fourth relaxation coefficient depends on the third relaxation coefficient; when the first measurement is an RLM measurement, the third relaxation coefficient is a first value, and the first value is SSB The minimum of the relaxation coefficient of the measurement time of the CSI-RS and the relaxation coefficient of the measurement time of the CSI-RS; in the case where the first measurement is a BFD measurement, the third relaxation coefficient is the relaxation coefficient of the measurement time of the SSB Or the relaxation coefficient of the measurement time of the CSI-RS.
  • the L1 reporting interval of the RLM measurement is a second value, and the second value is the minimum of the minimum period of the SSB and the minimum period of the CSI-RS;
  • the L1 reporting interval of the RLM measurement is the largest of the second value and the first lower limit.
  • the L1 reporting interval of the BFD measurement is the minimum period of the SSB
  • the L1 reporting interval of the BFD measurement is the minimum period of the CSI-RS
  • the L1 reporting interval of the BFD measurement is the maximum of the minimum period of the SSB and the second lower limit value
  • the L1 reporting interval of the BFD measurement is the maximum of the minimum period of the CSI-RS and the second lower limit value.
  • the first measurement relaxation criterion includes at least one of the following criteria:
  • Reference signals suitable for RLM measurement include at least one of the following: L1SSB, L1CSI-RS and L3SSB;
  • the reference signal applicable to BFD measurement includes at least one of the following: the L1SSB, the L1CSI-RS, the L3SSB and the L3CSI-RS;
  • the measurement quantities applicable to the RLM measurement include: reference signal received power RSRP;
  • the measurement quantities applicable to the BFD measurement include: the RSRP;
  • the terminal device meets the first measurement relaxation in all serving cells Criterion: The reporting of the measurement results of the reference signal measurement corresponding to the RLM measurement does not distinguish between the SSB and the CSI-RS.
  • the second measurement relaxation criterion includes at least one of the following criteria:
  • Reference signals suitable for RLM measurement include at least one of the following: L1SSB and L1CSI-RS;
  • the reference signal applicable to BFD measurement includes at least one of the following: the L1SSB and the L1CSI-RS;
  • the measurement quantities applicable to the RLM measurement include: signal-to-noise ratio SINR;
  • the measurement quantities applicable to the BFD measurement include: the SINR;
  • the serving cells mentioned above include: PCell, PSCell;
  • the reporting of the measurement results of the reference signal measurement corresponding to the RLM measurement does not distinguish between the SSB and the CSI-RS.
  • the threshold configured by the second measurement relaxation criterion includes:
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 8 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the communication device may include: a processor 801 , a transceiver 802 and a memory 803 .
  • the processor 801 includes one or more processing cores, and the processor 801 executes various functional applications by running software programs and modules.
  • the transceiver 802 can be used for receiving and sending information, and the transceiver 802 can be a communication chip.
  • the memory 803 may be used to store a computer program, and the processor 801 is used to execute the computer program, so as to implement various steps performed by the communication device in the foregoing method embodiments.
  • the memory 803 can be realized by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but not limited to: random-access memory (Random-Access Memory, RAM) And read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable Read-Only Memory, EPROM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory or other solid-state storage technologies, compact disc read-only memory (CD-ROM), high-density digital video disc (Digital Video Disc, DVD) or other optical storage, tape cartridges, tapes, disks storage or other magnetic storage devices.
  • RAM Random-Access Memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • EPROM erasable programmable Read-Only Memory
  • EEPROM Electrically erasable programmable read-only memory
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor, so as to implement the measurement relaxation method described above.
  • the computer-readable storage medium may include: a read-only memory (Read-Only Memory, ROM), a random-access memory (Random-Access Memory, RAM), a solid-state hard drive (Solid State Drives, SSD) or an optical disc.
  • the random access memory may include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and is used to implement the above measurement relaxation method when the chip is running.
  • the embodiment of the present application also provides a computer program product or computer program, the computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor reads from the computer-readable storage medium The medium reads and executes the computer instructions, so as to realize the above measurement relaxation method.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the numbering of the steps described herein only exemplarily shows a possible sequence of execution among the steps.
  • the above-mentioned steps may not be executed according to the order of the numbers, such as two different numbers
  • the steps are executed at the same time, or two steps with different numbers are executed in the reverse order as shown in the illustration, which is not limited in this embodiment of the present application.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量放松方法、装置、终端设备及存储介质,涉及通信技术领域;方法包括:基于第一测量满足测量放松准则,确定第二测量满足测量放松准则;对第一测量和第二测量执行测量放松;其中,第一测量和第二测量是两种不同的测量。

Description

测量放松方法、装置、终端设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种测量放松方法、装置、终端设备及存储介质。
背景技术
在通信系统中,为了保障通信的可靠性,终端设备往往需要进行一些测量,例如:通过无线链路监测(Radio Link Monitor,RLM)测量,保证无线链路的可靠性;通过波束失败检测(Beam Failure Detection,BFD)测量,保证波束的可靠性。
发明内容
本申请实施例提供了一种测量放松方法、装置、终端设备及存储介质。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种测量放松方法,所述方法包括:
基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
对所述第一测量和所述第二测量执行测量放松;
其中,所述第一测量和所述第二测量是两种不同的测量。
根据本申请实施例的一个方面,提供了一种测量放松装置,所述装置包括:准则判断模块和测量放松模块;
所述准则判断模块,用于基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
所述测量放松模块,用于对所述第一测量和所述第二测量执行测量放松;
其中,所述第一测量和所述第二测量是两种不同的测量。
根据本申请实施例的一个方面,提供了一种终端设备,所述终端设备包括处理器;
所述处理器,用于基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
所述处理器,用于对所述第一测量和所述第二测量执行测量放松;
其中,所述第一测量和所述第二测量是两种不同的测量。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于处理器执行,以实现上述测量放松方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述测量放松方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述测量放松方法。
本申请实施例提供的技术方案可以带来如下有益效果:
将第一测量满足测量放松准则适用于第二测量,对第一测量和第二测量都执行测量放松,从而无需根据第二测量的测量结果来判断第二测量是否满足测量放松准则,测量放松的同时节约了逻辑判断流程,从而为终端设备节能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的无线链路故障(Radio Link Failure,RLF)计数过程的示意图;
图2是本申请一个示例性实施例提供的RLM测量从物理层到高层的过程的示意图;
图3是本申请一个示例性实施例提供的波束失败恢复流程的示意图;
图4是本申请一个示例性实施例提供的通信系统的示意图;
图5是本申请一个示例性实施例提供的测量放松方法的流程图;
图6是本申请一个示例性实施例提供的测量放松方法的示意图;
图7是本申请一个示例性实施例提供的测量放松装置的框图;
图8是本申请一个示例性实施例提供的终端设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在介绍本申请技术方案之前,先对本申请涉及的一些技术知识进行介绍说明。
(1)无线链路监测(Radio Link Monitoring,RLM)
根据条例第8.1条的规定,RLM适用于:
·在独立组网(Stand Alone,SA)新空口(NR Radio,NR)、NR和NR双连接(NR-NR Dual Connectivity,NR-DC)和NR和E-UTRA双连接(NR-E-UTRA Dual Connectivity,NE-DC)模式下的主小区(Primary Cell,PCell)。
·在NR-DC和E-UTRA和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)模式下的主辅小区(Primary Secondary Cell,PSCell)。
RLM指的是监听评估服务小区下行链路的信道质量,RLM测量用于产生同步(In-Sync,IS)指示、失步(Out-of-Sync,OOS)指示。
RLM使用的场景为:在激活的下行部分带宽(Bandwidth Part,BWP)上测量无线链路监测-参考信号(Radio Link Monitor Reference Signal,RLM-RS),RLM-RS包括同步信号块(Synchronization Signaling Block,SSB)、信道状态信息-参考信号(Channel State Information Reference Signal,CSI-RS)。
RLM测量的测量时间以T SSB为单位(不用配置测量间隔)。
·频率范围1(FR1):T SSB与测量间隔重复周期(Measurement Gap Repetition Period,MGRP)不重叠,无需缩放(OOS 10*TSSB、IS 10*T SSB);否则拉长测量时间P=1/(1–T SSB/MGRP)。
·频率范围2(FR2):由于T SSB可能与T SMTCperiod、MGRP发生重叠,需要拉长测量时间;详细参考38.133Section8.5.2.2。
其中,T SSB指的是SSB的周期;T SMTCperiod指的是SSB测量时间配置 (SSB Measurement Timing Configuration,SMTC)的周期。
在每个RLM-RS资源上,终端设备将估计下行无线链路质量,并将其与阈值Qout和Qin进行比较,以监听评估服务小区下行链路的信道质量。
阈值Qin/Qout:IS和OOS的门限与物理下行控制信道(Physical Downlink Control Channel,PDCCH)误块率(Block Error Rates,BLER)有关系。
终端设备可以基于下表确定同步误块率和失步误块率,该表具体可以参见相关协议标准中的表8.1.1-1,同步误块率记为BLER in,失步误块率记为BLER out
配置 BLER out BLER in
0 10% 2%
阈值Qout被定义为无法可靠接收下行链路无线链路的水平,且对应于上表中定义的失步误块率(BLER out)。对于基于SSB的无线电链路监控,Qout_SSB是根据相关协议标准中的表8.1.2.1-1中列出的假设PDCCH传输参数得出的。对于基于CSI-RS的无线链路监控,Qout_CSI-RS是基于相关协议标准中的表8.1.3.1-1中列出的假设PDCCH传输参数得出的。
阈值Qin被定义为下行链路无线链路质量能够以比Qout显着更高的可靠性接收的水平,并且应对应于上表中定义的同步误块率(BLER in)。对于基于SSB的无线链路监控,Qin_SSB是根据相关协议标准中的表8.1.2.1-2中列出的假设PDCCH传输参数得出的。对于基于CSI-RS的无线链路监控,Qin_CSI-RS是基于相关协议标准中的表8.1.3.1-2中列出的假设PDCCH传输参数得出的。
下面,对RLM的物理层过程进行介绍。
若RS信号质量低于Qout,终端设备需发送一个L1的失步指示给高层,L3对评估周期(Evaluation period)内所有指示做L3滤波。
若RS信号质量高于Qin,终端设备需发送一个L1的同步指示给高层,L3对评估期内所有指示做L3滤波。
两个连续的L1指示至少间隔T Indication_interval:max(10ms,T RLM-RS,M)或max(10ms,1.5*DRX_cycle_length,1.5*T RLM-RS,M)。
其中,T RLM-RS,M指的是被监测小区的所有配置的RLM-RS(例如SSB,CSI-RS)中最短的周期;DRX_cycle_length指的是非连续接收(Discontinuous Reception,DRX)周期的长度。
L3滤波的方法,在高层,一般是按照向前做卷积平均的方法,具体可以是基于无线资源控制(Radio Resource Control,RRC)配置或基于网络实现。
下面,对RLM的相关高层配置以及过程进行介绍。
LTE和NR中的RLM以及RLF的基本过程包括:
1、网络侧预先配置给终端设备针对IS和OOS的门限值,该门限值以BLER大小的形式给出。
2、网络侧预先配置给终端设备针对RLM的测量资源,终端设备通过在给定资源上做测量判断当前的信道质量状态。
3、当终端设备检测发现所有的RLM的RS均小于Qout时,终端设备的物理层上报L1失步指示至高层。
4、当终端设备检测发现至少有一个RLM的RS大于Qin时,终端设备的物理层上报L1同步指示至高层。
5、当终端设备高层检测到若干个连续失步指示上报后,启动定时器,并在定时器内检测是否有若干个连续的同步指示上报,如果有,则停止定时器,如果没有,则认为发生了RLF事件,并上报RLF,并触发后续的流程,比如RRC连接重建立。
无线链路监测配置(RadioLinkMonitoringConfig)通过RRC信令进行配置。
a)如果OOS计数达到一定数量(N311)之后,触发定时器T310,开始IS计数直至达 到N310。上述过程如图1所示。
b)终端设备必须要在40ms内关闭Tx RF。
示例性的,结合参考图2,其示出了RLM从物理层到高层的全过程。终端设备执行RS级别的评估Qin/Qout,再执行小区级别的评估IS/OOS,再执行小区级别的评估RLF,在不触发RLF的情况下,T310定时器解除,在触发RLF的情况下,触发重建立,该重建立包括RRC连接重建立。
(2)波束失败检测(Beam Failure Detection,BFD)
在NR R15版本中,针对PCell和PSCell设计了波束失败恢复机制,其主要功能模块(或称为主要步骤)分为如下4个:
·波束失败检测(Beam Failure Detection,BFD);
·新波束选择(New Beam Identification,NBI);
·波束失败恢复请求(Beam Failure Recovery ReQest,BFRQ);
·网络侧响应。
终端设备对PDCCH进行测量,判断下行发送波束对应的链路质量。如果对应的链路质量很差,则认为下行波束发生波束失败,这里只有PDCCH所有的波束质量都差时,才认为发生了波束失败。终端设备还会对一组备选波束进行测量,从中选择满足一定门限的波束作为新波束。然后终端设备通过波束失败恢复请求流程,通知网络发生了波束失败,并且上报新波束。网络收到一个终端设备发送的BFRQ信息后,知道所述终端设备发生了波束失败,选择从新波束上发送PDCCH,终端设备在新波束上收到网络发送的PDCCH则认为正确接收了网络侧的响应信息。至此,波束失败恢复流程成功完成。
结合参考图3,其示出了波束失败恢复的完整流程。PCell和PSCell统称为主小区。
终端设备应基于TS 38.213[3]中规定的q 0集合中的参考信号来评估服务小区的下行链路无线链路质量,以便在以下位置检测波束故障:
·在SA、NR-DC、NE-DC模式下的PCell。
·在NR-DC、EN-DC模式下的PSCell。
·在SA、NR-DC、NE-DC、EN-DC模式下的辅小区(Secondary Cell,SCell)。
本条款中的要求适用于为服务小区配置的q 0集合中的每个SSB资源,前提是:在条例第8.5.2.2条规定的整个评估周期期间,为波束故障检测配置的SSB在终端设备的激活的下行BWP内实际传输。如果要求终端设备在每个频带上对多于1个服务小区执行波束故障检测,则该条款中的要求不适用。
虽然BFD和RLM都是L1的相同参考信号测量,且很大概率参考信号的具体配置参数也是一样的,但是,由于以下几个原因,BFD和RLM的测量并没法完全合并,还有些差异。
原因1:BFD和RLM的测量周期和上报周期不同,实际的BFD的测量周期间隔要比RLM的测量周期间隔短,上报L1指示的间隔也短一些;
原因2:BFD的上报要区分是SSB还是CSI-RS的测量结果,各自按周期步长上报;而RLM虽然测量SSB和CSI-RS是分开,但是如果终端设备同时都配置去测量SSB和CSI-RS了,可以允许不区分CSI-RS和SSB,混着去按照周期上报;
原因3:RLM和BFD都要求测量PCell和PSCell,BFD还可以做辅载波SCell上的测量,而且二者都是要求在激活的BWP的带宽内去测量参考信号,否则没有标准的测量时间和精度要求。
具体地,以SSB的RLM测量和BFD测量(FR1,不配置DRX时)为例:
·RLM测量的评估周期:
TEvaluate_out_SSB(ms)=Max(200,Ceil(10x P)x T SSB);
TEvaluate_in_SSB(ms)=Max(100,Ceil(5x P)x T SSB)。
·BFD测量的评估周期:
TEvaluate_BFD_SSB=Max(50,Ceil(5×P)×T SSB)。
其中,P为缩放因子;T SSB指的是SSB的周期。
可以发现,RLM测量的评估周期(下限值为200ms)比BFD测量的评估周期(下限值为50ms)要长,BFD进行测量更频繁更密集。
对应的,上报连续的L1指示的间隔时间:
·RLM测量:max(10ms,T RLM-RS,M);
其中,T RLM-RS,M是被监测小区的所有配置的RLM-RS(例如SSB,CSI-RS)中最短的周期。
·BFD测量:max(2ms,T SSB-RS,M)or max(2ms,T CSI-RS,M)。
其中,T SSB-RS,M指的是SSB的最小周期;T CSI-RS,M指的是CSI-RS的最小周期。
可以发现,RLM测量上报连续的L1指示的间隔时间(下限值为10ms)大于BFD测量上报连续的L1指示的间隔时间(下限值为2ms)。
所以,BFD测量和RLM测量在测量放松准则判断时,二者之间的测量结果是否可以互相参考,以及对应的测量放松系数是否一样,需要基于上述几点原因具体地分析和研究。
在本申请实施例中,针对上述问题,将第一测量满足测量放松准则适用于第二测量,对第一测量和第二测量都执行测量放松,从而无需根据第二测量的测量结果来判断第二测量是否满足测量放松准则,测量放松的同时节约了逻辑判断流程,从而为终端设备节能。
下面,通过几个实施例对本申请技术方案进行介绍说明。
请参考图4,其示出了本申请一个实施例提供的通信系统400的示意图。该通信系统400可以包括:终端设备10和接入网设备20。
终端设备10可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备10还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1 Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,第五代移动通信系统(5th Generation System,5GS)中的终端设备或者未来演进的公用陆地移动通信网络(Pub1ic Land Mobi1e Network,PLMN)中的终端设备等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。终端设备10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端设备10。
接入网设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为接入网设备。可选地,通过接入网设备20,终端设备10和核心网设备之间可以建立通信关系。示例性地,在长期演进(Long Term Evolution,LTE)系统中,接入网设备20可以是演进的通用陆地无线网(Evolved Universal Terrestrial Radio Access Network,EUTRAN)或者EUTRAN中的一个或者多个eNodeB;在5G NR系统中,接入网设备20可以是无线接入网(Radio Access Network,RAN)或者RAN中的一个或者多个gNB。
在一个示例中,接入网设备20与终端设备10之间通过某种空口技术互相通信,例如Uu接口。
另外,在本申请实施例中,名词“网络”和“系统”通常混用,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于长期演进(Long Term Evolution,LTE)系统,也可以适用于5G系统,也可以适用于5G NR系统后续的演进系统或者其他通信系统,本申请对此不作限定。
请参考图5,其示出了本申请一个实施例提供的测量放松方法的流程图,该方法由终端设备来执行。该方法可以包括如下步骤:
步骤502:基于第一测量满足测量放松准则,确定第二测量满足测量放松准则。
示例性的,终端设备在同时执行第一测量和第二测量,且在终端设备基于当前的第一测量的测量结果,确定第一测量满足测量放松准则的情况下,终端设备直接确定第二测量也满足测量放松准则,而无需根据第二测量的测量结果进行判断。
其中,第一测量和第二测量是两种不同的测量。本申请实施例对测量的具体类型不加以限制,示例性的,测量包括:RLM测量和BFD测量,则第一测量为RLM测量,第二测量为BFD测量,或者,第一测量为BFD测量,第二测量为RLM测量。
可选的,第一测量和第二测量具备如下关系:
·第一测量和第二测量测量的参考信号存在关联关系。
第一测量和第二测量测量的参考信号相同,或者,第一测量和第二测量测量的参考信号之间存在交集,或者,第二测量测量的参考信号属于第一测量测量的参考信号的子集;
·第一测量和第二测量测量的测量量存在关联关系。
第一测量和第二测量测量的测量量相同,或者,第一测量和第二测量测量的测量量之间存在交集,或者,第二测量测量的测量量属于第一测量测量的测量量的子集;
·第一测量和第二测量所适用的小区/载波存在关联关系。
第一测量和第二测量所适用的小区/载波相同,或者,第一测量和第二测量所适用的小区/载波之间存在交集,或者,第二测量所适用的小区/载波属于第一测量所适用的小区/载波的子集。
其中,测量放松准则是用于确认是否对测量执行放松的准则。在本申请实施例中,对测量放松准则具体包括的准则数量不加以限制。
示例性的,测量放松准则包括一个准则。
示例性的,测量放松准则包括至少两个准则。在测量同时满足上述至少两个准则的情况下,则认为该测量满足测量放松准则;或者,在测量满足上述至少两个准则中的任意一个准则的情况下,则认为该测量满足测量放松准则。
步骤504:对第一测量和第二测量执行测量放松。
由于第一测量满足测量放松准则,则终端设备对第一测量执行测量放松,且,由于将第一测量满足测量放松准则适用于第二测量,第二测量也满足测量放松准则,则终端设备也对第二测量执行测量放松。
可选的,测量放松包括如下方面中的至少一种:
·测量时间拉长。
测量时间也可称为:测量周期、评估周期、测量评估时间等等。
·上报L1指示的间隔变大。
综上所述,本实施例提供的技术方案,将第一测量满足测量放松准则适用于第二测量,对第一测量和第二测量都执行测量放松,从而无需根据第二测量的测量结果来判断第二测量是否满足测量放松准则,测量放松的同时节约了逻辑判断流程,从而为终端设备节能。
可选的,在本申请实施例中,测量放松准则包括如下中的至少一种:
第一测量放松准则,第一测量放松准则是与判断终端设备的移动性相关的准则;
第二测量放松准则,第二测量放松准则是与判断服务小区质量相关的准则。
其中,第一测量放松准则可以记为低移动性准则(lower mobility criteria);第二测量放松准则可以记为良好的服务小区质量准则(good serving cell quality criteria)。
R17版本的节能(power saving)项目中,研究RLM或BFD测量放松的方法,引入两个判断准则:低移动性判断准则和良好的服务小区质量准则。在本申请实施例中,对上述两个判断准则的内容进行完善。
在一种可能的实现方式中,若测量满足第一测量放松准则,即认为该测量满足测量放松准则,可以执行测量放松;在一种可能的实现方式中,若测量满足第二测量放松准则,即认为该测量满足测量放松准则,可以执行测量放松;在一种可能的实现方式中,若测量同时满足第一测量放松准则和第二测量放松准则,即认为该测量满足测量放松准则,可以执行测量放松。
下面,对第一测量放松准则和第二测量放松准则进行说明。
可选的,第一测量放松准则包括如下准则中的至少一种:
·适用RLM测量的参考信号包括如下中的至少一种:L1SSB、L1CSI-RS和L3SSB。
·适用BFD测量的参考信号包括如下中的至少一种:L1SSB、L1CSI-RS、L3SSB和L3CSI-RS。
·适用RLM测量的测量量包括:RSRP。
·适用BFD测量的测量量包括:RSRP。
也即,适用RLM的参考信号和测量量:L1SSB,L1CSI-RS,L3SSB,测量RSRP;适用BFD的参考信号和测量量:L1SSB,L1CSI-RS,L3SSB,L3CSI-RS,测量RSRP。
·在一个PCell或PSCell上的激活BWP上的参考信号测量的测量结果满足第一测量放松准则所配置的阈值的情况下,认为终端设备在所有的服务小区满足第一测量放松准则。
也即,第一测量放松准则为UE级别的准则。只要某一个PCell或PSCell的测量结果满足第一测量放松准则,即认为终端设备的所有服务小区都满足这个准则。
示例性的,第一测量放松准则所配置的阈值包括:RSRP阈值,移动速度阈值,在测量的RSRP低于RSRP阈值,且移动速度低于移动速度阈值的情况下,则认为终端设备满足第一测量放松准则。
·RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
也即,RLM测量对应的参考信号测量的测量结果在上报时,可以同时包括SSB的测量结果和CSI-RS的测量结果。
可选的,第二测量放松准则包括如下准则中的至少一种:
·适用RLM测量的参考信号包括如下中的至少一种:L1SSB和L1CSI-RS。
·适用BFD测量的参考信号包括如下中的至少一种:L1SSB和L1CSI-RS。
·适用RLM测量的测量量包括:SINR。
·适用BFD测量的测量量包括:SINR。
也即,适用RLM的参考信号和测量量:L1SSB,L1CSI-RS,测量SINR;适用BFD的参考信号和测量量:L1SSB,L1CSI-RS,测量SINR。
·在一个服务小区上的激活BWP上的参考信号测量的测量结果满足第二测量放松准则所配置的阈值的情况下,认为终端设备在服务小区满足第二测量放松准则,服务小区包括: PCell、PSCell。
也即,第二测量放松准则为小区级别的准则。若PCell的测量结果满足第一测量放松准则,即认为PCell满足这个准则;若PSCell的测量结果满足第一测量放松准则,即认为PSCell满足这个准则。
可选的,第二测量放松准则所配置的阈值包括:同步门限Qin与第一偏移值的和;或,失步门限Qout与第二偏移值的和。其中,上述第一偏移值、第二偏移值可以为任意正值或负值。
·RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
也即,RLM测量对应的参考信号测量的测量结果在上报时,可以同时包括SSB的测量结果和CSI-RS的测量结果。
综上所述,本实施例提供的技术方案,对第一测量放松准则(即lower mobility criteria)、第二测量放松准则(即good serving cell quality criteria)的准则内容进行完善,以便于终端设备明确自身是否满足测量放松准则。
在一种可能的实现方式中,第一测量为:RLM测量,第二测量包括:BFD测量。
也即,在RLM测量满足测量放松准则时,可以适用于BFD测量。
下面,对RLM测量满足测量放松准则是否可以适用于BFD测量进行进一步的说明。
可选的,RLM测量为PCell和PSCell上的测量;BFD测量为PCell和PSCell上的测量。
也即,在PCell上的RLM测量满足测量放松准则的情况下,确认PCell上的BFD测量也满足测量放松准则;在PSCell上的RLM测量满足测量放松准则的情况下,确认PSCell上的BFD测量也满足测量放松准则。
·对于第一测量放松准则
由于第一测量放松准则为UE级的准则,如果PCell或PSCell上的RLM测量满足第一测量放松准则,那么PCell和PSCell上的BFD测量也满足第一测量放松准则。
此外,由于第一测量放松准则为UE级的准则,因此,在PCell或PSCell上的RLM测量满足第一测量放松准则的情况下,也可以确认SCell上的BFD测量满足第一测量放松准则。
·对于第二测量放松准则
由于第二测量放松准则为小区级的准则,在PCell上的RLM测量满足第二测量放松准则的情况下,确认PCell上的BFD测量也满足第二测量放松准则;在PSCell上的RLM测量满足第二测量放松准则的情况下,确认PSCell上的BFD测量也满足第二测量放松准则。
此外,在RLM测量为PCell和PSCell上的测量,BFD测量为SCell上的测量的情况下,还包括如下步骤:执行SCell上的BFD测量以确定是否满足第二测量放松准则;在SCell上的BFD测量满足第一测量放松准则和第二测量放松准则的情况下,为SCell上的BFD测量执行测量放松。
也即,由于第二测量放松准则为小区级的准则,在PCell和PSCell上的RLM测量满足第二测量放松准则的情况下,SCell上的BFD测量仍需继续测量,用以确定该SCell上的BFD测量是否满足第二测量放松准则。
下面,对第一测量和第二测量的测量放松方式进行说明。
·为第一测量和第二测量执行测量放松,包括:
为第一测量对应的测量时间配置第一放松系数;
为第二测量对应的测量时间配置第二放松系数;
其中,第一放松系数和第二放松系数的数值取决于第一测量和第二测量对应的测量配置;在第一测量和第二测量对应的配置相同的情况下,第一放松系数和第二放松系数相同;在第一测量和第二测量对应的测量配置不同的情况下,第一放松系数和第二放松系数不同。
也即,测量放松包括:测量时间拉长。为属于第一测量的RLM测量的测量时间配置第一放松系数,从而拉长RLM测量的测量时间;为属于第二测量的BFD测量的测量时间配置第二放松系数,从而拉长BFD测量的测量时间。且第一放松系数的取值取决于RLM测量对应的测量配置,第二放松系数的取值取决于BFD测量对应的测量配置。
可选的,测量配置包括如下中的至少一种:参考信号周期配置;测量时间周期配置。
·为第一测量和第二测量执行测量放松,包括:
为第一测量的L1上报间隔配置第三放松系数;
为第二测量的L1上报间隔配置第四放松系数。
也即,测量放松包括:上报L1指示的间隔变大。为属于第一测量的RLM测量的L1上报间隔配置第三放松系数,从而扩大RLM测量的上报L1指示的间隔;为属于第二测量的BFD测量的L1上报间隔配置第四放松系数,从而扩大BFD测量的上报L1指示的间隔。
在一种可能的实现方式中,第一测量或第二测量中的RLM测量的L1上报间隔配置的放松系数为第一取值,第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;第二测量或第一测量中的BFD测量的L1上报间隔配置的放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数。
也即,第一测量和第二测量分别对应的L1上报间隔的放松系数相独立。
示例性的,属于第一测量的RLM测量的L1上报间隔的配置的第三放松系数为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者,属于第二测量的BFD测量的L1上报间隔配置的第四放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数。
在一种可能的实现方式中,第四放松系数取决于第三放松系数;在第一测量为RLM测量的情况下,第三放松系数为第一取值,第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;在第一测量为BFD测量的情况下,第三放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数。
也即,第二测量的L1上报间隔的放松系数由第一测量的L1上报间隔的放松系数来决定。其中,上述第四放松系数取决于第三放松系数也可以理解为:第四放松系数重用第三放松系数、第四放松系数沿用第三放松系数、第四放松系数是根据第三放松系数计算得到的一个值等等。
示例性的,属于第一测量的RLM测量的L1上报间隔的配置的第三放松系数为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者,属于第二测量的BFD测量的L1上报间隔配置的第四放松系数取决于上述第三放松系数,如:第四放松系数等于第三放松系数。
可选的,RLM测量的L1上报间隔为第二取值,第二取值为SSB的最小周期和CSI-RS的最小周期中的最小者;或,RLM测量的L1上报间隔为第二取值以及第一下限值中的最大者。
示例性的,第一下限值为10ms。
可选的,BFD测量的L1上报间隔为SSB的最小周期;或,BFD测量的L1上报间隔为CSI-RS的最小周期;或,BFD测量的L1上报间隔为SSB的最小周期和第二下限值中的最大者;或,BFD测量的L1上报间隔为CSI-RS的最小周期和第二下限值中的最大者。
示例性的,第二下限值为2ms。
综上所述,本实施例提供的技术方案,在RLM测量满足测量放松准则时,可以适用于BFD测量,对RLM测量和BFD测量都执行测量放松,从而无需根据BFD测量的测量结果来判断BFD测量是否满足测量放松准则,测量放松的同时节约了逻辑判断流程,从而为终端设备节能。
在一种可能的实现方式中,第一测量为:BFD测量,第二测量包括:RLM测量。
也即,在BFD测量满足测量放松准则时,可以适用于RLM测量。
下面,对BFD测量满足测量放松准则是否可以适用于RLM测量进行进一步的说明。
可选的,RLM测量为PCell和PSCell上的测量;BFD测量为PCell和PSCell上的测量。
也即,在PCell上的BFD测量满足测量放松准则的情况下,确认PCell上的RLM测量也满足测量放松准则;在PSCell上的BFD测量满足测量放松准则的情况下,确认PSCell上的RLM测量也满足测量放松准则。
·对于第一测量放松准则
由于第一测量放松准则为UE级的准则,如果PCell或PSCell或SCell上的BFD测量满足第一测量放松准则,那么PCell和PSCell上的RLM测量也满足第一测量放松准则。
·对于第二测量放松准则
由于第二测量放松准则为小区级的准则,在PCell上的BFD测量满足第二测量放松准则的情况下,确认PCell上的RLM测量也满足第二测量放松准则;在PSCell上的BFD测量满足第二测量放松准则的情况下,确认PSCell上的RLM测量也满足第二测量放松准则。
可选的,基于BFD测量在单个测量时间(measurement period)内不满足第二测量放松准则,确定RLM测量不满足第二测量放松准则;
或,
基于BFD测量在多个测量时间内均不满足第二测量放松准则,确定RLM测量不满足第二测量放松准则。
也即,在一种可能的实现方式中,BFD测量可以代替RLM测量的判断,如果PCell和PSCell上的BFD测量满足第二测量准则,那么PCell和PSCell上的RLM测量满足第二测量准则;如果PCell和PSCell上的BFD测量不满足第二测量准则,那么PCell和PSCell上的RLM测量也不满足第二测量准则。在另一种可能的实现方式中,BFD测量不可以完全代替RLM测量的判断,如果PCell和PSCell上的BFD测量满足第二测量准则,那么PCell和PSCell上的RLM测量满足第二测量准则;如果PCell和PSCell上的BFD测量在多个测量时间内均不满足第二测量准则,那么PCell和PSCell上的RLM测量才不满足第二测量准则。
下面,对第一测量和第二测量的测量放松方式进行说明。
·为第一测量和第二测量执行测量放松,包括:
为第一测量对应的测量时间配置第一放松系数;
为第二测量对应的测量时间配置第二放松系数;
其中,第一放松系数和第二放松系数的数值取决于第一测量和第二测量对应的测量配置;在第一测量和第二测量对应的配置相同的情况下,第一放松系数和第二放松系数相同;在第一测量和第二测量对应的测量配置不同的情况下,第一放松系数和第二放松系数不同。
也即,测量放松包括:测量时间拉长。为属于第一测量的BFD测量的测量时间配置第一放松系数,从而拉长BFD测量的测量时间;为属于第二测量的RLM测量的测量时间配置第二放松系数,从而拉长RLM测量的测量时间。且第一放松系数的取值取决于BFD测量对应的测量配置,第二放松系数的取值取决于RLM测量对应的测量配置。
可选的,测量配置包括如下中的至少一种:参考信号周期配置;测量时间周期配置。
·为第一测量和第二测量执行测量放松,包括:
为第一测量的L1上报间隔配置第三放松系数;
为第二测量的L1上报间隔配置第四放松系数。
也即,测量放松包括:上报L1指示的间隔变大。为属于第一测量的BFD测量的L1上报间隔配置第三放松系数,从而扩大BFD测量的上报L1指示的间隔;为属于第二测量的RLM 测量的L1上报间隔配置第四放松系数,从而扩大RLM测量的上报L1指示的间隔。
在一种可能的实现方式中,第一测量或第二测量中的RLM测量的L1上报间隔配置的放松系数为第一取值,第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;第二测量或第一测量中的BFD测量的L1上报间隔配置的放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数。
也即,第一测量和第二测量分别对应的L1上报间隔的放松系数相独立。
示例性的,属于第一测量的BFD测量的L1上报间隔的配置的第三放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数,属于第二测量的RLM测量的L1上报间隔配置的第四放松系数为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者。
在一种可能的实现方式中,第四放松系数取决于第三放松系数;在第一测量为RLM测量的情况下,第三放松系数为第一取值,第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;在第一测量为BFD测量的情况下,第三放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数。
也即,第二测量的L1上报间隔的放松系数由第一测量的L1上报间隔的放松系数来决定。其中,上述第四放松系数取决于第三放松系数也可以理解为:第四放松系数重用第三放松系数、第四放松系数沿用第三放松系数、第四放松系数是根据第三放松系数计算得到的一个值等等。
示例性的,属于第一测量的BFD测量的L1上报间隔的配置的第三放松系数为SSB的测量时间的放松系数或CSI-RS的测量时间的放松系数,属于第二测量的RLM测量的L1上报间隔配置的第四放松系数取决于上述第三放松系数,如:第四放松系数等于第三放松系数。
可选的,RLM测量的L1上报间隔为第二取值,第二取值为SSB的最小周期和CSI-RS的最小周期中的最小者;或,RLM测量的L1上报间隔为第二取值以及第一下限值中的最大者。
示例性的,第一下限值为10ms。
可选的,BFD测量的L1上报间隔为SSB的最小周期;或,BFD测量的L1上报间隔为CSI-RS的最小周期;或,BFD测量的L1上报间隔为SSB的最小周期和第二下限值中的最大者;或,BFD测量的L1上报间隔为CSI-RS的最小周期和第二下限值中的最大者。
示例性的,第二下限值为2ms。
综上所述,本实施例提供的技术方案,在BFD测量满足测量放松准则时,可以适用于RLM测量,对BFD测量和RLM测量都执行测量放松,从而无需根据RLM测量的测量结果来判断RLM测量是否满足测量放松准则,测量放松的同时节约了逻辑判断流程,从而为终端设备节能。
下面,结合参考图6对本申请实施例进行示例性的说明。
在通信系统中,为了保障通信的可靠性,终端设备往往需要进行一些测量,如上图所示,以终端设备执行第一测量和第二测量进行说明。
步骤601:终端设备执行第一测量和第二测量。
第一测量和第二测量均是在激活的下行BWP上对参考信号进行测量,测量的参考信号包括如下中的至少一种:SSB、CSI-RS。
示例性的,第一测量为RLM测量,第二测量为BFD测量。示例性的,第一测量为BFD测量,第二测量为RLM测量。
步骤602:终端设备确定第一测量满足测量放松准则。
在第一测量的过程中,终端设备获取第一测量对应的测量结果,并确定第一测量对应的 测量结果满足测量放松准则。
其中,测量放松准则是为了判断测量是否可以进行测量放松而制定的准则。示例性的,测量放松准则包括如下中的至少一种:低移动性准则(lower mobility criteria);良好的服务小区质量准则(good serving cell quality criteria)。
步骤603:终端设备执行放松的第一测量和放松的第二测量。
在第一测量满足测量放松准则的情况下,则终端设备执行放松的第一测量,并且,终端设备将第一测量满足测量放松准则适用于第二测量,认为第二测量也满足测量放松准则,也执行放松的第二测量。
可以理解的是,通过执行放松的第一测量和放松的第二测量,终端设备能够达到节能的效果,并且,终端设备将第一测量满足测量放松准则适用于第二测量,从而节约了判断第二测量是否满足测量放松准则的流程,进一步节能。
可以理解的是,上述方法实施例可以单独实施,也可以组合实施,本申请对此不加以限制。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图7,其示出了本申请一个实施例提供的测量放松装置的框图。该装置具有实现上述终端设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图7所示,该装置700可以包括:准则判断模块702和测量放松模块704;
所述准则判断模块702,用于基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
所述测量放松模块704,用于对所述第一测量和所述第二测量执行测量放松;
其中,所述第一测量和所述第二测量是两种不同的测量。
在一个可选的实施例中,所述测量放松准则包括如下中的至少一种:
第一测量放松准则,所述第一测量放松准则是与判断终端设备的移动性相关的准则;
第二测量放松准则,所述第二测量放松准则是与判断服务小区质量相关的准则。
在一个可选的实施例中,所述第一测量包括:无线链路监测RLM测量,所述第二测量包括:波束失败检测BFD测量。
在一个可选的实施例中,所述第一测量包括:BFD测量,所述第二测量包括:RLM测量。
在一个可选的实施例中,所述准则判断模块702,用于基于所述BFD测量在单个测量时间内不满足第二测量放松准则,确定所述RLM测量不满足所述第二测量放松准则;
或,
所述准则判断模块702,用于基于所述BFD测量在多个所述测量时间内均不满足所述第二测量放松准则,确定所述RLM测量不满足所述第二测量放松准则。
在一个可选的实施例中,所述RLM测量为主小区PCell和主辅小区PSCell上的测量;所述BFD测量为所述PCell和所述PSCell上的测量。
在一个可选的实施例中,在所述RLM测量为PCell和PSCell上的测量,所述BFD测量为辅小区SCell上的测量的情况下;
所述准则判断模块702,用于基于所述PCell或所述PSCell上的所述RLM测量满足第一测量放松准则,确定所述SCell上的所述BFD测量满足所述第一测量放松准则;
所述装置还包括:测量模块;
所述测量模块,用于执行所述SCell上的所述BFD测量以确定是否满足第二测量放松准 则;
所述测量放松模块704,用于在所述SCell上的所述BFD测量满足所述第一测量放松准则和所述第二测量放松准则的情况下,为所述SCell上的所述BFD测量执行测量放松。
在一个可选的实施例中,所述测量放松模块704,用于为所述第一测量对应的测量时间配置第一放松系数;
所述测量放松模块704,用于为所述第二测量对应的测量时间配置第二放松系数;
其中,所述第一放松系数和所述第二放松系数的数值取决于所述第一测量和所述第二测量对应的测量配置;在所述第一测量和所述第二测量对应的配置相同的情况下,所述第一放松系数和所述第二放松系数相同;在所述第一测量和所述第二测量对应的测量配置不同的情况下,所述第一放松系数和所述第二放松系数不同。
在一个可选的实施例中,所述测量配置包括如下中的至少一种:
参考信号周期配置;
测量时间周期配置。
在一个可选的实施例中,所述测量放松模块704,用于为所述第一测量的L1上报间隔配置第三放松系数;
所述测量放松模块704,用于为所述第二测量的L1上报间隔配置第四放松系数;
其中,所述第一测量或所述第二测量中的RLM测量的L1上报间隔配置的放松系数为第一取值,所述第一取值为同步信号块SSB的测量时间的放松系数和信道状态信息-参考信号CSI-RS的测量时间的放松系数中的最小者;所述第二测量或所述第一测量中的BFD测量的L1上报间隔配置的放松系数为所述SSB的测量时间的放松系数或所述CSI-RS的测量时间的放松系数。
在一个可选的实施例中,所述测量放松模块704,用于为所述第一测量的L1上报间隔配置第三放松系数;
所述测量放松模块704,用于为所述第二测量的L1上报间隔配置第四放松系数;
其中,所述第四放松系数取决于所述第三放松系数;在所述第一测量为RLM测量的情况下,所述第三放松系数为第一取值,所述第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;在所述第一测量为BFD测量的情况下,所述第三放松系数为所述SSB的测量时间的放松系数或所述CSI-RS的测量时间的放松系数。
在一个可选的实施例中,RLM测量的L1上报间隔为第二取值,所述第二取值为SSB的最小周期和CSI-RS的最小周期中的最小者;
或,
所述RLM测量的L1上报间隔为所述第二取值以及第一下限值中的最大者。
在一个可选的实施例中,BFD测量的L1上报间隔为SSB的最小周期;
或,
所述BFD测量的L1上报间隔为CSI-RS的最小周期;
或,
所述BFD测量的L1上报间隔为所述SSB的最小周期和第二下限值中的最大者;
或,
所述BFD测量的L1上报间隔为所述CSI-RS的最小周期和所述第二下限值中的最大者。
在一个可选的实施例中,所述第一测量放松准则包括如下准则中的至少一种:
适用RLM测量的参考信号包括如下中的至少一种:L1SSB、L1CSI-RS和L3SSB;
适用BFD测量的参考信号包括如下中的至少一种:所述L1SSB、所述L1CSI-RS、所述L3SSB和L3CSI-RS;
适用所述RLM测量的测量量包括:参考信号接收功率RSRP;
适用所述BFD测量的测量量包括:所述RSRP;
在一个PCell或PSCell上的激活部分带宽BWP上的参考信号测量的测量结果满足所述第一测量放松准则所配置的阈值的情况下,认为终端设备在所有的服务小区满足所述第一测量放松准则;RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
在一个可选的实施例中,所述第二测量放松准则包括如下准则中的至少一种:
适用RLM测量的参考信号包括如下中的至少一种:L1SSB和L1CSI-RS;
适用BFD测量的参考信号包括如下中的至少一种:所述L1SSB和所述L1CSI-RS;
适用所述RLM测量的测量量包括:信噪比SINR;
适用所述BFD测量的测量量包括:所述SINR;
在一个服务小区上的激活BWP上的参考信号测量的测量结果满足所述第二测量放松准则所配置的阈值的情况下,认为终端设备在所述服务小区满足所述第二测量放松准则,所述服务小区包括:PCell、PSCell;
RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
在一个可选的实施例中,所述第二测量放松准则所配置的阈值包括:
同步门限Qin与第一偏移值的和;
或,
失步门限Qout与第二偏移值的和。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图8,其示出了本申请一个实施例提供的终端设备的结构示意图。该通信设备可以包括:处理器801、收发器802和存储器803。
处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块,从而执行各种功能应用。
收发器802可以用于进行信息的接收和发送,收发器802可以是一块通信芯片。
存储器803可用于存储计算机程序,处理器801用于执行该计算机程序,以实现上述方法实施例中通信设备执行的各个步骤。
此外,存储器803可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:随机存储器(Random-Access Memory,RAM)和只读存储器(Read-Only Memory,ROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦写可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他固态存储其技术,只读光盘(Compact Disc Read-Only Memory,CD-ROM)、高密度数字视频光盘(Digital Video Disc,DVD)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述测量放松方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access  Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述测量放松方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述测量放松方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种测量放松方法,其特征在于,所述方法包括:
    基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
    对所述第一测量和所述第二测量执行测量放松;
    其中,所述第一测量和所述第二测量是两种不同的测量。
  2. 根据权利要求1所述的方法,其特征在于,所述测量放松准则包括如下中的至少一种:
    第一测量放松准则,所述第一测量放松准则是与判断终端设备的移动性相关的准则;
    第二测量放松准则,所述第二测量放松准则是与判断服务小区质量相关的准则。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一测量包括:无线链路监测RLM测量,所述第二测量包括:波束失败检测BFD测量。
  4. 根据权利要求1或2所述的方法,其特征在于,
    所述第一测量包括:BFD测量,所述第二测量包括:RLM测量。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    基于所述BFD测量在单个测量时间内不满足第二测量放松准则,确定所述RLM测量不满足所述第二测量放松准则;
    或,
    基于所述BFD测量在多个所述测量时间内均不满足所述第二测量放松准则,确定所述RLM测量不满足所述第二测量放松准则。
  6. 根据权利要求3或4所述的方法,其特征在于,
    所述RLM测量为主小区PCell和主辅小区PSCell上的测量;
    所述BFD测量为所述PCell和所述PSCell上的测量。
  7. 根据权利要求3所述的方法,其特征在于,在所述RLM测量为PCell和PSCell上的测量,所述BFD测量为辅小区SCell上的测量的情况下;
    所述基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则,包括:
    基于所述PCell或所述PSCell上的所述RLM测量满足第一测量放松准则,确定所述SCell上的所述BFD测量满足所述第一测量放松准则;
    所述方法还包括:
    执行所述SCell上的所述BFD测量以确定是否满足第二测量放松准则;
    在所述SCell上的所述BFD测量满足所述第一测量放松准则和所述第二测量放松准则的情况下,为所述SCell上的所述BFD测量执行测量放松。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述为所述第一测量和所述第二测量执行测量放松,包括:
    为所述第一测量对应的测量时间配置第一放松系数;
    为所述第二测量对应的测量时间配置第二放松系数;
    其中,所述第一放松系数和所述第二放松系数的数值取决于所述第一测量和所述第二测量对应的测量配置;在所述第一测量和所述第二测量对应的配置相同的情况下,所述第一放松系数和所述第二放松系数相同;在所述第一测量和所述第二测量对应的测量配置不同的情况下,所述第一放松系数和所述第二放松系数不同。
  9. 根据权利要求8所述的方法,其特征在于,所述测量配置包括如下中的至少一种:
    参考信号周期配置;
    测量时间周期配置。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述为所述第一测量和所述第二 测量执行测量放松,包括:
    为所述第一测量的L1上报间隔配置第三放松系数;
    为所述第二测量的L1上报间隔配置第四放松系数;
    其中,所述第一测量或所述第二测量中的RLM测量的L1上报间隔配置的放松系数为第一取值,所述第一取值为同步信号块SSB的测量时间的放松系数和信道状态信息-参考信号CSI-RS的测量时间的放松系数中的最小者;所述第二测量或所述第一测量中的BFD测量的L1上报间隔配置的放松系数为所述SSB的测量时间的放松系数或所述CSI-RS的测量时间的放松系数。
  11. 根据权利要求1至9任一所述的方法,其特征在于,所述为所述第一测量和所述第二测量执行测量放松,包括:
    为所述第一测量的L1上报间隔配置第三放松系数;
    为所述第二测量的L1上报间隔配置第四放松系数;
    其中,所述第四放松系数取决于所述第三放松系数;在所述第一测量为RLM测量的情况下,所述第三放松系数为第一取值,所述第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;在所述第一测量为BFD测量的情况下,所述第三放松系数为所述SSB的测量时间的放松系数或所述CSI-RS的测量时间的放松系数。
  12. 根据权利要求10或11所述的方法,其特征在于,
    RLM测量的L1上报间隔为第二取值,所述第二取值为SSB的最小周期和CSI-RS的最小周期中的最小者;
    或,
    所述RLM测量的L1上报间隔为所述第二取值以及第一下限值中的最大者。
  13. 根据权利要求10或11所述的方法,其特征在于,
    BFD测量的L1上报间隔为SSB的最小周期;
    或,
    所述BFD测量的L1上报间隔为CSI-RS的最小周期;
    或,
    所述BFD测量的L1上报间隔为所述SSB的最小周期和第二下限值中的最大者;
    或,
    所述BFD测量的L1上报间隔为所述CSI-RS的最小周期和所述第二下限值中的最大者。
  14. 根据权利要求2至13任一所述的方法,其特征在于,所述第一测量放松准则包括如下准则中的至少一种:
    适用RLM测量的参考信号包括如下中的至少一种:L1 SSB、L1 CSI-RS和L3 SSB;
    适用BFD测量的参考信号包括如下中的至少一种:所述L1 SSB、所述L1 CSI-RS、所述L3 SSB和L3 CSI-RS;
    适用所述RLM测量的测量量包括:参考信号接收功率RSRP;
    适用所述BFD测量的测量量包括:所述RSRP;
    在一个PCell或PSCell上的激活部分带宽BWP上的参考信号测量的测量结果满足所述第一测量放松准则所配置的阈值的情况下,认为终端设备在所有的服务小区满足所述第一测量放松准则;
    RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
  15. 根据权利要求2至14任一所述的方法,其特征在于,所述第二测量放松准则包括如下准则中的至少一种:
    适用RLM测量的参考信号包括如下中的至少一种:L1 SSB和L1 CSI-RS;
    适用BFD测量的参考信号包括如下中的至少一种:所述L1 SSB和所述L1 CSI-RS;
    适用所述RLM测量的测量量包括:信噪比SINR;
    适用所述BFD测量的测量量包括:所述SINR;
    在一个服务小区上的激活BWP上的参考信号测量的测量结果满足所述第二测量放松准则所配置的阈值的情况下,认为终端设备在所述服务小区满足所述第二测量放松准则,所述服务小区包括:PCell、PSCell;
    RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
  16. 根据权利要求15所述的方法,其特征在于,所述第二测量放松准则所配置的阈值包括:
    同步门限Qin与第一偏移值的和;
    或,
    失步门限Qout与第二偏移值的和。
  17. 一种测量放松装置,其特征在于,所述装置包括:准则判断模块和测量放松模块;
    所述准则判断模块,用于基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
    所述测量放松模块,用于对所述第一测量和所述第二测量执行测量放松;
    其中,所述第一测量和所述第二测量是两种不同的测量。
  18. 根据权利要求17所述的装置,其特征在于,所述测量放松准则包括如下中的至少一种:
    第一测量放松准则,所述第一测量放松准则是与判断终端设备的移动性相关的准则;
    第二测量放松准则,所述第二测量放松准则是与判断服务小区质量相关的准则。
  19. 根据权利要求17或18所述的装置,其特征在于,
    所述第一测量包括:无线链路监测RLM测量,所述第二测量包括:波束失败检测BFD测量。
  20. 根据权利要求17或18所述的装置,其特征在于,
    所述第一测量包括:BFD测量,所述第二测量包括:RLM测量。
  21. 根据权利要求20所述的装置,其特征在于,
    所述准则判断模块,用于基于所述BFD测量在单个测量时间内不满足第二测量放松准则,确定所述RLM测量不满足所述第二测量放松准则;
    或,
    所述准则判断模块,用于基于所述BFD测量在多个所述测量时间内均不满足所述第二测量放松准则,确定所述RLM测量不满足所述第二测量放松准则。
  22. 根据权利要求19或20所述的装置,其特征在于,
    所述RLM测量为主小区PCell和主辅小区PSCell上的测量;
    所述BFD测量为所述PCell和所述PSCell上的测量。
  23. 根据权利要求19所述的装置,其特征在于,在所述RLM测量为PCell和PSCell上的测量,所述BFD测量为辅小区SCell上的测量的情况下;
    所述准则判断模块,用于基于所述PCell或所述PSCell上的所述RLM测量满足第一测量放松准则,确定所述SCell上的所述BFD测量满足所述第一测量放松准则;
    所述装置还包括:测量模块;
    所述测量模块,用于执行所述SCell上的所述BFD测量以确定是否满足第二测量放松准则;
    所述测量放松模块,用于在所述SCell上的所述BFD测量满足所述第一测量放松准则和所述第二测量放松准则的情况下,为所述SCell上的所述BFD测量执行测量放松。
  24. 根据权利要求17至23任一所述的装置,其特征在于,
    所述测量放松模块,用于为所述第一测量对应的测量时间配置第一放松系数;
    所述测量放松模块,用于为所述第二测量对应的测量时间配置第二放松系数;
    其中,所述第一放松系数和所述第二放松系数的数值取决于所述第一测量和所述第二测量对应的测量配置;在所述第一测量和所述第二测量对应的配置相同的情况下,所述第一放松系数和所述第二放松系数相同;在所述第一测量和所述第二测量对应的测量配置不同的情况下,所述第一放松系数和所述第二放松系数不同。
  25. 根据权利要求24所述的装置,其特征在于,所述测量配置包括如下中的至少一种:
    参考信号周期配置;
    测量时间周期配置。
  26. 根据权利要求17至25任一所述的装置,其特征在于,
    所述测量放松模块,用于为所述第一测量的L1上报间隔配置第三放松系数;
    所述测量放松模块,用于为所述第二测量的L1上报间隔配置第四放松系数;
    其中,所述第一测量或所述第二测量中的RLM测量的L1上报间隔配置的放松系数为第一取值,所述第一取值为同步信号块SSB的测量时间的放松系数和信道状态信息-参考信号CSI-RS的测量时间的放松系数中的最小者;所述第二测量或所述第一测量中的BFD测量的L1上报间隔配置的放松系数为所述SSB的测量时间的放松系数或所述CSI-RS的测量时间的放松系数。
  27. 根据权利要求17至25任一所述的装置,其特征在于,
    所述测量放松模块,用于为所述第一测量的L1上报间隔配置第三放松系数;
    所述测量放松模块,用于为所述第二测量的L1上报间隔配置第四放松系数;
    其中,所述第四放松系数取决于所述第三放松系数;在所述第一测量为RLM测量的情况下,所述第三放松系数为第一取值,所述第一取值为SSB的测量时间的放松系数和CSI-RS的测量时间的放松系数中的最小者;在所述第一测量为BFD测量的情况下,所述第三放松系数为所述SSB的测量时间的放松系数或所述CSI-RS的测量时间的放松系数。
  28. 根据权利要求26或27所述的装置,其特征在于,
    RLM测量的L1上报间隔为第二取值,所述第二取值为SSB的最小周期和CSI-RS的最小周期中的最小者;
    或,
    所述RLM测量的L1上报间隔为所述第二取值以及第一下限值中的最大者。
  29. 根据权利要求26或27所述的装置,其特征在于,
    BFD测量的L1上报间隔为SSB的最小周期;
    或,
    所述BFD测量的L1上报间隔为CSI-RS的最小周期;
    或,
    所述BFD测量的L1上报间隔为所述SSB的最小周期和第二下限值中的最大者;
    或,
    所述BFD测量的L1上报间隔为所述CSI-RS的最小周期和所述第二下限值中的最大者。
  30. 根据权利要求18至29任一所述的装置,其特征在于,所述第一测量放松准则包括如下准则中的至少一种:
    适用RLM测量的参考信号包括如下中的至少一种:L1 SSB、L1 CSI-RS和L3 SSB;
    适用BFD测量的参考信号包括如下中的至少一种:所述L1 SSB、所述L1 CSI-RS、所述L3 SSB和L3 CSI-RS;
    适用所述RLM测量的测量量包括:参考信号接收功率RSRP;
    适用所述BFD测量的测量量包括:所述RSRP;
    在一个PCell或PSCell上的激活部分带宽BWP上的参考信号测量的测量结果满足所述第一测量放松准则所配置的阈值的情况下,认为终端设备在所有的服务小区满足所述第一测量放松准则;
    RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
  31. 根据权利要求18至30任一所述的装置,其特征在于,所述第二测量放松准则包括如下准则中的至少一种:
    适用RLM测量的参考信号包括如下中的至少一种:L1 SSB和L1 CSI-RS;
    适用BFD测量的参考信号包括如下中的至少一种:所述L1 SSB和所述L1 CSI-RS;
    适用所述RLM测量的测量量包括:信噪比SINR;
    适用所述BFD测量的测量量包括:所述SINR;
    在一个服务小区上的激活BWP上的参考信号测量的测量结果满足所述第二测量放松准则所配置的阈值的情况下,认为终端设备在所述服务小区满足所述第二测量放松准则,所述服务小区包括:PCell、PSCell;
    RLM测量对应的参考信号测量的测量结果的上报不区分SSB和CSI-RS。
  32. 根据权利要求31所述的装置,其特征在于,所述第二测量放松准则所配置的阈值包括:
    同步门限Qin与第一偏移值的和;
    或,
    失步门限Qout与第二偏移值的和。
  33. 一种终端设备,其特征在于,所述终端设备包括处理器;
    所述处理器,用于基于第一测量满足测量放松准则,确定第二测量满足所述测量放松准则;
    所述处理器,用于对所述第一测量和所述第二测量执行测量放松;
    其中,所述第一测量和所述第二测量是两种不同的测量。
  34. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至16任一项所述的测量放松方法。
  35. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至16任一项所述的测量放松方法。
  36. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至16任一项所述的测量放松方法。
PCT/CN2021/135809 2021-12-06 2021-12-06 测量放松方法、装置、终端设备及存储介质 WO2023102695A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/135809 WO2023102695A1 (zh) 2021-12-06 2021-12-06 测量放松方法、装置、终端设备及存储介质
CN202180102174.7A CN117941403A (zh) 2021-12-06 2021-12-06 测量放松方法、装置、终端设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/135809 WO2023102695A1 (zh) 2021-12-06 2021-12-06 测量放松方法、装置、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023102695A1 true WO2023102695A1 (zh) 2023-06-15

Family

ID=86729421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135809 WO2023102695A1 (zh) 2021-12-06 2021-12-06 测量放松方法、装置、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN117941403A (zh)
WO (1) WO2023102695A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770529A (zh) * 2020-06-29 2020-10-13 广东小天才科技有限公司 一种处理放松测量参数更新的方法及终端设备
CN112702750A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 测量处理方法、指示信息发送方法、终端和网络设备
CN112702755A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 一种测量处理方法和终端
CN112702756A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 Rlm调整和/或bfd调整的方法及设备
WO2021163404A1 (en) * 2020-02-12 2021-08-19 Idac Holdings, Inc. Power efficient measurements at higher frequencies
CN113365301A (zh) * 2020-03-04 2021-09-07 华为技术有限公司 一种测量方法及装置
WO2021226761A1 (zh) * 2020-05-09 2021-11-18 Oppo广东移动通信有限公司 测量放松的方法及装置、终端设备、网络设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702750A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 测量处理方法、指示信息发送方法、终端和网络设备
CN112702755A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 一种测量处理方法和终端
CN112702756A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 Rlm调整和/或bfd调整的方法及设备
WO2021163404A1 (en) * 2020-02-12 2021-08-19 Idac Holdings, Inc. Power efficient measurements at higher frequencies
CN113365301A (zh) * 2020-03-04 2021-09-07 华为技术有限公司 一种测量方法及装置
WO2021226761A1 (zh) * 2020-05-09 2021-11-18 Oppo广东移动通信有限公司 测量放松的方法及装置、终端设备、网络设备
CN111770529A (zh) * 2020-06-29 2020-10-13 广东小天才科技有限公司 一种处理放松测量参数更新的方法及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on R17 RLM and BFD relaxation for NR", 3GPP DRAFT; R4-2107083, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177443 *

Also Published As

Publication number Publication date
CN117941403A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN109076373B (zh) 基于lbt参数控制测量的方法
JP7197501B2 (ja) 異なる基準信号の混合に基づくrlm及びビーム障害検出
US10257723B2 (en) Radio link failure report extensions in mobile communication networks
WO2018171631A1 (zh) 无线链路失败检测方法和用户设备
CN113767710B (zh) 基于dl cca操作信息适配ue服务小区过程
EP3900440B1 (en) Conditional wake-up signal configuration for new radio
CN107787005B (zh) 在链路质量监测的方法和相应的用户设备
US10785665B2 (en) Communication method, communication device and terminal
WO2018228468A1 (zh) 一种无线链路监控方法和装置
EP3400734B1 (en) Methods for adapting ue measurement period to radio conditions
US20110124340A1 (en) Radio problem detection assisted rescue handover
CN101998474A (zh) 一种载波聚合技术中的无线链路失败判决方法及装置
WO2018090910A1 (zh) 下行无线链路失败的恢复方法及装置
JP7327463B2 (ja) 無線リンク検出方法、装置及び通信システム
US20200275295A1 (en) Data transmission method and data transmission apparatus
KR20220027179A (ko) 링크 관리 방법, 웨이크업 신호 검출 방법, 단말 장비 및 네트워크 장비
WO2021168865A1 (zh) 一种通信方法及装置
WO2023102695A1 (zh) 测量放松方法、装置、终端设备及存储介质
US20230198729A1 (en) User equipment for communication over a wireless network and wireless network node for connecting the user equipment to the wireless network
WO2019192525A1 (zh) 无线链路监测的方法和装置
WO2022151998A1 (zh) 基于无线链路监控rlm的测量状态调整方法及相关装置
US20240064773A1 (en) Method of communication operation performed by user equipment and apparatus using the same
WO2023133739A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023284831A1 (zh) 执行无线链路监测的方法及用户设备
US12022548B2 (en) Link detection method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102174.7

Country of ref document: CN