WO2023101160A1 - Method for manufacturing graphite crucible using graphite sheet - Google Patents

Method for manufacturing graphite crucible using graphite sheet Download PDF

Info

Publication number
WO2023101160A1
WO2023101160A1 PCT/KR2022/013622 KR2022013622W WO2023101160A1 WO 2023101160 A1 WO2023101160 A1 WO 2023101160A1 KR 2022013622 W KR2022013622 W KR 2022013622W WO 2023101160 A1 WO2023101160 A1 WO 2023101160A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
crucible
manufacturing
sheet
sheets
Prior art date
Application number
PCT/KR2022/013622
Other languages
French (fr)
Korean (ko)
Inventor
유성운
이현호
윤성영
남신우
Original Assignee
인동첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인동첨단소재(주) filed Critical 인동첨단소재(주)
Publication of WO2023101160A1 publication Critical patent/WO2023101160A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/08Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers using foamed adhesives
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Definitions

  • the present invention relates to a method for manufacturing a graphite crucible using a graphite sheet, and more particularly, to a method for manufacturing a graphite crucible having excellent heat resistance and durability and applicable to a semiconductor manufacturing process by laminating graphite sheets.
  • a graphite crucible is used in a process of growing a single crystal, which is a material of a silicon wafer.
  • silicon single crystals are manufactured using a single crystal manufacturing apparatus according to the Czochralski method.
  • a crucible placed in a chamber is filled with raw materials for single crystals, and an inert purge gas is introduced into the chamber while the raw materials are introduced into the crucible.
  • a melt is prepared by heating and melting with a heater formed on the outside, and after immersing and adapting the melted seed crystal in the melt, the seed crystal is rotated and raised upward to grow a single crystal at the bottom of the seed crystal. do.
  • Korean Patent Registration Publication No. 10-1072664 adjusts temperature distribution by installing a graphite crucible as a heat shield between a quartz crucible and an external heater.
  • Korean Patent Registration No. 10-1907818 the characteristics of the graphite crucible base material have a bulk density of 1.65 Mg/m3 or more, a flexural strength of 30 mPa or more, and a shore hardness of 40 or more.
  • a technique that can increase the service life by using the having is known.
  • Such a graphite crucible is characterized by forming a film on the surface of a substrate.
  • Korean Patent Registration No. 10-0642923 discloses a technique of forming an inner layer of a crucible by laminating high-purity expanded graphite sheets having flexibility.
  • This prior art is intended to improve the physical properties of the crucible by treating the inner surface of the crucible, and has problems in that cracks or deformation occur because the crucible body is manufactured by general extrusion molding.
  • the present invention has been made in view of the prior art as described above, and an object of the present invention is to provide a manufacturing method capable of manufacturing a graphite crucible body by laminating a plurality of graphite sheets.
  • Another object of the present invention is to provide a method capable of manufacturing a high-quality graphite crucible that does not undergo deformation or cracking due to pressure.
  • the method for manufacturing a graphite crucible of the present invention to solve the above problems includes cutting a graphite sheet, applying a foamed adhesive to the surface of the graphite sheet, and laminating and laminating the graphite sheets coated with the foamed adhesive. It is characterized in that it includes the step of manufacturing a graphite block by foaming the stacked graphite sheets under a pressurized condition, and forming a crucible body by bonding the graphite blocks to each other.
  • a heat-resistant foaming agent may be applied to each joining portion of the graphite blocks and then pressurized in a joining direction so as to be joined to each other.
  • the graphite blocks may be bonded to each other using carbon screws after drilling holes in the joint portions.
  • a graphite crucible having a desired thickness may be manufactured by laminating and laminating 20 to 50 graphite sheets.
  • the foamed adhesive having a viscosity of less than 10,000cps.
  • a graphite crucible body may be manufactured by stacking a plurality of graphite sheets.
  • the manufactured graphite crucible exhibits an effect of not generating deformation or cracking due to pressure.
  • FIG. 1 is a conceptual diagram showing a process of manufacturing a crucible by bonding graphite sheets according to the manufacturing method of the present invention.
  • the method for manufacturing a graphite crucible of the present invention includes the steps of cutting a graphite sheet, applying a foamed adhesive to the surface of the graphite sheet, laminating and laminating the graphite sheets coated with the foamed adhesive, and stacking the stacked graphite sheets. It is characterized in that it includes the step of producing a graphite block by foaming under a pressurized condition, and the step of bonding the graphite blocks to each other to form a crucible body.
  • a graphite block is manufactured by stacking graphite sheets, and a plurality of graphite blocks are bonded to each other to form a crucible body having a desired shape.
  • the graphite sheet As the graphite sheet, a graphite sheet developed by the applicant may be used, and a graphite sheet having a density of 1.5 g/cm 3 is preferably used. This may be selected in consideration of the degree of foaming when the graphite sheets are stacked and the strength of the crucible.
  • the graphite sheet is preferably cut to a size of 670 ⁇ 930 mm. This is in consideration of the size of the graphite block, and can be cut to an optimal size suitable for assembling a target graphite crucible.
  • the cut graphite sheet is preferably used after being pretreated by heating at a temperature of 450 to 550°C. Impurities remaining on the surface of the graphite sheet may be removed through the pretreatment, and through this, adhesion of the graphite sheet may be smoothly performed.
  • the graphite sheets pretreated as described above are laminated and stacked in consideration of the thickness of the crucible body. For example, in case of using a 0.9t graphite sheet, 33 graphite sheets are required to manufacture a 30t thick graphite crucible. However, considering the thickness of a general graphite crucible, a graphite crucible having sufficient durability can be manufactured by laminating 20 to 50 graphite sheets having a thickness of 0.5 to 1.5t.
  • the graphite sheets are laminated using a foam adhesive.
  • a foam adhesive When the foamed adhesive is applied between the graphite sheets, strong adhesion between the graphite sheets is formed by foaming of the foamed adhesive.
  • a commercially available product may be used as the foam adhesive, and a combination of dusty powder and liquid foam is used.
  • a foamed adhesive was prepared by mixing liquid foam SMG-200B (Hanmir) and dusty powder SMG-400P (Hanmir) in a weight ratio of 4.5:5.5, and then it was applied to the surface of the graphite sheet. At this time, the foamed adhesive was used after confirming that the viscosity was less than 10,000cps. Since the foam adhesive foams within 30 minutes after application, an appropriate amount should be used. Preferably, it may be applied to a thickness of 0.05 to 0.15t.
  • the foamed adhesive is applied to both the front and rear surfaces of the graphite sheet, and it is preferable to apply evenly throughout the graphite sheet so that there are no voids.
  • the foamed adhesive is applied to only one side of the lowermost and uppermost graphite sheets to be laminated. That is, it is preferable to apply the foamed adhesive only to the surface of the graphite sheet to be laminated so as to have a uniform thickness.
  • the application of the foamed adhesive since the application of the foamed adhesive must be performed before foaming, it must be completed within 15 to 20 minutes after preparing the foamed adhesive.
  • the graphite sheets thus laminated are placed on a pressurizing device and pressurized at a pressure of 200 to 300 kgf/m 2 so that foaming occurs in a pressurized state.
  • a pressurizing device pressurized at a pressure of 200 to 300 kgf/m 2 so that foaming occurs in a pressurized state.
  • foaming occurs in a pressurized state.
  • an exothermic reaction occurs due to the reaction of the foamed adhesive. Since the front and rear surfaces of the laminated graphite sheets are fixed by the pressure device, when foaming occurs, the adhesive foamed to the side of the graphite sheet comes out.
  • the completed graphite block is recovered from the pressing device and heated to a temperature of 1,400 to 1,500° C. to remove all impurities and organic substances included in the graphite block. Through this, it is possible to manufacture a graphite block having a low density and high durability.
  • a desired graphite crucible may be manufactured by manufacturing a plurality of graphite blocks through the above process and bonding the graphite blocks to each other.
  • a graphite crucible having a hexahedral shape with one surface open may be manufactured by bonding five graphite blocks to each other.
  • the graphite blocks are formed in a flat shape and are combined, and the graphite blocks may be manufactured into a pot-shaped container by processing a curved surface of the graphite blocks.
  • a separate graphite block may be manufactured and used as a lid of the graphite crucible.
  • each graphite block is drawn and finely processed using a lathe.
  • a heat-resistant foaming agent is applied to a thickness of 0.05 to 0.15 t on the side surface of the graphite block after microprocessing, and then a pressure of 200 to 300 kgf/m 2 is applied along the direction in which the graphite blocks are joined to form a pressurized state. By maintaining this state for 5 to 10 hours, bonding between the graphite blocks is performed.
  • bonding strength between the graphite blocks may be increased by drilling a hole in the bonded portion and then coupling a carbon screw to the hole.
  • the graphite block assembly forms a graphite crucible.
  • the graphite crucible is heated to a temperature of 1,400 to 1,500° C. to remove all impurities and organic substances included in the graphite block, thereby obtaining a graphite crucible.
  • the graphite crucible manufactured in this way is subjected to a pressure of 100 kgf/m 2 from the top and side for 30 minutes, and checks for deformation or cracks.
  • the graphite crucible manufactured through this manufacturing method has the advantage of being resistant to deformation, cracking, and breakage, and being easy to repair when there is surface damage, compared to conventional graphite pottery.
  • graphite sheets of 650 ⁇ 930 mm and a thickness of 10 mm are used as four sides of the crucible, and a graphite sheet of 650 ⁇ 650 mm and a thickness of 15 mm is used as a bottom to prepare a hexahedral graphite crucible did
  • a foamed adhesive was applied at an average thickness of 0.1 t to the portion where the graphite sheets were joined, and carbon fibers were added to the outer surface of the portion where the graphite sheets were joined, and then the joint was bonded.
  • a graphite crucible was prepared by heat-treating the graphite block assembly formed as described above at 1,400 to 1,500° C. for 2 hours.
  • a graphite crucible was prepared using a roll-shaped sheet.
  • 100 plain weave cotton fabrics 200 ⁇ 200 mm
  • liquid polyamic acid was coated on one side of the cotton fabric at 25 ° C through a roll coating process to prepare a sheet.
  • the prepared sheet was cured by hot air for 30 minutes in a heat treatment device having a temperature gradient of 80 to 250 ° C. to prepare a cured sheet, and the prepared cured sheet was wound by winding 10 turns and then repeating 1 turn.
  • the rolled sheet was carbonized at a temperature of 1200° C. for 2 hours and graphitized at a temperature of 2800° C. for 1 hour to prepare a graphite crucible having a thickness of 10 mm.
  • the thermal diffusivity of the graphite crucibles of Examples and Comparative Examples was measured by a laser flash method (LFA447 from NEIZCH).
  • LFA447 from NEIZCH
  • the graphite crucible of Example exhibited physical properties equivalent to the thermal diffusivity of 530 mm 2 /s of the graphite crucible of Comparative Example at 525 mm 2 /s. Therefore, it was found that a uniform temperature distribution required as a crucible can be realized.
  • the graphite crucibles of Examples and Comparative Examples After heating the graphite crucibles of Examples and Comparative Examples at 2,000 ° C. for 1 hour in an inert gas atmosphere, the height of the graphite crucible before and after heat treatment, and the change in each dimension for each inner diameter at 100 mm and 150 mm from the top of the crucible As a result of measuring, the graphite crucible of Example showed a dimensional change rate of 0.05% in height, 0.04% in inner diameter at 100 mm, and 0.04% in inner diameter at 150 mm, whereas the graphite crucible of Comparative Example had a dimensional change rate of 0.08% in height and 100 mm in diameter. It was found to be 0.06% of the inner diameter at mm and 0.06% of the inner diameter at 150 mm. These results showed that the graphite crucibles of Examples had excellent durability.
  • the Shore hardness of the graphite crucible of Example is 55, whereas the Shore hardness of the graphite crucible of Comparative Example is 42, and there is a difference in hardness, and this result supports the high durability of the graphite crucible of Example.

Abstract

The present invention relates to a method for manufacturing a graphite crucible using a graphite sheet, the method being characterized by comprising the steps of: cutting a graphite sheet; applying a foamed adhesive to the surfaces of graphite sheets; laminating and stacking the graphite sheets coated with the foamed adhesive; manufacturing graphite blocks by foaming the stacked graphite sheets under pressurized conditions; and forming a crucible main body by bonding the graphite blocks to each other.

Description

그라파이트 시트를 이용한 흑연 도가니의 제조방법.Manufacturing method of graphite crucible using graphite sheet.
본 발명은 그라파이트 시트를 이용한 흑연 도가니의 제조방법에 관한 것으로서, 더욱 상세하게는, 그라파이트 시트를 적층함으로써 내열성 및 내구성이 우수하여 반도체 제조공정 등에 적용할 수 있는 흑연 도가니를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a graphite crucible using a graphite sheet, and more particularly, to a method for manufacturing a graphite crucible having excellent heat resistance and durability and applicable to a semiconductor manufacturing process by laminating graphite sheets.
그라파이트 도가니는 실리콘 웨이퍼의 재료인 단결정을 성장시키는 공정에 사용되고 있다. 일반적으로 실리콘 단결정은 초크랄스키법에 의한 단결정 제조 장치를 이용하여 제조되는데, 단결정 성장을 위하여 챔버 내에 배치한 도가니 내에 단결정용 원료를 충전하고, 불활성 퍼지 가스를 챔버 내에 도입하면서 이 원료를 도가니의 외측에 형성한 히터로 가열 용융하여 용융액을 제조하고, 상기 용융액에 이 용융된 시드(seed) 결정을 침지하여 적응화한 후 상기 시드 결정을 회전시키면서 위쪽으로 끌어올려서 시드 결정의 하단에 단결정을 성장시키게 된다.A graphite crucible is used in a process of growing a single crystal, which is a material of a silicon wafer. In general, silicon single crystals are manufactured using a single crystal manufacturing apparatus according to the Czochralski method. For single crystal growth, a crucible placed in a chamber is filled with raw materials for single crystals, and an inert purge gas is introduced into the chamber while the raw materials are introduced into the crucible. A melt is prepared by heating and melting with a heater formed on the outside, and after immersing and adapting the melted seed crystal in the melt, the seed crystal is rotated and raised upward to grow a single crystal at the bottom of the seed crystal. do.
실리콘 단결정을 성장시키는 공정에서 산소 농도의 제어가 필요한데, 종래의 도가니는 석영 재질의 도가니로서 상기 도가니 내의 온도 분포를 조절하여 산소 농도의 정밀한 조절하는 데에는 한계가 있다. In the process of growing a silicon single crystal, oxygen concentration needs to be controlled. Conventional crucibles are quartz crucibles, and there is a limit to precisely adjusting the oxygen concentration by adjusting the temperature distribution in the crucible.
이러한 문제를 해결하기 위하여, 대한민국 등록특허공보 10-1072664호에서는 석영 도가니와 외측 히터 사이에 흑연 도가니를 열 차폐물로 설치하여 온도 분포를 조절하고 있다.In order to solve this problem, Korean Patent Registration Publication No. 10-1072664 adjusts temperature distribution by installing a graphite crucible as a heat shield between a quartz crucible and an external heater.
이러한 흑연 도가니를 제조하기 위한 다양한 기술이 개발되고 있는데, 대한민국 등록특허공보 10-1907818호에서는 흑연 도가니 기재의 특성이 부피 밀도가 1.65Mg/㎥ 이상, 굴곡 강도가 30mPa 이상, 쇼어 경도 40 이상의 값을 가지는 것을 사용하여 사용 수명을 늘일 수 있는 기술이 공지되어 있다. 이러한 흑연 도가니는 기재의 표면에 피막을 형성하는 것을 특징으로 하고 있다. 또한, 대한민국 등록특허공보 10-0642923호에서는 가요성을 갖는 고순도 팽창 그라파이트 시트를 적층함으로써 도가니의 내층을 형성하는 기술이 공지되어 있다. Various technologies for manufacturing such a graphite crucible have been developed. In Korean Patent Registration No. 10-1907818, the characteristics of the graphite crucible base material have a bulk density of 1.65 Mg/m3 or more, a flexural strength of 30 mPa or more, and a shore hardness of 40 or more. A technique that can increase the service life by using the having is known. Such a graphite crucible is characterized by forming a film on the surface of a substrate. In addition, Korean Patent Registration No. 10-0642923 discloses a technique of forming an inner layer of a crucible by laminating high-purity expanded graphite sheets having flexibility.
이러한 종래기술은 도가니 내부 표면 처리를 통해 도가니의 물성을 향상시키고자 하는 것으로서, 도가니 본체의 제조를 위해 일반적인 압출 성형으로 제조하고 있어 크랙이나 변형이 발생하는 문제를 내포하고 있다.This prior art is intended to improve the physical properties of the crucible by treating the inner surface of the crucible, and has problems in that cracks or deformation occur because the crucible body is manufactured by general extrusion molding.
본 발명은 상기와 같은 종래기술을 감안하여 안출된 것으로, 복수의 그라파이트 시트를 적층함으로써 흑연 도가니 본체를 제조할 수 있는 제조방법을 제공하는 것을 그 목적으로 한다.The present invention has been made in view of the prior art as described above, and an object of the present invention is to provide a manufacturing method capable of manufacturing a graphite crucible body by laminating a plurality of graphite sheets.
또한, 압력에 의한 변형 또는 크랙이 발생하지 않는 고품질의 흑연 도가니를 제조할 수 있는 방법을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a method capable of manufacturing a high-quality graphite crucible that does not undergo deformation or cracking due to pressure.
상기와 같은 과제를 해결하기 위한 본 발명의 흑연 도가니의 제조방법은 그라파이트 시트를 재단하는 단계, 상기 그라파이트 시트의 표면에 발포 접착제를 도포하는 단계, 상기 발포 접착제를 도포한 그라파이트 시트를 합지하여 적층하는 단계, 상기 적층된 그라파이트 시트를 가압 조건에서 발포하여 그라파이트 블록을 제조하는 단계, 상기 그라파이트 블록을 서로 접합하여 도가니 본체를 형성하는 단계를 포함하는 것을 특징으로 한다.The method for manufacturing a graphite crucible of the present invention to solve the above problems includes cutting a graphite sheet, applying a foamed adhesive to the surface of the graphite sheet, and laminating and laminating the graphite sheets coated with the foamed adhesive. It is characterized in that it includes the step of manufacturing a graphite block by foaming the stacked graphite sheets under a pressurized condition, and forming a crucible body by bonding the graphite blocks to each other.
이때, 상기 도가니 본체를 형성하는 단계는 상기 그라파이트 블록의 각각의 접합 부위에 내열 발포제를 도포한 후 접합 방향으로 가압하여 서로 접합할 수 있다.In this case, in the forming of the crucible body, a heat-resistant foaming agent may be applied to each joining portion of the graphite blocks and then pressurized in a joining direction so as to be joined to each other.
또한, 상기 도가니 본체를 형성하는 단계는 상기 그라파이트 블록의 접합 부위에 천공한 후 탄소 나사못을 사용하여 서로 접합할 수도 있다.In addition, in the forming of the crucible body, the graphite blocks may be bonded to each other using carbon screws after drilling holes in the joint portions.
또한, 상기 그라파이트 시트를 합지하여 적층하는 단계는 상기 그라파이트 시트 20 내지 50매를 합지하여 적층함으로써 목적하는 두께의 흑연 도가니를 제조할 수 있다.In the step of laminating and laminating the graphite sheets, a graphite crucible having a desired thickness may be manufactured by laminating and laminating 20 to 50 graphite sheets.
또한, 상기 발포 접착제는 점도가 10,000cps 미만인 것을 사용하는 것이 바람직하다.In addition, it is preferable to use the foamed adhesive having a viscosity of less than 10,000cps.
본 발명에 따른 흑연 도가니의 제조방법은 복수의 그라파이트 시트를 적층함으로써 흑연 도가니 본체를 제조할 수 있다.In the method for manufacturing a graphite crucible according to the present invention, a graphite crucible body may be manufactured by stacking a plurality of graphite sheets.
또한, 제조된 흑연 도가니는 압력에 의한 변형 또는 크랙이 발생하지 않는 효과를 나타낸다.In addition, the manufactured graphite crucible exhibits an effect of not generating deformation or cracking due to pressure.
도 1은 본 발명의 제조방법에 따라 그라파이트 시트를 접합하여 도가니를 제조하는 과정을 나타낸 개념도이다.1 is a conceptual diagram showing a process of manufacturing a crucible by bonding graphite sheets according to the manufacturing method of the present invention.
이하 본 발명을 보다 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail. Terms or words used in this specification and claims should not be construed as being limited to ordinary or dictionary meanings, and the inventor may appropriately define the concept of terms in order to explain his or her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명의 흑연 도가니의 제조방법은 그라파이트 시트를 재단하는 단계, 상기 그라파이트 시트의 표면에 발포 접착제를 도포하는 단계, 상기 발포 접착제를 도포한 그라파이트 시트를 합지하여 적층하는 단계, 상기 적층된 그라파이트 시트를 가압 조건에서 발포하여 그라파이트 블록을 제조하는 단계, 상기 그라파이트 블록을 서로 접합하여 도가니 본체를 형성하는 단계를 포함하는 것을 특징으로 한다.The method for manufacturing a graphite crucible of the present invention includes the steps of cutting a graphite sheet, applying a foamed adhesive to the surface of the graphite sheet, laminating and laminating the graphite sheets coated with the foamed adhesive, and stacking the stacked graphite sheets. It is characterized in that it includes the step of producing a graphite block by foaming under a pressurized condition, and the step of bonding the graphite blocks to each other to form a crucible body.
즉, 본 발명의 흑연 도가니의 제조방법은 그라파이트 시트를 적층하여 그라파이트 블록을 제조하고 복수의 그라파이트 블록을 서로 접합하여 목적하는 형태의 도가니 본체를 구성하는 것이다.That is, in the manufacturing method of the graphite crucible of the present invention, a graphite block is manufactured by stacking graphite sheets, and a plurality of graphite blocks are bonded to each other to form a crucible body having a desired shape.
상기 그라파이트 시트로는 출원인이 개발한 그라파이트 시트를 사용할 수 있으며 밀도가 1.5g/㎤인 그라파이트 시트를 사용하는 것이 바람직하다. 이는 그라파이트 시트를 적층했을 때의 발포 정도와 도가니의 강도를 고려하여 선택될 수 있다. 또한, 상기 그라파이트 시트는 670 × 930㎜ 크기로 재단하는 것이 바람직하다. 이는 그라파이트 블록의 크기를 고려한 것으로서 목적하는 흑연 도가니의 조립을 위해 적절한 최적의 크기로 재단할 수 있다.As the graphite sheet, a graphite sheet developed by the applicant may be used, and a graphite sheet having a density of 1.5 g/cm 3 is preferably used. This may be selected in consideration of the degree of foaming when the graphite sheets are stacked and the strength of the crucible. In addition, the graphite sheet is preferably cut to a size of 670 × 930 mm. This is in consideration of the size of the graphite block, and can be cut to an optimal size suitable for assembling a target graphite crucible.
상기 재단된 그라파이트 시트는 450 내지 550℃의 온도로 가열하여 전처리한 후 사용하는 것이 바람직하다. 상기 전처리를 통해 상기 그라파이트 시트의 표면에 남은 불순물을 제거할 수 있고 이를 통해 그라파이트 시트의 접착을 원활하게 할 수 있다.The cut graphite sheet is preferably used after being pretreated by heating at a temperature of 450 to 550°C. Impurities remaining on the surface of the graphite sheet may be removed through the pretreatment, and through this, adhesion of the graphite sheet may be smoothly performed.
이와 같이 전처리를 마친 그라파이트 시트를 도가니 본체의 두께를 고려하여 합지하여 적층한다. 예를 들어, 0.9t의 그라파이트 시트를 사용할 경우 30t 두께의 흑연 도가니를 제조하고자 하면 33매의 그라파이트 시트가 필요하게 된다. 그러나 일반적인 흑연 도가니의 두께를 고려하면 0.5 내지 1.5t 두께의 그라파이트 시트를 20 내지 50매를 합지하여 적층하면 충분한 내구성을 가진 흑연 도가니를 제조할 수 있다.The graphite sheets pretreated as described above are laminated and stacked in consideration of the thickness of the crucible body. For example, in case of using a 0.9t graphite sheet, 33 graphite sheets are required to manufacture a 30t thick graphite crucible. However, considering the thickness of a general graphite crucible, a graphite crucible having sufficient durability can be manufactured by laminating 20 to 50 graphite sheets having a thickness of 0.5 to 1.5t.
상기 그라파이트 시트는 발포 접착제를 이용하여 합지한다. 상기 발포 접착제를 상기 그라파이트 시트 사이에 도포하면 상기 발포 접착제의 발포에 의해 그라파이트 시트 간의 강한 접착이 형성되게 된다. 상기 발포 접착제는 시판되는 제품을 사용할 수 있으며, 분진형 파우더와 액상 발포체를 조합하여 사용하게 된다.The graphite sheets are laminated using a foam adhesive. When the foamed adhesive is applied between the graphite sheets, strong adhesion between the graphite sheets is formed by foaming of the foamed adhesive. A commercially available product may be used as the foam adhesive, and a combination of dusty powder and liquid foam is used.
일 실시예에서 액상 발포체인 SMG-200B(한미르) 및 분진형 파우더 SMG-400P(한미르)를 4.5:5.5의 중량비로 혼합하여 발포 접착제를 준비한 후 이를 상기 그라파이트 시트의 표면에 도포하였다. 이때 상기 발포 접착제는 10,000cps 미만의 점도가 되는지 확인한 후 사용하였다. 상기 발포 접착제는 도포 후 30분 이내에 발포가 되기 때문에 적절한 양을 사용하여야 한다. 바람직하게는 0.05 내지 0.15t의 두께가 되도록 도포할 수 있다.In one embodiment, a foamed adhesive was prepared by mixing liquid foam SMG-200B (Hanmir) and dusty powder SMG-400P (Hanmir) in a weight ratio of 4.5:5.5, and then it was applied to the surface of the graphite sheet. At this time, the foamed adhesive was used after confirming that the viscosity was less than 10,000cps. Since the foam adhesive foams within 30 minutes after application, an appropriate amount should be used. Preferably, it may be applied to a thickness of 0.05 to 0.15t.
상기 발포 접착제는 상기 그라파이트 시트의 전면 및 배면에 모두 도포하며 빈 곳이 없도록 전체적으로 고르게 도포하는 것이 바람직하다. 또한, 합지할 그라파이트 시트 중 최하층 및 최상층 시트는 한쪽 면에만 상기 발포 접착제를 도포한다. 즉, 그라파이트 시트의 합지되는 면에만 상기 발포 접착제를 도포하되 균일한 두께가 되도록 도포하는 것이 바람직하다. 또한, 상기 발포 접착제의 도포는 발포되기 전에 수행해야 하므로 발포 접착제를 제조한 후 15 내지 20분 안에 완료해야 한다.The foamed adhesive is applied to both the front and rear surfaces of the graphite sheet, and it is preferable to apply evenly throughout the graphite sheet so that there are no voids. In addition, the foamed adhesive is applied to only one side of the lowermost and uppermost graphite sheets to be laminated. That is, it is preferable to apply the foamed adhesive only to the surface of the graphite sheet to be laminated so as to have a uniform thickness. In addition, since the application of the foamed adhesive must be performed before foaming, it must be completed within 15 to 20 minutes after preparing the foamed adhesive.
이와 같이 합지된 그라파이트 시트를 가압장치에 올리고 200 내지 300㎏f/㎡의 압력으로 가압하여 가압 상태에서 발포가 일어나도록 한다. 이러한 가압 조건에서는 발포가 일어나더라도 그라파이트 시트 간에 벌어지거나 시트가 변형되는 현상을 억제할 수 있다. 또한, 가압 상태에서 발포하면 발포 접착제의 반응에 의해 발열 반응이 일어나게 된다. 상기 가압장치에 의해 상기 합지된 그라파이트 시트의 전면과 배면이 고정되어 있기 때문에 발포가 일어나면 상기 그라파이트 시트의 측면으로 발포된 접착제가 빠져 나오게 된다.The graphite sheets thus laminated are placed on a pressurizing device and pressurized at a pressure of 200 to 300 kgf/m 2 so that foaming occurs in a pressurized state. In this pressurized condition, even if foaming occurs, it is possible to suppress a phenomenon in which the graphite sheets are spread out or the sheets are deformed. In addition, when foaming under pressure, an exothermic reaction occurs due to the reaction of the foamed adhesive. Since the front and rear surfaces of the laminated graphite sheets are fixed by the pressure device, when foaming occurs, the adhesive foamed to the side of the graphite sheet comes out.
상기 발포는 충분히 일어나도록 하기 위하여 5 내지 10시간 동안 가압 상태를 유지하는 것이 바람직하다.It is preferable to maintain the pressurized state for 5 to 10 hours in order to ensure that the foaming occurs sufficiently.
상기 발포 과정이 종료되면 가압장치에서 완성된 그라파이트 블록을 회수하고 이를 1,400 내지 1,500℃의 온도로 가열하여 상기 그라파이트 블록에 포함된 불순물 및 유기물을 모두 제거한다. 이를 통해 밀도가 낮으면서도 높은 내구성을 나타내는 그라파이트 블록을 제조할 수 있다.When the foaming process is completed, the completed graphite block is recovered from the pressing device and heated to a temperature of 1,400 to 1,500° C. to remove all impurities and organic substances included in the graphite block. Through this, it is possible to manufacture a graphite block having a low density and high durability.
상기와 같은 과정을 통해 복수의 그라파이트 블록을 제조하고, 상기 그라파이트 블록을 서로 접합함으로써 목적하는 흑연 도가니를 제조할 수 있다.A desired graphite crucible may be manufactured by manufacturing a plurality of graphite blocks through the above process and bonding the graphite blocks to each other.
이러한 과정을 도 1을 통해 설명하면, 그라파이트 블록 5개를 서로 접합하여 일면이 개방된 육면체 형태의 흑연 도가니를 제조할 수 있다. 이 경우, 상기 그라파이트 블록은 평면으로 구성되어 이를 결합되는데, 상기 그라파이트 블록을 곡면가공하여 상기 그라파이트 블록을 항아리 형태의 용기로 제조할 수도 있다. 또한, 별도의 그라파이트 블록을 제조하여 상기 흑연 도가니의 뚜껑으로 사용할 수 있다.Referring to this process through FIG. 1 , a graphite crucible having a hexahedral shape with one surface open may be manufactured by bonding five graphite blocks to each other. In this case, the graphite blocks are formed in a flat shape and are combined, and the graphite blocks may be manufactured into a pot-shaped container by processing a curved surface of the graphite blocks. In addition, a separate graphite block may be manufactured and used as a lid of the graphite crucible.
상기 그라파이트 블록을 서로 접합하기 위하여 각각의 그라파이트 블록을 드로잉한 후 선반을 이용하여 미세 가공한다. 미세 가공을 마친 상기 그라파이트 블록의 측면에 내열 발포제를 0.05 내지 0.15t의 두께가 되도록 도포한 후 그라파이트 블록이 접합된 방향을 따라 200 내지 300㎏f/㎡의 압력을 가하여 가압 상태를 형성한다. 이러한 상태를 5 내지 10시간 동안 유지함으로써 그라파이트 블록끼리의 접합이 이루어지게 된다.In order to bond the graphite blocks to each other, each graphite block is drawn and finely processed using a lathe. A heat-resistant foaming agent is applied to a thickness of 0.05 to 0.15 t on the side surface of the graphite block after microprocessing, and then a pressure of 200 to 300 kgf/m 2 is applied along the direction in which the graphite blocks are joined to form a pressurized state. By maintaining this state for 5 to 10 hours, bonding between the graphite blocks is performed.
또한, 접착된 부위에 드릴로 천공한 후 상기 천공에 탄소 나사못을 결합함으로써 그라파이트 블록 간의 접합력을 높일 수도 있다. In addition, bonding strength between the graphite blocks may be increased by drilling a hole in the bonded portion and then coupling a carbon screw to the hole.
상기 그라파이트 블록의 접합체는 흑연 도가니를 형성하게 되는데, 제조된 흑연 도가니를 1,400 내지 1,500℃의 온도로 가열하여 상기 그라파이트 블록에 포함된 불순물 및 유기물을 모두 제거함으로써 흑연 도가니를 수득하게 된다.The graphite block assembly forms a graphite crucible. The graphite crucible is heated to a temperature of 1,400 to 1,500° C. to remove all impurities and organic substances included in the graphite block, thereby obtaining a graphite crucible.
이와 같은 방법으로 제조된 흑연 도가니를 상부 및 측면에서 각각 100㎏f/㎡의 압력을 30분 간 가하고 변형이나 크랙이 있는지 확인하고 변형이나 크랙이 없는 경우 완제품으로 한다.The graphite crucible manufactured in this way is subjected to a pressure of 100 kgf/m 2 from the top and side for 30 minutes, and checks for deformation or cracks.
따라서 이러한 제조방법을 통해 제조된 흑연 도가니는 통상의 흑연 도기나에 비하여 변형이나 크랙, 파손에 강하고 표면 손상이 있는 경우 수리가 쉬운 장점을 가지게 된다.Therefore, the graphite crucible manufactured through this manufacturing method has the advantage of being resistant to deformation, cracking, and breakage, and being easy to repair when there is surface damage, compared to conventional graphite pottery.
일 실시예에서 650×930㎜ 크기에 두께가 10㎜인 그라파이트 시트 4개를 도가니의 4면으로 하고 650×650㎜ 크기에 두께가 15㎜인 그라파이트 시트를 바닥으로 하여 육면체 형태의 흑연 도가니를 제조하였다.In one embodiment, four graphite sheets of 650 × 930 mm and a thickness of 10 mm are used as four sides of the crucible, and a graphite sheet of 650 × 650 mm and a thickness of 15 mm is used as a bottom to prepare a hexahedral graphite crucible did
이때, 상기 그라파이트 시트끼리 접합하는 부분에는 발포 접착제를 평균 0.1t의 두께로 도포하였으며, 상기 그라파이트 시트가 결합한 부분의 바깥 면에 탄소 섬유를 덧댄 후 결합 부분을 접착하였다. 이와 같이 형성된 그라파이트 블록의 접합체를 1,400 내지 1,500℃에서 2시간 동안 열처리하여 흑연 도가니를 제조하였다.At this time, a foamed adhesive was applied at an average thickness of 0.1 t to the portion where the graphite sheets were joined, and carbon fibers were added to the outer surface of the portion where the graphite sheets were joined, and then the joint was bonded. A graphite crucible was prepared by heat-treating the graphite block assembly formed as described above at 1,400 to 1,500° C. for 2 hours.
또한, 비교를 위하여 통상의 롤 형태의 시트를 이용하여 흑연 도가니를 제조하였다. 먼저 면직물 평직 100수(200×200㎜)를 준비하고 롤 코팅 공정을 통해 25℃에서 액상의 폴리아믹산을 상기 면직물 일면에 코팅하여 시트를 제조하였다. 제조된 시트를 80 내지 250℃의 온도 구배를 갖는 가열처리 장치에서 30분 동안 열풍 경화하여 경화 시트를 제조하고, 상기 제조된 경화 시트를 10 바퀴 감은 후 1 바퀴 되풀기를 반복하여 권취하였다. 권취된 시트를 1200℃의 온도로 2시간 동안 탄화시키고 2800℃의 온도로 1시간 동안 흑연화시켜 두께 10㎜의 흑연 도가니를 제조하였다.In addition, for comparison, a graphite crucible was prepared using a roll-shaped sheet. First, 100 plain weave cotton fabrics (200 × 200 mm) were prepared and liquid polyamic acid was coated on one side of the cotton fabric at 25 ° C through a roll coating process to prepare a sheet. The prepared sheet was cured by hot air for 30 minutes in a heat treatment device having a temperature gradient of 80 to 250 ° C. to prepare a cured sheet, and the prepared cured sheet was wound by winding 10 turns and then repeating 1 turn. The rolled sheet was carbonized at a temperature of 1200° C. for 2 hours and graphitized at a temperature of 2800° C. for 1 hour to prepare a graphite crucible having a thickness of 10 mm.
실시예 및 비교예의 흑연 도가니에 대하여 레이저 플래시법(Laser flash method, NEIZCH사 LFA447)으로 열 확산율을 측정하였다. 그 결과, 실시예의 흑연 도가니는 525㎟/s로서 비교예의 흑연 도가니의 열 확산율 530㎟/s과 동등한 정도의 물성을 나타내었다. 따라서 도가니로서 요구되는 균일한 온도 분포를 구현할 수 있는 것으로 나타났다.The thermal diffusivity of the graphite crucibles of Examples and Comparative Examples was measured by a laser flash method (LFA447 from NEIZCH). As a result, the graphite crucible of Example exhibited physical properties equivalent to the thermal diffusivity of 530 mm 2 /s of the graphite crucible of Comparative Example at 525 mm 2 /s. Therefore, it was found that a uniform temperature distribution required as a crucible can be realized.
또한, 실시예 및 비교예의 흑연 도가니를 불활성 가스 분위기 중 2,000℃에서 1시간 동안 가열한 후 열처리 전후의 흑연 도가니의 높이, 도가니 상단으로부터 100㎜ 및 150㎜에서의 각각의 내경에 대하여 각 치수의 변화를 측정한 결과, 실시예의 흑연 도가니는 치수 변화율이 높이 0.05%, 100㎜에서의 내경 0.04%, 150㎜에서의 내경 0.04%인 것으로 나타난 반면, 비교예의 흑연 도가니는 치수 변화율이 높이 0.08%, 100㎜에서의 내경 0.06%, 150㎜에서의 내경 0.06%인 것으로 나타났다. 이러한 결과는 실시예의 흑연 도가니가 내구성이 우수한 것으로 나타났다.In addition, after heating the graphite crucibles of Examples and Comparative Examples at 2,000 ° C. for 1 hour in an inert gas atmosphere, the height of the graphite crucible before and after heat treatment, and the change in each dimension for each inner diameter at 100 mm and 150 mm from the top of the crucible As a result of measuring, the graphite crucible of Example showed a dimensional change rate of 0.05% in height, 0.04% in inner diameter at 100 mm, and 0.04% in inner diameter at 150 mm, whereas the graphite crucible of Comparative Example had a dimensional change rate of 0.08% in height and 100 mm in diameter. It was found to be 0.06% of the inner diameter at mm and 0.06% of the inner diameter at 150 mm. These results showed that the graphite crucibles of Examples had excellent durability.
또한, 실시예의 흑연 도가니의 쇼어 경도가 55인데 비해 비교예의 흑연 도가니의 쇼어 경도가 42로서 경도의 차이가 있으며, 이러한 결과는 실시예의 흑연 도가니의 높은 내구성을 뒷받침하는 결과이다.In addition, the Shore hardness of the graphite crucible of Example is 55, whereas the Shore hardness of the graphite crucible of Comparative Example is 42, and there is a difference in hardness, and this result supports the high durability of the graphite crucible of Example.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The rights of the present invention are defined by what is described in the claims, not limited to the embodiments described above, and that those skilled in the art can make various modifications and adaptations within the scope of rights described in the claims. It is self-evident.

Claims (5)

  1. 그라파이트 시트를 재단하는 단계;Cutting the graphite sheet;
    상기 그라파이트 시트의 표면에 발포 접착제를 도포하는 단계;applying a foamed adhesive to the surface of the graphite sheet;
    상기 발포 접착제를 도포한 그라파이트 시트를 합지하여 적층하는 단계;laminating and laminating graphite sheets coated with the foamed adhesive;
    상기 적층된 그라파이트 시트를 가압 조건에서 발포하여 그라파이트 블록을 제조하는 단계;preparing a graphite block by foaming the stacked graphite sheets under a pressurized condition;
    상기 그라파이트 블록을 서로 접합하여 도가니 본체를 형성하는 단계;bonding the graphite blocks together to form a crucible body;
    를 포함하는 것을 특징으로 하는 흑연 도가니의 제조방법.A method for producing a graphite crucible comprising a.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 도가니 본체를 형성하는 단계는 상기 그라파이트 블록의 각각의 접합 부위에 내열 발포제를 도포한 후 접합 방향으로 가압하여 서로 접합하는 것을 특징으로 하는 흑연 도가니의 제조방법.The method of manufacturing a graphite crucible, characterized in that in the forming of the crucible body, a heat-resistant foaming agent is applied to each joint of the graphite blocks and then pressed in a bonding direction to bond them to each other.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 도가니 본체를 형성하는 단계는 상기 그라파이트 블록의 접합 부위에 천공한 후 탄소 나사못을 사용하여 서로 접합하는 것을 특징으로 하는 흑연 도가니의 제조방법.The method of manufacturing a graphite crucible, characterized in that in the forming of the crucible body, the graphite blocks are drilled at joint portions and then bonded to each other using carbon screws.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 그라파이트 시트를 합지하여 적층하는 단계는 상기 그라파이트 시트 20 내지 50매를 합지하여 적층하는 것을 특징으로 하는 흑연 도가니의 제조방법.The method of manufacturing a graphite crucible, characterized in that the step of laminating and stacking the graphite sheets is laminating and stacking 20 to 50 graphite sheets.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 발포 접착제는 점도가 10,000cps 미만인 것을 특징으로 하는 흑연 도가니의 제조방법.The foamed adhesive is a method for producing a graphite crucible, characterized in that the viscosity is less than 10,000cps.
PCT/KR2022/013622 2021-12-03 2022-09-13 Method for manufacturing graphite crucible using graphite sheet WO2023101160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0171428 2021-12-03
KR1020210171428A KR20230083437A (en) 2021-12-03 2021-12-03 Manufacturing method of griphite crucible from griphite sheets

Publications (1)

Publication Number Publication Date
WO2023101160A1 true WO2023101160A1 (en) 2023-06-08

Family

ID=86612583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013622 WO2023101160A1 (en) 2021-12-03 2022-09-13 Method for manufacturing graphite crucible using graphite sheet

Country Status (2)

Country Link
KR (1) KR20230083437A (en)
WO (1) WO2023101160A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888242A (en) * 1986-05-27 1989-12-19 Toyo Tanson Co., Ltd. Graphite sheet material
US20090272314A1 (en) * 2008-05-01 2009-11-05 Ibiden Co., Ltd. Crucible holding member and method for producing the same
KR20140022004A (en) * 2011-02-02 2014-02-21 토요 탄소 가부시키가이샤 Graphite crucible for single crystal pulling apparatus, and method for manufacturing the graphite crucible
KR20150036179A (en) * 2012-07-04 2015-04-07 토요 탄소 가부시키가이샤 Crucible consisting of carbon, and method for manufacturing same
KR101577161B1 (en) * 2015-01-27 2015-12-11 이원규 Graphite crucible using nanocomposite and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642923B1 (en) 2002-06-18 2006-11-03 도요탄소 가부시키가이샤 High pure expanded graphite sheet having flexible bending ability and its manufacturing method, and the inner layer of crucible using the sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888242A (en) * 1986-05-27 1989-12-19 Toyo Tanson Co., Ltd. Graphite sheet material
US20090272314A1 (en) * 2008-05-01 2009-11-05 Ibiden Co., Ltd. Crucible holding member and method for producing the same
KR20140022004A (en) * 2011-02-02 2014-02-21 토요 탄소 가부시키가이샤 Graphite crucible for single crystal pulling apparatus, and method for manufacturing the graphite crucible
KR20150036179A (en) * 2012-07-04 2015-04-07 토요 탄소 가부시키가이샤 Crucible consisting of carbon, and method for manufacturing same
KR101577161B1 (en) * 2015-01-27 2015-12-11 이원규 Graphite crucible using nanocomposite and method for manufacturing the same

Also Published As

Publication number Publication date
KR20230083437A (en) 2023-06-12

Similar Documents

Publication Publication Date Title
KR101212916B1 (en) Crucible for the treatment of molten silicon
KR101114650B1 (en) Crucible holding member and method for producing the same
US11339498B2 (en) Method for growing single crystal silicon carbide ingot having large diameter
TWI410533B (en) A protective sheet for crucible and a crucible device for protecting the sheet with the crucible
JPH0244270B2 (en)
CN112679233B (en) Preparation method of silicon carbide coating for carbon-carbon composite material
JPS60131870A (en) Manufacture of ceramic enhanced composite structure
JPS58217435A (en) Manufacture of fiber reinforced glass matrix composite material article
JPH01172290A (en) Heat resistant complex body and production thereof
CN103415467A (en) Process for producing graphite film
JP2009537431A (en) Refractory and manufacturing method thereof
WO2023101160A1 (en) Method for manufacturing graphite crucible using graphite sheet
CN109910326B (en) Method for forming microelectric heat-proof material prepreg containing multi-component powder filler
JPH0244271B2 (en)
CN115321526B (en) Preparation method and application of graphene precursor slurry
WO2013015642A2 (en) Method for growth of ingot
AU2010248217B2 (en) Glue and coating for refractory materials and ceramics
JPH1059794A (en) Pyrolyzed boron nitride container and its production
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP2000344587A (en) Production of highly heat-resistant resin and ceramic composite material
KR102368368B1 (en) Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
KR102368375B1 (en) Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
Shimoo et al. Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly (carbosilane) precursor
WO1989007577A1 (en) Method of producing highly oriented graphite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901520

Country of ref document: EP

Kind code of ref document: A1