WO2023100669A1 - 液晶素子、照明装置 - Google Patents

液晶素子、照明装置 Download PDF

Info

Publication number
WO2023100669A1
WO2023100669A1 PCT/JP2022/042712 JP2022042712W WO2023100669A1 WO 2023100669 A1 WO2023100669 A1 WO 2023100669A1 JP 2022042712 W JP2022042712 W JP 2022042712W WO 2023100669 A1 WO2023100669 A1 WO 2023100669A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
insulating layer
pixel electrodes
layer
Prior art date
Application number
PCT/JP2022/042712
Other languages
English (en)
French (fr)
Inventor
康夫 都甲
宜久 岩本
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Publication of WO2023100669A1 publication Critical patent/WO2023100669A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present disclosure relates to liquid crystal elements and lighting devices.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-154153 (Patent Document 1) describes a lighting device configured using a liquid crystal element.
  • This liquid crystal element includes a first substrate, a second substrate, a liquid crystal layer, a counter electrode provided on the first substrate, a plurality of inter-pixel electrodes provided on the second substrate, and a plurality of inter-pixel electrodes above the plurality of inter-pixel electrodes.
  • each of the plurality of inter-pixel electrodes is a gap between two pixel electrodes adjacent to each other in the first direction when viewed in a plan view. and is connected to one of the two pixel electrodes, and the second insulating layer is selective to each region overlapping with each of the plurality of pixel electrodes in a plan view.
  • the liquid crystal element used in the lighting device described above needs to be provided with two insulating layers, the first insulating layer and the second insulating layer, and the second insulating layer needs to be provided so as to overlap each pixel electrode with high accuracy. Therefore, there is room for improvement in that the manufacturing process becomes complicated.
  • a specific aspect of the present disclosure makes it possible to improve the appearance of the light distribution pattern while simplifying the manufacturing process of the liquid crystal element used in a lighting device capable of freely controlling the light distribution pattern.
  • One of the purposes is to provide technology.
  • a liquid crystal element includes (a) a first substrate and a second substrate that are arranged to face each other, and (b) a liquid crystal layer that is arranged between the first substrate and the second substrate. (c) a plurality of auxiliary electrodes arranged on one side of the first substrate facing the liquid crystal layer; and (d) arranged on the one side of the first substrate so as to cover the plurality of first electrodes.
  • the plurality of auxiliary electrodes are , are arranged so as to overlap the gap between the adjacent pixel electrodes in plan view, and are connected to one of the adjacent pixel electrodes through a contact hole provided in the insulating layer.
  • a lighting device includes: (a) the liquid crystal element of [1]; (b) a light source for causing light to enter the liquid crystal element; and (c) light transmitted through the liquid crystal element. and a lens for collecting light.
  • FIG. 1 is a diagram showing the configuration of a vehicle lamp system according to one embodiment.
  • 2A and 2B are schematic cross-sectional views showing the structure of a liquid crystal element.
  • FIG. 3 is a plan view for explaining the structure of each pixel electrode, each inter-pixel electrode, and each wiring portion.
  • 4A and 4B are schematic cross-sectional views each showing the configuration of a liquid crystal element according to a modification.
  • 5A to 5D are diagrams for explaining the method of manufacturing the liquid crystal element.
  • 6A and 6B are diagrams for explaining the method of manufacturing the liquid crystal element.
  • FIGS. 7A and 7B are schematic cross-sectional views showing the configuration of the first substrate in the liquid crystal element of the modification, respectively.
  • FIG. 8A is a diagram for explaining measurement points (measurement locations) of electro-optical characteristics in a liquid crystal element.
  • FIG. 8B is a diagram showing an example of electro-optical characteristic measurement.
  • FIGS. 9A and 9B are diagrams showing measurement examples of the electro-optical characteristics of the liquid crystal element of the modified embodiment (see FIG. 7A) in which the insulating layer (thin layer portion) is left.
  • FIG. 1 is a diagram showing the configuration of a vehicle lamp system according to one embodiment.
  • the vehicle lighting system shown in FIG. It is This vehicle lighting system detects the positions of forward vehicles, pedestrians, etc. existing around the vehicle based on images taken by the camera 2, and determines a certain range including the position of the forward vehicle, etc. as a dimming range ( or non-irradiation range), and the other range is set as a light irradiation range to perform selective light irradiation.
  • a dimming range or non-irradiation range
  • the light source 1 includes, for example, a white light LED configured by combining a light emitting element (LED) that emits blue light with a yellow phosphor.
  • the light source 1 comprises, for example, a plurality of white light LEDs arranged in a matrix or line.
  • a controller 3 controls the on/off state of the light source 1 .
  • Light emitted from the light source 1 is incident on the liquid crystal element (liquid crystal panel) 5 via the polarizing plate 6a.
  • other optical systems for example, lenses, reflecting mirrors, and combinations thereof may exist on the path from the light source 1 to the liquid crystal element 5 .
  • the camera 2 takes an image of the area ahead of the vehicle and outputs the image (information), and is arranged at a predetermined position inside the vehicle (for example, the upper inner side of the windshield). If the own vehicle is equipped with a camera for other purposes (for example, an automatic braking system, etc.), the camera may be shared.
  • the controller 3 detects the position of the vehicle in front by performing image processing based on the image obtained by the camera 2 that captures the front of the vehicle, and illuminates a certain range including the detected position of the vehicle in front. A control signal for forming an image corresponding to this light distribution pattern is generated and supplied to the liquid crystal drive circuit 4 .
  • the controller 3 is realized by executing a predetermined operation program in a computer system having a CPU, ROM, RAM, etc., for example.
  • the driver 4 individually controls the orientation state of the liquid crystal layer in each pixel region of the liquid crystal element 5 by supplying a drive voltage to the liquid crystal element 5 based on the control signal supplied from the controller 3 .
  • the liquid crystal element 5 has, for example, a plurality of individually controllable pixel regions (light modulation regions). The rate is set variably. By irradiating the liquid crystal element 5 with the light from the light source 1, an image having brightness corresponding to the light irradiation range and the light reduction range is formed.
  • the liquid crystal element 5 includes a vertically aligned liquid crystal layer, and is arranged between a pair of polarizing plates 6a and 6b arranged in crossed Nicols. voltage below), the light transmittance is extremely low (light shielding state), and when a voltage is applied to the liquid crystal layer, the light transmittance is relatively high (transmitting state).
  • the pair of polarizing plates 6a and 6b have their polarizing axes substantially perpendicular to each other, and are arranged opposite to each other with the liquid crystal element 5 interposed therebetween.
  • a normally black mode is assumed, which is an operation mode in which light is blocked (transmittance is extremely low) when no voltage is applied to the liquid crystal layer.
  • the polarizing plates 6a and 6b for example, absorption polarizing plates made of general organic materials (iodine-based, dye-based) can be used.
  • a wire grid type polarizing plate is a polarizing plate in which ultrafine wires made of metal such as aluminum are arranged.
  • an absorption polarizing plate and a wire grid polarizing plate may be used in combination.
  • the projection lens 7 spreads an image formed by the light passing through the liquid crystal element 5 (an image having brightness and darkness corresponding to the light irradiation range and the dimming range) to the light distribution for the headlights and projects it forward of the vehicle. It projects, and suitably designed lenses are used. In this embodiment, a reverse projection type projector lens is used.
  • FIG. 2(A) and 2(B) are schematic cross-sectional views showing the configuration of the liquid crystal element.
  • FIG. 3 is a plan view for explaining the structure of each pixel electrode, each inter-pixel electrode, and each wiring portion.
  • the cross-sectional view shown in FIG. 2A corresponds to a partial cross-section taken along line aa shown in FIG. 3, and the cross-sectional view shown in FIG. It corresponds to a partial cross section in
  • the liquid crystal element 5 includes a first substrate 11, a second substrate 12, a plurality of pixel electrodes 13, a common electrode (counter electrode) 14, a plurality of inter-pixel electrodes (auxiliary electrodes) 15, a plurality of wiring portions 16, an insulating layer (insulating layer). film) 17 and a liquid crystal layer 18 .
  • the first substrate 11 and the second substrate 12 are, for example, rectangular substrates in plan view, and are arranged facing each other.
  • a transparent substrate such as a glass substrate or a plastic substrate can be used.
  • spherical spacers (not shown) made of, for example, a resin film are dispersedly arranged, and these spherical spacers provide a substrate gap of a desired size (for example, several ⁇ m). is kept in Instead of spherical spacers, columnar bodies made of resin or the like may be provided on the first substrate 11 side or the second substrate 12 side and used as spacers.
  • the plurality of pixel electrodes 13 are provided on one surface of the insulating layer 17 (the surface in contact with the liquid crystal layer 18) on the one surface side of the first substrate 11. Each pixel electrode 13 is physically and electrically connected to one inter-pixel electrode 15 and one wiring portion 16 connected to this inter-pixel electrode through a through hole 20 provided in the insulating layer 17 . Each pixel electrode 13 is formed by appropriately patterning a transparent conductive film such as indium tin oxide (ITO). Each pixel electrode 13 has, for example, a rectangular outer edge shape in plan view, and is arranged in a matrix along the X direction and the Y direction. A gap is provided between each pixel electrode 13 .
  • ITO indium tin oxide
  • the common electrode 14 is provided on one side of the first substrate 11 .
  • the common electrode 14 is integrally provided so as to face each pixel electrode 13 of the second substrate 12 .
  • the common electrode 14 is formed by appropriately patterning a transparent conductive film such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • a plurality of inter-pixel electrodes 15 are provided between one surface side of the first substrate 11 and the insulating layer 17 .
  • Each pixel ring electrode 15 is arranged so as to overlap the gap between the adjacent pixel electrodes 13 in plan view.
  • Each inter-pixel electrode 15 is formed by appropriately patterning a transparent conductive film such as indium tin oxide (ITO).
  • a plurality of wiring portions 16 are provided between one surface side of the first substrate 11 and the insulating layer 17 .
  • Each wiring portion 16 is arranged so as to overlap each pixel electrode 13 in plan view.
  • Each wiring part 16 is formed by appropriately patterning a transparent conductive film such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • Each wiring portion 16 is for applying a voltage from the driver 4 to each pixel electrode 13 .
  • the insulating layer 17 is provided on one side of the first substrate 11 so as to cover the inter-pixel electrodes 15 and the wiring portions 16 .
  • the insulating layer 17 has openings 19 at least in portions corresponding to the inter-pixel electrodes 15 .
  • the insulating layer 17 is provided in a range corresponding to each pixel electrode 13 , and all the spaces between the pixel electrodes 13 are openings 19 .
  • the insulating layer 17 has a plan view shape such that the end position of each pixel electrode 13 and the end position of the insulation or the like 17 substantially coincide with each other in a portion overlapping with each pixel electrode 13 .
  • the insulating layer 17 is, for example, a SiNx film, a SiO2 film, or a SiON film, and can be formed by a vapor phase process such as sputtering or a solution process.
  • An organic insulating film may be used as the insulating layer 17 .
  • the layer thickness of the insulating layer 17 is, for example, about 1 ⁇ m.
  • the liquid crystal layer 18 is provided between the first substrate 11 and the second substrate 12 .
  • the liquid crystal layer 18 is composed of a nematic liquid crystal material that has a negative dielectric anisotropy ⁇ , contains a chiral material, and has fluidity.
  • the alignment direction of the liquid crystal molecules is tilted in one direction when no voltage is applied, and has a pretilt angle of, for example, 85° or more and less than 90° with respect to each substrate surface. It is set so as to be substantially vertically oriented.
  • an alignment film is provided on one surface of the first substrate 11 so as to cover each pixel electrode 13, and one surface of the second substrate 12 is provided so as to cover the common electrode .
  • An alignment film is provided.
  • a vertical alignment film that regulates the alignment state of the liquid crystal layer 18 to vertical alignment is used as each alignment film.
  • Each alignment film is subjected to uniaxial alignment treatment such as rubbing treatment, and has a uniaxial alignment regulating force that regulates the alignment of the liquid crystal molecules of the liquid crystal layer 18 in that direction.
  • the direction of alignment treatment for each alignment film is set to be alternate (anti-parallel), for example.
  • the film thickness of each alignment film is, for example, 50 nm to 70 nm.
  • the liquid crystal element 5 of the present embodiment has tens to hundreds of pixel regions, which are defined as regions where the common electrode 14 and each pixel electrode 13 overlap each other in plan view. are arranged in a matrix.
  • each pixel region has a square shape, for example, but the shape of each pixel region can be arbitrarily set, such as a mixture of rectangular and square shapes.
  • the common electrode 14, each pixel electrode 13, and each inter-pixel electrode 15 are connected to the driver 4 via each wiring portion 16 and the like, and are statically driven, for example.
  • each pixel electrode, each inter-pixel electrode, and each wiring portion 16 will be described with reference to FIG.
  • the pixel electrodes 13 are arranged in three rows along the Y direction, and an arbitrary number of rows are arranged along the X direction.
  • the pixel electrodes 13a, 13b, and 13c are referred to as pixel electrodes 13a, 13b, and 13c, respectively, from the top of the drawing.
  • the inter-pixel electrodes 15a correspond to the pixel electrodes 13a on the first column
  • the inter-pixel electrodes 15b correspond to the pixel electrodes 13b on the second column
  • the inter-pixel electrodes 15b correspond to the pixel electrodes 13b on the third column.
  • inter-pixel electrode 15c is referred to as an inter-pixel electrode 15c.
  • inter-pixel electrode 15c is referred to as an inter-pixel electrode 15c.
  • a wiring portion 16c corresponds to the wiring portion 16b, the pixel electrode 13c in the third column, and the inter-pixel electrode 15c.
  • Each pixel electrode 13a is connected to the lower inter-pixel electrode 15a and the wiring portion 16a through a through hole 20a provided in the insulating layer 17. As shown in FIG. As a result, the pixel electrode 13a, the inter-pixel electrode 15a, and the wiring portion 16a are brought to the same potential.
  • Each through-hole 20a has a substantially triangular outer edge shape in plan view as shown in the drawing, and is provided corresponding to one of the four corners in plan view of each pixel electrode 13a (upper left corner in the drawing). It is The planar shape of the through hole 20a is not limited to a substantially triangular shape, and may be polygonal, circular, elliptical, or the like. Further, although the through hole 20a is formed at one of the four corners of each pixel electrode, the through hole 20a can be formed at any position such as the center of the pixel electrode.
  • each pixel electrode 13b is connected to the lower inter-pixel electrode 15b and wiring portion 16b through a through hole 20b provided in the insulating layer 17. As shown in FIG. As a result, the pixel electrode 13b, the inter-pixel electrode 15b, and the wiring portion 16b are brought to the same potential.
  • each pixel electrode 13c is connected to the lower inter-pixel electrode 15c and wiring portion 16c via a through hole 20c provided in the insulating layer 17. As shown in FIG. As a result, the pixel electrode 13c, the inter-pixel electrode 15c, and the wiring portion 16c are brought to the same potential.
  • Each inter-pixel electrode 15a is arranged so as to overlap the gap between two pixel electrodes 13a adjacent to each other in the X direction in plan view.
  • each inter-pixel electrode 15a is arranged such that the left edge of its own edge in plan view and the right edge of its left edge of the pixel electrode 13a are at substantially the same position in the vertical direction.
  • each inter-pixel electrode 15b is arranged so as to overlap the gap between two pixel electrodes 13b adjacent to each other in the X direction in a plan view, and a part of the inter-pixel electrode 15b overlaps with the pixel electrode 13b on the right side of itself. They are arranged so that they partially overlap.
  • each inter-pixel electrode 15c is arranged so as to overlap the gap between two pixel electrodes 13c adjacent to each other in the X direction in a plan view, and a part of the inter-pixel electrode 15c overlaps with the pixel electrode 13c on the right side of itself. They are arranged so that they partially overlap.
  • Each wiring portion 16a is connected to one of the inter-pixel electrodes 15a and extends upward in the drawing.
  • each wiring portion 16a is integrally provided with the same width as the corresponding inter-pixel electrode 15a.
  • Each wiring portion 16 a is connected to the driver 4 .
  • Each wiring portion 16b is connected to one of the inter-pixel electrodes 15b and extends upward in the figure. Each wiring portion 16 b is connected to the driver 4 .
  • each wiring portion 16b includes a partial region that partially overlaps the pixel electrode 13b that is adjacent in the X direction to the inter-pixel electrode 15b that is connected to the wiring portion 16b in a plan view, and a partial region that partially overlaps the pixel electrode 13b. It has a partial area arranged between the pixel electrodes 13a adjacent in the Y direction and a partial area arranged overlapping with the pixel electrodes 13a, and these partial areas are provided integrally. ing.
  • each wiring portion 16b a partial region arranged between two pixel electrodes 13a and 13b adjacent in the Y direction also functions as an inter-pixel electrode arranged between these pixel electrodes 13a and 13b. .
  • each wiring portion 16c is connected to one of the inter-pixel electrodes 15c and extends upward in the figure.
  • Each wiring portion 16 c is connected to the driver 4 .
  • each wiring portion 16c includes a partial region that partially overlaps the pixel electrode 13c that is adjacent in the X direction with respect to the inter-pixel electrode 15c that is connected to the wiring portion 16c in plan view, and the pixel electrode 13c that is adjacent to the interpixel electrode 15c.
  • each wiring portion 16c a partial region arranged between two pixel electrodes 13b and 13c adjacent in the Y direction also functions as an inter-pixel electrode arranged between these pixel electrodes 13b and 13c. As a result, it is possible to expand the area that substantially functions as the pixel area.
  • 5(A) to 5(D), 6(A) and 6(B) are diagrams for explaining the method for manufacturing the liquid crystal element of the present embodiment.
  • 5(A), 5(C), and 6(A) correspond to the aa line cross section in FIG. 3 described above, and
  • FIGS. ) corresponds to the bb line section in FIG.
  • preferred examples of materials, film thicknesses, film formation methods, etc. for forming various films and layers are shown, but these are only examples.
  • a first substrate 11 is prepared, and inter-pixel electrodes 15 and wiring portions 16 are formed on one surface of the first substrate 11 (see FIGS. 5A and 5B).
  • the inter-pixel electrodes 15 and the wiring portions 16 can be obtained by forming an ITO film by sputtering and patterning the ITO film by photolithography.
  • a second substrate 12 is prepared and a common electrode 14 is formed on one side of the second substrate 12 .
  • an insulating layer 17 is formed so as to cover each inter-pixel electrode 15 and each wiring portion 16 (see FIGS. 5A and 5B).
  • a SiNx film for example, a silicon nitride film such as a Si 3 N 4 film
  • contact holes 20 are formed.
  • the contact hole 20 can be formed by reactive ion etching using Freon-based gas, for example.
  • the contact hole 20 preferably has a forward tapered shape such that the width (diameter) becomes narrower as it approaches the first substrate 11, and it is particularly preferable that the tapered shape is 40° to 60°. As a result, the film forming properties in the contact holes 20 are improved when forming the pixel electrodes 13, which will be described below.
  • a material for forming the insulating image 17 As a material for forming the insulating image 17, another inorganic insulating material (for example, a silicon oxide film such as SiO 2 ) may be used, or an organic insulating material (for example, an acrylic material) may be used.
  • a silicon oxide film such as SiO 2
  • an organic insulating material for example, an acrylic material
  • each pixel electrode 13 is formed on one side of the insulating layer 17 (see FIGS. 5(A) and 5(B)).
  • each pixel electrode 13 can be obtained by, for example, forming an ITO film by sputtering and patterning this ITO film by photolithography.
  • part of the pixel electrode 13 is also formed in the contact hole 20 described above, and the pixel electrode 13 is connected to the inter-pixel electrode 15 or the wiring portion 16 on the lower layer side.
  • each pixel electrode 13 As an etching mask and using a reactive ion etching method using, for example, Freon-based gas.
  • the openings 19 can be provided with high precision in accordance with the positions of the respective pixel electrodes 13 .
  • each opening 19 formed here preferably has a forward tapered shape in which the width (diameter) becomes narrower as it approaches the first substrate 11, and in particular, the tapered shape is 40° to 60°. is preferred.
  • the modified embodiment shown in FIG. instead of completely removing the portions of the insulating layer 17 between the pixel electrodes 13 to completely expose the inter-pixel electrodes 15, the modified embodiment shown in FIG. In this manner, the insulating layer (thin layer portion) 17a covering each inter-pixel electrode 15 (or wiring portion 16) may remain at the bottom portion of the opening portion 19.
  • an insulating layer 17a having a thickness thinner than that of the insulating layer 17 can be provided in a region that does not overlap with the image electrode 13.
  • FIG. The formation of the insulating layer 17a can be realized by controlling the etching time or the like.
  • the film thickness of the insulating layer 17a is relatively thinner than the film thickness of the original insulating layer 17, and is preferably about 30% (0.3 times), for example, 60% (0.6 times). ) is preferably as follows.
  • the insulating layer 17, the inner walls of the openings 19, and the inter-pixel electrodes 15 and wirings exposed at the bottom of the first substrate 11 are removed. It is also preferable to form an insulating layer 23 made of a SiO 2 film or the like so as to cover the portion 16 .
  • an insulating film 17a as shown in FIG. 7A can also be provided. That is, the insulating film 23 is provided so as to continuously cover the pixel electrode 13 and the opening 19 (the inter-pixel electrode 15 exposed in the opening 19 or the insulating layer 17a).
  • the insulating layer 23 can be formed, for example, by flexographic printing.
  • the film thickness can be, for example, 500 ⁇ to 800 ⁇ .
  • forming the insulating layer 23 can be improved by forming the opening 19 in a forward tapered shape.
  • an alignment film (not shown) is formed on each side of the first substrate 11 and the second substrate 12 .
  • a vertical alignment film is formed by flexographic printing, an inkjet method, or the like, and after heat treatment, an alignment treatment such as rubbing is performed.
  • the film thickness of the alignment film can be, for example, 500 ⁇ to 800 ⁇ . Formability of the alignment film can be improved by forming the opening 19 in a forward tapered shape.
  • a sealing material (not shown) for enclosing and sealing the liquid crystal layer 18 is formed on one side of one of the first substrate 11 and the second substrate 12 (for example, the first substrate 11). Also, a gap control material is sprayed on one surface side of the other of the first substrate 11 and the second substrate 12 (for example, the second substrate 12).
  • a gap control material having a particle size of about 3 ⁇ m to 6 ⁇ m can be used.
  • a spacer such as a resin column may be provided instead of the gap control material.
  • first substrate 11 and the second substrate 12 are opposed to each other, and the two are bonded together to form a cell (see FIGS. 6(A) and 6(B)).
  • first substrate 11 and the second substrate 12 are placed on top of each other, and heat treatment or light irradiation treatment is performed while a constant pressure is applied using a press or the like to harden the sealing material.
  • the first substrate 11 and the second substrate 12 can be arranged so that the alignment treatment directions (for example, the rubbing direction) are alternated.
  • the alignment treatment directions may be the same direction or may cross each other, and may be appropriately selected depending on the operation mode in which the liquid crystal layer 18 is to be operated.
  • a liquid crystal layer 18 is formed by filling a liquid crystal material between the first substrate 11 and the second substrate 12, and the injection port is sealed with a sealing material. Thereby, the liquid crystal element 5 shown in FIGS. 2A and 2B is completed.
  • the vacuum injection method is assumed here as the filling method of the liquid crystal material, the ODF method may also be used.
  • FIG. 8A is a diagram for explaining measurement points (measurement locations) of electro-optical characteristics in a liquid crystal element.
  • FIG. 8B is a diagram showing an example of electro-optical characteristic measurement. As shown in FIG. 8A, the relationship between the applied voltage and the transmittance at a measurement point A that passes through the inter-pixel electrode 15 and does not pass through the insulating layer 17 and a measurement point B that passes through the pixel electrode 13 and the insulating layer 17 is shown. A measurement example is shown in FIG. 8(B).
  • the characteristics of the measurement points A and B are almost the same especially near the threshold. This is because substantially the same voltage is applied to the liquid crystal layer 18 at both the measurement points A and B by providing the opening 19 in the insulating layer 17 . It is common general knowledge for those skilled in the art that the threshold voltage does not depend on the thickness of the liquid crystal layer 18 . A slight difference in transmittance is observed in a range where the applied voltage is relatively high.
  • the thickness of the insulating layer 17 is, for example, about 0.3 ⁇ m, and the difference in the thickness of the liquid crystal layer can be said to be very small.
  • FIGS. 9A and 9B are diagrams showing measurement examples of the electro-optical characteristics of the liquid crystal element of the modified embodiment (see FIG. 7A) in which the insulating layer (thin layer portion) 17a is left. .
  • the measurement points A and B are the same as those shown in FIG. 8A.
  • the transmittance depends on the layer thickness. For example, considering a vertically aligned liquid crystal element in which the chromaticity xy value is white when the liquid crystal layer thickness is 4 ⁇ m, the chromaticity xy value is slightly reduced when the liquid crystal layer thickness is slightly thicker than that. Although it shifts to the yellow side, there is a tendency that the transmittance is slightly higher. It is considered that the difference in transmittance between the measurement points A and B in the electro-optical characteristics shown in FIG.
  • the threshold at the measurement point A is slightly higher. This is because the applied voltage is divided between the insulating layer 17 a and the liquid crystal layer 18 .
  • the voltage (divided voltage) applied to the liquid crystal layer 18 at the measurement point A is simply can be considered as a thickness ratio between the thickness of the liquid crystal layer 18 and the thickness of the insulating layer 17a at the measurement point A.
  • FIG. 9(A) shows electro-optical characteristics when the thickness of the insulating layer 17a is 0.09 ⁇ m.
  • the threshold value of the liquid crystal layer 18 is approximately 1.02 times that of the case where the insulating layer 17a is not present, and almost the same transmittance is obtained at the measurement points A and B over the entire range of the applied voltage.
  • FIG. 9B shows electro-optical characteristics when the insulating layer 17a has a thickness of 0.17 ⁇ m.
  • the threshold value of the liquid crystal layer 18 is approximately 1.04 times that of the case where the insulating layer 17a does not exist.
  • the difference in transmittance is suppressed as compared with the conventional example, it is within an allowable range, but a slight difference in transmittance is observed in the range of low applied voltage (generally in the range of 3 V to 4.5 V). Since the thickness of the insulating layer 17 is 0.3 ⁇ m, the thickness of the insulating layer 17a is preferably about 30% of the original thickness of the insulating layer 17, preferably about 60% or less. It can be said.
  • the appearance of the light distribution pattern can be improved while simplifying the manufacturing process of the liquid crystal element. can be improved.
  • the present disclosure is not limited to the contents of the above-described embodiments, and can be implemented in various modifications within the scope of the gist of the present disclosure.
  • the configuration of the vehicle lamp system shown in the above embodiment is an example and is not limited.
  • the present invention is applied to a system that selectively irradiates light toward the front of the vehicle has been described, but the scope of application of the present invention is not limited to this.
  • a system that irradiates light diagonally in front of the vehicle according to the vehicle's direction of travel a system that adjusts the optical axis of the headlights according to the vehicle's longitudinal tilt, and a system that electronically adjusts the high beam and low beam of the headlights.
  • the present invention may be applied not only to vehicle applications but also to lighting devices in general.

Abstract

液晶素子の製造工程を簡素化と配光パターンの見栄え向上。 第1基板と第2基板とそれらの間に配置される液晶層と、前記第1基板に配置される複数の補助電極と、複数の第1電極を覆って配置される絶縁層と、前記絶縁層と前記液晶層との間に配置される複数の画素電極と、前記第2基板に配置される対向電極と、を含み、前記複数の画素電極は、平面視において、少なくとも一方向において相互間に隙間を設けて配置されており、前記複数の補助電極は、各々、平面視において隣り合う前記画素電極間の前記隙間と重なるように配置され、かつ隣り合う前記画素電極の何れか1つと前記絶縁層に設けられたコンタクトホールを介して相互に接続されており、前記絶縁層は、少なくとも、隣り合う前記画素電極間の前記隙間に対応する部分に開口部を有している、液晶素子である。

Description

液晶素子、照明装置
 本開示は、液晶素子、照明装置に関する。
 特開2020-154153号公報(特許文献1)には、液晶素子を用いて構成される照明装置が記載されている。この液晶素子は、第1基板、第2基板及び液晶層と、第1基板に設けられた対向電極と、第2基板に設けられた複数の画素間電極と、複数の画素間電極の上側に設けられた第1絶縁層と、第1絶縁層の上側に設けられた複数の画素電極と、複数の画素電極の上側に設けられた第2絶縁層とを含み、複数の画素電極は、平面視において、少なくとも第1方向に沿って相互間に隙間を設けて配置されており、複数の画素間電極は、各々、平面視において、第1方向において隣り合う2つの画素電極の相互間の隙間と重なるように配置されており、かつ当該2つの画素電極の何れか1つと接続されており、第2絶縁層は、平面視において、複数の画素電極の各々と重なる各領域に対して選択的に設けられている。この液晶素子を用いることで、照明装置における配光パターンの見栄えを向上させることが可能となる。
 しかし、上記した照明装置に用いられる液晶素子は、第1絶縁層と第2絶縁層の2つを設ける必要があり、かつ第2絶縁層については各画素電極と精度よく重なるように設ける必要があるため、製造工程が複雑になるという点で改良の余地がある。
特開2020-154153号公報
 本開示に係る具体的態様は、配光パターンを自在に制御可能な照明装置に用いられる液晶素子において、当該液晶素子の製造工程を簡素化しつつ配光パターンの見栄えを向上させることが可能にする技術を提供することを目的の1つとする。
 [1]本開示に係る一態様の液晶素子は、(a)対向配置される第1基板及び第2基板と、(b)前記第1基板と前記第2基板の間に配置される液晶層と、(c)前記第1基板の前記液晶層と対向する一面側に配置される複数の補助電極と、(d)前記第1基板の前記一面側に前記複数の第1電極を覆って配置される絶縁層と、(e)前記第1基板の前記絶縁層と前記液晶層との間に配置される複数の画素電極と、(f)前記第2基板の前記液晶層と対向する一面側に配置される対向電極と、を含み、(g)前記複数の画素電極は、平面視において、少なくとも一方向において相互間に隙間を設けて配置されており、(h)前記複数の補助電極は、各々、平面視において隣り合う前記画素電極間の前記隙間と重なるように配置され、かつ隣り合う前記画素電極の何れか1つと、前記絶縁層に設けられたコンタクトホールを介して相互に接続されており、(i)前記絶縁層は、少なくとも、隣り合う前記画素電極間の前記隙間に対応する部分に開口部を有している、液晶素子である。
 [2]本開示に係る一態様の照明装置は、(a)前記[1]の液晶素子と、(b)前記液晶素子へ光を入射させる光源と、(c)前記液晶素子を透過する光を集光するレンズと、を含む、照明装置である。
 上記構成によれば、配光パターンを自在に制御可能な照明装置に用いられる液晶素子において、当該液晶素子の製造工程を簡素化しつつ配光パターンの見栄えを向上させることが可能にする技術を提供することが可能となる。
図1は、一実施形態の車両用灯具システムの構成を示す図である。 図2(A)、図2(B)は、液晶素子の構成を示す模式的な断面図である。 図3は、各画素電極、各画素間電極、各配線部の構造について説明するための平面図である。 図4(A)、図4(B)は、それぞれ変形実施例の液晶素子の構成を示す模式的な断面図である。 図5(A)~図5(D)は、液晶素子の製造方法を説明するための図である。 図6(A)、図6(B)は、液晶素子の製造方法を説明するための図である。 図7(A)、図7(B)は、それぞれ変形実施例の液晶素子における第1基板の構成を示す模式的な断面図である。 図8(A)は、液晶素子における電気光学特性の測定点(測定箇所)を説明するための図である。図8(B)は、電気光学特性の測定例を示す図である。 図9(A)、図9(B)は、絶縁層(薄層部)を残存させる変形実施例(図7(A)参照)の液晶素子における電気光学特性の測定例を示す図である。
 図1は、一実施形態の車両用灯具システムの構成を示す図である。図1に示す車両用灯具システムは、光源1、カメラ2、コントローラ(制御装置)3、ドライバ(液晶駆動装置)4、液晶素子5、一対の偏光板6a、6b、投影レンズ7を含んで構成されている。この車両用灯具システムは、カメラ2によって撮影される画像に基づいて自車両の周囲に存在する前方車両や歩行者等の位置を検出し、前方車両等の位置を含む一定範囲を減光範囲(ないし非照射範囲)に設定し、それ以外の範囲を光照射範囲に設定して選択的な光照射を行うためのものである。
 光源1は、例えば青色光を放出する発光素子(LED)に黄色蛍光体を組み合わせて構成された白色光LEDを含んで構成されている。光源1は、例えば、マトリクス状あるいはライン状に配列された複数の白色光LEDを備える。なお、光源1としてはLEDのほかに、レーザー、さらには電球や放電灯など車両用ランプユニットに一般的に使用されている光源が使用可能である。光源1の点消灯状態はコントローラ3によって制御される。光源1から出射する光は、偏光板6aを介して液晶素子(液晶パネル)5に入射する。なお、光源1から液晶素子5へ至る経路上に他の光学系(例えば、レンズや反射鏡、さらにはそれらを組み合わせたもの)が存在してもよい。
 カメラ2は、自車両の前方を撮影してその画像(情報)を出力するものであり、自車両内の所定位置(例えば、フロントガラス内側上部)に配置されている。なお、他の用途(例えば、自動ブレーキシステム等)のためのカメラが自車両に備わっている場合にはそのカメラを共用してもよい。
 コントローラ3は、自車両の前方を撮影するカメラ2によって得られる画像に基づいて画像処理を行うことによって前方車両等の位置を検出し、検出された前方車両等の位置を含む一定範囲を非照射範囲とし、それ以外の範囲を光照射範囲とした配光パターンを設定し、この配光パターンに対応した像を形成するための制御信号を生成して液晶駆動回路4へ供給する。このコントローラ3は、例えばCPU、ROM、RAM等を有するコンピュータシステムにおいて所定の動作プログラムを実行させることによって実現される。
 ドライバ4は、コントローラ3から供給される制御信号に基づいて液晶素子5に駆動電圧を供給することにより、液晶素子5の各画素領域における液晶層の配向状態を個別に制御するものである。
 液晶素子5は、例えば、それぞれ個別に制御可能な複数の画素領域(光変調領域)を有しており、ドライバ4によって与えられる液晶層への印加電圧の大きさに応じて各画素領域の透過率が可変に設定される。この液晶素子5に光源1からの光が照射されることにより、上記した光照射範囲と減光範囲に対応した明暗を有する像が形成される。例えば、液晶素子5は、垂直配向型の液晶層を備えるものであり、クロスニコル配置された一対の偏光板6a、6bの間に配置されており、液晶層への電圧が無印加(あるいは閾値以下の電圧)である場合に光透過率が極めて低い状態(遮光状態)となり、液晶層へ電圧が印加された場合に光透過率が相対的に高い状態(透過状態)となるものである。
 一対の偏光板6a、6bは、例えば互いの偏光軸を略直交させており、液晶素子5を挟んで対向配置されている。本実施形態では、液晶層に電圧無印加としているときに光が遮光される(透過率が極めて低くなる)動作モードであるノーマリーブラックモードを想定する。各偏光板6a、6bとしては、例えば一般的な有機材料(ヨウ素系、染料系)からなる吸収型偏光板を用いることができる。また、耐熱性を重視したい場合には、ワイヤーグリッド型偏光板を用いることも好ましい。ワイヤーグリッド型偏光板とはアルミニウム等の金属による極細線を配列してなる偏光板である。また、吸収型偏光板とワイヤーグリッド型偏光板を重ねて用いてもよい。
 投影レンズ7は、液晶素子5を透過する光によって形成される像(光照射範囲と減光範囲に対応した明暗を有する像)をヘッドライト用配光になるように広げて自車両の前方へ投影するものであり、適宜設計されたレンズが用いられる。本実施形態では、反転投影型のプロジェクターレンズが用いられる。
 図2(A)、図2(B)は、液晶素子の構成を示す模式的な断面図である。また、図3は、各画素電極、各画素間電極、各配線部の構造について説明するための平面図である。なお、図2(A)に示す断面図は、図3に示すa-a線における一部断面に対応しており、図2(B)に示す断面図は、図3に示すb-b線における一部断面に対応している。
 液晶素子5は、第1基板11、第2基板12、複数の画素電極13、共通電極(対向電極)14、複数の画素間電極(補助電極)15、複数の配線部16、絶縁層(絶縁膜)17、液晶層18を含んで構成されている。
 第1基板11および第2基板12は、それぞれ、例えば平面視において矩形状の基板であり、互いに対向して配置されている。各基板としては、例えばガラス基板、プラスチック基板等の透明基板を用いることができる。第1基板11と第2基板12の間には、例えば樹脂膜などからなる球状スペーサー(図示省略)が分散配置されており、それら球状スペーサーによって基板間隙が所望の大きさ(例えば数μm程度)に保たれている。なお、球状スペーサーに代えて、樹脂等からなる柱状体を第1基板11側若しくは第2基板12側に設け、それらをスペーサーとして用いてもよい。
 複数の画素電極13は、第1基板11の一面側において絶縁層17の一面(液晶層18と接する側の面)に設けられている。各画素電極13は、絶縁層17に設けられたスルーホール20を介して1つの画素間電極15及びこの画素間電極と繋がる1つの配線部16と物理的並びに電気的に接続されている。各画素電極13は、例えばインジウム錫酸化物(ITO)などの透明導電膜を適宜パターニングすることによって構成されている。各画素電極13は、例えば平面視において矩形状の外縁形状を有しており、X方向およびY方向に沿ってマトリクス状に配列されている。各画素電極13の間には隙間が設けられている。
 共通電極14は、第1基板11の一面側に設けられている。この共通電極14は、第2基板12の各画素電極13と対向するようにして一体に設けられている。共通電極14は、例えばインジウム錫酸化物(ITO)などの透明導電膜を適宜パターニングすることによって構成されている。この共通電極14と各画素電極13との重なる領域のそれぞれにおいて画素領域(光変調領域)が構成される。
 複数の画素間電極15は、第1基板11の一面側と絶縁層17との間に設けられている。各画素環電極15は、平面視において、隣り合う画素電極13の相互間の隙間に重なるように配置されている。各画素間電極15は、例えばインジウム錫酸化物(ITO)などの透明導電膜を適宜パターニングすることによって構成されている。
 複数の配線部16は、第1基板11の一面側と絶縁層17との間に設けられている。各配線部16は、各画素電極13と平面視において重なるように配置されている。各配線部16は、例えばインジウム錫酸化物(ITO)などの透明導電膜を適宜パターニングすることによって構成されている。各配線部16は、ドライバ4から各画素電極13に対して電圧を与えるためのものである。
 絶縁層17は、第1基板11の一面側において各画素間電極15および各配線部16を覆うようにして設けられている。絶縁層17は、少なくとも各画素間電極15に対応する部分に開口部19を有している。本実施形態では、絶縁層17は、各画素電極13に対応する範囲に設けられており、各画素電極13の相互間は全て開口部19となっている。絶縁層17は、各画素電極13と重なる部分においては、各画素電極13の端部位置と絶縁等17の端部位置とが略一致するような平面視形状を有している。絶縁層17は、例えばSiNx膜、SiO2膜、SiON膜であり、スパッタ法などの気相プロセスあるいは溶液プロセスにより形成することができる。なお、この絶縁層17としては有機絶縁膜を用いてもよい。絶縁層17の層厚は、例えば1μm程度である。
 液晶層18は、第1基板11と第2基板12の間に設けられている。本実施形態においては、誘電率異方性Δεが負であり、カイラル材を含み、流動性を有するネマティック液晶材料を用いて液晶層18が構成される。本実施形態の液晶層18は、電圧無印加時における液晶分子の配向方向が一方向に傾斜した状態となり、各基板面に対して、例えば85°以上90°未満の範囲内のプレティルト角を有する略垂直配向となるように設定されている。
 なお、図示を省略しているが第1基板11の一面側には各画素電極13を覆うように配向膜が設けられており、第2基板12の一面側には共通電極14を覆うように配向膜が設けられている。本実施形態では、各配向膜として液晶層18の配向状態を垂直配向に規制する垂直配向膜が用いられている。各配向膜にはラビング処理等の一軸配向処理が施されており、その方向へ液晶層18の液晶分子の配向を規定する一軸配向規制力を有している。各配向膜への配向処理の方向は、例えば互い違い(アンチパラレル)となるように設定される。各配向膜の膜厚は、例えば50nm~70nmである。
 本実施形態の液晶素子5は、共通電極14と各画素電極13が平面視において重なる領域の各々として画定される領域である画素領域を数十~数百個有しており、これらの画素領域はマトリクス状に配列されている。本実施形態において各画素領域の形状は例えば正方形状に構成されているが、長方形状と正方形状を混在させるなど各画素領域の形状は任意に設定することができる。共通電極14、各画素電極13、各画素間電極15は、各配線部16等を介してドライバ4と接続されており、例えばスタティック駆動される。
 図3を参照しながら、各画素電極、各画素間電極、各配線部16の構造について説明する。本実施形態では、各画素電極13は、Y方向に沿って3列に配列されており、X方向に沿って任意の数だけ配列されている。ここで、各画素電極13について、図中の上から順に1列目のものを画素電極13a、2列目のものを画素電極13b、3列目のものを画素電極13cと表記する。また、画素間電極15についても、1列目の画素電極13aに対応付けられたものを画素間電極15a、2列目の画素電極13bに対応付けられたものを画素間電極15b、3列目の画素電極13cに対応付けられたものを画素間電極15cと表記する。さらに、配線部16についても、1列目の画素電極13aおよび画素間電極15aに対応付けられたものを配線部16a、2列目の画素電極13bおよび画素間電極15bに対応付けられたものを配線部16b、3列目の画素電極13cおよび画素間電極15cに対応付けられたものを配線部16cと表記する。
 各画素電極13aは、絶縁層17に設けられたスルーホール20aを介して下層側の画素間電極15aおよび配線部16aと接続されている。これにより、画素電極13aと画素間電極15aと配線部16aが同電位化される。各スルーホール20aは、図示のように平面視において略三角形状の外縁形状を有しており、各画素電極13aの平面視における四隅の1つ(図中では左上の隅)に対応付けて設けられている。なお、スルーホール20aの平面視形状は、略三角形状に限られず、多角形、円形、楕円形等であってもよい。また、スルーホール20aの形成位置を各画素電極の四隅の1つに設ける場合を示したが、画素電極の中央など任意の位置に設けることができる。
 同様に、各画素電極13bは、絶縁層17に設けられたスルーホール20bを介して下層側の画素間電極15bおよび配線部16bと接続されている。これにより、画素電極13bと画素間電極15bと配線部16bが同電位化される。同様に、各画素電極13cは、絶縁層17に設けられたスルーホール20cを介して下層側の画素間電極15cおよび配線部16cと接続されている。これにより、画素電極13cと画素間電極15cと配線部16cが同電位化される。
 各画素間電極15aは、平面視においてX方向に隣り合う2つの画素電極13a同士の相互間の隙間と重なるようにして配置されている。本実施形態では、各画素間電極15aは、平面視における自身の左側外縁エッジと、自身の左側に配置される画素電極13aの右側外縁エッジとが上下方向においてほぼ同じ位置となるように配置されている。同様に、各画素間電極15bは、平面視においてX方向に隣り合う2つの画素電極13b同士の相互間の隙間と重なるように配置されており、一部領域が自身の右側の画素電極13bと部分的に重なるように配置されている。同様に、各画素間電極15cは、平面視においてX方向に隣り合う2つの画素電極13c同士の相互間の隙間と重なるように配置されており、一部領域が自身の右側の画素電極13cと部分的に重なるように配置されている。
 各配線部16aは、各画素間電極15aのうち1つと接続されており、図中において上側へ延びている。本実施形態では、各配線部16aは、対応する画素間電極15aと同じ幅で一体に設けられている。各配線部16aは、ドライバ4に接続される。
 各配線部16bは、各画素間電極15bのうち1つと接続されており、図中において上側へ延びている。各配線部16bは、ドライバ4に接続される。本実施形態では、各配線部16bは、平面視において、自身と接続される画素間電極15bに対してX方向に隣り合う画素電極13bと部分的に重なる一部領域と、この画素電極13bとそれにY方向で隣り合う画素電極13aとの間に配置された一部領域と、この画素電極13aと重なって配置された一部領域を有しており、これらの一部領域は一体に設けられている。
 各配線部16bにおいて、Y方向において隣り合う2つの画素電極13a、13b同士の相互間に配置される一部領域はこれら画素電極13a、13bの間に配置された画素間電極としての機能も奏する。これにより、実質的に画素領域として機能する領域を広げることができる。
 各配線部16cは、各画素間電極15cのうち1つと接続されており、図中において上側へ延びている。各配線部16cは、ドライバ4に接続される。本実施形態では、各配線部16cは、平面視において、自身と接続される画素間電極15cに対してX方向に隣り合う画素電極13cと部分的に重なる一部領域と、この画素電極13cとY方向において隣り合う画素電極13bとの間に配置された一部領域と、この画素電極13bと絶縁層17を挟んで重なって配置された一部領域と、この画素電極13bとY方向において隣り合う画素電極13aと絶縁層17を挟んで重なって配置された一部領域と、画素電極13aと画素電極13bの間に配置された一部領域を有しており、これらの一部領域は一体に設けられている。
 各配線部16cにおいて、Y方向において隣り合う2つの画素電極13b、13cの相互間に配置される一部領域はこれら画素電極13b、13cの間に配置された画素間電極としての機能も奏する。これにより、実質的に画素領域として機能する領域を広げることができる。
 ここで、画素電極13cへ電圧を印加してその領域を光透過状態にした際に配線部16cの一部領域21においても同じ電圧が印加されるため、この領域も光透過状態となる。このとき、例えば画素電極13aや画素電極13bに対応する各領域が非透過状態(ないし低透過状態)であったとすると、一部領域21の光透過状態が輝点として視認し得る状態となり得る。これについては、例えば図4(A)に示す変形実施例の液晶素子5aのように、絶縁層17の一部領域21に対応する部分を残したままにすることで解消し得る。また、図4(B)に示す変形実施例の液晶素子5bのように、一部領域21と重畳するようにして、樹脂等からなる柱状スペーサー(柱状体)22を設けることでも解消し得る。なお、図4(A)、図4(B)は、それぞれ図3に示すc-c線における断面に対応している。また、上記した実施形態の液晶素子5と変形実施例の各液晶素子5a、5bで共通する構成については同符号を付しており、それらの詳細な説明は省略する。
 図5(A)~図5(D)及び図6(A)、図6(B)は、本実施形態の液晶素子の製造方法を説明するための図である。なお、図5(A)、図5(C)及び図6(A)は上記した図3におけるa-a線断面に対応し、図5(B)、図5(D)及び図6(B)は上記した図3におけるb-b線断面に対応している。また、以下の説明では、各種の膜や層を形成する際の材料、膜厚、成膜方法などの好適例を示すがこれらは例示に過ぎない。
 第1基板11を用意し、この第1基板11の一面側に各画素間電極15及び各配線部16を形成する(図5(A)、図5(B)参照)。例えば、スパッタ法によりITO膜を形成し、このITO膜をフォトリソグラフィ技術によってパターニングすることで各画素間電極15及び各配線部16を得ることができる。同様に、第2基板12を用意し、この第2基板12の一面側に共通電極14を形成する。
 次に、各画素間電極15及び各配線部16を覆うようにして絶縁層17を形成する(図5(A)、図5(B)参照)。例えば、プラズマCVD法により0.3μm程度の膜厚のSiNx膜(例えば、Si膜などのシリコン窒化膜)を形成する。さらに、コンタクトホール20を形成する。コンタクトホール20の形成は、例えばフロン系ガスを用いたリアクティブイオンエッチング法を用いて行うことができる。コンタクトホール20は、第1基板11に近づくほど幅(径)が狭くなるような順テーパー形状とすることが好ましく、特にテーパー形状を40°~60°にすることが好ましい。それにより、次に説明する画素電極13の形成時においてコンタクトホール20での成膜性が向上する。
 なお、絶縁像17の形成材料としては、他の無機絶縁材料(例えばSiOなどのシリコン酸化膜)を用いてもよいし、有機絶縁材料(例えばアクリル系材料)を用いてもよい。
 次に、絶縁層17の一面側に各画素電極13を形成する(図5(A)、図5(B)参照)。ここでも、例えば、スパッタ法によりITO膜を形成し、このITO膜をフォトリソグラフィ技術によってパターニングすることで各画素電極13を得ることができる。このとき、上記したコンタクトホール20内にも画素電極13の一部が形成され、下層側の画素間電極15又は配線部16と画素電極13が接続される。
 次に、絶縁層17のうち、平面視において各画素電極13の間に存在する部分を除去する(図5(C)、図5(D)参照)。この工程は、例えば、各画素電極13をエッチングマスクとして利用し、例えばフロン系ガスを用いたリアクティブイオンエッチング法を用いて行うことが好ましい。それにより、各画素電極13の位置に合わせて精度よく開口部19を設けることができる。また、ここで形成される各開口部19は、第1基板11に近づくほど幅(径)が狭くなるような順テーパー形状とすることが好ましく、特にテーパー形状を40°~60°にすることが好ましい。
 なお、本工程では、絶縁層17のうち各画素電極13の間の部分を完全に除去して各画素間電極15を完全に露出させるのではなく、図7(A)に示す変形実施例のように、開口部19の底部に、各画素間電極15(あるいは配線部16)を覆う絶縁層(薄層部)17aを残存させるようにしてもよい。つまり、画素間電極15のための絶縁膜として、画像電極13と重複しない領域に絶縁層17よりも薄い膜厚の絶縁層17aを設けることができる。絶縁層17aの形成は、エッチング時間等の制御により実現できる。この場合における絶縁層17aの膜厚は、元の絶縁層17の膜厚に対して相対的に薄く、例えば30%(0.3倍)程度とすることが好ましく、60%(0.6倍)以下とすることが好ましい。
 また、図7(B)に示す変形実施例のように、本工程の後に、第1基板11において、絶縁層17と開口部19の内壁及びその底部に露出する各画素間電極15及び各配線部16を覆うようにしてSiO膜などからなる絶縁層23を形成することも好ましい。この場合において、図7(A)に示すような絶縁膜17aを備えることもできる。つまり、絶縁膜23は、画素電極13と開口部19(開口部19内に露出した画素間電極15又は絶縁層17a)を連続して覆うように設けられる。絶縁層23は、例えばフレキソ印刷によって形成することができる。膜厚は、例えば500Å~800Åとすることができる。この場合、開口部19を順テーパー状にしていることで絶縁層23の成膜性を向上させることができる。同様にして、第2基板12においても共通電極14を覆うようにして絶縁層を形成することも好ましい。なお、このような絶縁層23を設ける場合には、無機材料を用いて上記の絶縁層17を形成することがより好ましい。一般に無機材料のほうが高い耐熱性を有することから、絶縁層23等の形成時の熱処理等により絶縁層17が劣化するのを防ぐことができるからである。
 次に、第1基板11と第2基板12の各一面側に配向膜(図示せず)を形成する。ここでは、フレキソ印刷、インクジェット法などにより垂直配向膜を形成し、熱処理を行った後に、ラビング等の配向処理を行う。配向膜の膜厚は、例えば500Å~800Åとすることができる。開口部19を順テーパー状にしていることで配向膜の成膜性を向上させることができる。
 次に、第1基板11と第2基板12の一方(例えば第1基板11)の一面側に、液晶層18を囲んで封止するためのシール材(図示せず)を形成する。また、第1基板11と第2基板12の他方(例えば第2基板12)の一面側に、ギャップコントロール材を散布する。ここでは、例えば3μm~6μm程度の粒径のギャップコントロール材を用いることができる。なお、ギャップコントロール材に代えて、樹脂柱などのスペーサーを設けてもよい。
 次に、第1基板11と第2基板12の各一面側を対向させて両者を貼り合わせてセル化する(図6(A)、図6(B)参照)。例えば、第1基板11と第2基板12を重ね合わせた状態にして、プレス機などを用いて圧力を一定に加えた状態で熱処理ないし光照射処理を行うことでシール材を硬化させる。このとき、第1基板11と第2基板12は、それぞれに対する配向処理方向(例えばラビング方向)が互い違いになるように配置することができる。なお、配向処理方向は、同方向でもよいし、交差していてもよく、液晶層18をどのような動作モードで動作させるかによって適宜選択すればよい。
 その後、第1基板11と第2基板12の間に液晶材料を充填することにより液晶層18を形成し、注入口を封止材によって封止する。それにより、図2(A)、図2(B)に示した液晶素子5が完成する。なお、ここでは液晶材料の充填方法として真空注入法を想定しているが、ODF法を用いてもよい。
 次に、本実施形態の液晶素子5により得られる効果について説明する。
 図8(A)は、液晶素子における電気光学特性の測定点(測定箇所)を説明するための図である。図8(B)は、電気光学特性の測定例を示す図である。図8(A)に示すように、画素間電極15を通り絶縁層17を通らない測定点Aと、画素電極13及び絶縁層17を通る測定点Bのそれぞれにおける印加電圧と透過率の関係を測定し、その測定例を図8(B)に示している。
 図8(B)に示すように、測定点A、Bにおいて特に閾値付近での特性がほぼ一致していることが分かる。これは、絶縁層17に開口部19を設けたことで、測定点A、Bともに液晶層18に対してほぼ同じ電圧が印加されるようになるからである。なお、閾値電圧が液晶層18の層厚に依存しないことは当業者における技術常識である。印加電圧が比較的高い範囲では僅かに透過率の差が見られるが、これは絶縁層17の有無による液晶層厚の相違によるものと考えられる。絶縁層17は、例えば0.3μm程度であり、液晶層厚の差はごく僅かといえる。従って、中間調の透過率を得る場合を考えると、同じ印加電圧に対する透過率は測定点A、Bでほぼ等しいといえる。すなわち、印加電圧によらず、画素間電極15に対応する部分での暗線や明線を生じにくい照明装置を実現できる。なお、原理的に、上記した絶縁層17aを残存させる変形実施例(図7(A)参照)や全体に絶縁層23を設ける変形実施例(図7(B)参照)の液晶素子を用いた照明装置においても同様の効果が得られる。
 図9(A)、図9(B)は、絶縁層(薄層部)17aを残存させる変形実施例(図7(A)参照)の液晶素子における電気光学特性の測定例を示す図である。なお、測定点A、Bについては上記した図8(A)に示したものと同様である。各図に示すように、画素間電極15に対応する部分に絶縁層17aを残存させることで、測定点A、Bでの透過率差を補正する効果が得られる。以下にその理由を考察する。
 測定点Aと測定点Bでは液晶層18の層厚が異なるので、その分の透過率差が生じ得る。一般に、液晶層18が垂直配向モードである場合には透過率の層厚依存性がある。例えば、液晶層厚を4μmとした場合に色度xy値が白色となるような垂直配向型の液晶素子を考えると、それよりも少し厚い液晶層厚とした場合には色度xy値が少し黄色側にシフトするが透過率としては少し高くなるという傾向がある。上記した図8(B)に示した電気光学特性における測定点A、Bでの透過率差はその影響がごく僅かながら出ていると考えられる。
 これに対して、測定点Aに対応する位置に絶縁層17aが存在する場合には、測定点Aにおける閾値が少し高くなる。これは、印加電圧が絶縁層17aと液晶層18とで分圧されるためである。例えば、計算を簡単にするため絶縁層17aの誘電率と液晶層18の誘電率をほぼ等しいと仮定すると、測定点Aの液晶層18に印加される電圧(分圧された電圧)は、単純に測定点Aにおける液晶層18の層厚と絶縁層17aの層厚との膜厚比で考えることができる。
 図9(A)は、絶縁層17aの層厚を0.09μmとした場合の電気光学特性である。液晶層18の閾値としては、絶縁層17aが存在しない場合に対して約1.02倍になっており、印加電圧の全範囲において測定点A、Bでほぼ相違ない透過率が得られている。また、図9(B)は、絶縁層17aの層厚を0.17μmとした場合の電気光学特性である。液晶層18の閾値としては、絶縁層17aが存在しない場合に対して約1.04倍になっている。従前の例よりは透過率差が抑えられているので許容範囲ではあるが、印加電圧の低い範囲(概ね3V~4.5Vの範囲)で少し透過率の差が見られる。絶縁層17の層厚は0.3μmであるので、絶縁層17aの膜厚としては元の絶縁層17の層厚に対して30%程度残すことが好ましく、概ね60%以下とすることが好ましいといえる。
 以上のような実施形態によれば、配光パターンを自在に制御可能な車両用灯具システム(照明装置)に用いられる液晶素子において、当該液晶素子の製造工程を簡素化しつつ配光パターンの見栄えを向上させることが可能となる。
 なお、本開示は上記した実施形態の内容に限定されるものではなく、本開示の要旨の範囲内において種々に変形して実施をすることが可能である。例えば、上記した実施形態で示した車両用灯具システムの構成は例示であり限定されない。また、上記した実施形態では、車両前方に対して選択的な光照射を行うシステムにおいて本発明を適用した例について説明していたが本発明の適用範囲はこれに限定されない。例えば、車両の進行方向に応じて車両の斜め前方への光照射を行うシステム、車両の前後方向傾きに応じて前照灯の光軸を調整するシステム、前照灯のハイビームとロービームを電子的に切り替えるシステムなどに本発明を適用してもよい。さらに、車両用途に限らず照明装置一般において本発明を適用してもよい。
 1:光源、2:カメラ、3:コントローラ、4:ドライバ、5、5a、5b:液晶素子、6a、6b:偏光板、7:投影レンズ、11:第1基板、12:第2基板、13:画素電極、14:共通電極、15:画素間電極、16:配線部、17、17a:絶縁層、18:液晶層、19:開口部、20:コンタクトホール

Claims (8)

  1.  対向配置される第1基板及び第2基板と、
     前記第1基板と前記第2基板の間に配置される液晶層と、
     前記第1基板の前記液晶層と対向する一面側に配置される複数の補助電極と、
     前記第1基板の前記一面側に前記複数の第1電極を覆って配置される絶縁層と、
     前記第1基板の前記絶縁層と前記液晶層との間に配置される複数の画素電極と、
     前記第2基板の前記液晶層と対向する一面側に配置される対向電極と、
    を含み、
     前記複数の画素電極は、平面視において、少なくとも一方向において相互間に隙間を設けて配置されており、
     前記複数の補助電極は、各々、平面視において隣り合う前記画素電極間の前記隙間と重なるように配置され、かつ隣り合う前記画素電極の何れか1つと前記絶縁層に設けられたコンタクトホールを介して相互に接続されており、
     前記絶縁層は、少なくとも、隣り合う前記画素電極間の前記隙間に対応する部分に開口部を有している、
     液晶素子。
  2.  前記絶縁層は、前記複数の画素電極と略同一の平面視形状を有しており、当該各画素電極の存在しない部分が前記開口部に対応する、
     請求項1に記載の液晶素子。
  3.  前記絶縁層は、シリコン窒化膜又はシリコン酸化膜によって構成される、
     請求項1又は2に記載の液晶素子。
  4.  前記絶縁層の前記開口部は、前記第1基板の前記一面に近づくほど幅又は径が小さくなる順テーパー形状である、
     請求項1~3の何れか1項に記載の液晶素子。
  5.  前記絶縁層は、前記開口部の底部において前記補助電極の一部を覆う部位であって前記複数の画素電極に対応する部位よりも相対的に膜厚の小さい部位である薄層部を有する、
     請求項1~4の何れか1項に記載の液晶素子。
  6.  前記薄層部の層厚は、前記絶縁層の前記複数の画素電極に対応する部位の層厚の0.3倍以上0.6倍以下である、
     請求項5に記載の液晶素子。
  7.  前記複数の画素電極及び前記開口部を連続して覆う第2絶縁層、を更に備える、
     請求項1~6の何れか1項に記載の液晶素子。
  8.  請求項1~7の何れか1項に記載の液晶素子と、
     前記液晶素子へ光を入射させる光源と、
     前記液晶素子を透過する光を集光するレンズと、
    を含む、照明装置。
PCT/JP2022/042712 2021-12-03 2022-11-17 液晶素子、照明装置 WO2023100669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-196774 2021-12-03
JP2021196774A JP2023082818A (ja) 2021-12-03 2021-12-03 液晶素子、照明装置

Publications (1)

Publication Number Publication Date
WO2023100669A1 true WO2023100669A1 (ja) 2023-06-08

Family

ID=86612096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042712 WO2023100669A1 (ja) 2021-12-03 2022-11-17 液晶素子、照明装置

Country Status (2)

Country Link
JP (1) JP2023082818A (ja)
WO (1) WO2023100669A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119865A1 (ja) * 2008-03-25 2009-10-01 シチズンホールディングス株式会社 表示パネル及びカメラ
JP2020017369A (ja) * 2018-07-24 2020-01-30 スタンレー電気株式会社 車両用灯具
JP2021173955A (ja) * 2020-04-30 2021-11-01 スタンレー電気株式会社 液晶素子、ランプユニット、車両用灯具システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119865A1 (ja) * 2008-03-25 2009-10-01 シチズンホールディングス株式会社 表示パネル及びカメラ
JP2020017369A (ja) * 2018-07-24 2020-01-30 スタンレー電気株式会社 車両用灯具
JP2021173955A (ja) * 2020-04-30 2021-11-01 スタンレー電気株式会社 液晶素子、ランプユニット、車両用灯具システム

Also Published As

Publication number Publication date
JP2023082818A (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
US10914444B2 (en) Lamp unit, vehicular lamp system
CN109991783B (zh) 液晶元件、照明装置
US10830407B2 (en) Vehicular lamp
US10781992B2 (en) Vehicle headlamp system
JP2021173955A (ja) 液晶素子、ランプユニット、車両用灯具システム
WO2023100669A1 (ja) 液晶素子、照明装置
WO2020262066A1 (ja) 液晶素子、照明装置
CN112817172B (zh) 液晶元件、照明装置
JP7202934B2 (ja) 液晶素子、照明装置
JP2021096996A (ja) 車両用灯具システム
JP7149808B2 (ja) 液晶素子、照明装置
JP7197412B2 (ja) 液晶素子、照明装置
WO2021054283A1 (ja) 車両用灯具システム
JP7278916B2 (ja) 車両用灯具システム
WO2023067981A1 (ja) 液晶素子、照明装置
CN117199219A (zh) 发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901102

Country of ref document: EP

Kind code of ref document: A1