WO2023100365A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2023100365A1
WO2023100365A1 PCT/JP2021/044517 JP2021044517W WO2023100365A1 WO 2023100365 A1 WO2023100365 A1 WO 2023100365A1 JP 2021044517 W JP2021044517 W JP 2021044517W WO 2023100365 A1 WO2023100365 A1 WO 2023100365A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
display device
layer
terminal
wiring
Prior art date
Application number
PCT/JP2021/044517
Other languages
French (fr)
Japanese (ja)
Inventor
浩英 見村
正悟 村重
一篤 伊東
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2021/044517 priority Critical patent/WO2023100365A1/en
Publication of WO2023100365A1 publication Critical patent/WO2023100365A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to display devices.
  • EL display devices using organic electroluminescence (hereinafter also referred to as "EL") elements have attracted attention as display devices that can replace liquid crystal display devices.
  • a plurality of thin film transistors (hereinafter also referred to as "TFTs") are provided for each sub-pixel, which is the minimum unit of an image.
  • TFTs thin film transistors
  • a semiconductor layer constituting a TFT for example, a semiconductor layer made of polysilicon with high mobility, a semiconductor layer made of an oxide semiconductor such as In--Ga--Zn--O with small leakage current, and the like are well known. ing.
  • Patent Document 1 discloses a display device having a hybrid structure in which a first TFT using a polysilicon semiconductor and a second TFT using an oxide semiconductor are formed on a substrate.
  • the organic EL display device includes a base substrate, a TFT layer provided on the base substrate, for example, a first metal layer, an inorganic insulating film and a second metal layer laminated in order, and a TFT layer provided on the TFT layer. It includes a light emitting element layer and a sealing film provided on the light emitting element layer.
  • a plurality of terminals are arranged in the terminal portion, and a lower metal layer formed on the same layer with the same material as the first metal layer and an upper metal layer formed on the same layer with the same material as the second metal layer.
  • Each terminal may be configured by stacking layers. In this case, the lack of adhesion between the lower metal layer and the upper metal layer may cause the upper metal layer to separate from the lower metal layer at each terminal, so there is room for improvement.
  • the present invention has been made in view of this point, and its object is to suppress peeling of the upper layer metal layer from the lower layer metal layer in each terminal pad of the terminal portion.
  • a display device comprises a base substrate and a thin film transistor layer provided on the base substrate and having a first metal layer, a first inorganic insulating film, and a second metal layer laminated in this order.
  • a light-emitting element layer provided on the thin-film transistor layer and having a plurality of light-emitting elements arranged corresponding to a plurality of sub-pixels forming a display region;
  • a frame region is provided around the display region, and a terminal portion is provided at an end portion of the frame region so as to extend in one direction.
  • each terminal pad comprises a lower metal layer made of the same material as the first metal layer and formed in the same layer, and an upper metal layer made of the same material as the second metal layer and formed in the same layer.
  • a metal layer, the lower metal layer is formed with a through-hole penetrating the lower metal layer, and the upper metal layer is provided so as to fill the through-hole.
  • peeling of the upper metal layer from the lower metal layer can be suppressed in each terminal pad of the terminal portion.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the invention.
  • FIG. 2 is a plan view of the display area of the organic EL display device according to the first embodiment of the invention.
  • FIG. 3 is a cross-sectional view of the display area of the organic EL display device according to the first embodiment of the invention.
  • FIG. 4 is an equivalent circuit diagram of a thin film transistor layer that constitutes the organic EL display device according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an organic EL layer that constitutes the organic EL display device according to the first embodiment of the present invention.
  • FIG. 6 is a plan view of the terminal portion of the frame region of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the terminal portion of the organic EL display device along line VI-VI in FIG.
  • FIG. 8 is a cross-sectional view of the terminal portion of the organic EL display device taken along line VIII--VIII in FIG.
  • FIG. 9 is a cross-sectional view of the terminal portion of the organic EL display device along line IX-IX in FIG.
  • FIG. 10 is a plan view showing a first modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 11 is a plan view showing a second modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 10 is a plan view showing a first modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 11 is a plan view showing a second modification of the lower metal layer provided in the terminal portion of the organic
  • FIG. 12 is a plan view showing a third modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 13 is a plan view of a chip mounting portion and its periphery in the frame area of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50 of this embodiment.
  • 2 and 3 are a plan view and a cross-sectional view of the display area D of the organic EL display device 50.
  • FIG. 4 is an equivalent circuit diagram of the thin film transistor layer 30 that constitutes the organic EL display device 50.
  • FIG. 5 is a cross-sectional view showing the organic EL layer 33 forming the organic EL display device 50.
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50 of this embodiment.
  • 2 and 3 are a plan view and a cross-sectional view of the display area D of the organic EL display device 50.
  • FIG. 4 is an equivalent circuit diagram of the thin film transistor layer 30 that constitutes the organic EL display device 50.
  • FIG. 5 is a cross-sectional view showing the organic EL layer 33 forming the organic EL display device 50.
  • FIG. 6 is a plan view of the terminal portion T of the frame area F of the organic EL display device 50.
  • FIG. 7, 8 and 9 are sectional views of the terminal portion T of the organic EL display device 50 taken along lines VI-VI, VIII-VIII and IX-IX in FIG. 10, 11, and 12 show lower metal layers 19ta, 19tb, and 19tc of first, second, and third modifications of the lower metal layer 19t provided in the terminal portion T of the organic EL display device 50.
  • FIG. It is a plan view showing the.
  • FIG. 13 is a plan view of the chip mounting portion M of the frame area F of the organic EL display device 50 and its surroundings.
  • the organic EL display device 50 includes, for example, a rectangular display area D for displaying an image, and a frame area F provided around the display area D in a frame shape.
  • the rectangular display area D is exemplified, but the rectangular shape includes, for example, a shape with arc-shaped sides, a shape with arc-shaped corners, and a shape with arc-shaped corners.
  • a substantially rectangular shape such as a shape with a notch is also included.
  • a plurality of sub-pixels P are arranged in a matrix.
  • sub-pixels P having a red light-emitting region Er for displaying red sub-pixels P having a green light-emitting region Eg for displaying green
  • a sub-pixel P having a blue light-emitting region Eb for displaying blue is provided so as to be adjacent to each other.
  • one pixel is configured by three adjacent sub-pixels P each having a red light emitting region Er, a green light emitting region Eg and a blue light emitting region Eb.
  • a terminal part T for mounting a flexible printed wiring board, for example, is provided so as to extend in one direction (the X direction in the figure) at the lower end part of the frame area F in FIG.
  • a chip mounting portion M for mounting an integrated circuit chip is provided between the display region D and the terminal portion T in one direction (the X direction in the drawing). It is provided to extend to
  • the organic EL display device 50 includes a resin substrate 10 provided as a base substrate, a TFT layer 30 provided on the resin substrate 10, and a light emitting element layer provided on the TFT layer 30. and a sealing film 45 provided to cover the organic EL element layer 40 .
  • the resin substrate 10 is made of, for example, polyimide resin.
  • the TFT layer 30 includes a base coat film 11 provided on the resin substrate 10, an initialization TFT 9a (see FIG. 4) provided for each sub-pixel P on the base coat film 11, and a compensation TFT 9b. (see FIG. 4), a writing TFT 9c (see FIG. 4), a driving TFT 9d, a power supply TFT 9e (see FIG. 4), a light emission control TFT 9f, an anode discharge TFT 9g, a capacitor 9h, and the respective TFTs 9a to 9g and capacitors. and a planarizing film 22a provided on 9h.
  • a planarizing film 22a provided on 9h.
  • the TFT layer 30 is provided with a plurality of gate lines 14g extending parallel to each other in the X direction in the drawing. Further, as shown in FIG. 2, the TFT layer 30 is provided with a plurality of light emission control lines 14e extending parallel to each other in the X direction in the figure. Further, as shown in FIG. 2, the TFT layer 30 is provided with a plurality of second initialization power supply lines 19i as first metal layers so as to extend parallel to each other in the X direction in the figure. As shown in FIG. 2, each light emission control line 14e is provided adjacent to each gate line 14g and each second initialization power supply line 19i. In the TFT layer 30, as shown in FIG.
  • a plurality of source lines 21h are provided as a second metal layer so as to extend parallel to each other in the Y direction in the figure.
  • the TFT layer 30 is provided with a plurality of power supply lines 21i as a second metal layer so as to extend parallel to each other in the Y direction in the figure.
  • Each power supply line 21i is provided adjacent to each source line 21h, as shown in FIG.
  • the writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, and the light emission control TFT 9f are provided as first TFTs having a first semiconductor layer made of polysilicon such as LTPS (low temperature polysilicon), and have gate electrodes. , a first terminal electrode and a second terminal electrode.
  • the initialization TFT 9a, the compensation TFT 9b, and the anode discharge TFT 9g are provided as second TFTs having a second semiconductor layer formed of an oxide semiconductor such as an In--Ga--Zn--O-based semiconductor.
  • a third terminal electrode and a fourth terminal electrode are provided.
  • the In—Ga—Zn—O-based oxide semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition) of In, Ga, and Zn is ratio) is not particularly limited.
  • In--Ga--Zn--O based semiconductors may be amorphous or crystalline.
  • As the crystalline In--Ga--Zn--O-based semiconductor a crystalline In--Ga--Zn--O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • another oxide semiconductor may be included instead of the In--Ga--Zn--O-based semiconductor.
  • oxide semiconductors may include, for example, In—Sn—Zn—O-based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO).
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • oxide semiconductors include In--Al--Zn--O based semiconductors, In--Al--Sn--Zn--O based semiconductors, Zn--O based semiconductors, In--Zn--O based semiconductors, Zn--Ti-- O-based semiconductor, Cd--Ge--O-based semiconductor, Cd--Pb--O-based semiconductor, CdO (cadmium oxide), Mg--Zn--O-based semiconductor, In--Ga--Sn--O-based semiconductor, In--Ga--O-based semiconductor Semiconductors, Zr-In-Zn-O-based semiconductors, Hf-In-Zn-O-based semiconductors, Al-Ga-Zn-O-based semiconductors, Ga-Zn-O-based semiconductors, In-Ga-Zn-Sn-O-based semiconductors Semiconductors such as InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg
  • the initialization TFT 9a has its gate electrode electrically connected to the preceding (n-1) gate line 14g (n-1) and its third terminal electrode. is electrically connected to the lower conductive layer 16c of the capacitor 9h and the gate electrode of the driving TFT 9d, which will be described later, and its fourth terminal electrode is electrically connected to the power supply line 21i.
  • the first terminal electrodes and the second terminal electrodes of the first TFTs are indicated by circled numerals 1 and 2.
  • the third terminal electrode and the fourth terminal electrode of the second TFT are indicated by circled numerals 3 and 4.
  • the equivalent circuit diagram of FIG. 4 shows the pixel circuit of the n-th row and m-th column sub-pixel P, it also includes part of the pixel circuit of the (n ⁇ 1)-th row and m-th column sub-pixel P.
  • the power supply line 21i for supplying the high power supply voltage ELVDD also serves as the first initialization power supply line, but the power supply line 21i and the first initialization power supply line are provided separately.
  • the present invention is not limited to this, and a voltage different from the low power supply voltage ELVSS can be applied to turn off the organic EL element 35. can be entered.
  • the compensation TFT 9b has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage) in each sub-pixel P, and its third terminal electrode is used for driving. It is electrically connected to the gate electrode of the TFT 9d, and its fourth terminal electrode is electrically connected to the first terminal electrode of the driving TFT 9d.
  • the write TFT 9c has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage), and its first terminal electrode corresponds to the gate line 14g(n).
  • the second terminal electrode of the source line 21h is electrically connected to the second terminal electrode of the driving TFT 9d.
  • the driving TFT 9d has its gate electrode 14b (see FIG. 3) electrically connected to the third terminal electrodes of the initialization TFT 9a and the compensation TFT 9b.
  • the first terminal electrode 21e (see FIG. 3) is electrically connected to the fourth terminal electrode of the compensating TFT 9b and the second terminal electrode of the power supply TFT 9e, and the second terminal electrode 21g (see FIG. 3) is the write terminal electrode. It is electrically connected to the second terminal electrode of the embedding TFT 9c and the first terminal electrode of the light emission controlling TFT 9f.
  • the driving TFT 9 d is configured to control the current of the organic EL element 35 . Further, as shown in FIG.
  • the driving TFT 9d the first semiconductor layer 12b provided on the base coat film 11, the first gate insulating film 13 provided on the first semiconductor layer 12b, and the first gate insulating film
  • a gate electrode 14b provided on the film 13, a first interlayer insulating film 15 and a second interlayer insulating film 20 provided to cover the gate electrode 14b, and a second interlayer insulating film 20 spaced apart from each other.
  • a first terminal electrode 21e and a second terminal electrode 21g are provided.
  • the first semiconductor layer 12b includes a first conductor region and a second conductor region provided so as to be spaced apart from each other, and a channel region defined between the first conductor region and the second conductor region.
  • the first terminal electrode 21e and the second terminal electrode 21g are formed on the laminated film of the first gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 20. It is electrically connected to the first conductor region and the second conductor region of the first semiconductor layer 12b through one contact hole.
  • the power supply TFT 9e has its gate electrode electrically connected to the light emission control line 14e of its own stage (n stage), and its first terminal electrode connected to the power supply line 21i. and its second terminal electrode is electrically connected to the first terminal electrode of the driving TFT 9d.
  • the light emission control TFT 9f has its gate electrode 14a (see FIG. 3) electrically connected to the light emission control line 14e of its own stage (n stage).
  • the terminal electrode 21a (see FIG. 3) is electrically connected to the second terminal electrode of the driving TFT 9d, and the second terminal electrode 21c (see FIG. 3) is electrically connected to the first electrode 31 of the organic EL element 35 to be described later. It is connected to the.
  • the light emission control TFT 9f includes a first semiconductor layer 12a provided on the base coat film 11, a first gate insulating film 13 provided on the first semiconductor layer 12a, and a first gate insulating film 13 provided on the first semiconductor layer 12a.
  • a first terminal electrode 21a and a second terminal electrode 21b (21c) are provided as follows.
  • the first semiconductor layer 12a includes a first conductor region and a second conductor region provided so as to be spaced apart from each other, and a channel region defined between the first conductor region and the second conductor region. there is 3, the first terminal electrode 21a and the second terminal electrode 21b are formed on the laminated film of the first gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 20.
  • the second terminal electrode 21c is formed in the contact hole formed in the laminated film of the first gate insulating film 13 and the first interlayer insulating film 15, the relay electrode 16a, and the second interlayer insulating film 20. It is electrically connected to the second conductor region of the first semiconductor layer 12a through the formed contact hole.
  • the anode discharge TFT 9g has its gate electrode 19a (see FIG. 3) electrically connected to the gate line 14g(n) of its own stage (n stage).
  • the third terminal electrode 21c (see FIG. 3) is electrically connected to the first electrode 31 of the organic EL element 35, and the fourth terminal electrode 21d (see FIG. 3) is electrically connected to the second initialization power line 19i. It is connected.
  • the third terminal electrode 21c of the anode discharge TFT 9g is shared with the second terminal electrode 21c of the light emission control TFT 9f. Further, as shown in FIG.
  • the anode discharge TFT 9g includes a second semiconductor layer 17a provided on the first interlayer insulating film 15 and a second semiconductor layer 17a provided on the second semiconductor layer 17a as a second inorganic insulating film.
  • a third terminal electrode 21c and a fourth terminal electrode 21d are provided on the insulating film 20 so as to be spaced apart from each other.
  • the second semiconductor layer 17a is provided between the third conductor region and the fourth conductor region provided so as to be spaced apart from each other and between the third conductor region and the fourth conductor region. and a channel region.
  • the third terminal electrode 21c is electrically connected to the third conductor region of the second semiconductor layer 17a through the contact hole formed in the second interlayer insulating film 20 and the relay electrode 16a.
  • the fourth terminal electrode 21d is electrically connected to the fourth conductor region of the second semiconductor layer 17a through the contact hole formed in the second interlayer insulating film 20 and the relay electrode 16b.
  • the writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, and the light emission control TFT 9f are provided as the first TFTs having the first semiconductor layer made of polysilicon, and are made of an oxide semiconductor.
  • the pixel circuit provided with the initialization TFT 9a, the compensation TFT 9b, and the anode discharge TFT 9g is exemplified as the second TFT having the second semiconductor layer, all the TFTs of the pixel circuit, that is, the initialization TFT 9a and the compensation TFT 9g, are provided.
  • the TFT 9b, the writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, the light emission control TFT 9f, and the anode discharge TFT 9g may be composed of TFTs having a semiconductor layer formed of an oxide semiconductor.
  • the capacitor 9h has a lower conductive layer 16c (see FIG. 3) connected to the gate electrode 14b (see FIG. 3) of the driving TFT 9d, the initializing TFT 9a and the compensating TFT 9b.
  • the upper conductive layer 19b (see FIG. 3) is electrically connected to each third terminal electrode, the third terminal electrode of the anode discharge TFT 9g, the second terminal electrode of the light emission control TFT 9f, and the first terminal electrode of the organic EL element 35. It is electrically connected to the electrode 31 . Also, as shown in FIG.
  • the capacitor 9h is composed of a lower conductive layer 16c formed in the same layer with the same material as the third metal layer such as the relay electrodes 16a and 16b, and a second inorganic insulating layer on the lower conductive layer 16c. a second gate insulating film 18b provided as a film; and an upper conductive layer 19b provided on the second gate insulating film 18b and made of the same material and in the same layer as the first metal layer such as the gate electrode 19a. ing.
  • the upper conductive layer 19b is electrically connected to the source conductive layer 21f through a contact hole formed in the second interlayer insulating film 20, as shown in FIG.
  • the source conductive layer 21f is made of the same material as the second metal layer such as the source line 21h and formed in the same layer. 35 is electrically connected to the first electrode 31 .
  • the planarizing film 22a has a flat surface in the display region D, and is made of an organic insulating film such as an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG (spin on glass) material. It is
  • the organic EL element layer 40 includes a plurality of organic EL elements 35 (see FIG. 4) provided as a plurality of light emitting elements arranged in a matrix corresponding to the plurality of sub-pixels P. and an edge cover 32 which is provided in a grid pattern in common to all the sub-pixels P so as to cover the peripheral edge of the first electrode 31 of each organic EL element 35 .
  • the organic EL element 35 includes a first electrode 31 provided on the planarizing film 22a of the TFT layer 30 and an organic EL layer 31 provided on the first electrode 31. 33 and a second electrode 34 provided on the organic EL layer 33 .
  • the first electrode 31 is electrically connected to the second terminal electrode 21c of the light emission control TFT 9f of each sub-pixel P through a contact hole formed in the planarizing film 22a. .
  • the first electrode 31 also has a function of injecting holes into the organic EL layer 33 .
  • the first electrode 31 is more preferably made of a material having a large work function in order to improve the efficiency of injecting holes into the organic EL layer 33 .
  • examples of materials forming the first electrode 31 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), and gold (Au).
  • the material forming the first electrode 31 may be an alloy such as astatine (At)/astatine oxide (AtO 2 ). Further, the material forming the first electrode 31 is, for example, conductive oxides such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). There may be. Also, the first electrode 31 may be formed by stacking a plurality of layers made of the above materials. Compound materials having a large work function include, for example, indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the edge cover 32 is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG material.
  • the organic EL layer 33 is provided as a light-emitting functional layer, and as shown in FIG. and an electron injection layer 5 .
  • the hole injection layer 1 is also called an anode buffer layer, and has the function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 close to each other and improving the efficiency of hole injection from the first electrode 31 to the organic EL layer 33 .
  • materials constituting the hole injection layer 1 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, phenylenediamine derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives and the like.
  • the hole transport layer 2 has the function of improving the transport efficiency of holes from the first electrode 31 to the organic EL layer 33 .
  • Examples of materials constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, and oxadiazole.
  • the light-emitting layer 3 In the light-emitting layer 3, holes and electrons are injected from the first electrode 31 and the second electrode 34 when a voltage is applied by the first electrode 31 and the second electrode 34, and the holes and electrons recombine. area.
  • the light-emitting layer 3 is made of a material with high light-emitting efficiency. Examples of materials constituting the light-emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complex], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives.
  • the electron transport layer 4 has a function of efficiently transferring electrons to the light emitting layer 3 .
  • the materials constituting the electron transport layer 4 include, for example, organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , silole derivatives, and metal oxinoid compounds.
  • the electron injection layer 5 has a function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 close to each other and improving the efficiency of electron injection from the second electrode 34 to the organic EL layer 33. With this function, The driving voltage of the organic EL element 35 can be lowered.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • examples of materials constituting the electron injection layer 5 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride.
  • inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like.
  • the second electrode 34 is provided in common to all the sub-pixels P so as to cover each organic EL layer 33 and the edge cover 32, as shown in FIG.
  • the second electrode 34 also has a function of injecting electrons into the organic EL layer 33 .
  • the second electrode 34 is more preferably made of a material with a small work function in order to improve the efficiency of injecting electrons into the organic EL layer 33 .
  • materials constituting the second electrode 34 include silver (Ag), aluminum (Al), vanadium (V), calcium (Ca), titanium (Ti), yttrium (Y), and sodium (Na).
  • the second electrode 34 is composed of, for example, magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/astatine oxide (AtO 2 ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al), etc.
  • the second electrode 34 may be formed of conductive oxides such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). . Also, the second electrode 34 may be formed by laminating a plurality of layers made of the above materials.
  • Examples of materials with a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al) etc.
  • the sealing film 45 is provided so as to cover the second electrode 34 , and the first inorganic sealing film 41 , the organic sealing film 42 and the second sealing film 42 are laminated on the second electrode 34 in this order. It has an inorganic sealing film 43 and has a function of protecting the organic EL layer 33 of the organic EL element 35 from moisture, oxygen, and the like.
  • the first inorganic sealing film 41 and the second inorganic sealing film 43 are composed of an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.
  • the organic sealing film 42 is made of an organic resin material such as acrylic resin, epoxy resin, silicone resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.
  • a first damming wall for suppressing the spread of the ink forming the organic sealing film 42 is provided in a frame shape so as to surround the display area D.
  • a second damming wall is provided in a frame shape so as to surround the first damming wall.
  • the organic EL display device 50 has a plurality of terminals arranged in a line in the terminal portion T of the frame region F in the direction in which the terminal portion T extends (the X direction in the drawing). It has a pad Up and a plurality of terminal wirings Uw provided so as to extend parallel to each other in the Y direction in the figure corresponding to the plurality of terminal pads Up.
  • the plurality of terminal wirings Uw are electrically connected to the plurality of terminal pads Up.
  • the terminal pad Up includes a lower metal layer 19t provided on the second gate insulating film 18c and an upper metal layer 21t provided on the lower metal layer 19t.
  • the display area D side (right side in the drawing) of the terminal pad Up is covered with a wiring covering layer 22b formed in the same layer and made of the same material as the flattening film 22a.
  • the lower metal layer 19t is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a.
  • the lower metal layer 19t is formed with a plurality of through holes Sa penetrating through the lower metal layer 19t.
  • the plurality of through holes Sa are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing.
  • the configuration in which a plurality of through holes Sa are formed in the lower metal layer 19t is exemplified, but one through hole Sa may be formed in the lower metal layer 19t.
  • the upper metal layer 21t is formed in the same layer with the same material as the second metal layer such as the source line 21h. Moreover, as shown in FIG. 8, the upper metal layer 21t is provided so as to fill the plurality of through holes Sa formed in the lower metal layer 19t.
  • the first metal layer and the second metal layer are formed by sequentially stacking a titanium-based metal film, an aluminum-based metal film, and a titanium-based metal film, as described later. Then, when patterning the silicon oxide film formed on the lower metal layer 19t in order to form the second interlayer insulating film 20, one portion of the titanium-based metal film on the upper metal layer 21t side of the lower metal layer 19t is removed. Some parts may be missing due to etching. As a result, in the lower metal layer 19t, the aluminum-based metal film exposed from the missing portion of the titanium-based metal film is oxidized, and there is a concern that the adhesion with the upper metal layer 21t is lowered.
  • the lower metal layer 19t and the upper metal layer 21t have a large area (as in the case without the through holes Sa). Since there is no contact and the adhesion between the upper metal layer 21t and the second gate insulating film 18c under the lower metal layer 19t is high, the adhesion between the lower metal layer 19t and the upper metal layer 21t is ensured.
  • the terminal wiring Uw is arranged on the second gate insulating film 18c so as to be spaced apart from the first terminal wiring 19tw provided on the second gate insulating film 18c. and a third terminal wiring 16t provided on the first interlayer insulating film 15 and arranged between the first terminal wiring 19tw and the second terminal wiring 19u.
  • an upper metal layer 21t extends over the first terminal wiring 19tw and the second terminal wiring 19u with the second interlayer insulating film 20 interposed therebetween, as shown in FIG.
  • the first terminal wiring 19tw is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. 6 and 7, the first terminal wiring 19tw is provided integrally with the lower metal layer 19t of the terminal pad Up. Further, as shown in FIGS. 6 and 9, the first terminal wiring 19tw is formed with a plurality of wiring through holes Sb penetrating through the first terminal wiring 19tw.
  • the plurality of wiring through holes Sb are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing.
  • the configuration in which a plurality of wiring through-holes Sb are formed in the first terminal wiring 19tw is illustrated, but one wiring through-hole Sb may be formed in the first terminal wiring 19tw. .
  • the second terminal wiring 19u is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a.
  • the second terminal wiring 19u is electrically connected to, for example, a fifth terminal wiring 19mw of an input-side chip wiring Nw arranged in the chip mounting portion M and described later.
  • the third terminal wiring 16t is formed in the same layer with the same material as the third metal layer such as the relay electrode 16a. 6 and 7, the third terminal wiring 16t is connected to the first terminal wiring 19tw and the second terminal wiring 19tw through the first contact hole Ha and the second contact hole Hb formed in the second gate insulating film 18c. It is electrically connected to the second terminal wiring 19u.
  • the third terminal wiring 16t formed in the same layer with the same material as the third metal layer is exemplified. It may be formed in one layer.
  • the lower metal layer 19t (including the first terminal wiring 19tw) in which the through holes Sa and the wiring through holes Sb are formed is illustrated, but the lower metal layer 19ta as shown in FIG. and a lower metal layer 19tc as shown in FIG. 12 .
  • a plurality of through holes Sc are formed by integrating a part of a plurality of through holes Sa (see FIG. 6) and a plurality of wiring through holes Sb (see FIG. 6). formed.
  • a plurality of through holes Sda and a plurality of wiring through holes Sdb are formed in dots.
  • some of the plurality of through holes Sa are integrated with the plurality of wiring through holes Sb (see FIG. 6), and the plurality of through holes Sa are integrated. (See FIG. 6) is formed to reach one end of the lower metal layer 19tc, and the lower metal layer 19tc is provided in a comb shape.
  • the organic EL display device 50 includes, in the chip mounting portion M of the frame area F, a chip under-chip circuit portion C provided in a rectangular shape extending in the X direction in the drawing, and a chip under-chip A plurality of output-side chip wirings 19md are provided so as to extend parallel to each other on the display area D side (upper side in the drawing) of the circuit section C.
  • FIG. 13 shows that the organic EL display device 50 includes, in the chip mounting portion M of the frame area F, a chip under-chip circuit portion C provided in a rectangular shape extending in the X direction in the drawing, and a chip under-chip A plurality of output-side chip wirings 19md are provided so as to extend parallel to each other on the display area D side (upper side in the drawing) of the circuit section C.
  • the output-side chip wiring 19md is made of the same material as the first metal layer such as the gate electrode 19a and is formed in the same layer.
  • Output-side chip terminals 21md are provided on the output-side chip wiring 19md, as shown in FIG.
  • the output-side chip wiring 19md is formed wide at the portion overlapping with the output-side chip terminal 21md.
  • (a plurality of) through-holes may be formed through the output-side chip wiring 19md in the same manner as the lower metal layer 19t.
  • the output-side chip terminals 21md are formed in the same layer with the same material as the second metal layer such as the source line 21h.
  • the plurality of output-side chip terminals 21md respectively provided on the plurality of output-side chip wirings 19md are arranged in a staggered manner along the X direction in the drawing.
  • the output-side chip wiring 19md is cut off at the upper and lower portions of the output-side chip terminal 21md in FIG. Electrical connection may be made through a pair of contact holes formed in the second gate insulating film 18c and wiring formed in the same layer of the same material as the three metal layers.
  • the chip mounting portion M extends on the terminal portion T side (lower side in the drawing) of the chip lower circuit portion C in the chip mounting portion M in the frame area F.
  • a plurality of input-side chip wirings Nw are provided as follows.
  • the plurality of input-side chip wirings Nw are electrically connected to the plurality of input-side chip terminals Np, respectively.
  • the input-side chip terminal Np is composed of a chip lower metal layer 19mt provided on the second gate insulating film 18c and a chip upper metal layer 21mt provided on the chip lower metal layer 19mt. I have.
  • the chip lower metal layer 19mt is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a.
  • the chip lower metal layer 19mt is formed with a plurality of through holes Sf penetrating through the chip lower metal layer 19mt.
  • the plurality of through holes Sf are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing. In this embodiment, the configuration in which a plurality of through holes Sf are formed in the chip lower metal layer 19mt is illustrated, but one through hole Sf may be formed in the chip lower metal layer 19mt.
  • the chip upper metal layer 21mt is made of the same material as the second metal layer such as the source line 21h and is formed in the same layer. Also, the chip upper metal layer 21mt is provided so as to fill the plurality of through holes Sf formed in the chip lower metal layer 19mt.
  • the input-side chip wiring Nw is separated from the fourth terminal wiring 19mv provided on the second gate insulating film 18c and the fourth terminal wiring 19mv on the second gate insulating film 18c. and a sixth terminal wiring 16m provided on the first interlayer insulating film 15 and arranged between the fourth terminal wiring 19mv and the fifth terminal wiring 19mw.
  • the fourth terminal wiring 19mv is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. Further, as shown in FIG. 13, the fourth terminal wiring 19mv is provided integrally with the chip lower metal layer 19mt of the input-side chip terminals Np. Further, as shown in FIG. 13, the fourth terminal wiring 19mv is formed with a plurality of wiring through-holes Sg penetrating through the fourth terminal wiring 19mv.
  • the plurality of wiring through holes Sg are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing.
  • the fourth terminal wiring 19mv has a plurality of wiring through-holes Sg, but the fourth terminal wiring 19mv may have a single wiring through-hole Sg. .
  • the fifth terminal wiring 19mw is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a.
  • the fifth terminal wiring 19mw is electrically connected to the second terminal wiring 19u of the terminal wiring Uw arranged in the terminal portion T, for example.
  • the sixth terminal wiring 16m is formed in the same layer with the same material as the third metal layer such as the relay electrode 16a. Also, as shown in FIG. 13, the sixth terminal wiring 16m is connected to the fourth terminal wiring 19mv and the fifth terminal via the third contact hole Hc and the fourth contact hole Hd formed in the second gate insulating film 18c. It is electrically connected to the wiring 19mw.
  • the sixth terminal wiring 16m formed in the same layer with the same material as the third metal layer is exemplified. It may be formed in one layer.
  • the organic EL display device 50 configured as described above, in each sub-pixel P, first, when the light emission control line 14e is selected and rendered inactive, the organic EL element 35 becomes non-light emitting. In the non-light-emitting state, the preceding gate line 14g(n-1) is selected, and a gate signal is input to the initialization TFT 9a via the gate line 14g(n-1), whereby the initialization TFT 9a is turned on, the high power supply voltage ELVDD of the power supply line 21i is applied to the capacitor 9h, and the driving TFT 9d is turned on. As a result, the charge in the capacitor 9h is discharged, and the voltage applied to the gate electrode of the driving TFT 9d is initialized.
  • the compensation TFT 9b and the writing TFT 9c are turned on, and the source signal is transmitted through the corresponding source line 21h. is written to the capacitor 9h via the diode-connected driving TFT 9d, the anode discharge TFT 9g is turned on, and the initialization signal is applied to the organic EL element via the second initialization power supply line 19i. The charge accumulated in the first electrode 31 applied to the first electrode 31 of 35 is reset.
  • the light emission control line 14e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and the driving current corresponding to the voltage applied to the gate electrode of the driving TFT 9d is supplied from the power line 21i to the organic EL element 35. be done.
  • the organic EL display device 50 in each sub-pixel P, the organic EL element 35 emits light with luminance corresponding to the drive current, and image display is performed.
  • the manufacturing method of the organic EL display device 50 of this embodiment includes a TFT layer forming process, an organic EL element layer forming process, a sealing film forming process, and a through hole forming process.
  • ⁇ TFT layer forming process> First, for example, on a resin substrate 10 formed on a glass substrate, a silicon oxide film (about 250 nm thick) and a silicon nitride film (about 100 nm thick) are sequentially formed by plasma CVD (Chemical Vapor Deposition). A base coat film 11 is formed by film forming.
  • an amorphous silicon film (about 50 nm thick) is formed by plasma CVD on the surface of the substrate on which the base coat film 11 is formed, and the amorphous silicon film is crystallized by laser annealing or the like to form a polysilicon film. are formed, the polysilicon film is patterned to form the first semiconductor layers 12a and 12b.
  • a silicon oxide film (thickness of about 100 nm) is formed on the substrate surface on which the first semiconductor layer 12a is formed by, for example, a plasma CVD method to form the first gate insulating film 13, and then, for example, sputtering is performed.
  • a metal film such as a molybdenum film (thickness of about 200 nm) by a method, the metal film is patterned to form gate electrodes 14a and 14b.
  • a silicon oxide film (thickness of about 150 nm) is formed, or a silicon nitride film (thickness of 150 nm) and a silicon oxide film (thickness of After forming the first interlayer insulating film 15 by forming a film of a molybdenum film (about 200 nm thick) in order, for example, by sputtering, the metal film is patterned. Then, a third metal layer such as the relay electrodes 16a and 16b and the lower conductive layer 16c is formed.
  • a semiconductor film such as InGaZnO 4 (about 30 nm thick) is formed by, for example, a sputtering method, is annealed, and then the semiconductor film is patterned. to form the second semiconductor layer 17a.
  • the inorganic insulating film such as a silicon oxide film (thickness of about 100 nm) on the substrate surface on which the second semiconductor layer 17a is formed, for example, by plasma CVD, the inorganic insulating film is patterned. , the second gate insulating film 18c of the terminal portion T and the chip mounting portion M are formed.
  • a titanium film (about 50 nm thick), an aluminum film (about 300 nm thick), and a titanium film (about 50 nm thick) are formed on the substrate surface on which the second gate insulating film 18c and the like are formed, by, for example, a sputtering method. and the like to form a metal laminated film, and then patterning the metal laminated film and the underlying silicon oxide film to form the first metal layer such as the gate electrode 19a and the upper conductive layer 19b, and the display area.
  • D second gate insulating films 12a and 12b are formed.
  • a silicon oxide film (about 400 nm thick) is formed, or a silicon oxide film (thickness: 300 nm) and a silicon nitride film are formed on the substrate surface on which the first metal layer and the like are formed, for example, by plasma CVD. (thickness of about 200 nm) are sequentially formed to form the second interlayer insulating film 20 .
  • a titanium film (thickness of about 50 nm) and an aluminum film (thickness of about 50 nm) are formed by sputtering, for example. 600 nm in thickness), a titanium film (about 50 nm in thickness) and the like are sequentially formed to form a metal laminated film.
  • the coating film is pre-baked, By performing exposure, development and post-baking, the planarizing film 22a and the wiring covering layer 22b are formed.
  • the TFT layer 30 can be formed as described above.
  • Organic EL element layer forming process A first electrode 31, an edge cover 32, an organic EL layer 33 (hole injection layer 1, hole transport The layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5) and the second electrode 34 are formed to form the organic EL element layer 40.
  • FIG. 1 An edge cover 32, an organic EL layer 33 (hole injection layer 1, hole transport The layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5) and the second electrode 34 are formed to form the organic EL element layer 40.
  • a sealing film 45 (first inorganic sealing film 41, organic sealing film 42, second inorganic sealing film 42) is formed on the organic EL element layer 40 formed in the organic EL element layer forming step using a known method.
  • a membrane 43) is formed.
  • the glass substrate is peeled off from the lower surface of the resin substrate 10 by irradiating laser light from the glass substrate side of the resin substrate 10 .
  • a protective sheet (not shown) is attached to the lower surface of the resin substrate 10 from which the glass substrate has been removed.
  • the organic EL display device 50 of this embodiment can be manufactured.
  • each terminal pad Up provided in the terminal portion T of the frame region F includes the lower metal layer 19t and the upper metal layer 21t.
  • the metal layer 21t is provided so as to fill the plurality of through holes Sa formed in the lower metal layer 19t.
  • the plurality of through holes Sa are not formed in the lower metal layer 19t, the lower metal layer 19t and the upper metal layer 21t are in contact with each other through one surface having a relatively large area.
  • the upper metal layer 21t is easily separated from 19t.
  • the plurality of through holes Sa are formed in the lower metal layer 19t.
  • the contact area is small, it becomes difficult for the upper metal layer 21t to separate from the lower metal layer 19t. Further, the upper metal layer 21t is exposed from each through-hole Sa formed in the lower metal layer 19t, and contacts the second gate insulating film 18c having higher adhesion than the lower metal layer 19t. As a result, the adhesion between the lower metal layer 19t and the upper metal layer 21t is ensured, so that peeling of the upper metal layer 21t from the lower metal layer 19t can be suppressed in each terminal pad Up of the terminal portion T. .
  • each terminal wiring Uw provided in the terminal portion T of the frame region F includes the first terminal wiring 19tw provided integrally with the lower metal layer 19t, and the first terminal wiring 19tw provided integrally with the lower metal layer 19t.
  • the first terminal wiring 19tw and the second terminal wiring 19tw are connected to the first terminal wiring 19tw through the second terminal wiring 19u provided so as to be separated from the first terminal wiring 19tw, and the first contact hole Ha and the second contact hole Hb formed in the second gate insulating film 18c. and a third terminal wiring 16t electrically connected to the terminal wiring 19u.
  • a plurality of wiring through holes Sb are formed in the first terminal wiring 19tw of each terminal wiring Uw provided in the terminal portion T of the frame region F.
  • the second interlayer insulating film 20 contacts the second gate insulating film 18c exposed from each wiring through-hole Sb formed in the first terminal wiring 19tw.
  • the second interlayer insulating film 20 comes into contact with the second gate insulating film 18c having higher adhesion than the first terminal wiring 19tw, and the adhesion between the first terminal wiring 19tw and the second interlayer insulating film 20 is ensured. Therefore, peeling of the second interlayer insulating film 20 from the first terminal wiring 19tw can be suppressed.
  • each chip terminal Np provided in the chip mounting portion M of the frame area F includes the chip lower metal layer 19mt and the chip upper metal layer 21mt.
  • the upper metal layer 21mt is provided so as to fill the plurality of through holes Sf formed in the chip lower metal layer 19mt.
  • the chip lower metal layer 19mt and the chip upper metal layer 21mt are in contact with each other on one surface having a relatively large area.
  • the chip upper metal layer 21mt is easily separated from the chip lower metal layer 19mt.
  • the chip lower layer metal layer 19mt and the chip upper layer metal layer 21mt are separated by the plurality of through holes Sf. Since the contact area is relatively small, it is difficult for the chip upper metal layer 21mt to separate from the chip lower metal layer 19mt. Further, the chip upper metal layer 21mt is exposed from each through-hole Sf formed in the chip lower metal layer 19mt, and contacts the second gate insulating film 18c having higher adhesion than the chip lower metal layer 19mt.
  • the chip upper metal layer 21mt is separated from the chip lower metal layer 19mt at each chip terminal Np of the chip mounting portion M. can be suppressed.
  • each input-side chip wiring Nw provided in the chip mounting portion M of the frame area F is connected to the fourth terminal provided integrally with the chip lower metal layer 19mt.
  • a plurality of wiring through-holes Sg are formed in the fourth terminal wiring 19mv of each input-side chip wiring Nw provided in the chip mounting portion M of the frame area F. Therefore, the second interlayer insulating film 20 contacts the second gate insulating film 18c exposed from each wiring through-hole Sg formed in the fourth terminal wiring 19mv. As a result, the second interlayer insulating film 20 comes into contact with the second gate insulating film 18c having higher adhesion than the fourth terminal wiring 19mv, and the adhesion between the fourth terminal wiring 19mv and the second interlayer insulating film 20 is ensured. Therefore, peeling of the second interlayer insulating film 20 from the fourth terminal wiring 19mv can be suppressed.
  • an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer was exemplified. It may have a three-layered structure of a combined hole-transport layer, a light-emitting layer, and an electron-transport layer and electron-injection layer.
  • the organic EL display device in which the first electrode is the anode and the second electrode is the cathode is exemplified.
  • an organic EL display device in which the second electrode is an anode is exemplified.
  • an organic EL display device was described as an example of a display device.
  • a display device equipped with a QLED (Quantum-dot light emitting diode), which is a light emitting element using a quantum dot-containing layer was described as an example of a display device.
  • the present invention is useful for flexible display devices.

Abstract

In the present invention, in a terminal portion (T) of a base part in a frame region, a plurality of terminal pads (Up) are provided which are lined up in a row in a direction in which the terminal portion (T) extends, and a plurality of terminal wires (Uw) are also provided so as to correspond to the plurality of terminal pads (Up). Each terminal pad (Up) comprises a lower metal layer (19t) which is formed in the same layer and from the same material as a first metal layer, and an upper metal layer (21t) which is formed in the same layer and from the same material as a second metal layer. In the lower metal layer (19t), through holes (Sa) are formed which penetrate the lower metal layer (19t), and the upper metal layer (21t) is provided so as to fill these through holes (Sa).

Description

表示装置Display device
 本発明は、表示装置に関するものである。 The present invention relates to display devices.
 近年、液晶表示装置に代わる表示装置として、有機エレクトロルミネッセンス(electroluminescence、以下、「EL」とも称する)素子を用いた自発光型の有機EL表示装置が注目されている。この有機EL表示装置では、画像の最小単位であるサブ画素毎に複数の薄膜トランジスタ(thin film transistor、以下「TFT」とも称する)が設けられている。ここで、TFTを構成する半導体層としては、例えば、移動度が高いポリシリコンからなる半導体層、リーク電流が小さいIn-Ga-Zn-O等の酸化物半導体からなる半導体層等がよく知られている。 In recent years, self-luminous organic EL display devices using organic electroluminescence (hereinafter also referred to as "EL") elements have attracted attention as display devices that can replace liquid crystal display devices. In this organic EL display device, a plurality of thin film transistors (hereinafter also referred to as "TFTs") are provided for each sub-pixel, which is the minimum unit of an image. Here, as a semiconductor layer constituting a TFT, for example, a semiconductor layer made of polysilicon with high mobility, a semiconductor layer made of an oxide semiconductor such as In--Ga--Zn--O with small leakage current, and the like are well known. ing.
 例えば、特許文献1には、ポリシリコン半導体を用いた第1のTFT、及び酸化物半導体を用いた第2のTFTが基板上にそれぞれ形成されたハイブリッド構造を有する表示装置が開示されている。 For example, Patent Document 1 discloses a display device having a hybrid structure in which a first TFT using a polysilicon semiconductor and a second TFT using an oxide semiconductor are formed on a substrate.
特開2020-17558号公報JP 2020-17558 A
 ところで、有機EL表示装置では、画像表示を行う表示領域の周囲に額縁領域が設けられ、額縁領域の端部に端子部が設けられている。また、有機EL表示装置は、ベース基板と、ベース基板上に設けられ、例えば、第1金属層、無機絶縁膜及び第2金属層が順に積層されたTFT層と、TFT層上に設けられた発光素子層と、発光素子層上に設けられた封止膜とを備えている。ここで、端子部には、複数の端子が配置され、第1金属層と同一材料により同一層に形成された下層金属層と、第2金属層と同一材料により同一層に形成された上層金属層とを積層して各端子を構成することがある。この場合、下層金属層と上層金属層との密着性が不足することにより、各端子において、下層金属層から上層金属層が剥離するおそれがあるので、改善の余地がある。 By the way, in an organic EL display device, a frame area is provided around a display area for displaying an image, and terminal portions are provided at the ends of the frame area. Further, the organic EL display device includes a base substrate, a TFT layer provided on the base substrate, for example, a first metal layer, an inorganic insulating film and a second metal layer laminated in order, and a TFT layer provided on the TFT layer. It includes a light emitting element layer and a sealing film provided on the light emitting element layer. Here, a plurality of terminals are arranged in the terminal portion, and a lower metal layer formed on the same layer with the same material as the first metal layer and an upper metal layer formed on the same layer with the same material as the second metal layer. Each terminal may be configured by stacking layers. In this case, the lack of adhesion between the lower metal layer and the upper metal layer may cause the upper metal layer to separate from the lower metal layer at each terminal, so there is room for improvement.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、端子部の各端子パッドにおいて、下層金属層からの上層金属層の剥離を抑制することにある。 The present invention has been made in view of this point, and its object is to suppress peeling of the upper layer metal layer from the lower layer metal layer in each terminal pad of the terminal portion.
 上記目的を達成するために、本発明に係る表示装置は、ベース基板と、上記ベース基板上に設けられ、第1金属層、第1無機絶縁膜、第2金属層が順に積層された薄膜トランジスタ層と、上記薄膜トランジスタ層上に設けられ、表示領域を構成する複数のサブ画素に対応して複数の発光素子が配列された発光素子層と、上記発光素子層上に該発光素子層を覆うように設けられた封止膜とを備え、上記表示領域の周囲には、額縁領域が設けられ、上記額縁領域の端部には、端子部が一方向に延びるように設けられ、上記端子部には、該端子部の延びる方向に一列に並ぶ複数の端子パッド、及び該複数の端子パッドに対応して互いに並行に延びて該複数の端子パッドにそれぞれ電気的に接続された複数の端子配線が設けられた表示装置であって、上記各端子パッドは、上記第1金属層と同一材料により同一層に形成された下層金属層と、上記第2金属層と同一材料により同一層に形成された上層金属層とを備え、上記下層金属層には、該下層金属層を貫通する貫通孔が形成され、上記上層金属層は、上記貫通孔を埋めるように設けられていることを特徴とする。 To achieve the above object, a display device according to the present invention comprises a base substrate and a thin film transistor layer provided on the base substrate and having a first metal layer, a first inorganic insulating film, and a second metal layer laminated in this order. a light-emitting element layer provided on the thin-film transistor layer and having a plurality of light-emitting elements arranged corresponding to a plurality of sub-pixels forming a display region; A frame region is provided around the display region, and a terminal portion is provided at an end portion of the frame region so as to extend in one direction. , a plurality of terminal pads arranged in a row in the direction in which the terminal portion extends, and a plurality of terminal wires extending parallel to each other corresponding to the plurality of terminal pads and electrically connected to the plurality of terminal pads. wherein each terminal pad comprises a lower metal layer made of the same material as the first metal layer and formed in the same layer, and an upper metal layer made of the same material as the second metal layer and formed in the same layer. a metal layer, the lower metal layer is formed with a through-hole penetrating the lower metal layer, and the upper metal layer is provided so as to fill the through-hole.
 本発明によれば、端子部の各端子パッドにおいて、下層金属層からの上層金属層の剥離を抑制することができる。 According to the present invention, peeling of the upper metal layer from the lower metal layer can be suppressed in each terminal pad of the terminal portion.
図1は、本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the invention. 図2は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の平面図である。FIG. 2 is a plan view of the display area of the organic EL display device according to the first embodiment of the invention. 図3は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の断面図である。FIG. 3 is a cross-sectional view of the display area of the organic EL display device according to the first embodiment of the invention. 図4は、本発明の第1の実施形態に係る有機EL表示装置を構成する薄膜トランジスタ層の等価回路図である。FIG. 4 is an equivalent circuit diagram of a thin film transistor layer that constitutes the organic EL display device according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層を示す断面図である。FIG. 5 is a cross-sectional view showing an organic EL layer that constitutes the organic EL display device according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態に係る有機EL表示装置の額縁領域の端子部の平面図である。FIG. 6 is a plan view of the terminal portion of the frame region of the organic EL display device according to the first embodiment of the present invention. 図7は、図6中のVI-VI線に沿った有機EL表示装置の端子部の断面図である。FIG. 7 is a cross-sectional view of the terminal portion of the organic EL display device along line VI-VI in FIG. 図8は、図6中のVIII-VIII線に沿った有機EL表示装置の端子部の断面図である。FIG. 8 is a cross-sectional view of the terminal portion of the organic EL display device taken along line VIII--VIII in FIG. 図9は、図6中のIX-IX線に沿った有機EL表示装置の端子部の断面図である。FIG. 9 is a cross-sectional view of the terminal portion of the organic EL display device along line IX-IX in FIG. 図10は、本発明の第1の実施形態に係る有機EL表示装置の端子部に設けられた下層金属層の第1の変形例を示す平面図である。FIG. 10 is a plan view showing a first modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention. 図11は、本発明の第1の実施形態に係る有機EL表示装置の端子部に設けられた下層金属層の第2の変形例を示す平面図である。FIG. 11 is a plan view showing a second modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention. 図12は、本発明の第1の実施形態に係る有機EL表示装置の端子部に設けられた下層金属層の第3の変形例を示す平面図である。FIG. 12 is a plan view showing a third modification of the lower metal layer provided in the terminal portion of the organic EL display device according to the first embodiment of the present invention. 図13は、本発明の第1の実施形態に係る有機EL表示装置の額縁領域のチップ実装部及びその周囲の平面図である。FIG. 13 is a plan view of a chip mounting portion and its periphery in the frame area of the organic EL display device according to the first embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In addition, the present invention is not limited to the following embodiments.
 《第1の実施形態》
 図1~図13は、本発明に係る表示装置の第1の実施形態を示している。なお、以下の各実施形態では、発光素子層を備えた表示装置として、有機EL素子層を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50の概略構成を示す平面図である。また、図2及び図3は、有機EL表示装置50の表示領域Dの平面図及び断面図である。また、図4は、有機EL表示装置50を構成する薄膜トランジスタ層30の等価回路図である。また、図5は、有機EL表示装置50を構成する有機EL層33を示す断面図である。また、図6は、有機EL表示装置50の額縁領域Fの端子部Tの平面図である。また、図7、図8及び図9は、図6中のVI-VI線、VIII-VIII線及びIX-IX線に沿った有機EL表示装置50の端子部Tの断面図である。また、図10、図11及び図12は、有機EL表示装置50の端子部Tに設けられた下層金属層19tの第1、第2及び第3の変形例の下層金属層19ta、19tb及び19tcを示す平面図である。また、図13は、有機EL表示装置50の額縁領域Fのチップ実装部M及びその周囲の平面図である。
<<1st Embodiment>>
1 to 13 show a first embodiment of a display device according to the invention. In addition, in each of the following embodiments, an organic EL display device having an organic EL element layer is exemplified as a display device having a light emitting element layer. Here, FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50 of this embodiment. 2 and 3 are a plan view and a cross-sectional view of the display area D of the organic EL display device 50. FIG. 4 is an equivalent circuit diagram of the thin film transistor layer 30 that constitutes the organic EL display device 50. As shown in FIG. 5 is a cross-sectional view showing the organic EL layer 33 forming the organic EL display device 50. As shown in FIG. 6 is a plan view of the terminal portion T of the frame area F of the organic EL display device 50. As shown in FIG. 7, 8 and 9 are sectional views of the terminal portion T of the organic EL display device 50 taken along lines VI-VI, VIII-VIII and IX-IX in FIG. 10, 11, and 12 show lower metal layers 19ta, 19tb, and 19tc of first, second, and third modifications of the lower metal layer 19t provided in the terminal portion T of the organic EL display device 50. FIG. It is a plan view showing the. FIG. 13 is a plan view of the chip mounting portion M of the frame area F of the organic EL display device 50 and its surroundings.
 有機EL表示装置50は、図1に示すように、例えば、矩形状に設けられた画像表示を行う表示領域Dと、表示領域Dの周囲に枠状に設けられた額縁領域Fとを備えている。なお、本実施形態では、矩形状の表示領域Dを例示したが、この矩形状には、例えば、辺が円弧状になった形状、角部が円弧状になった形状、辺の一部に切り欠きがある形状等の略矩形状も含まれている。 As shown in FIG. 1, the organic EL display device 50 includes, for example, a rectangular display area D for displaying an image, and a frame area F provided around the display area D in a frame shape. there is In this embodiment, the rectangular display area D is exemplified, but the rectangular shape includes, for example, a shape with arc-shaped sides, a shape with arc-shaped corners, and a shape with arc-shaped corners. A substantially rectangular shape such as a shape with a notch is also included.
 表示領域Dには、図2に示すように、複数のサブ画素Pがマトリクス状に配列されている。また、表示領域Dでは、図2に示すように、例えば、赤色の表示を行うための赤色発光領域Erを有するサブ画素P、緑色の表示を行うための緑色発光領域Egを有するサブ画素P、及び青色の表示を行うための青色発光領域Ebを有するサブ画素Pが互いに隣り合うように設けられている。なお、表示領域Dでは、例えば、赤色発光領域Er、緑色発光領域Eg及び青色発光領域Ebを有する隣り合う3つのサブ画素Pにより、1つの画素が構成されている。 In the display area D, as shown in FIG. 2, a plurality of sub-pixels P are arranged in a matrix. In the display region D, as shown in FIG. 2, for example, sub-pixels P having a red light-emitting region Er for displaying red, sub-pixels P having a green light-emitting region Eg for displaying green, and a sub-pixel P having a blue light-emitting region Eb for displaying blue is provided so as to be adjacent to each other. In addition, in the display region D, for example, one pixel is configured by three adjacent sub-pixels P each having a red light emitting region Er, a green light emitting region Eg and a blue light emitting region Eb.
 額縁領域Fの図1中の下端部には、例えば、フレキシブルプリント配線基板を実装するための端子部Tが一方向(図中のX方向)に延びるように設けられている。また、額縁領域Fには、図1に示すように、表示領域D及び端子部Tの間に、例えば、集積回路チップを実装するためのチップ実装部Mが一方向(図中のX方向)に延びるように設けられている。  A terminal part T for mounting a flexible printed wiring board, for example, is provided so as to extend in one direction (the X direction in the figure) at the lower end part of the frame area F in FIG. In the frame region F, as shown in FIG. 1, a chip mounting portion M for mounting an integrated circuit chip, for example, is provided between the display region D and the terminal portion T in one direction (the X direction in the drawing). It is provided to extend to
 また、有機EL表示装置50は、図3に示すように、ベース基板として設けられた樹脂基板10と、樹脂基板10上に設けられたTFT層30と、TFT層30上に発光素子層として設けられた有機EL素子層40と、有機EL素子層40を覆うように設けられた封止膜45とを備えている。 As shown in FIG. 3, the organic EL display device 50 includes a resin substrate 10 provided as a base substrate, a TFT layer 30 provided on the resin substrate 10, and a light emitting element layer provided on the TFT layer 30. and a sealing film 45 provided to cover the organic EL element layer 40 .
 樹脂基板10は、例えば、ポリイミド樹脂等により構成されている。 The resin substrate 10 is made of, for example, polyimide resin.
 TFT層30は、図3に示すように、樹脂基板10上に設けられたベースコート膜11と、ベースコート膜11上にサブ画素P毎に設けられた初期化TFT9a(図4参照)、補償用TFT9b(図4参照)、書込用TFT9c(図4参照)、駆動用TFT9d、電源供給用TFT9e(図4参照)、発光制御用TFT9f、陽極放電用TFT9g及びキャパシタ9hと、各TFT9a~9g及びキャパシタ9h上に設けられた平坦化膜22aとを備えている。ここで、TFT層30には、図2に示すように、図中のX方向に互いに平行に延びるように複数のゲート線14gが設けられている。また、TFT層30には、図2に示すように、図中のX方向に互いに平行に延びるように複数の発光制御線14eが設けられている。また、TFT層30には、図2に示すように、図中のX方向に互いに平行に延びるように複数の第2初期化電源線19iが第1金属層として設けられている。なお、各発光制御線14eは、図2に示すように、各ゲート線14g及び各第2初期化電源線19iと隣り合うように設けられている。また、TFT層30には、図2に示すように、図中のY方向に互いに平行に延びるように複数のソース線21hが第2金属層として設けられている。また、TFT層30には、図2に示すように、図中のY方向に互いに平行に延びるように複数の電源線21iが第2金属層として設けられている。なお、各電源線21iは、図2に示すように、各ソース線21hと隣り合うように設けられている。 As shown in FIG. 3, the TFT layer 30 includes a base coat film 11 provided on the resin substrate 10, an initialization TFT 9a (see FIG. 4) provided for each sub-pixel P on the base coat film 11, and a compensation TFT 9b. (see FIG. 4), a writing TFT 9c (see FIG. 4), a driving TFT 9d, a power supply TFT 9e (see FIG. 4), a light emission control TFT 9f, an anode discharge TFT 9g, a capacitor 9h, and the respective TFTs 9a to 9g and capacitors. and a planarizing film 22a provided on 9h. Here, as shown in FIG. 2, the TFT layer 30 is provided with a plurality of gate lines 14g extending parallel to each other in the X direction in the drawing. Further, as shown in FIG. 2, the TFT layer 30 is provided with a plurality of light emission control lines 14e extending parallel to each other in the X direction in the figure. Further, as shown in FIG. 2, the TFT layer 30 is provided with a plurality of second initialization power supply lines 19i as first metal layers so as to extend parallel to each other in the X direction in the figure. As shown in FIG. 2, each light emission control line 14e is provided adjacent to each gate line 14g and each second initialization power supply line 19i. In the TFT layer 30, as shown in FIG. 2, a plurality of source lines 21h are provided as a second metal layer so as to extend parallel to each other in the Y direction in the figure. Further, as shown in FIG. 2, the TFT layer 30 is provided with a plurality of power supply lines 21i as a second metal layer so as to extend parallel to each other in the Y direction in the figure. Each power supply line 21i is provided adjacent to each source line 21h, as shown in FIG.
 書込用TFT9c、駆動用TFT9d、電源供給用TFT9e及び発光制御用TFT9fは、例えば、LTPS(low temperature polysilicon)等のポリシリコンにより形成された第1半導体層を有する第1TFTとして設けられ、ゲート電極、第1端子電極及び第2端子電極を備えている。また、初期化TFT9a、補償用TFT9b及び陽極放電用TFT9gは、例えば、In-Ga-Zn-O系等の酸化物半導体により形成された第2半導体層を有する第2TFTとして設けられ、ゲート電極、第3端子電極及び第4端子電極を備えている。ここで、In-Ga-Zn-O系の酸化物半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されない。また、In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。なお、結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。また、In-Ga-Zn-O系の半導体の代わりに、他の酸化物半導体を含んでいてもよい。他の酸化物半導体としては、例えば、In-Sn-Zn-O系半導体(例えば、In-SnO-ZnO;InSnZnO)を含んでもよい。ここで、In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)及びZn(亜鉛)の三元系酸化物である。また、他の酸化物半導体としては、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体、In-Ga-Zn-Sn-O系半導体、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1-xO)、酸化カドミウム亜鉛(CdZn1-xO)等を含んでいてもよい。なお、Zn-O系半導体としては、1族元素、13族元素、14族元素、15族元素、17族元素等のうち1種又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態のもの、多結晶状態のもの、非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。 The writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, and the light emission control TFT 9f are provided as first TFTs having a first semiconductor layer made of polysilicon such as LTPS (low temperature polysilicon), and have gate electrodes. , a first terminal electrode and a second terminal electrode. The initialization TFT 9a, the compensation TFT 9b, and the anode discharge TFT 9g are provided as second TFTs having a second semiconductor layer formed of an oxide semiconductor such as an In--Ga--Zn--O-based semiconductor. A third terminal electrode and a fourth terminal electrode are provided. Here, the In—Ga—Zn—O-based oxide semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition) of In, Ga, and Zn is ratio) is not particularly limited. In--Ga--Zn--O based semiconductors may be amorphous or crystalline. As the crystalline In--Ga--Zn--O-based semiconductor, a crystalline In--Ga--Zn--O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable. Further, another oxide semiconductor may be included instead of the In--Ga--Zn--O-based semiconductor. Other oxide semiconductors may include, for example, In—Sn—Zn—O-based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO). Here, the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc). Further, other oxide semiconductors include In--Al--Zn--O based semiconductors, In--Al--Sn--Zn--O based semiconductors, Zn--O based semiconductors, In--Zn--O based semiconductors, Zn--Ti-- O-based semiconductor, Cd--Ge--O-based semiconductor, Cd--Pb--O-based semiconductor, CdO (cadmium oxide), Mg--Zn--O-based semiconductor, In--Ga--Sn--O-based semiconductor, In--Ga--O-based semiconductor Semiconductors, Zr-In-Zn-O-based semiconductors, Hf-In-Zn-O-based semiconductors, Al-Ga-Zn-O-based semiconductors, Ga-Zn-O-based semiconductors, In-Ga-Zn-Sn-O-based semiconductors Semiconductors such as InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O) and the like may be included. As the Zn—O-based semiconductor, an amorphous ZnO ( Amorphous) state, polycrystalline state, microcrystalline state in which amorphous state and polycrystalline state are mixed, or one to which no impurity element is added can be used.
 初期化TFT9aは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が前段(n-1段)のゲート線14g(n-1)に電気的に接続され、その第3端子電極が後述するキャパシタ9hの下部導電層16c及び駆動用TFT9dのゲート電極に電気的に接続され、その第4端子電極が電源線21iに電気的に接続されている。なお、図4の等価回路図では、第1TFT(書込用TFT9c、駆動用TFT9d、電源供給用TFT9e及び発光制御用TFT9f)の第1端子電極及び第2端子電極を丸数字の1及び2で示し、第2TFT(初期化TFT9a、補償用TFT9b及び陽極放電用TFT9g)の第3端子電極及び第4端子電極を丸数字の3及び4で示している。また、図4の等価回路図では、n行m列目のサブ画素Pの画素回路を示しているが、(n-1)行m列目のサブ画素Pの画素回路の一部も含んでいる。また、図4の等価回路図では、高電源電圧ELVDDを供給する電源線21iが第1初期化電源線を兼ねているが、電源線21i及び第1初期化電源線は、別々に設けられていてもよい。また、第2初期化電源線19iには、低電源電圧ELVSSと同じ電圧を入力するが、これに限定されることなく、低電源電圧ELVSSと異なる電圧で有機EL素子35が消灯するような電圧を入力してもよい。 As shown in FIG. 4, in each sub-pixel P, the initialization TFT 9a has its gate electrode electrically connected to the preceding (n-1) gate line 14g (n-1) and its third terminal electrode. is electrically connected to the lower conductive layer 16c of the capacitor 9h and the gate electrode of the driving TFT 9d, which will be described later, and its fourth terminal electrode is electrically connected to the power supply line 21i. In the equivalent circuit diagram of FIG. 4, the first terminal electrodes and the second terminal electrodes of the first TFTs (the writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, and the light emission control TFT 9f) are indicated by circled numerals 1 and 2. The third terminal electrode and the fourth terminal electrode of the second TFT (the initialization TFT 9a, the compensation TFT 9b and the anode discharge TFT 9g) are indicated by circled numerals 3 and 4. As shown in FIG. Further, although the equivalent circuit diagram of FIG. 4 shows the pixel circuit of the n-th row and m-th column sub-pixel P, it also includes part of the pixel circuit of the (n−1)-th row and m-th column sub-pixel P. there is In the equivalent circuit diagram of FIG. 4, the power supply line 21i for supplying the high power supply voltage ELVDD also serves as the first initialization power supply line, but the power supply line 21i and the first initialization power supply line are provided separately. may In addition, although the same voltage as the low power supply voltage ELVSS is input to the second initialization power supply line 19i, the present invention is not limited to this, and a voltage different from the low power supply voltage ELVSS can be applied to turn off the organic EL element 35. can be entered.
 補償用TFT9bは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)のゲート線14g(n)に電気的に接続され、その第3端子電極が駆動用TFT9dのゲート電極に電気的に接続され、その第4端子電極が駆動用TFT9dの第1端子電極に電気的に接続されている。 As shown in FIG. 4, the compensation TFT 9b has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage) in each sub-pixel P, and its third terminal electrode is used for driving. It is electrically connected to the gate electrode of the TFT 9d, and its fourth terminal electrode is electrically connected to the first terminal electrode of the driving TFT 9d.
 書込用TFT9cは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)のゲート線14g(n)に電気的に接続され、その第1端子電極が対応するソース線21hに電気的に接続され、その第2端子電極が駆動用TFT9dの第2端子電極に電気的に接続されている。 As shown in FIG. 4, in each sub-pixel P, the write TFT 9c has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage), and its first terminal electrode corresponds to the gate line 14g(n). The second terminal electrode of the source line 21h is electrically connected to the second terminal electrode of the driving TFT 9d.
 駆動用TFT9dは、図4に示すように、各サブ画素Pにおいて、そのゲート電極14b(図3参照)が初期化用TFT9a及び補償用TFT9bの各第3端子電極に電気的に接続され、その第1端子電極21e(図3参照)が補償用TFT9bの第4端子電極及び電源供給用TFT9eの各第2端子電極に電気的に接続され、その第2端子電極21g(図3参照)が書込用TFT9cの第2端子電極及び発光制御用TFT9fの第1端子電極に電気的に接続されている。ここで、駆動用TFT9dは、有機EL素子35の電流を制御するように構成されている。また、駆動用TFT9d、図3に示すように、ベースコート膜11上に設けられた第1半導体層12bと、第1半導体層12b上に設けられた第1ゲート絶縁膜13と、第1ゲート絶縁膜13上に設けられたゲート電極14bと、ゲート電極14bを覆うように設けられた第1層間絶縁膜15及び第2層間絶縁膜20と、第2層間絶縁膜20上に互いに離間するように設けられた第1端子電極21e及び第2端子電極21gとを備えている。ここで、第1半導体層12bは、互いに離間するように設けられた第1導体領域及び第2導体領域と、第1導体領域及び第2導体領域の間に規定されたチャネル領域とを備えている。そして、第1端子電極21e及び第2端子電極21gは、図3に示すように、第1ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜20の積層膜に形成された2つのコンタクトホールを介して第1半導体層12bの第1導体領域及び第2導体領域に電気的にそれぞれ接続されている。 As shown in FIG. 4, in each sub-pixel P, the driving TFT 9d has its gate electrode 14b (see FIG. 3) electrically connected to the third terminal electrodes of the initialization TFT 9a and the compensation TFT 9b. The first terminal electrode 21e (see FIG. 3) is electrically connected to the fourth terminal electrode of the compensating TFT 9b and the second terminal electrode of the power supply TFT 9e, and the second terminal electrode 21g (see FIG. 3) is the write terminal electrode. It is electrically connected to the second terminal electrode of the embedding TFT 9c and the first terminal electrode of the light emission controlling TFT 9f. Here, the driving TFT 9 d is configured to control the current of the organic EL element 35 . Further, as shown in FIG. 3, the driving TFT 9d, the first semiconductor layer 12b provided on the base coat film 11, the first gate insulating film 13 provided on the first semiconductor layer 12b, and the first gate insulating film A gate electrode 14b provided on the film 13, a first interlayer insulating film 15 and a second interlayer insulating film 20 provided to cover the gate electrode 14b, and a second interlayer insulating film 20 spaced apart from each other. A first terminal electrode 21e and a second terminal electrode 21g are provided. Here, the first semiconductor layer 12b includes a first conductor region and a second conductor region provided so as to be spaced apart from each other, and a channel region defined between the first conductor region and the second conductor region. there is 3, the first terminal electrode 21e and the second terminal electrode 21g are formed on the laminated film of the first gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 20. It is electrically connected to the first conductor region and the second conductor region of the first semiconductor layer 12b through one contact hole.
 電源供給用TFT9eは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)の発光制御線14eに電気的に接続され、その第1端子電極が電源線21iに電気的に接続され、その第2端子電極が駆動用TFT9dの第1端子電極に電気的に接続されている。 As shown in FIG. 4, in each sub-pixel P, the power supply TFT 9e has its gate electrode electrically connected to the light emission control line 14e of its own stage (n stage), and its first terminal electrode connected to the power supply line 21i. and its second terminal electrode is electrically connected to the first terminal electrode of the driving TFT 9d.
 発光制御用TFT9fは、図4に示すように、各サブ画素Pにおいて、そのゲート電極14a(図3参照)が自段(n段)の発光制御線14eに電気的に接続され、その第1端子電極21a(図3参照)が駆動用TFT9dの第2端子電極に電気的に接続され、その第2端子電極21c(図3参照)が後述する有機EL素子35の第1電極31に電気的に接続されている。また、発光制御用TFT9fは、図3に示すように、ベースコート膜11上に設けられた第1半導体層12aと、第1半導体層12a上に設けられた第1ゲート絶縁膜13と、第1ゲート絶縁膜13上に設けられたゲート電極14aと、ゲート電極14aを覆うように設けられた第1層間絶縁膜15及び第2層間絶縁膜20と、第2層間絶縁膜20上に互いに離間するように設けられた第1端子電極21a及び第2端子電極21b(21c)とを備えている。ここで、第1半導体層12aは、互いに離間するように設けられた第1導体領域及び第2導体領域と、第1導体領域及び第2導体領域の間に規定されたチャネル領域とを備えている。そして、第1端子電極21a及び第2端子電極21bは、図3に示すように、第1ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜20の積層膜に形成された2つのコンタクトホールを介して第1半導体層12aの第1導体領域及び第2導体領域に電気的にそれぞれ接続されている。また、第2端子電極21cは、図3に示すように、第1ゲート絶縁膜13及び第1層間絶縁膜15の積層膜に形成されたコンタクトホール、中継電極16a、第2層間絶縁膜20に形成されたコンタクトホールを介して第1半導体層12aの第2導体領域に電気的に接続されている。 As shown in FIG. 4, in each sub-pixel P, the light emission control TFT 9f has its gate electrode 14a (see FIG. 3) electrically connected to the light emission control line 14e of its own stage (n stage). The terminal electrode 21a (see FIG. 3) is electrically connected to the second terminal electrode of the driving TFT 9d, and the second terminal electrode 21c (see FIG. 3) is electrically connected to the first electrode 31 of the organic EL element 35 to be described later. It is connected to the. Further, as shown in FIG. 3, the light emission control TFT 9f includes a first semiconductor layer 12a provided on the base coat film 11, a first gate insulating film 13 provided on the first semiconductor layer 12a, and a first gate insulating film 13 provided on the first semiconductor layer 12a. A gate electrode 14a provided on the gate insulating film 13, a first interlayer insulating film 15 and a second interlayer insulating film 20 provided to cover the gate electrode 14a, and separated from each other on the second interlayer insulating film 20. A first terminal electrode 21a and a second terminal electrode 21b (21c) are provided as follows. Here, the first semiconductor layer 12a includes a first conductor region and a second conductor region provided so as to be spaced apart from each other, and a channel region defined between the first conductor region and the second conductor region. there is 3, the first terminal electrode 21a and the second terminal electrode 21b are formed on the laminated film of the first gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 20. It is electrically connected to the first conductor region and the second conductor region of the first semiconductor layer 12a through one contact hole. Further, as shown in FIG. 3, the second terminal electrode 21c is formed in the contact hole formed in the laminated film of the first gate insulating film 13 and the first interlayer insulating film 15, the relay electrode 16a, and the second interlayer insulating film 20. It is electrically connected to the second conductor region of the first semiconductor layer 12a through the formed contact hole.
 陽極放電用TFT9gは、図4に示すように、各サブ画素Pにおいて、そのゲート電極19a(図3参照)が自段(n段)のゲート線14g(n)に電気的に接続され、その第3端子電極21c(図3参照)が有機EL素子35の第1電極31に電気的に接続され、その第4端子電極21d(図3参照)が第2初期化電源線19iに電気的に接続されている。なお、陽極放電用TFT9gの第3端子電極21cは、発光制御用TFT9fの第2端子電極21cと共用化されている。また、陽極放電用TFT9gは、図3に示すように、第1層間絶縁膜15上に設けられた第2半導体層17aと、第2半導体層17a上に第2無機絶縁膜として設けられた第2ゲート絶縁膜18aと、第2ゲート絶縁膜18a上に設けられたゲート電極19aと、ゲート電極19aを覆うように第1無機絶縁膜として設けられた第2層間絶縁膜20と、第2層間絶縁膜20上に互いに離間するように設けられた第3端子電極21c及び第4端子電極21dとを備えている。ここで、第2半導体層17aは、図3に示すように、互いに離間するように設けられた第3導体領域及び第4導体領域と、第3導体領域及び第4導体領域の間に設けられたチャネル領域とを備えている。そして、第3端子電極21cは、図3に示すように、第2層間絶縁膜20に形成されたコンタクトホール及び中継電極16aを介して第2半導体層17aの第3導体領域に電気的に接続されている。また、第4端子電極21dは、図3に示すように、第2層間絶縁膜20に形成されたコンタクトホール及び中継電極16bを介して第2半導体層17aの第4導体領域に電気的に接続されている。 As shown in FIG. 4, in each sub-pixel P, the anode discharge TFT 9g has its gate electrode 19a (see FIG. 3) electrically connected to the gate line 14g(n) of its own stage (n stage). The third terminal electrode 21c (see FIG. 3) is electrically connected to the first electrode 31 of the organic EL element 35, and the fourth terminal electrode 21d (see FIG. 3) is electrically connected to the second initialization power line 19i. It is connected. The third terminal electrode 21c of the anode discharge TFT 9g is shared with the second terminal electrode 21c of the light emission control TFT 9f. Further, as shown in FIG. 3, the anode discharge TFT 9g includes a second semiconductor layer 17a provided on the first interlayer insulating film 15 and a second semiconductor layer 17a provided on the second semiconductor layer 17a as a second inorganic insulating film. 2 gate insulating film 18a, gate electrode 19a provided on second gate insulating film 18a, second interlayer insulating film 20 provided as a first inorganic insulating film so as to cover gate electrode 19a, second interlayer insulating film 20 A third terminal electrode 21c and a fourth terminal electrode 21d are provided on the insulating film 20 so as to be spaced apart from each other. Here, as shown in FIG. 3, the second semiconductor layer 17a is provided between the third conductor region and the fourth conductor region provided so as to be spaced apart from each other and between the third conductor region and the fourth conductor region. and a channel region. Then, as shown in FIG. 3, the third terminal electrode 21c is electrically connected to the third conductor region of the second semiconductor layer 17a through the contact hole formed in the second interlayer insulating film 20 and the relay electrode 16a. It is Also, as shown in FIG. 3, the fourth terminal electrode 21d is electrically connected to the fourth conductor region of the second semiconductor layer 17a through the contact hole formed in the second interlayer insulating film 20 and the relay electrode 16b. It is
 なお、本実施形態では、ポリシリコンにより形成された第1半導体層を有する第1TFTとして、書込用TFT9c、駆動用TFT9d、電源供給用TFT9e及び発光制御用TFT9fが設けられ、酸化物半導体により形成された第2半導体層を有する第2TFTとして、初期化TFT9a、補償用TFT9b及び陽極放電用TFT9gが設けられた画素回路を例示したが、画素回路の全てのTFT、すなわち、初期化TFT9a、補償用TFT9b、書込用TFT9c、駆動用TFT9d、電源供給用TFT9e、発光制御用TFT9f及び陽極放電用TFT9gを酸化物半導体により形成された半導体層を有するTFTで構成してもよい。 In this embodiment, the writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, and the light emission control TFT 9f are provided as the first TFTs having the first semiconductor layer made of polysilicon, and are made of an oxide semiconductor. Although the pixel circuit provided with the initialization TFT 9a, the compensation TFT 9b, and the anode discharge TFT 9g is exemplified as the second TFT having the second semiconductor layer, all the TFTs of the pixel circuit, that is, the initialization TFT 9a and the compensation TFT 9g, are provided. The TFT 9b, the writing TFT 9c, the driving TFT 9d, the power supply TFT 9e, the light emission control TFT 9f, and the anode discharge TFT 9g may be composed of TFTs having a semiconductor layer formed of an oxide semiconductor.
 キャパシタ9hは、図4に示すように、各サブ画素Pにおいて、その下部導電層16c(図3参照)が駆動用TFT9dのゲート電極14b(図3参照)、初期化用TFT9a及び補償用TFT9bの各第3端子電極に電気的に接続され、その上部導電層19b(図3参照)が陽極放電用TFT9gの第3端子電極、発光制御用TFT9fの第2端子電極及び有機EL素子35の第1電極31に電気的に接続されている。また、キャパシタ9hは、図3に示すように、中継電極16a及び16b等の第3金属層と同一材料により同一層に形成された下部導電層16cと、下部導電層16c上に第2無機絶縁膜として設けられた第2ゲート絶縁膜18bと、第2ゲート絶縁膜18b上に設けられ、ゲート電極19a等の第1金属層と同一材料により同一層に形成された上部導電層19bとを備えている。ここで、上部導電層19bは、図3に示すように、第2層間絶縁膜20に形成されたコンタクトホールを介してソース導電層21fに電気的に接続されている。なお、ソース導電層21fは、ソース線21h等の第2金属層と同一材料により同一層に形成され、陽極放電用TFT9gの第3端子電極、発光制御用TFT9fの第2端子電極及び有機EL素子35の第1電極31に電気的に接続されている。 As shown in FIG. 4, in each sub-pixel P, the capacitor 9h has a lower conductive layer 16c (see FIG. 3) connected to the gate electrode 14b (see FIG. 3) of the driving TFT 9d, the initializing TFT 9a and the compensating TFT 9b. The upper conductive layer 19b (see FIG. 3) is electrically connected to each third terminal electrode, the third terminal electrode of the anode discharge TFT 9g, the second terminal electrode of the light emission control TFT 9f, and the first terminal electrode of the organic EL element 35. It is electrically connected to the electrode 31 . Also, as shown in FIG. 3, the capacitor 9h is composed of a lower conductive layer 16c formed in the same layer with the same material as the third metal layer such as the relay electrodes 16a and 16b, and a second inorganic insulating layer on the lower conductive layer 16c. a second gate insulating film 18b provided as a film; and an upper conductive layer 19b provided on the second gate insulating film 18b and made of the same material and in the same layer as the first metal layer such as the gate electrode 19a. ing. Here, the upper conductive layer 19b is electrically connected to the source conductive layer 21f through a contact hole formed in the second interlayer insulating film 20, as shown in FIG. The source conductive layer 21f is made of the same material as the second metal layer such as the source line 21h and formed in the same layer. 35 is electrically connected to the first electrode 31 .
 平坦化膜22aは、表示領域Dにおいて、平坦な表面を有し、例えば、ポリイミド樹脂、アクリル樹脂等の有機樹脂材料、又はポリシロキサン系のSOG(spin on glass)材料等の有機絶縁膜により構成されている。 The planarizing film 22a has a flat surface in the display region D, and is made of an organic insulating film such as an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG (spin on glass) material. It is
 有機EL素子層40は、図3に示すように、複数のサブ画素Pに対応して、マトリクス状に配列するように複数の発光素子として設けられた複数の有機EL素子35(図4参照)と、各有機EL素子35の第1電極31の周端部を覆うように全てのサブ画素Pに共通して格子状に設けられたエッジカバー32とを備えている。 As shown in FIG. 3, the organic EL element layer 40 includes a plurality of organic EL elements 35 (see FIG. 4) provided as a plurality of light emitting elements arranged in a matrix corresponding to the plurality of sub-pixels P. and an edge cover 32 which is provided in a grid pattern in common to all the sub-pixels P so as to cover the peripheral edge of the first electrode 31 of each organic EL element 35 .
 有機EL素子35は、図3に示すように、各サブ画素Pにおいて、TFT層30の平坦化膜22a上に設けられた第1電極31と、第1電極31上に設けられた有機EL層33と、有機EL層33上に設けられた第2電極34とを備えている。 As shown in FIG. 3, in each sub-pixel P, the organic EL element 35 includes a first electrode 31 provided on the planarizing film 22a of the TFT layer 30 and an organic EL layer 31 provided on the first electrode 31. 33 and a second electrode 34 provided on the organic EL layer 33 .
 第1電極31は、図3に示すように、平坦化膜22aに形成されたコンタクトホールを介して、各サブ画素Pの発光制御用TFT9fの第2端子電極21cに電気的に接続されている。また、第1電極31は、有機EL層33にホール(正孔)を注入する機能を有している。また、第1電極31は、有機EL層33への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極31を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、チタン(Ti)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、イッテルビウム(Yb)、フッ化リチウム(LiF)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、イリジウム(Ir)、スズ(Sn)等の金属材料が挙げられる。また、第1電極31を構成する材料は、例えば、アスタチン(At)/酸化アスタチン(AtO)等の合金であっても構わない。さらに、第1電極31を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極31は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな化合物材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。 As shown in FIG. 3, the first electrode 31 is electrically connected to the second terminal electrode 21c of the light emission control TFT 9f of each sub-pixel P through a contact hole formed in the planarizing film 22a. . The first electrode 31 also has a function of injecting holes into the organic EL layer 33 . Further, the first electrode 31 is more preferably made of a material having a large work function in order to improve the efficiency of injecting holes into the organic EL layer 33 . Here, examples of materials forming the first electrode 31 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), and gold (Au). , titanium (Ti), ruthenium (Ru), manganese (Mn), indium (In), ytterbium (Yb), lithium fluoride (LiF), platinum (Pt), palladium (Pd), molybdenum (Mo), iridium ( metal materials such as Ir) and tin (Sn). Also, the material forming the first electrode 31 may be an alloy such as astatine (At)/astatine oxide (AtO 2 ). Further, the material forming the first electrode 31 is, for example, conductive oxides such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). There may be. Also, the first electrode 31 may be formed by stacking a plurality of layers made of the above materials. Compound materials having a large work function include, for example, indium tin oxide (ITO) and indium zinc oxide (IZO).
 エッジカバー32は、例えば、ポリイミド樹脂、アクリル樹脂等の有機樹脂材料、又はポリシロキサン系のSOG材料等により構成されている。 The edge cover 32 is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG material.
 有機EL層33は、発光機能層として設けられ、図5に示すように、第1電極31上に順に積層された正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。 The organic EL layer 33 is provided as a light-emitting functional layer, and as shown in FIG. and an electron injection layer 5 .
 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極31と有機EL層33とのエネルギーレベルを近づけ、第1電極31から有機EL層33への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。 The hole injection layer 1 is also called an anode buffer layer, and has the function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 close to each other and improving the efficiency of hole injection from the first electrode 31 to the organic EL layer 33 . have. Examples of materials constituting the hole injection layer 1 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, phenylenediamine derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives and the like.
 正孔輸送層2は、第1電極31から有機EL層33への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。 The hole transport layer 2 has the function of improving the transport efficiency of holes from the first electrode 31 to the organic EL layer 33 . Examples of materials constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, and oxadiazole. derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Hydrogenated amorphous silicon carbide, zinc sulfide, zinc selenide and the like.
 発光層3は、第1電極31及び第2電極34による電圧印加の際に、第1電極31及び第2電極34から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンゾチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。 In the light-emitting layer 3, holes and electrons are injected from the first electrode 31 and the second electrode 34 when a voltage is applied by the first electrode 31 and the second electrode 34, and the holes and electrons recombine. area. Here, the light-emitting layer 3 is made of a material with high light-emitting efficiency. Examples of materials constituting the light-emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complex], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives. , benzoxazole derivatives, oxadiazole derivatives, oxazole derivatives, benzimidazole derivatives, thiadiazole derivatives, benzothiazole derivatives, styryl derivatives, styrylamine derivatives, bisstyrylbenzene derivatives, tristyrylbenzene derivatives, perylene derivatives, perinone derivatives, aminopyrene derivatives, Pyridine derivatives, rhodamine derivatives, aquidine derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylenevinylene, polysilane and the like.
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。 The electron transport layer 4 has a function of efficiently transferring electrons to the light emitting layer 3 . Here, the materials constituting the electron transport layer 4 include, for example, organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , silole derivatives, and metal oxinoid compounds.
 電子注入層5は、第2電極34と有機EL層33とのエネルギーレベルを近づけ、第2電極34から有機EL層33へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子35の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。 The electron injection layer 5 has a function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 close to each other and improving the efficiency of electron injection from the second electrode 34 to the organic EL layer 33. With this function, The driving voltage of the organic EL element 35 can be lowered. The electron injection layer 5 is also called a cathode buffer layer. Here, examples of materials constituting the electron injection layer 5 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride. inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like.
 第2電極34は、図3に示すように、各有機EL層33及びエッジカバー32を覆うように全てのサブ画素Pに共通して設けられている。また、第2電極34は、有機EL層33に電子を注入する機能を有している。また、第2電極34は、有機EL層33への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第2電極34を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極34は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極34は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極34は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。 The second electrode 34 is provided in common to all the sub-pixels P so as to cover each organic EL layer 33 and the edge cover 32, as shown in FIG. The second electrode 34 also has a function of injecting electrons into the organic EL layer 33 . Moreover, the second electrode 34 is more preferably made of a material with a small work function in order to improve the efficiency of injecting electrons into the organic EL layer 33 . Here, examples of materials constituting the second electrode 34 include silver (Ag), aluminum (Al), vanadium (V), calcium (Ca), titanium (Ti), yttrium (Y), and sodium (Na). , manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb), lithium fluoride (LiF), and the like. In addition, the second electrode 34 is composed of, for example, magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/astatine oxide (AtO 2 ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al), etc. may Also, the second electrode 34 may be formed of conductive oxides such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). . Also, the second electrode 34 may be formed by laminating a plurality of layers made of the above materials. Examples of materials with a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al) etc.
 封止膜45は、図3に示すように、第2電極34を覆うように設けられ、第2電極34上に順に積層された第1無機封止膜41、有機封止膜42及び第2無機封止膜43を備え、有機EL素子35の有機EL層33を水分や酸素等から保護する機能を有している。ここで、第1無機封止膜41及び第2無機封止膜43は、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜により構成されている。また、有機封止膜42は、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリ尿素樹脂、パリレン樹脂、ポリイミド樹脂、ポリアミド樹脂等の有機樹脂材料により構成されている。なお、有機EL表示装置50の額縁領域Fには、有機封止膜42となるインクの拡がりを抑制するための第1堰き止め壁が表示領域Dを囲むように枠状に設けられ、その第1堰き止め壁を囲むように第2堰き止め壁が枠状に設けられている。 As shown in FIG. 3 , the sealing film 45 is provided so as to cover the second electrode 34 , and the first inorganic sealing film 41 , the organic sealing film 42 and the second sealing film 42 are laminated on the second electrode 34 in this order. It has an inorganic sealing film 43 and has a function of protecting the organic EL layer 33 of the organic EL element 35 from moisture, oxygen, and the like. Here, the first inorganic sealing film 41 and the second inorganic sealing film 43 are composed of an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film. The organic sealing film 42 is made of an organic resin material such as acrylic resin, epoxy resin, silicone resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin. In addition, in the frame area F of the organic EL display device 50, a first damming wall for suppressing the spread of the ink forming the organic sealing film 42 is provided in a frame shape so as to surround the display area D. A second damming wall is provided in a frame shape so as to surround the first damming wall.
 また、有機EL表示装置50は、図6に示すように、額縁領域Fの端子部Tにおいて、端子部Tの延びる方向(図中のX方向)に一列に並ぶように設けられた複数の端子パッドUpと、複数の端子パッドUpに対応して図中のY方向に互いに並行(平行)に延びるように設けられた複数の端子配線Uwとを備えている。ここで、複数の端子配線Uwは、複数の端子パッドUpにそれぞれ電気的に接続されている。 In addition, as shown in FIG. 6, the organic EL display device 50 has a plurality of terminals arranged in a line in the terminal portion T of the frame region F in the direction in which the terminal portion T extends (the X direction in the drawing). It has a pad Up and a plurality of terminal wirings Uw provided so as to extend parallel to each other in the Y direction in the figure corresponding to the plurality of terminal pads Up. Here, the plurality of terminal wirings Uw are electrically connected to the plurality of terminal pads Up.
 端子パッドUpは、図6及び図7に示すように、第2ゲート絶縁膜18c上に設けられた下層金属層19tと、下層金属層19t上に設けられた上層金属層21tとを備えている。ここで、端子パッドUpの表示領域D側(図中の右側)は、図7に示すように、平坦化膜22aと同一材料により同一層に形成された配線被覆層22bに覆われている。 As shown in FIGS. 6 and 7, the terminal pad Up includes a lower metal layer 19t provided on the second gate insulating film 18c and an upper metal layer 21t provided on the lower metal layer 19t. . Here, as shown in FIG. 7, the display area D side (right side in the drawing) of the terminal pad Up is covered with a wiring covering layer 22b formed in the same layer and made of the same material as the flattening film 22a.
 下層金属層19tは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、下層金属層19tには、図6及び図8に示すように、下層金属層19tを貫通する複数の貫通孔Saが形成されている。ここで、複数の貫通孔Saは、図6に示すように、図中のY方向に互いに平行に延びる複数のスリット状に形成されている。なお、本実施形態では、下層金属層19tに複数の貫通孔Saが形成された構成を例示したが、下層金属層19tには、1つの貫通孔Saが形成されていてもよい。 The lower metal layer 19t is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. In addition, as shown in FIGS. 6 and 8, the lower metal layer 19t is formed with a plurality of through holes Sa penetrating through the lower metal layer 19t. Here, as shown in FIG. 6, the plurality of through holes Sa are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing. In this embodiment, the configuration in which a plurality of through holes Sa are formed in the lower metal layer 19t is exemplified, but one through hole Sa may be formed in the lower metal layer 19t.
 上層金属層21tは、ソース線21h等の第2金属層と同一材料により同一層に形成されている。また、上層金属層21tは、図8に示すように、下層金属層19tに形成された複数の貫通孔Saを埋めるように設けられている。 The upper metal layer 21t is formed in the same layer with the same material as the second metal layer such as the source line 21h. Moreover, as shown in FIG. 8, the upper metal layer 21t is provided so as to fill the plurality of through holes Sa formed in the lower metal layer 19t.
 ここで、第1金属層及び第2金属層は、後述するように、チタン系金属膜、アルミニウム系金属膜及びチタン系金属膜を順に積層して構成されている。そして、第2層間絶縁膜20を形成するために、下層金属層19t上に成膜された酸化シリコン膜をパターニングする際に、下層金属層19tの上層金属層21t側のチタン系金属膜の一部がエッチングされて欠損している場合がある。そうなると、下層金属層19tにおいて、チタン系金属膜の欠損部から露出するアルミニウム系金属膜が酸化されて、上層金属層21tとの密着性の低下が懸念される。しかしながら、上述したように、下層金属層19tに複数の貫通孔Saが形成されていることにより、下層金属層19tと上層金属層21tとが(貫通孔Saのない場合のような)大面積で接触せず、且つ上層金属層21tと下層金属層19tの下層の第2ゲート絶縁膜18cとの密着性が高いので、下層金属層19tと上層金属層21tとの密着性が確保される。 Here, the first metal layer and the second metal layer are formed by sequentially stacking a titanium-based metal film, an aluminum-based metal film, and a titanium-based metal film, as described later. Then, when patterning the silicon oxide film formed on the lower metal layer 19t in order to form the second interlayer insulating film 20, one portion of the titanium-based metal film on the upper metal layer 21t side of the lower metal layer 19t is removed. Some parts may be missing due to etching. As a result, in the lower metal layer 19t, the aluminum-based metal film exposed from the missing portion of the titanium-based metal film is oxidized, and there is a concern that the adhesion with the upper metal layer 21t is lowered. However, as described above, since the plurality of through holes Sa are formed in the lower metal layer 19t, the lower metal layer 19t and the upper metal layer 21t have a large area (as in the case without the through holes Sa). Since there is no contact and the adhesion between the upper metal layer 21t and the second gate insulating film 18c under the lower metal layer 19t is high, the adhesion between the lower metal layer 19t and the upper metal layer 21t is ensured.
 端子配線Uwは、図6及び図7に示すように、第2ゲート絶縁膜18c上に設けられた第1端子配線19twと、第2ゲート絶縁膜18c上に第1端子配線19twと離間するように設けられた第2端子配線19uと、第1層間絶縁膜15上に設けられ、第1端子配線19tw及び第2端子配線19uの間に配置する第3端子配線16tとを備えている。ここで、第1端子配線19tw及び第2端子配線19u上には、図7に示すように、第2層間絶縁膜20を介して上層金属層21tが延長されている。 As shown in FIGS. 6 and 7, the terminal wiring Uw is arranged on the second gate insulating film 18c so as to be spaced apart from the first terminal wiring 19tw provided on the second gate insulating film 18c. and a third terminal wiring 16t provided on the first interlayer insulating film 15 and arranged between the first terminal wiring 19tw and the second terminal wiring 19u. Here, an upper metal layer 21t extends over the first terminal wiring 19tw and the second terminal wiring 19u with the second interlayer insulating film 20 interposed therebetween, as shown in FIG.
 第1端子配線19twは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、第1端子配線19twは、図6及び図7に示すように、端子パッドUpの下層金属層19tと一体に設けられている。また、第1端子配線19twには、図6及び図9に示すように、第1端子配線19twを貫通する複数の配線貫通孔Sbが形成されている。ここで、複数の配線貫通孔Sbは、図6に示すように、図中のY方向に互いに平行に延びる複数のスリット状に形成されている。なお、本実施形態では、第1端子配線19twに複数の配線貫通孔Sbが形成された構成を例示したが、第1端子配線19twには、1つの配線貫通孔Sbが形成されていてもよい。 The first terminal wiring 19tw is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. 6 and 7, the first terminal wiring 19tw is provided integrally with the lower metal layer 19t of the terminal pad Up. Further, as shown in FIGS. 6 and 9, the first terminal wiring 19tw is formed with a plurality of wiring through holes Sb penetrating through the first terminal wiring 19tw. Here, as shown in FIG. 6, the plurality of wiring through holes Sb are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing. In this embodiment, the configuration in which a plurality of wiring through-holes Sb are formed in the first terminal wiring 19tw is illustrated, but one wiring through-hole Sb may be formed in the first terminal wiring 19tw. .
 第2端子配線19uは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、第2端子配線19uは、例えば、チップ実装部Mに配置された後述する入力側チップ用配線Nwの第5端子配線19mwに電気的に接続されている。 The second terminal wiring 19u is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. The second terminal wiring 19u is electrically connected to, for example, a fifth terminal wiring 19mw of an input-side chip wiring Nw arranged in the chip mounting portion M and described later.
 第3端子配線16tは、中継電極16a等の第3金属層と同一材料により同一層に形成されている。また、第3端子配線16tは、図6及び図7に示すように、第2ゲート絶縁膜18cに形成された第1コンタクトホールHa及び第2コンタクトホールHbを介して、第1端子配線19tw及び第2端子配線19uに電気的に接続されている。なお、本実施形態では、第3金属層と同一材料により同一層に形成された第3端子配線16tを例示したが、第3端子配線は、例えば、ゲート電極14a及び14b等と同一材料により同一層に形成されていてもよい。 The third terminal wiring 16t is formed in the same layer with the same material as the third metal layer such as the relay electrode 16a. 6 and 7, the third terminal wiring 16t is connected to the first terminal wiring 19tw and the second terminal wiring 19tw through the first contact hole Ha and the second contact hole Hb formed in the second gate insulating film 18c. It is electrically connected to the second terminal wiring 19u. In the present embodiment, the third terminal wiring 16t formed in the same layer with the same material as the third metal layer is exemplified. It may be formed in one layer.
 また、本実施形態では、貫通孔Sa及び配線貫通孔Sbが形成された(第1端子配線19twを含む)下層金属層19tを例示したが、図10に示すような下層金属層19ta、図11に示すような下層金属層19tb、及び図12に示すような下層金属層19tcであってもよい。 Further, in the present embodiment, the lower metal layer 19t (including the first terminal wiring 19tw) in which the through holes Sa and the wiring through holes Sb are formed is illustrated, but the lower metal layer 19ta as shown in FIG. and a lower metal layer 19tc as shown in FIG. 12 .
 下層金属層19taでは、図10に示すように、複数の貫通孔Sa(図6参照)の一部と複数の配線貫通孔Sb(図6参照)とが一体になった複数の貫通孔Scが形成されている。 In the lower metal layer 19ta, as shown in FIG. 10, a plurality of through holes Sc are formed by integrating a part of a plurality of through holes Sa (see FIG. 6) and a plurality of wiring through holes Sb (see FIG. 6). formed.
 下層金属層19tbでは、図11に示すように、複数の貫通孔Sda及び複数の配線貫通孔Sdbがドット状に形成されている。 In the lower metal layer 19tb, as shown in FIG. 11, a plurality of through holes Sda and a plurality of wiring through holes Sdb are formed in dots.
 下層金属層19tcでは、図12に示すように、複数の貫通孔Sa(図6参照)の一部と複数の配線貫通孔Sb(図6参照)とが一体になると共に、複数の貫通孔Sa(図6参照)が下層金属層19tcの一端まで到達するように複数の貫通孔Seが形成され、下層金属層19tcが櫛歯状に設けられている。 In the lower metal layer 19tc, as shown in FIG. 12, some of the plurality of through holes Sa (see FIG. 6) are integrated with the plurality of wiring through holes Sb (see FIG. 6), and the plurality of through holes Sa are integrated. (See FIG. 6) is formed to reach one end of the lower metal layer 19tc, and the lower metal layer 19tc is provided in a comb shape.
 また、有機EL表示装置50は、図13に示すように、額縁領域Fのチップ実装部Mにおいて、図中のX方向に延びるように長方形状に設けられたチップ下回路部Cと、チップ下回路部Cの表示領域D側(図中の上側)に互いに平行に延びるように設けられた複数の出力側チップ用配線19mdとを備えている。 Further, as shown in FIG. 13, the organic EL display device 50 includes, in the chip mounting portion M of the frame area F, a chip under-chip circuit portion C provided in a rectangular shape extending in the X direction in the drawing, and a chip under-chip A plurality of output-side chip wirings 19md are provided so as to extend parallel to each other on the display area D side (upper side in the drawing) of the circuit section C. FIG.
 出力側チップ用配線19mdは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、出力側チップ用配線19md上には、図13に示すように、出力側チップ用端子21mdが設けられている。また、出力側チップ用配線19mdは、図13に示すように、出力側チップ用端子21mdと重なる部分で幅広に形成されている。さらに、出力側チップ用配線19mdの幅広に形成された部分には、下層金属層19tと同様に、出力側チップ用配線19mdを貫通する(複数の)貫通孔が形成されていてもよい。ここで、出力側チップ用端子21mdは、ソース線21h等の第2金属層と同一材料により同一層に形成されている。また、複数の出力側チップ用配線19md上にそれぞれ設けられた複数の出力側チップ用端子21mdは、図13に示すように、図中のX方向に沿って千鳥状に配置されている。なお、出力側チップ用配線19mdは、後述する入力側チップ用配線Nwと同様に、出力側チップ用端子21mdの図13中の上側及び下側の部分でそれぞれ切り離され、中継電極16a等の第3金属層と同一材料により同一層に形成された配線及び第2ゲート絶縁膜18cに形成された一対のコンタクトホールを介して電気的に接続されていてもよい。 The output-side chip wiring 19md is made of the same material as the first metal layer such as the gate electrode 19a and is formed in the same layer. Output-side chip terminals 21md are provided on the output-side chip wiring 19md, as shown in FIG. In addition, as shown in FIG. 13, the output-side chip wiring 19md is formed wide at the portion overlapping with the output-side chip terminal 21md. Further, in the widened portion of the output-side chip wiring 19md, (a plurality of) through-holes may be formed through the output-side chip wiring 19md in the same manner as the lower metal layer 19t. Here, the output-side chip terminals 21md are formed in the same layer with the same material as the second metal layer such as the source line 21h. Also, as shown in FIG. 13, the plurality of output-side chip terminals 21md respectively provided on the plurality of output-side chip wirings 19md are arranged in a staggered manner along the X direction in the drawing. The output-side chip wiring 19md is cut off at the upper and lower portions of the output-side chip terminal 21md in FIG. Electrical connection may be made through a pair of contact holes formed in the second gate insulating film 18c and wiring formed in the same layer of the same material as the three metal layers.
 また、有機EL表示装置50は、図13に示すように、額縁領域Fのチップ実装部Mにおけるチップ下回路部Cの端子部T側(図中の下側)において、チップ実装部Mの延びる方向(図中のX方向)に一列に並ぶように設けられた複数の入力側チップ用端子Npと、複数のチップ用端子Npに対応して図中のY方向に互いに並行(平行)に延びるように設けられた複数の入力側チップ用配線Nwとを備えている。ここで、複数の入力側チップ用配線Nwは、複数の入力側チップ用端子Npにそれぞれ電気的に接続されている。 Further, in the organic EL display device 50, as shown in FIG. 13, the chip mounting portion M extends on the terminal portion T side (lower side in the drawing) of the chip lower circuit portion C in the chip mounting portion M in the frame area F. A plurality of input-side chip terminals Np arranged in a row in the direction (X direction in the drawing) and the plurality of chip terminals Np extending parallel to each other in the Y direction in the drawing. A plurality of input-side chip wirings Nw are provided as follows. Here, the plurality of input-side chip wirings Nw are electrically connected to the plurality of input-side chip terminals Np, respectively.
 入力側チップ用端子Npは、図13に示すように、第2ゲート絶縁膜18c上に設けられたチップ下層金属層19mtと、チップ下層金属層19mt上に設けられたチップ上層金属層21mtとを備えている。 As shown in FIG. 13, the input-side chip terminal Np is composed of a chip lower metal layer 19mt provided on the second gate insulating film 18c and a chip upper metal layer 21mt provided on the chip lower metal layer 19mt. I have.
 チップ下層金属層19mtは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、チップ下層金属層19mtには、図13に示すように、チップ下層金属層19mtを貫通する複数の貫通孔Sfが形成されている。ここで、複数の貫通孔Sfは、図13に示すように、図中のY方向に互いに平行に延びる複数のスリット状に形成されている。なお、本実施形態では、チップ下層金属層19mtに複数の貫通孔Sfが形成された構成を例示したが、チップ下層金属層19mtには、1つの貫通孔Sfが形成されていてもよい。 The chip lower metal layer 19mt is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. In addition, as shown in FIG. 13, the chip lower metal layer 19mt is formed with a plurality of through holes Sf penetrating through the chip lower metal layer 19mt. Here, as shown in FIG. 13, the plurality of through holes Sf are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing. In this embodiment, the configuration in which a plurality of through holes Sf are formed in the chip lower metal layer 19mt is illustrated, but one through hole Sf may be formed in the chip lower metal layer 19mt.
 チップ上層金属層21mtは、ソース線21h等の第2金属層と同一材料により同一層に形成されている。また、チップ上層金属層21mtは、チップ下層金属層19mtに形成された複数の貫通孔Sfを埋めるように設けられている。 The chip upper metal layer 21mt is made of the same material as the second metal layer such as the source line 21h and is formed in the same layer. Also, the chip upper metal layer 21mt is provided so as to fill the plurality of through holes Sf formed in the chip lower metal layer 19mt.
 入力側チップ用配線Nwは、図13に示すように、第2ゲート絶縁膜18c上に設けられた第4端子配線19mvと、第2ゲート絶縁膜18c上に第4端子配線19mvと離間するように設けられた第5端子配線19mwと、第1層間絶縁膜15上に設けられ、第4端子配線19mv及び第5端子配線19mwの間に配置する第6端子配線16mとを備えている。 As shown in FIG. 13, the input-side chip wiring Nw is separated from the fourth terminal wiring 19mv provided on the second gate insulating film 18c and the fourth terminal wiring 19mv on the second gate insulating film 18c. and a sixth terminal wiring 16m provided on the first interlayer insulating film 15 and arranged between the fourth terminal wiring 19mv and the fifth terminal wiring 19mw.
 第4端子配線19mvは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、第4端子配線19mvは、図13に示すように、入力側チップ用端子Npのチップ下層金属層19mtと一体に設けられている。また、第4端子配線19mvには、図13に示すように、第4端子配線19mvを貫通する複数の配線貫通孔Sgが形成されている。ここで、複数の配線貫通孔Sgは、図13に示すように、図中のY方向に互いに平行に延びる複数のスリット状に形成されている。なお、本実施形態では、第4端子配線19mvに複数の配線貫通孔Sgが形成された構成を例示したが、第4端子配線19mvには、1つの配線貫通孔Sgが形成されていてもよい。 The fourth terminal wiring 19mv is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. Further, as shown in FIG. 13, the fourth terminal wiring 19mv is provided integrally with the chip lower metal layer 19mt of the input-side chip terminals Np. Further, as shown in FIG. 13, the fourth terminal wiring 19mv is formed with a plurality of wiring through-holes Sg penetrating through the fourth terminal wiring 19mv. Here, as shown in FIG. 13, the plurality of wiring through holes Sg are formed in the shape of a plurality of slits extending parallel to each other in the Y direction in the drawing. In this embodiment, the fourth terminal wiring 19mv has a plurality of wiring through-holes Sg, but the fourth terminal wiring 19mv may have a single wiring through-hole Sg. .
 第5端子配線19mwは、ゲート電極19a等の第1金属層と同一材料により同一層に形成されている。また、第5端子配線19mwは、例えば、端子部Tに配置された端子配線Uwの第2端子配線19uに電気的に接続されている。 The fifth terminal wiring 19mw is formed in the same layer with the same material as the first metal layer such as the gate electrode 19a. The fifth terminal wiring 19mw is electrically connected to the second terminal wiring 19u of the terminal wiring Uw arranged in the terminal portion T, for example.
 第6端子配線16mは、中継電極16a等の第3金属層と同一材料により同一層に形成されている。また、第6端子配線16mは、図13に示すように、第2ゲート絶縁膜18cに形成された第3コンタクトホールHc及び第4コンタクトホールHdを介して、第4端子配線19mv及び第5端子配線19mwに電気的に接続されている。なお、本実施形態では、第3金属層と同一材料により同一層に形成された第6端子配線16mを例示したが、第6端子配線は、例えば、ゲート電極14a及び14b等と同一材料により同一層に形成されていてもよい。 The sixth terminal wiring 16m is formed in the same layer with the same material as the third metal layer such as the relay electrode 16a. Also, as shown in FIG. 13, the sixth terminal wiring 16m is connected to the fourth terminal wiring 19mv and the fifth terminal via the third contact hole Hc and the fourth contact hole Hd formed in the second gate insulating film 18c. It is electrically connected to the wiring 19mw. In the present embodiment, the sixth terminal wiring 16m formed in the same layer with the same material as the third metal layer is exemplified. It may be formed in one layer.
 上記構成の有機EL表示装置50では、各サブ画素Pにおいて、まず、発光制御線14eが選択されて非活性状態とされると、有機EL素子35が非発光状態となる。その非発光状態で、前段のゲート線14g(n-1)が選択され、そのゲート線14g(n-1)を介してゲート信号が初期化用TFT9aに入力されることにより、初期化用TFT9aがオン状態となり、電源線21iの高電源電圧ELVDDがキャパシタ9hに印加されると共に、駆動用TFT9dがオン状態となる。これにより、キャパシタ9hの電荷が放電されて、駆動用TFT9dのゲート電極にかかる電圧が初期化される。次に、自段のゲート線14(n)が選択されて活性状態とされることにより、補償用TFT9b及び書込用TFT9cがオン状態となり、対応するソース線21hを介して伝達されるソース信号に対応する所定の電圧がダイオード接続状態の駆動用TFT9dを介してキャパシタ9hに書き込まれると共に、陽極放電用TFT9gがオン状態となり、第2初期化電源線19iを介して初期化信号が有機EL素子35の第1電極31に印加されて第1電極31に蓄積した電荷がリセットされる。その後、発光制御線14eが選択されて、電源供給用TFT9e及び発光制御用TFT9fがオン状態となり、駆動用TFT9dのゲート電極にかかる電圧に応じた駆動電流が電源線21iから有機EL素子35に供給される。このようにして、有機EL表示装置50では、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。 In the organic EL display device 50 configured as described above, in each sub-pixel P, first, when the light emission control line 14e is selected and rendered inactive, the organic EL element 35 becomes non-light emitting. In the non-light-emitting state, the preceding gate line 14g(n-1) is selected, and a gate signal is input to the initialization TFT 9a via the gate line 14g(n-1), whereby the initialization TFT 9a is turned on, the high power supply voltage ELVDD of the power supply line 21i is applied to the capacitor 9h, and the driving TFT 9d is turned on. As a result, the charge in the capacitor 9h is discharged, and the voltage applied to the gate electrode of the driving TFT 9d is initialized. Next, by selecting and activating the gate line 14(n) of its own stage, the compensation TFT 9b and the writing TFT 9c are turned on, and the source signal is transmitted through the corresponding source line 21h. is written to the capacitor 9h via the diode-connected driving TFT 9d, the anode discharge TFT 9g is turned on, and the initialization signal is applied to the organic EL element via the second initialization power supply line 19i. The charge accumulated in the first electrode 31 applied to the first electrode 31 of 35 is reset. After that, the light emission control line 14e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and the driving current corresponding to the voltage applied to the gate electrode of the driving TFT 9d is supplied from the power line 21i to the organic EL element 35. be done. Thus, in the organic EL display device 50, in each sub-pixel P, the organic EL element 35 emits light with luminance corresponding to the drive current, and image display is performed.
 次に、本実施形態の有機EL表示装置50の製造方法について説明する。ここで、本実施形態の有機EL表示装置50の製造方法は、TFT層形成工程、有機EL素子層形成工程、封止膜形成工程及び貫通孔形成工程を備える。 Next, a method for manufacturing the organic EL display device 50 of this embodiment will be described. Here, the manufacturing method of the organic EL display device 50 of this embodiment includes a TFT layer forming process, an organic EL element layer forming process, a sealing film forming process, and a through hole forming process.
 <TFT層形成工程>
 まず、例えば、ガラス基板上に形成した樹脂基板10上に、例えば、プラズマCVD(Chemical Vapor Deposition)法により、酸化シリコン膜(厚さ250nm程度)及び窒化シリコン膜(厚さ100nm程度)を順に成膜することにより、ベースコート膜11を形成する。
<TFT layer forming process>
First, for example, on a resin substrate 10 formed on a glass substrate, a silicon oxide film (about 250 nm thick) and a silicon nitride film (about 100 nm thick) are sequentially formed by plasma CVD (Chemical Vapor Deposition). A base coat film 11 is formed by film forming.
 続いて、ベースコート膜11が形成された基板表面に、プラズマCVD法により、例えば、アモルファスシリコン膜(厚さ50nm程度)を成膜し、そのアモルファスシリコン膜をレーザーアニール等により結晶化してポリシリコン膜を形成した後に、そのポリシリコン膜をパターニングして、第1半導体層12a及び12b等を形成する。 Subsequently, for example, an amorphous silicon film (about 50 nm thick) is formed by plasma CVD on the surface of the substrate on which the base coat film 11 is formed, and the amorphous silicon film is crystallized by laser annealing or the like to form a polysilicon film. are formed, the polysilicon film is patterned to form the first semiconductor layers 12a and 12b.
 さらに、第1半導体層12aが形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ100nm程度)を成膜して第1ゲート絶縁膜13を形成した後に、例えば、スパッタリング法により、モリブデン膜(厚さ200nm程度)等の金属膜を成膜した後に、その金属膜をパターニングして、ゲート電極14a及び14b等を形成する。 Further, a silicon oxide film (thickness of about 100 nm) is formed on the substrate surface on which the first semiconductor layer 12a is formed by, for example, a plasma CVD method to form the first gate insulating film 13, and then, for example, sputtering is performed. After forming a metal film such as a molybdenum film (thickness of about 200 nm) by a method, the metal film is patterned to form gate electrodes 14a and 14b.
 その後、ゲート電極14a等が形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ150nm程度)を成膜し、又は窒化シリコン膜(厚さ150nm)及び酸化シリコン膜(厚さ50nm程度)を順に成膜して第1層間絶縁膜15を形成した後に、例えば、スパッタリング法により、モリブデン膜(厚さ200nm程度)等の金属膜を成膜した後に、その金属膜をパターニングして、中継電極16a及び16b並びに下部導電層16c等の第3金属層を形成する。 After that, on the substrate surface on which the gate electrode 14a and the like are formed, a silicon oxide film (thickness of about 150 nm) is formed, or a silicon nitride film (thickness of 150 nm) and a silicon oxide film (thickness of After forming the first interlayer insulating film 15 by forming a film of a molybdenum film (about 200 nm thick) in order, for example, by sputtering, the metal film is patterned. Then, a third metal layer such as the relay electrodes 16a and 16b and the lower conductive layer 16c is formed.
 続いて、上記第3金属層が形成された基板表面に、例えば、スパッタリング法により、InGaZnO等の半導体膜(厚さ30nm程度)を成膜してアニール処理した後に、その半導体膜をパターニングして、第2半導体層17aを形成する。 Subsequently, on the substrate surface on which the third metal layer is formed, a semiconductor film such as InGaZnO 4 (about 30 nm thick) is formed by, for example, a sputtering method, is annealed, and then the semiconductor film is patterned. to form the second semiconductor layer 17a.
 さらに、第2半導体層17aが形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ100nm程度)等の無機絶縁膜を成膜した後に、その無機絶縁膜をパターニングして、端子部T及びチップ実装部Mの第2ゲート絶縁膜18cを形成する。 Furthermore, after forming an inorganic insulating film such as a silicon oxide film (thickness of about 100 nm) on the substrate surface on which the second semiconductor layer 17a is formed, for example, by plasma CVD, the inorganic insulating film is patterned. , the second gate insulating film 18c of the terminal portion T and the chip mounting portion M are formed.
 そして、第2ゲート絶縁膜18c等が形成されたた基板表面に、例えば、スパッタリング法により、チタン膜(厚さ50nm程度)、アルミニウム膜(厚さ300nm程度)及びチタン膜(厚さ50nm程度)等を順に成膜して金属積層膜を形成した後に、その金属積層膜及びその下層の酸化シリコン膜をパターニングすることにより、ゲート電極19a及び上部導電層19b等の第1金属層と、表示領域Dの第2ゲート絶縁膜12a及び12bとを形成する。 Then, a titanium film (about 50 nm thick), an aluminum film (about 300 nm thick), and a titanium film (about 50 nm thick) are formed on the substrate surface on which the second gate insulating film 18c and the like are formed, by, for example, a sputtering method. and the like to form a metal laminated film, and then patterning the metal laminated film and the underlying silicon oxide film to form the first metal layer such as the gate electrode 19a and the upper conductive layer 19b, and the display area. D second gate insulating films 12a and 12b are formed.
 その後、上記第1金属層等が形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ400nm程度)を成膜し、又は酸化シリコン膜(厚さ300nm)及び窒化シリコン膜(厚さ200nm程度)を順に成膜することにより、第2層間絶縁膜20を形成する。 Thereafter, a silicon oxide film (about 400 nm thick) is formed, or a silicon oxide film (thickness: 300 nm) and a silicon nitride film are formed on the substrate surface on which the first metal layer and the like are formed, for example, by plasma CVD. (thickness of about 200 nm) are sequentially formed to form the second interlayer insulating film 20 .
 続いて、第1ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜20に適宜コンタクトホールを形成した後に、例えば、スパッタリング法により、チタン膜(厚さ50nm程度)、アルミニウム膜(厚さ600nm程度)及びチタン膜(厚さ50nm程度)等を順に成膜して金属積層膜を形成した後に、その金属積層膜をパターニングして、第1端子電極21a及び第2端子電極21b等の第2金属層を形成する。 Subsequently, after appropriately forming contact holes in the first gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 20, a titanium film (thickness of about 50 nm) and an aluminum film (thickness of about 50 nm) are formed by sputtering, for example. 600 nm in thickness), a titanium film (about 50 nm in thickness) and the like are sequentially formed to form a metal laminated film. forming a second metal layer of
 さらに、上記第2金属層が形成された基板表面に、例えば、スリットコート法等により、ポリイミド系の感光性樹脂膜(厚さ2μm程度)を塗布した後に、その塗布膜に対して、プリベーク、露光、現像及びポストベークを行うことにより、平坦化膜22a及び配線被覆層22bを形成する。 Furthermore, after applying a polyimide-based photosensitive resin film (thickness of about 2 μm) to the substrate surface on which the second metal layer is formed, for example, by a slit coating method or the like, the coating film is pre-baked, By performing exposure, development and post-baking, the planarizing film 22a and the wiring covering layer 22b are formed.
 以上のようにして、TFT層30を形成することができる。 The TFT layer 30 can be formed as described above.
 <有機EL素子層形成工程>
 上記TFT層形成工程で形成されたTFT層30の平坦化膜24上に、周知の方法を用いて、第1電極31、エッジカバー32、有機EL層33(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)及び第2電極34を形成して、有機EL素子層40を形成する。
<Organic EL element layer forming process>
A first electrode 31, an edge cover 32, an organic EL layer 33 (hole injection layer 1, hole transport The layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5) and the second electrode 34 are formed to form the organic EL element layer 40. FIG.
 <封止膜形成工程>
 上記有機EL素子層形成工程で形成された有機EL素子層40上に、周知の方法を用いて、封止膜45(第1無機封止膜41、有機封止膜42、第2無機封止膜43)を形成する。その後、封止膜45が形成された基板表面に保護シート(不図示)を貼付した後に、樹脂基板10のガラス基板側からレーザー光を照射することにより、樹脂基板10の下面からガラス基板を剥離させ、さらに、ガラス基板を剥離させた樹脂基板10の下面に保護シート(不図示)を貼付する。
<Sealing film forming process>
A sealing film 45 (first inorganic sealing film 41, organic sealing film 42, second inorganic sealing film 42) is formed on the organic EL element layer 40 formed in the organic EL element layer forming step using a known method. A membrane 43) is formed. Thereafter, after attaching a protective sheet (not shown) to the surface of the substrate on which the sealing film 45 is formed, the glass substrate is peeled off from the lower surface of the resin substrate 10 by irradiating laser light from the glass substrate side of the resin substrate 10 . Then, a protective sheet (not shown) is attached to the lower surface of the resin substrate 10 from which the glass substrate has been removed.
 以上のようにして、本実施形態の有機EL表示装置50を製造することができる。 As described above, the organic EL display device 50 of this embodiment can be manufactured.
 以上説明したように、本実施形態の有機EL表示装置50によれば、額縁領域Fの端子部Tに設けられた各端子パッドUpは、下層金属層19tと上層金属層21tとを備え、上層金属層21tは、下層金属層19tに形成された複数の貫通孔Saを埋めるように設けられている。ここで、下層金属層19tに複数の貫通孔Saが形成されていない場合には、下層金属層19tと上層金属層21tとが相対的に大きな面積の1つの面で接触するので、下層金属層19tから上層金属層21tが剥離し易い。しかしながら、有機EL表示装置50では、下層金属層19tに複数の貫通孔Saが形成されていることにより、下層金属層19tと上層金属層21tとが複数の貫通孔Saで区分けされた相対的に小さな面積で接触するので、下層金属層19tから上層金属層21tが剥離し難くなる。さらに、上層金属層21tが下層金属層19tに形成された各貫通孔Saから露出して、下層金属層19tよりも密着性の高い第2ゲート絶縁膜18cに接触する。これにより、下層金属層19tと上層金属層21tとの密着性が確保されるので、端子部Tの各端子パッドUpにおいて、下層金属層19tからの上層金属層21tの剥離を抑制することができる。 As described above, according to the organic EL display device 50 of the present embodiment, each terminal pad Up provided in the terminal portion T of the frame region F includes the lower metal layer 19t and the upper metal layer 21t. The metal layer 21t is provided so as to fill the plurality of through holes Sa formed in the lower metal layer 19t. Here, if the plurality of through holes Sa are not formed in the lower metal layer 19t, the lower metal layer 19t and the upper metal layer 21t are in contact with each other through one surface having a relatively large area. The upper metal layer 21t is easily separated from 19t. However, in the organic EL display device 50, the plurality of through holes Sa are formed in the lower metal layer 19t. Since the contact area is small, it becomes difficult for the upper metal layer 21t to separate from the lower metal layer 19t. Further, the upper metal layer 21t is exposed from each through-hole Sa formed in the lower metal layer 19t, and contacts the second gate insulating film 18c having higher adhesion than the lower metal layer 19t. As a result, the adhesion between the lower metal layer 19t and the upper metal layer 21t is ensured, so that peeling of the upper metal layer 21t from the lower metal layer 19t can be suppressed in each terminal pad Up of the terminal portion T. .
 また、本実施形態の有機EL表示装置50によれば、額縁領域Fの端子部Tに設けられた各端子配線Uwは、下層金属層19tと一体に設けられた第1端子配線19twと、第1端子配線19twと離間するように設けられ第2端子配線19uと、第2ゲート絶縁膜18cに形成された第1コンタクトホールHa及び第2コンタクトホールHbを介して第1端子配線19tw及び第2端子配線19uに電気的に接続された第3端子配線16tとを備えている。これにより、仮に、端子配線Uwと第2層間絶縁膜20との間で剥離が進行しても、その剥離が第1端子配線19twと第2層間絶縁膜20との部分で止まるので、端子配線Uwと第2層間絶縁膜20との間の剥離の進行を抑制することができる。 Further, according to the organic EL display device 50 of the present embodiment, each terminal wiring Uw provided in the terminal portion T of the frame region F includes the first terminal wiring 19tw provided integrally with the lower metal layer 19t, and the first terminal wiring 19tw provided integrally with the lower metal layer 19t. The first terminal wiring 19tw and the second terminal wiring 19tw are connected to the first terminal wiring 19tw through the second terminal wiring 19u provided so as to be separated from the first terminal wiring 19tw, and the first contact hole Ha and the second contact hole Hb formed in the second gate insulating film 18c. and a third terminal wiring 16t electrically connected to the terminal wiring 19u. As a result, even if peeling progresses between the terminal wiring Uw and the second interlayer insulating film 20, the peeling stops at the portion between the first terminal wiring 19tw and the second interlayer insulating film 20. Therefore, the terminal wiring The progress of delamination between Uw and the second interlayer insulating film 20 can be suppressed.
 また、本実施形態の有機EL表示装置50によれば、額縁領域Fの端子部Tに設けられた各端子配線Uwの第1端子配線19twに複数の配線貫通孔Sbが形成されているので、第2層間絶縁膜20が第1端子配線19twに形成された各配線貫通孔Sbから露出する第2ゲート絶縁膜18cに接触する。これにより、第2層間絶縁膜20が第1端子配線19twよりも密着性の高い第2ゲート絶縁膜18cに接触して、第1端子配線19twと第2層間絶縁膜20との密着性が確保されるので、第1端子配線19twからの第2層間絶縁膜20の剥離を抑制することができる。 Further, according to the organic EL display device 50 of the present embodiment, a plurality of wiring through holes Sb are formed in the first terminal wiring 19tw of each terminal wiring Uw provided in the terminal portion T of the frame region F. The second interlayer insulating film 20 contacts the second gate insulating film 18c exposed from each wiring through-hole Sb formed in the first terminal wiring 19tw. As a result, the second interlayer insulating film 20 comes into contact with the second gate insulating film 18c having higher adhesion than the first terminal wiring 19tw, and the adhesion between the first terminal wiring 19tw and the second interlayer insulating film 20 is ensured. Therefore, peeling of the second interlayer insulating film 20 from the first terminal wiring 19tw can be suppressed.
 また、本実施形態の有機EL表示装置50によれば、額縁領域Fのチップ実装部Mに設けられた各チップ用端子Npは、チップ下層金属層19mtとチップ上層金属層21mtとを備え、チップ上層金属層21mtは、チップ下層金属層19mtに形成された複数の貫通孔Sfを埋めるように設けられている。ここで、チップ下層金属層19mtに複数の貫通孔Sfが形成されていない場合には、チップ下層金属層19mtとチップ上層金属層21mtとが相対的に大きな面積の1つの面で接触するので、チップ下層金属層19mtからチップ上層金属層21mtが剥離し易い。しかしながら、有機EL表示装置50では、チップ下層金属層19mtに複数の貫通孔Sfが形成されていることにより、チップ下層金属層19mtとチップ上層金属層21mtとが複数の貫通孔Sfで区分けされた相対的に小さな面積で接触するので、チップ下層金属層19mtからチップ上層金属層21mtが剥離し難くなる。さらに、チップ上層金属層21mtがチップ下層金属層19mtに形成された各貫通孔Sfから露出して、チップ下層金属層19mtよりも密着性の高い第2ゲート絶縁膜18cに接触する。これにより、チップ下層金属層19mtとチップ上層金属層21mtとの密着性が確保されるので、チップ実装部Mの各チップ用端子Npにおいて、チップ下層金属層19mtからのチップ上層金属層21mtの剥離を抑制することができる。 Further, according to the organic EL display device 50 of the present embodiment, each chip terminal Np provided in the chip mounting portion M of the frame area F includes the chip lower metal layer 19mt and the chip upper metal layer 21mt. The upper metal layer 21mt is provided so as to fill the plurality of through holes Sf formed in the chip lower metal layer 19mt. Here, if a plurality of through holes Sf are not formed in the chip lower metal layer 19mt, the chip lower metal layer 19mt and the chip upper metal layer 21mt are in contact with each other on one surface having a relatively large area. The chip upper metal layer 21mt is easily separated from the chip lower metal layer 19mt. However, in the organic EL display device 50, since the plurality of through holes Sf are formed in the chip lower metal layer 19mt, the chip lower layer metal layer 19mt and the chip upper layer metal layer 21mt are separated by the plurality of through holes Sf. Since the contact area is relatively small, it is difficult for the chip upper metal layer 21mt to separate from the chip lower metal layer 19mt. Further, the chip upper metal layer 21mt is exposed from each through-hole Sf formed in the chip lower metal layer 19mt, and contacts the second gate insulating film 18c having higher adhesion than the chip lower metal layer 19mt. As a result, since the adhesion between the chip lower metal layer 19mt and the chip upper metal layer 21mt is ensured, the chip upper metal layer 21mt is separated from the chip lower metal layer 19mt at each chip terminal Np of the chip mounting portion M. can be suppressed.
 また、本実施形態の有機EL表示装置50によれば、額縁領域Fのチップ実装部Mに設けられた各入力側チップ用配線Nwは、チップ下層金属層19mtと一体に設けられた第4端子配線19mvと、第4端子配線19mvと離間するように設けられ第5端子配線19mwと、第2ゲート絶縁膜18cに形成された第3コンタクトホールHc及び第4コンタクトホールHdを介して第4端子配線19mv及び第5端子配線19mwに電気的に接続された第6端子配線16mとを備えている。これにより、仮に、入力側チップ用配線Nwと第2層間絶縁膜20との間で剥離が進行しても、その剥離が第4端子配線19mvと第2層間絶縁膜20との部分で止まるので、入力側チップ用配線Nwと第2層間絶縁膜20との間の剥離の進行を抑制することができる。 Further, according to the organic EL display device 50 of the present embodiment, each input-side chip wiring Nw provided in the chip mounting portion M of the frame area F is connected to the fourth terminal provided integrally with the chip lower metal layer 19mt. The wiring 19mv, the fifth terminal wiring 19mw provided so as to be separated from the fourth terminal wiring 19mv, and the fourth terminal via the third contact hole Hc and the fourth contact hole Hd formed in the second gate insulating film 18c. A sixth terminal wiring 16m electrically connected to the wiring 19mv and the fifth terminal wiring 19mw. As a result, even if peeling progresses between the input-side chip wiring Nw and the second interlayer insulating film 20, the peeling stops at the portion between the fourth terminal wiring 19mv and the second interlayer insulating film 20. , the progression of delamination between the input-side chip wiring Nw and the second interlayer insulating film 20 can be suppressed.
 また、本実施形態の有機EL表示装置50によれば、額縁領域Fのチップ実装部Mに設けられた各入力側チップ用配線Nwの第4端子配線19mvに複数の配線貫通孔Sgが形成されているので、第2層間絶縁膜20が第4端子配線19mvに形成された各配線貫通孔Sgから露出する第2ゲート絶縁膜18cに接触する。これにより、第2層間絶縁膜20が第4端子配線19mvよりも密着性の高い第2ゲート絶縁膜18cに接触して、第4端子配線19mvと第2層間絶縁膜20との密着性が確保されるので、第4端子配線19mvからの第2層間絶縁膜20の剥離を抑制することができる。 Further, according to the organic EL display device 50 of the present embodiment, a plurality of wiring through-holes Sg are formed in the fourth terminal wiring 19mv of each input-side chip wiring Nw provided in the chip mounting portion M of the frame area F. Therefore, the second interlayer insulating film 20 contacts the second gate insulating film 18c exposed from each wiring through-hole Sg formed in the fourth terminal wiring 19mv. As a result, the second interlayer insulating film 20 comes into contact with the second gate insulating film 18c having higher adhesion than the fourth terminal wiring 19mv, and the adhesion between the fourth terminal wiring 19mv and the second interlayer insulating film 20 is ensured. Therefore, peeling of the second interlayer insulating film 20 from the fourth terminal wiring 19mv can be suppressed.
 《その他の実施形態》
 上記実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。
<<Other embodiments>>
In the above embodiment, an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer was exemplified. It may have a three-layered structure of a combined hole-transport layer, a light-emitting layer, and an electron-transport layer and electron-injection layer.
 また、上記実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。 Further, in the above-described embodiment, the organic EL display device in which the first electrode is the anode and the second electrode is the cathode is exemplified. , and an organic EL display device in which the second electrode is an anode.
 また、上記各実施形態では、表示装置として有機EL表示装置を例に挙げて説明したが、本発明は、電流によって駆動される複数の発光素子を備えた表示装置に適用することができ、例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot light emitting diode)を備えた表示装置に適用することができる。 Further, in each of the above-described embodiments, an organic EL display device was described as an example of a display device. , and a display device equipped with a QLED (Quantum-dot light emitting diode), which is a light emitting element using a quantum dot-containing layer.
 以上説明したように、本発明は、フレキシブルな表示装置について有用である。 As described above, the present invention is useful for flexible display devices.
D     表示領域
F     額縁領域
Ha    第1コンタクトホール
Hb    第2コンタクトホール
Hc    第3コンタクトホール
Hd    第4コンタクトホール
M     チップ実装部
Np    入力側チップ用端子
Nw    入力側チップ用配線
Sa,Sc,Sda,Sf  貫通孔、
Sb,Sdb,Sg  配線貫通孔
P     サブ画素
T     端子部
Up    端子パッド
Uw    端子配線
9a    初期化TFT(第2TFT、第2薄膜トランジスタ)
9b    補償用TFT(第2TFT、第2薄膜トランジスタ)
9c    書込用TFT(第1TFT、第1薄膜トランジスタ)
9d    駆動用TFT(第1TFT、第1薄膜トランジスタ)
9e    電源供給用TFT(第1TFT、第1薄膜トランジスタ)
9f    発光制御用TFT(第1TFT、第1薄膜トランジスタ)
9g    補償用TFT(第2TFT、第2薄膜トランジスタ)
10    樹脂基板(ベース基板)
12a,12b  第1半導体層
16a,16b  中継電極(第3金属層)
16c   下部導電層(第3金属層)
16m   第6端子配線
16t   第3端子配線
17a   第2半導体層
18a,18b,18c  第2ゲート絶縁膜(第2無機絶縁膜)
19i   第2初期化電源線(第1金属層)
19mt  チップ下層金属層
19mv  第4端子配線
19mw  第5端子配線
19t,19ta,19tb,19tc  下層金属層
19tw  第1端子配線
19u   第2端子配線
20    第2層間絶縁膜(第1無機絶縁膜)
21h   ソース線(第2金属層)
21i   電源線(第2金属層)
21mt  チップ上層金属層
21t   上層金属層
30    TFT層(薄膜トランジスタ層)
35    有機EL素子(発光素子、有機エレクトロルミネッセンス素子)
40    有機EL素子層(発光素子層)
45    封止膜
50    有機EL表示装置
D: display area F: frame area Ha: first contact hole Hb: second contact hole Hc: third contact hole Hd: fourth contact hole M: chip mounting portion Np: input side chip terminal Nw: input side chip wiring Sa, Sc, Sda, Sf through hole,
Sb, Sdb, Sg Wiring through hole P Sub-pixel T Terminal portion Up Terminal pad Uw Terminal wiring 9a Initialization TFT (second TFT, second thin film transistor)
9b compensation TFT (second TFT, second thin film transistor)
9c TFT for writing (first TFT, first thin film transistor)
9d Driving TFT (first TFT, first thin film transistor)
9e TFT for power supply (first TFT, first thin film transistor)
9f light emission control TFT (first TFT, first thin film transistor)
9g compensation TFT (second TFT, second thin film transistor)
10 resin substrate (base substrate)
12a, 12b first semiconductor layers 16a, 16b relay electrode (third metal layer)
16c lower conductive layer (third metal layer)
16m Sixth terminal wiring 16t Third terminal wiring 17a Second semiconductor layers 18a, 18b, 18c Second gate insulating film (second inorganic insulating film)
19i Second initialization power line (first metal layer)
19mt Chip lower metal layer 19mv Fourth terminal wiring 19mw Fifth terminal wiring 19t, 19ta, 19tb, 19tc Lower metal layer 19tw First terminal wiring 19u Second terminal wiring 20 Second interlayer insulating film (first inorganic insulating film)
21h source line (second metal layer)
21i power line (second metal layer)
21mt chip upper metal layer 21t upper metal layer 30 TFT layer (thin film transistor layer)
35 Organic EL device (light-emitting device, organic electroluminescence device)
40 Organic EL element layer (light emitting element layer)
45 sealing film 50 organic EL display device

Claims (19)

  1.  ベース基板と、
     上記ベース基板上に設けられ、第1金属層、第1無機絶縁膜、第2金属層が順に積層された薄膜トランジスタ層と、
     上記薄膜トランジスタ層上に設けられ、表示領域を構成する複数のサブ画素に対応して複数の発光素子が配列された発光素子層と、
     上記発光素子層上に該発光素子層を覆うように設けられた封止膜とを備え、
     上記表示領域の周囲には、額縁領域が設けられ、
     上記額縁領域の端部には、端子部が一方向に延びるように設けられ、
     上記端子部には、該端子部の延びる方向に一列に並ぶ複数の端子パッド、及び該複数の端子パッドに対応して互いに並行に延びて該複数の端子パッドにそれぞれ電気的に接続された複数の端子配線が設けられた表示装置であって、
     上記各端子パッドは、上記第1金属層と同一材料により同一層に形成された下層金属層と、上記第2金属層と同一材料により同一層に形成された上層金属層とを備え、
     上記下層金属層には、該下層金属層を貫通する貫通孔が形成され、
     上記上層金属層は、上記貫通孔を埋めるように設けられていることを特徴とする表示装置。
    a base substrate;
    a thin film transistor layer provided on the base substrate and having a first metal layer, a first inorganic insulating film, and a second metal layer laminated in order;
    a light-emitting element layer provided on the thin-film transistor layer and having a plurality of light-emitting elements arranged corresponding to a plurality of sub-pixels constituting a display region;
    a sealing film provided on the light emitting element layer so as to cover the light emitting element layer;
    A frame area is provided around the display area,
    A terminal portion is provided so as to extend in one direction at an end portion of the frame region,
    The terminal portion includes a plurality of terminal pads arranged in a row in the direction in which the terminal portion extends, and a plurality of terminal pads extending parallel to each other corresponding to the plurality of terminal pads and electrically connected to the plurality of terminal pads, respectively. A display device provided with terminal wiring of
    each terminal pad includes a lower metal layer formed on the same layer with the same material as the first metal layer, and an upper metal layer formed on the same layer with the same material as the second metal layer,
    a through hole penetrating the lower metal layer is formed in the lower metal layer,
    The display device, wherein the upper metal layer is provided so as to fill the through hole.
  2.  請求項1に記載された表示装置において、
     上記貫通孔は、スリット状に形成されていることを特徴とする表示装置。
    The display device according to claim 1,
    The display device, wherein the through hole is formed in a slit shape.
  3.  請求項2に記載された表示装置において、
     上記貫通孔は、上記下層金属層の一端まで到達するように形成されていることを特徴とする表示装置。
    In the display device according to claim 2,
    A display device, wherein the through hole is formed to reach one end of the lower metal layer.
  4.  請求項1に記載された表示装置において、
     上記貫通孔は、ドット状に形成されていることを特徴とする表示装置。
    The display device according to claim 1,
    A display device, wherein the through holes are formed in a dot shape.
  5.  請求項1~4の何れか1つに記載された表示装置において、
     上記下層金属層には、上記貫通孔が複数形成されていることを特徴とする表示装置。
    In the display device according to any one of claims 1 to 4,
    A display device, wherein a plurality of through holes are formed in the lower metal layer.
  6.  請求項1~5の何れか1つに記載された表示装置において、
     上記薄膜トランジスタ層には、上記第1金属層の上記ベース基板側に第2無機絶縁膜を介して第3金属層が設けられ、
     上記各端子配線は、上記第1金属層と同一材料により同一層に形成されて上記下層金属層と一体に設けられた第1端子配線と、該第1端子配線と離間するように設けられ、上記第1金属層と同一材料により同一層に形成された第2端子配線と、上記第3金属層と同一材料により同一層に設けられ、上記第2無機絶縁膜に形成された第1コンタクトホール及び第2コンタクトホールを介して、上記第1端子配線及び上記第2端子配線に電気的に接続された第3端子配線とを備えていることを特徴とする表示装置。
    In the display device according to any one of claims 1 to 5,
    A third metal layer is provided in the thin film transistor layer on the base substrate side of the first metal layer with a second inorganic insulating film interposed therebetween,
    each of the terminal wirings is a first terminal wiring formed in the same layer of the same material as the first metal layer and provided integrally with the lower metal layer, and provided so as to be spaced apart from the first terminal wiring; a second terminal wiring formed in the same layer of the same material as the first metal layer; and a first contact hole formed in the second inorganic insulating film, provided in the same layer of the same material as the third metal layer. and a third terminal wiring electrically connected to the first terminal wiring and the second terminal wiring through a second contact hole.
  7.  請求項6に記載された表示装置において、
     上記第1端子配線及び上記第2端子配線上には、上記第1無機絶縁膜を介して上記上層金属層が延長されていることを特徴とする表示装置。
    The display device according to claim 6,
    A display device, wherein the upper metal layer extends over the first terminal wiring and the second terminal wiring via the first inorganic insulating film.
  8.  請求項6又は7に記載された表示装置において、
     上記第1端子配線には、該第1端子配線を貫通する配線貫通孔が形成されていることを特徴とする表示装置。
    In the display device according to claim 6 or 7,
    A display device, wherein the first terminal wiring is formed with a wiring through-hole penetrating through the first terminal wiring.
  9.  請求項8に記載された表示装置において、
     上記配線貫通孔は、スリット状に形成されていることを特徴とする表示装置。
    In the display device according to claim 8,
    The display device, wherein the wiring through-hole is formed in a slit shape.
  10.  請求項9に記載された表示装置において、
     上記配線貫通孔は、上記貫通孔と一体に形成されていることを特徴とする表示装置。
    In the display device according to claim 9,
    A display device, wherein the wiring through-hole is formed integrally with the through-hole.
  11.  請求項8に記載された表示装置において、
     上記配線貫通孔は、ドット状に形成されていることを特徴とする表示装置。
    In the display device according to claim 8,
    The display device, wherein the wiring through-holes are formed in a dot shape.
  12.  請求項8~11の何れか1つに記載された表示装置において、
     上記第1端子配線には、上記配線貫通孔が複数形成されていることを特徴とする表示装置。
    In the display device according to any one of claims 8 to 11,
    A display device, wherein a plurality of the wiring through-holes are formed in the first terminal wiring.
  13.  請求項6~12の何れか1つに記載された表示装置において、
     上記表示領域及び上記端子部の間には、チップ実装部が一方向に延びるように設けられ、
     上記チップ実装部には、該チップ実装部の延びる方向に一列に並ぶ複数のチップ用端子、及び該複数のチップ用端子に対応して互いに並行に延びて該複数のチップ用端子にそれぞれ電気的に接続された複数のチップ用配線が設けられ、
     上記各チップ用端子は、上記第1金属層と同一材料により同一層に形成されたチップ下層金属層と、上記第2金属層と同一材料により同一層に形成されたチップ上層金属層とを備え、
     上記チップ下層金属層には、該チップ下層金属層を貫通する貫通孔が形成され、
     上記チップ上層金属層は、上記チップ下層金属層に形成された上記貫通孔を埋めるように設けられていることを特徴とする表示装置。
    In the display device according to any one of claims 6 to 12,
    A chip mounting portion is provided to extend in one direction between the display area and the terminal portion,
    The chip mounting portion includes a plurality of chip terminals arranged in a row in the direction in which the chip mounting portion extends, and terminals extending parallel to each other corresponding to the plurality of chip terminals and electrically connected to the plurality of chip terminals, respectively. A plurality of chip wirings connected to the
    Each chip terminal includes a chip lower metal layer formed in the same layer with the same material as the first metal layer, and a chip upper metal layer formed in the same layer with the same material as the second metal layer. ,
    a through hole penetrating through the chip lower metal layer is formed in the chip lower metal layer,
    The display device, wherein the chip upper metal layer is provided so as to fill the through hole formed in the chip lower metal layer.
  14.  請求項13に記載された表示装置において、
     上記各チップ用配線は、上記第1金属層と同一材料により同一層に形成されて上記下層金属層と一体に設けられた第4端子配線と、該第4端子配線と離間するように設けられ、上記第1金属層と同一材料により同一層に形成された第5端子配線と、上記第3金属層と同一材料により同一層に設けられ、上記第2無機絶縁膜に形成された第3コンタクトホール及び第4コンタクトホールを介して、上記第4端子配線及び上記第5端子配線に電気的に接続された第6端子配線とを備えていることを特徴とする表示装置。
    A display device according to claim 13, wherein
    Each of the chip wirings includes a fourth terminal wiring formed in the same layer of the same material as the first metal layer and provided integrally with the lower metal layer, and provided so as to be spaced apart from the fourth terminal wiring. a fifth terminal wiring formed in the same layer of the same material as the first metal layer; and a third contact provided in the same layer of the same material as the third metal layer and formed in the second inorganic insulating film. A display device comprising: a sixth terminal wiring electrically connected to the fourth terminal wiring and the fifth terminal wiring through a hole and a fourth contact hole.
  15.  請求項13又は14に記載された表示装置において、
     上記チップ下層金属層には、上記貫通孔が複数形成されていることを特徴とする表示装置。
    The display device according to claim 13 or 14,
    A display device, wherein a plurality of through-holes are formed in the chip lower metal layer.
  16.  請求項1~15の何れか1つに記載された表示装置において、
     上記薄膜トランジスタ層には、上記サブ画素毎にポリシリコンにより形成された第1半導体層を有する第1薄膜トランジスタ、及び酸化物半導体により形成された第2半導体層を有する第2薄膜トランジスタが設けられていることを特徴とする表示装置。
    In the display device according to any one of claims 1 to 15,
    The thin film transistor layer includes a first thin film transistor having a first semiconductor layer made of polysilicon and a second thin film transistor having a second semiconductor layer made of an oxide semiconductor for each sub-pixel. A display device characterized by:
  17.  請求項1~16の何れか1つに記載された表示装置において、
     上記第1金属層及び上記第2金属層は、チタン系金属膜、アルミニウム系金属膜及びチタン系金属膜を順に積層して構成されていることを特徴とする表示装置。
    In the display device according to any one of claims 1 to 16,
    A display device, wherein the first metal layer and the second metal layer are formed by sequentially stacking a titanium-based metal film, an aluminum-based metal film, and a titanium-based metal film.
  18.  請求項17に記載された表示装置において、
     上記下層金属層では、上記上層金属層側のチタン系金属膜の一部が欠損していることを特徴とする表示装置。
    18. A display device according to claim 17, wherein
    A display device, wherein in the lower metal layer, a part of the titanium-based metal film on the upper metal layer side is missing.
  19.  請求項1~18の何れか1つに記載された表示装置において、
     上記各発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置。
    In the display device according to any one of claims 1 to 18,
    A display device, wherein each light-emitting element is an organic electroluminescence element.
PCT/JP2021/044517 2021-12-03 2021-12-03 Display device WO2023100365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044517 WO2023100365A1 (en) 2021-12-03 2021-12-03 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044517 WO2023100365A1 (en) 2021-12-03 2021-12-03 Display device

Publications (1)

Publication Number Publication Date
WO2023100365A1 true WO2023100365A1 (en) 2023-06-08

Family

ID=86611707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044517 WO2023100365A1 (en) 2021-12-03 2021-12-03 Display device

Country Status (1)

Country Link
WO (1) WO2023100365A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031510A1 (en) * 1997-12-18 2001-10-18 Ahn Byung Chul Liquid crystal display and method of manufacturing the same
JP2010050194A (en) * 2008-08-20 2010-03-04 Mitsubishi Electric Corp Element substrate, method of manufacturing the same, and electronic device
WO2013076940A1 (en) * 2011-11-22 2013-05-30 シャープ株式会社 Active matrix substrate and liquid crystal display device
JP2014021472A (en) * 2012-07-24 2014-02-03 Mitsubishi Electric Corp Display panel and display device
WO2015031037A1 (en) * 2013-08-26 2015-03-05 Apple Inc. Displays with silicon and semiconducting oxide thin-film transistors
WO2019167279A1 (en) * 2018-03-02 2019-09-06 シャープ株式会社 Display device
WO2020170433A1 (en) * 2019-02-22 2020-08-27 シャープ株式会社 Display device and method for manufacturing same
US20200357345A1 (en) * 2019-05-07 2020-11-12 Samsung Display Co., Ltd. Display device
WO2021240584A1 (en) * 2020-05-25 2021-12-02 シャープ株式会社 Display device and production method for display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031510A1 (en) * 1997-12-18 2001-10-18 Ahn Byung Chul Liquid crystal display and method of manufacturing the same
JP2010050194A (en) * 2008-08-20 2010-03-04 Mitsubishi Electric Corp Element substrate, method of manufacturing the same, and electronic device
WO2013076940A1 (en) * 2011-11-22 2013-05-30 シャープ株式会社 Active matrix substrate and liquid crystal display device
JP2014021472A (en) * 2012-07-24 2014-02-03 Mitsubishi Electric Corp Display panel and display device
WO2015031037A1 (en) * 2013-08-26 2015-03-05 Apple Inc. Displays with silicon and semiconducting oxide thin-film transistors
WO2019167279A1 (en) * 2018-03-02 2019-09-06 シャープ株式会社 Display device
WO2020170433A1 (en) * 2019-02-22 2020-08-27 シャープ株式会社 Display device and method for manufacturing same
US20200357345A1 (en) * 2019-05-07 2020-11-12 Samsung Display Co., Ltd. Display device
WO2021240584A1 (en) * 2020-05-25 2021-12-02 シャープ株式会社 Display device and production method for display device

Similar Documents

Publication Publication Date Title
WO2020044439A1 (en) Display device
WO2019171581A1 (en) Display device
US11793041B2 (en) Display device having a slit passing through the second flattening film
WO2021079412A1 (en) Display device
US20220173202A1 (en) Display device and method for manufacturing same
WO2019186812A1 (en) Display device and method for manufacturing same
WO2019186819A1 (en) Display device and method for manufacturing display device
WO2019187121A1 (en) Display device
WO2023100365A1 (en) Display device
WO2021176508A1 (en) Display device
US11430856B2 (en) Display device with island-shaped conductors overlapping wiring lines in bending portion
WO2020174605A1 (en) Display device and method for manufacturing same
WO2023062695A1 (en) Display device
WO2023021623A1 (en) Display device and method for manufacturing same
WO2020053923A1 (en) Display device
WO2022215196A1 (en) Display device
WO2023175794A1 (en) Display device and method for manufacturing same
WO2023157293A1 (en) Display device
WO2023013039A1 (en) Display device and method for manufacturing same
WO2023286168A1 (en) Display device
WO2022230060A1 (en) Display device
WO2023062696A1 (en) Display device
US20240040836A1 (en) Display device and method for manufacturing same
WO2023105569A1 (en) Display device
WO2022269756A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966444

Country of ref document: EP

Kind code of ref document: A1