WO2023098851A1 - 冲压空气涡轮系统的负载分流方法及负载分流装置 - Google Patents

冲压空气涡轮系统的负载分流方法及负载分流装置 Download PDF

Info

Publication number
WO2023098851A1
WO2023098851A1 PCT/CN2022/136095 CN2022136095W WO2023098851A1 WO 2023098851 A1 WO2023098851 A1 WO 2023098851A1 CN 2022136095 W CN2022136095 W CN 2022136095W WO 2023098851 A1 WO2023098851 A1 WO 2023098851A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power
emergency
ram air
air turbine
Prior art date
Application number
PCT/CN2022/136095
Other languages
English (en)
French (fr)
Inventor
周绚
杨溢炜
浦程楠
洪烨
王茜
王帮亭
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2023098851A1 publication Critical patent/WO2023098851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover

Definitions

  • the invention relates to a load splitting method and a load splitting device of a ram air turbine system used as an emergency power source when an aircraft loses its main power and auxiliary power.
  • RAT Ram Air Turbine
  • the traditional RAT system mainly includes RAT body, actuator, RAT GCU (Generator Control Unit: generator controller), recovery control board, automatic release controller, etc.
  • RAT GCU Generator Control Unit: generator controller
  • recovery control board Automatic release controller
  • the load of the RAT system is much lower than its rated load most of the time except for a few working conditions, resulting in a relatively low utilization efficiency of the RAT system.
  • a new type of RAT system which is equipped with a RAT battery to cope with the peak load demand, and can greatly reduce the blade size of the RAT turbine to improve the economy, maintainability and safety of the RAT system sex.
  • the present invention is made in view of the above problems, and its purpose is to provide a load splitting method and a load splitting device for a ram air turbine system that can accurately match the power supply capacity of the RAT system and the load end demand, and improve the utilization efficiency of the RAT system.
  • the present invention provides a load splitting method for a ram air turbine system.
  • the above ram air turbine system is used as an emergency power source when the aircraft loses the main power and auxiliary power and enters the emergency mode.
  • the emergency load power supply of the load, the load shunting method of the above-mentioned ram air turbine system is characterized in that it includes: a data acquisition step, obtaining data on the airflow of the turbine disk surface of the aircraft that affects the ram air turbine; a load detection step, detecting the above-mentioned ram air turbine system.
  • the load information of the generator is to analyze and calculate the power supply capacity of the generator of the ram air turbine system based on the above data, and analyze and calculate the power demand of the emergency load based on the load information of the generator;
  • the charging and discharging control step is to charge and discharge the storage battery connected to the main grid of the aircraft and the generator of the ram air turbine system in accordance with the power supply capacity of the generator of the ram air turbine system and the power demand of the emergency load.
  • the present invention also provides a load splitting device for a ram air turbine system.
  • the above ram air turbine system is used as an emergency power source when the aircraft loses its main power and auxiliary power and enters the emergency mode.
  • Emergency load power supply the load splitting device of the above-mentioned ram air turbine system is characterized in that it includes: a storage battery, which is respectively connected to the main power grid of the aircraft and the generator of the ram air turbine system, and can supply power to the emergency load; Obtaining the data of the plane airflow affecting the turbine disk of the ram air turbine; the load detector, which detects the load information of the generator of the above-mentioned ram air turbine system; the data analysis unit, which inputs the data from the above-mentioned sensor and the data from the above-mentioned load detector Load information, analyzing and calculating the power supply capacity of the generator of the above-mentioned ram air turbine system based on the data of the above-mentioned sensor, and analyzing and calculating
  • the power supply capability of the RAT system and the demand of the load end can be accurately matched, thereby improving the use efficiency of the RAT system.
  • the enhanced practicability and safety of the RAT system can effectively improve the economy and safety of the aircraft.
  • FIG. 1 is a flowchart showing a load sharing method of the ram air turbine system according to the present embodiment.
  • FIG. 2 is a schematic diagram showing a first operation mode of the load split device of the ram air turbine system according to the present embodiment.
  • FIG 3 is a schematic diagram showing a second operation mode of the load split device of the ram air turbine system according to the present embodiment.
  • FIG. 4 is a schematic diagram showing a third operation mode of the load split device of the ram air turbine system according to the present embodiment.
  • FIG. 5 is a schematic diagram showing a fourth operation mode of the load split device of the ram air turbine system according to the present embodiment.
  • the present invention is applicable to the new RAT system including the RAT battery, but it can also replace the RAT battery and use other batteries in the aircraft electrical network (such as the flight control battery, the main battery), so it can also be applied to the traditional RAT system.
  • FIG. 1 An embodiment of the present invention will be specifically described with reference to FIG. 1 .
  • FIG. 1 is a flowchart showing a method of load sharing in a RAT system according to this embodiment.
  • the RAT system is used as an emergency power source to supply power to the DC emergency load and the AC emergency load (S3).
  • the DC emergency loads are, for example, avionics core processors, controllers (landing gear, main generator) and the like.
  • AC emergency loads are, for example, engine igniters, fuel pumps, windshield heaters, etc.
  • the AC emergency loads there are conventional AC loads that operate in a steady state and high-power pump loads that require instantaneous high power.
  • the data of the turbine disk airflow affecting the ram air turbine of the aircraft is acquired in real time, such as airspeed, angle of attack ⁇ , sideslip angle ⁇ , etc. (S4), and the generator of the RAT system is detected Load information, such as the voltage and current of the generator of the RAT (step S5).
  • Load information such as the voltage and current of the generator of the RAT (step S5).
  • the power supply capacity of the generator of the RAT system is analyzed and calculated, and the power demand of the emergency load is analyzed and calculated based on the load information of the generator (step S6).
  • step S7 compare the power supply capacity with the power demand of the emergency load.
  • step S8 it is determined whether the power supply capacity of the generator is greater than the sum of the normal AC load, the steady-state operation of the DC emergency load, and the high-power pump load (S8).
  • step S9 Sum of loads (S10).
  • step S11 it is further judged whether it is necessary to start a high-power pump load at this time (step S11), if it is judged as If it is necessary to start a high-power pump load, the battery is discharged to supply power to the AC emergency load and the DC emergency load (step S12). Electric power charges the storage battery (step S13).
  • 2 to 5 are schematic diagrams showing the working modes of the load splitting device of the RAT system in this embodiment.
  • emergency loads include AC emergency loads and DC emergency loads.
  • the AC emergency loads include regular AC loads that operate in a steady state and high-power pump loads that require instantaneous high power.
  • Contingency loads can be graded based on cost control.
  • the emergency load can be divided into three levels: the first-level load is the start-up of high-power pump loads on the basis of steady-state AC and DC emergency loads (that is, conventional AC loads, DC emergency loads and high-power pump loads); the second-level load is the steady-state operation of AC and DC emergency loads (that is, the sum of conventional AC loads and DC emergency loads); the third-level load is the steady-state operation of AC emergency loads (ie, conventional AC load).
  • the load shunting device of the RAT system in this embodiment mainly includes: a storage battery 1, which is respectively connected to the main power grid S of the aircraft and the generator D of the RAT system, and can supply power to the emergency load; 2 (such as the pitot tube for obtaining the airspeed of the aircraft, various sensors for obtaining the angle of attack ⁇ , and the angle of sideslip ⁇ , etc.), which obtains the data of the airflow on the turbine disk surface of the aircraft that affects the ram air turbine in real time; load detector 3 (For example, current transformer and voltage transformer for obtaining current and voltage, etc.), which detect the load information of the generator of the RAT system; data analysis unit 4, which inputs data from sensor 2 and load information from load detector 3 , analyze and calculate the power supply capacity of the generator D of the RAT system based on the data of the sensor 2, and analyze and calculate the power demand of the emergency load based on the load information of the generator D; the first connector C1, which can switch to the AC emergency The first position L
  • the data analysis unit 4 Through the analysis and calculation of the power supply capacity and the power demand of the emergency load by the data analysis unit 4 , accurate matching can be achieved, and the battery 1 can be charged with redundant power to improve the utilization rate of the RAT system. In addition, it can also effectively optimize the current traditional RAT system design, where all DC loads are disconnected immediately after the airspeed drops to a fixed value.
  • the load splitting device of the RAT system is set to the first working mode.
  • the controller 6 makes the first connector C1 at the first position L1, and makes the second connector C2 at the third position L3, and both the AC emergency load and the DC emergency load use the power from the main grid S to work .
  • the charge and discharge management unit 5 charges the storage battery 1 with electric power from the main power grid S. As shown in FIG.
  • an AC/DC converter is included in the charge/discharge management unit 5 , whereby the AC power from the main grid S is converted into DC power and stored in the storage battery 1 . Furthermore, an AC-DC converter is also provided upstream of the position L3 of the second connector C2, whereby the AC power from the main grid S is converted into DC power and applied to the DC emergency load.
  • the controller When the aircraft enters the emergency mode, the controller makes the first connector C1 in the second position L2, the RAT system serves as an emergency power source to supply power to the DC emergency load and the AC emergency load, and uses the sensor 2 to obtain the impact of the aircraft in real time
  • the data analysis unit 4 inputs the data from the sensor 2 and the load information from the load detector 3, based on the sensor 2 Analyze and calculate the power supply capacity of the generator of the RAT system based on the data of D, and analyze and calculate the power demand of the emergency load based on the load information of the generator D.
  • the power supply capability of the RAT system and the level of the emergency load are also divided into three levels correspondingly.
  • the power supply capacity of the RAT system is sufficient, that is, the high-power pump load can be started under the condition of ensuring the steady-state operation of the AC and DC emergency loads, it is set as the first level, and the battery 1 is charged.
  • the RAT The load shunting device of the system is set to the second working mode.
  • the data analysis unit 5 compares the power supply capacity of the RAT system and the power demand of the emergency load, and when the power supply capacity is greater than the sum of the conventional AC load, DC emergency load and high-power pump load, that is, the power generation of the RAT system
  • the controller 6 makes the second connector C2 at the third position L3, and makes the charging and discharging management unit 5 use the power generated by the generator D of the RAT system to charge the storage battery 1. Charge.
  • the controller 6 chooses whether to provide a limited number of starts for the high-power pump load (such as the pump load of the all-electric RAT). If it is necessary to start a high-power pump load and the power supply capacity of the generator D is lower than the power demand of the emergency load, the load splitting device of the RAT system is set to the third working mode. Specifically, as shown in FIG.
  • the controller sets the second connector C2 to the third position L3, and the charging and discharging management unit 5 discharges the storage battery 1 to supply power to the AC emergency load and the DC emergency load.
  • the direct current from battery 1 is converted into alternating current by the AC-DC converter and then applied to the AC emergency load, and applied to the DC emergency load after two conversions.
  • the power supply of the generator D of the RAT system can be accurately matched, and the battery 1 can be charged with redundant power, so that the high-power pump load can be started again.
  • the controller 6 can make the second connector C2 in the third position L3, and the charging and discharging management unit 5.
  • the storage battery 1 is charged with the electric power generated by the generator D of the ram air turbine system.
  • the controller 6 sets the second connector to the fourth position L4, and the charging and discharging management unit 5 discharges the storage battery 1 to supply power only to the DC emergency load through the second connector C2.
  • the flight attitude of the aircraft recovers well afterwards, and the power supply capacity of the generator D of the RAT system is improved, it is also possible to control the AC and DC power supply by the generator D of the RAT system through the matching technology of the load end of the power supply end, or to superimpose the charging and discharging status of the battery Start high-power pump loads and other methods to deal with different flight conditions.
  • the present invention can optimize the overall management mode of unloading all DC loads in the emergency mode in the existing system design if the airspeed is lower than a fixed value.
  • the three working modes in Figures 3 to 5, etc. it is possible to accurately match the emergency load and the power supply capacity of the RAT system in real time, and greatly improve the utilization efficiency of the RAT system.
  • the present invention can solve the problems of the RAT body weight, poor economy, and large installation space requirements caused by the large diameter of the RAT turbine blade in the existing RAT system design scheme, and greatly improve the performance of the new RAT system. practicability and technical level.
  • the diameter of the RAT turbine blades may be reduced by about 50%;
  • the battery is designed as an LRU (Line Replace Unit) module, it is conveniently installed. In the later stage, it can be flexibly adjusted according to the load situation, and will not cause a large development cycle and economic cost impact on the entire system, thus greatly improving the economy and reliability of the RAT system.
  • the present invention can also collect and analyze flight data through the data acquisition module in the later stage of operation, extract the severe working conditions for the RAT system, and through the post-processing and analysis of the data, it can also perform low-cost maintenance on the RAT system in the later stage of operation. Optimization (more precise load distribution management), reduce the weight of the new RAT system (battery is LRU), and save fuel during flight.
  • the feasibility of the new RAT system is greatly improved, and the diameter of the RAT turbine blade is greatly reduced through the load split management technology, which is beneficial to the installation and maintenance of the RAT system, and can save installation space and reduce installation difficulty.
  • the weight reduction in the RAT system will reduce the rigidity requirements of the RAT installation point, it can indirectly achieve a significant weight reduction in the body structure of the RAT cabin.
  • the load shunting method can optimize the distribution ratio and path of emergency loads according to the emergency load data during aircraft operation, and improve energy utilization efficiency, equipment service life, and system security. It can store and output relevant data, and through similarity analysis and other technical methods, it can be used in the design of new RAT system equipped with load shunting method for other models.
  • the present invention accurately matches the real-time power supply capacity of the RAT system and the power demand of emergency loads through a load shunting method, and can be effectively applied to hydraulic, all-electric and hydraulic-electric hybrid RAT systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本发明提供一种冲压空气涡轮系统的负载分流方法及负载分流装置,获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据,检测冲压空气涡轮系统的发电机的负载信息,基于上述数据对冲压空气涡轮系统的供电能力进行分析计算,并且基于发电机的负载信息对应急负载的电力需求进行分析计算,使与飞机的主电网及冲压空气涡轮系统的发电机连接的蓄电池与冲压空气涡轮系统的发电机的供电能力和应急负载的电力需求相匹配地进行充放电。

Description

冲压空气涡轮系统的负载分流方法及负载分流装置 技术领域
本发明涉及一种在飞机失去主动力和辅助动力时作为紧急动力源的冲压空气涡轮系统的负载分流方法及负载分流装置。
背景技术
为了保证飞机的安全性、适航性的要求,通常需要配置冲压空气涡轮(以下有时简称为RAT)系统来作为应急动力。在飞机正常飞行的过程中,RAT系统收纳在机身内,在进入应急模式的情况下,将冲压空气涡轮放出至机身外部使其在气流中工作,为飞机提供应急动力。
在传统的RAT系统中,主要包括RAT本体、作动器、RAT GCU(Generator Control Unit:发电机控制器)、回收控制板、自动释放控制器等。在飞机的RAT系统的设计过程中,因初步应急负载的需求偏高,导致初期RAT系统的额定功率需求偏大,因此采用较长的RAT涡轮的桨叶直径。但是,在设计后期或试飞阶段,应急负载的需求或较大幅度降低,RAT系统的供电能力可能出现冗余。
另外,RAT系统在全包线下,除较少的工况下,大部分时间其负载远低于其额定负载,导致RAT系统的利用效率相对较低。
而且,在该传统的RAT系统中,也存在在需要瞬时大功率的大功率泵类负载的启动过程中出现负载需求高峰的情况。另外,还存在空速降低到固定值之后立刻断开所有直流负载的情况。
针对上述问题,最近,提出了一种新型RAT系统,其设有RAT蓄电池以应对负载需求高峰,并且,能够大幅度降低RAT涡轮的桨叶尺寸,以提高RAT系统的经济性、维修性及安全性。
但是,在该新型RAT系统中,存在RAT系统的发电机和蓄电池在RAT 系统的不同工作模式下的供电分配缺乏管理、利用效率低的问题。
发明内容
本发明是鉴于上述问题而做出的,其目的在于提供一种能够精准匹配RAT系统的供电能力和负载端需求、提高RAT系统使用效率的冲压空气涡轮系统的负载分流方法及负载分流装置。
为了实现上述目的,本发明提供一种冲压空气涡轮系统的负载分流方法,上述冲压空气涡轮系统在飞机失去主动力和辅助动力即进入应急模式时作为紧急动力源而向包括直流应急负载和交流应急负载的应急负载供电,上述冲压空气涡轮系统的负载分流方法的特征在于,包括:数据获取步骤,获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据;负载检测步骤,检测上述冲压空气涡轮系统的发电机的负载信息;分析计算步骤,基于上述数据对上述冲压空气涡轮系统的上述发电机的供电能力进行分析计算,并且基于上述发电机的上述负载信息对上述应急负载的电力需求进行分析计算;充放电控制步骤,使与飞机的主电网及冲压空气涡轮系统的发电机连接的蓄电池与上述冲压空气涡轮系统的上述发电机的供电能力和上述应急负载的电力需求相匹配地进行充放电。
另外,本发明还提供一种冲压空气涡轮系统的负载分流装置,上述冲压空气涡轮系统在飞机失去主动力和辅助动力即进入应急模式时作为紧急动力源而向包括直流应急负载和交流应急负载的应急负载供电,上述冲压空气涡轮系统的负载分流装置的特征在于,包括:蓄电池,其分别与飞机的主电网及冲压空气涡轮系统的发电机连接,且能够向所述应急负载供电;传感器,其获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据;负载检测器,其检测上述冲压空气涡轮系统的发电机的负载信息;数据分析单元,其输入来自上述传感器的数据和来自上述负载检测器的负载信息,基于上述传感器的数据对上述冲压空气涡轮系统的发电机的供电能力进行分析计算,并且基于上述发电机的上述负载信息对上述应急负载的电力需求进行分析计算;第1连接器,其能够切换到上述交流应急负载与上述主电网连 接的第1位置、或者上述交流应急负载与上述冲压空气涡轮系统的发电机连接的第2位置;第2连接器,其能够切换到上述直流应急负载经由上述第1连接器与上述主电网或上述发电机连接的第3位置、或者上述直流应急负载与上述蓄电池连接的第4位置;充放电管理单元,其与上述第2连接器的所述第3位置并联连接,并与上述蓄电池连接,向上述蓄电池充入来自上述主电网的电力或由上述冲压空气涡轮系统的发电机发电得到的电力,或者使蓄电池放电;以及控制器,其根据上述数据分析单元的分析计算结果,控制上述第1连接器及第2连接器的位置以及上述充放电管理单元,使得上述蓄电池与上述冲压空气涡轮系统的供电能力以及上述应急负载的电力需求相匹配地进行充放电。
发明效果
根据本发明,能够精准匹配RAT系统的供电能力和负载端需求,从而提高RAT系统的使用效率。RAT系统的实用性及安全性增强,能够有效提高飞机的经济性和安全性。
附图说明
图1是表示本实施方式的冲压空气涡轮系统的负载分流方法的流程图。
图2是表示本实施方式的冲压空气涡轮系统的负载分流装置的第1工作模式的示意图。
图3是表示本实施方式的冲压空气涡轮系统的负载分流装置的第2工作模式的示意图。
图4是表示本实施方式的冲压空气涡轮系统的负载分流装置的第3工作模式的示意图。
图5是表示本实施方式的冲压空气涡轮系统的负载分流装置的第4工作模式的示意图。
附图标记说明
1:蓄电池,S:主电网,D:发电机,2:传感器,3:负载检测器,4:数据分析单元,C1:第1连接器,C2:第2连接器,5:充放电管理单元, 6:控制器
具体实施方式
以下,结合说明书附图,进一步对本发明的具体实施方式进行详细描述,以下的描述为示例性的,并非对本发明的限制。
本发明适用于包含RAT蓄电池的新型RAT系统,但也可以取代RAT蓄电池而利用飞机电气网络中的其他蓄电池(例如飞控蓄电池、主蓄电池),因此也可适用于传统的RAT系统。
以下,参照图1具体说明本发明的实施方式。
图1是表示本实施方式的RAT系统的负载分流方法的流程图。
如图1所示,在本实施方式的RAT系统的负载分流方法中,首先,判断飞机的飞行状况的是否正常(S1)。在为肯定判断而飞行状况为正常飞行的情况下,利用主电网S对包括直流应急负载及交流应急负载的应急负载供电,并且对蓄电池进行充电(S2)。在为否定判断而飞机进入应急模式的情况下,将RAT系统作为紧急动力源而向直流应急负载和交流应急负载供电(S3)。其中,直流应急负载为例如航电核心处理器、控制器类(起落架、主发电机)等。交流应急负载为例如发动机点火器、燃油泵、风挡加热器等,在交流应急负载中,包括稳态运行的常规交流负载和需要瞬时大功率的大功率泵类负载。
如图1所示,此时,实时获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据,例如空速、攻角α、侧滑角β等(S4),并且,检测RAT系统的发电机的负载信息,例如RAT的发电机的电压、电流等(步骤S5)。接着,基于上述数据,对RAT系统的发电机的供电能力进行分析计算,并且基于发电机的负载信息对应急负载的电力需求进行分析计算(步骤S6)。
然后,对供电能力和应急负载的电力需求进行比较(步骤S7)。对此,首先,判断发电机的供电能力是否大于常规交流负载、直流应急负载的稳态运行及大功率泵类负载之和(S8)。在为肯定判断的情况下,利用由RAT的发电机发电得到的电力对蓄电池进行充电(步骤S9),在为否定判断的 情况下,进一步判断发电机的供电能力是否大于常规交流负载、直流应急负载之和(S10)。在为肯定判断、即根据发电机D的供电能力能够确保常规交流负载、直流应急负载的稳态运行的情况下,进一步判断此时是否需要启动大功率泵类负载(步骤S11),若判断成需要启动大功率泵类负载,则使蓄电池放电而向交流应急负载及直流应急负载供电(步骤S12),在判断成无需启动大功率泵类负载的情况下,利用由RAT的发电机发电得到的电力对蓄电池进行充电(步骤S13)。
另外,在S10中为否定判断的情况下,进一步判断发电机的供电能力是否大于常规交流负载(S14),在为肯定判断、即根据发电机的供电能力仅能够确保常规交流负载的稳态运行的情况下,使蓄电池放电而仅向直流应急负载供电(步骤S15)。
以下,参照图2至图5说明RAT系统的负载分流装置的具体实施例。
图2至图5是表示本实施方式的RAT系统的负载分流装置的工作模式的示意图。
首先,应急负载包括交流应急负载和直流应急负载。虽未图示,在交流应急负载中包括稳态运行的常规交流负载和需要瞬时大功率的大功率泵类负载。应急负载可基于成本控制进行分级。例如以全电RAT为例,应急负载可分为三级:一级负载为在稳态运行的交流、直流应急负载基础之上的大功率泵类负载的启动(即常规交流负载、直流应急负载及大功率泵类负载之和);二级负载为稳态运行的交流、直流应急负载(即常规交流负载、直流应急负载之和);三级负载为稳态运行的交流应急负载(即常规交流负载)。
如图2至图5所示,本实施方式的RAT系统的负载分流装置主要包括:蓄电池1,其分别与飞机的主电网S及RAT系统的发电机D连接,且能够向应急负载供电;传感器2(例如获取飞机的空速的空速管、获取攻角α、侧滑角β的各种传感器等),其实时地获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据;负载检测器3(例如,获取电流及电压的电流互感器及电压互感器等),其检测RAT系统的发电机的负载信息;数据分析单元4, 其输入来自传感器2的数据和来自负载检测器3的负载信息,基于传感器2的数据对RAT系统的发电机D的供电能力进行分析计算,并且基于发电机D的负载信息对应急负载的电力需求进行分析计算;第1连接器C1,其能够切换到交流应急负载与主电网S1连接的第1位置L1、或者交流应急负载与RAT系统的发电机D连接的第2位置L2;第2连接器C2,其能够切换到直流应急负载经由第1连接器C1与主电网S或发电机D连接的第3位置L3、或者直流应急负载与蓄电池1连接的第4位置L4;充放电管理单元5(例如双向蓄电池充电器),其与第2连接器C2的第3位置L3并联连接,并在上游侧与蓄电池1连接,向蓄电池1充入来自主电网S的电力或由RAT系统的发电机D发电得到的电力,或者使蓄电池1放电;以及控制器6,其根据数据分析单元4的分析计算结果,控制第1连接器C1及第2连接器C2的位置以及充放电管理单元5,使得蓄电池1与RAT系统的供电能力以及应急负载的电力需求相匹配地进行充放电。
通过由数据分析单元4对供电能力和应急负载的电力需求进行分析计算,可做到精确匹配,利用冗余功率对蓄电池1进行充电,提高RAT系统的利用率。另外,也能够有效优化当前传统RAT系统设计中,空速降低到固定值之后立刻断开所有直流负载的情况。
本实施方式的RAT系统的负载分流装置中,应对飞行工况,采取不同工作模式。
例如,在飞机正常状态下,RAT系统的负载分流装置设为第1工作模式。如图2所示,控制器6使第1连接器C1处于第1位置L1,使第2连接器C2处于第3位置L3,交流应急负载和直流应急负载均利用来自主电网S的电力而工作。并且,充放电管理单元5利用来自主电网S的电力对蓄电池1进行充电。
在此,在充放电管理单元5中包含交直流转换器,由此使得来自主电网S的交流电转换成直流电后蓄存到蓄电池1。而且,在第2连接器C2的位置L3的上游侧也设有交直流转换器,由此使得来自主电网S的交流电转换成直流电后施加于直流应急负载。
在飞机进入应急模式的情况下,控制器使第1连接器C1处于第2位置L2,RAT系统作为紧急动力源而向直流应急负载和交流应急负载供电,并且利用传感器2实时地获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据,同时利用负载检测器3检测RAT系统的发电机D的负载信息,数据分析单元4输入来自传感器2的数据和来自负载检测器3的负载信息,基于传感器2的数据对RAT系统的发电机的供电能力进行分析计算,并且基于发电机D的负载信息对应急负载的电力需求进行分析计算。
在此,例如将RAT系统的供电能力与应急负载的级别相应地也分为三个级别。
例如,若RAT系统的供电能力足够,即在可确保交流、直流应急负载的稳态运行的情况下能够启动大功率泵类负载,则设定为一级,对蓄电池1充电,此时,RAT系统的负载分流装置设为第2工作模式。具体地说,数据分析单元5对RAT系统的供电能力以及应急负载的电力需求进行比较,在供电能力大于常规交流负载、直流应急负载及大功率泵类负载之和的情况、即RAT系统的发电机能力充足的情况下,如图3所示,控制器6使第2连接器C2处于第3位置L3,使充放电管理单元5利用由RAT系统的发电机D发电得到的电力对蓄电池1进行充电。
该情况下,可以根据负载需求选择是否接入蓄电池进行供电。若此后负载需求降低,则切出蓄电池,仅由发电机D进行供电。也可以根据负载需求变化(大功率泵类负载故障掉电等因素)控制蓄电池切入或切出电网。
另外,若RAT系统的供电能力中等,仍可确保交流、直流应急负载的稳态运行,则设定为二级。此时,根据应急负载的电力需求,控制器6选择是否为大功率泵类负载(例如全电RAT的泵负载)提供有限次数的启动。若需要启动大功率泵类负载而发电机D的供电能力为应急负载的电力需求以下,则RAT系统的负载分流装置设为第3工作模式。具体地说,如图4所示,控制器使第2连接器C2处于第3位置L3,充放电管理单元5使蓄电池1放电,向交流应急负载及直流应急负载供电。来自蓄电池1的直流电经由交直流转换器而转换成交流电后施加于交流应急负载,并且经两次 转换后施加到直流应急负载。
随后,可以通过对负载端数据的读取,精准匹配RAT系统的发电机D的供电功率,利用冗余功率对蓄电池1进行充电,由此,能够再次进行大功率泵类负载的启动。
即,在第2及第3工作模式下,在发电机D的供电能力大于应急负载的电力需求的情况下,控制器6能够使第2连接器C2处于第3位置L3,使充放电管理单元5利用由冲压空气涡轮系统的发电机D发电得到的电力对蓄电池1进行充电。
另外,若RAT系统的发电机D的供电能力低等,但仍可确保交流应急负载的稳态运行,则设定为三级,不为蓄电池充电,RAT系统的负载分流装置设为第4工作模式。如图5所示,控制器6使第2连接器处于第4位置L4,充放电管理单元5使蓄电池1放电,经由第2连接器C2而仅向直流应急负载供电。
此时,也可以根据负载需求选择是否为蓄电池1充电,以确保蓄电池能够持续为直流应急负载供电。
若此后飞机飞行姿态恢复良好,RAT系统的发电机D的供电能力提高,也可以通过供电端负载端匹配技术,通过控制由RAT系统的发电机D进行交直流供电,或是叠加蓄电池充放电现状启动大功率泵类负载等方式应对不同的飞行工况。
以下,说明基于本发明的冲压空气涡轮系统的负载分流方法及负载分流装置得到的效果。
首先,若将本发明适用于传统RAT系统,则能够优化现有系统设计中应急模式下,若空速低于固定值则卸载所有直流负载的整体管理模式。通过包括图3至5中的三种工作模式等,能够实时精确匹配应急负载与RAT系统供电能力,大幅度提高RAT系统的利用效率。
若将本发明适用于新型RAT系统,则能够解决现有RAT系统设计方案中因RAT涡轮桨叶直径大导致的RAT本体重量大、经济性差、安装空间需求大等问题,大幅度提高新型RAT系统的实用性及技术水准。首先, 对于采用新型RAT系统,因蓄电池的使用,RAT涡轮桨叶直径或可降低50%左右;其次,因蓄电池为LRU(Line Replace Unit航线可更换单元)模块设计,采用便捷安装方式,在设计后期可根据负载情况进行灵活调整,且不会对整个系统造成较大的研制周期及经济成本影响,因此极大程度上提高RAT系统的经济性和可靠性。
本发明还可以在后期运营过程中通过数据采集模块采集并分析飞行数据,提取对RAT系统而言的严酷工况,通过对数据的后期处理分析,还可在运营后期对RAT系统进行低成本的优化(更为精准的负载分配管理),降低新型RAT系统重量(蓄电池为LRU),节约飞行过程中的燃油量。
根据本发明,大幅提高了新型RAT系统的可实现性,通过负载分流管理技术,RAT涡轮桨叶直径的大幅度降低,有利于RAT系统的安装和维护,且可节约安装空间,降低安装难度。同时,因在RAT系统减重将降低RAT安装点刚度要求,可间接达成RAT舱机体结构的大幅减重。
从长远角度看,通过将本发明适用于新型RAT系统,能够大幅度提高RAT系统的使用效率,提高其经济性,有益于飞机应急发电系统的长远优化设计及发展。除此之外,负载分流方法可根据飞机运营过程中的应急负载数据,优化应急负载的分配比例及路径,提高能量利用效率、设备使用寿命、系统安全性等。能够存储并输出相关数据,通过相似性分析等技术方法,用于其他机型的搭载负载分流方法的新型RAT系统设计。
本发明通过负载分流方法对RAT系统的实时供电能力和应急负载的用电需求进行精准匹配,能够有效应用于液压、全电及液电混合的RAT系统。
综上所述,通过采用负载分流管理,传统RAT系统及新型RAT系统的实用性及安全性增强,能够有效提高飞机的经济性和安全性。
以上,仅仅是对本发明的优选实施方式进行了详细说明。本发明所属技术领域的技术人员可以对所描述的具体实施方式做出各种各样的变更和补充或采用类似的方式替代。并且,对以上记载的各步骤进行分解、组合或顺序调换且得到相同技术效果的方案也落入本发明的技术范围内。本发明的技术范围应由权利要求书来确定,而且还应包括与权利要求书的记载 内容相等同的含义及其范围内的所有变更。

Claims (12)

  1. 一种冲压空气涡轮系统的负载分流方法,所述冲压空气涡轮系统在飞机失去主动力和辅助动力即进入应急模式时作为紧急动力源而向包括直流应急负载和交流应急负载的应急负载供电,所述冲压空气涡轮系统的负载分流方法的特征在于,包括:
    数据获取步骤,获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据;
    负载检测步骤,检测所述冲压空气涡轮系统的发电机的负载信息;
    分析计算步骤,基于所述数据对所述冲压空气涡轮系统的所述发电机的供电能力进行分许计算,并且基于所述发电机的所述负载信息对所述应急负载的电力需求进行分析计算;
    充放电控制步骤,使与飞机的主电网及冲压空气涡轮系统的发电机连接的蓄电池与所述冲压空气涡轮系统的所述发电机的供电能力和所述应急负载的电力需求相匹配地进行充放电。
  2. 根据权利要求1所述的冲压空气涡轮系统的负载分流方法,其特征在于,
    在所述飞机处于正常飞行的情况下,在所述充放电控制步骤中,利用主电网对所述蓄电池进行充电。
  3. 根据权利要求1所述的冲压空气涡轮系统的负载分流方法,其特征在于,
    在所述飞机进入应急模式的情况下,在分析计算步骤中,对所述发电机的供电能力和所述应急负载的电力需求进行比较,在所述供电能力大于所述电力需求的情况下,在所述充放电控制步骤中,利用由所述发电机发电得到的电力对所述蓄电池进行充电。
  4. 根据权利要求3所述的冲压空气涡轮系统的负载分流方法,其特征在于,
    在所述交流应急负载中包括稳态运行的常规交流负载和需要瞬时大功率的大功率泵类负载,
    在根据所述发电机的供电能力能够确保所述常规交流负载、直流应急负载的稳态运行、且需要启动所述大功率泵类负载而所述供电能力为所述应急负载的电力需求以下的情况下,在所述充放电控制步骤中,使所述蓄电池放电而向所述交流应急负载及所述直流应急负载供电。
  5. 根据权利要求4所述的冲压空气涡轮系统的负载分流方法,其特征在于,
    在根据所述发电机的供电能力仅能够确保所述常规交流负载的稳态运行的情况下,在所述充放电控制步骤中,使得所述蓄电池放电,仅向所述直流应急负载供电。
  6. 一种冲压空气涡轮系统的负载分流装置,所述冲压空气涡轮系统在飞机失去主动力和辅助动力即进入应急模式时作为紧急动力源而向包括直流应急负载和交流应急负载的应急负载供电,所述冲压空气涡轮系统的负载分流装置的特征在于,包括:
    蓄电池,其分别与飞机的主电网及冲压空气涡轮系统的发电机连接,且能够向所述应急负载供电;
    传感器,其获取飞机的影响冲压空气涡轮的涡轮盘面气流的数据;
    负载检测器,其检测所述冲压空气涡轮系统的发电机的负载信息;
    数据分析单元,其输入来自所述传感器的数据和来自所述负载检测器的负载信息,基于所述传感器的数据对所述冲压空气涡轮系统的发电机的供电能力进行分析计算,并且基于所述发电机的所述负载信息对所述应急负载的电力需求进行分析计算;
    第1连接器,其能够切换到所述交流应急负载与所述主电网连接的第1位置、或者所述交流应急负载与所述冲压空气涡轮系统的发电机连接的第2位置;
    第2连接器,其能够切换到所述直流应急负载经由所述第1连接器与所述主电网或所述发电机连接的第3位置、或者所述直流应急负载与所述蓄电池连接的第4位置;
    充放电管理单元,其与所述第2连接器的所述第3位置并联连接,并 与所述蓄电池连接,向所述蓄电池充入来自所述主电网的电力或由所述冲压空气涡轮系统的发电机发电得到的电力,或者使蓄电池放电;以及
    控制器,其根据所述数据分析单元的分析计算结果,控制所述第1连接器及第2连接器的位置以及所述充放电管理单元,使得所述蓄电池与所述冲压空气涡轮系统的发电机的供电能力以及所述应急负载的电力需求相匹配地进行充放电。
  7. 根据权利要求6所述的冲压空气涡轮系统的负载分流装置,其特征在于,
    在所述飞机处于正常飞行的情况下,所述控制器使所述第1连接器处于所述第1位置,使所述第2连接器处于所述第3位置,使所述充放电管理单元利用来自所述主电网的电力对所述蓄电池进行充电。
  8. 根据权利要求6所述的冲压空气涡轮系统的负载分流装置,其特征在于,
    在所述飞机进入应急模式的情况下,所述控制器使所述第1连接器处于所述第2位置,
    所述数据分析单元对所述发电机的供电能力和所述应急负载的电力需求进行比较,
    在所述供电能力大于所述电力需求的情况下,所述控制器使所述第2连接器处于所述第3位置,使所述充放电管理单元利用由所述冲压空气涡轮系统的发电机发电得到的电力对所述蓄电池进行充电。
  9. 根据权利要求8所述的冲压空气涡轮系统的负载分流装置,其特征在于,
    在所述交流应急负载中包括稳态运行的常规交流负载和需要瞬时大功率的大功率泵类负载,
    在根据所述发电机的供电能力能够确保所述常规交流负载、直流应急负载的稳态运行、且需要启动所述大功率泵类负载而所述供电能力为所述电力需求以下的情况下,
    所述控制器使所述第2连接器处于所述第3位置,所述充放电管理单 元使所述蓄电池放电,向所述交流应急负载及所述直流应急负载供电。
  10. 根据权利要求9所述的冲压空气涡轮系统的负载分流装置,其特征在于,
    在根据所述发电机的供电能力仅能够确保所述常规交流负载的稳态运行的情况下,所述控制器使所述第2连接器处于所述第4位置,所述充放电管理单元使所述蓄电池放电,经由所述第2连接器而仅向所述直流应急负载供电。
  11. 根据权利要求6至10中任一项所述的冲压空气涡轮系统的负载分流装置,其特征在于,
    所述蓄电池为设于冲压空气涡轮系统的蓄电池。
  12. 根据权利要求6至10中任一项所述的冲压空气涡轮系统的负载分流装置,其特征在于,
    所述蓄电池为飞控蓄电池或主蓄电池。
PCT/CN2022/136095 2021-12-02 2022-12-02 冲压空气涡轮系统的负载分流方法及负载分流装置 WO2023098851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111459623.1 2021-12-02
CN202111459623.1A CN114157009B (zh) 2021-12-02 2021-12-02 冲压空气涡轮系统的负载分流方法及负载分流装置

Publications (1)

Publication Number Publication Date
WO2023098851A1 true WO2023098851A1 (zh) 2023-06-08

Family

ID=80455677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136095 WO2023098851A1 (zh) 2021-12-02 2022-12-02 冲压空气涡轮系统的负载分流方法及负载分流装置

Country Status (2)

Country Link
CN (1) CN114157009B (zh)
WO (1) WO2023098851A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157009B (zh) * 2021-12-02 2023-09-22 中国商用飞机有限责任公司 冲压空气涡轮系统的负载分流方法及负载分流装置
CN117401167B (zh) * 2023-12-12 2024-02-09 中国航空工业集团公司金城南京机电液压工程研究中心 一种飞机的电力系统模态切换方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121546A1 (en) * 2005-04-21 2009-05-14 Airbus France Electrical emergency source device located on an aircraft
CN102310949A (zh) * 2010-06-23 2012-01-11 哈米尔顿森德斯特兰德公司 多来源应急动力的优化
JP2014036470A (ja) * 2012-08-07 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> 品質別給電システム
CN114157009A (zh) * 2021-12-02 2022-03-08 中国商用飞机有限责任公司 冲压空气涡轮系统的负载分流方法及负载分流装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936220B1 (fr) * 2008-09-23 2011-05-27 Airbus France Systeme et procede de distribution electrique d'un aeronef
US8820677B2 (en) * 2011-06-18 2014-09-02 Jason A. Houdek Aircraft power systems and methods
US9083201B2 (en) * 2011-09-14 2015-07-14 Hamilton Sundstrand Corporation Load shedding circuit for RAM air turbines
US20140032002A1 (en) * 2012-07-30 2014-01-30 The Boeing Company Electric system stabilizing system for aircraft
US20140197681A1 (en) * 2012-07-30 2014-07-17 The Boeing Company Electric system stabilizing system for aircraft
US11485514B2 (en) * 2020-01-07 2022-11-01 Hamilton Sundstrand Corporation Ram air turbine systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121546A1 (en) * 2005-04-21 2009-05-14 Airbus France Electrical emergency source device located on an aircraft
CN102310949A (zh) * 2010-06-23 2012-01-11 哈米尔顿森德斯特兰德公司 多来源应急动力的优化
JP2014036470A (ja) * 2012-08-07 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> 品質別給電システム
CN114157009A (zh) * 2021-12-02 2022-03-08 中国商用飞机有限责任公司 冲压空气涡轮系统的负载分流方法及负载分流装置

Also Published As

Publication number Publication date
CN114157009A (zh) 2022-03-08
CN114157009B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
WO2023098851A1 (zh) 冲压空气涡轮系统的负载分流方法及负载分流装置
US10913543B2 (en) Power system for more electric aircraft
WO2021185056A1 (zh) 船舶直流组网电力系统及其运行和功率优化控制方法
CN104163111B (zh) 基于双向dc/dc的电动车复合能源增程系统
Zhu et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship
WO2019041383A1 (zh) 电动汽车的供电系统、控制方法和电动汽车
CN202057733U (zh) 变桨距系统的超级电容组状态监测系统
CN111156131B (zh) 风机变桨系统后备电源的智能控制系统及方法
CN113682479A (zh) 一种电动无人机组合供电装置、方法及系统
CN105691608A (zh) 管理设有内燃机的无人驾驶飞行器的运转功率需求的方法
CN108923470A (zh) 多能源船舶能量管理方法和系统
CN110370951B (zh) 电车供电控制方法、系统及电车
CN206099484U (zh) 一种飞机电气系统
CN103413983B (zh) 风力发电机组用铅酸电池组的充电方法及充电管理系统
CN101923144A (zh) 一种机车蓄电池在线检测方法及装置
CN116031989B (zh) 一种多源电能控制方法及架构
CN106405292A (zh) 一种风机变桨驱动器自动测试系统
CN107612115A (zh) 机载锂电池组投退电网控制方法及控制装置
CN107359676A (zh) 一种蓄电池在线充放电控制及容量核对系统和方法
GB2545493A (en) Wind turbine diagnostic apparatus
CN105564266B (zh) 一种储能式车辆充电系统
US10069303B2 (en) Power generation system and method with energy management
CN109895759A (zh) 一种混合动力车辆及其集成式控制器
CN106229531A (zh) 燃料电池车辆容错控制方法及装置
Andari et al. Energy management strategy of a fuel cell electric vehicle: design and implementation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900655

Country of ref document: EP

Kind code of ref document: A1