WO2023098786A1 - 能耗控制方法、基站、电子设备及计算机可读存储介质 - Google Patents

能耗控制方法、基站、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2023098786A1
WO2023098786A1 PCT/CN2022/135795 CN2022135795W WO2023098786A1 WO 2023098786 A1 WO2023098786 A1 WO 2023098786A1 CN 2022135795 W CN2022135795 W CN 2022135795W WO 2023098786 A1 WO2023098786 A1 WO 2023098786A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
carrier
processing cycle
time slot
current
Prior art date
Application number
PCT/CN2022/135795
Other languages
English (en)
French (fr)
Inventor
未平
郭诚
黄�俊
周将运
王国争
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023098786A1 publication Critical patent/WO2023098786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a method for controlling energy consumption, a base station, electronic equipment, and a computer-readable storage medium.
  • 5G Fifth Generation Mobile Communication Technology, fifth-generation mobile communication technology
  • 5G base stations With the large-scale deployment of 5G (5th Generation Mobile Communication Technology, fifth-generation mobile communication technology) base stations, the high-density deployment and high power consumption of 5G base stations have brought about high energy consumption.
  • 5G base stations In order to meet the needs of various operators to reduce energy consumption and respond to the national call for energy conservation and emission reduction, it is particularly important to realize energy conservation of 5G base stations.
  • the energy saving of 5G base stations is mainly realized by means of symbol off, carrier off, antenna channel off, etc., but these methods have many defects.
  • an energy consumption control method including multiple processing cycles, each processing cycle includes: evaluating the load situation of the downlink time slot of the current processing cycle to obtain load evaluation information of the current processing cycle; Predicting the load evaluation information of the next processing cycle according to the load evaluation information of the current processing cycle; and determining the voltage of the uplink time slot of the next processing cycle when the predicted load evaluation information of the next processing cycle satisfies a preset condition Tuning parameters and power configuration parameters.
  • a base station including: an evaluation module configured to evaluate the load situation of the downlink time slot of the current processing cycle to obtain load evaluation information of the current processing cycle; a prediction module configured to The load evaluation information of the current processing cycle predicts the load evaluation information of the next processing cycle; and the processing module is configured to determine the uplink time slot of the next processing cycle when the predicted load evaluation information of the next processing cycle meets a preset condition The voltage adjustment parameters and power configuration parameters.
  • an electronic device including: at least one processor; a memory on which at least one computer program is stored, and when the at least one computer program is executed by the at least one processor, the The at least one processor implements the aforementioned energy consumption control method; and at least one I/O interface, connected between the processor and the memory, is configured to realize the connection between the processor and the memory exchange of information between them.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the aforementioned energy consumption control method is implemented.
  • FIG. 1 is a schematic flowchart of an energy consumption control method provided by the present disclosure
  • FIG. 2 is a schematic flowchart of obtaining load evaluation information of the current processing cycle provided by the present disclosure
  • FIG. 3 is a schematic flowchart of determining power monitoring information of each carrier provided by the present disclosure
  • FIG. 4 is a schematic flowchart of determining the power utilization ratio of each carrier in each downlink time slot provided by the present disclosure
  • FIG. 5 is a schematic flowchart of determining the AAU power utilization rate of the current processing cycle provided by the present disclosure
  • FIG. 6 is a schematic flowchart of determining voltage adjustment parameters and power configuration parameters provided by the present disclosure
  • Fig. 7a is a working schematic diagram of the energy consumption control method provided by the present disclosure.
  • Fig. 7b is a working schematic diagram of the energy consumption control method provided by the present disclosure.
  • Fig. 8 is a schematic block diagram of a base station provided by the present disclosure.
  • the existing methods for energy saving of the base station mainly include symbol off, carrier off, antenna channel off, etc., but these methods have many defects.
  • the symbol-off technology is a method to reduce the power consumption of the power amplifier module through discontinuous transmission when the network is under low load.
  • the symbol turn-off technology is mainly to turn off the power amplifier module in the idle symbols of the traffic channel.
  • Carrier off technology is a green energy-saving mode that turns off the carrier according to the traffic load of the cell when the network is relatively idle and the traffic volume of the cell is low.
  • the PRB (Physical Resource Block, downlink physical resource block) of the base station ) occupancy rate for processing periodic monitoring if the PRB occupancy rate is lower than the configured threshold within a given period of time, the users under the capacity absorption cell will be switched to the coverage cell, and the capacity absorption cell will be deactivated, and only the coverage absorption cell will be reserved .
  • Each base station does not consider the cell of the adjacent base station when the carrier is turned off. It is possible that the same carrier is reserved, and both base stations transmit services on this carrier, resulting in interference, the signal coverage of the base station is affected. However, the processing cycle for restarting after the antenna channel is shut down is long, so the response time is also long, resulting in prolonged service scheduling delay.
  • the energy consumption of the base station is closely related to the power supply voltage of the PA (Power Amplifier, base station power amplifier). If the PA power supply voltage is adjusted in real time according to the current business load of the base station, the PA power supply voltage can meet the business load requirements without overflowing , it can minimize the energy consumption of the base station without negatively affecting the performance of the base station and the base station can respond quickly without turning off symbols, carriers and antenna channels, which can also meet the needs of saving energy consumption of the base station .
  • the load of the current processing cycle can be evaluated, and the load of the next processing cycle can be predicted according to the load of the current processing cycle, and then the voltage adjustment parameters can be determined for the next processing cycle.
  • the PA power supply voltage can be adjusted according to the voltage adjustment parameter, so that the adjusted PA power supply voltage can be used for power supply during the downlink time slot of the next processing cycle, reducing the energy consumption of the base station.
  • an embodiment of the present disclosure provides an energy consumption control method, which includes multiple processing cycles, and each processing cycle may include the following steps S11 to S13.
  • step S11 the load situation of the downlink time slot in the current processing cycle is evaluated to obtain load evaluation information of the current processing cycle.
  • step S12 the load evaluation information of the next processing cycle is predicted according to the load evaluation information of the current processing cycle.
  • step S13 when the predicted load evaluation information of the next processing cycle satisfies the preset condition, the voltage adjustment parameter and the power configuration parameter of the uplink time slot of the next processing cycle are determined.
  • Each processing cycle can include a number of uplink time slots and a number of downlink time slots; the load evaluation information of the next processing cycle meets the preset conditions, which can indicate that the current predicted load situation in the next processing cycle does not match the voltage level, and can be Adjust the voltage; while adjusting the voltage, it is also necessary to adjust the configuration of the maximum scheduling power of the baseband to adapt to the change of the PA power supply voltage, so the voltage adjustment parameters and power configuration parameters need to be determined.
  • the energy consumption control method provided by the embodiments of the present disclosure can be used not only for base stations, but also for access network equipment and core network equipment.
  • the load situation of the downlink time slot of the current processing cycle is evaluated to obtain the load evaluation information of the current processing cycle, according to
  • the load evaluation information of the current processing cycle predicts the load evaluation information of the next processing cycle, and when the predicted load evaluation information used to characterize the load situation of the next processing cycle meets the preset conditions, the voltage adjustment parameters and power configuration parameters are determined , so that during the uplink time slot of the next processing cycle, the power supply voltage of the PA can be adjusted according to the voltage adjustment parameter and the maximum scheduled power configuration of the baseband can be adjusted according to the power configuration parameter, so that the power supply voltage of the PA can meet the business load demand without Overflow, without turning off symbols, carriers, and antenna channels, can reduce the energy consumption of the base station. Only by adjusting the PA power supply voltage of the base station, the base station can respond quickly, the performance of the base station will not be affected, and the energy-saving benefits of the base station will be improved
  • the energy consumption control method further includes: In the uplink time slot, the maximum scheduled power of each baseband is configured according to the power configuration parameter determined in the previous processing cycle, and the power supply voltage of the PA is adjusted according to the voltage adjustment parameter determined in the previous processing cycle.
  • the PA power supply voltage is adjusted during the fixed time slot of each processing cycle, that is, the uplink time slot, which will not affect the performance of the base station.
  • the adjusted voltage can be used for power supply, and the adjusted voltage can adapt to the load. situation, so as to reduce the energy consumption of the base station.
  • AAU Active Antenna Unit, Active Antenna Unit
  • RRU Remote Radio Unit, remote radio frequency unit
  • AAU Active Antenna Unit
  • AAU power utilization When the business load is high, The transmit power utilization of AAU (i.e. AAU power utilization) is usually high, and when the business load is low, the transmit power utilization of AAU is usually low, that is to say, the AAU power utilization can reflect to a certain extent Business load situation. Therefore, the AAU power utilization ratio can be determined to characterize the load situation of the downlink time slot.
  • the load evaluation information may include AAU power utilization, as shown in FIG. S11) may include the following steps S21 and S22.
  • step S21 according to the power of each OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol scheduling channel of each downlink time slot of the current processing cycle and the preset maximum available power of each carrier to determine the power of each carrier Power monitoring information.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • step S22 the AAU power utilization rate of the current processing period is determined according to the power monitoring information of each carrier and the preset maximum available power of each carrier.
  • Each downlink time slot can include several OFDM symbols, and the carrier can schedule different channels within OFDM symbols, such as scheduling PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) , SSB (Synchronization Signal Block, synchronization signal block), etc.
  • the power of the OFDM symbol scheduling channel is actually the power of the carrier scheduling channel within the OFDM symbol.
  • the power monitoring information of the carrier may include parameters used to characterize the power utilization and performance of the carrier.
  • the power utilization rate of the carrier can represent the power utilization of the carrier and can be determined according to the actual power used and the maximum available power of the carrier.
  • the minimum guaranteed power of the carrier can represent the performance of the carrier and can be determined directly according to the actual power used of the carrier.
  • the power monitoring information may include power utilization and minimum guaranteed power.
  • the power of the OFDM symbol scheduling channel and the The preset maximum available power of each carrier to determine the power monitoring information of each carrier may include the following steps S31 to S33.
  • step S31 the power utilization rate of each carrier in each downlink time slot is determined according to the power of each OFDM symbol scheduling channel in each downlink time slot of the current processing cycle and the preset maximum available power of each carrier.
  • step S32 the power utilization rate of each carrier is determined according to the power utilization rate of each carrier in each downlink time slot.
  • step S33 the minimum guaranteed power of each carrier is determined according to the power of each OFDM symbol scheduling channel of each downlink time slot in the current processing cycle.
  • the power of the channel and the current The preset maximum available power of the carrier determines the power utilization rate of the current carrier in each downlink time slot, and then determines the power utilization rate of the current carrier according to the power utilization rate of the current carrier in each downlink time slot; it can be based on the current carrier in the current processing period
  • the power of the scheduling channel in each OFDM symbol of each downlink time slot determines the minimum guaranteed power of the current carrier.
  • step S31, step S32, and step S33 can be executed at the same time, or step S31, step S32 can be executed first, and then step S33 can be executed , Step S33 can also be executed first, and then step S31 and step S32 are executed.
  • the present disclosure does not specifically limit the execution order of determining the power monitoring information of each carrier.
  • the current carrier can schedule channels in each OFDM symbol of the current downlink time slot, and the maximum value of the power of the current carrier scheduling channel in each OFDM symbol of the current downlink time slot is the current carrier.
  • the maximum used power in the current downlink time slot is combined with the maximum used power corresponding to the current carrier and the preset maximum available power to determine the power utilization rate of the current carrier in the current downlink time slot.
  • the power of each OFDM symbol scheduling channel of each downlink time slot in the current processing cycle and the preset maximum available power of each carrier are determined to determine the The power utilization of each downlink time slot (that is, step S31) includes steps S41 and S42.
  • step S41 for any carrier and any downlink time slot, determine the maximum value of the power of the scheduling channel of the current carrier in each OFDM symbol of the current downlink time slot.
  • step S42 the power utilization rate of the current carrier in the current downlink time slot is determined according to the maximum value and the preset maximum available power of the current carrier.
  • Steps S41 and S42 are executed multiple times and continuously to determine the power utilization ratio of each carrier in each downlink time slot.
  • the ratio of the maximum value to the preset maximum available power of the current carrier may be determined as the power utilization rate of the current carrier in the current downlink time slot.
  • the power utilization rate of the "any of the said carriers" in the "any of the downlink time slots" must be calculated; the current carrier is the carrier for which the power utilization in each downlink slot is currently being calculated.
  • the current carrier has a power utilization rate in each downlink time slot of the current processing cycle, and the average value of the power utilization rate of the current carrier in each downlink time slot can be determined as the power utilization rate of the current carrier.
  • the determining the power utilization rate of each carrier according to the power utilization rate of each carrier in each downlink time slot may include the following steps: for any carrier, determine that the current carrier is in The average value of the power utilization ratios of each downlink time slot is used as the power utilization ratio of the current carrier.
  • the current carrier can schedule channels in each OFDM symbol of each downlink time slot in the current processing cycle.
  • the maximum value of the power of each OFDM symbol scheduling channel in each downlink time slot of the current processing cycle can reflect the capability of the current carrier scheduling channel, indicating that the current carrier can at least guarantee the maximum scheduling channel power. Therefore, the maximum value among the powers of each OFDM symbol scheduling channel in each downlink time slot of the current processing period of the current carrier can be determined as the minimum guaranteed power of the current carrier.
  • the determination of the minimum guaranteed power of each carrier according to the power of each OFDM symbol scheduling channel of each downlink time slot in the current processing cycle may include the following steps: For any carrier, Determine the maximum value among the powers of each OFDM symbol scheduling channel of each downlink time slot of the current carrier in the current processing cycle as the minimum guaranteed power of the current carrier.
  • the power utilization of the AAU can be calculated.
  • the determination of the AAU power utilization rate of the current processing cycle according to the power monitoring information of each carrier and the preset maximum available power of each carrier may include Steps S51 and S52 are as follows.
  • step S51 the maximum utilization power of each carrier is respectively determined according to the power utilization rate of each carrier and the preset maximum available power of each carrier.
  • step S52 the AAU power utilization ratio of the current processing cycle is determined according to the sum of the maximum utilization power of each carrier and the preset maximum available power sum of each carrier.
  • the power utilization rate of the AAU in the current processing period may be calculated using the following formula:
  • AAUpowerRatio is the power utilization rate of the AAU in the current processing cycle
  • J is the total number of the carriers
  • i is the identity of the i-th carrier
  • MaxPower(i) ⁇ PowerRatio( i) is the maximum utilization power of the i-th carrier
  • MaxPower(i) is the maximum available power of the i-th carrier
  • PowerRatio(i) is the power utilization ratio of the i-th carrier.
  • step S13 when the predicted load evaluation information of the next processing cycle satisfies the preset condition, the voltage adjustment parameter and the power configuration parameter ( That is, step S13) may include the following steps S61 and S62.
  • step S61 when the predicted load evaluation information of the next processing cycle is lower than the first preset threshold, determine the voltage adjustment parameters for the uplink time slot voltage reduction in the next processing cycle, and according to the The preset maximum available power and the minimum guaranteed power of each carrier determine the power configuration parameters used to reduce the maximum scheduling power for the uplink time slot in the next processing cycle.
  • step S62 when the predicted load evaluation information of the next processing cycle is higher than the second preset threshold, determine the voltage adjustment parameters for increasing the voltage of the uplink time slot in the next processing cycle, and according to the The preset maximum available power and the minimum guaranteed power of each carrier determine the power configuration parameters for increasing the maximum scheduling power in the uplink time slot of the next processing cycle.
  • the first preset threshold is represented by LowPwrThr
  • the second preset threshold is represented by HighPwrThr.
  • the interval [LowPwrThr, HighPwrThr] can be the standard interval of the preset load evaluation information. When the load evaluation information is in this interval, it means that the load condition is normal. When the load evaluation information deviates from this interval, it indicates that the load condition is abnormal.
  • the load evaluation information is lower than the first preset threshold, it indicates that the service load is low, and the PA power supply voltage and the maximum scheduling power can be reduced, that is, the AAU can be notified to reduce the PA power supply voltage, and the preset
  • the maximum value between the sum of the maximum available power of each carrier and the sum of the minimum guaranteed power of each carrier is notified to the baseband, so that the baseband reduces the maximum scheduling power, and the preset maximum available power of each carrier is represented by TMaxPow and TMinPow
  • TMaxPow and TMinPow To characterize the sum of the minimum guaranteed power of each carrier, Max(TMaxPower, TMinPower) can be notified to the baseband.
  • the load evaluation information is higher than the second preset threshold, it indicates that the service load is high, and the PA power supply voltage and the maximum dispatching power can be increased, that is, the AAU can be notified to increase the PA power supply voltage, and the preset
  • the maximum value between the sum of the maximum available power and the sum of the minimum guaranteed power of each carrier is notified to the baseband, so that the baseband increases the maximum scheduling power, and the preset maximum available power of each carrier is represented by TMaxPow and TMinPow
  • TMaxPow and TMinPow To characterize the sum of the minimum guaranteed power of each carrier, Max(TMaxPower, TMinPower) can be notified to the baseband.
  • the carrier schedules the power of the channel in the OFDM symbol for the carrier to schedule the power of each physical downlink control channel (PDCCH) in the OFDM symbol, and schedules the power of each physical downlink shared channel (PDSCH)
  • the power of the carrier scheduling SSB in the OFDM symbol is the carrier in the The maximum value among the power of scheduling SSS (Secondary Synchronization Signal, secondary synchronization signal), the power of scheduling PSS (Primary Synchronization Signal, primary synchronization signal) and the power of scheduling PBCH (Physical Broadcast Channel, physical broadcast channel) in the OFDM symbol;
  • the power of the CSI-RS scheduled by the carrier in the OFDM symbol is the sum of the powers of the CSI-RS scheduled by the carrier in the OFDM symbol, and the power of the CSI-RS scheduled by the carrier in the OFDM symbol
  • the carrier schedules the PDCCH power in the OFDM symbol by the following formula:
  • PDCCHpower is the power of the PDCCH scheduled by the carrier in the OFDM symbol and the unit is mW
  • m is the total number of PDCCHs scheduled by the carrier in the OFDM symbol
  • n is the The identifier of the nth PDCCH scheduled by the carrier in the OFDM symbol
  • PDCCHpower n is the power of the nth PDCCH scheduled by the carrier in the OFDM symbol
  • the unit is decibel milliwatts.
  • PDCCHpower is the power of the PDSCH scheduled by the carrier in the OFDM symbol and the unit is mW
  • p is the total number of PDSCHs scheduled by the carrier in the OFDM symbol
  • q is the The identifier of the qth PDSCH scheduled by the carrier in the OFDM symbol
  • PDSCHpower q is the power of the qth PDSCH scheduled by the carrier in the OFDM symbol
  • the unit is decibel milliwatts.
  • SSBpower max(SSSpower, PSSpower, PBCHpower) (4)
  • SSBpower is the power of the carrier scheduling SSB in the OFDM symbol
  • SSSpower is the power of the carrier scheduling SSS in the OFDM symbol
  • PSSpower is the carrier scheduling power in the OFDM symbol The power of the PSS is scheduled
  • the PBCHpower schedules the power of the PBCH in the OFDM symbol for the carrier.
  • CSIRSpower is the power of the carrier to schedule the CSI-RS in the OFDM symbol
  • powerPerRERef is the RE reference power of the cell resource element and the unit is decibel milliwatts
  • CSIRSpoweroffset is the current CSI-RS relative to the The offset of the RE reference power of the cell and the unit is decibel
  • REnumCSIRS is the number of REs occupied by the CSI-RS of the cell
  • v is the total number of CSI-RS scheduled by the carrier in the OFDM symbol
  • u is the number of CSI-RS scheduled by the carrier in the OFDM symbol.
  • the prediction of the load evaluation information of the next processing cycle according to the load evaluation information of the current processing cycle may be performed using the following formula:
  • AAUpowerRatio(t+1) ⁇ *AAUpowerRatio(t+1)+(1- ⁇ )*AAUpowerRatio(t),
  • AAUpowerRatio(t+1) is the load evaluation information of the next processing cycle
  • AAUpowerRatio(t) is the load evaluation information of the current processing cycle, 0 ⁇ 1.
  • BBU Building Base band Unite, baseband processing unit
  • the centralized control point is the logical processing unit in the BBU, responsible for centralized data processing and voltage adjustment instruction generation
  • AAU is responsible for the execution of voltage adjustment.
  • the BBU instructs the AAU to quickly adjust the PA power supply voltage during the fixed time slot (that is, the uplink time slot) by evaluating and predicting the business load of the downlink time slot. During the voltage adjustment period, there is no impact on the performance of the base station.
  • the PA uses adjusted supply voltage.
  • the centralized control point issues the maximum available power of each LTE carrier to the LTE cell and obtains the power utilization rate of each LTE carrier and the minimum power guarantee of each LTE carrier.
  • the centralized control point sends the maximum available power of each NR carrier to the NR cell and obtains the power utilization rate of each NR carrier and the minimum power guarantee of each NR carrier. Predict the load of the next processing cycle, determine the power information when the predicted load of the next processing cycle does not meet the standard, and send the power information to the AAU PA power control module for the AAU PA power control module to adjust the PA power supply voltage.
  • the BBU instructs AAU to adjust the voltage according to the previous processing cycle and instructs the baseband to limit scheduling after a fixed time slot
  • AAU After receiving the voltage regulation instruction, prepare to adjust the voltage in the fixed time slot, that is, the up time slot, and step voltage regulation in the down time slot.
  • an embodiment of the present disclosure further provides a base station, as shown in FIG. 8 , including an evaluation module 101 , a prediction module 102 and a processing module 103 .
  • the evaluation module 101 is configured to evaluate the load situation of the downlink time slots of the current processing cycle, so as to obtain load evaluation information of the current processing cycle.
  • the prediction module 102 is configured to predict the load evaluation information of the next processing cycle according to the load evaluation information of the current processing cycle.
  • the processing module 103 is configured to determine a voltage adjustment parameter and a power configuration parameter of an uplink time slot in a next processing cycle when the predicted load evaluation information of the next processing cycle satisfies a preset condition.
  • the base station may further include an adjustment module configured to configure each baseband according to the power configuration parameters determined in the previous processing cycle in the uplink time slot of the subsequent processing cycle of two adjacent processing cycles.
  • the maximum scheduled power of the base station power amplifier PA is adjusted according to the voltage adjustment parameters determined in the previous processing cycle.
  • the load evaluation information includes active antenna unit AAU power utilization
  • the evaluation module 101 is configured to: schedule each OFDM symbol according to each downlink time slot of the current processing cycle The power of the channel and the preset maximum available power of each carrier determine the power monitoring information of each carrier; and determine the AAU power of the current processing cycle according to the power monitoring information of each carrier and the preset maximum available power of each carrier utilization rate.
  • the power monitoring information includes power utilization and minimum guaranteed power
  • the evaluation module 101 is configured to: according to the power of each OFDM symbol scheduling channel in each downlink time slot of the current processing cycle and the pre-set power of each carrier determining the power utilization ratio of each carrier in each downlink time slot based on the maximum available power; determining the power utilization ratio of each carrier according to the power utilization ratio of each carrier in the downlink time slot; and The power of each OFDM symbol scheduling channel of each downlink time slot in the current processing cycle determines the minimum guaranteed power of each carrier.
  • the evaluation module 101 is configured to: for any of the carriers and any of the downlink time slots, determine the maximum value of the power of the current carrier's scheduling channel in each OFDM symbol of the current downlink time slot and determining the power utilization rate of the current carrier in the current downlink time slot according to the maximum value and the preset maximum available power of the current carrier.
  • the evaluation module 101 is configured to: for any of the carriers, determine an average value of the power utilization ratios of the current carrier in the downlink time slots as the power utilization ratio of the current carrier.
  • the evaluation module 101 is configured to: for any of the carriers, determine the maximum value of the power of each OFDM symbol scheduling channel of the current carrier in each downlink time slot of the current processing cycle as the current carrier minimum guaranteed power.
  • the evaluation module 101 is configured to: respectively determine the maximum utilization power of each carrier according to the power utilization rate of each carrier and the preset maximum available power of each carrier; and according to the The sum of the maximum utilization power of each carrier and the sum of the preset maximum available power of each carrier determine the AAU power utilization ratio of the current processing cycle.
  • the processing module 103 is configured to: determine the voltage adjustment parameters and power configuration of the uplink time slot of the next processing cycle when the predicted load evaluation information of the next processing cycle satisfies a preset condition
  • the parameters include: when the predicted load evaluation information of the next processing cycle is lower than the first preset threshold, determine a voltage adjustment parameter for reducing the voltage of the uplink time slot in the next processing cycle, and according to the The preset maximum available power and the minimum guaranteed power of each carrier determine the power configuration parameters used to reduce the maximum scheduling power for the uplink time slot of the next processing cycle; when the predicted load evaluation information of the next processing cycle is higher than When the second preset threshold is reached, determine the voltage adjustment parameter for increasing the voltage of the uplink time slot in the next processing cycle, and determine the voltage adjustment parameter according to the preset maximum available power of each carrier and the minimum guaranteed power of each carrier. Increase the power configuration parameter of the maximum scheduling power in the uplink time slot of the next processing cycle.
  • the carrier schedules the power of the channel in the OFDM symbol for the carrier to schedule the power of each physical downlink control channel PDCCH and the power of each physical downlink shared channel (PDSCH) in the OFDM symbol , the sum of the power of the scheduled synchronization signal block (SSB) and the power of the scheduled channel state information reference signal (CSI-RS);
  • the power of the scheduled SSB of the carrier in the OFDM symbol is that the carrier is in the OFDM symbol
  • the power of the CSI-RS scheduled by the carrier in the OFDM symbol is The sum of the power of each CSI-RS scheduled by the carrier in the OFDM symbol, the power of the CSI-RS scheduled by the carrier in the OFDM symbol is based on the reference power of the cell resource element (RE), the current CSI-RS relative to the The offset of the RE reference power of the cell and the number
  • an embodiment of the present disclosure also provides an electronic device, including: at least one processor; and a storage device, on which at least one computer program is stored; when the at least one computer program is executed by the at least one processor, making the at least one processor implement the aforementioned energy consumption control method; and at least one I/O interface, connected between the processor and the memory, configured to implement the processor and the memory information exchange between them.
  • an embodiment of the present disclosure also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed, the aforementioned energy consumption control method is implemented.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit circuit.
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

本公开提供一种能耗控制方法,包括多个处理周期,每个处理周期都包括:评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息;根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息;以及当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。本公开还提供一种基站、一种电子设备及一种计算机可读存储介质。

Description

能耗控制方法、基站、电子设备及计算机可读存储介质
相关申请的交叉引用
本公开要求于2021年12月3日提交的中国专利申请NO.202111469802.3的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本公开涉及通信技术领域,具体地,涉及能耗控制方法、基站、电子设备及计算机可读存储介质。
背景技术
随着5G(5th Generation Mobile Communication Technology,第五代移动通信技术)基站的大规模部署,5G基站的高密度部署和高功率消耗带来了高能耗问题。为了满足各个运营商降低能耗的需求以及响应国家节能减排的号召,实现5G基站的节能尤为重要。目前主要通过符号关断、载波关断、天线通道关断等方法来实现5G基站的节能,但这些方法存在诸多缺陷。
公开内容
作为本公开的一个方面,提供一种能耗控制方法,包括多个处理周期,每个处理周期都包括:评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息;根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息;以及当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。
作为本公开的又一个方面,提供一种基站,包括:评估模块,配置为评估当前处理周期的下行时隙的负荷情况,以获得当前处理周 期的负荷评估信息;预测模块,配置为根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息;以及处理模块,配置为当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。
作为本公开的又一个方面,提供一种电子设备,包括:至少一个处理器;存储器,其上存储有至少一个计算机程序,当所述至少一个计算机程序被所述至少一个处理器执行时,使得所述至少一个处理器实现如前所述的能耗控制方法;以及至少一个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
作为本公开的又一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前所述的能耗控制方法。
附图说明
图1是本公开所提供的能耗控制方法的流程示意图;
图2是本公开所提供的获得当前处理周期的负荷评估信息的流程示意图;
图3是本公开所提供的确定各载波的功率监测信息的流程示意图;
图4是本公开所提供的确定各载波在各下行时隙的功率利用率的流程示意图;
图5是本公开所提供的确定当前处理周期的AAU功率利用率的流程示意图;
图6是本公开所提供的确定电压调整参数和功率配置参数的流程示意图;
图7a是本公开所提供的能耗控制方法的工作示意图;
图7b是本公开所提供的能耗控制方法的工作示意图;以及
图8是本公开所提供的基站的模块示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的能耗控制方法、基站、电子设备和计算机可读存储介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现,且本公开不应当被解释为限于本文阐述的实施例。提供这些实施例的目的在于使本公开更加透彻和完整,并使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不限制本公开。如本文所使用的,单数形式“一个”和“该”也包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术术语和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
目前,现有的用于基站节能的方式主要有符号关断、载波关断、天线通道关断等,但这些方式存在诸多缺陷。符号关断技术是一种在网络低负荷时通过不连续发射来降低功放模块消耗功率的方法。符号关断技术主要是在业务信道的空闲符号关断功放模块,然而,在5G网络中,业务信道配置变得更加灵活,通过调度策略增加的空白符号量的余量较小,因此节能收益有限。载波关断技术是一种在网络较空闲、小区业务量较低的情况下根据小区的业务负荷量进行载波关断的 绿色节能模式,例如,对基站的PRB(Physical Resource Block,下行物理资源块)占用率进行处理周期性监控,若PRB占用率在给定的时间段内低于配置门限,则将容量吸收小区下的用户切换到覆盖小区,并去激活容量吸收小区,仅保留覆盖吸收小区。各个基站在执行载波关断时并没有考虑到相邻基站的载波关断的小区,有可能保留了同一个载波,两个基站均在该载波上进行传输业务,导致带来相邻基站之间的干扰,基站的信号覆盖受到影响。而天线通道关断后重启的处理周期较长,因此响应时间也较长,导致业务调度时延被延长。
本公开提出,基站的能耗与PA(Power Amplifier,基站功率放大器)电源电压密切相关,若根据基站当前的业务负荷实时调整PA电源电压,使得PA电源电压既能够满足业务负荷需求又不会溢出,则既能够最大限度地降低基站的能耗,又不会对基站的性能造成负向影响且基站可以快速响应,无需关断符号、载波和天线通道,同样能够满足节省基站的能耗的需求。可以在每个处理周期的下行时隙期间,评估当前处理周期的负荷情况,并根据当前处理周期的负荷情况预测下一处理周期的负荷情况,然后为下一处理周期确定出电压调整参数,后续在下一处理周期的上行时隙期间,则可以根据该电压调整参数调整PA电源电压,以便在下一处理周期的下行时隙期间能够使用调整后的PA电源电压供电,降低基站的能耗。
相应的,如图1所示,本公开实施例提供一种能耗控制方法,包括多个处理周期,每个处理周期都可以包括如下步骤S11至S13。
在步骤S11中,评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息。
在步骤S12中,根据当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息。
在步骤S13中,当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。
每个处理周期可以包括若干个上行时隙和若干个下行时隙;下一处理周期的负荷评估信息满足预设条件可以说明当前预测出下一 处理周期的负荷情况与电压档位不匹配,可以对电压进行调整;调整电压的同时还需调整对基带最大调度功率的配置以使之适应于PA电源电压的变化,因此电压调整参数和功率配置参数都需要确定。
需要说明的是,本公开实施例所提供的能耗控制方法,不仅可以用于基站,还可以用于接入网设备及核心网设备。
从上述步骤S11至S13可以看出,采用本公开提供的能耗控制方法,在每个处理周期中,评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息,根据当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息,当预测得到的用于表征下一处理周期的负荷情况的负荷评估信息满足预设条件时,确定出电压调整参数和功率配置参数,使得在下一处理周期的上行时隙期间可以根据该电压调整参数对PA电源电压和根据该功率配置参数对基带的最大调度功率配置进行调整,使得PA电源电压既能够满足业务负荷需求又不会溢出,无需关断符号、载波和天线通道,即可降低基站的能耗,仅调整基站的PA电源电压,则基站能够快速响应、基站性能不会受到影响且提高了基站的节能收益。
在任一处理周期中,当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数,用以下一处理周期的上行时隙根据该电压调整参数来调整电压、根据该功率配置参数来配置功率,相应的,在一些实施方式中,所述能耗控制方法还包括:在相邻两个处理周期的后一个处理周期的上行时隙中,根据前一个处理周期中确定的功率配置参数来配置各基带的最大调度功率,根据前一个处理周期中确定的电压调整参数来调整PA的电源电压。
在每个处理周期的固定时隙即上行时隙期间对PA电源电压进行调整,不会对基站的性能造成影响,下行时隙期间可以使用调整后的电压供电,调整后的电压能够适应于负荷情况,从而实现降低基站的能耗。
AAU(Active Antenna Unit,有源天线单元)是一种将RRU(Remote Radio Unit,远端射频单元)和天线融合在一起的设备,用 于在供电的情况下发射信号,业务负荷较高时,AAU的发射功率利用程度(即AAU功率利用率)通常也较高,业务负荷较低时,AAU的发射功率利用程度通常也较低,也就是说,AAU功率利用率可以在一定程度上反映出业务负荷情况。因此可以确定AAU功率利用率用以表征下行时隙的负荷情况。
在一些实施方式中,所述负荷评估信息可以包括AAU功率利用率,如图2所示,所述评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息(即步骤S11)可以包括如下步骤S21和S22。在步骤S21中,根据当前处理周期的各下行时隙的各OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)符号调度信道的功率以及各载波的预设的最大可用功率确定各载波的功率监测信息。
在步骤S22中,根据各载波的功率监测信息以及各载波的预设的最大可用功率确定当前处理周期的AAU功率利用率。
每个下行时隙可以包括若干个OFDM符号,载波可以在OFDM符号内调度不同的信道,例如调度PDCCH(Physical Downlink Control Channel,物理下行控制信道)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、SSB(Synchronization Signal Block,同步信号块)等。OFDM符号调度信道的功率实际上是载波在该OFDM符号内调度信道的功率。载波的功率监测信息可以包括用以表征载波的功率利用情况和性能情况的参数。
载波的功率利用率可以表征载波的功率利用情况,可以根据载波的实际使用功率以及最大可用功率确定,载波的最小保障功率可以表征载波的性能情况,可以直接根据载波的实际使用功率确定。相应的,在一些实施方式中,所述功率监测信息可以包括功率利用率和最小保障功率,如图3所示,所述根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定各载波的功率监测信息(即步骤S21)可以包括如下步骤S31至S33。
在步骤S31中,根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定各载波在各 下行时隙的功率利用率。
在步骤S32中,根据各载波在各下行时隙的功率利用率确定各载波的功率利用率。
在步骤S33中,根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率确定各载波的最小保障功率。
对于任一载波,可以根据当前载波(即当前正在为其确定在各下行时隙的功率利用率的这一载波)在当前处理周期的各下行时隙的各OFDM符号内调度信道的功率以及当前载波的预设的最大可用功率确定当前载波在各下行时隙的功率利用率,然后根据当前载波在各下行时隙的功率利用率确定当前载波的功率利用率;可以根据当前载波在当前处理周期的各下行时隙的各OFDM符号内调度信道的功率确定当前载波的最小保障功率。
应当理解,本公开对步骤S31和步骤S32与步骤S33之间的执行先后顺序不做具体限定,步骤S31和步骤S32与步骤S33可以同时执行,也可以先执行步骤S31和步骤S32再执行步骤S33,还可以先执行步骤S33再执行步骤S31和步骤S32。本公开对确定各载波的功率监测信息的执行先后顺序也不做具体限定。
对于任一载波以及任一下行时隙,当前载波可以在当前下行时隙的各OFDM符号内调度信道,当前载波在当前下行时隙的各OFDM符号内调度信道的功率中的最大值即当前载波在当前下行时隙内的最大使用功率,结合当前载波对应的最大使用功率以及预设的最大可用功率即可确定出当前载波在当前下行时隙的功率利用率。
相应的,在一些实施方式中,如图4所示,所述根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定所述各载波在所述各下行时隙的功率利用率(即步骤S31)包括步骤S41和S42。
在步骤S41中,对于任一载波以及任一下行时隙,确定当前载波在当前下行时隙的各OFDM符号内调度信道的功率中的最大值。
在步骤S42中,根据最大值与当前载波的预设的最大可用功率确定当前载波在当前下行时隙的功率利用率。
多次且连续执行步骤S41和S42,以确定各载波在各下行时隙的功率利用率。在步骤S42中,可以确定最大值与当前载波的预设的最大可用功率的比值作为当前载波在当前下行时隙的功率利用率。
由于存在多个载波,对于任一所述载波以及任一所述下行时隙,均要计算该“任一所述载波”在该“任一所述下行时隙”的功率利用率;当前载波是当前正在为其计算在各下行时隙的功率利用率的这一载波。
对于任一载波,当前载波在当前处理周期的各下行时隙内均具有功率利用率,可以确定当前载波在各下行时隙的功率利用率的平均值作为当前载波的功率利用率。相应的,在一些实施方式中,所述根据各载波在各下行时隙的功率利用率确定各载波的功率利用率(即步骤S32)可以包括如下步骤:对于任一载波,确定出当前载波在各下行时隙的功率利用率的平均值作为当前载波的功率利用率。
对于任一载波,当前载波可以在当前处理周期的各下行时隙的各OFDM符号内调度信道,当前载波在各OFDM符号内调度信道的功率所能达到的上限实际上不易感知,但当前载波在当前处理周期的各下行时隙的各OFDM符号调度信道的功率中的最大值,却可以反映当前载波调度信道的能力,说明当前载波至少可以保障该最大值的调度信道功率。因此可以确定当前载波在当前处理周期的各下行时隙的各OFDM符号调度信道的功率中的最大值作为当前载波的最小保障功率。
相应的,在一些实施方式中,所述根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率确定各载波的最小保障功率(即步骤S33)可以包括如下步骤:对于任一载波,确定当前载波在当前处理周期的各下行时隙的各OFDM符号调度信道的功率中的最大值作为当前载波的最小保障功率。
AAU上可以配置多个载波,根据AAU上配置的各载波的实际的功率利用率以及各载波的预设的最大可用功率,可以计算出AAU整机的功率利用率。相应的,在一些实施方式中,如图5所示,所述根据各载波的功率监测信息以及各载波的预设的最大可用功率确定当前处理周期的AAU功率利用率(即步骤S22)可以包括如下步骤S51和S52。
在步骤S51中,根据各载波的功率利用率和各载波的预设的最大可用功率分别确定各载波的最大利用功率。
在步骤S52中,根据各载波的最大利用功率之和以及各载波的预设的最大可用功率之和确定当前处理周期的AAU功率利用率。
在一些实施方式中,所述AAU在当前处理周期内的功率利用率可以采用如下公式计算:
Figure PCTCN2022135795-appb-000001
在公式(1)中,AAUpowerRatio为所述AAU在当前处理周期内的功率利用率,J为所述各载波的总数量,i为第i个所述载波的标识,MaxPower(i)×PowerRatio(i)为第i个所述载波的最大利用功率,MaxPower(i)为第i个所述载波的最大可用功率,PowerRatio(i)为第i个所述载波的功率利用率。
在一些实施方式中,如图6所示,所述当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数(即步骤S13)可以包括如下步骤S61和S62。
在步骤S61中,当预测得到的下一处理周期的负荷评估信息低于第一预设阈值时,确定用于下一处理周期的上行时隙减小电压的电压调整参数,并根据各载波的预设的最大可用功率以及各载波的最小保障功率确定用于下一处理周期的上行时隙减小最大调度功率的功率配置参数。
在步骤S62中,当预测得到的下一处理周期的负荷评估信息高于第二预设阈值时,确定用于下一处理周期的上行时隙增大电压的电压调整参数,并根据各载波的预设的最大可用功率以及各载波的最小保障功率确定用于下一处理周期的上行时隙增大最大调度功率的功率配置参数。
以LowPwrThr表征第一预设阈值,以HighPwrThr表征第二预设阈值,区间[LowPwrThr,HighPwrThr]可以为预设的负荷评估信息的 标准区间,当负荷评估信息位于此区间时,说明负荷情况正常,当负荷评估信息偏离于此区间时,说明负荷情况异常。
当负荷评估信息低于第一预设阈值时,说明业务负荷较低,可以减小PA电源电压以及减小最大调度功率,即,可以通知AAU减小PA电源电压,并将各载波的预设的最大可用功率之和与各载波的最小保障功率之和之间的最大值通知给基带,以使基带减小最大调度功率,以TMaxPow表征各载波的预设的最大可用功率之和,以TMinPow表征各载波的最小保障功率之和,则可以将Max(TMaxPower,TMinPower)通知给基带。
当负荷评估信息高于第二预设阈值时,说明业务负荷较高,可以增大PA电源电压以及增大最大调度功率,即,可以通知AAU增大PA电源电压,并将各载波的预设的最大可用功率之和与各载波的最小保障功率之和之间的最大值通知给基带,以使基带增大最大调度功率,以TMaxPow表征各载波的预设的最大可用功率之和,以TMinPow表征各载波的最小保障功率之和,则可以将Max(TMaxPower,TMinPower)通知给基带。
在一些实施方式中,所述载波在所述OFDM符号内调度信道的功率为所述载波在所述OFDM符号内调度各物理下行控制信道(PDCCH)的功率、调度各物理下行共享信道(PDSCH)的功率、调度SSB的功率和调度CSI-RS(Channel state information Reference Signal,信道状态信息参考信号)的功率之和;所述载波在所述OFDM符号内调度SSB的功率为所述载波在所述OFDM符号内调度SSS(Secondary Synchronization Signal,辅同步信号)的功率、调度PSS(Primary Synchronization Signal,主同步信号)的功率和调度PBCH(Physical Broadcast Channel,物理广播信道)的功率之中的最大值;所述载波在所述OFDM符号内调度CSI-RS的功率为所述载波在所述OFDM符号内调度各CSI-RS的功率之和,所述载波在所述OFDM符号内调度CSI-RS的功率根据小区RE(资源粒子)基准参考功率、当前CSI-RS相对所述小区RE基准功率的偏移量以及小区CSI-RS占用RE数量确定。
在一些实施方式中,所述载波在所述OFDM符号内调度PDCCH的功率通过如下公式计算:
Figure PCTCN2022135795-appb-000002
在公式(2)中,PDCCHpower为所述载波在所述OFDM符号内调度PDCCH的功率且单位为毫瓦,m为所述载波在所述OFDM符号内调度的PDCCH的总数量,n为所述载波在所述OFDM符号内调度的第n个PDCCH的标识,PDCCHpower n为所述载波在所述OFDM符号内调度第n个PDCCH的功率且单位为分贝毫瓦。
所述载波在所述OFDM符号内调度PDSCH的功率通过如下公式计算:
Figure PCTCN2022135795-appb-000003
在公式(3)中,PDCCHpower为所述载波在所述OFDM符号内调度PDSCH的功率且单位为毫瓦,p为所述载波在所述OFDM符号内调度的PDSCH的总数量,q为所述载波在所述OFDM符号内调度的第q个PDSCH的标识,PDSCHpower q为所述载波在所述OFDM符号内调度第q个PDSCH的功率且单位为分贝毫瓦。
所述载波在所述OFDM符号内调度SSB的功率通过如下公式计算:
SSBpower=max(SSSpower,PSSpower,PBCHpower)        (4)
在公式(4)中,SSBpower为所述载波在所述OFDM符号内调度SSB的功率,SSSpower为所述载波在所述OFDM符号内调度SSS的功率,PSSpower为所述载波在所述OFDM符号内调度PSS的功率,PBCHpower为所述载波在所述OFDM符号内调度PBCH的功率。
所述载波在所述OFDM符号内调度CSI-RS的功率通过如下公式计算:
Figure PCTCN2022135795-appb-000004
在公式(5)中,CSIRSpower为所述载波在所述OFDM符号内调度CSI-RS的功率,powerPerRERef为小区资源粒子RE基准参考功率且单位为分贝毫瓦,CSIRSpoweroffset为当前CSI-RS相对所述小区RE基准 功率的偏移量且单位为分贝,REnumCSIRS为小区CSI-RS占用RE数量,v为所述载波在所述OFDM符号内调度CSI-RS的总数量,u为所述载波在所述OFDM符号内调度的第u个CSI-RS的标识。
在一些实施方式中,所述根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息可以采用如下公式进行:
AAUpowerRatio(t+1)=α*AAUpowerRatio(t+1)+(1-α)*AAUpowerRatio(t),
AAUpowerRatio(t+1)为所述下一处理周期的负荷评估信息,AAUpowerRatio(t)为所述当前处理周期的负荷评估信息,0<α<1。
以下结合图7a和图7b来对本公开提供的能耗控制方法进行简要描述。在基站中,BBU(Building Base band Unite,基带处理单元)负责数据统计和上报,集中控制点是BBU中的逻辑处理单元,负责数据集中处理和电压调整指示生成,AAU负责电压调整的执行。BBU通过对下行时隙的业务负荷评估和预测,指示AAU在固定时隙(即上行时隙)期间对PA电源电压进行快速调整,电压调整期间对基站性能无影响,下行时隙调度时PA使用调整后的电源电压供电。在高业务负荷场景增大PA电源电压,低业务负荷场景减小PA电源电压,从而降低基站功耗。当小区为LTE(Long Term Evolution,长期演进)小区时,集中控制点向LTE小区下发各LTE载波最大可用功率并获取各LTE载波功率利用率以及各LTE载波最小功率保障,当小区为NR小区时,集中控制点向NR小区下发各NR载波最大可用功率并获取各NR载波功率利用率以及各NR载波最小功率保障,集中控制点根据载波最大可用功率、载波最小功率保障以及载波功率利用率预测下一处理周期的负荷情况,当预测得到的下一处理周期的负荷情况不符合标准时确定功率信息,将功率信息发送至AAU PA电源控制模块,以供AAU PA电源控制模块调整PA电源电压。
在每个处理周期例如T(1)……T(n)和T(n+1)的上行时隙,BBU根据上一处理周期指示AAU调压以及指示基带在固定时隙后限制调度,AAU接到调压指示后准备在固定时隙即上行时隙调整电压,下行时隙则进行步进调压。
基于相同的技术构思,本公开实施例还提供一种基站,如图8 所示,包括评估模块101、预测模块102和处理模块103。
评估模块101,配置为评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息。
预测模块102,配置为根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息。
处理模块103,配置为当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。
在一些实施方式中,所述基站还可以包括调整模块,配置为在相邻两个处理周期的后一个处理周期的上行时隙中,根据前一个处理周期中确定的功率配置参数来配置各基带的最大调度功率,根据前一个处理周期中确定的电压调整参数来调整基站功率放大器PA电源电压。
在一些实施方式中,所述负荷评估信息包括有源天线单元AAU功率利用率,所述评估模块101配置为:根据当前处理周期的各下行时隙的各正交频分复用技术OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定各载波的功率监测信息;以及根据所述各载波的功率监测信息以及所述各载波的预设的最大可用功率确定当前处理周期的AAU功率利用率。
在一些实施方式中,所述功率监测信息包括功率利用率和最小保障功率,所述评估模块101配置为:根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定所述各载波在所述各下行时隙的功率利用率;根据所述各载波在所述各下行时隙的功率利用率确定所述各载波的功率利用率;以及根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率确定所述各载波的最小保障功率。
在一些实施方式中,所述评估模块101配置为:对于任一所述载波以及任一所述下行时隙,确定当前载波在当前下行时隙的各OFDM符号内调度信道的功率中的最大值;以及根据所述最大值与所述当前载波的预设的最大可用功率确定所述当前载波在所述当前下 行时隙的功率利用率。
在一些实施方式中,所述评估模块101配置为:对于任一所述载波,确定当前载波在所述各下行时隙的功率利用率的平均值作为所述当前载波的功率利用率。
在一些实施方式中,所述评估模块101配置为:对于任一所述载波,确定当前载波在当前处理周期的各下行时隙的各OFDM符号调度信道的功率中的最大值作为所述当前载波的最小保障功率。
在一些实施方式中,所述评估模块101配置为:根据所述各载波的功率利用率和所述各载波的预设的最大可用功率分别确定所述各载波的最大利用功率;以及根据所述各载波的最大利用功率之和以及所述各载波的预设的最大可用功率之和确定当前处理周期的AAU功率利用率。
在一些实施方式中,所述处理模块103配置为:所述当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数包括:当预测得到的下一处理周期的负荷评估信息低于第一预设阈值时,确定用于下一处理周期的上行时隙减小电压的电压调整参数,并根据所述各载波的预设的最大可用功率以及所述各载波的最小保障功率确定用于下一处理周期的上行时隙减小最大调度功率的功率配置参数;当预测得到的下一处理周期的负荷评估信息高于第二预设阈值时,确定用于下一处理周期的上行时隙增大电压的电压调整参数,并根据所述各载波的预设的最大可用功率以及所述各载波的最小保障功率确定用于下一处理周期的上行时隙增大最大调度功率的功率配置参数。
在一些实施方式中,所述载波在所述OFDM符号内调度信道的功率为所述载波在所述OFDM符号内调度各物理下行控制信道PDCCH的功率、调度各物理下行共享信道(PDSCH)的功率、调度同步信号块(SSB)的功率和调度信道状态信息参考信号(CSI-RS)的功率之和;所述载波在所述OFDM符号内调度SSB的功率为所述载波在所述OFDM符号内调度辅同步信号(SSS)的功率、调度主同步信号(PSS)的功率和调度物理广播信道PBCH的功率之中的最大值;所述载波在所述 OFDM符号内调度CSI-RS的功率为所述载波在所述OFDM符号内调度各CSI-RS的功率之和,所述载波在所述OFDM符号内调度CSI-RS的功率根据小区资源粒子(RE)基准参考功率、当前CSI-RS相对所述小区RE基准功率的偏移量以及小区CSI-RS占用RE数量确定。
此外,本公开实施例还提供一种电子设备,包括:至少一个处理器;以及存储装置,其上存储有至少一个计算机程序;当所述至少一个计算机程序被所述至少一个处理器执行时,使得所述至少一个处理器实现如前所述的能耗控制方法;以及至少一个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
此外,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被执行时实现如前所述的能耗控制方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质 通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则与特定实施例相结合描述的特征、特性和/或元素可单独使用,或可与结合其它实施例描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (13)

  1. 一种能耗控制方法,包括多个处理周期,每个处理周期都包括:
    评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息;
    根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息;以及
    当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。
  2. 根据权利要求1所述的方法,还包括:在相邻两个处理周期的后一个处理周期的上行时隙中,根据前一个处理周期中确定的功率配置参数来配置各基带的最大调度功率,根据前一个处理周期中确定的电压调整参数来调整基站功率放大器(PA)的电源电压。
  3. 根据权利要求1所述的方法,其中,所述负荷评估信息包括有源天线单元(AAU)功率利用率,所述评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息包括:
    根据当前处理周期的各下行时隙的各正交频分复用技术(OFDM)符号调度信道的功率以及各载波的预设的最大可用功率确定各载波的功率监测信息;以及
    根据所述各载波的功率监测信息以及所述各载波的预设的最大可用功率确定当前处理周期的AAU功率利用率。
  4. 根据权利要求3所述的方法,其中,所述功率监测信息包括功率利用率和最小保障功率,所述根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定各载波的功率监测信息包括:
    根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率 以及各载波的预设的最大可用功率确定所述各载波在所述各下行时隙的功率利用率;
    根据所述各载波在所述各下行时隙的功率利用率确定所述各载波的功率利用率;以及
    根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率确定所述各载波的最小保障功率。
  5. 根据权利要求4所述的方法,其中,所述根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率以及各载波的预设的最大可用功率确定所述各载波在所述各下行时隙的功率利用率包括:
    对于任一所述载波以及任一所述下行时隙,确定当前载波在当前下行时隙的各OFDM符号内调度信道的功率中的最大值;以及
    根据所述最大值与所述当前载波的预设的最大可用功率确定所述当前载波在所述当前下行时隙的功率利用率。
  6. 根据权利要求4所述的方法,其中,所述根据所述各载波在所述各下行时隙的功率利用率确定所述各载波的功率利用率包括:
    对于任一所述载波,确定出当前载波在所述各下行时隙的功率利用率的平均值作为所述当前载波的功率利用率。
  7. 根据权利要求4所述的方法,其中,所述根据当前处理周期的各下行时隙的各OFDM符号调度信道的功率确定所述各载波的最小保障功率包括:
    对于任一所述载波,确定当前载波在当前处理周期的各下行时隙的各OFDM符号调度信道的功率中的最大值作为所述当前载波的最小保障功率。
  8. 根据权利要求4所述的方法,其中,所述根据所述各载波的功率监测信息以及所述各载波的预设的最大可用功率确定当前处理周期的AAU功率利用率包括:
    根据所述各载波的功率利用率和所述各载波的预设的最大可用功率分别确定所述各载波的最大利用功率;以及
    根据所述各载波的最大利用功率之和以及所述各载波的预设的最大可用功率之和确定当前处理周期的AAU功率利用率。
  9. 根据权利要求5至8中任意一项所述的方法,其中,所述当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数包括:
    当预测得到的下一处理周期的负荷评估信息低于第一预设阈值时,确定用于下一处理周期的上行时隙减小电压的电压调整参数,并根据所述各载波的预设的最大可用功率以及所述各载波的最小保障功率确定用于下一处理周期的上行时隙减小最大调度功率的功率配置参数;
    当预测得到的下一处理周期的负荷评估信息高于第二预设阈值时,确定用于下一处理周期的上行时隙增大电压的电压调整参数,并根据所述各载波的预设的最大可用功率以及所述各载波的最小保障功率确定用于下一处理周期的上行时隙增大最大调度功率的功率配置参数。
  10. 根据权利要求5至8中任意一项所述的方法,其中,所述载波在所述OFDM符号内调度信道的功率为所述载波在所述OFDM符号内调度各物理下行控制信道(PDCCH)的功率、调度各物理下行共享信道(PDSCH)的功率、调度同步信号块(SSB)的功率和调度信道状态信息参考信号(CSI-RS)的功率之和;所述载波在所述OFDM符号内调度SSB的功率为所述载波在所述OFDM符号内调度辅同步信号(SSS)的功率、调度主同步信号(PSS)的功率和调度物理广播信道(PBCH)的功率之中的最大值;所述载波在所述OFDM符号内调度CSI-RS的功率为所述载波在所述OFDM符号内调度各CSI-RS的功率之和,所述载波在所述OFDM符号内调度CSI-RS的功率根据小区资源粒子(RE)基准参考功率、当前CSI-RS相对所述小区RE基准功率的 偏移量以及小区CSI-RS占用RE数量确定。
  11. 一种基站,包括:
    评估模块,配置为评估当前处理周期的下行时隙的负荷情况,以获得当前处理周期的负荷评估信息;
    预测模块,配置为根据所述当前处理周期的负荷评估信息预测下一处理周期的负荷评估信息;以及
    处理模块,配置为当预测得到的下一处理周期的负荷评估信息满足预设条件时,确定下一处理周期的上行时隙的电压调整参数和功率配置参数。
  12. 一种电子设备,包括:
    至少一个处理器;
    存储器,其上存储有至少一个计算机程序,当所述至少一个计算机程序被所述至少一个处理器执行时,使得所述至少一个处理器实现根据权利要求1至10中任一项所述的能耗控制方法;以及
    至少一个I/O接口,连接在所述处理器与所述存储器之间,配置为实现所述处理器与所述存储器之间的信息交互。
  13. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至10中任一项所述的能耗控制方法。
PCT/CN2022/135795 2021-12-03 2022-12-01 能耗控制方法、基站、电子设备及计算机可读存储介质 WO2023098786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111469802.3 2021-12-03
CN202111469802.3A CN116233974A (zh) 2021-12-03 2021-12-03 能耗控制方法、基站、电子设备及计算机可读介质

Publications (1)

Publication Number Publication Date
WO2023098786A1 true WO2023098786A1 (zh) 2023-06-08

Family

ID=86573605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135795 WO2023098786A1 (zh) 2021-12-03 2022-12-01 能耗控制方法、基站、电子设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116233974A (zh)
WO (1) WO2023098786A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192420A1 (zh) * 2015-06-04 2016-12-08 中兴通讯股份有限公司 基站负荷确定方法及装置
CN106682805A (zh) * 2015-11-10 2017-05-17 中兴通讯股份有限公司 一种基站负荷评估方法及装置
CN107592190A (zh) * 2016-07-07 2018-01-16 中国电信股份有限公司 一种载波聚合的控制方法、装置及基站
CN112836911A (zh) * 2019-11-25 2021-05-25 中兴通讯股份有限公司 小区节能参数的确定方法、装置、电子设备及存储介质
US20210227461A1 (en) * 2018-10-08 2021-07-22 Huawei Technologies Co., Ltd. Load threshold determining method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192420A1 (zh) * 2015-06-04 2016-12-08 中兴通讯股份有限公司 基站负荷确定方法及装置
CN106682805A (zh) * 2015-11-10 2017-05-17 中兴通讯股份有限公司 一种基站负荷评估方法及装置
CN107592190A (zh) * 2016-07-07 2018-01-16 中国电信股份有限公司 一种载波聚合的控制方法、装置及基站
US20210227461A1 (en) * 2018-10-08 2021-07-22 Huawei Technologies Co., Ltd. Load threshold determining method and apparatus
CN112836911A (zh) * 2019-11-25 2021-05-25 中兴通讯股份有限公司 小区节能参数的确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN116233974A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US11743832B2 (en) Uplink power control for power limited terminals
RU2621067C1 (ru) Способ и устройство для управления мощностью
JP5579881B2 (ja) 不連続受信パラメータを動的に設定する装置及び方法
US20200015312A1 (en) Method and device for determining discontinuous reception configuration
CN102740440B (zh) 控制发送功率的方法及设备
US9924515B2 (en) Dynamic selection of power reduction values
JP5745071B2 (ja) 基地局の電力消費の最適化
Wang et al. Sleep mode design for green base stations
WO2018202169A1 (zh) 一种功率控制方法和装置
WO2021259323A1 (zh) 基站通道关断的方法和装置、电子设备、计算机可读介质
US20240090005A1 (en) METHOD AND SYSTEM FOR TRAFFIC SHAPING AT THE DU/CU TO ARTIFICIALLY REDUCE THE TOTAL TRAFFIC LOAD ON THE RADIO RECEIVER SO THAT NOT ALL THE TTLs ARE CARRYING DATA
US20230422166A1 (en) Control method and apparatus for energy conservation of base station, and computer-readable storage medium
WO2020168824A1 (zh) 一种控制方法、装置及计算机可读存储介质
CN110381571B (zh) 一种lte基站的功率动态调整方法及系统
WO2023098786A1 (zh) 能耗控制方法、基站、电子设备及计算机可读存储介质
CN113938993A (zh) 一种自适应节能方法、系统、装置及计算机可读存储介质
CN104378785A (zh) 一种微小区的上下行子帧重配置方法和装置
US9900130B2 (en) Method and device for sending signal, and storage medium
CN114779879B (zh) 频压调节方法和相关装置
WO2014080324A1 (en) A method of determining network resource congestion and a system therefor
JP2023536726A (ja) 無線受信機のトラフィック負荷を人為的に削減するためのdu/cuにおけるトラフィックシェーピング
CN116233980A (zh) 一种基站的节能方法及装置
WO2024072269A1 (en) Scheduling of prioritized signals when using radio power overbooking
CN117616397A (zh) 基于预测计算负载的vran节能方法
WO2012122831A1 (zh) 小区间干扰协调方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900590

Country of ref document: EP

Kind code of ref document: A1