WO2023098778A1 - 双元混合制冷剂、双元混合工质制冷系统及制冷装置 - Google Patents

双元混合制冷剂、双元混合工质制冷系统及制冷装置 Download PDF

Info

Publication number
WO2023098778A1
WO2023098778A1 PCT/CN2022/135771 CN2022135771W WO2023098778A1 WO 2023098778 A1 WO2023098778 A1 WO 2023098778A1 CN 2022135771 W CN2022135771 W CN 2022135771W WO 2023098778 A1 WO2023098778 A1 WO 2023098778A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed refrigerant
binary mixed
working fluid
heat exchange
temperature
Prior art date
Application number
PCT/CN2022/135771
Other languages
English (en)
French (fr)
Inventor
李大伟
张奎
张书锋
刘英志
Original Assignee
青岛海尔特种电冰柜有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰柜有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰柜有限公司
Publication of WO2023098778A1 publication Critical patent/WO2023098778A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the technical field of refrigeration equipment, in particular to a binary mixed refrigerant, a binary mixed working medium refrigeration system and a refrigeration device with the same.
  • the current low-temperature refrigeration technology is usually realized by using low-temperature refrigerants such as R404A or R508B, but when it is applied to a single-stage compression refrigeration system, it is easy to cause the pressure between the compressor outlet and the capillary inlet to be too high when the refrigeration system is running stably, thus limiting the low temperature.
  • the application of refrigeration technology in household refrigeration equipment and commercial refrigeration equipment cannot meet the cryogenic demand of refrigeration equipment from -90°C to -40°C.
  • the object of the present invention is to provide a binary mixed refrigerant, a binary mixed working medium refrigeration system and a refrigeration device having the same, so as to solve the problems that are easily caused by the application of existing refrigerants in single-stage compression refrigeration systems.
  • the refrigeration system is running stably, the pressure between the compressor outlet and the capillary inlet is too high to meet the cryogenic demand of the refrigeration equipment at -90°C to -40°C.
  • an embodiment of the present invention provides a binary mixed refrigerant, including a first working fluid and a second working fluid, the mass percentage of the first working fluid is 10-60%, so The mass percentage of the second working fluid is 40-90%, the first working fluid is one of R170, R1150, R23 or R14, and the second working fluid is R290, R600, R600a, R134a, R1234yf or Any one of R1234ze.
  • the first working fluid is R170 or R1150
  • the second working fluid is any one of R290, R600, and R600a
  • the mass percentage of the first working fluid is 20-50%
  • the mass percentage of the second working substance is 50-80%.
  • the first working fluid is R23 or R14
  • the second working fluid is any one of R290, R600, and R600a
  • the mass percentage of the first working fluid is 20 ⁇ 60%
  • the mass percentage of the second working substance is 40-80%.
  • the first working fluid is R170 or R1150
  • the second working fluid is any one of R134a, R1234yf, and R1234ze
  • the mass percentage of the first working fluid is 10-40%
  • the mass percentage of the second working substance is 60-90%.
  • the first working fluid is R23 or R14
  • the second working fluid is any one of R134a, R1234yf, and R1234ze
  • the mass percentage of the first working fluid is 20 ⁇ 50%
  • the mass percentage of the second working substance is 50-80%.
  • an embodiment of the present invention also provides a binary mixed refrigerant refrigeration system, which includes a refrigeration circuit and the above-mentioned binary mixed refrigerant, and the binary mixed refrigerant is located in the In the refrigerating circuit, the refrigerating circuit includes a compressor, a condenser, a heat exchange tube group and an evaporator connected in sequence, and the heat exchange tube group includes a heat exchanger and a regenerator connected to each other, and the heat exchanger Comprising high-temperature heat exchange tubes and low-temperature heat exchange tubes arranged in parallel and exchanging heat with each other, the regenerator includes capillary tubes and heat return tubes arranged in parallel and exchanging heat with each other, the outlet of the capillary is connected to the inlet of the evaporator, The inlet of the heat recovery tube is connected to the outlet of the evaporator, the inlet of the high temperature heat exchange tube is connected to the condenser and the outlet is connected to the capillar
  • the binary mixed refrigerant is in two phases of gas and liquid at the outlet of the evaporator.
  • the binary mixed refrigerant is in two phases of gas and liquid at the outlet of the heat recovery pipe.
  • the binary mixed refrigerant is in a gaseous state at the outlet of the low-temperature heat exchange tube.
  • the pressure of the pipeline between the compressor and the capillary of the refrigeration circuit is P ⁇ 1.6MPa.
  • an embodiment of the present invention also provides a refrigeration device, the refrigeration device includes a refrigeration circuit and the above-mentioned binary mixed refrigerant, the binary mixed refrigerant is located in the refrigerator in the loop;
  • the refrigerating device includes the above-mentioned binary mixed working medium refrigerating system.
  • the present invention has the following beneficial effects: the binary mixed refrigerant, the binary mixed working fluid refrigeration system and the refrigeration device of the present invention, the refrigerant formed by mixing the two working fluids and the regulation of the two working fluids
  • the ratio of quality can not only make the temperature in the storage room of the refrigeration device reach -90 ° C ⁇ -40 ° C, achieve a better fresh-keeping effect on the food stored in the storage room, reduce power consumption and noise
  • the refrigerant can be applied to a single-stage compression refrigeration system, and can control the pressure between the compressor outlet and the capillary inlet of the single-stage compression refrigeration system within the range that the compressor can bear when the single-stage compression refrigeration system is in stable operation.
  • Fig. 1 is the structural representation of the refrigeration circuit of embodiment 1 of the present invention.
  • Fig. 2 is the structural representation of the refrigeration circuit of embodiment 2 of the present invention.
  • Fig. 3 is a structural schematic diagram of a refrigeration circuit according to Embodiment 3 of the present invention.
  • Fig. 4 is a schematic structural diagram of a refrigeration circuit according to Embodiment 4 of the present invention.
  • the refrigerating device provided by an embodiment of the present invention includes a box body and a door body, the box body has a storage compartment, and the door body is used to open or close the storage compartment, and the refrigerating device also includes a binary mixed working medium refrigeration system, The binary mixed working medium refrigeration system is arranged in the box body and supplies cooling to the stored compartment.
  • the cooling device can be configured as a freezer, a refrigerator, etc., to meet the needs of different users and different application scenarios.
  • the binary mixed refrigerant refrigeration system includes a refrigeration circuit 100 and a binary mixed refrigerant located in the refrigeration circuit 100 .
  • the binary mixed refrigerant includes a first working substance and a second working substance, the mass percentage of the first working substance is 10-60%, the mass percent of the second working substance is 40-90%, and the
  • the first working fluid is one of R170, R1150, R23 or R14, and the second working fluid is any one of R290, R600, R600a, R134a, R1234yf or R1234ze.
  • the temperature in the compartment reaches -90°C ⁇ -40°C, which can achieve a better fresh-keeping effect on the food stored in the storage compartment, reduce power consumption and noise, and this refrigerant can be used in single-stage compression refrigeration systems,
  • the pressure between the outlet of the compressor and the inlet of the capillary tube can be controlled within the range that the compressor can bear when the single-stage compression refrigeration system is running stably.
  • the mass percentages of the above two working fluids can be adjusted according to the volume of the refrigeration device, ambient temperature, and application scenarios, so as to achieve an ideal fresh-keeping effect.
  • the first working fluid is R170 or R1150
  • the second working fluid is any one of R290, R600, and R600a
  • the mass percentage of the first working fluid is 20-50%
  • the The mass percentage of the second working substance is 50-80%.
  • the binary mixed refrigerant prepared in this way can not only meet the temperature requirement of -90° C. to -40° C., but also is environmentally friendly and has important environmental protection significance.
  • the first working fluid is R23 or R14
  • the second working fluid is any one of R290, R600, R600a, R1234yf, R1234ze
  • the mass percentage of the first working fluid is 10-40%
  • the mass percentage of the second working substance is 60-90%.
  • the binary mixed refrigerant prepared in this way can not only meet the temperature requirement of -90° C. to -40° C., but also has a flame retardant effect, which improves the safety of the refrigeration system operation.
  • the first working fluid is R170 or R1150
  • the second working fluid is any one of R134a, R1234yf, and R1234ze
  • the mass percentage of the first working fluid is 10-40%
  • the The mass percentage of the second working substance is 60-90%.
  • the binary mixed refrigerant prepared in this way can not only meet the temperature requirement of -90° C. to -40° C., but also has a flame retardant effect, which improves the safety of the refrigeration system operation.
  • the first working fluid is R23 or R14
  • the second working fluid is any one of R134a, R1234yf, R1234ze
  • the mass percentage of the first working fluid is 20-50%
  • the second working fluid is The mass percentage of the secondary working substance is 50-80%.
  • the binary mixed refrigerant prepared in this way can not only meet the temperature requirement of -90° C. to -40° C., but also has a flame retardant effect, which improves the safety of the refrigeration system operation.
  • the refrigeration circuit 100 includes a compressor 1, a condenser 2, a heat exchange tube group and an evaporator 5 connected in sequence, and the heat exchange tube group includes a heat exchanger 3 and a heat regenerator 4 connected to each other, and the heat exchange tube group
  • Heater 3 includes high-temperature heat exchange tubes 31 and low-temperature heat exchange tubes 32 arranged in parallel and exchanging heat with each other.
  • Regenerator 4 includes capillary tubes 41 and heat return tubes 42 arranged in parallel and exchanging heat with each other.
  • the outlet of capillary tube 41 is connected to evaporator 5
  • the inlet of the heat return pipe 42 is connected to the outlet of the evaporator 5
  • the inlet of the high temperature heat exchange pipe 31 is connected to the condenser 2 and its outlet is connected to the capillary 41
  • the inlet of the low temperature heat exchange pipe 32 is connected to the heat return pipe 42 and its outlet is connected to compressor 1.
  • the high-temperature heat exchange tube 31 and the low-temperature heat exchange tube 32 are named for ease of distinction.
  • the temperature of the binary mixed refrigerant in the high-temperature heat exchange tube 31 is higher than that of the dual-element mixed refrigerant in the low-temperature heat exchange tube 32 .
  • the temperature of the mixed refrigerant is higher than that of the dual-element mixed refrigerant in the low-temperature heat exchange tube 32 . The temperature of the mixed refrigerant.
  • the structure of the binary mixed refrigerant refrigeration system is simple, and the processing technology is easy to realize.
  • the dual-component mixed refrigerant Before the refrigerant enters the evaporator 5, it undergoes two heat exchanges to lower the temperature.
  • the binary mixed refrigerant first exchanges heat and raises the temperature before entering the compressor 1 after leaving the evaporator 5, so that the binary mixed refrigerant system itself can be reasonably used.
  • the heat exchange not only enables the refrigeration device to achieve cryogenic temperature range of -90°C to -40°C, but also enables the refrigeration system to control the pressure between the compressor outlet and the capillary inlet within the range that the compressor can withstand when the refrigeration system is running stably It can also greatly reduce energy consumption, which has great environmental protection significance.
  • the binary mixed refrigerant is compressed by the compressor 1 into a high-temperature, high-pressure binary mixed refrigerant gas, and the binary mixed refrigerant gas enters the condenser 2 to be condensed into a gas-liquid two-phase binary mixed refrigerant;
  • the liquid two-phase binary mixed refrigerant enters the heat exchanger 3, exchanges heat with the low temperature heat exchange tube 32 in the high temperature heat exchange tube 31 and further condenses; then the binary mixed refrigerant enters the capillary tube 41 of the regenerator 4 Throttling and reducing pressure, and exchanging heat with the heat recovery pipe 42 to further lower the temperature of the binary mixed refrigerant to the evaporation temperature of the binary mixed refrigerant; then the binary mixed refrigerant enters the evaporator 5 for heat exchange to form a gas-liquid two-phase
  • the binary mixed refrigerant that is, the binary mixed refrigerant is in gas-liquid two-phase at the outlet of the evaporator 5;
  • the pressure between the outlet of the compressor 1 and the inlet of the capillary tube 41 within one hour after power-on can be controlled so that the compressor 1 can withstand
  • the pressure P of the pipeline between the compressor 1 and the capillary 41 of the refrigeration circuit 100 after stable operation can be controlled at P ⁇ 1.6Mpa, which solves the problem that the low-temperature binary mixed refrigerant is used alone in the binary mixing process.
  • the problem of excessive pressure in the refrigerant refrigeration system reduces the requirements for the compressor 1 and ensures the feasibility of the binary mixed refrigerant refrigeration system, thereby enabling the refrigeration device to achieve low-temperature storage at -90°C to -40°C environment.
  • the capillary tube 41 and the heat recovery tube 42 can be arranged side by side, or they can be wound, so that they can exchange heat; similarly, the high-temperature heat exchange tube 31 and the low-temperature heat exchange tube 32 can be arranged side by side, It can also be a winding setting, so as to realize heat exchange.
  • the temperature at the outlet of the condenser 2 can be monitored in real time by a temperature detector, and the condenser fan is set to supply air to the condenser 2 to control the heat dissipation of the condenser 2, thereby reducing the temperature and pressure of the binary mixed refrigerant.
  • the refrigeration circuit 100 also includes a dry filter 6 arranged at the outlet of the condenser 2 to remove moisture and impurities mixed in the binary mixed refrigerant, and the dry filter 6 is connected to the high-temperature heat exchange tube 31 .
  • Fig. 2 is the second embodiment of the present invention
  • the difference between the second embodiment and the first embodiment is:
  • the regenerator 4 includes a plurality of capillary tubes 41 arranged in parallel, and the plurality of capillary tubes 41 respectively exchange heat with the heat recovery pipe 42, and the binary mixed refrigerant selectively passes through one of the plurality of capillary tubes 41; the plurality of capillary tubes 41
  • the pipe diameters are different from each other, and/or the lengths of the plurality of capillaries 41 are different from each other.
  • different capillary tubes 41 allow the flow rate and velocity of the binary mixed refrigerant to pass through differently, and the pressure difference before and after the binary mixed refrigerant passes through different capillary tubes 41 is also different, so that Control the cooling capacity produced by the binary mixed refrigerant passing through different capillary tubes 41, so that the temperature range of the storage compartment can be controlled; the user can control the binary mixed refrigerant from multiple capillary tubes 41 Choose one to pass, and the temperature of the storage compartment can reach the required range.
  • the plurality of capillaries 41 include a first capillary 41a, a second capillary 41b, and a third capillary 41c, and the diameter R1 of the first capillary 41a ⁇ the diameter R2 of the second capillary 41b ⁇ the third capillary
  • the temperature range of the storage compartment can be -90°C to -70°C; when the user chooses to control the binary mixed refrigerant to pass through the second capillary When 41b passes through, the temperature range of the storage compartment can be -70°C to -50°C; when the user chooses to control the binary mixed refrigerant to pass through the third capillary 41c, the temperature range of the storage compartment can be - 50°C ⁇ -40°C.
  • capillary tubes 41 and different diameters and lengths of capillary tubes 41 can also be set as required.
  • the refrigeration circuit 100 also includes a switching valve or a shut-off valve 7 disposed at the inlet of the capillary tube 41 , so that the binary mixed refrigerant can pass through one of the multiple capillary tubes 41 .
  • the refrigeration circuit 100 includes three shut-off valves 7 , and the three shut-off valves 7 are respectively arranged at the inlets of the first capillary 41 a , the second capillary 41 b and the third capillary 41 c.
  • shut-off valve 7 at the entrance of the first capillary 41a is opened, and the shut-off valve 7 at the entrance of the second capillary 41b and the shut-off valve 7 at the entrance of the third capillary 41c are closed, so that the binary mixed refrigerant can be controlled to pass through the first capillary 41a; Open the stop valve 7 at the entrance of the third capillary 41c, and close the stop valve 7 at the entrance of the first capillary 41a and the stop valve 7 at the entrance of the second capillary 41b, the binary mixed refrigerant passes through the third capillary 41c; open the second capillary 41b inlet shut-off valve 7, and close the first capillary 41a inlet shut-off valve 7 and the third capillary 41c inlet shut-off valve 7, the binary mixed refrigerant passes through the second capillary 41b.
  • the flow path of the binary mixed refrigerant can be controlled, and then the flow and velocity of the binary mixed refrigerant can be controlled, and the cooling capacity generated by the binary mixed refrigerant system can be controlled. In this way, the temperature range change of the storage compartment is controlled.
  • the second implementation manner is the same as the first implementation manner except for the above differences, so details are not repeated here.
  • Fig. 3 is the third embodiment of the present invention.
  • the difference between the third embodiment and the second embodiment is:
  • the heat exchanger 3 includes a plurality of high-temperature heat exchange tubes 31 arranged in one-to-one correspondence with a plurality of capillary tubes 41.
  • the plurality of high-temperature heat exchange tubes 31 are arranged in parallel and exchange heat with the low-temperature heat exchange tubes 32 respectively.
  • Each high-temperature heat exchange tube 31 It is connected in series with the corresponding capillary 41.
  • the cooling capacity of the low-temperature heat exchange tubes 32 can be efficiently utilized, which not only makes the temperature raising effect of the binary mixed refrigerant in the low-temperature heat exchange tubes 32 more effective.
  • the temperature of the binary mixed refrigerant in each high-temperature heat exchange tube 31 is effectively lowered, so that the temperature drop of the binary mixed refrigerant before entering the capillary tube 41 is even lower.
  • the plurality of high-temperature heat exchange tubes 31 include a first high-temperature heat exchange tube 31a, a second high-temperature heat exchange tube 31b, and a third high-temperature heat exchange tube 31c, and the first high-temperature heat exchange tube 31c
  • the tube 31a is connected in series with the first capillary tube 41a
  • the second high temperature heat exchange tube 31b is connected in series with the second capillary tube 41b
  • the third high temperature heat exchange tube 31c is connected in series with the third capillary tube 41c.
  • the number of high-temperature heat exchange tubes 31 can also be set correspondingly according to the number of capillary tubes 41 installed, and the inner diameter and length of the high-temperature heat exchange tubes 31 can also be set as required.
  • the switching valve or stop valve 7 also needs to adjust its setting position accordingly, and the switching valve or stop valve 7 is set at the entrance of the high-temperature heat exchange tube 31, so that the binary mixed refrigerant can choose one of the multiple high-temperature heat exchange tubes 31 Pass through, so that the binary mixed refrigerant passes through one of the plurality of capillary tubes 41 .
  • the refrigeration circuit 100 includes three cut-off valves 7, and the three cut-off valves 7 are respectively arranged on the first high-temperature heat exchange tube 31a, the second high-temperature heat exchange tube 31b and the third high-temperature heat exchange tube 31c entrance.
  • the shut-off valve 7 at the entrance of the first high-temperature heat exchange pipe 31a is opened, the shut-off valve 7 at the entrance of the second high-temperature heat exchange pipe 31b and the shut-off valve 7 at the entrance of the third high-temperature heat exchange pipe 31c are closed, and the dual-element mixed refrigeration system can be controlled.
  • the agent passes through the first high-temperature heat exchange tube 31a and the first capillary tube 41a; open the stop valve 7 at the entrance of the third high-temperature heat exchange tube 31c, and close the stop valve 7 at the entrance of the first high-temperature heat exchange tube 31a and the second high-temperature heat exchange tube
  • the shut-off valve 7 at the entrance of 31b, the binary mixed refrigerant passes through the third high-temperature heat exchange tube 31c and the third capillary tube 41c; open the shut-off valve 7 at the entrance of the second high-temperature heat exchange tube 31b, and close the first high-temperature heat exchange tube 31a
  • the cut-off valve 7 at the inlet and the cut-off valve 7 at the inlet of the third high-temperature heat exchange tube 31c, the binary mixed refrigerant passes through the second high-temperature heat exchange tube 31b and the second capillary tube 41b.
  • the flow path of the binary mixed refrigerant can be controlled, and then the flow and velocity of the binary mixed refrigerant can be controlled, and the cooling capacity generated by the binary mixed refrigerant system can be controlled. In this way, the temperature range change of the storage compartment is controlled.
  • the third embodiment is the same as the second embodiment except for the above-mentioned differences, so details will not be repeated here.
  • Multiple heat exchange tube groups are arranged in parallel, and the binary mixed refrigerant selectively passes through one of the multiple heat exchange tube groups; the diameters of capillary tubes 41 in different heat exchange tube groups are different from each other, and/ Or, the lengths of the capillary tubes 41 in different groups of heat exchange tube groups are different from each other.
  • the multiple sets of heat exchange tube groups include a first heat exchange tube group and a second heat exchange tube group
  • the first heat exchange tube group includes a heat exchanger 3a and a regenerator 4a
  • the second heat exchange tube group includes a heat exchanger 3b and a regenerator 4b.
  • the diameter of the capillary 41 in the first heat exchange tube group ⁇ the diameter of the capillary 41 in the second heat exchange tube group, the length of the capillary 41 in the first heat exchange tube group>the capillary in the second heat exchange tube group 41 in length.
  • the temperature range of the storage compartment can be -90°C to -70°C;
  • the temperature range of the storage compartment can be made to be -70°C to -50°C.
  • the refrigeration circuit 100 also includes a switching valve or a shut-off valve 7 disposed at the inlet of the heat exchange tube group, so that the binary mixed refrigerant can pass through one of the different heat exchange tube groups.
  • the refrigeration circuit 100 further includes a cut-off valve 7a arranged at the inlet of the high-temperature heat exchange tube 31 of the second heat exchange tube group, and a heat return pipe 42 arranged at the second heat exchange tube group.
  • closing the stop valves 7a and 7b and opening the stop valve 7c can control the binary mixed refrigerant to pass through the first heat exchange tube group; closing the stop valve 7c and opening the stop valves 7a and 7b, the binary mixed refrigerant can pass through The second heat exchange tube group passes through, so that the number of stop valves 7 can be reduced and the cost can be reduced.
  • the fourth embodiment is the same as the first embodiment except for the above-mentioned differences, so details will not be repeated here.
  • the beneficial effects of the binary mixed refrigerant, the binary mixed working fluid refrigeration system and the refrigeration device provided by the present invention are: the refrigerant formed by mixing the two working fluids, and the Regulating the ratio of the above two working fluids can not only make the temperature in the storage compartment of the refrigeration device reach -90°C ⁇ -40°C while meeting the requirements of the refrigeration system for the filling amount of flammable refrigerants, but also have a great impact on storage
  • the food in the storage room achieves a better fresh-keeping effect, reduces power consumption and noise
  • the refrigerant can be applied to a single-stage compression refrigeration system, and can make the single-stage compression refrigeration system operate stably at the outlet of the compressor
  • the pressure between the capillary inlet and the capillary inlet is controlled within the range that the compressor can bear.
  • the mass percentages of the above two working fluids can be adjusted according to the volume of the refrigeration device, ambient temperature, and application scenarios, so as to achieve an ideal fresh-keeping effect.

Abstract

本发明提供一种双元混合制冷剂、双元混合工质制冷系统及制冷装置,双元混合制冷剂包括第一工质和第二工质,所述第一工质的质量百分比为10~60%,所述第二工质的质量百分比为40~90%,所述第一工质为R170、R1150、R23或R14中的一种,所述第二工质为R290、R600、R600a、R134a、R1234yf或R1234ze中的任意一种。本发明不仅可使间室温度达到-90℃~-40℃,降低耗电量以及噪音,而且制冷剂应用于单级压缩制冷系统时,在稳定运行时压缩机出口和毛细管入口之间的压强可以控制在压缩机承受的范围内。

Description

双元混合制冷剂、双元混合工质制冷系统及制冷装置 技术领域
本发明涉及制冷设备技术领域,尤其涉及一种双元混合制冷剂、双元混合工质制冷系统及具有其的制冷装置。
背景技术
随着生活水平的提高,人们对食品保鲜的认识和要求也逐渐加深,以往人们只关注冷藏食品如水果、蔬菜等的保鲜,而现在,人们开始加强对冷冻食品如肉类、鱼类等的保鲜。经研究发现,深冷-90℃~-40℃左右对冷冻食品具有较佳的保鲜效果,为了实现对肉类、鱼类等冷冻食品食品更好的保鲜,制备出制冷温度范围为-90℃~-40℃的制冷设备就成了目前市场亟待解决的需求。
目前的低温制冷技术通常采用R404A或R508B等低温制冷剂实现,但是其应用于单级压缩制冷系统中容易导致制冷系统稳定运行时压缩机出口和毛细管入口之间的压强过大,从而限制了低温制冷技术在家用制冷设备和商用制冷设备上的应用,无法满足制冷设备-90℃~-40℃的深冷需求。
发明内容
为解决上述技术问题,本发明的目的在于提供一种双元混合制冷剂、双元混合工质制冷系统及具有其的制冷装置,以解决现有制冷剂应用于单级压缩制冷系统中容易导致制冷系统稳定运行时压缩机出口和毛细管入口之间的压强过大、无法满足制冷设备-90℃~-40℃的深冷需求的问题。
为实现上述发明目的之一,本发明一实施方式提供了一种双元混合制冷剂,包括第一工质和第二工质,所述第一工质的质量百分比为10~60%,所述第二工质的质量百分比为40~90%,所述第一工质为R170、R1150、R23或R14中的一种,所述第二工质为R290、R600、R600a、R134a、R1234yf或R1234ze中的任意一种。
作为本发明一实施方式的进一步改进,所述第一工质为R170或R1150,所述第二工质为R290、R600、R600a中的任意一种,且所述第一工质的质量百分比为20~50%,所述第二工质的质量百分比为50~80%。
作为本发明一实施方式的进一步改进,所述第一工质为R23或R14,所述第二工质为R290、R600、R600a中的任意一种,所述第一工质的质量百分比为20~60%,所 述第二工质的质量百分比为40~80%。
作为本发明一实施方式的进一步改进,所述第一工质为R170或R1150,所述第二工质为R134a、R1234yf、R1234ze中的任意一种,且所述第一工质的质量百分比为10~40%,所述第二工质的质量百分比为60~90%。
作为本发明一实施方式的进一步改进,所述第一工质为R23或R14,所述第二工质为R134a、R1234yf、R1234ze中的任意一种,所述第一工质的质量百分比为20~50%,所述第二工质的质量百分比为50~80%。
为实现上述发明目的之一,本发明一实施方式还提供了一种双元混合工质制冷系统,其包括制冷回路以及如上所述的双元混合制冷剂,所述双元混合制冷剂位于所述制冷回路中,所述制冷回路包括依次连接的压缩机、冷凝器、换热管组和蒸发器,所述换热管组包括互相连接的换热器和回热器,所述换热器包括并联设置且互相换热的高温换热管和低温换热管,所述回热器包括并联设置且互相换热的毛细管和回热管,所述毛细管的出口与所述蒸发器的进口连接,所述回热管的入口与所述蒸发器的出口连接,所述高温换热管的入口与所述冷凝器连接且其出口与所述毛细管连接,所述低温换热管的入口与所述回热管连接且其出口与所述压缩机连接。
作为本发明一实施方式的进一步改进,所述双元混合制冷剂于所述蒸发器出口处呈气液两相。
作为本发明一实施方式的进一步改进,所述双元混合制冷剂于所述回热管出口处呈气液两相。
作为本发明一实施方式的进一步改进,所述双元混合制冷剂于所述低温换热管出口处呈气态。
作为本发明一实施方式的进一步改进,所述制冷回路位于所述压缩机和所述毛细管之间的管路的压强P<1.6MPa。
作为本发明一实施方式的进一步改进,所述双元混合制冷剂于所述冷凝器出口处的温度Tr大于环境温度Te,且二者的温差△T=Tr-Te,△T≤3℃。
为实现上述发明目的之一,本发明一实施方式还提供了一种制冷装置,所述制冷装置包括制冷回路以及如上所述的双元混合制冷剂,所述双元混合制冷剂位于所述制冷回路中;
或者,所述制冷装置包括如上所述的双元混合工质制冷系统。
与现有技术相比,本发明具有以下有益效果:本发明的双元混合制冷剂、双元混合工质制冷系统及制冷装置,通过两种工质混合而成的制冷剂并调控两种工质的 配比,不仅可使制冷装置的储物间室内的温度达到-90℃~-40℃,对储存于储物间室内的食品达到较佳的保鲜效果,降低耗电量以及噪音,而且该制冷剂可应用于单级压缩制冷系统中,并可使单级压缩制冷系统在稳定运行时压缩机出口和毛细管入口之间的压强控制在压缩机可以承受的范围内。
附图说明
图1为本发明实施例1的制冷回路的结构示意图;
图2为本发明实施例2的制冷回路的结构示意图;
图3为本发明实施例3的制冷回路的结构示意图;
图4为本发明实施例4的制冷回路的结构示意图。
具体实施方式
以下将结合附图所示的具体实施例对本发明进行详细描述。
在本发明的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分扩大,因此,仅用于图示本发明的主题的基本结构。
应当理解的是尽管术语第一、第二等在本文中可以被用于描述各种元件或结构,但是这些被描述对象不应受到这些术语的限制。这些术语仅用于将这些描述对象彼此区分开。
实施例1
本发明一实施例提供的制冷装置,包括箱体和门体,箱体中具有储物间室,门体用于打开或关闭储物间室,制冷装置还包括双元混合工质制冷系统,双元混合工质制冷系统设于箱体中并向所储物间室供冷。具体地,制冷装置可以设置为冷柜、冰箱等,以满足不同用户和不同应用场景的需求。
参看图1,双元混合工质制冷系统包括制冷回路100和位于制冷回路100中的双元混合制冷剂。所述双元混合制冷剂包括第一工质和第二工质,所述第一工质的质量百分比为10~60%,所述第二工质的质量百分比为40~90%,所述第一工质为R170、R1150、R23或R14中的一种,所述第二工质为R290、R600、R600a、R134a、R1234yf或R1234ze中的任意一种。
通过上述两种工质混合而成的制冷剂,并通过调控上述两种工质的配比,不仅可在满足制冷系统对可燃制冷剂的灌注量的要求的情况下,使制冷装置的储物间室内的温度达到-90℃~-40℃,对储存于储物间室内的食品达到较佳的保鲜效果,降 低耗电量以及噪音,而且该制冷剂可应用于单级压缩制冷系统中,并可使单级压缩制冷系统在稳定运行时压缩机出口和毛细管入口之间的压强控制在压缩机可以承受的范围内。在实际应用中,可根据制冷装置的容积、环境温度、应用场景等调控上述两种工质的质量百分比,从而达到理想的保鲜效果。
优选地,所述第一工质为R170或R1150,所述第二工质为R290、R600、R600a中的任意一种,且所述第一工质的质量百分比为20~50%,所述第二工质的质量百分比为50~80%。这样制备得到的双元混合制冷剂不仅可以满足-90℃~-40℃的温度需求,而且对环境友好,具有重要的环保意义。
优选地,所述第一工质为R23或R14,所述第二工质为R290、R600、R600a、R1234yf、R1234ze中的任意一种,所述第一工质的质量百分比为10~40%,所述第二工质的质量百分比为60~90%。这样制备得到的双元混合制冷剂不仅可以满足-90℃~-40℃的温度需求,而且具有阻燃效果,提高了制冷系统运行的安全性。
优选地,所述第一工质为R170或R1150,所述第二工质为R134a、R1234yf、R1234ze中的任意一种,且所述第一工质的质量百分比为10~40%,所述第二工质的质量百分比为60~90%。这样制备得到的双元混合制冷剂不仅可以满足-90℃~-40℃的温度需求,而且具有阻燃效果,提高了制冷系统运行的安全性。
优选地,所述第一工质为R23或R14,所述第二工质为R134a、R1234yf、R1234ze中的任意一种,所述第一工质的质量百分比为20~50%,所述第二工质的质量百分比为50~80%。这样制备得到的双元混合制冷剂不仅可以满足-90℃~-40℃的温度需求,而且具有阻燃效果,提高了制冷系统运行的安全性。
参看图1,进一步地,制冷回路100包括依次连接的压缩机1、冷凝器2、换热管组和蒸发器5,换热管组包括互相连接的换热器3和回热器4,换热器3包括并联设置且互相换热的高温换热管31和低温换热管32,回热器4包括并联设置且互相换热的毛细管41和回热管42,毛细管41的出口与蒸发器5的进口连接,回热管42的入口与所述蒸发器5的出口连接,高温换热管31的入口与冷凝器2连接且其出口与毛细管41连接,低温换热管32的入口与回热管42连接且其出口与压缩机1连接。此处的高温换热管31和低温换热管32是为了便于区分而命名的,比较而言,高温换热管31中的双元混合制冷剂的温度高于低温换热管32中的双元混合制冷剂的温度。
该双元混合工质制冷系统结构简单,加工工艺容易实现,通过回热管42与毛细管41并联换热、以及高温换热管31和低温换热管32的换热,一方面使双元混合制 冷剂在进入蒸发器5之前先经两次换热降温,另一方面使双元混合制冷剂在离开蒸发器5后进入压缩机1之前先换热升温,合理利用双元混合工质制冷系统自身的热量交换,不仅可以使制冷装置实现深冷-90℃~-40℃的温度范围,而且可以使制冷系统在稳定运行时压缩机出口和毛细管入口之间的压强控制在压缩机可以承受的范围内,还可以大幅降低能耗,具有极大的环保意义。
这样,所述双元混合制冷剂经压缩机1压缩成高温、高压的双元混合制冷剂气体,双元混合制冷剂气体进入冷凝器2冷凝成气液两相的双元混合制冷剂;气液两相的双元混合制冷剂进入换热器3,并在高温换热管31中与低温换热管32换热并进一步冷凝;之后双元混合制冷剂进入回热器4的毛细管41中节流降压,并与回热管42进行换热使双元混合制冷剂进一步降温至双元混合制冷剂的蒸发温度;然后双元混合制冷剂进入蒸发器5中换热后形成气液两相双元混合制冷剂,也即双元混合制冷剂于蒸发器5出口处呈气液两相;该气液两相双元混合制冷剂经过回热管42并与毛细管41进行换热,从而对毛细管41中的双元混合制冷剂降温,双元混合制冷剂于回热管42出口处仍然呈气液两相;之后双元混合制冷剂进入低温换热管32并与高温换热管31进行换热使高温换热管31中的双元混合制冷剂降温冷凝,双元混合制冷剂于低温换热管32出口处呈气态;之后双元混合制冷剂回到压缩机1。
通过将上述双元混合制冷剂应用于本发明的双元混合工质制冷系统中,可将上电后一小时内的压缩机1出口至毛细管41入口之间的压强控制在压缩机1可承受的范围内,同时可将稳定运行后制冷回路100位于压缩机1和毛细管41之间的管路的压强P控制在P<1.6Mpa,解决了低温双元混合制冷剂单独应用于双元混合工质制冷系统中时压力过高的问题,降低了对压缩机1的要求,确保了该双元混合工质制冷系统的可实施性,从而使制冷装置实现-90℃~-40℃的低温储存环境。
具体地,毛细管41与回热管42可以是并排贴靠设置,也可以是缠绕设置,从而使二者换热;同样地,高温换热管31与低温换热管32可以是并排贴靠设置,也可以是缠绕设置,从而实现换热。
进一步地,所述双元混合制冷剂于冷凝器2出口处的温度Tr大于环境温度Te,且二者的温差△T=Tr-Te,△T≤3℃,本实施例中的△T在3℃以下,远小于现有技术中的8℃以下。
具体地,可通过温度检测器实时监测冷凝器2出口处的温度,并设置冷凝器风机对冷凝器2送风,控制冷凝器2的散热量,进而降低双元混合制冷剂的温度和压强。
进一步地,制冷回路100还包括设于冷凝器2出口的干燥过滤器6,以除去双元混合制冷剂中混杂的水分和杂质,干燥过滤器6与高温换热管31连接。
实施例2
请参图2所示,为本发明中的第二实施方式,该第二实施方式与第一实施方式的区别在于:
回热器4包括并联设置的多根毛细管41,且多根毛细管41分别与回热管42换热,双元混合制冷剂选择性地自多根毛细管41中的一者通过;多根毛细管41的管径互不相同,以及/或者,多根毛细管41的长度互不相同。
这样,由于毛细管41的管径、长度互不相同,不同毛细管41允许双元混合制冷剂通过的流量和流速不同,双元混合制冷剂通过不同毛细管41前后的压差也互不相同,从而可以控制双元混合制冷剂经不同毛细管41中通过后所产生的的冷量不同,从而可以控制储物间室的温度范围变化;用户可以根据需要,控制双元混合制冷剂自多根毛细管41中择一通过,便可使储物间室的温度达到需要的范围。
具体地,在本实施例中,多根毛细管41包括第一毛细管41a、第二毛细管41b和第三毛细管41c,第一毛细管41a的管径R1<第二毛细管41b的管径R2<第三毛细管41c的管径R3,且第一毛细管41a的长度L1>第二毛细管41b的长度L2>第三毛细管41c的长度L3。这样,当用户选择控制双元混合制冷剂自第一毛细管41a通过时,可使储物间室的温度范围为-90℃~-70℃;当用户选择控制双元混合制冷剂自第二毛细管41b通过时,可使储物间室的温度范围为-70℃~-50℃;当用户选择控制双元混合制冷剂自第三毛细管41c通过时,可使储物间室的温度范围为-50℃~-40℃。
当然,在其它实施例中,也可以根据需要设置毛细管41为其它数量、以及设置不同毛细管41的管径与长度。
进一步地,制冷回路100还包括设置于毛细管41入口的切换阀或者截止阀7,以便双元混合制冷剂自多根毛细管41中择一通过。
具体地,参看图2,在本实施例中,制冷回路100包括三个截止阀7,三个截止阀7分别设置于第一毛细管41a、第二毛细管41b和第三毛细管41c的入口。这样,打开第一毛细管41a入口的截止阀7,并关闭第二毛细管41b入口的截止阀7和第三毛细管41c入口的截止阀7,即可控制双元混合制冷剂自第一毛细管41a通过;打开第三毛细管41c入口的截止阀7,并关闭第一毛细管41a入口的截止阀7和第二毛细管41b入口的截止阀7,双元混合制冷剂即从第三毛细管41c通过;打开第二毛细管41b入口的截止阀7,并关闭第一毛细管41a入口的截止阀7和第三毛细管41c入口 的截止阀7,双元混合制冷剂即从第二毛细管41b通过。通过控制三个截止阀7的开闭即可控制双元混合制冷剂的流经路径,进而控制双元混合制冷剂通过的流量和流速,控制双元混合工质制冷系统产生的的冷量,以此来控制储物间室的温度范围变化。
所述第二实施方式与所述第一实施方式除上述区别外,其他均相同,于此,不再赘述。
实施例3
请参图3所示,为本发明中的第三实施方式,该第三实施方式与第二实施方式的区别在于:
换热器3包括与多根毛细管41一一对应设置的多个高温换热管31,多个高温换热管31并联设置且分别与低温换热管32换热,每个高温换热管31和与其所对应的毛细管41串联。这样,通过多个高温换热管31分别与低温换热管32换热,可以高效利用低温换热管32的冷量,不仅使低温换热管32中的双元混合制冷剂的升温效果更好,而且使每个高温换热管31中的双元混合制冷剂均得到有效降温,从而使双元混合制冷剂在进入毛细管41前的温度降的更低。
参看图3,具体地,在本实施例中,多个高温换热管31包括第一高温换热管31a、第二高温换热管31b和第三高温换热管31c,第一高温换热管31a与第一毛细管41a串联,第二高温换热管31b与第二毛细管41b串联,第三高温换热管31c与第三毛细管41c串联。
当然,在其它实施方式中,也可以根据设置的毛细管41的数量不同而对应设置高温换热管31的数量,还可以根据需要设置高温换热管31的内径与长度。
此外,切换阀或截止阀7也需对应调整其设置位置,将切换阀或截止阀7设置于高温换热管31的入口,以便双元混合制冷剂自多个高温换热管31中择一通过,从而使双元混合制冷剂自多根毛细管41中择一通过。
参看图3,在本实施例中,制冷回路100包括三个截止阀7,三个截止阀7分别设置于第一高温换热管31a、第二高温换热管31b和第三高温换热管31c的入口。这样,打开第一高温换热管31a入口的截止阀7,关闭第二高温换热管31b入口的截止阀7和第三高温换热管31c入口的截止阀7,即可控制双元混合制冷剂自第一高温换热管31a和第一毛细管41a通过;打开第三高温换热管31c入口的截止阀7,关闭第一高温换热管31a入口的截止阀7和第二高温换热管31b入口的截止阀7,双元混合制冷剂即从第三高温换热管31c和第三毛细管41c通过;打开第二高温换热管31b 入口的截止阀7,关闭第一高温换热管31a入口的截止阀7和第三高温换热管31c入口的截止阀7,双元混合制冷剂即从第二高温换热管31b和第二毛细管41b通过。通过控制三个截止阀7的开闭即可控制双元混合制冷剂的流经路径,进而控制双元混合制冷剂通过的流量和流速,控制双元混合工质制冷系统产生的的冷量,以此来控制储物间室的温度范围变化。
所述第三实施方式与所述第二实施方式除上述区别外,其他均相同,于此,不再赘述。
实施例4
请参图4所示,为本发明中的第四实施方式,该第四实施方式与第一实施方式的区别在于:
换热管组并联设置有多组,双元混合制冷剂选择性地自多组换热管组中的一者通过;不同组换热管组中的毛细管41的管径互不相同,以及/或者,不同组换热管组中的毛细管41的长度互不相同。
这样,由于不同组换热管组中的毛细管41的管径、长度互不相同,不同组换热管组允许双元混合制冷剂通过的流量和流速不同,双元混合制冷剂通过不同换热管组前后的压差也互不相同,从而可以控制双元混合制冷剂经不同换热管组中通过后所产生的的冷量不同,从而可以控制储物间室的温度范围变化;用户可以根据需要,控制双元混合制冷剂自多组换热管组中择一通过,便可使储物间室的温度达到需要的范围。
参看图4,具体地,在本实施例中,多组换热管组包括第一换热管组和第二换热管组,第一换热管组包括换热器3a和回热器4a,第二换热管组包括换热器3b和回热器4b。第一换热管组中的毛细管41的管径<第二换热管组中的毛细管41的管径,第一换热管组中的毛细管41的长度>第二换热管组中的毛细管41的长度。这样,当用户控制双元混合制冷剂自第一换热管组通过时,可使储物间室的温度范围为-90℃~-70℃;当用户控制双元混合制冷剂自第二换热管组通过时,可使储物间室的温度范围为-70℃~-50℃。
当然,在其它实施方式中,也可以根据需要设置换热管组为其它数量、以及设置不同换热管组中的毛细管41的管径与长度不同。
进一步地,制冷回路100还包括设置于换热管组入口的切换阀或者截止阀7,以便双元混合制冷剂自不同换热管组中择一通过。
参看图4,具体地,在本实施例中,制冷回路100还包括设置于第二换热管组的 高温换热管31入口的截止阀7a、设置于第二换热管组的回热管42入口的截止阀7b、以及设置于第一换热管组的回热管42入口的截止阀7c。这样,关闭截止阀7a和7b,打开截止阀7c,即可控制双元混合制冷剂自第一换热管组通过;关闭截止阀7c,打开截止阀7a和7b,双元混合制冷剂即从第二换热管组通过,从而可以减少截止阀7的数量,降低成本。
所述第四实施方式与所述第一实施方式除上述区别外,其他均相同,于此,不再赘述。
与现有技术相比,本发明提供的双元混合制冷剂、双元混合工质制冷系统及具有其的制冷装置,其有益效果在于:通过两种工质混合而成的制冷剂,并通过调控上述两种工质的配比,不仅可在满足制冷系统对可燃制冷剂的灌注量的要求的情况下,使制冷装置的储物间室内的温度达到-90℃~-40℃,对储存于储物间室内的食品达到较佳的保鲜效果,降低耗电量以及噪音,而且该制冷剂可应用于单级压缩制冷系统中,并可使单级压缩制冷系统在稳定运行时压缩机出口和毛细管入口之间的压强控制在压缩机可以承受的范围内。在实际应用中,可根据制冷装置的容积、环境温度、应用场景等调控上述两种工质的质量百分比,从而达到理想的保鲜效果。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种双元混合制冷剂,其特征在于,包括第一工质和第二工质,所述第一工质的质量百分比为10~60%,所述第二工质的质量百分比为40~90%,所述第一工质为R170、R1150、R23或R14中的一种,所述第二工质为R290、R600、R600a、R134a、R1234yf或R1234ze中的任意一种。
  2. 根据权利要求1所述的双元混合制冷剂,其特征在于,所述第一工质为R170或R1150,所述第二工质为R290、R600、R600a中的任意一种,且所述第一工质的质量百分比为20~50%,所述第二工质的质量百分比为50~80%。
  3. 根据权利要求1所述的双元混合制冷剂,其特征在于,所述第一工质为R23或R14,所述第二工质为R290、R600、R600a中的任意一种,所述第一工质的质量百分比为20~60%,所述第二工质的质量百分比为40~80%。
  4. 根据权利要求1所述的双元混合制冷剂,其特征在于,所述第一工质为R170或R1150,所述第二工质为R134a、R1234yf、R1234ze中的任意一种,且所述第一工质的质量百分比为10~40%,所述第二工质的质量百分比为60~90%。
  5. 根据权利要求1所述的双元混合制冷剂,其特征在于,所述第一工质为R23或R14,所述第二工质为R134a、R1234yf、R1234ze中的任意一种,所述第一工质的质量百分比为20~50%,所述第二工质的质量百分比为50~80%。
  6. 一种双元混合工质制冷系统,其特征在于,包括制冷回路以及权利要求1所述的双元混合制冷剂,所述双元混合制冷剂位于所述制冷回路中,所述制冷回路包括依次连接的压缩机、冷凝器、换热管组和蒸发器,所述换热管组包括互相连接的换热器和回热器,所述换热器包括并联设置且互相换热的高温换热管和低温换热管,所述回热器包括并联设置且互相换热的毛细管和回热管,所述毛细管的出口与所述蒸发器的进口连接,所述回热管的入口与所述蒸发器的出口连接,所述高温换热管的入口与所述冷凝器连接且其出口与所述毛细管连接,所述低温换热管的入口与所述回热管连接且其出口与所述压缩机连接。
  7. 根据权利要求6所述的双元混合工质制冷系统,其特征在于,所述双元混合制冷剂于所述蒸发器出口处呈气液两相。
  8. 根据权利要求6所述的双元混合工质制冷系统,其特征在于,所述双元混合制冷剂于所述回热管出口处呈气液两相。
  9. 根据权利要求6所述的双元混合工质制冷系统,其特征在于,所述双元混合 制冷剂于所述低温换热管出口处呈气态。
  10. 根据权利要求6所述的双元混合工质制冷系统,其特征在于,所述制冷回路位于所述压缩机和所述毛细管之间的管路的压强P<1.6MPa。
  11. 根据权利要求6所述的双元混合工质制冷系统,其特征在于,所述双元混合制冷剂于所述冷凝器出口处的温度Tr大于环境温度Te,且二者的温差△T=Tr-Te,△T≤3℃。
  12. 一种制冷装置,其特征在于,所述制冷装置包括制冷回路以及权利要求1所述的双元混合制冷剂,所述双元混合制冷剂位于所述制冷回路中。
PCT/CN2022/135771 2021-12-03 2022-12-01 双元混合制冷剂、双元混合工质制冷系统及制冷装置 WO2023098778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111467298.3 2021-12-03
CN202111467298.3A CN116218472A (zh) 2021-12-03 2021-12-03 双元混合制冷剂、双元混合工质制冷系统及制冷装置

Publications (1)

Publication Number Publication Date
WO2023098778A1 true WO2023098778A1 (zh) 2023-06-08

Family

ID=86581031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135771 WO2023098778A1 (zh) 2021-12-03 2022-12-01 双元混合制冷剂、双元混合工质制冷系统及制冷装置

Country Status (2)

Country Link
CN (1) CN116218472A (zh)
WO (1) WO2023098778A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766741A (en) * 1987-01-20 1988-08-30 Helix Technology Corporation Cryogenic recondenser with remote cold box
JP2003254661A (ja) * 2002-02-27 2003-09-10 Toshiba Corp 冷蔵庫
CN101929361A (zh) * 2010-07-02 2010-12-29 中山大学 一种带吸收器的低温动力循环系统
JP2013040725A (ja) * 2011-08-17 2013-02-28 Taiyo Energy Kenkyusho 加熱器利用装置
CN104534713A (zh) * 2014-12-31 2015-04-22 华南理工大学 一种双机快速降温低温制冷系统及方法
CN106524553A (zh) * 2016-12-28 2017-03-22 广州芯康医疗科技有限公司 两级复叠喷气增焓低温制冷系统
WO2019163662A1 (ja) * 2018-02-20 2019-08-29 Phcホールディングス株式会社 冷凍装置
CN112409993A (zh) * 2020-11-09 2021-02-26 江苏中圣高科技产业有限公司 一种适用于lng冷能利用的安全高效混合工质
CN113819669A (zh) * 2021-09-15 2021-12-21 浙江大学 一种基于碳纳米管重力油分离效应的低温制冷装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766741A (en) * 1987-01-20 1988-08-30 Helix Technology Corporation Cryogenic recondenser with remote cold box
JP2003254661A (ja) * 2002-02-27 2003-09-10 Toshiba Corp 冷蔵庫
CN101929361A (zh) * 2010-07-02 2010-12-29 中山大学 一种带吸收器的低温动力循环系统
JP2013040725A (ja) * 2011-08-17 2013-02-28 Taiyo Energy Kenkyusho 加熱器利用装置
CN104534713A (zh) * 2014-12-31 2015-04-22 华南理工大学 一种双机快速降温低温制冷系统及方法
CN106524553A (zh) * 2016-12-28 2017-03-22 广州芯康医疗科技有限公司 两级复叠喷气增焓低温制冷系统
WO2019163662A1 (ja) * 2018-02-20 2019-08-29 Phcホールディングス株式会社 冷凍装置
CN112409993A (zh) * 2020-11-09 2021-02-26 江苏中圣高科技产业有限公司 一种适用于lng冷能利用的安全高效混合工质
CN113819669A (zh) * 2021-09-15 2021-12-21 浙江大学 一种基于碳纳米管重力油分离效应的低温制冷装置及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ENRIQUE ÁNGELRODRÍGUEZ-JARA ET AL.: "Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150", APPLIED THERMAL ENGINEERING, vol. 200, 28 September 2021 (2021-09-28), XP086855334, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2021.117598 *
KOCHENBURGER T.M., GOMSE D., TRATSCHITT I., ZIMMERMANN A., GROHMANN S.: "Vapor-liquid and vapor-liquid-liquid equilibrium measurements and correlation of the binary mixtures 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) + (tetrafluoromethane (R14), trifluoromethane (R23), octafluoropropane (R218), nitrogen (R728) and argon (R740)) and ethane (R170) + trifluoromethane (R23)", FLUID PHASE EQUILIBRIA, ELSEVIER, AMSTERDAM, NL, vol. 450, 12 July 2017 (2017-07-12), AMSTERDAM, NL, pages 13 - 23, XP093069034, ISSN: 0378-3812, DOI: 10.1016/j.fluid.2017.07.002 *
SHENGJUN RUI, HUA ZHANG, YUQING WU: "Log-transformation and its implications for data analysis", JOURNAL OF REFRIGERATION, vol. 33, no. 6, 16 December 2012 (2012-12-16), pages 63 - 67, XP093069030, DOI: 10.3969/j.issn *
WANG QIN, SUN TENG-FEI, CUI KANG, CHEN FU-SHENG, CHEN GUANG-MING: "Optimization of the Performance of an Auto-Cascade Refrigerator with a Liquid-Gas Separator Using Environmentally Benign Binary Refrigerants", JOURNAL OF ENGINEERING THERMOPHYSICS, vol. 31, no. 4, 15 April 2010 (2010-04-15), pages 549 - 552, XP093069044 *
YONGAN YANG, ZHAO YANG, BIN LIU, : "Study of Water-cooled Auto-cascade Refrigeration Cycle with a Low Temperature of -60 ℃", JOURNAL OF REFRIGERATION, vol. 36, no. 2, 20 January 2015 (2015-01-20), pages 52 - 58, XP093069041, DOI: 10.3969/j.issn.0253-4339.2015.02.052 *

Also Published As

Publication number Publication date
CN116218472A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2012066763A1 (ja) 冷凍装置
JP2011521194A (ja) 冷媒蒸気圧縮システムにおける充填管理
WO2018121425A1 (zh) 串并联双蒸发器制冷系统及其控制方法
JP2000249413A (ja) 冷凍装置
CN105202804A (zh) 一种吸附与蒸汽压缩复叠式制冷装置及其控制方法
WO2019091240A1 (zh) 空调制热循环系统及空调器
JP3975664B2 (ja) 冷凍冷蔵庫、冷凍冷蔵庫の運転方法
JP3906637B2 (ja) 冷凍冷蔵庫
WO2023098778A1 (zh) 双元混合制冷剂、双元混合工质制冷系统及制冷装置
WO2023098779A1 (zh) 三元混合制冷剂、制冷系统及制冷装置
CN212253209U (zh) 复叠式压缩制冷系统以及具有其的制冷设备
CN212253305U (zh) 冰箱
CN216481291U (zh) 空调器
JP4169080B2 (ja) 冷凍冷蔵庫
CN114034183A (zh) 一种全封闭高精度温湿度独立控制热泵烘干系统
CN113432326A (zh) 复叠式压缩制冷系统以及具有其的制冷设备
CN113432366A (zh) 冰箱
CN113432325A (zh) 复叠式压缩制冷系统以及具有其的制冷设备
CN113432324A (zh) 复叠式压缩制冷系统以及具有其的制冷设备
CN116222007A (zh) 制冷系统及具有其的制冷装置
JP2013124801A (ja) 冷凍サイクル装置
US20150075212A1 (en) Carbon Dioxide Refrigeration System with a Multi-Way Valve
CN212253210U (zh) 复叠式压缩制冷系统以及具有其的制冷设备
US10782048B2 (en) Deep freezer
CN212253208U (zh) 复叠式压缩制冷系统以及具有其的制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900582

Country of ref document: EP

Kind code of ref document: A1