WO2023098606A1 - 半导体工艺腔室的冷却装置及半导体工艺腔室 - Google Patents

半导体工艺腔室的冷却装置及半导体工艺腔室 Download PDF

Info

Publication number
WO2023098606A1
WO2023098606A1 PCT/CN2022/134603 CN2022134603W WO2023098606A1 WO 2023098606 A1 WO2023098606 A1 WO 2023098606A1 CN 2022134603 W CN2022134603 W CN 2022134603W WO 2023098606 A1 WO2023098606 A1 WO 2023098606A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cavity
pipeline
air outlet
top wall
Prior art date
Application number
PCT/CN2022/134603
Other languages
English (en)
French (fr)
Inventor
任晓滨
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023098606A1 publication Critical patent/WO2023098606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Definitions

  • the invention relates to the technical field of semiconductor equipment, in particular to a cooling device for a process chamber and the process chamber.
  • the temperature in the process chamber can reach about 1100 ° C. Therefore, the process chamber needs to use quartz material to provide the required temperature environment for the process, and in transparent quartz
  • the outer surface of the outer surface is gold-plated to reflect the heat source into the process chamber with the help of the gold-plated layer, increase the reflectivity of the heat source, and ensure that the temperature in the process chamber can be maintained within the temperature range required by the process, while the metal frame and transmission structure outside the process chamber It is difficult for fixed structures to withstand such high temperatures, therefore, the outside of the process chamber needs to be cooled.
  • an existing way of cooling the outside of the process chamber is to install a cooling device 6 on the top of the process chamber, and the cooling device 6 sends cold air from the opposite sides of the process chamber top to the middle , and, the top of process chamber also can be provided with cofferdam 7, and cold wind can flow to the arc top of cofferdam 7 along the arc of cofferdam 7 from the edge of cofferdam 7 (as shown by the arrow among Fig. 8), to The top outer edge of the process chamber is cooled.
  • the external cooling of the process chamber is not uniform, the gold-plated layer of the process chamber will be cracked or even peeled off, and because the cooling effect of the corner area and arc top area of the cofferdam 7 is poor, the cofferdam 7
  • the gold-plated layer in the corner area and arc-top area of the center will fall off more easily, and because the cooling effect in the middle of the process chamber is poor, the gold-plated layer in the middle of the process chamber will fall off first, affecting the heat source reflection effect and service life of the process chamber .
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a cooling device for a semiconductor process chamber and a semiconductor process chamber, which can improve the cooling effect of the semiconductor process chamber, thereby reducing the The reflection of the heat source in the chamber is affected, and the service life of the semiconductor process chamber is improved.
  • a cooling device for a semiconductor process chamber which is arranged on the cavity top wall of the semiconductor process chamber for cooling the cavity top wall, and the cooling device includes A mounting plate, a plurality of cooling lines, and a barrier assembly, wherein:
  • the fixing plate is relatively arranged above the top wall of the cavity, and the fixing plate, the top wall of the cavity and the side walls of the cavity are enclosed to form an accommodation space;
  • the barrier assembly is arranged between the fixing plate and the top wall of the cavity, and divides the accommodation space into an intermediate cooling space and two edge cooling spaces respectively located on both sides thereof;
  • a plurality of the cooling pipelines are arranged at intervals at different positions in each of the edge cooling spaces; a plurality of through holes are opened on the fixing plate, and the air inlets of the plurality of cooling pipelines are connected with the plurality of the cooling pipelines.
  • the through holes are connected in one-to-one correspondence; the air outlet of the cooling pipeline is used to blow cooling gas into the edge cooling space.
  • each of the cooling pipelines includes a main pipe arranged parallel to a direction extending from the center of the top wall of the cavity to the edge, and the pipe wall of the main pipe is provided with the air outlet.
  • the air outlet is strip-shaped, and the two ends of the air outlet in the length direction respectively extend to positions close to the two ends of the main pipe.
  • each of the cooling pipelines also includes an air intake pipeline, one end of the air intake pipeline is used as an air inlet of the cooling pipeline, and the other end of the air intake pipeline is connected to the main pipeline. One end is connected, and the other end of the main pipeline is a blocked end; a bent pipe section is arranged at the connection between the air inlet pipeline and the main pipeline.
  • a plurality of mutually isolated air outlet channels are provided in each channel of the cooling pipeline, and one end of the plurality of air outlet channels extends to the air inlet of the cooling pipeline, and In communication with the corresponding through holes, the other ends of the plurality of air outlet channels all extend to the air outlet of the cooling pipeline.
  • the plurality of cooling pipelines in each edge cooling space includes a first cooling pipeline and a plurality of second cooling pipelines, wherein:
  • the first cooling pipeline is arranged at a middle position in the edge cooling space, and the air outlet direction of the air outlet of the first cooling pipeline is set perpendicular to the top wall of the cavity;
  • a plurality of the second cooling pipelines are symmetrically arranged on both sides of the first cooling pipeline, and the air outlet direction of the air outlet of the second cooling pipeline has an included angle with the top wall of the cavity, and the The air outlet direction of the air outlet of the second cooling pipeline is arranged obliquely in a direction away from the first cooling pipeline.
  • the air outlet direction of the air outlet of the second cooling pipeline is parallel to the tangent of the circumference.
  • the angle between the plane where the air outlet of the second cooling pipeline is located and the top wall of the cavity is 50°-70°.
  • intake flanges are provided one-to-one on the plurality of through holes, and the intake flanges are used to communicate with the gas source of the cooling gas, and the upstream of each intake flange is A flow regulating device is provided for correspondingly regulating the flow of the cooling gas passing into each of the cooling pipelines.
  • the present invention also provides a semiconductor process chamber, including a cavity and the cooling device provided by the present invention, wherein the cavity has a cavity top wall and four side walls, and two of the oppositely disposed sides A portion of the wall protrudes from the top surface of the cavity top wall.
  • the cooling device of the semiconductor process chamber divides the accommodation space enclosed by the fixed plate, the top wall of the cavity and the side wall of the cavity into intermediate cooling by arranging a barrier assembly between the fixed plate and the top wall of the cavity.
  • Space and the edge cooling space on both sides, and a plurality of cooling pipelines are arranged at intervals at different positions in the edge cooling space, and cooling gas can be blown into the edge cooling space by means of multiple cooling pipelines, that is, cooling at the edge Blow air at different positions in the space at the same time, which is compared with the way in the prior art that the cooling gas flows from the opposite sides of the cavity top wall to the middle, so that the cooling gas can reach all parts of the edge cooling space, and at the same time Shorten the gas flow distance to avoid the gas temperature rise and flow rate drop due to too long distance, so as to avoid the area in the edge cooling space where the cooling gas cannot reach, so that the temperature and flow rate of the cooling gas in the edge cooling space are similar, and then It can improve the uniformity of different positions of the
  • the cooling device of the semiconductor process chamber provided by the present invention by arranging the cooling device of the semiconductor process chamber provided by the present invention on the top wall of the cavity, the top wall of the cavity can be cooled by means of the cooling device of the semiconductor process chamber provided by the present invention , so that the cooling effect of the semiconductor process chamber can be improved, thereby reducing the influence of heat source reflection in the semiconductor process chamber, and improving the service life of the semiconductor process chamber.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a cooling device for a semiconductor process chamber and a semiconductor process chamber provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the front structure of the cooling device of the semiconductor process chamber and the semiconductor process chamber provided by the embodiment of the present invention
  • Fig. 3 is a top view sectional structure schematic diagram of the A-A direction of Fig. 2;
  • Fig. 4 is a schematic structural diagram of an intermediate cooling component provided by an embodiment of the present invention.
  • Fig. 5 is a schematic cross-sectional structure diagram of the C-C direction of Fig. 4;
  • FIG. 6 is a schematic structural diagram of an edge cooling component provided by an embodiment of the present invention.
  • Fig. 7 is a schematic cross-sectional structural diagram of the B-B direction of Fig. 6;
  • FIG. 8 is a schematic top view of a conventional semiconductor process chamber cooling device and the semiconductor process chamber.
  • an embodiment of the present invention provides a cooling device for a semiconductor process chamber, which is arranged on the cavity top wall 11 of the cavity 1 of the semiconductor process chamber for cooling the cavity top wall 11
  • the cooling device includes a fixed plate 2, a plurality of cooling pipelines 3 and a barrier assembly 4, wherein: the fixed plate 2 is relatively arranged above the top wall 11 of the cavity, and optionally, the fixed plate 2 is fixedly connected to the cavity 1 , the fixing plate 2 , the top wall 11 of the cavity and the side wall 12 of the cavity 1 encircle to form an accommodating space for installing the cooling pipeline 3 .
  • the barrier assembly 4 is arranged between the fixed plate 2 and the cavity top wall 11, and divides the above-mentioned accommodating space into an intermediate cooling space 11a and two edge cooling spaces 11b respectively located on both sides thereof, that is, the cavity top wall 11
  • the intermediate cooling area corresponds to the above-mentioned intermediate cooling space 11a
  • the edge cooling areas of the top wall of the cavity located on both sides of the intermediate cooling area correspond to the above-mentioned edge cooling space 11b.
  • the cavity 1 as a hexahedron as an example, it has a cavity top wall 11, a cavity bottom wall and four side walls 12, as shown in FIG.
  • the top surface of the cavity top wall 11 protrudes to form a protruding portion 121 , and the protruding portion 121 can be surrounded by the fixing plate 2 and the cavity top wall to form the above-mentioned accommodating space. It is easy to understand that the two edge cooling spaces 11b are respectively adjacent to the two protruding portions 121 . In addition, both sides of the edge cooling space 11b corresponding to the other two opposite side walls (i.e., upper and lower sides of the edge cooling space 11b in Fig. 3) are open.
  • a plurality of cooling pipelines 3 are arranged at intervals at different positions in each edge cooling space 11b.
  • one end of the cooling pipeline 3 is connected to the fixing plate 2 .
  • the fixed plate 2 is provided with a plurality of through holes 21, and the air inlets of the plurality of cooling pipelines 3 are connected to the plurality of through holes 21 one by one; the air outlets of the cooling pipelines 3 are used to blow cooling gas into the edge cooling space 11b .
  • the barrier assembly 4 is arranged between the fixed plate 2 and the cavity top wall 11, and the fixed plate 2, the cavity top wall 11 and the side wall 12 of the cavity 1
  • the enclosed housing space is divided into an intermediate cooling space 11a and two edge cooling spaces 11b respectively located on both sides thereof, and a plurality of cooling pipelines 3 are arranged at intervals at different positions in the edge cooling space.
  • the cooling pipeline 3 blows the cooling gas into the edge cooling space 11b, that is, blows air at different positions in the edge cooling space 11b at the same time, which is different from the cooling gas flowing from the opposite sides of the cavity top wall to the middle in the prior art.
  • the cooling gas can reach all parts of the edge cooling space 11b, and the gas flow distance can be shortened at the same time, so as to avoid the increase of the gas temperature and the decrease of the flow rate due to the excessive distance, thereby avoiding the inability of the cooling gas to exist in the edge cooling space 11b. reach the area, so that the temperature and flow velocity of the cooling gas in the edge cooling space 11b are all similar, and then the uniformity of the different positions of the cooling gas cooling cavity top wall 11 can be improved, the cooling effect on the semiconductor process chamber can be improved, and the cavity can be reduced.
  • the probability of cracks or even falling off of the gold-plated layer on the surface of the body can reduce the impact of heat source reflection in the semiconductor process chamber and improve the service life of the semiconductor process chamber.
  • the fixed plate 2 is connected with the cavity 1 of the semiconductor process chamber, and the fixed plate 2 is arranged opposite to the cavity top wall 11, the fixed plate 2, the cavity top wall 11 and the side wall 12 of the cavity 1
  • the enclosure forms an accommodation space for installing the cooling pipeline 3, and the cooling pipeline 3 can be installed in the above accommodation space, so as to realize the installation of the cooling device and the semiconductor process chamber.
  • the accommodating space is divided into an intermediate cooling space 11a and two edge cooling spaces 11b on both sides by means of a barrier assembly 4, wherein a plurality of cooling pipelines 3 are arranged at intervals in each edge cooling space 11b At different positions, a plurality of cooling pipelines 3 can be used to blow cooling gas to different positions in the edge cooling space 11b at the same time, so that the cooling gas can reach all parts of the edge cooling space 11b, and the gas flow distance can be shortened at the same time.
  • the temperature of the gas will rise and the flow rate will decrease, thereby avoiding the region where the cooling gas cannot reach the edge cooling space 11b, so that the temperature and flow rate of the cooling gas in the edge cooling space 11b are similar, and then the cooling of the cooling gas can be improved.
  • the intermediate cooling space 11a is provided with coils for heating the cavity 1, and the inner area of the cavity 1 corresponding to the intermediate cooling space 11a is the process area, the intermediate cooling space 11a is relatively The temperature of the cooling space 11b is high, therefore, a water cooling device may be provided in the intermediate cooling space 11a to cool the intermediate cooling area of the cavity top wall 11 corresponding to the intermediate cooling space 11a.
  • each cooling pipeline 3 includes a main pipe 33 arranged parallel to the direction extending from the center of the cavity top wall 11 to the edge, and the pipe wall of the main pipe 33 is provided with the above-mentioned air outlet , for purging cooling gas to the edge cooling space 11b.
  • the above-mentioned air outlet faces the top wall 11 of the cavity and has a distance from the top wall 11 of the cavity, so as to improve the cooling efficiency of the top wall 11 of the cavity while ensuring normal blowing of the cooling gas.
  • the main pipes 33 in the plurality of cooling pipes 3 are arranged in a divergent shape, for example.
  • one end of the cooling pipeline 3 is connected to the fixing plate 2 .
  • the plurality of through holes 21 are used to connect with the air source, and the air source provides
  • the cooling gas can flow into a plurality of cooling pipelines 3 through a plurality of through holes 21 in one-to-one correspondence, that is, the cooling gas can pass through a plurality of through holes 21 and a plurality of through holes 21 connected one to one in sequence.
  • the air inlets of the cooling pipelines 3 enter a plurality of cooling pipelines 3, and the cooling pipelines 3 are provided with a main pipeline 33 arranged along a direction parallel to the direction extending from the center of the cavity top wall 11 to the edge, and in the main pipeline 33
  • the pipe wall of the pipe is provided with an air outlet, so that the cooling gas entering the cooling pipeline 3 can be diffused in the main pipe 33, and the diffused cooling gas can be blown to the edge for cooling through the air outlet provided on the pipe wall of the main pipe 33.
  • the area where the cooling gas is blown to the top wall 11 of the cavity through the air outlet can be increased, thereby improving the cooling effect of the semiconductor process chamber. Further optionally, as shown in FIG.
  • the above-mentioned air outlet is strip-shaped, and the two ends of the air outlet in its length direction respectively extend to positions close to the two ends of the main duct 33, that is, the air outlet is in the main duct.
  • the position of the opening on the pipe wall of the main pipe 33 is from the position where the main pipe 33 is opposite to the arc-shaped barrier plate 41 to the position of the end of the main pipe 33, that is to say, the air outlet is on the pipe wall of the main pipe 33 and the main pipe 33 is close to the arc.
  • One side of the baffle plate 41 opens to the side of the opposite main pipe 33 away from the arc-shaped baffle plate 41 .
  • the gas passage area of the air outlet can be increased as much as possible, so that the cooling gas can be blown to the cavity top wall of the cavity 1 through the air outlet to maximize the area, and then the cooling effect of the semiconductor process chamber can be improved to the greatest extent.
  • each cooling pipeline 3 may further include an air intake duct 34 , such as along a vertical line perpendicular to the top wall 11 of the cavity. The direction is extended, and one end of the air inlet pipe 34 is used as the air inlet of the cooling pipeline 3, and the other end of the air inlet pipe 34 is connected with one end of the main pipe 33 (for example, near the central end of the cavity top wall 11), and the main pipe
  • the other end of the pipe 33 (for example, the end close to the edge of the cavity top wall 11) is a blocked end; the connection between the inlet pipe 34 and the main pipe 33 is provided with a bent pipe section for uniform flow of cooling gas.
  • the cooling gas can first enter the air inlet pipe 34 through the through hole 21 on the fixed plate 2, and then pass through the inlet pipe 34.
  • the air duct 34 enters the main duct 33, that is to say, the cooling gas enters the air intake duct 34 through the through hole 21 and the air intake duct 34 successively as an end of the air inlet, and then passes through the intake duct 34, from the intake duct 34 and One end to which the main pipe 33 is connected enters the main pipe 33 .
  • the flow direction of the cooling gas when entering the main duct 33 through the intake duct 34 can be changed to avoid cooling due to cooling in the intake duct 34.
  • the gas directly enters the main pipe 33, causing the air flow to turn too much (for example, directly changing from a vertical direction to a horizontal direction), thereby affecting the uniformity of the air flow, that is, by means of bending the pipe section, the cooling gas can flow in evenly into the main pipe 33, and then the cooling gas can be evenly blown into the edge cooling space 11b through the air outlet to achieve the effect of uniform flow of cooling gas, thereby improving the cooling effect of the semiconductor process chamber.
  • the plurality of cooling pipelines 3 in each edge cooling space 11b may include a first cooling pipeline 31 and a plurality of second cooling pipelines 32 , wherein: the first cooling pipeline 31 is arranged in the middle position in the edge cooling space 11b, and the air outlet direction of the air outlet of the first cooling pipeline 31 is set perpendicular to the cavity top wall 11, that is, the first cooling pipeline 31
  • the plane where the air outlet is located is set parallel to the top wall 11 of the cavity; a plurality of second cooling pipelines 32 are symmetrically arranged on both sides of the first cooling pipeline 31, and the air outlet direction of the second cooling pipeline 32 is in line with the direction of the cavity.
  • the top wall 11 has an included angle, and the air outlet direction of the air outlet of the second cooling pipeline 32 is inclined toward a direction away from the first cooling pipeline 31 .
  • the cooling gas can flow along The vertical direction flows to the cavity top wall 11 and is in contact with it, so that the cooling gas can flow to both sides of the first cooling pipeline 31 after being in contact with the cavity top wall 11, and through the second cooling pipeline 32
  • the air outlet direction of the air outlet has an included angle with the cavity top wall 11 (as shown by the angle ⁇ in FIG.
  • the air outlet direction of the air outlet of the second cooling pipeline 32 is inclined toward the direction away from the first cooling pipeline 31 Set so that when the gas outlet of the second cooling pipeline 32 blows the cooling gas to the cavity top wall 11, the cooling gas can flow obliquely to the edge of the edge cooling space 11b, and the cooling gas can flow along the direction inclined to the cavity top wall. 11 and contacts the top wall 11 of the cavity, so that the cooling gas can flow toward the edge of the edge cooling space 11b after contacting the top wall 11 of the cavity.
  • the first cooling pipeline 31 is arranged in the middle of the edge cooling space 11b (as shown in the area N in Figure 3), and a plurality of second cooling pipelines 32 are arranged symmetrically at intervals in the first cooling space. Both sides of the pipeline 31 (shown as the area M in FIG. 3 ), and the air outlet direction of the air outlet of the second cooling pipeline 32 is arranged obliquely in a direction away from the first cooling pipeline 31 .
  • the first cooling pipeline 31 is arranged in the middle of the edge cooling space 11b, and the second cooling pipeline 32 is arranged on both sides of the first cooling pipeline 31, close to the first cooling pipeline 31.
  • the edge of the edge cooling space 11b, and the second cooling pipelines 32 on both sides of the first cooling pipeline 31 are arranged symmetrically and at intervals.
  • the second cooling pipeline 32 is symmetrically arranged on both sides of the first cooling pipeline 3 at intervals, and the cooling gas can be blown to the edges on both sides in the edge cooling space 11b by means of the second cooling pipeline 32, and the cooling gas can flow in contact with the cavity
  • the top wall 11 of the body can flow toward the edges of both sides after being in contact, so that the cooling gas can be blown to different positions in the edge cooling space 11b.
  • the cooling gas blown out by the second cooling pipeline 32 can flow in a direction away from the first cooling pipeline 31 after contacting the cavity top wall 11, avoiding the second cooling pipeline
  • the cooling gas blown out of the channel 32 affects the flow of the cooling gas blown out of the first cooling pipeline 31, so as to improve the cooling stability of the cooling device, thereby improving the cooling effect of the semiconductor process chamber.
  • the angle between the plane where the air outlet of the second cooling pipeline 32 is located and the top wall 11 of the cavity may be 50°-70°.
  • the angle between the plane where the air outlet of the second cooling pipeline 32 is located and the top wall 11 of the cavity may be 60°.
  • the barrier assembly 4 may include two arc-shaped barrier plates 41, and the two arc-shaped barrier plates 41 are distributed on the same circumference, and relative to the Arranged radially symmetrically, the space between each arc-shaped barrier plate 41 and the side wall 12 of the cavity 1 is the above-mentioned edge cooling space 11b; the first cooling pipeline 31 and the plurality of second cooling pipelines 32 are arranged along the above-mentioned circumference They are arranged at intervals in the edge cooling space 11b, and extend along different radial directions of the above-mentioned circumference.
  • the above-mentioned accommodating space can be divided into an intermediate cooling space 11a and two edge cooling spaces 11b respectively located on both sides thereof, wherein the edge cooling space 11b is two arc-shaped barriers
  • the space between the plates 41 and the two side walls 12 of the cavity 1, for example, as shown in Figure 2 and Figure 3, the inner arc surfaces of the two arc-shaped barrier plates 41 can be arranged opposite to each other to form a "cofferdam".
  • the space between the inner arc surfaces of the two arc-shaped barrier plates 41 is the intermediate cooling space 11a, and the outer arc surfaces of the two arc-shaped barrier plates 41 are respectively connected with the two arc-shaped surfaces of the cavity 1
  • the space between the side walls 12 is two edge cooling spaces 11b.
  • the first cooling pipeline 31 and the second cooling pipeline 32 can be installed on the cavity 1 through the fixing plate 2 .
  • the first cooling pipeline 31 and the second cooling pipeline 32 can be installed on the cavity 1 through the fixing plate 2 .
  • the cooling gas blown by the road 32 into the edge cooling space 11b can flow along the arc direction of the arc-shaped baffle plate 41 to the edge of the edge cooling space 11b as a whole, forming a flow similar to a vortex (as shown by the arrow in Figure 3 ).
  • Such a design is because the inventors of the present invention found that: in the prior art, when the cooling gas flows from opposite sides to the middle, the flow velocity of the cooling gas to the middle decreases, which will cause the cooling gas to fail to flow to the arc barrier
  • the arc top position (that is, the middle position) of the plate 41 causes the arc top position of the arc-shaped barrier plate 41 to be unable to be cooled, causing the gold-plated layer in the arc-top area of the arc-shaped barrier plate 41 to crack or even fall off, and, as As shown in Figure 3, the two side edges of the arc-shaped baffle plate 41 have a straight line portion, and there is a corner with a relatively large angle between the straight line portion and the arc-shaped portion of the arc-shaped baffle plate 41.
  • the cooling gas may accumulate in the corner area, that is, the cooling gas flowing to the corner area is not easy to flow from The corner area flows away, causing the cooling gas to flow slowly in the corner area, and the cooling effect of the corner area is poor, causing cracks or even falling off of the gold-plated layer in the corner area.
  • the cooling device for the semiconductor process chamber provided by the embodiment of the present invention, on the one hand, blows cooling gas to the arc top position of the arc-shaped baffle plate 41 by means of the first cooling pipeline 31, and enables the cooling gas to pass through the arc-shaped baffle plate 41.
  • the top position of the arc flows to the edges of both sides, which can avoid the situation that the cooling gas cannot flow to the top position of the arc-shaped blocking plate 41, thereby avoiding that the top position of the arc-shaped blocking plate 41 cannot be cooled, causing the arc-shaped blocking plate 41
  • the gold-plated layer at the arc top position cracks or even falls off, which can improve the cooling effect on the semiconductor process chamber, reduce the probability of cracks or even fall-off of the gold-plated layer on the outer surface of the cavity 1, and reduce the heat source of the semiconductor process chamber Reflection is affected, improving the service life of semiconductor process chambers.
  • a plurality of second cooling pipelines 32 are used to blow cooling gas to both sides of the arc top position of the arc-shaped baffle plate 41, and make the cooling gas flow to the edge along the arc of the arc-shaped baffle plate 41, so that cooling can be avoided.
  • Gas deposits in the corner area of the arc-shaped barrier plate 41 occurs, thereby improving the cooling effect on the corner area of the arc-shaped barrier plate 41, and then improving the cooling effect on the semiconductor process chamber and reducing the gold-plated layer on the outer surface of the cavity 1 The probability of cracks or even falling off, thereby reducing the impact of heat source reflection in the semiconductor process chamber, and improving the service life of the semiconductor process chamber.
  • the air outlet direction of the air outlet of the second cooling pipeline 32 is parallel to the tangent line of the above-mentioned circumference. 41 arc flow.
  • the channel of each cooling pipeline 3 is provided with a plurality of mutually isolated air outlet channels 35, and one end of the plurality of air outlet channels 35 extends To the air inlet of the cooling pipeline 3 and communicate with the corresponding through hole 21 , the other ends of the multiple air outlet channels 35 all extend to the air outlet of the cooling pipeline 3 .
  • Such a design can make the cooling gas enter the cooling pipeline 3 through the air inlet of the cooling pipeline 3, and then enter the plurality of air outlet channels 35 evenly, and then blow through the plurality of air outlet channels 35 from the air outlet to the cavity. body top wall 11, so that the cooling gas blown by the cooling pipeline 3 to the cavity top wall 11 can be evenly distributed on the cavity top wall 11, thereby further improving the uniformity of the cooling gas cooling cavity top wall 11, and then further Improve the cooling effect of the semiconductor process chamber, reduce the probability of cracks or even falling off of the gold-plated layer on the outer surface of the cavity 1, further reduce the influence of heat source reflection in the semiconductor process chamber, and further improve the service life of the semiconductor process chamber.
  • a plurality of through holes 21 can be provided with inlet flanges 5 corresponding to each other, and the inlet flanges 5 are used to communicate with the gas source of the cooling gas
  • a flow regulating device (not shown in the figure) may be provided upstream of each intake flange 5 for correspondingly adjusting the flow of cooling gas passing into each cooling pipeline 3 .
  • the gas source of the cooling gas can be connected with the fixed plate 2
  • the gas source of the cooling gas is communicated with the plurality of through holes 21 through the inlet flanges 5 provided one by one on the plurality of through holes 21, so that when the cooling device is cooling, the cooling gas provided by the gas source of the cooling gas Through the plurality of through holes 21 , the plurality of cooling pipelines 3 connected to the plurality of through holes 21 can be entered in a one-to-one correspondence.
  • the flow of cooling gas passing into each cooling pipeline 3 can be adjusted correspondingly by means of the flow regulating device, so that the corresponding chamber of the first cooling pipeline 31 can
  • the area of the top wall 11 of the body and the area of the top wall 11 of the cavity corresponding to the second cooling pipeline 32 are used to adjust the flow rate of the cooling gas entering the first cooling pipeline 31 and the second cooling pipeline 32, and then can Properly dividing and adjusting the flow rates of the cooling gas in the first cooling pipeline 31 and the second cooling pipeline 32 can further improve the utilization rate of the cooling gas.
  • the flow regulating component may include a wind speed regulating valve.
  • the embodiment of the present invention also provides a semiconductor process chamber, including a cavity 1 and a cooling device as provided in the embodiment of the present invention, wherein the cavity 1 has a cavity top wall 11 and four side walls 12, two of which are opposite to each other. A part of the provided side wall 12 protrudes from the top surface of the cavity top wall 11 .
  • the cooling device is arranged on the cavity top wall 11 for cooling the cavity top wall 11 .
  • the semiconductor process chamber provided by the embodiment of the present invention can use the cooling device of the semiconductor process chamber provided by the embodiment of the present invention by arranging the cooling device of the semiconductor process chamber provided by the embodiment of the present invention on the cavity top wall 11 Cooling the cavity top wall 11 can improve the cooling effect of the semiconductor process chamber, thereby reducing the influence of heat source reflection in the semiconductor process chamber and improving the service life of the semiconductor process chamber.
  • the semiconductor process chamber cooling device and the semiconductor process chamber provided by the present invention can improve the cooling effect on the semiconductor process chamber, thereby reducing the impact of heat source reflection in the semiconductor process chamber and improving the efficiency of the semiconductor process chamber. chamber lifespan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明提供一种半导体工艺腔室的冷却装置及半导体工艺腔室,冷却装置包括固定板、多个冷却管路和阻隔组件。固定板相对设置于腔体顶壁上方且固定板、腔体顶壁和腔体的侧壁合围形成容纳空间;阻隔元件设置在固定板与腔体顶壁之间且将容纳空间分隔为中间冷却空间和分别位于其两侧的两个边缘冷却空间;多个冷却管路间隔排布于每个边缘冷却空间内的不同位置处;固定板上开设有多个通孔,多个冷却管路的进风口与多个通孔一一对应连接;冷却管路的出风口用于向边缘冷却空间内吹送冷却气体。本发明的方案,能够提高半导体工艺腔室的冷却效果,从而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。

Description

半导体工艺腔室的冷却装置及半导体工艺腔室 技术领域
本发明涉及半导体设备技术领域,具体地,涉及一种工艺腔室的冷却装置及工艺腔室。
背景技术
在化学气相沉积(Chemical Vapor Deposition,简称CVD)工艺中,工艺腔室内的温度可达1100℃左右,因此,工艺腔室需要采用石英材质来为工艺提供所需的温度环境,且在透明的石英的外表面镀金,以借助镀金层将热源反射至工艺腔室内,增加热源反射率,保证工艺腔室内的温度能够维持在工艺所需的温度范围,而工艺腔室外的机架、传输结构等金属固定结构很难承受这么高的温度,因此,需要对工艺腔室的外部进行冷却。
如图8所示,现有的一种对工艺腔室的外部进行冷却的方式,是在工艺腔室的顶部设置冷却装置6,冷却装置6从工艺腔室顶部相对的两侧向中间输送冷风,并且,工艺腔室的顶部还会设置有围堰7,冷风会从围堰7的边缘沿围堰7的弧线向围堰7的弧顶流动(如图8中箭头所示),对工艺腔室的顶部外缘进行冷却。但是,这样会使得冷风由两侧向中间相对流动,且由于流动的距离较长,区域较大,当冷风流动到工艺腔室的中间时,冷风的温度已经升高,且风速已经降低,导致冷风对工艺腔室中间的冷却效果减弱,造成工艺腔室的外部冷却不均匀,并且,由于围堰7的边缘具有拐角,冷风在该拐角区域(如图8中区域P所示)风速较低不易流动,导致冷风对该拐角区域的冷却效果较差,并且,由于冷风在围堰7的弧顶区域(如图8中区域Q所示)的风速较低,且冷风受到弧形围堰7阻挡,冷风到达弧顶区域时的风向会改变,导致冷风可能无法到达围堰7的弧顶区域,造成围堰7的拐角 区域及弧顶区域形成“死区”,冷却效果较差。在实际应用中,由于工艺腔室的外部冷却不均匀,会造成工艺腔室的镀金层产生裂纹甚至脱落,并且,由于围堰7的拐角区域及弧顶区域的冷却效果较差,围堰7的拐角区域及弧顶区域的镀金层会较易脱落,且由于工艺腔室中间的冷却效果较差,工艺腔室中间的镀金层会最先脱落,影响工艺腔室的热源反射效果和使用寿命。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种半导体工艺腔室的冷却装置及半导体工艺腔室,其能够提高半导体工艺腔室的冷却效果,从而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
为实现本发明的目的而提供一种半导体工艺腔室的冷却装置,设置在所述半导体工艺腔室的腔体顶壁上,用于对所述腔体顶壁进行冷却,所述冷却装置包括固定板、多个冷却管路和阻隔组件,其中:
所述固定板相对设置于所述腔体顶壁上方,且所述固定板、所述腔体顶壁和所述腔体的侧壁合围形成容纳空间;
所述阻隔组件设置在所述固定板与所述腔体顶壁之间,且将所述容纳空间分隔为中间冷却空间和分别位于其两侧的两个边缘冷却空间;
多个所述冷却管路间隔排布于每个所述边缘冷却空间内的不同位置处;所述固定板上开设有多个通孔,多个所述冷却管路的进风口与多个所述通孔一一对应连接;所述冷却管路的出风口用于向所述边缘冷却空间内吹送冷却气体。
可选的,每个所述冷却管路均包括沿平行于自所述腔体顶壁的中心向边缘延伸的方向设置的主管道,所述主管道的管壁开设有所述出风口。
可选的,所述出风口为条形,且所述出风口在其长度方向上的两端分别 延伸至靠近所述主管道的两端的位置处。
可选的,每个所述冷却管路均还包括进气管道,所述进气管道的一端用作所述冷却管路的进风口,所述进气管道的另一端与所述主管道的一端连接,所述主管道的另一端为封堵端;所述进气管道与所述主管道的连接处设置有折弯管段。
可选的,每个所述冷却管路的通道中均设置有多个相互隔离的出风通道,多个所述出风通道的一端均延伸至所述冷却管路的所述进风口,且与对应的所述通孔连通,多个所述出风通道的另一端均延伸至所述冷却管路的所述出风口。
可选的,每个所述边缘冷却空间内的多个所述冷却管路包括一个第一冷却管路和多个第二冷却管路,其中:
所述第一冷却管路排布于所述边缘冷却空间内的中间位置,所述第一冷却管路的出风口的出气方向与所述腔体顶壁垂直设置;
多个所述第二冷却管路对称排布于所述第一冷却管路的两侧,所述第二冷却管路的出风口的出气方向与所述腔体顶壁具有夹角,且所述第二冷却管路的出风口的出气方向朝远离所述第一冷却管路的方向倾斜设置。
可选的,所述第二冷却管路的出风口的出气方向与所述圆周的切线平行。
可选的,所述第二冷却管路的出风口所在平面与所述腔体顶壁的夹角为50°-70°。
可选的,多个所述通孔上一一对应设置有进气法兰,所述进气法兰用于与所述冷却气体的气源连通,每个所述进气法兰的上游均设置有流量调节装置,用于对应调节通入每个所述冷却管路的所述冷却气体的流量。
本发明还提供一种半导体工艺腔室,包括腔体和本发明提供的所述冷却装置,其中,所述腔体具有腔体顶壁和四个侧壁,其中两个相对设置的所述 侧壁的一部分自所述腔体顶壁的顶面凸出。
本发明具有以下有益效果:
本发明提供的半导体工艺腔室的冷却装置,通过在固定板与腔体顶壁之间设置阻隔组件,将固定板、腔体顶壁和腔体的侧壁合围形成的容纳空间分隔为中间冷却空间和位于其两侧的边缘冷却空间,并在该边缘冷却空间内的不同位置处间隔排布多个冷却管路,可以借助多个冷却管路向边缘冷却空间内吹送冷却气体,即在边缘冷却空间内的不同位置处同时吹气,这与现有技术中冷却气体由腔体顶壁相对的两侧向中间相对流动的方式相比,可以使冷却气体能够到达边缘冷却空间的各处,同时缩短气体流动距离,避免因距离过长而导致气体温度上升,流速下降,从而可以避免边缘冷却空间存在冷却气体无法到达的区域,使得冷却气体在边缘冷却空间各处的温度和流速均相近,继而能够提高冷却气体冷却腔体顶壁不同位置的均匀性,提高对半导体工艺腔室的冷却效果,降低腔体外表面镀金层产生裂纹甚至脱落的概率,进而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
本发明提供的半导体工艺腔室,通过将本发明提供的半导体工艺腔室的冷却装置设置在腔体顶壁上,可以借助本发明提供的半导体工艺腔室的冷却装置对腔体顶壁进行冷却,从而能够提高半导体工艺腔室的冷却效果,进而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
附图说明
图1为本发明实施例提供的半导体工艺腔室的冷却装置及半导体工艺腔室的立体结构示意图;
图2为本发明实施例提供的半导体工艺腔室的冷却装置及半导体工艺腔室的主视结构示意图;
图3为图2的A-A方向的俯视剖面结构示意图;
图4为本发明实施例提供的中间冷却部件的结构示意图;
图5为图4的C-C方向的剖面结构示意图;
图6为本发明实施例提供的边缘冷却部件的结构示意图;
图7为图6的B-B方向的剖面结构示意图;
图8为现有的一种半导体工艺腔室的冷却装置及半导体工艺腔室的俯视结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的半导体工艺腔室的冷却装置及半导体工艺腔室进行详细描述。
如图1-图3所示,本发明实施例提供一种半导体工艺腔室的冷却装置,设置在半导体工艺腔室的腔体1的腔体顶壁11上,用于对腔体顶壁11进行冷却,冷却装置包括固定板2、多个冷却管路3和阻隔组件4,其中:固定板2相对设置于腔体顶壁11上方,可选的,该固定板2与腔体1固定连接,固定板2、腔体顶壁11和腔体1的侧壁12合围形成用于安装冷却管路3的容纳空间。阻隔组件4设置在固定板2与腔体顶壁11之间,且将上述容纳空间分隔为中间冷却空间11a和分别位于其两侧的两个边缘冷却空间11b,即,腔体顶壁11的中间冷却区域对应上述中间冷却空间11a,腔体顶壁的位于该中间冷却区域两侧的边缘冷却区域对应上述边缘冷却空间11b。具体地,以腔体1为六面体为例,其具有腔体顶壁11、腔体底壁和四个侧壁12,如图2所示,其中两个相对设置的侧壁12的一部分相对于腔体顶壁11的顶面凸出,形成凸出部分121,该凸出部分121可以与固定板2、腔体顶壁合围形成上述容纳空间。容易理解,两个边缘冷却空间11b分别与两个凸出部分121相邻。另外,边缘冷却空间11b对应另外两个相对的侧壁的两侧(即,图3中边缘 冷却空间11b的上侧和下侧)是敞开的。
多个冷却管路3间隔排布于每个边缘冷却空间11b内的不同位置处。可选的,冷却管路3的一端与固定板2连接。固定板2上开设有多个通孔21,多个冷却管路3的进风口与多个通孔21一一对应连接;冷却管路3的出风口用于向边缘冷却空间11b内吹送冷却气体。
本发明实施例提供的半导体工艺腔室的冷却装置,通过在固定板2与腔体顶壁11之间设置阻隔组件4,将固定板2、腔体顶壁11和腔体1的侧壁12合围形成的容纳空间分隔为中间冷却空间11a和分别位于其两侧的两个边缘冷却空间11b,并在该边缘冷却空间内的不同位置处间隔排布多个冷却管路3,可以借助多个冷却管路3向边缘冷却空间11b内吹送冷却气体,即在边缘冷却空间11b内的不同位置处同时吹气,这与现有技术中冷却气体由腔体顶壁相对的两侧向中间相对流动的方式相比,可以使冷却气体能够到达边缘冷却空间11b的各处,同时缩短气体流动距离,避免因距离过长而导致气体温度上升,流速下降,从而可以避免边缘冷却空间11b存在冷却气体无法到达的区域,使得冷却气体在边缘冷却空间11b各处的温度和流速均相近,继而能够提高冷却气体冷却腔体顶壁11不同位置的均匀性,提高对半导体工艺腔室的冷却效果,降低腔体外表面镀金层产生裂纹甚至脱落的概率,进而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
具体来说,将固定板2与半导体工艺腔室的腔体1连接,并使固定板2与腔体顶壁11相对设置,固定板2、腔体顶壁11和腔体1的侧壁12合围形成用于安装冷却管路3的容纳空间,冷却管路3能够安装于上述容纳空间内,从而实现冷却装置与半导体工艺腔室的安装。借助阻隔组件4将上述容纳空间分隔为中间冷却空间11a和分别位于其两侧的两个边缘冷却空间11b,其中,通过将多个冷却管路3间隔排布于每个边缘冷却空间11b内的不同位置处,可以借助多个冷却管路3向边缘冷却空间11b内的不同位置处同时吹送 冷却气体,从而可以使冷却气体能够到达边缘冷却空间11b的各处,同时缩短气体流动距离,避免因距离过长而导致气体温度上升,流速下降,从而可以避免边缘冷却空间11b存在冷却气体无法到达的区域,使得冷却气体在边缘冷却空间11b各处的温度和流速均相近,继而能够提高冷却气体冷却腔体顶壁11不同位置的均匀性。
另外,在实际应用中,由于中间冷却空间11a中设置有用于加热腔体1的线圈,并且中间冷却空间11a对应的腔体1的内部区域为工艺区域,所以中间冷却空间11a相对于两个边缘冷却空间11b的温度高,因此,中间冷却空间11a中可以设置有水冷装置,以对,腔体顶壁11对应中间冷却空间11a的中间冷却区域进行冷却。
在一些可选的实施例中,每个冷却管路3均包括沿平行于自腔体顶壁11的中心向边缘延伸的方向设置的主管道33,主管道33的管壁开设有上述出风口,用于向边缘冷却空间11b吹扫冷却气体。可选的,上述出风口朝向腔体顶壁11,且与该腔体顶壁11之间具有间距,以在保证冷却气体的正常吹出的同时,提高对腔体顶壁11的冷却效率。多个冷却管路3中的主管道33例如呈发散状排布。可选的,冷却管路3的一端与固定板2连接。
通过在固定板2上开设多个通孔21,并使多个冷却管路3的进风口与多个通孔21一一对应连接,多个通孔21用于与气源连接,气源提供的冷却气体可以通过多个通孔21一一对应地流入多个冷却管路3,也就是说,冷却气体可以依次通过多个通孔21和与多个通孔21一一对应连接的多个冷却管路3的进风口进入多个冷却管路3,通过使冷却管路3设置有沿平行于自腔体顶壁11的中心向边缘延伸的方向设置的主管道33,并在主管道33的管壁开设出风口,可以使进入冷却管路3的冷却气体能够在主管道33内扩散,并使扩散后的冷却气体能够通过在主管道33的管壁上开设的出风口吹送向边缘冷却空间内,从而能够增大冷却气体经过出风口吹送向腔体顶壁11的面积,进 而能够提高半导体工艺腔室的冷却效果。进一步可选的,如图5所示,上述出风口为条形,且该出风口在其长度方向上的两端分别延伸至靠近主管道33的两端的位置处,即,出风口在主管道33的管壁上开口的位置为主管道33与弧形阻隔板41相对的位置至主管道33的末端的位置,也就是说,出风口在主管道33的管壁上自主管道33靠近弧形阻隔板41的一侧开设至相对的主管道33远离弧形阻隔板41的一侧。这样,可以尽可能增大出风口的气体通过面积,从而能够使得冷却气体经过出风口吹送向腔体1的腔体顶壁的面积最大化,进而能够最大化的提高半导体工艺腔室的冷却效果。
如图4-图7所示,在本发明一优选实施例中,每个冷却管路3可以均还包括进气管道34,该进气管道34例如沿垂直于腔体顶壁11的竖直方向延伸设置,并且,进气管道34的一端用作冷却管路3的进风口,进气管道34的另一端与主管道33的一端(例如靠近腔体顶壁11的中心一端)连接,主管道33的另一端(例如靠近腔体顶壁11的边缘一端)为封堵端;进气管道34与主管道33的连接处设置有折弯管段,用于匀流冷却气体。
通过使进气管道34的一端用作冷却管路3的进风口,且与主管道33的一端连接,可以使冷却气体通过固定板2上的通孔21先进入进气管道34,再经过进气管道34进入主管道33,也就是说,冷却气体依次通过通孔21和进气管道34用作进风口的一端进入进气管道34,再经过进气管道34后,从进气管道34与主管道33连接的一端进入主管道33。通过在进气管道34与主管道33的连接处设置有折弯管段,可以使冷却气体在经过进气管道34进入主管道33时的流动方向发生改变,避免因进气管道34中的冷却气体直接进入主管道33,而导致气流转向过大(例如由竖直方向直接转变为水平方向),从而影响气流均匀性,也就是说,借助折弯管段,能够使冷却气体能够均匀的流入至主管道33中,继而使冷却气体能够均匀的通过出风口向边缘冷却空间11b内吹送冷却气体,实现匀流冷却气体的效果,进而能够提高半导 体工艺腔室的冷却效果。
如图3-图7所示,在本发明一优选实施例中,每个边缘冷却空间11b内的多个冷却管路3可以包括一个第一冷却管路31和多个第二冷却管路32,其中:第一冷却管路31排布于边缘冷却空间11b内的中间位置,第一冷却管路31的出风口的出气方向与腔体顶壁11垂直设置,即第一冷却管路31的出风口所在平面与腔体顶壁11平行设置;多个第二冷却管路32对称排布于第一冷却管路31的两侧,第二冷却管路32的出风口的出气方向与腔体顶壁11具有夹角,且第二冷却管路32的出风口的出气方向朝远离第一冷却管路31的方向倾斜设置。
通过将第一冷却管路31的出风口的出气方向与腔体顶壁11垂直设置,这样当第一冷却管路31的出风口将冷却气体吹送向腔体顶壁11时,冷却气体可以沿垂直方向流动至腔体顶壁11,并与之相接触,使得冷却气体在与腔体顶壁11接触后能够向第一冷却管路31的两侧流动,通过将第二冷却管路32的出风口的出气方向与腔体顶壁11具有夹角(如图6中夹角α所示),且第二冷却管路32的出风口的出气方向朝远离第一冷却管路31的方向倾斜设置,这样当第二冷却管路32的出气口将冷却气体吹送向腔体顶壁11时,冷却气体可以倾斜地向边缘冷却空间11b的边缘流动,并且冷却气体可以沿倾斜于腔体顶壁11的方向流动,并与腔体顶壁11接触,使得冷却气体在与腔体顶壁11接触后能够向边缘冷却空间11b的边缘流动。
如图3所示,第一冷却管路31排布于边缘冷却空间11b内的中间位置(如图3中区域N所示),多个第二冷却管路32对称间隔排布于第一冷却管路31的两侧(如图3中区域M所示),且第二冷却管路32的出风口的出气方向朝远离第一冷却管路31的方向倾斜设置。
也就是说,第一冷却管路31排布于边缘冷却空间11b内的中间位置,第二冷却管路32排布于第一冷却管路31的两侧,相对于第一冷却管路31 靠近边缘冷却空间11b的边缘,且第一冷却管路31两侧的第二冷却管路32对称且间隔排布,通过将第一冷却管路31排布于边缘冷却空间11b内的中间位置,可以借助第一冷却管路31向边缘冷却空间11b内的中间位置吹送冷却气体,并使冷却气体在与腔体顶壁11的边缘冷却区域内的中间位置接触后能够向两侧边缘流动,通过将第二冷却管路32对称间隔排布于第一冷却管路3的两侧,可以借助第二冷却管路32向边缘冷却空间11b内的两侧边缘吹送冷却气体,并使冷却气体在与腔体顶壁11接触后能够向两侧边缘流动,从而可以实现向边缘冷却空间11b内不同位置吹送冷却气体。通过将第二冷却管路32的出风口的出气方向朝远离第一冷却管路31的方向倾斜设置,可以使得第二冷却管路32吹出的冷却气体可以沿背离第一冷却管路31的方向向边缘冷却空间11b内的边缘流动,并且,第二冷却管路32吹出的冷却气体在与腔体顶壁11接触后,可以沿远离第一冷却管路31的方向流动,避免第二冷却管路32吹出的冷却气体对第一冷却管路31吹出的冷却气体的流动造成影响,以能够提高冷却装置的冷却稳定性,从而能够提高半导体工艺腔室的冷却效果。
可选的,第二冷却管路32的出风口所在平面与腔体顶壁11的夹角可以为50°-70°。
进一步可选的,第二冷却管路32的出风口所在平面与腔体顶壁11的夹角可以为60°。
如图2和图3所示,在本发明一优选实施例中,阻隔组件4可以包括两个弧形阻隔板41,两个弧形阻隔板41分布在同一圆周上,且相对于该圆周的径向对称设置,每个弧形阻隔板41与腔体1的侧壁12之间的空间即为上述边缘冷却空间11b;第一冷却管路31和多个第二冷却管路32沿上述圆周间隔排布于边缘冷却空间11b内,且沿上述圆周的不同径向延伸。
也就是说,通过两个弧形阻隔板41,可以将上述容纳空间分隔为中间冷 却空间11a和分别位于其两侧的两个边缘冷却空间11b,其中,边缘冷却空间11b为两个弧形阻隔板41分别与腔体1的两个侧壁12之间的空间,例如,如图2和图3所示,两个弧形阻隔板41的内弧面可以相对设置,形成类似于“围堰”的结构,在这种情况下,两个弧形阻隔板41的内弧面之间的空间为中间冷却空间11a,两个弧形阻隔板41的外弧面分别与腔体1的两个侧壁12之间的空间为两个边缘冷却空间11b。
通过将第一冷却管路31和多个第二冷却管路32与固定板2连接,可以使第一冷却管路31和第二冷却管路32通过固定板2安装于腔体1上。通过将第一冷却管路31和第二冷却管路32沿两个弧形阻隔板41的弧线方向间隔排布于边缘冷却空间11b内,可以使得第一冷却管路31和第二冷却管路32吹送向边缘冷却空间11b内的冷却气体整体上,能够沿着弧形阻隔板41的弧线方向向边缘冷却空间11b的边缘流动,形成类似涡流的形式流动(如图3中箭头所示)。
这样的设计是由于本发明的发明人发现:采用现有技术中,冷却气体由相对的两侧向中间相对流动时,冷却气体流动至中间的流速降低,会导致冷却气体无法流动至弧形阻隔板41的弧顶位置(即,中间位置),导致弧形阻隔板41的弧顶位置无法被冷却,造成弧形阻隔板41的弧顶区域的镀金层产生裂纹甚至脱落的情况,并且,如图3所示,弧形阻隔板41的两侧边缘具有直线部分,直线部分与弧形阻隔板41呈弧形的部分之间具有角度较大的拐角,当冷却气体由相对的两侧向中间相对流动时,由于冷却气体的流动方向会与弧形阻隔板41两侧边缘的直线部分相平行,因此,冷却气体可能会在该拐角区域淤积,即,流动至该拐角区域的冷却气体不易从该拐角区域流走,导致冷却气体在该拐角区域的流速较慢,该拐角区域的冷却效果较差,造成该拐角区域的镀金层产生裂纹甚至脱落的情况。
而本发明实施例提供的半导体工艺腔室的冷却装置,一方面借助第一冷 却管路31向弧形阻隔板41的弧顶位置吹送冷却气体,并使冷却气体能够由弧形阻隔板41的弧顶位置向两侧边缘流动,可以避免冷却气体无法流动至弧形阻隔板41的弧顶位置的情况发生,从而避免弧形阻隔板41的弧顶位置无法被冷却,造成弧形阻隔板41的弧顶位置的镀金层产生裂纹甚至脱落的情况发生,继而能够提高对半导体工艺腔室的冷却效果,降低腔体1外表面镀金层产生裂纹甚至脱落的概率,进而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。另一方面借助多个第二冷却管路32向弧形阻隔板41的弧顶位置的两侧吹送冷却气体,并使冷却气体沿着弧形阻隔板41的弧线向边缘流动,可以避免冷却气体在弧形阻隔板41的拐角区域淤积的情况发生,从而提高对弧形阻隔板41的拐角区域的冷却效果,继而能够提高对半导体工艺腔室的冷却效果,降低腔体1外表面镀金层产生裂纹甚至脱落的概率,进而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
在本发明一优选实施例中,第二冷却管路32的出风口的出气方向与上述圆周的切线平行,这样的设计可以使得第二冷却管路32吹送的冷却气体能够沿着弧形阻隔板41的弧线流动。
如图5和图7所示,在本发明一优选实施例中,每个冷却管路3的通道中均设置有多个相互隔离的出风通道35,多个出风通道35的一端均延伸至冷却管路3的进风口,且与对应的通孔21连通,多个出风通道35的另一端均延伸至冷却管路3的出风口。
这样的设计可以使冷却气体在经过冷却管路3的进风口进入冷却管路3后,能够均匀的分别进入多个出风通道35,再经过多个出风通道35分别从出风口吹送向腔体顶壁11,使得冷却管路3吹送向腔体顶壁11的冷却气体,能够腔体顶壁11上均匀分布,从而能够进一步提高冷却气体冷却腔体顶壁11的均匀性,继而能够进一步提高对半导体工艺腔室的冷却效果,降低腔体 1外表面镀金层产生裂纹甚至脱落的概率,进而进一步减小半导体工艺腔室热源反射受到的影响,进一步提高半导体工艺腔室的使用寿命。
如图1和图2所示,在本发明一优选实施例中,多个通孔21上可以一一对应设置有进气法兰5,进气法兰5用于与冷却气体的气源连通,每个进气法兰5的上游可以均设置有流量调节装置(图中未示出),用于对应调节通入每个冷却管路3的冷却气体的流量。
也就是说,通过在多个通孔21上一一对应设置进气法兰5,并使进气法兰5与冷却气体的气源连通,可以使冷却气体的气源与固定板2连接,并使冷却气体的气源通过多个通孔21上一一对应设置的进气法兰5与多个通孔21连通,从而在冷却装置进行冷却时,使冷却气体的气源提供的冷却气体能够通过多个通孔21进入与多个通孔21一一对应连接的多个冷却管路3。通过在每个进气法兰5的上游均设置流量调节装置,可以借助流量调节装置对应调节通入每个冷却管路3的冷却气体的流量,从而可以根据第一冷却管路31对应的腔体顶壁11的面积,和第二冷却管路32对应的腔体顶壁11的面积,来对进入第一冷却管路31和第二冷却管路32的冷却气体的流量进行调节,继而能够对第一冷却管路31和第二冷却管路32的冷却气体的流量进行适当的划分和调节,进而能够提高冷却气体的利用率。
可选的,流量调节部件可以包括风速调节阀。
本发明实施例还提供一种半导体工艺腔室,包括腔体1和如本发明实施例提供的冷却装置,其中,腔体1具有腔体顶壁11和四个侧壁12,其中两个相对设置的侧壁12的一部分自腔体顶壁11的顶面凸出。冷却装置设置在腔体顶壁11上,用于对腔体顶壁11进行冷却。
本发明实施例提供的半导体工艺腔室,通过将本发明实施例提供的半导体工艺腔室的冷却装置设置在腔体顶壁11上,可以借助本发明实施例提供的半导体工艺腔室的冷却装置对腔体顶壁11进行冷却,从而能够提高半导体工 艺腔室的冷却效果,进而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
综上所述,本发明提供的半导体工艺腔室的冷却装置及半导体工艺腔室,能够提高对半导体工艺腔室的冷却效果,从而减小半导体工艺腔室热源反射受到的影响,提高半导体工艺腔室的使用寿命。
可以解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种半导体工艺腔室的冷却装置,设置在所述半导体工艺腔室的腔体顶壁上,用于对所述腔体顶壁进行冷却,其特征在于,所述冷却装置包括固定板、多个冷却管路和阻隔组件,其中:
    所述固定板相对设置于所述腔体顶壁上方,且所述固定板、所述腔体顶壁和所述腔体的侧壁合围形成容纳空间;
    所述阻隔组件设置在所述固定板与所述腔体顶壁之间,且将所述容纳空间分隔为中间冷却空间和分别位于其两侧的两个边缘冷却空间;
    多个所述冷却管路间隔排布于每个所述边缘冷却空间内的不同位置处;所述固定板上开设有多个通孔,多个所述冷却管路的进风口与多个所述通孔一一对应连接;所述冷却管路的出风口用于向所述边缘冷却空间内吹送冷却气体。
  2. 根据权利要求1所述的冷却装置,其特征在于,每个所述冷却管路均包括沿平行于自所述腔体顶壁的中心向边缘延伸的方向设置的主管道,所述主管道的管壁开设有所述出风口。
  3. 根据权利要求2所述的冷却装置,其特征在于,所述出风口为条形,且所述出风口在其长度方向上的两端分别延伸至靠近所述主管道的两端的位置处。
  4. 根据权利要求2所述的冷却装置,其特征在于,每个所述冷却管路均还包括进气管道,所述进气管道的一端用作所述冷却管路的进风口,所述进气管道的另一端与所述主管道的一端连接,所述主管道的另一端为封堵端;所述进气管道与所述主管道的连接处设置有折弯管段。
  5. 根据权利要求1-4中任意一项所述的冷却装置,其特征在于,每个所述冷却管路的通道中均设置有多个相互隔离的出风通道,多个所述出风通道的一端均延伸至所述冷却管路的所述进风口,且与对应的所述通孔连通,多个所述出风通道的另一端均延伸至所述冷却管路的所述出风口。
  6. 根据权利要求1所述的冷却装置,其特征在于,每个所述边缘冷却空间内的多个所述冷却管路包括一个第一冷却管路和多个第二冷却管路,其中:
    所述第一冷却管路排布于所述边缘冷却空间内的中间位置,所述第一冷却管路的出风口的出气方向与所述腔体顶壁垂直设置;
    多个所述第二冷却管路对称排布于所述第一冷却管路的两侧,所述第二冷却管路的出风口的出气方向与所述腔体顶壁具有夹角,且所述第二冷却管路的出风口的出气方向朝远离所述第一冷却管路的方向倾斜设置。
  7. 根据权利要求6所述的冷却装置,其特征在于,所述阻隔组件包括两个弧形阻隔板,两个所述弧形阻隔板分布在同一圆周上,且相对于所述圆周的径向对称设置,每个所述弧形阻隔板与所述腔体的侧壁之间的空间即为所述边缘冷却空间;所述第一冷却管路和多个所述第二冷却管路沿所述圆周间隔排布于所述边缘冷却空间内,且沿所述圆周的不同径向延伸。
  8. 根据权利要求7所述的冷却装置,其特征在于,所述第二冷却管路的出风口的出气方向与所述圆周的切线平行。
  9. 根据权利要求6所述的冷却装置,其特征在于,所述第二冷却管路的出风口所在平面与所述腔体顶壁的夹角为50°-70°。
  10. 根据权利要求1所述的冷却装置,其特征在于,多个所述通孔上一 一对应设置有进气法兰,所述进气法兰用于与所述冷却气体的气源连通,每个所述进气法兰的上游均设置有流量调节装置,用于对应调节通入每个所述冷却管路的所述冷却气体的流量。
  11. 一种半导体工艺腔室,其特征在于,包括腔体和根据权利要求1-10中任意一项所述的冷却装置,其中,所述腔体具有腔体顶壁和四个侧壁,其中两个相对设置的所述侧壁的一部分自所述腔体顶壁的顶面凸出。
PCT/CN2022/134603 2021-12-01 2022-11-28 半导体工艺腔室的冷却装置及半导体工艺腔室 WO2023098606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111451406.8A CN114171437A (zh) 2021-12-01 2021-12-01 半导体工艺腔室的冷却装置及半导体工艺腔室
CN202111451406.8 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098606A1 true WO2023098606A1 (zh) 2023-06-08

Family

ID=80481970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134603 WO2023098606A1 (zh) 2021-12-01 2022-11-28 半导体工艺腔室的冷却装置及半导体工艺腔室

Country Status (2)

Country Link
CN (1) CN114171437A (zh)
WO (1) WO2023098606A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171437A (zh) * 2021-12-01 2022-03-11 北京北方华创微电子装备有限公司 半导体工艺腔室的冷却装置及半导体工艺腔室

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080236495A1 (en) * 2007-03-27 2008-10-02 Structured Materials Inc. Showerhead for chemical vapor deposition (CVD) apparatus
CN102345112A (zh) * 2011-09-22 2012-02-08 中微半导体设备(上海)有限公司 一种半导体处理设备及其气体喷淋头冷却板
CN102492937A (zh) * 2011-12-29 2012-06-13 中国科学院半导体研究所 用于金属化学气相沉积设备反应室的进气喷淋头
CN105992448A (zh) * 2015-02-02 2016-10-05 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体产生装置和具有其的半导体设备
CN110739244A (zh) * 2018-07-20 2020-01-31 东京毅力科创株式会社 热处理装置和热处理方法
CN111161992A (zh) * 2019-12-27 2020-05-15 北京北方华创微电子装备有限公司 半导体设备的反应腔冷却装置
JP2021068886A (ja) * 2019-10-17 2021-04-30 東京エレクトロン株式会社 基板処理装置、基板処理方法、及び記憶媒体
CN114171437A (zh) * 2021-12-01 2022-03-11 北京北方华创微电子装备有限公司 半导体工艺腔室的冷却装置及半导体工艺腔室

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080236495A1 (en) * 2007-03-27 2008-10-02 Structured Materials Inc. Showerhead for chemical vapor deposition (CVD) apparatus
CN102345112A (zh) * 2011-09-22 2012-02-08 中微半导体设备(上海)有限公司 一种半导体处理设备及其气体喷淋头冷却板
CN102492937A (zh) * 2011-12-29 2012-06-13 中国科学院半导体研究所 用于金属化学气相沉积设备反应室的进气喷淋头
CN105992448A (zh) * 2015-02-02 2016-10-05 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体产生装置和具有其的半导体设备
CN110739244A (zh) * 2018-07-20 2020-01-31 东京毅力科创株式会社 热处理装置和热处理方法
JP2021068886A (ja) * 2019-10-17 2021-04-30 東京エレクトロン株式会社 基板処理装置、基板処理方法、及び記憶媒体
CN111161992A (zh) * 2019-12-27 2020-05-15 北京北方华创微电子装备有限公司 半导体设备的反应腔冷却装置
CN114171437A (zh) * 2021-12-01 2022-03-11 北京北方华创微电子装备有限公司 半导体工艺腔室的冷却装置及半导体工艺腔室

Also Published As

Publication number Publication date
TW202328491A (zh) 2023-07-16
CN114171437A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023098606A1 (zh) 半导体工艺腔室的冷却装置及半导体工艺腔室
CN111952233B (zh) 边缘吹扫装置、基座系统及工艺腔室
WO2021238955A1 (zh) 一种加热装置及半导体加工设备
CN111074239B (zh) 一种lpcvd双材质真空反应室
KR20180011406A (ko) 차량의 egr쿨러
TW202035874A (zh) 基板處理室的泵送設備與方法
TWI746222B (zh) 鍍膜設備
WO2023000970A1 (zh) 反应腔室及半导体工艺设备
CN102433613A (zh) 一种炭化炉的气体密封装置
TWI850873B (zh) 半導體製程腔室的冷卻裝置及半導體製程腔室
CN104896505A (zh) 空气预热器烟气入口的气体均布结构
KR100925061B1 (ko) 화학 기상 증착 장치용 방산노즐
CN210320142U (zh) 一种用于高温炉的进气装置
CN215295841U (zh) 一种炉口环形冷却装置
CN204730236U (zh) 空气预热器烟气入口的气体均布结构
TWI709203B (zh) 腔室冷卻裝置及半導體加工設備
CN112066749A (zh) 一种用于真空高温设备的双列叶片进气分布器
JPWO2019073584A1 (ja) コンプレッサーハウジング及びこのコンプレッサーハウジングを備えるターボチャージャー
CN114394731A (zh) 一种电子玻璃窑炉流液洞的冷却方法和装置
WO2019072006A1 (zh) 风管及风机
CN216716586U (zh) 热交换结构
CN221398033U (zh) 进气衬体及工艺腔室
KR970052064A (ko) 화학기상증착(cvd) 장비의 가스유입구 구조
CN117467976B (zh) 用于气相沉积工艺腔室的上衬环、下衬环、进气衬体和内衬
CN221398032U (zh) 内衬、下衬环及工艺腔室

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE