WO2023098538A1 - 列车定位方法及定位系统 - Google Patents

列车定位方法及定位系统 Download PDF

Info

Publication number
WO2023098538A1
WO2023098538A1 PCT/CN2022/133771 CN2022133771W WO2023098538A1 WO 2023098538 A1 WO2023098538 A1 WO 2023098538A1 CN 2022133771 W CN2022133771 W CN 2022133771W WO 2023098538 A1 WO2023098538 A1 WO 2023098538A1
Authority
WO
WIPO (PCT)
Prior art keywords
transponder
time
train
response frame
vobc
Prior art date
Application number
PCT/CN2022/133771
Other languages
English (en)
French (fr)
Inventor
王琼芳
陈楚君
肖野笛
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023098538A1 publication Critical patent/WO2023098538A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/028Determination of vehicle position and orientation within a train consist, e.g. serialisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of traffic technology, and in particular to a train positioning method and a positioning system.
  • Trains such as subways and high-speed rails are used as travel tools. In order to ensure the orderly operation of the trains, it is particularly important to locate the trains. The key to the positioning of the trains is to determine the position of the train when it passes the center of the transponder.
  • the Balise Transmission Module (BTM) on the train calculates the position of the train passing the center point of the balise, it usually needs to rely on the data transmitted by the Vehicle On-Board Controller (VOBC). However, if the VOBC transmission data is disturbed and the BTM center point calculation fails, the BTM cannot correctly feed back the transponder information.
  • the VOBC may trigger emergency braking or reduce the positioning accuracy due to the loss of the transponder information, which will eventually lead to an increase in the train failure rate. Affect parking accuracy and reduce availability.
  • a train positioning method including:
  • the transponder transmission unit BTM periodically sends transponder data to the on-board controller VOBC according to preset rules, and the transponder data includes the identification information of the transponder;
  • the VOBC periodically receives the transponder data sent by the BTM, and periodically acquires data frames; the data frames include the current travel time tn, current travel speed vn and current travel distance sn of the train;
  • the VOBC determines the position of the train passing the center point of the balise according to the received balise data and the acquired data frame.
  • a train positioning system including:
  • Transponder transmission unit BTM and on-board controller VOBC;
  • the BTM is used to periodically send transponder data to the VOBC according to preset rules, and the transponder data includes the identification information of the transponder;
  • the VOBC is also used to periodically receive the transponder data sent by the BTM, and to periodically acquire data frames; the data frames include the current train travel time tn, current travel speed vn and current travel distance sn;
  • the VOBC is also used to determine the position of the train passing the center point of the balise according to the received balise data and the acquired data frame.
  • a vehicle-mounted device including:
  • processors one or more processors
  • memory for storing one or more programs
  • one or more processors are made to execute the train positioning method provided by each embodiment of the present application.
  • a computer-readable storage medium storing a computer program
  • the program when executed by a processor, the train positioning method provided by each embodiment of the present application is provided.
  • the VOBC when calculating the position of the train passing through the central point of the balise, it is not necessary for the VOBC to send any information to the BTM.
  • the time difference (the time difference between the data receiving time of the transponder and the data frame acquisition time of the train running information) is used to calculate the time t_balise when the train passes the central point of the transponder, and further calculate the train according to the time t_balise of the central point of the transponder and the list of saved train driving information
  • the train position is accurately calibrated, the probability of data loss is small, and the train positioning accuracy is high.
  • Fig. 1 is the exemplary flowchart of the train positioning method provided in the prior art
  • Fig. 2 is an exemplary flow chart of the train positioning method provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the calculation of the center point of the American standard transponder provided by the embodiment of the present application.
  • Fig. 4 is an exemplary structural diagram of the train positioning system provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted device provided by an embodiment of the present application.
  • VOBC Automatic Train Protection System
  • the positioning information of the BTM is based on the ATP Calculate the position of the center point of the transponder, but there may be the following defects: as shown in Figure 1, VOBC includes FPGA (Field Programmable Gate Array, Field Programmable Gate Array) end and APP (application) end, and the BTM host is calculating the response When determining the position of the transponder center point, it needs to rely on the train speed and positioning information transmitted by VOBC.
  • FPGA Field Programmable Gate Array
  • APP application
  • the BTM will not be able to correctly feed back the transponder information.
  • ATP may be caused by the loss of transponder information.
  • Trigger emergency braking or reduce positioning accuracy which will eventually lead to increased train failure rate, and may also affect parking accuracy and reduce availability.
  • FIG. 2 shows a train positioning method provided according to an embodiment of the present application, including the following steps:
  • the transponder transmission unit BTM periodically sends transponder data to the on-board controller VOBC according to preset rules, and the transponder data includes the identification information of the transponder;
  • the VOBC periodically receives the transponder data sent by the BTM, and at the same time periodically acquires data frames; the data frames include the current travel time tn, current travel speed vn and current travel distance sn of the train; where n get period number for dataframe;
  • the VOBC determines the position of the train passing the transponder center point according to the received transponder data and the acquired data frame.
  • the VOBC when calculating the position of the train passing the central point of the transponder, the VOBC does not need to send any information to the BTM, and when the serial link interferes, it will not affect the calculation of the central point And transponder data reception, software and protocols have strong anti-interference ability and improve usability.
  • the VOBC When the prior art calculates the position of the train passing the transponder center point, the VOBC must send information such as train speed and position to the BTM.
  • the BTM periodically sends the transponder data to the VOBC according to preset rules, and the BTM host does not need the VOBC request to send the transponder data to the VOBC, and only needs to continue to send periodically.
  • the BTM must receive the request from the VOBC before replying to the transponder data.
  • the prior art requires correct sending and receiving, and the probability of data loss increases when interference occurs.
  • the calculation algorithm for the position of the train passing the transponder center point is moved to VOBC, which can perform more accurate and detailed calculations according to the real-time speed of the train, improve the positioning accuracy, and increase the flexibility of the algorithm.
  • step S10 includes the following sub-steps:
  • the transponder data periodically sent to the VOBC is a response frame, and the response frame includes the transponder's identification information and energy flag parameters.
  • BTM periodically sends transponder data to VOBC
  • t_b is 50ms for the interval time (every equal interval sends) that BTM host computer sends transponder data to VOBC, namely t_b is the sending cycle of the response frame.
  • the BTM antenna When the BTM antenna does not detect a transponder, it sends an idle frame to the VOBC, and idle in Figure 3 represents an idle frame; when a transponder is detected, it sends a response frame, with the ID information of the transponder attached in the response frame, as shown in Figure 3 (bid,0),(bid,1)...:bid is the ID of the transponder, the second natural number is the energy flag parameter, and different energy flag parameters are sent to VOBC according to the change of the detected signal energy of the transponder .
  • S102 specifically includes the following sub-steps:
  • the energy flag parameter is a preset flag value; among them, when the BTM detects that the signal energy of the transponder reaches the peak value, it is determined The position of the train passing the center point of the transponder;
  • the parameter of the energy flag increases or decreases sequentially according to the preset interval ⁇ .
  • the signal energy of the transponder detected by the BTM is related to the distance between the BTM and the transponder. The closer the distance between the BTM and the transponder, the greater the signal energy of the detected transponder.
  • the distance between the BTM and the transponder starts from far to near.
  • the BTM is located at the central point of the transponder, the distance between the BTM and the transponder is the shortest, and then the BTM gradually moves away from the central point of the transponder. Therefore, when the BTM detects that the signal energy of the transponder reaches a peak value, it can determine the position of the train when it passes the central point of the transponder.
  • the BTM sends different energy flag parameters to the VOBC according to the detected change of the signal energy of the transponder.
  • Set the flag value (such as -1), and when the signal energy of the transponder reaches the peak value, the energy flag parameter in the response frame can be increased sequentially on the basis of the preset flag value according to the preset interval ⁇ , such as sending to VOBC
  • the energy flag parameter in the response frame is sent after adding 1, and increases by 1 every time it is sent, and it keeps increasing.
  • the energy flag parameter in the response frame increases with the number of sending cycles of the response frame as 0, 1, 2, 3... etc.
  • the energy flag parameter 0 represents the energy flag parameter in the first response frame sent by the BTM to the VOBC after the train passes the position of the transponder center point, and the energy flag is greater than Equal to 0 means that the train has passed the position of the center point of the transponder; also for example, the energy flag parameters in the response frame are 0, 2, 4, 6... etc. in sequence with the increase of the number of transmission cycles of the response frame.
  • the preset interval is 2.
  • the energy flag parameter in the response frame can be reduced successively according to the preset interval on the basis of the preset flag value, for example, if the preset flag value is 10, the signal energy of the transponder After reaching the peak value, the energy flag parameters in the response frame are 8, 6, 4, 2... and so on as the number of response frame sending cycles increases.
  • the preset flag values in this embodiment are described using -1 and 10 as examples, which can also be adjusted in practical applications, and correspondingly adjust the energy flag parameter value after the signal energy of the transponder reaches a peak value.
  • the energy flag parameter in the first response frame and the energy flag parameter in the current response frame sent determine the interval m between sending the first response frame and the response frame sending the current response frame by the BTM, as shown in Figure 3.
  • the energy flag parameter of the first response frame is 0, when the energy flag parameter in the current response frame is 3, then the interval m between sending the current response frame and the first response frame by the BTM is 3; When the energy flag parameter in the response frame is 2, then m is 2.
  • S102 specifically includes the following sub-steps:
  • the energy flag parameter increases sequentially according to the preset interval; among them, when the BTM detects When the signal energy to the transponder reaches its peak value, the position of the train passing the center point of the transponder is determined;
  • the energy flag parameter increases or decreases sequentially at preset intervals.
  • the BTM sends different energy flag parameters to the VOBC according to the change of the detected signal energy of the transponder.
  • the energy flag parameters sent to the VOBC are sequentially at preset intervals.
  • Increase, for example, the energy flag parameter in the response frame is 0, 1, 2, 3... etc. with the increase of the number of response frame sending cycles, and when the signal energy of the transponder is detected to reach the peak value, the energy sent to the VOBC
  • the flag parameters are sequentially increased according to the preset intervals.
  • the energy flag parameters in the response frame are 15, 16, 17... etc. as the number of sending cycles of the response frame increases. Among them, 15 is the position after the train passes the transponder center Energy flag parameter in the first response frame sent by BTM to VOBC.
  • the energy flag parameters sent to the VOBC are sequentially increased according to the preset interval.
  • the energy flag parameters in the response frame are 0, 2, and 4 in turn as the number of response frame sending cycles increases. , 6... etc., and when the signal energy of the transponder is detected to reach the peak value, the energy flag parameters sent to the VOBC will decrease in turn according to the preset interval, for example, the energy flag parameters in the response frame will increase with the number of response frame sending cycles.
  • the increments are 15, 14, 13...etc., among them, 15 is the energy flag parameter in the first response frame sent by BTM to VOBC after the train passes the center point of the transponder.
  • the energy flag parameter increases or decreases sequentially according to the preset interval, and the BTM can be determined by the change of the energy flag parameter.
  • the interval between sending the current response frame and the response frame sending the first response frame is m. For example, when the energy flag parameter in the first response frame sent by BTM to VOBC is 15, the energy flag parameter of the current response frame is 13. The preset If the interval is 1, then m is 2.
  • S102 specifically includes the following sub-steps:
  • the energy flag parameters decrease in turn according to the preset interval; among them, when the BTM When the peak value of the signal energy of the transponder is detected, the position of the train passing the center of the transponder is determined;
  • the energy flag parameter increases or decreases sequentially at preset intervals.
  • the BTM sends different energy flag parameters to the VOBC according to the change of the signal energy of the detected transponder.
  • the energy flag parameter in the response frame is 18, 16, 14, 12... etc. as the number of response frame sending cycles increases, and when the signal energy of the transponder is detected to reach the peak value, the energy flag sent to the VOBC
  • the parameters increase in sequence according to the preset intervals.
  • the energy flag parameters in the response frame are 8, 9, 10, etc. as the number of response frame sending cycles increases. Among them, 8 is the position given by the BTM after the train passes the central point of the transponder.
  • Energy flag parameter in the first response frame sent by VOBC is the position given by the BTM after the train passes the central point of the transponder.
  • the energy flag parameters sent to the VOBC are sequentially decreased according to the preset intervals, for example, the energy flag parameters in the response frame are 20, 19, 18, 17... etc., and when the signal energy of the transponder is detected to reach the peak value, the energy flag parameters sent to the VOBC are sequentially reduced according to the preset intervals, for example, the energy flag parameters in the response frame are sent with the number of cycles of the response frame The increments are 10, 9, 8... etc. in turn, where 10 is the energy flag parameter in the first response frame sent by BTM to VOBC after the train passes the center point of the transponder.
  • the energy flag parameter increases or decreases sequentially according to the preset interval, and the BTM can be determined by the change of the energy flag parameter.
  • the interval between sending the current response frame and the response frame sending the first response frame is m.
  • the energy flag parameters sent to the VOBC are sequentially decreased or increased according to preset intervals, or a certain preset threshold is adopted. There are no specific restrictions on it. It is only necessary to ensure that when the signal energy of the transponder reaches its peak value, the energy flag parameter in the response frame changes according to a certain rule according to the sending cycle of the response frame, which is convenient for calculating the train passing transponder After the central point position, the BTM sends the current response frame and sends the first response frame.
  • the response frame transmission cycle interval m
  • step S20 VOBC periodically acquires data frames, and the data frames include the current travel time, current travel speed and current travel distance of the train, as shown in Figure 3, t_atp is the processing cycle of VOBC, which is 200ms, i.e.
  • location_list[n] ⁇ t1,v1,s1 ⁇ , ⁇ t2,v2,s2 ⁇ , ⁇ t3,v3,s3 ⁇ , ⁇ t4,v4,s4 ⁇ , that is, the list length is 4 .
  • the length of the location_list list can be increased to increase the reliability of the algorithm and improve usability by increasing the space complexity.
  • the length of the list can be increased by shortening the processing cycle of VOBC.
  • step S20 further includes: when the VOBC periodically acquires data frames, saves the acquired data frames into a list location_list[n], and the list location_list[n] includes each data frame acquisition period The current travel time tn, current travel speed vn and current travel distance sn of the train obtained in , where n is the number of data frame acquisition cycles.
  • the obtained data frame is saved to the list location_list[n], which can quickly search and compare the data in the list, and facilitates the subsequent calculation of the position of the train passing through the center point of the transponder.
  • S30 specifically includes the following sub-steps:
  • the VOBC determines the time t_balise when the train passes the transponder center point according to the time difference between the response frame reception time and the data frame acquisition time;
  • S320 The VOBC calculates the position of the train passing the balise center point according to the time t_balise when the train passes the balise center point and the saved list location_list[n].
  • S310 specifically includes the following sub-steps:
  • S313 Determine the sending time t_o of the first response frame after the train passes the transponder center point according to the current response frame sending time t_s;
  • Step S313 includes the following sub-steps:
  • the BTM judges that the train passes the position of the transponder center point, it starts timing, and assumes that after the train passes the transponder center point, the BTM sends the first response frame to the VOBC after a fixed time t_d.
  • VOBC receives a balise whose energy flag parameter is 0, and the time t_balise when the train passes the center point of the balise is calculated as follows:
  • t_d2 is the time difference between the VOBC current data frame acquisition time t2 and the latest response frame reception time.
  • VOBC receives a transponder with an energy mark of 3, and the time t_balise when the train passes through the central point of the transponder is calculated as follows:
  • t_d2 is the time difference between the current VOBC data frame acquisition time t4 and the latest response frame reception time.
  • the algorithm can calculate the time t_balise when the train passes the transponder center point by analogy.
  • step S320 specifically includes the following sub-steps:
  • S322 Determine the position s_balise when the train passes the transponder center point according to the time difference ⁇ t, the current train speed vn corresponding to the time tn, and the current travel distance sn.
  • the position s_balise when the train passes through the transponder center is determined by finding the nearest time difference from the time t_balise when the train passes through the transponder center in the saved list location_list[n], and the calculation of the position s_balise is more precise.
  • step S322 is specifically:
  • the train is positioned according to the position s_balise information of the train passing through the central point of the transponder calculated by the VOBC and the identification information of the transponder, and the positioning accuracy is high.
  • the BTM is American Standard BTM.
  • the cost of the European standard BTM-transponder in the prior art is high, the price of the BTM reader and the transponder are relatively expensive, and the volume of the transponder is relatively large, which requires a high space for track installation.
  • the train positioning method of the present invention is also applicable to the American standard BTM-transponder, the cost of the American standard BTM-transponder and the BTM host is lower, the volume of the American standard transponder is much smaller than that of the European standard transponder, and it is easier to install on site. And the use of American standard BTM-transponders can adapt to the easy installation of the Yunba line and reduce hardware costs, and accurately locate the train.
  • Fig. 4 shows a schematic structural diagram of a train positioning system provided according to an embodiment of the present application.
  • the embodiment of the present application provides a train positioning system 400, a transponder transmission unit BTM 410 and an on-board controller VOBC 420; wherein,
  • the BTM 410 is used to periodically send transponder data to the VOBC 420 according to preset rules, and the transponder data includes the identification information of the transponder;
  • the VOBC 420 is also used to periodically receive the transponder data sent by the BTM 41, and to periodically obtain data frames; the data frames include the current travel time of the train, the current travel speed and the current travel distance;
  • the VOBC 420 is also used to determine the position of the train passing the center point of the balise according to the received balise data and the acquired data frame.
  • BTM 410 includes BTM host and receiving antenna.
  • BTM 410 and VOBC 420 are installed on the train, and the transponder is installed on the track on which the train runs.
  • VOBC 420 does not need to send information to BTM 410.
  • BTM 410 host sends transponder data to VOBC 420 periodically.
  • Transponder data does not depend on any input of VOBC 420.
  • VOBC completes the calculation of transponder center position to improve reliability. Reduce transmission errors caused by interference and reduce the probability of transponder positioning failure.
  • VOBC 420 includes VOBC_FPGA (secure computer platform) and VOBC_APP (ATP application), and the BTM host communicates with VOBC_FPGA through serial port 485.
  • BTM is used to periodically send transponder data to VOBC_FPGA according to preset rules.
  • the transponder data contains the identification information of the transponder;
  • VOBC_APP periodically obtains data frames and sends them to VOBC_FPGA.
  • the data frames contain the current travel time and current speed of the train and the current travel distance;
  • VOBC_FPGA determines the position of the train passing the transponder center point according to the received transponder data and the obtained data frame.
  • the BTM 410 includes:
  • Idle frame sending module 412 used for if the BTM does not detect a responder, the responder data periodically sent to the VOBC is an idle frame;
  • the response frame sending module 411 is configured to periodically send the transponder data to the VOBC if the BTM detects a transponder, and the response frame includes the transponder's identification information and energy flag parameters.
  • the response frame sending module 411 is also used to periodically send the response frame to the VOBC 420 when the BTM 410 detects that the signal energy of the transponder reaches a peak value.
  • the parameter increases or decreases sequentially at preset intervals as the number of response frame sending cycles increases.
  • the VOBC 420 includes:
  • a response frame receiving module 421, configured to periodically receive the response frame sent by the response frame sending module 411;
  • the data frame acquisition module 422 is used to periodically acquire the data frame; the data frame includes the current travel time of the train, the current travel speed and the current travel distance;
  • the central point determining module 423 is configured to determine the position of the train passing the transponder central point according to the response frame received by the response frame receiving module 421 and the data frame obtained by the data frame obtaining module 422 .
  • the VOBC further includes a list saving module 424, configured to save the data frame obtained by the data frame obtaining module 422 into the list location_list[n].
  • the central point determination module 423 includes:
  • the central point time determining unit 4231 is configured to determine the time when the train passes through the central point of the transponder according to the time difference between the response frame receiving time obtained by the response frame receiving module 421 and the data frame obtaining time obtained by the data frame obtaining module 422. time t_balise;
  • the center point position determination unit 4232 is used to calculate the time t_balise when the train passes through the transponder center point determined by the center point time determination unit 4231 and the list location_list[n] saved by the list saving module 424 to calculate the train passing through the transponder center position at point time.
  • the central point time determination unit 4231 is further configured to:
  • the time t_balise t_o-t_d when the train passes the center point of the balise is determined.
  • the central point time determination unit 4231 is further configured to:
  • the energy sign parameter in the current response frame and the energy sign parameter in the first response frame determine the response frame transmission cycle interval m between sending the current response frame and sending the first response frame;
  • the central point position determining unit 4232 is also used for:
  • Fig. 5 shows a schematic structural diagram of a vehicle-mounted device provided according to an embodiment of the present application.
  • the present application also provides a vehicle-mounted device 500, including one or more central processing modules (CPU) 501, which can Alternatively, a program loaded from the storage unit 508 into the random access memory (RAM) 503 executes various appropriate actions and processes. In RAM 503, various programs and data necessary for system operation are also stored.
  • the CPU 501, ROM 502, and RAM 503 are connected to each other through a bus 504.
  • An input/output (I/O) interface 505 is also connected to the bus 504 .
  • the following components are connected to the I/O interface 505: an input section 506 including a keyboard, a mouse, etc.; an output section 507 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker; a storage section 508 including a hard disk, etc. and a communication section 509 including a network interface card such as a LAN card, a modem, or the like.
  • the communication section 509 performs communication processing via a network such as the Internet.
  • a drive 510 is also connected to the I/O interface 505 as needed.
  • a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is mounted on the drive 510 as necessary so that a computer program read therefrom is installed into the storage section 508 as necessary.
  • embodiments of the present disclosure include a computer program product comprising a computer program tangibly embodied on a machine-readable medium, the computer program comprising program code for performing a train locating method.
  • the computer program may be downloaded and installed from a network via communication portion 509 and/or installed from removable media 511 .
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logic devices for implementing the specified Executable instructions for a function.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
  • the present application also provides a computer-readable storage medium, which may be the computer-readable storage medium contained in the device described in the above-mentioned embodiments; A computer-readable storage medium assembled in a device.
  • the computer-readable storage medium stores one or more programs, and the programs are used by one or more processors to execute the train positioning method described in this application.
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or can be implemented by a combination of dedicated hardware and computer instructions.
  • modules or modules involved in the embodiments described in the present application may be implemented by means of software or by means of hardware.
  • the described modules or modules may also be set in a processor, for example, each of the modules may be a software program set in a computer or mobile smart device, or may be a separately configured hardware device. Wherein, these modules or the names of the modules do not constitute a limitation on the modules or the modules themselves under certain circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种列车定位方法,包括:应答器传输单元BTM(410)根据预设规则周期性地向车载控制器VOBC(420)发送应答器数据,应答器数据包含应答器的标识信息;车载控制器VOBC(420)周期性地接收应答器传输单元BTM(410)发送的应答器数据,同时周期性地获取数据帧;数据帧包含列车当前行驶时间、当前行驶速度和当前行驶距离;车载控制器VOBC(420)根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。还提供一种包括应答器传输单元BTM(410)和车载控制器VOBC(420)的列车定位系统。

Description

列车定位方法及定位系统
本申请要求于2021年11月30日提交中国专利局,申请号为202111443539.0,申请名称为“列车定位方法及定位系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及交通技术领域,尤其涉及一种列车定位方法及定位系统。
背景技术
地铁、高铁等列车作为出行工具,为保证列车的有序运行,对列车进行定位显得尤为重要,对列车定位的关键在于确定列车经过应答器中心点时的位置。
列车上的应答器传输单元(Balise Transmission Module,简称BTM)在计算列车经过应答器中心点时的位置时,通常需要依赖于车载控制器(Vehicle On-Board Controller,简称VOBC)传输的数据。但是如果VOBC传输数据被干扰,导致BTM中心点计算失败,BTM就不能正确反馈应答器信息,VOBC可能因丢失应答器信息导致触发紧急制动或定位精度下降,最终导致增加列车故障率,也可能影响停车精度,降低可用性。
发明内容
鉴于现有技术中的上述缺陷或不足,期望提供一种列车定位方法及定位系统。
第一方面,提供一种列车定位方法,包括:
应答器传输单元BTM根据预设规则周期性地向车载控制器VOBC发送应答器数据,所述应答器数据包含应答器的标识信息;
所述VOBC周期性地接收所述BTM发送的应答器数据,同时周期性地获取数据帧;所述数据帧包含列车当前行驶时间tn、当前行驶速度vn和当前行驶距离sn;
所述VOBC根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。
第二方面,提供一种列车定位系统,包括:
应答器传输单元BTM和车载控制器VOBC;其中,
所述BTM用于根据预设规则周期性地向所述VOBC发送应答器数据,所述应答器数据包含应答器的标识信息;
所述VOBC还用于周期性地接收所述BTM发送的应答器数据,同时用于周期性地获取数据帧;所述数据帧包含列车当前行驶时间tn、当前行驶速度vn和当前行驶距离sn;
所述VOBC还用于根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。
第三方面,提供一种车载设备,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序,
当一个或多个程序被一个或多个处理器执行时,使得一个或多个处理器执行本申请各实施例提供的列车定位方法。
第四方面,提供一种存储有计算机程序的计算机可读存储介质,该程序被处理器执行时本申请各实施例提供的列车定位方法。
根据本申请实施例提供的技术方案,在计算列车经过应答器中心点时的位置时不需要VOBC给BTM发送任何信息,BTM根据预设规则周期性地向VOBC发送应答器数据,VOBC根据记录的时间差(应答器数据接收时间与列车行驶信息的数据帧获取时间的时间差)来推算列车经过应答器中心点时的时间t_balise,进一步根据应答器中心点的时间t_balise和保存列车行驶信息的列表计算列车经过应答器中心点时的位置,然后进行列车位置精确校位,数据丢失概率小,列车定位精度高。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为现有技术中提供的列车定位方法的示例性流程框图;
图2为本申请实施例提供的列车定位方法的示例性流程框图;
图3为本申请实施例提供的美标应答器中心点计算的示意图;
图4为本申请实施例提供的列车定位系统的示例性结构图;
图5为本申请实施例提供的一种车载设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
现有的应答器通过BTM端计算列车经过应答器中心点的定位信息时,需要依赖VOBC中的ATP(列车自动防护系统)周期性地给BTM发送速度和定位信息,BTM在ATP的定位信息基础上计算应答器中心点的位置,但是可能存在以下缺陷:如图1所示,VOBC包括FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)端和APP(应用)端,BTM主机在计算应答器中心点的位置时,需要依赖于VOBC传输过来的列车速度和定位信息等数据,如果传输数据被干扰,中心点计算失败,BTM就不能正确反馈应答器信息,ATP可能因丢失应答器信息导致触发紧急制动或定位精度下降,最终导致增加列车故障率,也可能影响停车精度,降低可用性。
请参考图2,示出了根据本申请实施例提供的列车定位方法,包括以下步骤:
S10:应答器传输单元BTM根据预设规则周期性地向车载控制器VOBC发送应答器数据,所述应答器数据包含应答器的标识信息;
S20:所述VOBC周期性地接收所述BTM发送的应答器数据,同时周期性地获取数据帧;所述数据帧包含列车当前行驶时间tn、当前行驶速度vn和当前行驶距离sn;其中,n为数据帧获取周期数;
S30:所述VOBC根据接收的应答器数据和获取的数据帧确定列车经过 应答器中心点时的位置。
具体的,本实施例中提供的列车定位方法中,在计算列车经过应答器中心点时的位置时不需要VOBC给BTM发送任何信息,当串口链路发生干扰时,不会影响中心点的计算和应答器数据接收,软件和协议抗干扰能力强,提高可用性。现有技术计算列车经过应答器中心点时的位置时VOBC必须给BTM发送列车速度和位置等信息。
本申请实施例中,BTM根据预设规则周期性地向VOBC发送应答器数据,BTM主机给VOBC发送应答器数据不需要VOBC请求,周期性地持续发送即可。现有技术中BTM必须收到VOBC的请求才会回复应答器数据,现有技术要求收发都正确,当出现干扰时丢失数据的概率会增大。
本申请实施例中,对列车经过应答器中心点时的位置的计算算法挪到VOBC,可以根据列车实时速度进行更精确细致化计算,提高定位的精度,也增加了算法的灵活性。
在一个实施例中,步骤S10包含以下子步骤:
S101:若BTM未探测到应答器,则周期性地向VOBC发送的应答器数据为空闲帧;
S102:若BTM探测到应答器,则周期性地向VOBC发送的应答器数据为应答帧,所述应答帧包含应答器的标识信息和能量标志参数。
本实施例中,如图3所示,BTM周期性地给VOBC发送应答器数据,其中,t_b:为BTM主机给VOBC发送应答器数据的间隔时间(每次都等间隔发送)为50ms,即t_b为应答帧发送周期。当BTM天线未探测到应答器时,向VOBC发送空闲帧,图3中的idle表示空闲帧;当探测到应答器时,则发送应答帧,应答帧中附带应答器的ID信息,图3中的(bid,0),(bid,1)...:bid是应答器ID,第二个自然数是能量标志参数,且根据探测到应答器的信号能量的变化向VOBC发送不同的能量标志参数。
在一个实施例中,S102具体包含以下子步骤:
在BTM探测到应答器的信号能量达到峰值前,周期性地向VOBC发送的应答帧中,能量标志参数为预设标志值;其中,当BTM探测到应答器的信号能量达到峰值时,则确定列车经过应答器中心点时的位置;
在BTM探测到应答器的信号能量达到峰值后,周期性地向所述VOBC 发送的应答帧中,随着应答帧发送周期数的增加,能量标志参数按照预设间隔ω依次增加或减小。
需要说明的是,BTM探测到的应答器的信号能量大小与BTM和应答器之间的距离有关,BTM与应答器距离越近则探测到的应答器的信号能量越大,而在列车驶出应答器的整个过程中,BTM与应答器的距离先由远及近,当BTM位于应答器中心点上时,BTM与应答器的距离最近,随后BTM再逐渐远离应答器中心点。因此,当BTM探测到应答器的信号能量达到峰值时,则确定列车经过应答器中心点时的位置。
本实施例中,BTM根据探测到应答器的信号能量的变化向VOBC发送不同的能量标志参数,比如当探测到应答器的信号能量达到峰值前,向VOBC发送的能量标志参数可以采用某一预设标志值(比如-1),而当探测到应答器的信号能量达到峰值后,应答帧中的能量标志参数可以在预设标志值的基础上按照预设间隔ω依次增加,比如给VOBC发送的应答帧中的能量标志参数加1后再发送,每发送一次加1,一直递增,应答帧中的能量标志参数随着应答帧发送周期数的增加依次为0、1、2、3……等(如图3所示,此时预设间隔为1),能量标志参数0表示列车过应答器中心点的位置后BTM给VOBC发送的第一个应答帧中的能量标志参数,能量标志大于等于0表示列车已经过应答器中心点的位置;也比如应答帧中的能量标志参数随着应答帧发送周期数的增加依次为0、2、4、6……等,此时预设间隔为2。
或者当探测到应答器的信号能量达到峰值后,应答帧中的能量标志参数可以在预设标志值的基础上按照预设间隔依次减小,比如预设标志值为10,应答器的信号能量达到峰值后,应答帧中的能量标志参数随着应答帧发送周期数的增加依次为8、6、4、2……等。
需要说明的是,本实施例里中预设标志值采用-1、10举例进行说明,在实际应用中也可以进行调整,同时对应的调整应答器的信号能量达到峰值后的能量标志参数值。当BTM接收的应答器的信号能量达到峰值后,BTM周期性地向VOBC发送的应答帧中,能量标志参数按照预设间隔依次增加或减小,能够通过列车过应答器中心点的位置后发送的第一个应答帧中的能量标志参数和发送的当前应答帧中的能量标志参数,确定BTM发送第一个应答帧与发送当前应答帧的应答帧发送周期间隔m,如图3所示,第一个应答帧的能 量标志参数为0,当当前应答帧中的能量标志参数为3时,则BTM发送当前应答帧与发送第一个应答帧的应答帧发送周期间隔m为3;当当前应答帧中的能量标志参数为2时,则m为2。
在第二个实施例中,S102具体包含以下子步骤:
当BTM探测到应答器的信号能量达到峰值前,则周期性地向VOBC发送的应答帧中,随着应答帧发送周期数的增加,能量标志参数按照预设间隔依次增加;其中,当BTM探测到应答器的信号能量达到峰值时,则确定列车经过应答器中心点时的位置;
当BTM探测到应答器的信号能量达到峰值后,则周期性地向所述VOBC发送的应答帧中,随着应答帧发送周期数的增加,能量标志参数按照预设间隔依次增加或减小。
本实施例中,BTM根据探测到应答器的信号能量的变化向VOBC发送不同的能量标志参数,比如当探测到应答器的信号能量达到峰值前,向VOBC发送的能量标志参数按照预设间隔依次增加,比如应答帧中的能量标志参数随着应答帧发送周期数的增加依次为0、1、2、3……等,而当探测到应答器的信号能量达到峰值后,向VOBC发送的能量标志参数按照预设间隔依次增加,比如应答帧中的能量标志参数随着应答帧发送周期数的增加依次为15、16、17……等,其中,15为列车过应答器中心点的位置后BTM给VOBC发送的第一个应答帧中的能量标志参数。
或者当探测到应答器的信号能量达到峰值前,向VOBC发送的能量标志参数按照预设间隔依次增加,比如应答帧中的能量标志参数随着应答帧发送周期数增加依次为0、2、4、6……等,而当探测到应答器的信号能量达到峰值后,向VOBC发送的能量标志参数按照预设间隔依次减小,比如应答帧中的能量标志参数随着应答帧发送周期数的增加依次为15、14、13……等,其中,15为列车过应答器中心点的位置后BTM给VOBC发送的第一个应答帧中的能量标志参数。
同样的,当BTM接收的应答器的信号能量达到峰值后,BTM周期性地向VOBC发送的应答帧中,能量标志参数按照预设间隔依次增加或减小,能够通过能量标志参数的变化确定BTM发送当前应答帧与发送第一个应答帧的应答帧发送周期间隔m,比如当BTM给VOBC发送的第一个应答帧中的能 量标志参数为15,当前应答帧能量标志参数为13,预设间隔为1,则m为2。
在第三个实施例中,S102具体包含以下子步骤:
当BTM探测到应答器的信号能量达到峰值前,则周期性地向VOBC发送的应答帧中,随着应答帧发送周期数的增加,能量标志参数按照预设间隔依次减小;其中,当BTM探测到应答器的信号能量达到峰值时,则确定列车经过应答器中心点时的位置;
当BTM探测到应答器的信号能量达到峰值后,则周期性地向所述VOBC发送的应答帧中,随着应答帧发送周期数的增加,能量标志参数按照预设间隔依次增加或减小。
本实施例中,BTM根据探测应答器的信号能量的变化向VOBC发送不同的能量标志参数,比如当探测到应答器的信号能量达到峰值前,向VOBC发送的能量标志参数按照预设间隔依次减小,比如应答帧中的能量标志参数随着应答帧发送周期数增加依次为18、16、14、12……等,而当探测到应答器的信号能量达到峰值后,向VOBC发送的能量标志参数按照预设间隔依次增加,比如应答帧中的能量标志参数随着应答帧发送周期数增加依次为8、9、10……等,其中,8为列车过应答器中心点的位置后BTM给VOBC发送的第一个应答帧中的能量标志参数。
或者当探测到应答器的信号能量达到峰值前,向VOBC发送的能量标志参数按照预设间隔依次减小,比如应答帧中的能量标志参数随着应答帧发送周期数增加依次为20、19、18、17……等,而当探测到应答器的信号能量达到峰值后,向VOBC发送的能量标志参数按照预设间隔依次减小,比如应答帧中的能量标志参数随着应答帧发送周期数增加依次为10、9、8……等,其中,10为列车过应答器中心点的位置后BTM给VOBC发送的第一个应答帧中的能量标志参数。
同样的,当BTM接收的应答器的信号能量达到峰值后,BTM周期性地向VOBC发送的应答帧中,能量标志参数按照预设间隔依次增加或减小,能够通过能量标志参数的变化确定BTM发送当前应答帧与发送第一个应答帧的应答帧发送周期间隔m。
因此,本申请中,当探测到应答器的信号能量达到峰值前,向VOBC发送的能量标志参数按照预设间隔依次减小或增加、或者采用某一预设阈值等多 种实现方式,本申请并未对其做具体的限定要求,只需要保证当探测到应答器的信号能量达到峰值后,应答帧中的能量标志参数根据应答帧发送周期按照某种规律进行变化,便于计算列车过应答器中心点位置后BTM发送当前应答帧与发送第一个应答帧的应答帧发送周期间隔m=|E b-E a|/ω,其中,E b为当前应答帧中的能量标志参数,E a为第一个应答帧中的能量标志参数,ω为预设间隔。
在步骤S20中,VOBC周期性地获取数据帧,数据帧包含列车当前行驶时间、当前行驶速度和当前行驶距离,如图3所示,t_atp为VOBC的处理周期,为200ms,即数据帧获取周期;t1,t2,...tn为VOBC中的APP端每周期给FPGA发送的当前系统时间(tn=t(n-1)+t_atp),VOBC发送时间tn时会将本周期的系统时间tn、当前行驶速度vn和当前累计行驶距离sn保存到列表location_list[n]中,其中,location_list[n]={{t1,v1,s1},{t2,v2,s2},{t3,v3,s3},...{tn,vn,sn}},列表最大长度可以为10。如图3所示,location_list[n]={{t1,v1,s1},{t2,v2,s2},{t3,v3,s3},{t4,v4,s4}},即列表长度为4。当然,可以将location_list列表长度加大,通过增加空间复杂度来增加算法的可靠性,提高可用性,如本申请中可以通过缩短VOBC的处理周期来增加列表的长度。
在一个实施例,步骤S20还包括:所述VOBC周期性地获取数据帧的同时,将获取的数据帧保存到列表location_list[n]中,所述列表location_list[n]包含每个数据帧获取周期中获取的列车当前行驶时间tn、当前行驶速度vn和当前行驶距离sn,其中,n为数据帧获取周期数。
具体的,将获取的数据帧保存到列表location_list[n],能够快速查找和比对列表中的数据,便于后续对列车经过应答器中心点时的位置的计算。
在一个实施例中,S30具体包含以下子步骤:
S310:所述VOBC根据应答帧接收时间和数据帧获取时间的时间差值确定列车经过应答器中心点时的时间t_balise;
S320:所述VOBC根据所述列车经过应答器中心点时的时间t_balise和保存的列表location_list[n]计算列车经过应答器中心点时的位置。
具体的,BTM主机发送的应答器ID、能量标志参数和VOBC中的FPGA记录的时间差推算列车经过应答器中心点时的时间t_balise,进一步根据保存的列表location_list[n]计算列车经过应答器中心点时的位置,然后进行列车位置精确校位。
在一个实施例中,S310具体包含以下子步骤:
S311:根据当前数据帧获取时间ti,所述VOBC从周期性接收的应答帧中寻找当前应答帧接收时间t_r=ti-t_di,当前应答帧接收时间t_r与所述当前数据帧获取时间ti的时间差值最小;其中,i∈[1,2,...n],t_di为当前数据帧获取时间ti与当前数据帧接收时间t_r的最小时间差值;
S312:根据所述当前应答帧接收时间t_r确定所述BTM发送应答帧给所述VOBC的当前应答帧发送时间t_s=t_r-t_delay;其中,t_delay为应答帧从BTM发送到VOBC接收的串口数据传输延时,实验统计为5ms;
S313:根据所述当前应答帧发送时间t_s确定列车过应答器中心点后的第一个应答帧的发送时间t_o;
步骤S313包含以下子步骤:
S3130:根据当前应答帧中的能量标志参数E b和第一个应答帧中的能量标志参数E a,确定BTM发送当前应答帧与发送第一个应答帧的应答帧发送周期间隔m=|E b-E a|/ω,其中,ω为预设间隔;
S3131:根据当前应答帧发送时间t_s、所述应答帧发送周期间隔m和应答帧发送周期t_b确定第一个应答帧的发送时间t_o=t_s-m(t_b)。
S314:根据所述第一个应答帧的发送时间t_o和列车过应答器中心点后到发送第一个应答帧的间隔时间t_d,确定列车经过应答器中心点时的时间t_balise为:
t_balise=t_o-t_d
=t_s-m(t_b)-t_d
=t_r-t_delay-m(t_b)-t_d
=ti-t_di-t_delay-m(t_b)-t_d。
具体的,当BTM判断列车经过应答器中心点的位置时开始计时,并设列车经过应答器中心点后BTM经过固定时间t_d后向VOBC发送第一个应答帧。
如图3所示,VOBC收到能量标志参数为0的应答器,则列车经过应答器中心点时的时间t_balise计算方法如下:
t_balise=t2-(t_d2)-(t_d)-t_delay
其中,t_d2为VOBC当前数据帧获取时间t2与最近的应答帧接收时间 的时间差值。
如图3,VOBC收到能量标志为3的应答器,列车经过应答器中心点时的时间t_balise计算方法如下:
t_balise=t4-(t_d4)-(3*t_b)-t_delay-(t_d)
其中,t_d2为VOBC当前数据帧获取时间t4与最近的应答帧接收时间的时间差值。
VOBC收到位置标志参数为其他值时,算法照此类推,都可以计算出列车经过应答器中心点时的时间t_balise。
在一个实施例中,步骤S320具体包含以下子步骤:
S321:将所述列车经过应答器中心点时的时间t_balise与列表location_list[n]中的列车当前行驶时间逐个进行比较,寻找列表location_list[n]中与时间t_balise时间差值最小的时间tn,并将该时间差值的绝对值记为△t;
S322:根据所述时间差值△t、时间tn对应的列车当前行驶速度vn以及当前行驶距离sn确定列车经过应答器中心点时的位置s_balise。
本实施例中,通过在保存的列表location_list[n]寻找与列车经过应答器中心点时的时间t_balise相差最近的时间来确定列车经过应答器中心点时的位置s_balise,对位置s_balise的计算更为准确。
在一个实施例中,步骤S322具体为:
如果tn>t_balise,则列车经过应答器中心点时的位置s_balise=sn-(△t×vn);
如果tn<t_balise,则列车经过应答器中心点时的位置s_balise=sn+(△t×vn)。
本实施例中根据VOBC计算得到的列车经过应答器中心点时的位置s_balise信息和应答器的标识信息对列车进行定位,定位精度高。
在一个实施例中,所述BTM为美标BTM。
现有技术中的欧标BTM-应答器成本高,BTM阅读器和应答器的价格都比较昂贵,应答器体积比较大,对轨道安装空间要求高。本发明的列车定位方法同样适用美标BTM-应答器,美标BTM-应答器和BTM主机成本更低,美标应答器体积比欧标应答器小很多,现场更容易安装。且采用美标BTM-应答器能够适应云巴线路的轻便安装和降低硬件成本,对列车进 行精确定位。
应当注意,尽管在附图中以特定顺序描述了本发明方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。例如,可先执行S102再执行S101。
图4示出了根据本申请实施例提供的一种列车定位系统的结构示意图。
如图4所示,在另外一个方面,本申请实施例提供一种列车定位系统400,应答器传输单元BTM 410和车载控制器VOBC 420;其中,
所述BTM 410用于根据预设规则周期性地向所述VOBC 420发送应答器数据,所述应答器数据包含应答器的标识信息;
所述VOBC 420还用于周期性地接收所述BTM 41发送的应答器数据,同时用于周期性地获取数据帧;所述数据帧包含列车当前行驶时间、当前行驶速度和当前行驶距离;
所述VOBC 420还用于根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。
具体的,本实施例中,BTM 410与应答器以及VOBC 420之间可以进行信息交互。BTM 410包括BTM主机和接收天线。BTM 410和VOBC 420安装在列车上,应答器安装在列车行驶的轨道上。VOBC 420不需要给BTM 410发送信息,BTM 410主机周期性地给VOBC 420发送应答器数据,发送应答器数据不依赖VOBC 420的任何输入,由VOBC完成应答器中心位置的计算,提高可靠性,减少干扰导致的传输错误,降低应答器定位失败概率。如图2-3所示,VOBC 420包含VOBC_FPGA(安全计算机平台)和VOBC_APP(ATP应用),BTM主机通过串口485与VOBC_FPGA通信连接。BTM用于根据预设规则周期性地向VOBC_FPGA发送应答器数据,应答器数据包含应答器的标识信息;VOBC_APP周期性地获取数据帧并发送给VOBC_FPGA,数据帧包含列车当前行驶时间、当前行驶速度和当前行驶距离;VOBC_FPGA根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。
在一个实施例中,参考图4,所述BTM 410包括:
空闲帧发送模412,用于若所述BTM未探测到应答器,则周期性地向所述VOBC发送的应答器数据为空闲帧;
应答帧发送模块411,用于若所述BTM探测到应答器,则周期性地向所述VOBC发送的应答器数据为应答帧,所述应答帧包含应答器的标识信息和能量标志参数。
在一个实施例中,所述应答帧发送模块411,还用于当所述BTM 410探测到应答器的信号能量达到峰值后,则周期性地向所述VOBC 420发送的应答帧中,能量标志参数随着应答帧发送周期数增加按照预设间隔依次增加或减小。
在一个实施例中,参考图4,所述VOBC 420包括:
应答帧接收模块421,用于周期性地接收所述应答帧发送模块411发送的应答帧;
数据帧获取模块422,用于周期性地获取数据帧;所述数据帧包含列车当前行驶时间、当前行驶速度和当前行驶距离;
中心点确定模块423,用于根据所述应答帧接收模块421接收的应答帧和所述数据帧获取模块422获取的数据帧确定列车经过应答器中心点时的位置。
在一个实施例中,参考图4,所述VOBC还包含列表保存模块424,用于将所述数据帧获取模块422获取的数据帧保存到列表location_list[n]中。
在一个实施例中,参考图4,所述中心点确定模块423包括:
中心点时间确定单元4231,用于根据所述应答帧接收模块421获取的应答帧接收时间和所述数据帧获取模块422获取的数据帧获取时间的时间差值确定列车经过应答器中心点时的时间t_balise;
中心点位置确定单4232,用于根据所述中心点时间确定单元4231确定的列车经过应答器中心点时的时间t_balise和所述列表保存模块424保存的列表location_list[n]计算列车经过应答器中心点时的位置。
在一个实施例中,所述中心点时间确定单元4231还用于:
根据所述数据帧获取模块422获取的当前数据帧获取时间ti从所述应答帧接收模块421周期性地接收的应答帧中寻找与所述当前数据帧获取时间ti的时间差值最小的当前应答帧接收时间t_r=ti-t_di;其中,i∈[1,2,...n],n为数据帧获取周期数;t_di为当前数据帧获取时间ti与当前数据帧接收时间t_r的最小时间差值;
根据所述当前应答帧接收时间t_r确定所述应答帧发送模块411发送应答帧给所述应答帧接收模块421的当前应答帧发送时间t_s=t_r-t_delay;其 中,t_delay为应答帧从应答帧发送模块发送到应答帧接收模块接收的串口数据传输延时;
根据所述当前应答帧发送时间t_s确定列车过应答器中心点后的第一个应答帧的发送时间t_o;
根据所述第一个应答帧的发送时间t_o和列车过应答器中心点后到发送第一个应答帧的间隔时间t_d,确定列车经过应答器中心点时的时间t_balise=t_o-t_d。
在一个实施例中,所述中心点时间确定单元4231还用于:
根据当前应答帧中的能量标志参数和第一个应答帧中的能量标志参数,确定发送当前应答帧与发送第一个应答帧的应答帧发送周期间隔m;
根据当前应答帧发送时间t_s、所述应答帧发送周期间隔m和应答帧发送周期t_b确定第一个应答帧的发送时间t_o=t_s-m(t_b)。
在一个实施例中,所述中心点位置确定单元4232还用于:
将所述中心点时间确定单元4231确定的列车经过应答器中心点时的时间t_balise与所述列表保存模块424中保存的列表location_list[n]中的列车当前行驶时间逐个进行比较,寻找列表location_list[n]中与时间t_balise时间差值最小的时间tn,并将该时间差值的绝对值记为△t;
根据所述时间差值△t、时间tn对应的列车当前行驶速度vn以及当前行驶距离sn确定列车经过应答器中心点时的位置s_balise,具体如下:
如果tn>t_balise,则列车经过应答器中心点时的位置s_balise=sn-(△t×vn);
如果tn<t_balise,则列车经过应答器中心点时的位置s_balise=sn+(△t×vn)。
图5示出了根据本申请实施例提供的一种车载设备的结构示意图。
如图5所示,作为另一方面,本申请还提供了一种车载设备500,包括一个或多个中央处理模块(CPU)501,其可以根据存储在只读存储器(ROM)502中的程序或者从存储部分508加载到随机访问存储器(RAM)503中的程序而执行各种适当的动作和处理。在RAM 503中,还存储有系统操作所需的各种程序和数据。CPU 501、ROM 502以及RAM 503通过总线504彼此相连。输入/输出(I/O)接口505也连接至总线504。
以下部件连接至I/O接口505:包括键盘、鼠标等的输入部分506;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分507;包括硬盘等的存储部分508;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分509。通信部分509经由诸如因特网的网络执行通信处理。驱动器510也根据需要连接至I/O接口505。可拆卸介质511,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器510上,以便于从其上读出的计算机程序根据需要被安装入存储部分508。
特别地,根据本公开的实施例,上文参考图2-3描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,计算机程序包含用于执行列车定位方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分509从网络上被下载和安装,和/或从可拆卸介质511被安装。
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
作为又一方面,本申请还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中所述装置中所包含的计算机可读存储介质;也可以是单独存在,未装配入设备中的计算机可读存储介质。计算机可读存储介质存储有一个或者一个以上程序,所述程序被一个或者一个以上的处理器用来执行描述于本申请的列车定位方法。
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程 图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这根据所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以通过执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以通过专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的模块或模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的模块或模块也可以设置在处理器中,例如,各所述模块可以是设置在计算机或移动智能设备中的软件程序,也可以是单独配置的硬件装置。其中,这些模块或模块的名称在某种情况下并不构成对该模块或模块本身的限定。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (11)

  1. 一种列车定位方法,其特征在于,包括:
    应答器传输单元BTM根据预设规则周期性地向车载控制器VOBC发送应答器数据;
    所述VOBC周期性地接收所述BTM发送的应答器数据,同时周期性地获取数据帧;所述数据帧包含列车当前行驶时间tn、当前行驶速度vn和当前行驶距离sn;
    所述VOBC根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。
  2. 根据权利要求1所述的列车定位方法,其特征在于,所述应答器传输单元BTM根据预设规则周期性地向车载控制器VOBC发送应答器数据包括:
    若所述BTM未探测到应答器,则周期性地向所述VOBC发送的应答器数据为空闲帧;
    若所述BTM探测到应答器,则周期性地向所述VOBC发送的应答器数据为应答帧,所述应答帧包含应答器的标识信息和能量标志参数。
  3. 根据权利要求2所述的列车定位方法,其特征在于,所述若所述BTM探测到应答器,则周期性地向所述VOBC发送的应答器数据为应答帧包括:
    在所述BTM探测到应答器的信号能量达到峰值后,周期性地向所述VOBC发送的应答帧中,随着应答帧发送周期数的增加,能量标志参数按照预设间隔依次增加或减小。
  4. 根据权利要求1-3中任一项所述的列车定位方法,其特征在于,所述VOBC周期性地获取数据帧的同时,将获取的数据帧保存到列表location_list[n]中,所述列表location_list[n]包含每个数据帧获取周期中获取的列车当前行驶时间tn、当前行驶速度vn和当前行驶距离sn。
  5. 根据权利要求1-4中任一项所述的列车定位方法,其特征在于,所述VOBC根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置包括:
    所述VOBC根据应答帧接收时间和数据帧获取时间的时间差值确定列车经过应答器中心点的时间t_balise;
    所述VOBC根据所述列车经过应答器中心点时的时间t_balise和保存的列表location_list[n]计算列车经过应答器中心点时的位置。
  6. 根据权利要求5所述的列车定位方法,其特征在于,所述VOBC根据应答帧接收时间和数据帧获取时间的时间差值确定列车经过应答器中心点时的时间t_balise包括:
    根据当前数据帧获取时间ti,所述VOBC从周期性接收的应答帧中寻找当前应答帧接收时间t_r=ti-t_di,所述当前应答帧接收时间t_r与所述当前数据帧获取时间ti的时间差值最小;其中,i∈[1,2,...n],n为数据帧获取周期数;t_di为当前数据帧获取时间ti与当前数据帧接收时间t_r的最小时间差值;
    根据所述当前应答帧接收时间t_r确定所述BTM发送应答帧给所述VOBC的当前应答帧发送时间t_s=t_r-t_delay;其中,t_delay为应答帧从BTM发送到VOBC接收的串口数据传输延时;
    根据所述当前应答帧发送时间t_s确定列车过应答器中心点后的第一个应答帧的发送时间t_o;
    根据所述第一个应答帧的发送时间t_o和列车过应答器中心点后到发送第一个应答帧的间隔时间t_d,确定列车经过应答器中心点时的时间t_balise=t_o-t_d。
  7. 根据权利要求6所述的列车定位方法,其特征在于,所述根据所述当前应答帧发送时间t_s确定列车过应答器中心点后的第一个应答帧的发送时间t_o包括:
    根据当前应答帧中的能量标志参数E b和第一个应答帧中的能量标志参数E a,确定BTM发送当前应答帧与发送第一个应答帧的应答帧发送周期间 隔m=|E b-E a|/ω,其中,ω为预设间隔;
    根据当前应答帧发送时间t_s、所述应答帧发送周期间隔m和应答帧发送周期t_b确定第一个应答帧的发送时间t_o=t_s-m(t_b)。
  8. 根据权利要求7所述的列车定位方法,其特征在于,所述列车经过应答器中心点时的时间t_balise=ti-t_di-m(t_b)-t_d-t_delay。
  9. 根据权利要求5-8中任一项所述的列车定位方法,其特征在于,所述VOBC根据所述列车经过应答器中心点时的时间t_balise和保存的列表location_list[n]计算列车经过应答器中心点时的位置包括:
    将所述列车经过应答器中心点时的时间t_balise与列表location_list[n]中的列车当前行驶时间逐个进行比较,寻找列表location_list[n]中与时间t_balise时间差值最小的时间tn,并将该时间差值的绝对值记为△t;
    根据所述时间差值△t、时间tn对应的列车当前行驶速度vn以及当前行驶距离sn确定列车经过应答器中心点时的位置s_balise。
  10. 根据权利要求9所述的列车定位方法,其特征在于,所述根据所述时间差值△t、时间tn对应的列车当前行驶速度vn以及当前行驶距离sn确定列车经过应答器中心点时的位置s_balise包括:
    如果tn>t_balise,则列车经过应答器中心点时的位置s_balise=sn-(△t×vn);
    如果tn<t_balise,则列车经过应答器中心点时的位置s_balise=sn+(△t×vn)。
  11. 一种列车定位系统,包括:应答器传输单元BTM和车载控制器VOBC;其中,
    所述BTM用于根据预设规则周期性地向所述VOBC发送应答器数据,所述应答器数据包含应答器的标识信息;
    所述VOBC还用于周期性地接收所述BTM发送的应答器数据,同时用于周期性地获取数据帧;所述数据帧包含列车当前行驶时间tn、当前行驶速度 vn和当前行驶距离sn;
    所述VOBC还用于根据接收的应答器数据和获取的数据帧确定列车经过应答器中心点时的位置。
PCT/CN2022/133771 2021-11-30 2022-11-23 列车定位方法及定位系统 WO2023098538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111443539.0 2021-11-30
CN202111443539.0A CN116198568A (zh) 2021-11-30 2021-11-30 列车定位方法及定位系统

Publications (1)

Publication Number Publication Date
WO2023098538A1 true WO2023098538A1 (zh) 2023-06-08

Family

ID=86511637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133771 WO2023098538A1 (zh) 2021-11-30 2022-11-23 列车定位方法及定位系统

Country Status (2)

Country Link
CN (1) CN116198568A (zh)
WO (1) WO2023098538A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782190A (zh) * 2011-06-24 2014-05-07 泰雷兹加拿大公司 应答器中心点的定位
CN106660568A (zh) * 2014-07-25 2017-05-10 西门子公司 用于对被引导车辆路线所配备的信标的中心进行定位的系统和方法
WO2018036736A1 (de) * 2016-08-22 2018-03-01 Siemens Aktiengesellschaft Streckenseitige sendeeinrichtung, insbesondere balise, fahrzeugseitige ortungseinrichtung sowie verfahren zum orten eines fahrzeugs
CN107953902A (zh) * 2017-11-30 2018-04-24 交控科技股份有限公司 一种列车位置校正的方法
CN110281988A (zh) * 2018-03-19 2019-09-27 比亚迪股份有限公司 列车行驶距离的校正方法、装置和设备
WO2020238676A1 (zh) * 2019-05-24 2020-12-03 比亚迪股份有限公司 应答器仿真的方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782190A (zh) * 2011-06-24 2014-05-07 泰雷兹加拿大公司 应答器中心点的定位
CN106660568A (zh) * 2014-07-25 2017-05-10 西门子公司 用于对被引导车辆路线所配备的信标的中心进行定位的系统和方法
WO2018036736A1 (de) * 2016-08-22 2018-03-01 Siemens Aktiengesellschaft Streckenseitige sendeeinrichtung, insbesondere balise, fahrzeugseitige ortungseinrichtung sowie verfahren zum orten eines fahrzeugs
CN107953902A (zh) * 2017-11-30 2018-04-24 交控科技股份有限公司 一种列车位置校正的方法
CN110281988A (zh) * 2018-03-19 2019-09-27 比亚迪股份有限公司 列车行驶距离的校正方法、装置和设备
WO2020238676A1 (zh) * 2019-05-24 2020-12-03 比亚迪股份有限公司 应答器仿真的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, HAO; WANG, HENG: "Research on Distance Measurement Technology of Urban Rail Transit Signal System", JIANGSU SCIENCE & TECHNOLOGY INFORMATION, CN, no. 21, 30 July 2019 (2019-07-30), CN, pages 46 - 49, XP009546631, ISSN: 1004-7530 *

Also Published As

Publication number Publication date
CN116198568A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US11654945B2 (en) Safe and reliable method, device, and system for real-time speed measurement and continuous positioning
CN110281988B (zh) 列车行驶距离的校正方法、装置和设备
US8090529B2 (en) System for diminishing the load of platform which traces the location of moving objects and method thereof
US9810766B2 (en) Method and apparatus for modeling time relationships between clocks
CN110136469B (zh) 公交车的行驶数据的补偿方法及装置
CN107923981B (zh) 在一车辆中选择定位算法的方法
WO2023201964A1 (zh) 一种跟车目标确定方法、装置、设备及介质
CN105548961A (zh) 一种定位方法、购物车、服务器和购物车定位系统
CN111953845A (zh) 车辆行驶的定位方法、装置、电子设备及介质
WO2023098538A1 (zh) 列车定位方法及定位系统
CN111624550A (zh) 一种车辆定位方法、装置、设备及存储介质
US10535258B2 (en) Traffic volume determination system, traffic volume determination method, and non-transitory computer-readable storage medium storing traffic volume determination program
CN114435430B (zh) 应答器定位误差的补偿、校正方法、系统、设备及介质
CN113406436B (zh) 基于5g通信的交直流输电线路行波故障测距方法及系统
EP3121562B1 (en) Computer system and method for determining stay periods of a road vehicle
CN112092865B (zh) 一种基于5g定位的列车精准停车方法、系统和装置
US11307302B2 (en) Method and device for estimating an absolute velocity of an obstacle, and non-volatile computer-readable storage medium
CN104570025A (zh) 定位装置及其定位方法
CN108401003B (zh) 雷达数据的同步方法、装置、设备和计算机存储介质
KR20200052751A (ko) 차량용 측위 장치 및 그의 측위 방법과 그를 포함하는 차량
CN111884678A (zh) 一种基于hplc技术的配电线路测距方法
US12010583B2 (en) Method, apparatus and system for mobile device location determination
WO2021155855A1 (en) Method, apparatus and system for mobile device location determination
CN116946216B (zh) 一种列车定位方法、装置、设备及存储介质
CN114084200B (zh) 一种列车定位同步方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900343

Country of ref document: EP

Kind code of ref document: A1