WO2023098522A1 - 新能源车及其车载充电装置、电子锁控制电路、控制方法 - Google Patents

新能源车及其车载充电装置、电子锁控制电路、控制方法 Download PDF

Info

Publication number
WO2023098522A1
WO2023098522A1 PCT/CN2022/133594 CN2022133594W WO2023098522A1 WO 2023098522 A1 WO2023098522 A1 WO 2023098522A1 CN 2022133594 W CN2022133594 W CN 2022133594W WO 2023098522 A1 WO2023098522 A1 WO 2023098522A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
terminal
protection
lock
Prior art date
Application number
PCT/CN2022/133594
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Publication of WO2023098522A1 publication Critical patent/WO2023098522A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This specification relates to the technical field of on-board charging devices for new energy vehicles, in particular to a new energy vehicle and its on-board charging device, an electronic lock control circuit, and a control method.
  • the purpose of the embodiments of this specification is to provide a new energy vehicle and its on-board charging device, an electronic lock control circuit, and a control method, so as to reduce the power consumption of the new energy vehicle's on-board charging device in a non-charging state.
  • an electronic lock control circuit for an on-board charging device of a new energy vehicle including:
  • a switch tube the output ends of the switch tube are respectively connected to the power supply input ends of the socket lock drive circuit and the cover lock drive circuit, and when the switch tube is in a conducting state, the socket lock drive circuit and the cover lock drive circuit are connected to each other.
  • the cover lock drive circuit is energized, and when the switch tube is in a cut-off state, the socket lock drive circuit and the cover lock drive circuit are de-energized;
  • a control unit the switch control end of the control unit is connected to the control receiving end of the switch tube, and is used to stop outputting the conduction control signal to the switch tube when it is confirmed that the new energy vehicle is in a non-charging state, so that all The switch tube is in the cut-off state.
  • control unit is also provided with a first drive control terminal and a second drive control terminal, the first drive control terminal is connected to the first drive receiving terminal of the socket lock drive circuit connected, the second drive control end is connected to the second drive receiving end of the cover lock drive circuit;
  • the control unit is also used to: when it is confirmed that the new energy vehicle needs to be charged, output a conduction control signal to the switch tube, so that the switch tube is in a conduction state; and send a signal to the socket lock drive circuit and/or The cover lock driving circuit outputs a driving signal.
  • the switch tube includes a field effect transistor; the drain of the field effect transistor is connected to the power supply, and the source of the field effect transistor is connected to the socket lock drive circuit and the cover lock respectively.
  • the power supply input terminal of the drive circuit is connected, and the gate of the field effect transistor is connected with the switch control terminal of the control unit through a voltage divider circuit.
  • the voltage divider circuit includes a first voltage divider resistor and a second voltage divider resistor, one end of the first voltage divider resistor is connected to the switch control terminal of the control unit, so The other end of the first voltage dividing resistor is connected to one end of the second voltage dividing resistor, the other end of the second voltage dividing resistor is grounded, and between the first voltage dividing resistor and the second voltage dividing resistor The connecting point is connected with the gate of the field effect transistor.
  • the electronic lock control circuit further includes:
  • a first output interface protection circuit is arranged between the output end of the socket lock drive circuit and the socket lock connection terminal, and is used to release the induced electromotive force at the output end of the socket lock drive circuit, And filter out the static discharge interference of the output terminal;
  • the second output interface protection circuit, the second output interface protection circuit is arranged between the output end of the cover lock drive circuit and the cover lock connection terminal, and is used to discharge the output end of the cover lock drive circuit Induction of electromotive force and filtering of static discharge interference at this output.
  • the socket lock terminal and the cover lock terminal share an integrated terminal; the positive and negative output ends of the socket lock driving circuit correspond to the first terminal of the integrated terminal One terminal is connected to the second terminal, and the positive and negative output terminals of the cover lock driving circuit are correspondingly connected to the third terminal and the fourth terminal of the integrated terminal.
  • the second output interface protection circuit includes a first capacitor, a second capacitor, a first clamping diode, and a second clamping diode;
  • One end of the first capacitor is connected to one end of the first clamping diode, the other end of the first capacitor and the other end of the first clamping diode are grounded, and the first capacitor is connected to the first clamping diode.
  • the connection point between the clamping diodes is connected to the negative output terminal of the capping lock driving circuit;
  • One end of the second capacitor is connected to one end of the second clamping diode, the other end of the second capacitor and the other end of the second clamping diode are grounded, and the second capacitor is connected to the second clamping diode.
  • the connection point between the clamping diodes is connected to the positive output terminal of the sealing lock driving circuit.
  • the first output interface protection circuit includes a third capacitor, a fourth capacitor, a third clamping diode, and a fourth clamping diode;
  • One end of the third capacitor is connected to one end of the third clamping diode, the other end of the third capacitor and the other end of the third clamping diode are grounded, and the third capacitor is connected to the third clamping diode.
  • the connection point between the clamping diodes is connected to the negative output terminal of the socket lock driving circuit;
  • One end of the fourth capacitor is connected to one end of the fourth clamping diode, the other end of the fourth capacitor and the other end of the fourth clamping diode are grounded, and the fourth capacitor is connected to the fourth clamping diode.
  • the connection point between the clamping diodes is connected to the positive output terminal of the socket lock driving circuit.
  • control unit is also provided with a first feedback receiving end and a second feedback receiving end, the first feedback receiving end is connected to the first state feedback end of the socket lock driving circuit connected, the second feedback receiving end is connected to the second state feedback end of the cover lock drive circuit;
  • the control unit is further configured to: when receiving the first self-protection state signal fed back by the socket lock drive circuit and/or the second self-protection state signal fed back by the cover lock drive circuit, according to the first The self-protection status signal and/or the second self-protection status signal perform self-protection determination.
  • the electronic lock control circuit further includes:
  • the first self-protection output filter circuit is arranged between the first feedback receiving terminal and the first state feedback terminal, and is used to perform level filtering on the first self-protection state signal to filter out false protection signals ;
  • the second self-protection output filter circuit is arranged between the second feedback receiving terminal and the second state feedback terminal, and is used for performing level filtering on the second self-protection state signal to filter out false protection signals .
  • the first self-protection output filter circuit includes a first pull-up resistor and a fifth capacitor, one end of the first pull-up resistor is connected to one end of the fifth capacitor, The other end of the first pull-up resistor is connected to the power supply voltage, the other end of the fifth capacitor is grounded, and the connection point between one end of the first pull-up resistor and the fifth capacitor is connected to the first state Feedback connection.
  • the second self-protection output filter circuit includes a second pull-up resistor and a sixth capacitor, one end of the second pull-up resistor is connected to one end of the sixth capacitor, The other end of the second pull-up resistor is connected to the power supply voltage, the other end of the sixth capacitor is grounded, and the connection point between one end of the second pull-up resistor and the sixth capacitor is connected to the second state Feedback connection.
  • the embodiment of this specification also provides an on-board charging device for a new energy vehicle, the on-board charging device for a new energy vehicle is configured with the above-mentioned electronic lock control circuit.
  • the embodiment of this specification also provides a new energy vehicle, the new energy vehicle is equipped with the above-mentioned on-board charging device for the new energy vehicle.
  • the embodiment of this specification also provides a control method for a new energy vehicle on-board charging device, which is applied to the above-mentioned new energy vehicle on-board charging device, and the control method includes the following steps:
  • a conduction control signal is output to the switch tube, so that the switch tube is in a conduction state.
  • the self-protection judgment according to the first self-protection state signal and/or the second self-protection state signal includes:
  • the embodiment of this specification also provides a computer device, including a memory, a processor, and a computer program stored on the memory, and when the computer program is run by the processor, the above control method is executed. instruction.
  • the embodiment of this specification also provides a computer storage medium, on which a computer program is stored, and when the computer program is run by a processor of a computer device, instructions of the above control method are executed.
  • the control unit when the control unit confirms that the new energy vehicle is in the non-charging state, it can stop outputting the conduction control signal to the switch tube, so that the switch tube is in the cut-off state; In this way, the switch tube cuts off the power supply of the socket lock drive circuit and the cover lock drive circuit, and the socket lock drive circuit and the cover lock drive circuit stop working, thus saving the new energy vehicle from being in a non-charging state, the control unit is still charging to the socket.
  • the lock drive circuit and the cover lock drive circuit output the conduction control signal, and the power consumption of the socket lock drive circuit and the cover lock drive circuit is still in the standby state, thereby reducing the power consumption of the new energy vehicle on-board charging device in the non-charging state. power consumption.
  • Fig. 1 shows a structural block diagram of an electronic lock control circuit of an on-board charging device for a new energy vehicle in some embodiments of this specification
  • Fig. 2 shows a structural block diagram of the electronic lock control circuit of the new energy vehicle on-board charging device in other embodiments of this specification;
  • Fig. 3 shows a structural block diagram of the electronic lock control circuit of the new energy vehicle on-board charging device in other embodiments of this specification;
  • Fig. 4 shows the circuit schematic diagram of the electronic lock control circuit of the new energy vehicle on-board charging device in some embodiments of this specification (excluding the output interface protection circuit part);
  • Fig. 5 shows the circuit schematic diagram of the output interface protection circuit part of the electronic lock control circuit of the new energy vehicle on-board charging device in some embodiments of this specification;
  • Fig. 6 shows a flow chart of a control method for a new energy vehicle on-board charging device in some embodiments of this specification
  • Fig. 7 shows a structural block diagram of a computer device in some embodiments of the present specification.
  • Control unit
  • the first output interface protection circuit is the first output interface protection circuit
  • the electronic lock mentioned in the embodiment of this specification generally refers to the electronic lock configured on the on-board charging device of the new energy vehicle (that is, the on-board charging device of the new energy vehicle), which may include a socket lock and/or a cover lock.
  • the socket lock can lock and fix the charging head on the new energy vehicle charging device when the new energy vehicle is charging, so as to ensure that during the charging process of the new energy vehicle, the charging head can always be maintained with the new energy vehicle charging device. good connection.
  • the cover lock can be used to lock the cover plate of the new energy vehicle on-board charging device to protect the new energy vehicle on-board charging device; when the new energy vehicle needs to be charged, the cover lock is unlocked and the cover plate Open.
  • the embodiment of this specification provides an improved electronic lock control circuit for the on-board charging device for new energy vehicles.
  • the non-charging state may include: the non-charging state when the charging head is not inserted into the on-board charging device of the new energy vehicle; and the non-charging state when the new energy vehicle is fully charged and the charging head is not pulled out.
  • the electronic lock control circuit of the new energy vehicle on-board charging device may include a switch tube 10 , a control unit 20 , a socket lock drive circuit 30 and a cover lock drive circuit 40 .
  • the output ends of the switch tube 10 are respectively connected to the power supply input ends of the socket lock drive circuit 30 and the cover lock drive circuit 40.
  • the socket lock drive circuit 30 and the The cover lock drive circuit 40 is energized (that is, powered on), and when the switch tube 10 is in the cut-off state, the socket lock drive circuit 30 and the cover lock drive circuit 40 are de-energized (that is, disconnected). power supply).
  • the switch control end of the control unit 20 can be connected to the control receiving end of the switch tube 10, and the control unit 20 is used to stop outputting the conduction control signal to the switch tube 10 when it is confirmed that the new energy vehicle is in a non-charging state, so as to Make the switch tube 10 in the cut-off state; like this, the switch tube 10 cuts off the power supply of the socket lock drive circuit 30 and the cover lock drive circuit 40, and the socket lock drive circuit 30 and the cover lock drive circuit The drive circuit 40 stops the standby state, thereby saving the new energy vehicle.
  • the control unit 20 In the non-charging state, the control unit 20 still outputs the conduction control signal to the socket lock drive circuit 30 and the cover lock drive circuit 40, and the socket lock drive circuit 30 and the cover lock drive circuit 40
  • the power consumption of the cover lock driving circuit 40 is still in the standby state, thereby reducing the power consumption of the on-board charging device of the new energy vehicle in the non-charging state. Not only that, this way of reducing static power consumption can also prolong the working life of the electronic lock control circuit; It will reduce the external radiation of the drive circuit, which in turn can help reduce the total radiation of new energy vehicles.
  • the control unit 20 can determine whether the new energy vehicle is in a non-charging state by detecting the charging state of the new energy vehicle. For example, when it is detected that the new energy vehicle is currently fully charged, it can be confirmed that the new energy vehicle is in a non-charging state. In other embodiments, the control unit 20 can also determine whether the new energy vehicle is in a non-charging state by detecting the state of the socket lock and/or the cover lock. For example, taking the socket lock as an example, when it is detected that the socket lock is in the unlocked state, it indicates that there is currently no charging head plugged into the new energy vehicle on-board charging device, so it can be confirmed that the new energy vehicle is in a non-charging state.
  • it When it is detected that it is in the locked state, it indicates that the current on-board charging device of new energy vehicles is covered by a cover, and no charging head is inserted into the on-board charging device of new energy vehicles.
  • the energy vehicle is in a non-charging state.
  • it is also possible to comprehensively utilize the states of detecting the socket lock and the cover lock to determine whether the new energy vehicle is in a non-charging state, so as to improve the accuracy of judgment.
  • Socket locks and cover locks generally use electric motors (ie, electric motors) to perform locking and unlocking actions. Therefore, both socket locks and cover locks need to be equipped with corresponding motor drive circuits to drive the socket lock motor and cover lock motor accordingly. , unlocking action; therefore, the motor driving circuit of the socket lock can be called the socket lock driving circuit 30 , and the motor driving circuit of the cover lock can be called the cover lock driving circuit 40 .
  • the socket lock driving circuit 30 and the cover lock driving circuit 40 may be an integrated motor driving module (such as a motor driving chip, etc.).
  • the socket lock drive circuit 30 may use the motor drive chip U1
  • the cover lock drive circuit 40 may use the motor drive chip U2 . Since the embodiment of the present specification does not relate to the improvement of the socket lock driving circuit 30 and the cover lock driving circuit 40, details are not repeated here.
  • the switch tube 10 refers to a controllable semiconductor device with a small internal resistance such as a triode.
  • a controllable semiconductor device with a small internal resistance such as a triode.
  • the voltage drop of this part can be controlled within a small range, so as not to affect the back-end drive.
  • the power supply voltage of the circuit can also meet the static power consumption requirements of the new energy vehicle when it is not charging.
  • the transistor can be a bipolar junction transistor (Bipolar Junction Transistor, BJT), a junction gate field effect transistor (Junction Field-Effect Transistor, JFET), a metal oxide semiconductor field effect transistor (Metal Oxide Semi-Conductor Field Effect Transistor, MOS FET) or V-groove MOS field effect transistor (V-groove metal-oxide semiconductor, VMOS), etc., can be selected according to the needs of actual application scenarios.
  • BJT Bipolar Junction Transistor
  • JFET junction gate field effect transistor
  • MOS FET Metal Oxide Semi-Conductor Field Effect Transistor
  • V-groove MOS field effect transistor V-groove metal-oxide semiconductor, VMOS
  • the switch transistor 10 may be an N-channel enhancement type MOS field effect transistor (hereinafter referred to as MOS transistor) Q1.
  • MOS transistor Q1 N-channel enhancement type MOS field effect transistor
  • the drain of MOS transistor Q1 (30F_IN end in Fig. 4) is connected with power supply, and the source electrode of MOS transistor Q1 is connected with the power supply input end of socket lock driving circuit 30 and cover lock driving circuit 40 respectively, and the gate of MOS transistor Q1
  • the pole is connected to the switch control terminal (LOCK_PWR_EN terminal in FIG. 4 ) of the control unit through a voltage divider circuit.
  • the voltage dividing circuit may include a first voltage dividing resistor R4 and a second voltage dividing resistor R5, one end of the first voltage dividing resistor R4 is connected to the switch control terminal of the control unit connected, the other end of the first voltage dividing resistor R4 is connected to one end of the second voltage dividing resistor R5, the other end of the second voltage dividing resistor R5 is grounded, the first voltage dividing resistor R4 is connected to the The connection point between the second voltage dividing resistors R5 is connected to the gate of the MOS transistor Q1.
  • the voltage dividing circuit composed of the first voltage dividing resistor R4 and the second voltage dividing resistor R5 can provide a DC voltage for the drain of the MOS transistor Q1, that is, establish the DC bias voltage of the drain of the MOS transistor Q1, so , the above-mentioned voltage divider circuit can also be called a voltage divider DC bias circuit.
  • the control unit 20 is the control and processing center of the entire new energy vehicle on-board charging device.
  • the control unit 20 may include, but not limited to, a microcontroller, a Microcontroller Unit (MCU for short), a microprocessor (Microprocessor Unit , MPU), digital signal processor (Digital Signal Processing, DSP), programmable logic controller (Programmable Logic Controller, PLC) and so on.
  • MCU Microcontroller Unit
  • MPU Microprocessor Unit
  • DSP Digital Signal Processing
  • PLC programmable logic controller
  • the control unit 20 is also provided with a first drive control terminal and a second drive control terminal, the first drive control terminal is connected to the first drive control terminal of the socket lock drive circuit 30 A driving receiving end is connected, and the second driving control end is connected with the second driving receiving end of the closure lock driving circuit 40 .
  • the control unit 20 can also be used to: output a conduction control signal to the switch tube 10 when it is confirmed that the new energy vehicle needs to be charged, so that the switch tube 10 is in a conduction state;
  • the socket lock drive circuit 30 and/or the cover lock drive circuit 40 output drive signals, so that the socket lock drive circuit 30 and the cover lock drive circuit 40 correspondingly drive the socket lock motor and the cover lock motor accordingly. , and then realize adding and unlocking.
  • the control unit 20 outputting a driving signal to the socket lock driving circuit 30 and/or the cover lock driving circuit 40 means: according to different control logics, the control unit 20 can selectively send the socket lock driving circuit 30 And/or the cover lock driving circuit 40 outputs a driving signal. For example, when it is only necessary to open the cover of the new energy vehicle on-board charging device, the control unit 20 may only output a drive signal to the cover lock drive circuit 40, and confirm that the cover of the new energy vehicle on-board charging device has been opened.
  • the control unit 20 can only be output to the socket lock drive circuit 30 to lock the charging head on the new energy vehicle on-board charging device, and when it is confirmed that the charging head has been locked on the new energy vehicle on-board charging device, stop charging
  • the socket lock drive circuit 30 outputs a drive signal, and so on.
  • the control unit 20 may confirm that the new energy vehicle needs to be charged when receiving the charging instruction. For example, when it is detected that a charging head is plugged into the on-board charging device of a new energy vehicle, it is equivalent to receiving a charging instruction.
  • this is only an exemplary illustration. In other embodiments, any state or event that enables the control unit 20 to recognize that the user wants to charge the new energy vehicle can be regarded as the control unit 20 receiving the charging instruction. Therefore, this specification does not make a unique limitation thereto.
  • control unit 20 is further provided with a first feedback receiving end and a second feedback receiving end, the first feedback receiving end is connected to the first state feedback end of the socket lock driving circuit 30, so The second feedback receiving end is connected to the second state feedback end of the closure lock driving circuit 40 . Therefore, the control unit 20 can also be used for: when receiving the first self-protection state signal fed back by the socket lock drive circuit 30 and/or the second self-protection state signal fed back by the cover lock drive circuit 40 , making a self-protection decision according to the first self-protection state signal and/or the second self-protection state signal.
  • making a self-protection decision according to the first self-protection state signal and/or the second self-protection state signal may include: when receiving the first self-protection state signal, stopping the power supply to the socket The lock drive circuit 30 outputs a drive signal; when receiving the second self-protection state signal, it can stop outputting the drive signal to the cover lock drive circuit 40; when receiving the first self-protection state signal and the second self-protection state signal , the output of the drive signal to the socket lock drive circuit 30 and the cover lock drive circuit 40 may be stopped, or the output of the conduction control signal to the switch tube 10 may be stopped.
  • the socket lock drive circuit 30 and the cover lock drive circuit 40 can choose functions such as internal integrated drive + H bridge circuit, real-time current feedback, self-protection status signal output, etc.
  • the integrated chip, wherein, self-protection may include but not limited to over-voltage protection, over-current protection, over-temperature protection, etc.
  • the pin functions of the motor drive chip U1 and the motor drive chip U2 are as follows: GND is the reference ground terminal; IN2/IN3 is used as the drive receiving terminal, and the drive control terminal of the control unit 20 connection; nFAULT is used as a status feedback terminal, connected to the feedback receiving terminal of the control unit 20, to feed back the self-protection status signal to the control unit 20; VM is a power supply input terminal, connected to the source of the MOS transistor Q1; OUT1 and OUT2 are used as drive outputs The positive and negative output and the output direction are controlled through the combination of high and low levels, so as to achieve the purpose of driving control for locking and unlocking; ISEN is used as the current detection resistor terminal, which can be used to detect the lock state (such as whether the lock is successful, whether the unlock is successful) etc.), if this function is not required, the current-sensing resistor terminal can be grounded.
  • the socket lock driving circuit 30 or the cover lock driving circuit 40 When the socket lock driving circuit 30 or the cover lock driving circuit 40 detects abnormalities such as undervoltage, overcurrent and/or overtemperature, it can output a self-protection state signal to the control unit 20 through its own state feedback terminal. However, in some cases, the state feedback terminals of the socket lock drive circuit 30 and the cover lock drive circuit 40 may accidentally output a self-protection state signal (that is, output a false protection signal) due to external interference and other reasons, and then make the control unit 20 Mistakenly thinking that the socket lock drive circuit 30 or the cover lock drive circuit 40 is faulty, the drive or power supply is stopped, which may affect the charging process.
  • a self-protection state signal that is, output a false protection signal
  • the electronic lock control circuit of the new energy vehicle on-board charging device may further include a first self-protection output filter circuit 61 and a second self-protection output filter circuit 62 .
  • the first self-protection output filter circuit 61 can be arranged between the first feedback receiving terminal and the first state feedback terminal, and is used for performing level filtering on the first self-protection state signal to filter out The false protection signal of the socket lock drive circuit 30;
  • the second self-protection output filter circuit 62 can be arranged between the second feedback receiving end and the second state feedback end for the second self-protection state signal Level filtering is performed to filter out the false protection signal of the cover lock driving circuit 40 .
  • the first self-protection output filter circuit 61 may include a first pull-up resistor R3 and a fifth capacitor C3, one end of the first pull-up resistor R3 is connected to the One end of the fifth capacitor C3 is connected, the other end of the first pull-up resistor R3 is connected to the power supply voltage, the other end of the fifth capacitor C3 is grounded, one end of the first pull-up resistor R3 is connected to the fifth capacitor The connection point between C3 is connected to the first state feedback terminal.
  • the second self-protection output filter circuit 62 may include a second pull-up resistor R8 and a sixth capacitor C6, one end of the second pull-up resistor R8 is connected to one end of the sixth capacitor C6, and the second pull-up resistor R8 is connected to one end of the sixth capacitor C6.
  • the other end of the pull-up resistor R8 is connected to the power supply voltage, the other end of the sixth capacitor C6 is grounded, and the connection point between one end of the second pull-up resistor R8 and the sixth capacitor C6 is connected to the second state feedback end connection.
  • the electronic lock control circuit of the new energy vehicle on-board charging device may further include a first output interface protection circuit 51 and a second output interface protection circuit 52 .
  • the first output interface protection circuit 51 can be arranged between the output end of the socket lock drive circuit 30 and the socket lock connection terminal, and is used for releasing the induced electromotive force at the output end of the socket lock drive circuit 30 and filtering out electrostatic discharge interference at this output.
  • the second output interface protection circuit 52 can be arranged between the output terminal of the cover lock driving circuit 40 and the cover lock connection terminal, and is used to discharge the induced electromotive force at the output end of the cover lock drive circuit 40, and filter In addition to the static discharge interference of the output.
  • the second output interface protection circuit 52 may include a first capacitor C1 , a second capacitor C2 , a first clamping diode D1 and a second clamping diode D2 .
  • One end of the first capacitor C1 is connected to one end of the first clamping diode D1, the other end of the first capacitor C1 and the other end of the first clamping diode D1 are grounded, and the first capacitor C1
  • the connection point with the first clamping diode D1 is connected with the negative output terminal (ie F_LK ⁇ in FIG. 5 ) of the capping lock driving circuit 40 .
  • One end of the second capacitor C2 is connected to one end of the second clamping diode D2, the other end of the second capacitor C2 and the other end of the second clamping diode D2 are grounded, and the second capacitor C2
  • the connection point with the second clamping diode D2 is connected with the positive output terminal of the capping lock driving circuit 40 (ie, F_LK+ in FIG. 5 ).
  • the first output interface protection circuit 51 may include a third capacitor C4 , a fourth capacitor C5 , a third clamping diode D3 and a fourth clamping diode D4 .
  • One end of the third capacitor C4 is connected to one end of the third clamping diode D3, the other end of the third capacitor C4 and the other end of the third clamping diode D3 are grounded, and the third capacitor C4
  • the connection point with the third clamping diode D3 is connected with the negative output terminal (ie C_LK- in FIG. 5 ) of the socket lock drive circuit 30 .
  • One end of the fourth capacitor C5 is connected to one end of the fourth clamping diode D4, the other end of the fourth capacitor C5 and the other end of the fourth clamping diode D4 are grounded, and the fourth capacitor C5
  • the connection point with the fourth clamping diode D4 is connected with the positive output terminal of the socket lock drive circuit 30 (ie, C_LK+ in FIG. 5 ).
  • first clamping diode D1, second clamping diode D2, third clamping diode D3 and fourth clamping diode D4 may be TVS (Transient Voltage Suppressor, transient diode) clamping diodes.
  • the electrostatic discharge interference refers to the external electrostatic interference when the lock is installed, when the circuit board is assembled, or when it is working under complex conditions.
  • the induced electromotive force refers to the conduction interference and radiation interference of the induced electromotive force introduced by the lock itself; the induced electromotive force will be connected to the circuit through the lock terminal in series, which may damage the circuit, and the excessive voltage/current of the induced electromotive force can be reduced by the clamp diode Imported to GND, so as not to damage the internal components of the circuit.
  • the socket lock terminal and the cover lock terminal can share an integrated terminal 70 to simplify the structure; the positive and negative output ends of the socket lock drive circuit 30 (ie C_LK+ and C_LK- in FIG. 5 are correspondingly connected to the first end and the second end of the integrated terminal 70, and the positive and negative output terminals of the cover lock driving circuit 40 (that is, F_LK+ and F_LK- in FIG. 5 ) are correspondingly connected to the third terminal and the fourth terminal of the integrated terminal 70 .
  • the embodiment of this specification also provides an on-board charging device for new energy vehicles, the on-board charging device for new energy vehicles is equipped with the above-mentioned electronic lock control circuit.
  • the embodiment of this specification also provides a new energy vehicle, which is equipped with the above-mentioned on-board charging device for new energy vehicles.
  • the embodiment of this specification also provides a control method for the on-board charging device for new energy vehicles, which can be applied to the above-mentioned on-board charging device for new energy vehicles, as shown in Figure 6, in some implementations
  • the control method includes the following steps:
  • control method before confirming whether the new energy vehicle is in a non-charging state, the control method may further include:
  • a conduction control signal is output to the switch tube, so that the switch tube is in a conduction state.
  • control method after outputting the conduction control signal to the switch tube, the control method may further include:
  • control method after outputting the conduction control signal to the switch tube, the control method may further include:
  • the self-protection determination according to the first self-protection status signal and/or the second self-protection status signal may include:
  • the embodiment of this specification also provides a computer device.
  • the computer device 702 may include one or more processors 704, such as one or more central processing units (CPUs) or graphics processing units (GPUs), each A processing unit may implement one or more hardware threads.
  • the computer device 702 may also include any memory 706 for storing any kind of information such as codes, settings, data, etc.
  • a computer program on the memory 706 and executable on the processor 704 When the computer program is run by the processor 704, it can execute the instructions of the control method of the new energy vehicle on-board charging device described in any of the above-mentioned embodiments.
  • Non-limiting, for example, the memory 706 may include any one or combination of the following: any type of RAM, any type of ROM, flash memory device, hard disk, optical disk, and so on. More generally, any memory can use any technology to store information. Further, any memory may provide volatile or non-volatile retention of information. Further, any memory may represent a fixed or removable component of computer device 702 . In one instance, when processor 704 executes the associated instructions stored in any memory or combination of memories, computing device 702 may perform any operation of the associated instructions.
  • the computer device 702 also includes one or more drive mechanisms 708 for interfacing with any memory, such as a hard disk drive, an optical disk drive, or the like.
  • Computer device 702 may also include input/output interface 710 (I/O) for receiving various inputs (via input device 712 ) and for providing various outputs (via output device 714 ).
  • One particular output mechanism may include a presentation device 716 and an associated graphical user interface 718 (GUI).
  • GUI graphical user interface 718
  • the input/output interface 710 (I/O), the input device 712 and the output device 714 may not be included, and it is only used as a computer device in the network.
  • Computer device 702 may also include one or more network interfaces 720 for exchanging data with other devices via one or more communication links 722 .
  • One or more communication buses 724 couple together the components described above.
  • Communication link 722 can be implemented in any manner, for example, through a local area network, wide area network (eg, the Internet), point-to-point connection, etc., or any combination thereof.
  • Communication link 722 may include any combination of hardwired links, wireless links, routers, gateway functions, name servers, etc. governed by any protocol or combination of protocols.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processor to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processor, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby
  • the instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
  • a computer device includes one or more processors (CPUs), input/output interfaces, network interfaces and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM. Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape, disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by computer equipment.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • embodiments of this specification may be provided as methods, systems or computer program products. Accordingly, the embodiments of the present description may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present description may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present specification may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Embodiments of the present description may also be practiced in distributed computing environments where tasks are performed by remote processors that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.
  • each embodiment of the present invention is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the new energy vehicle embodiment the new energy vehicle on-board charging device embodiment, the new energy vehicle on-board charging device control method embodiment, etc.
  • its core improvement is basically similar to the electronic lock of the new energy vehicle on-board charging device
  • the embodiment of the control circuit so the description is relatively simple.
  • references to the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” means that specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the embodiments of the present invention.
  • the schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in the present invention without conflicting with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电子锁控制电路,该电子锁控制电路包括:插座锁驱动电路、封盖锁驱动电路、开关管和控制单元,开关管的输出端分别与所述插座锁驱动电路及所述封盖锁驱动电路的供电输入端连接,在所述开关管处于导通状态时,所述插座锁驱动电路和所述封盖锁驱动电路得电,在所述开关管处于截止状态时,所述插座锁驱动电路和所述封盖锁驱动电路失电;控制单元的开关控制端与所述开关管的控制接收端连接,用于在确认新能源车处于非充电状态时,中止向所述开关管输出导通控制信号,以使所述开关管处于截止状态。所述电子锁控制电路可以降低新能源车车载充电装置在非充电状态下的功耗。还提供了一种新能源车及其车载充电装置和控制方法。

Description

新能源车及其车载充电装置、电子锁控制电路、控制方法
本申请要求2021年11月30日递交的申请号为2021114470286、发明名称为“新能源车及其车载充电装置、电子锁控制电路、控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书涉及新能源车车载充电装置技术领域,尤其是涉及一种新能源车及其车载充电装置、电子锁控制电路、控制方法。
背景技术
随着新能源电动汽车的充电技术朝着大功率直流快速充方向发展,在新能源电动汽车充电标准中,特别规定了需要使用电子锁止机构来保证充电头与车载充电装置之间的良好连接,进而保证新能源电动汽车的可靠安全充电。然而,在实现本申请的过程中,本申请的发明人发现:新能源车车载充电装置在非充电状态下,仍具有相对较高的功耗。
发明内容
本说明书实施例的目的在于提供一种新能源车及其载充电装置、电子锁控制电路、控制方法,以降低新能源车车载充电装置在非充电状态下的功耗。
为达到上述目的,一方面,本说明书实施例提供了一种新能源车车载充电装置的电子锁控制电路,包括:
插座锁驱动电路;
封盖锁驱动电路;
开关管,所述开关管的输出端分别与所述插座锁驱动电路及所述封盖锁驱动电路的供电输入端连接,在所述开关管处于导通状态时,所述插座锁驱动电路和所述封盖锁驱动电路得电,在所述开关管处于截止状态时,所述插座锁驱动电路和所述封盖锁驱动电路失电;以及
控制单元,所述控制单元的开关控制端与所述开关管的控制接收端连接,用于在确认新能源车处于非充电状态时,中止向所述开关管输出导通控制信号,以使所述开关管处于截止状态。
本说明书实施例的电子锁控制电路中,所述控制单元还设置有第一驱动控制端和第 二驱动控制端,所述第一驱动控制端与所述插座锁驱动电路的第一驱动接收端连接,所述第二驱动控制端与所述封盖锁驱动电路的第二驱动接收端连接;
所述控制单元还用于:在确认新能源车需要充电时,向所述开关管输出导通控制信号,以使所述开关管处于导通状态;并向所述插座锁驱动电路和/或所述封盖锁驱动电路输出驱动信号。
本说明书实施例的电子锁控制电路中,所述开关管包括场效应晶体管;所述场效应晶体管的漏极与电源连接,所述场效应晶体管的源极分别与插座锁驱动电路及封盖锁驱动电路的供电输入端连接,所述场效应晶体管的栅极通过分压电路与所述控制单元的开关控制端连接。
本说明书实施例的电子锁控制电路中,所述分压电路包括第一分压电阻和第二分压电阻,所述第一分压电阻的一端与所述控制单元的开关控制端连接,所述第一分压电阻的另一端与所述第二分压电阻的一端连接,所述第二分压电阻的另一端接地,所述第一分压电阻与所述第二分压电阻之间的连接点与所述场效应晶体管的栅极连接。
本说明书实施例的电子锁控制电路中,所述电子锁控制电路还包括:
第一输出接口保护电路,所述第一输出接口保护电路设置于所述插座锁驱动电路的输出端与插座锁接线端子之间,用于泄放所述插座锁驱动电路的输出端感应电动势,并滤除该输出端的静电泄放干扰;
第二输出接口保护电路,所述第二输出接口保护电路设置于所述封盖锁驱动电路的输出端与封盖锁接线端子之间,用于泄放所述封盖锁驱动电路的输出端感应电动势,并滤除该输出端的静电泄放干扰。
本说明书实施例的电子锁控制电路中,所述插座锁接线端子与所述封盖锁接线端子共用一个集成端子;所述插座锁驱动电路的正、负极输出端对应与所述集成端子的第一端、第二端相连,所述封盖锁驱动电路的正、负极输出端对应与所述集成端子的第三端、第四端相连。
本说明书实施例的电子锁控制电路中,所述第二输出接口保护电路包括第一电容、第二电容、第一钳位二极管和第二钳位二极管;
所述第一电容的一端与所述第一钳位二极管的一端相连,所述第一电容的另一端及所述第一钳位二极管的另一端接地,所述第一电容与所述第一钳位二极管之间的连接点与所述封盖锁驱动电路的负极输出端连接;
所述第二电容的一端与所述第二钳位二极管的一端相连,所述第二电容的另一端及 所述第二钳位二极管的另一端接地,所述第二电容与所述第二钳位二极管之间的连接点与所述封盖锁驱动电路的正极输出端连接。
本说明书实施例的电子锁控制电路中,所述第一输出接口保护电路包括第三电容、第四电容、第三钳位二极管和第四钳位二极管;
所述第三电容的一端与所述第三钳位二极管的一端相连,所述第三电容的另一端及所述第三钳位二极管的另一端接地,所述第三电容与所述第三钳位二极管之间的连接点与所述插座锁驱动电路的负极输出端连接;
所述第四电容的一端与所述第四钳位二极管的一端相连,所述第四电容的另一端及所述第四钳位二极管的另一端接地,所述第四电容与所述第四钳位二极管之间的连接点与所述插座锁驱动电路的正极输出端连接。
本说明书实施例的电子锁控制电路中,所述控制单元还设置有第一反馈接收端和第二反馈接收端,所述第一反馈接收端与所述插座锁驱动电路的第一状态反馈端连接,所述第二反馈接收端与所述封盖锁驱动电路的第二状态反馈端连接;
所述控制单元还用于:在接收到所述插座锁驱动电路反馈的第一自保护状态信号和/或所述封盖锁驱动电路反馈的第二自保护状态信号时,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定。
本说明书实施例的电子锁控制电路中,所述电子锁控制电路还包括:
第一自保护输出滤波电路,设置于所述第一反馈接收端与所述第一状态反馈端之间,用于对所述第一自保护状态信号进行电平滤波,以滤除误保护信号;
第二自保护输出滤波电路,设置于所述第二反馈接收端与所述第二状态反馈端之间,用于对所述第二自保护状态信号进行电平滤波,以滤除误保护信号。
本说明书实施例的电子锁控制电路中,所述第一自保护输出滤波电路包括第一上拉电阻和第五电容,所述第一上拉电阻的一端与所述第五电容的一端连接,所述第一上拉电阻的另一端接电源电压,所述第五电容的另一端接地,所述第一上拉电阻的一端与所述第五电容之间的连接点与所述第一状态反馈端连接。
本说明书实施例的电子锁控制电路中,所述第二自保护输出滤波电路包括第二上拉电阻和第六电容,所述第二上拉电阻的一端与所述第六电容的一端连接,所述第二上拉电阻的另一端接电源电压,所述第六电容的另一端接地,所述第二上拉电阻的一端与所述第六电容之间的连接点与所述第二状态反馈端连接。
另一方面,本说明书实施例还提供了一种新能源车车载充电装置,所述新能源车车 载充电装置配置有上述的电子锁控制电路。
另一方面,本说明书实施例还提供了一种新能源车,所述新能源车配置有上述的新能源车车载充电装置。
另一方面,本说明书实施例还提供了一种新能源车车载充电装置的控制方法,应用于上述的新能源车车载充电装置,所述控制方法包括以下步骤:
确认新能源车是否处于非充电状态;
当所述新能源车处于非充电状态时,中止向开关管输出导通控制信号,以使所述开关管处于截止状态。
本说明书实施例的控制方法中,在所述确认新能源车是否处于非充电状态之前,还包括:
确认所述新能源车是否需要充电;
当所述新能源车需要充电时,向所述开关管输出导通控制信号,以使所述开关管处于导通状态。
本说明书实施例的控制方法中,在向所述开关管输出导通控制信号之后,还包括:
并向所述插座锁驱动电路和/或所述封盖锁驱动电路输出驱动信号。
本说明书实施例的控制方法中,在向所述开关管输出导通控制信号之后,还包括:
当接收到插座锁驱动电路反馈的第一自保护状态信号和/或盖锁驱动电路反馈的第二自保护状态信号时,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定。
本说明书实施例的控制方法中,所述根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定,包括:
当接收到所述第一自保护状态信号时,中止向所述开关管输出导通控制信号,并输出插座锁故障信息;
当接收到所述第二自保护状态信号时,中止向所述开关管输出导通控制信号,并输出封盖锁故障信息;
当同时接收到所述第一自保护状态信号和所述第二自保护状态信号时,中止向所述开关管输出导通控制信号,并输出插座锁故障信息及封盖锁故障信息。
另一方面,本说明书实施例还提供了一种计算机设备,包括存储器、处理器、以及存储在所述存储器上的计算机程序,所述计算机程序被所述处理器运行时,执行上述控制方法的指令。
另一方面,本说明书实施例还提供了一种计算机存储介质,其上存储有计算机程序,所述计算机程序被计算机设备的处理器运行时,执行上述控制方法的指令。
由以上本说明书实施例提供的技术方案可见,本说明书实施例中,控制单元在确认新能源车处于非充电状态时,可以中止向开关管输出导通控制信号,以使开关管处于截止状态;如此,开关管则切断了插座锁驱动电路和封盖锁驱动电路的电源,插座锁驱动电路和封盖锁驱动电路停止工作,从而节省了新能源车处于非充电状态下,控制单元仍向插座锁驱动电路和封盖锁驱动电路输出导通控制信号,以及插座锁驱动电路和封盖锁驱动电路仍处于待机状态下的电能消耗,从而降低了新能源车车载充电装置在非充电状态下的功耗。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示出了本说明书一些实施例中新能源车车载充电装置的电子锁控制电路的结构框图;
图2示出了本说明书另一些实施例中新能源车车载充电装置的电子锁控制电路的结构框图;
图3示出了本说明书另一些实施例中新能源车车载充电装置的电子锁控制电路的结构框图;
图4示出了本说明书一些实施例中新能源车车载充电装置的电子锁控制电路的电路原理图(不包括输出接口保护电路部分);
图5示出了本说明书一些实施例中新能源车车载充电装置的电子锁控制电路的输出接口保护电路部分的电路原理图;
图6示出了本说明书一些实施例中新能源车车载充电装置的控制方法的流程图;
图7示出了本说明书一些实施例中计算机设备的结构框图。
【附图标记说明】
10、开关管;
20、控制单元;
30、插座锁驱动电路;
40、封盖锁驱动电路;
51、第一输出接口保护电路;
52、第二输出接口保护电路;
61、第一自保护输出滤波电路;
62、第二自保护输出滤波电路;
70、集成端子;
702、计算机设备;
704、处理器;
706、存储器;
708、驱动机构;
710、输入/输出接口;
712、输入设备;
714、输出设备;
716、呈现设备;
718、图形用户接口;
720、网络接口;
722、通信链路;
724、通信总线。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
本说明书实施例提及的电子锁一般是指:新能源车车载充电装置(即新能源车的车载充电装置)上配置的电子锁,其可以包括插座锁和/或封盖锁。其中,插座锁可以在新能源车充电时,将充电头锁止固定在新能源车车载充电装置上,从而保证新能源车充电过程中,充电头可与新能源车车载充电装置之间始终维持良好的连接。封盖锁可以用于 锁住封盖新能源车车载充电装置的盖板,以起到防护新能源车车载充电装置的作用;当需要对新能源车进行充电时,封盖锁解锁,盖板打开。
鉴于现有新能源车车载充电装置在非充电状态下仍具有相对较高的功耗的问题,本说明书实施例提供了改进的新能源车车载充电装置的电子锁控制电路。其中,非充电状态可以包括:充电头未插入新能源车车载充电装置下的非充电状态;以及新能源车满充且未拔出充电头下的非充电状态。
参考图1所示,在一些实施例中,新能源车车载充电装置的电子锁控制电路可以包括开关管10、控制单元20、插座锁驱动电路30和封盖锁驱动电路40。
开关管10的输出端分别与所述插座锁驱动电路30及所述封盖锁驱动电路40的供电输入端连接,在所述开关管10处于导通状态时,所述插座锁驱动电路30和所述封盖锁驱动电路40得电(即接通电源),在所述开关管10处于截止状态时,所述插座锁驱动电路30和所述封盖锁驱动电路40失电(即断开电源)。
控制单元20的开关控制端可与所述开关管10的控制接收端连接,控制单元20用于在确认新能源车处于非充电状态时,中止向所述开关管10输出导通控制信号,以使所述开关管10处于截止状态;如此,开关管10则切断了所述插座锁驱动电路30和所述封盖锁驱动电路40的电源,所述插座锁驱动电路30和所述封盖锁驱动电路40停止待机状态,从而节省了新能源车处于非充电状态下,控制单元20仍向插座锁驱动电路30和封盖锁驱动电路40输出导通控制信号,以及插座锁驱动电路30和封盖锁驱动电路40仍处于待机状态下的电能消耗,从而降低了新能源车车载充电装置在非充电状态下的功耗。不仅如此,这种降低静态功耗的方式还可以延长电子锁控制电路的工作寿命;而且,由于驱动电路(即插座锁驱动电路30和封盖锁驱动电路40)不是一直保持被供电状态,也会降低驱动电路对外的辐射,进而还可以有利于降低测新能源车的总辐射。
在一些实施例中,控制单元20可以通过检测新能源车的充电状态判断新能源车是否处于非充电状态。例如,当检测到新能源车当前已处于满充状态时,可以确认新能源车处于非充电状态。在另一些实施例中,控制单元20也可以通过检测插座锁和/或封盖锁的状态判断新能源车是否处于非充电状态。例如,以插座锁为例,当检测到插座锁处于解锁状态时,表明当前并无充电头插入新能源车车载充电装置,据此可以确认新能源车处于非充电状态。再如,以封盖锁为例,当检测到处于加锁状态时,表明当前新能源车车载充电装置被盖板封盖,无充电头插入新能源车车载充电装置,据此也可以确认新能源车处于非充电状态。当然,在其他实施例中,也可以综合利用检测插座锁和封盖锁的 状态判断新能源车是否处于非充电状态,以提高判断的准确性。
插座锁和封盖锁一般利用电动机(即电动马达)执行加、解锁动作,因此,插座锁和封盖锁均需要配置相应的电机驱动电路,以对应驱动插座锁电动机和封盖锁电动机执行加、解锁动作;因此,插座锁的电机驱动电路可以称为插座锁驱动电路30,封盖锁的电机驱动电路可以称为封盖锁驱动电路40。在一些实施例中,插座锁驱动电路30和封盖锁驱动电路40可以为集成的电机驱动模块(例如电机驱动芯片等)。例如,在如图4所示的实施例中,插座锁驱动电路30可以采用电机驱动芯片U1,封盖锁驱动电路40可以采用电机驱动芯片U2。由于本说明书实施例并不涉及插座锁驱动电路30和封盖锁驱动电路40部分的改进,对此不再赘述。
开关管10是指三极管等内阻微小的可控半导体器件,通过使用内阻微小的开关管10作为电子开关,能使此部分压降控制在很小的范围内,从而不至于影响后端驱动电路的供电电压,还能满足新能源车不充电时的静态功耗要求。在一些实施例中,三极管可以为双极型晶体管(Bipolar Junction Transistor,BJT),结型栅场效应晶体管(Junction Field-Effect Transistor,JFET),金属氧化物半导体场效应晶体管(Metal Oxide Semi-Conductor Field Effect Transistor,MOS FET)或V型槽MOS场效应管(V-groove metal-oxide semiconductor,VMOS)等,具体可以根据实际应用场景的需要选择。
例如,在如图4所示的实施例中,开关管10可以为N沟道增强型MOS场效应晶体管(以下简称MOS管)Q1。MOS管Q1的漏极(如图4中的30F_IN端)与电源连接,MOS管Q1的源极分别与插座锁驱动电路30及封盖锁驱动电路40的供电输入端连接,MOS管Q1的栅极通过分压电路与所述控制单元的开关控制端(图4中的LOCK_PWR_EN端)连接。
如图4所示,在一些实施例中,分压电路可以包括第一分压电阻R4和第二分压电阻R5,所述第一分压电阻R4的一端与所述控制单元的开关控制端连接,所述第一分压电阻R4的另一端与所述第二分压电阻R5的一端连接,所述第二分压电阻R5的另一端接地,所述第一分压电阻R4与所述第二分压电阻R5之间的连接点与MOS管Q1的栅极连接。如此,由第一分压电阻R4和第二分压电阻R5组成的分压电路,可以为MOS管Q1的漏极提供直流电压,即建立了MOS管Q1的漏极的直流偏置电压,因此,上述分压电路也可以称为分压式直流偏置电路。
控制单元20是整个新能源车车载充电装置的控制和处理中心,在一些实施例中,控制单元20可以包括但不限于单片机、微控制单元(Microcontroller Unit,简称MCU)、 微处理器(Microprocessor Unit,MPU)、数字信号处理器(Digital Signal Processing,DSP)、可编程逻辑控制器(Programmable Logic Controller,PLC)等等。
结合图2所示,在另一些实施例中,所述控制单元20还设置有第一驱动控制端和第二驱动控制端,所述第一驱动控制端与所述插座锁驱动电路30的第一驱动接收端连接,所述第二驱动控制端与所述封盖锁驱动电路40的第二驱动接收端连接。相应地,所述控制单元20还可以用于:在确认新能源车需要充电时,向所述开关管10输出导通控制信号,以使所述开关管10处于导通状态;并向所述插座锁驱动电路30和/或所述封盖锁驱动电路40输出驱动信号,以使所述插座锁驱动电路30和所述封盖锁驱动电路40据此对应驱动插座锁电动机、封盖锁电动机,进而实现加、解锁。
所述控制单元20向所述插座锁驱动电路30和/或所述封盖锁驱动电路40输出驱动信号是指:根据控制逻辑不同,所述控制单元20可以选择性向所述插座锁驱动电路30和/或所述封盖锁驱动电路40输出驱动信号。例如,当仅需要打开新能源车车载充电装置封盖时,所述控制单元20可以仅向所述封盖锁驱动电路40输出驱动信号,并在确认新能源车车载充电装置封盖已被打开时,停止向所述封盖锁驱动电路40输出驱动信号;在新能源车车载充电装置封盖已被打开的情况下,当有充电头插入新能源车车载充电装置时,所述控制单元20可以仅向所述插座锁驱动电路30输出驱动信号,以将充电头锁止于新能源车车载充电装置上,并在确认充电头已被锁止于新能源车车载充电装置上时,停止向所述插座锁驱动电路30输出驱动信号,等等。
在一些实施例中,所述控制单元20可以在收到充电指示时,确认新能源车需要充电。例如,当检测到有充电头插入新能源车车载充电装置时,相当于收到充电指示。当然,这里仅是示例性举例说明,在其他实施例中,任何可以使控制单元20识别出用户要对新能源车充电的状态或事件,均可以视为所述控制单元20收到充电指示。因此,本说明书对此不作唯一限定。
在一些实施例中,所述控制单元20还设置有第一反馈接收端和第二反馈接收端,所述第一反馈接收端与所述插座锁驱动电路30的第一状态反馈端连接,所述第二反馈接收端与所述封盖锁驱动电路40的第二状态反馈端连接。因此,所述控制单元20还可以用于:在接收到所述插座锁驱动电路30反馈的第一自保护状态信号和/或所述封盖锁驱动电路40反馈的第二自保护状态信号时,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定。
在一些实施例中,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行 自保护判定可以包括:当接收到第一自保护状态信号时,可以停止向所述插座锁驱动电路30输出驱动信号;当接收到第二自保护状态信号时,可以停止向所述封盖锁驱动电路40输出驱动信号;当接收到第一自保护状态信号和第二自保护状态信号时,可以停止向所述插座锁驱动电路30和所述封盖锁驱动电路40输出驱动信号,或者中止向所述开关管10输出导通控制信号。
请继续参考图1或图2所示,在一些实施例中,插座锁驱动电路30和封盖锁驱动电路40可以选用内部集成驱动+H桥电路、实时电流反馈、自保护状态信号输出等功能的集成芯片,其中,自保护可以包括但不限于过欠压保护、过流保护、过温保护等。例如,以图4所示的实施例为例,电机驱动芯片U1和电机驱动芯片U2的引脚功能如下:GND为参考地端;IN2/IN3作为驱动接收端,与控制单元20的驱动控制端连接;nFAULT作为状态反馈端,与控制单元20的反馈接收端连接,以向控制单元20反馈自保护状态信号;VM为供电输入端,与MOS管Q1的源极连接;OUT1和OUT2作为驱动输出端,通过电平高低组合来控制正、负极输出及输出方向,达到控制加锁与解锁的驱动控制目的;ISEN作为检流电阻端,可以用检测锁状态(例如是否加锁成功,是否解锁成功等),如不需要此功能,可以将检流电阻端接地。
当插座锁驱动电路30或封盖锁驱动电路40检测到自身出现欠压、过流和/或过温等异常时,可以通过自身的状态反馈端向控制单元20输出自保护状态信号。但是,在某些情况下,插座锁驱动电路30和封盖锁驱动电路40的状态反馈端可能因外部干扰等原因意外输出自保护状态信号(即输出了误保护信号),进而使得控制单元20误以为插座锁驱动电路30或封盖锁驱动电路40出现故障,而停止驱动或供电,从而可能影响充电进程。
因此,参考图3所示,在另一些实施例中,新能源车车载充电装置的电子锁控制电路还可以包括第一自保护输出滤波电路61和第二自保护输出滤波电路62。其中,第一自保护输出滤波电路61可以设置于所述第一反馈接收端与所述第一状态反馈端之间,用于对所述第一自保护状态信号进行电平滤波,以滤除插座锁驱动电路30的误保护信号;第二自保护输出滤波电路62可以设置于所述第二反馈接收端与所述第二状态反馈端之间,用于对所述第二自保护状态信号进行电平滤波,以滤除封盖锁驱动电路40的误保护信号。
结合图4所示,在另一些实施例中,所述第一自保护输出滤波电路61可以包括第一上拉电阻R3和第五电容C3,所述第一上拉电阻R3的一端与所述第五电容C3的一端连 接,所述第一上拉电阻R3的另一端接电源电压,所述第五电容C3的另一端接地,所述第一上拉电阻R3的一端与所述第五电容C3之间的连接点与所述第一状态反馈端连接。所述第二自保护输出滤波电路62可以包括第二上拉电阻R8和第六电容C6,所述第二上拉电阻R8的一端与所述第六电容C6的一端连接,所述第二上拉电阻R8的另一端接电源电压,所述第六电容C6的另一端接地,所述第二上拉电阻R8的一端与所述第六电容C6之间的连接点与所述第二状态反馈端连接。
结合图2所示,在另一些实施例中,新能源车车载充电装置的电子锁控制电路还可以包括第一输出接口保护电路51和第二输出接口保护电路52。其中,第一输出接口保护电路51可以设置于所述插座锁驱动电路30的输出端与插座锁接线端子之间,用于泄放所述插座锁驱动电路30的输出端感应电动势,并滤除该输出端的静电泄放干扰。第二输出接口保护电路52可以设置于所述封盖锁驱动电路40的输出端与封盖锁接线端子之间,用于泄放所述封盖锁驱动电路40的输出端感应电动势,并滤除该输出端的静电泄放干扰。
结合图5所示,在一些实施例中,所述第二输出接口保护电路52可以包括第一电容C1、第二电容C2、第一钳位二极管D1和第二钳位二极管D2。所述第一电容C1的一端与所述第一钳位二极管D1的一端相连,所述第一电容C1的另一端及所述第一钳位二极管D1的另一端接地,所述第一电容C1与所述第一钳位二极管D1之间的连接点与所述封盖锁驱动电路40的负极输出端(即图5中的F_LK-)连接。所述第二电容C2的一端与所述第二钳位二极管D2的一端相连,所述第二电容C2的另一端及所述第二钳位二极管D2的另一端接地,所述第二电容C2与所述第二钳位二极管D2之间的连接点与所述封盖锁驱动电路40的正极输出端(即图5中的F_LK+)连接。
请继续结合图5所示,在一些实施例中,所述第一输出接口保护电路51可以包括第三电容C4、第四电容C5、第三钳位二极管D3和第四钳位二极管D4。所述第三电容C4的一端与所述第三钳位二极管D3的一端相连,所述第三电容C4的另一端及所述第三钳位二极管D3的另一端接地,所述第三电容C4与所述第三钳位二极管D3之间的连接点与所述插座锁驱动电路30的负极输出端(即图5中的C_LK-)连接。所述第四电容C5的一端与所述第四钳位二极管D4的一端相连,所述第四电容C5的另一端及所述第四钳位二极管D4的另一端接地,所述第四电容C5与所述第四钳位二极管D4之间的连接点与所述插座锁驱动电路30的正极输出端(即图5中的C_LK+)连接。
其中,上述的第一钳位二极管D1、第二钳位二极管D2、第三钳位二极管D3和第 四钳位二极管D4可以为TVS(Transient Voltage Suppressor,瞬态二极管)钳位二极管。如此,通过设置第一钳位二极管D1、第二钳位二极管D2、第三钳位二极管D3和第四钳位二极管D4,可以抑制接口处(即驱动电路输出端接口)的静电释放干扰,并协助电子锁线圈的感应电动势及时泄放,保护前级驱动电路;而通过设置第一电容C1、第二电容C2、第三电容C4和第四电容C5这个四个滤波电容,还可以抑制接口处窜入的高频干扰。其中,静电释放干扰是指锁安装时、电路板组装时、或复杂条件下工作时等情况下的外界静电干扰。感应电动势是指锁自身引入的感应电动势的传导干扰和辐射干扰;感应电动势会通过锁接线端子串入到电路内部,从而可以会损坏电路,通过钳位二极管可将感应电动势过高的电压/电流导入到GND,而不至于损伤电路内部元件。
请继续结合图5所示,在一些实施例中,插座锁接线端子与封盖锁接线端子可以共用一个集成端子70,以简化结构;所述插座锁驱动电路30的正、负极输出端(即图5中的C_LK+、C_LK-)对应与所述集成端子70的第一端、第二端相连,所述封盖锁驱动电路40的正、负极输出端(即图5中的F_LK+、F_LK-)对应与所述集成端子70的第三端、第四端相连。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
与上述新能源车车载充电装置的电子锁控制电路对应,本说明书实施例还提供了一种新能源车车载充电装置,该新能源车车载充电装置配置有上述的电子锁控制电路。
与上述新能源车车载充电装置对应,本说明书实施例还提供了一种新能源车,该新能源车配置有上述的新能源车车载充电装置。
与上述新能源车车载充电装置对应,本说明书实施例还提供了一种新能源车车载充电装置的控制方法,可应用于上述的新能源车车载充电装置,参考图6所示,在一些实施例中,所述控制方法包括以下步骤:
S601、确认新能源车是否处于非充电状态。
S602、当所述新能源车处于非充电状态时,中止向开关管输出导通控制信号,以使所述开关管处于截止状态。
在一些实施例的控制方法中,在所述确认新能源车是否处于非充电状态之前,所述控制方法还可以包括:
确认所述新能源车是否需要充电;
当所述新能源车需要充电时,向所述开关管输出导通控制信号,以使所述开关管处 于导通状态。
在一些实施例的控制方法中,在向所述开关管输出导通控制信号之后,所述控制方法还可以包括:
并向所述插座锁驱动电路和/或所述封盖锁驱动电路输出驱动信号。
在一些实施例的控制方法中,在向所述开关管输出导通控制信号之后,所述控制方法还可以包括:
当接收到插座锁驱动电路反馈的第一自保护状态信号和/或盖锁驱动电路反馈的第二自保护状态信号时,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定。
在一些实施例的控制方法中,所述根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定,可以包括:
当接收到所述第一自保护状态信号时,中止向所述开关管输出导通控制信号,并输出插座锁故障信息;
当接收到所述第二自保护状态信号时,中止向所述开关管输出导通控制信号,并输出封盖锁故障信息;
当同时接收到所述第一自保护状态信号和所述第二自保护状态信号时,中止向所述开关管输出导通控制信号,并输出插座锁故障信息及封盖锁故障信息。
虽然上文描述的过程流程包括以特定顺序出现的多个操作,但是,应当清楚了解,这些过程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行(例如使用并行处理器或多线程环境)。
本说明书的实施例还提供一种计算机设备。如图7所示,在本说明书一些实施例中,所述计算机设备702可以包括一个或多个处理器704,诸如一个或多个中央处理单元(CPU)或图形处理器(GPU),每个处理单元可以实现一个或多个硬件线程。计算机设备702还可以包括任何存储器706,其用于存储诸如代码、设置、数据等之类的任何种类的信息,一具体实施例中,存储器706上并可在处理器704上运行的计算机程序,所述计算机程序被所述处理器704运行时,可以执行上述任一实施例所述新能源车车载充电装置的控制方法的指令。非限制性的,比如,存储器706可以包括以下任一项或多种组合:任何类型的RAM,任何类型的ROM,闪存设备,硬盘,光盘等。更一般地,任何存储器都可以使用任何技术来存储信息。进一步地,任何存储器可以提供信息的易失性或非易失性保留。进一步地,任何存储器可以表示计算机设备702的固定或可移除部件。在 一种情况下,当处理器704执行被存储在任何存储器或存储器的组合中的相关联的指令时,计算机设备702可以执行相关联指令的任一操作。计算机设备702还包括用于与任何存储器交互的一个或多个驱动机构708,诸如硬盘驱动机构、光盘驱动机构等。
计算机设备702还可以包括输入/输出接口710(I/O),其用于接收各种输入(经由输入设备712)和用于提供各种输出(经由输出设备714)。一个具体输出机构可以包括呈现设备716和相关联的图形用户接口718(GUI)。在其他实施例中,还可以不包括输入/输出接口710(I/O)、输入设备712以及输出设备714,仅作为网络中的一台计算机设备。计算机设备702还可以包括一个或多个网络接口720,其用于经由一个或多个通信链路722与其他设备交换数据。一个或多个通信总线724将上文所描述的部件耦合在一起。
通信链路722可以以任何方式实现,例如,通过局域网、广域网(例如,因特网)、点对点连接等、或其任何组合。通信链路722可以包括由任何协议或协议组合支配的硬连线链路、无线链路、路由器、网关功能、名称服务器等的任何组合。
本申请是参照本说明书一些实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理器的处理器以产生一个机器,使得通过计算机或其他可编程数据处理器的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理器以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理器上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算机设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非 易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算机设备访问的信息。按照本说明书中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书的实施例可提供为方法、系统或计算机程序产品。因此,本说明书实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理器来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
还应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于新能源车实施例、新能源车车载充电装置实施例、新能源车车载充电装置的控制方法实施例等而言,由于其核心改进部分基本相似于新能源车车载充电装置的电子锁控制电路实施例,所以描述的比较简单,相关之处参见新能源车车载充电装置的电子锁控制电路实施例的 部分说明即可。
在本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明实施例的至少一个实施例或示例中。在本发明中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本发明中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (21)

  1. 一种新能源车车载充电装置的电子锁控制电路,其特征在于,包括:
    插座锁驱动电路;
    封盖锁驱动电路;
    开关管,所述开关管的输出端分别与所述插座锁驱动电路及所述封盖锁驱动电路的供电输入端连接,在所述开关管处于导通状态时,所述插座锁驱动电路和所述封盖锁驱动电路得电,在所述开关管处于截止状态时,所述插座锁驱动电路和所述封盖锁驱动电路失电;以及
    控制单元,所述控制单元的开关控制端与所述开关管的控制接收端连接,用于在确认新能源车处于非充电状态时,中止向所述开关管输出导通控制信号,以使所述开关管处于截止状态。
  2. 如权利要求1所述的电子锁控制电路,其特征在于,所述控制单元还设置有第一驱动控制端和第二驱动控制端,所述第一驱动控制端与所述插座锁驱动电路的第一驱动接收端连接,所述第二驱动控制端与所述封盖锁驱动电路的第二驱动接收端连接;
    所述控制单元还用于:在确认新能源车需要充电时,向所述开关管输出导通控制信号,以使所述开关管处于导通状态;并向所述插座锁驱动电路和/或所述封盖锁驱动电路输出驱动信号。
  3. 如权利要求1所述的电子锁控制电路,其特征在于,所述开关管包括场效应晶体管;所述场效应晶体管的漏极与电源连接,所述场效应晶体管的源极分别与所述插座锁驱动电路及所述封盖锁驱动电路的供电输入端连接,所述场效应晶体管的栅极通过分压电路与所述控制单元的开关控制端连接。
  4. 如权利要求3所述的电子锁控制电路,其特征在于,所述分压电路包括第一分压电阻和第二分压电阻,所述第一分压电阻的一端与所述控制单元的开关控制端连接,所述第一分压电阻的另一端与所述第二分压电阻的一端连接,所述第二分压电阻的另一端接地,所述第一分压电阻与所述第二分压电阻之间的连接点与所述场效应晶体管的栅极连接。
  5. 如权利要求1所述的电子锁控制电路,其特征在于,所述电子锁控制电路还包括:
    第一输出接口保护电路,所述第一输出接口保护电路设置于所述插座锁驱动电路的输出端与插座锁接线端子之间,用于泄放所述插座锁驱动电路的输出端感应电动势,并 滤除该输出端的静电泄放干扰;
    第二输出接口保护电路,所述第二输出接口保护电路设置于所述封盖锁驱动电路的输出端与封盖锁接线端子之间,用于泄放所述封盖锁驱动电路的输出端感应电动势,并滤除该输出端的静电泄放干扰。
  6. 如权利要求5所述的电子锁控制电路,其特征在于,所述插座锁接线端子与所述封盖锁接线端子共用一个集成端子;所述插座锁驱动电路的正、负极输出端对应与所述集成端子的第一端、第二端相连,所述封盖锁驱动电路的正、负极输出端对应与所述集成端子的第三端、第四端相连。
  7. 如权利要求6所述的电子锁控制电路,其特征在于,所述第二输出接口保护电路包括第一电容、第二电容、第一钳位二极管和第二钳位二极管;
    所述第一电容的一端与所述第一钳位二极管的一端相连,所述第一电容的另一端及所述第一钳位二极管的另一端接地,所述第一电容与所述第一钳位二极管之间的连接点与所述封盖锁驱动电路的负极输出端连接;
    所述第二电容的一端与所述第二钳位二极管的一端相连,所述第二电容的另一端及所述第二钳位二极管的另一端接地,所述第二电容与所述第二钳位二极管之间的连接点与所述封盖锁驱动电路的正极输出端连接。
  8. 如权利要求6所述的电子锁控制电路,其特征在于,所述第一输出接口保护电路包括第三电容、第四电容、第三钳位二极管和第四钳位二极管;
    所述第三电容的一端与所述第三钳位二极管的一端相连,所述第三电容的另一端及所述第三钳位二极管的另一端接地,所述第三电容与所述第三钳位二极管之间的连接点与所述插座锁驱动电路的负极输出端连接;
    所述第四电容的一端与所述第四钳位二极管的一端相连,所述第四电容的另一端及所述第四钳位二极管的另一端接地,所述第四电容与所述第四钳位二极管之间的连接点与所述插座锁驱动电路的正极输出端连接。
  9. 如权利要求1所述的电子锁控制电路,其特征在于,所述控制单元还设置有第一反馈接收端和第二反馈接收端,所述第一反馈接收端与所述插座锁驱动电路的第一状态反馈端连接,所述第二反馈接收端与所述封盖锁驱动电路的第二状态反馈端连接;
    所述控制单元还用于:在接收到所述插座锁驱动电路反馈的第一自保护状态信号和/或所述封盖锁驱动电路反馈的第二自保护状态信号时,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定。
  10. 如权利要求9所述的电子锁控制电路,其特征在于,所述电子锁控制电路还包括:
    第一自保护输出滤波电路,设置于所述第一反馈接收端与所述第一状态反馈端之间,用于对所述第一自保护状态信号进行电平滤波,以滤除误保护信号;
    第二自保护输出滤波电路,设置于所述第二反馈接收端与所述第二状态反馈端之间,用于对所述第二自保护状态信号进行电平滤波,以滤除误保护信号。
  11. 如权利要求10所述的电子锁控制电路,其特征在于,所述第一自保护输出滤波电路包括第一上拉电阻和第五电容,所述第一上拉电阻的一端与所述第五电容的一端连接,所述第一上拉电阻的另一端接电源电压,所述第五电容的另一端接地,所述第一上拉电阻的一端与所述第五电容之间的连接点与所述第一状态反馈端连接。
  12. 如权利要求10所述的电子锁控制电路,其特征在于,所述第二自保护输出滤波电路包括第二上拉电阻和第六电容,所述第二上拉电阻的一端与所述第六电容的一端连接,所述第二上拉电阻的另一端接电源电压,所述第六电容的另一端接地,所述第二上拉电阻的一端与所述第六电容之间的连接点与所述第二状态反馈端连接。
  13. 一种新能源车车载充电装置,其特征在于,所述新能源车车载充电装置配置有权利要求1-12任意一项所述的电子锁控制电路。
  14. 一种新能源车,其特征在于,所述新能源车配置有权利要求13所述的新能源车车载充电装置。
  15. 一种新能源车车载充电装置的控制方法,其特征在于,应用于权利要求13所述的新能源车车载充电装置,所述控制方法包括以下步骤:
    确认新能源车是否处于非充电状态;
    当所述新能源车处于非充电状态时,中止向开关管输出导通控制信号,以使所述开关管处于截止状态。
  16. 如权利要求15所述的控制方法,其特征在于,在所述确认新能源车是否处于非充电状态之前,还包括:
    确认所述新能源车是否需要充电;
    当所述新能源车需要充电时,向所述开关管输出导通控制信号,以使所述开关管处于导通状态。
  17. 如权利要求16所述的控制方法,其特征在于,在向所述开关管输出导通控制信号之后,还包括:
    并向所述插座锁驱动电路和/或所述封盖锁驱动电路输出驱动信号。
  18. 如权利要求16所述的控制方法,其特征在于,在向所述开关管输出导通控制信号之后,还包括:
    当接收到插座锁驱动电路反馈的第一自保护状态信号和/或盖锁驱动电路反馈的第二自保护状态信号时,根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定。
  19. 如权利要求18所述的控制方法,其特征在于,所述根据所述第一自保护状态信号和/或所述第二自保护状态信号进行自保护判定,包括:
    当接收到所述第一自保护状态信号时,中止向所述开关管输出导通控制信号,并输出插座锁故障信息;
    当接收到所述第二自保护状态信号时,中止向所述开关管输出导通控制信号,并输出封盖锁故障信息;
    当同时接收到所述第一自保护状态信号和所述第二自保护状态信号时,中止向所述开关管输出导通控制信号,并输出插座锁故障信息及封盖锁故障信息。
  20. 一种计算机设备,包括存储器、处理器、以及存储在所述存储器上的计算机程序,其特征在于,所述计算机程序被所述处理器运行时,执行根据权利要求15-19任意一项所述方法的指令。
  21. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机设备的处理器运行时,执行根据权利要求15-19任意一项所述方法的指令。
PCT/CN2022/133594 2021-11-30 2022-11-23 新能源车及其车载充电装置、电子锁控制电路、控制方法 WO2023098522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111447028.6A CN114103678A (zh) 2021-11-30 2021-11-30 新能源车及其车载充电装置、电子锁控制电路、控制方法
CN202111447028.6 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098522A1 true WO2023098522A1 (zh) 2023-06-08

Family

ID=80368766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133594 WO2023098522A1 (zh) 2021-11-30 2022-11-23 新能源车及其车载充电装置、电子锁控制电路、控制方法

Country Status (2)

Country Link
CN (1) CN114103678A (zh)
WO (1) WO2023098522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114103678A (zh) * 2021-11-30 2022-03-01 长春捷翼汽车零部件有限公司 新能源车及其车载充电装置、电子锁控制电路、控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111444A1 (de) * 2011-08-30 2013-02-28 Phoenix Contact Gmbh & Co. Kg Steuervorrichtung zum Steuern eines Verriegelungsaktors
CN208924207U (zh) * 2018-09-18 2019-05-31 广州汽车集团股份有限公司 一种数字模拟复用输入检测电路
CN110609505A (zh) * 2019-09-29 2019-12-24 安徽贵博新能科技有限公司 一种电动汽车充电锁止装置的控制电路
CN110745021A (zh) * 2019-11-27 2020-02-04 上海玖行能源科技有限公司 一种用于电动汽车充电枪电子锁的控制系统及控制方法
CN112356694A (zh) * 2020-10-26 2021-02-12 阳光电源股份有限公司 一种充电桩掉电解锁电路
CN112498138A (zh) * 2020-12-02 2021-03-16 力神动力电池系统有限公司 一种直流充电枪电子锁驱动电路
CN112659935A (zh) * 2020-12-02 2021-04-16 力神动力电池系统有限公司 一种高安全性的直流充电枪电子锁控制电路
CN214152899U (zh) * 2020-08-17 2021-09-07 深圳市比创达电子科技有限公司 一种具有低触发电压和击穿电压精准的静电抑制器
CN114103678A (zh) * 2021-11-30 2022-03-01 长春捷翼汽车零部件有限公司 新能源车及其车载充电装置、电子锁控制电路、控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203690904U (zh) * 2014-01-20 2014-07-02 北京动力源科技股份有限公司 一种自保护在线式直流输出电路
CN105691217B (zh) * 2014-11-29 2018-03-06 中山大洋电机股份有限公司 一种集成充电与驱动于一体的电动汽车系统及其控制方法
CN113602128A (zh) * 2021-07-06 2021-11-05 李加朋 一种宽电压输出新能源汽车充电桩装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111444A1 (de) * 2011-08-30 2013-02-28 Phoenix Contact Gmbh & Co. Kg Steuervorrichtung zum Steuern eines Verriegelungsaktors
CN208924207U (zh) * 2018-09-18 2019-05-31 广州汽车集团股份有限公司 一种数字模拟复用输入检测电路
CN110609505A (zh) * 2019-09-29 2019-12-24 安徽贵博新能科技有限公司 一种电动汽车充电锁止装置的控制电路
CN110745021A (zh) * 2019-11-27 2020-02-04 上海玖行能源科技有限公司 一种用于电动汽车充电枪电子锁的控制系统及控制方法
CN214152899U (zh) * 2020-08-17 2021-09-07 深圳市比创达电子科技有限公司 一种具有低触发电压和击穿电压精准的静电抑制器
CN112356694A (zh) * 2020-10-26 2021-02-12 阳光电源股份有限公司 一种充电桩掉电解锁电路
CN112498138A (zh) * 2020-12-02 2021-03-16 力神动力电池系统有限公司 一种直流充电枪电子锁驱动电路
CN112659935A (zh) * 2020-12-02 2021-04-16 力神动力电池系统有限公司 一种高安全性的直流充电枪电子锁控制电路
CN114103678A (zh) * 2021-11-30 2022-03-01 长春捷翼汽车零部件有限公司 新能源车及其车载充电装置、电子锁控制电路、控制方法

Also Published As

Publication number Publication date
CN114103678A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023098522A1 (zh) 新能源车及其车载充电装置、电子锁控制电路、控制方法
US11183863B2 (en) Charging apparatus and terminal
WO2020239034A1 (zh) 一种电池管理方法、电池管理装置及飞行器
CN109039221B (zh) 一种主动短路电路以及电机控制器
CN210898512U (zh) 电动汽车电机系统三相主动短路的控制电路
CN110350486A (zh) 故障保护装置、变频器及电机驱动系统
WO2020253074A1 (zh) 电池管理方法以及电池管理装置
CN110768213A (zh) 电动汽车电机系统三相主动短路的控制电路及控制方法
TW201541247A (zh) 檢測一可攜式裝置與一功率轉換器間之連接及拔除的方法與電路
CN106655978A (zh) 永磁同步电机过流保护方法、过流保护系统及无人飞行器
CN107896055A (zh) 电源供应装置及其控制方法
US9800221B2 (en) Embedded speaker protection for automotive audio power amplifier
US10829146B2 (en) Vehicle motor control apparatus and method
WO2021164636A1 (zh) 欠压保护设备及方法
CN204732921U (zh) 一种用于ups和外接蓄电池间的检测和保护电路
CN106300267A (zh) 电机过载保护装置和方法、电机系统
WO2023116643A1 (zh) 电驱动系统的安全控制方法及装置
US20210356530A1 (en) Fault recognition
US20210036543A1 (en) Concurrent alternating-current and direct-current
CN205407214U (zh) 一种具有防振荡功能的驱动过流保护电路
CN106292821B (zh) 一种单火线取电芯片
CN107370354A (zh) 一种交流输入电流浪涌抑制系统
CN208782795U (zh) 一种基于电容隔离技术的控制器通用输出电路
CN105759681B (zh) 异常规避装置,规避车载设备异常的控制系统及方法
CN214479552U (zh) 一种过功率保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900327

Country of ref document: EP

Kind code of ref document: A1