WO2023098509A1 - 电芯和电池包 - Google Patents

电芯和电池包 Download PDF

Info

Publication number
WO2023098509A1
WO2023098509A1 PCT/CN2022/133333 CN2022133333W WO2023098509A1 WO 2023098509 A1 WO2023098509 A1 WO 2023098509A1 CN 2022133333 W CN2022133333 W CN 2022133333W WO 2023098509 A1 WO2023098509 A1 WO 2023098509A1
Authority
WO
WIPO (PCT)
Prior art keywords
bare
battery
electric core
cell
battery cells
Prior art date
Application number
PCT/CN2022/133333
Other languages
English (en)
French (fr)
Inventor
肖海河
张小文
李白清
黄亚萍
彭爽娟
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22900314.0A priority Critical patent/EP4354636A1/en
Publication of WO2023098509A1 publication Critical patent/WO2023098509A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of battery production, in particular to a battery cell and a battery pack.
  • rechargeable secondary batteries as power sources, such as mobile phones, laptop computers, power tools, electric vehicles and energy storage power stations, etc.
  • the application and development of rechargeable secondary batteries provide a broad space.
  • Electric vehicles and energy storage power stations generally need to use large-capacity power batteries as power sources. In addition to high capacity, these power batteries should also have good safety in order to meet the standards of use and meet people's needs.
  • the battery includes at least one cell, the cell includes a case and a bare cell packaged in the case, the anode post on the case is used to connect the external circuit and the anode sheet on the bare cell, and the cathode post on the case is used to Connect the external circuit and the negative electrode lug on the bare cell, and a liquid injection port is opened on the casing to inject the electrolyte into the casing.
  • the two poles will shrink to varying degrees, especially the anode shrinks to a greater extent, and then the two poles will shrink. Squeeze out the electrolyte between the two pole pieces or suck the electrolyte in the shell between the two pole pieces. This situation will affect the performance of the battery under certain working conditions, especially when the battery is discharged.
  • the application provides a battery cell on the one hand to reduce the probability of the lithium deposition phenomenon and ensure the performance of the battery .
  • the electric core of the present application includes a casing, and a bare electric core located in the inner cavity of the casing; the bare electric core has at least two opposite extension ends, and a middle area located between the two opposite extension ends of the bare electric core; The two opposite extension ends of the bare electric core are configured to be lower than the middle area of the bare electric core in the height direction.
  • the bare electric core includes a positive electrode sheet, a separator, and a negative electrode sheet, and the positive electrode sheet, the separator, and the negative electrode sheet are stacked together in sequence, and the edge of the bare electric core in the circumferential direction The locations are configured to extend downward in the height direction.
  • the edge in the circumferential direction of the battery body is immersed in the electrolytic solution.
  • the positive and negative plates can draw the electrolyte through the edge into the gap between the two plates.
  • the bare electric core includes a positive electrode sheet, a separator, and a negative electrode sheet, and the positive electrode sheet, the separator, and the negative electrode sheet are wound together; The two ends are respectively the two extension ends.
  • the positive and negative electrodes can suck the electrolyte into the gap between the two electrodes through the two extension ends.
  • the bare electric core has an arc-shaped structure; the casing has a shape suitable for the bare electric core.
  • the arc-shaped bare cell can avoid forming a stress concentration area inside it, and can improve its ability to resist external forces while ensuring the service life of the bare cell. Moreover, the shapes of the shell and the bare cell match each other, and the bare cell can make full use of the space in the inner cavity of the shell to ensure a compact structure of the cell, and the battery pack can accommodate more cells per unit volume, improving the capacity of the battery pack. Store energy.
  • the electric cell of the present application there are at least two bare electric cells, and at least two bare electric cells are connected together in parallel in the housing.
  • two or more bare cells are suitable for placing in the casing. After at least two bare cells are connected in parallel in the casing, the current of the entire cell can be increased and the performance of the cell can be improved.
  • the bare electric core further includes a positive pole tab and a negative pole tab, and the positive pole tab and the negative pole tab are respectively located on two opposite extension ends of the bare electric core, or on On the same extension end of the bare cell.
  • the positive pole lug is used to electrically connect the positive pole piece and the positive pole column on the housing
  • the negative pole lug is used to electrically connect the negative pole piece to the negative pole pole on the housing.
  • the positive pole and the negative pole are used for electrical connection with an external circuit to form a current loop. When the positive and negative electrodes react chemically with the electrolyte, current will flow through the current loop.
  • an electrolyte is provided in the casing, and at least two opposite extension ends of the bare cell are configured to be immersed in the electrolyte all the time.
  • the extension end of the bare cell is always immersed in the electrolyte, which can provide a sufficient amount of electrolyte to be sucked into the gap between the pole pieces, thereby reducing the probability of lithium deposition and ensuring the performance of the battery.
  • Another aspect of the present application also provides a battery pack, including at least two of the above-mentioned battery cores, and two binding parts adapted to the shape of the battery cores; at least two of the battery cores are stacked in the height direction together, and are bound between two said binding parts.
  • the battery pack is provided with at least two battery cells between the two binding parts, and the number of battery cells can be set according to the power demand of the electrical equipment, which can at least meet the minimum power consumption demand.
  • the positive pole and the negative pole between two adjacent battery cells are connected together through the first adapter piece, so as to Two adjacent cells are connected in series.
  • the battery cells in the battery pack are connected in series through the first adapter sheet.
  • the battery pack only leads out the positive lead-out wire and the negative lead-out wire, and the positive lead-out wire and the negative lead-out wire are then electrically connected to the external circuit.
  • the overall structure is compact and Simple.
  • the battery pack of the present application includes at least two of the above-mentioned electric cores, and two binding parts adapted to the shape of the electric cores; stacked together in the direction and bound between two said binding parts.
  • the battery pack can make full use of the structure of the binding part to arrange more battery cells per unit volume.
  • the positive and negative poles between two adjacent battery cells are connected through the second adapter sheet together to connect two adjacent cells in series.
  • a plurality of battery cells in the battery pack are connected in series through the second adapter piece, and the positive lead-out wire and the negative lead-out wire of the battery pack are electrically connected to the external circuit.
  • the overall structure is compact and simple.
  • the battery pack of the present application includes a plurality of the above-mentioned electric cores, and two binding parts adapted to the shape of the electric cores; stacked together, at least two of the battery cores are stacked together in the height direction, and a plurality of the battery cores are bound between the two binding parts.
  • the battery pack can make full use of the structure of the binding part to arrange more battery cells per unit volume.
  • the positive pole and the negative pole between two adjacent battery cells are connected together through the first adapter piece, so as to Two adjacent batteries are connected in series;
  • the positive and negative poles between the adjacent two battery cells are connected together through the second adapter piece to connect the two adjacent battery cells string together.
  • the multiple cells in the battery pack of the present application are connected in series through the first adapter piece and the second adapter piece, the positive lead-out line and the negative lead-out line, and the positive lead-out line and the negative lead-out line are then electrically connected to the external circuit,
  • the overall structure is compact and simple.
  • the liquid level of the electrolyte in the casing is below the middle area of the bare cells and above its extended end, so as to reserve a space for accommodating gas in the casing At the same time, it can also provide the electrolyte solution in the gap between the pole pieces, so as to reduce the probability of lithium precipitation and ensure the performance of the battery.
  • Fig. 1 is a three-dimensional structural schematic diagram of an embodiment of the electric core of the present application
  • Fig. 2 to Fig. 4 are respectively the front view, top view and side view structural schematic diagrams of an embodiment of the electric core of the present application under the use state;
  • Fig. 5 is the A-A direction sectional view of Fig. 3;
  • Fig. 6 is a partial enlarged view of I in Fig. 5;
  • Fig. 7 is the B-B direction sectional view of Fig. 3;
  • Fig. 8 is a partial enlarged view of II in Fig. 7;
  • FIG. 9 is a schematic perspective view of an embodiment of the battery pack of the present application.
  • Figures 10 to 13 are schematic diagrams of the front view, top view, left side view and right side view of an embodiment of the battery pack of the present application in use;
  • Fig. 14 is a C-C cross-sectional view of Fig. 11;
  • Fig. 15 is a sectional view taken along line D-D of Fig. 11 .
  • multiple refers to more than two (including two), and similarly, “multiple groups” refers to more than two groups (including two).
  • both poles will shrink to varying degrees, especially the anode shrinks to a greater degree, and then the poles will be located at the poles.
  • the electrolyte between the plates is squeezed out or the electrolyte in the shell is sucked between the pole pieces. This situation will affect the performance of the battery under certain working conditions, especially when the battery is discharged.
  • lithium ions when the battery is charged, lithium ions are detached from the cathode sheet of the bare cell and embedded in the anode sheet, causing the anode sheet to expand, squeezing the electrolyte between the anode sheet and the cathode sheet.
  • lithium ions when the battery is discharged, lithium ions are extracted from the anode sheet of the bare cell and embedded in the cathode sheet, causing the anode sheet and the cathode sheet to shrink, the binding force between the electrode sheets is reduced, and the gap between the electrode sheets becomes larger , will suck the electrolyte into the gap between the pole pieces.
  • the electrolyte In order to reserve space for the gas generated by the chemical reaction of the electrolyte, the electrolyte cannot completely fill the casing. During the battery discharge process, there is a problem that one end of the bare cell is not immersed in the electrolyte. In this case, there is no electrolyte to inhale in the gap between the pole pieces, or the electrolyte is inhaled in part of the gap between the pole pieces, and the other part only inhales a small amount of electrolyte or no electrolyte inhalation at all. Lithium precipitation will occur in the battery cell, which will affect the performance of the battery.
  • the present application provides an electric cell to reduce the possibility of lithium precipitation in the bare electric cell, thereby ensuring the performance of the battery.
  • the electric core of the present application includes a housing 10 and a bare electric core 11 located in the inner cavity of the housing; the bare electric core 11 has at least two opposite extension ends, And the middle area between the two opposite extension ends of the bare electric core 11; the two opposite extension ends of the bare electric core 11 are configured to be lower than the middle area of the bare electric core in the height direction.
  • the height direction refers to the thickness direction of the bare cell 11 when the battery is in use.
  • the bare cell 11 of the cell 1 forms a structure with a high middle and a low edge, the liquid level of the electrolyte in the housing 10 is below the middle area of the bare cell 11 and above its extended end, so that the liquid level in the housing 10 While reserving a space for containing the gas, it is ensured that the two extension ends of the bare cell 11 can always be immersed in the electrode solution, thereby reducing the probability of lithium deposition and ensuring the performance of the battery.
  • the housing 10 includes a housing body 100 and an end cover 101 , the end cover 101 covers the opening of the housing body 100 to isolate the internal environment of the battery cell 1 from the external environment.
  • the shape of the end cap 101 can be adapted to the shape of the housing body 100 to fit the housing.
  • the end cap 101 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap 101 is not easily deformed when it is squeezed and collided, so that the battery cell 1 can have a higher structure Strength, safety performance can also be improved.
  • Functional components such as positive poles and negative poles may be provided on the end cap 101 . The positive pole and the negative pole can be used to electrically connect with the bare cell 11 for outputting or inputting electric energy of the cell 1 .
  • the end cap 101 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 1 reaches a threshold value.
  • the material of the end cap 101 may also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover 101 , and the insulator can be used to isolate the electrical connection components in the housing 10 from the end cover 101 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the casing body 100 is a component for matching with the end cap 101 to form an internal environment of the cell 1 , wherein the formed internal environment can be used to accommodate the bare cell 11 , electrolyte and other components.
  • the housing main body 100 and the end cover 101 can be independent components, and an opening can be provided on the housing main body 100 , and the internal environment of the battery cell 1 can be formed by making the end cover 101 cover the opening at the opening. Without limitation, the end cover 101 and the housing main body 100 may also be integrated.
  • the casing 10 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the housing 10 can be determined according to the specific shape and size of the bare cell 11 .
  • the housing body can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in this embodiment of the present application.
  • the bare cell 11 is a component in the cell 1 where the electrochemical reaction occurs.
  • the bare cell 11 of the present application includes a positive electrode sheet (not shown in the figure), a separator (not shown in the figure) and a negative electrode sheet (not shown in the figure).
  • the positive electrode sheet, the separator, and the negative electrode sheet are stacked together sequentially, and the edge position in the circumferential direction of the bare cell 11 is configured to extend downward in the height direction.
  • the positive electrode active material on the positive electrode sheet, and a negative electrode active material on the negative electrode sheet.
  • the positive pole 112 on the body 10 is electrically connected to the negative pole (not shown in the figure) to form a current loop.
  • the diaphragm is made of insulating material, and is arranged between the positive electrode sheet and the negative electrode sheet to play an insulating role.
  • the positive electrode sheet, separator, and negative electrode sheet of the bare cell 11 of the present application are stacked together in sequence to form a square structure with four edges in the circumferential direction. These four edges extend downward relative to the central region thereof, that is to say, at least these four edges of the bare cell 11 are immersed in the electrolyte. When the battery is discharged, the positive and negative plates can draw the electrolyte into the gap between the two plates through these four edges.
  • the positive electrode sheet, separator, and negative electrode sheet of the bare cell 11 of the present application are stacked together in sequence to form a circular structure with circular edges in the circumferential direction.
  • the rounded edge extends downward relative to the central region thereof, that is to say, at least the rounded edge of the bare cell 11 is immersed in the electrolyte.
  • the positive and negative plates can draw the electrolyte into the gap between the two plates through the rounded edge.
  • the bare electric core 11 of the present application includes a positive electrode sheet, a separator, and a negative electrode sheet, and the positive electrode sheet, the separator, and the negative electrode sheet are wound together; the two ends perpendicular to the winding direction of the bare electric core 11 Two extension ends respectively.
  • the manufacturing process of the bare electric core 11 includes: first stacking the positive electrode sheet, the separator, and the negative electrode sheet, and then winding clockwise or counterclockwise in one direction from one edge until reaching the edge opposite to the edge; and then The edge is bonded to the outer peripheral wall of the rolled cylinder, and then the cylindrical bare cell 11 is flattened; finally, it is bent into a structure in which the middle area is higher than the two extension ends. Based on this manufacturing process, the two ends of the bare electric core 11 perpendicular to the winding direction form extension ends, and the extension ends are based on the middle area of the bare electric core 11 in the height direction.
  • the positive electrode piece and the negative electrode piece can suck the electrolyte solution into the gap between the two electrode pieces through the two extension ends.
  • the bare electric core 11 of the present application has an arc-shaped structure. Specifically, the middle area of the bare electric core 11 protrudes upwards relative to two opposite extension ends, and the two opposite extension ends The end and middle areas transition through smooth surfaces.
  • the arc-shaped bare cell 11 can avoid forming a stress concentration area inside it, and can improve its ability to resist external forces while ensuring the service life of the bare cell 11 .
  • the housing 10 of the present application has a shape suitable for the bare cell 11 , specifically, the housing 10 is also in an arc-shaped structure.
  • the shapes of the casing 10 and the bare cell 11 match each other, and the bare cell 11 can make full use of the inner cavity space of the casing 10 to ensure that the cell structure is compact, and the battery pack per unit volume can accommodate more
  • the battery cell increases the energy storage capacity of the battery pack.
  • the bare cell 11 of the present application further includes a positive pole tab 110 and a negative pole tab (not shown in the figure), and the positive pole tab 110 and the negative pole tab are respectively located on the bare battery.
  • the two opposite extension ends of the core 11 are electrically connected to the positive pole 112 and the negative pole respectively provided at two ends of the housing 10 .
  • the positive pole lug 110 is used to electrically connect the positive pole piece and the positive pole column 112 on the housing 10
  • the negative pole lug is used to electrically connect the negative pole piece to the negative pole pole on the housing 10 .
  • the positive pole 112 and the negative pole are used for electrical connection with an external circuit to form a current loop. When the positive and negative electrodes react chemically with the electrolyte, current will flow through the current loop.
  • the parts of the positive electrode sheet and the negative electrode sheet with active material constitute the main body of the bare cell 11
  • the parts of the positive electrode sheet and the negative electrode sheet without active material respectively constitute the positive electrode tab 110 and the negative electrode tab.
  • the positive tab 110 and the negative tab can also be formed independently of the positive tab and the negative tab, and then the positive tab 110 is electrically connected to the positive tab by means of laser welding, and the negative tab is electrically connected to the negative tab.
  • the bare electric core 11 of the present application also includes a positive pole tab 110 and a negative pole tab, and the positive pole tab 110 and the negative pole tab are respectively located on the same extension end of the bare electric core 11, so as to be connected with the The positive pole 112 separately disposed at one end of the housing 10 is electrically connected to the negative pole.
  • the housing 10 of the present application is provided with an electrolyte solution, and at least two opposite extension ends of the bare cell 11 are configured to be immersed in the electrolyte solution all the time.
  • the extension end of the bare cell 11 is always immersed in the electrolyte, which can provide sufficient electrolyte volume to be sucked into the gap between the pole pieces, thereby reducing the probability of lithium deposition and ensuring the performance of the battery.
  • At least two bare cells 11 are arranged in the housing 10 , for example, two, three or more are arranged. At least two bare cells 11 are connected in parallel in the housing 10 to improve the energy storage capacity of the entire cell.
  • the present application also provides a battery pack, please refer to Fig. 9 to Fig. 15, the battery pack includes two binding parts 2 adapted to the shape of the battery cell 1, and at least two of the above-mentioned any one of the embodiments As for the electric core 1 , at least two electric cores 1 are stacked together in the height direction and bound between two binding parts 2 .
  • the function of the binding part 2 is to bind at least two electric cores 1, so as to limit the relative movement between at least two electric cores 1, and prevent at least two electric cores 1 from arbitrarily moving relative to each other and destroying the electrical connection between them. Therefore, the stability and safety of the electrical connection relationship between at least two battery cells 1 are ensured.
  • the battery pack is provided with at least two battery cells 1 between the two binding parts 2, and the number of battery cells can be set according to the power demand of the electric equipment, which can at least meet the minimum power demand.
  • Each battery cell 1 in the battery pack can be electrically connected to an external circuit, for example, the positive pole 112 and the negative pole of each battery cell are respectively electrically connected to an external circuit, and these external circuits are then integrated in series.
  • this battery pack structure introduces multiple external circuits, and an additional series integration circuit needs to be provided in the external circuits, so the structure is too complicated.
  • the battery pack of the present application includes a first adapter sheet 3, and the first adapter sheet 3 is configured to connect two adjacent battery cells 1 stacked in the height direction. Between the positive pole 112 and the negative pole, two adjacent cells 1 are connected in series.
  • the four cells 1 stacked in the height direction are respectively marked as the first cell, the second cell, the third cell and the fourth cell from top to bottom.
  • the first cell and the second cell are connected through the first first connecting sheet 3
  • the second cell and the third cell are connected through the second first adapter sheet 3
  • the third cell and the fourth The battery cells are connected through the third first adapter piece 3 .
  • the battery cells 1 in the battery pack are connected in series through the first adapter piece 3, the battery pack only leads out the positive lead-out wire 5 and the negative lead-out wire 6, and the positive lead-out wire 5 and the negative lead-out wire 6 are connected to the external circuit connection, the overall structure is compact and simple.
  • the battery pack of the present application has four battery cells 1 stacked in the height direction.
  • the battery pack includes two binding parts 2 adapted to the shape of the battery cell, and at least two battery cells 1 as described in any one of the above embodiments, at least The two electric cores 1 are stacked together in a direction perpendicular to the extending direction of the electric cores 1 , and bound between the two binding parts 2 .
  • the direction perpendicular to the extension of the cell 1 refers to the direction perpendicular to the paper.
  • the structure of the binding portion 2 can be fully utilized to arrange more battery cells 1 per unit volume.
  • the battery pack of the present application further includes a second adapter sheet 4 configured to connect two adjacent battery cells 1 stacked in a direction perpendicular to the extending direction of the battery cells 1 .
  • the positive pole 112 and the negative pole are used to connect two adjacent cells 1 in series.
  • a plurality of battery cells 1 in the battery pack are connected in series through the second adapter piece 4, the positive lead-out wire 5 and the negative lead-out wire 6 of the battery pack, and the positive lead-out wire 5 and the negative lead-out wire 6 are then electrically connected to an external circuit,
  • the overall structure is compact and simple.
  • the battery pack of the present application includes two binding parts 2 adapted to the shape of the cell 1; it also includes the cell 1 as described in any embodiment above; the cell 1 is set There are multiple, at least two electric cores 1 are stacked together in the height direction, at least two electric cores 1 are stacked together in a direction perpendicular to the extension of the electric cores 1 , and are bound between two binding parts 2 .
  • the battery pack of the present application includes forty-eight electric cells 1, wherein the forty-eight electric cells 1 are divided into twelve groups, and each group includes four electric cells 1, And the four battery cells 1 are stacked together in the height direction. Twelve groups are stacked together along the extension perpendicular to the cell 1 .
  • the battery pack of the present application includes a first adapter piece 3 and a second adapter piece 4 .
  • the first adapter sheet 1 is configured to connect the positive pole 112 and the negative pole between two adjacent battery cells 1 stacked in the height direction, so as to connect the two adjacent battery cells 1 in series.
  • the second adapter piece 4 is configured to connect the positive pole 112 and the negative pole between two adjacent electric cores 1 stacked in the direction perpendicular to the extension of the electric core 1, so that the two adjacent electric cores 1 in series.
  • the four cells 1 stacked in the height direction are respectively marked as the first cell, the second cell, the third cell and the fourth cell from top to bottom.
  • the first cell and the second cell are connected through the first first connecting sheet 3
  • the second cell and the third cell are connected through the second first adapter sheet 3
  • the third cell and the fourth The battery cells are connected through the third first adapter piece 3 .
  • the battery pack of the present application includes two binding parts 2 , and the two binding parts 2 are arc-shaped.
  • the battery pack also includes forty-eight battery cells 1, wherein the forty-eight battery cells 1 are divided into twelve groups of battery cells, and each group of battery cells includes four battery cells 1, and the four battery cells 1 are in the height direction stacked together. Twelve battery core groups are stacked together along the extension perpendicular to the battery core 1 . Forty-eight battery cells 1 are bound between two binding parts 2 . And forty-eight battery cells 1 are sequentially connected in series through the first adapter piece 3 and the second adapter piece 4, and finally lead out the positive lead-out wire 5 and the negative lead-out wire 6 for electrical connection with an external circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电芯和电池包,该电芯包括壳体、以及位于壳体内腔中的裸电芯;所述裸电芯至少具有相对的两个延伸端,以及位于裸电芯相对两个延伸端之间的中部区域;所述裸电芯相对的两个延伸端被构造为在高度方向上低于裸电芯的中部区域。由于该电芯的裸电芯形成一个中间高边缘低的结构,壳体内电解液液面高度位于裸电芯的中部区域以下,且在其延伸端以上,以便在壳体预留容纳气体的空间的同时,还可以为提供吸入极片之间间隙内电解液,从而可以降低发生析锂现象的概率,保证电池的性能。

Description

电芯和电池包
本申请要求享有于2021年12月01日提交的名称为“电芯和电池包”的中国专利申请202122992772.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池生产技术领域,特别涉及一种电芯和电池包。
背景技术
随着现代社会的发展和人们环保意识的增强,越来越多的设备选择以可充电的二次电池作为电源,如手机、笔记本电脑、电动工具、电动汽车和储能电站等等,这为可充电的二次电池的应用与发展提供了广阔的空间。
电动汽车和储能电站等一般需要使用具有大容量的动力电池作为电源。这些动力电池除了具有高容量,还应当具有良好的安全性,才能达到使用的标准和满足人们的需求。
电池包括至少一个电芯,电芯包括壳体和封装在壳体内的裸电芯,壳体上的阳极柱用于连接外部电路和裸电芯上的阳极片,壳体上的阴极柱用于连接外部电路和裸电芯上的负极极耳,壳体上还开设有注液口,以将电解液注入壳体内。
电池在充放电过程中,因锂离子在裸电芯的阳极片和阴极片之间的转移,两个极片都会产生不同程度的收缩,尤其是阳极片收缩程度较大,继而会将位于两个极片之间的电解液挤出或者将壳体内的电解液吸入两个极片之间。这种情况在特定工况下会影响到电池性能,尤其是在电池放电时尤为明显。
技术问题
为了解决电池放电工况下裸电芯的极片之间无法吸入电解液而发生析锂现象问题,本申请一方面提供了一种电芯,以降低发生析锂现象的概率,保证电池的性能。
技术解决方案
本申请的电芯包括壳体、以及位于壳体内腔中的裸电芯;所述裸电芯至少具有相对的两个延伸端,以及位于裸电芯相对两个延伸端之间的中部区域;所述裸电芯相对的两个延伸端被构造为在高度方向上低于裸电芯的中部区域。
本申请的电芯的一个实施例中,所述裸电芯包括正极片、隔膜、负极片,所述正极片、隔膜、负极片依次堆叠在一起,所述裸电芯周向方向上的边缘位置被构造为在高度方向上向下延伸。
电池本体的周向方向上的边缘浸入电解液内。当电池放电时,正极片和负极片可以通过该边缘将电解液吸入两个极片之间的间隙内。
本申请的电芯的一个实施例中,所述裸电芯包括正极片、隔膜、负极片,所述正极片、隔膜、负极片卷绕在一起;位于垂直于裸电芯卷绕方向上的两端分别为两个所述的延伸端。
当电池放电时,正极片和负极片可以通过该这两个延伸端将电解液吸入两个极片之间的间隙内
本申请的电芯的一个实施例中,所述裸电芯呈弧形结构;所述壳体具有与裸电芯相适配的形状。
弧形结构的裸电芯可以避免在其内部形成应力集中区域,在保证裸电芯使用寿命的同时能提高其抗外力的能力。且,壳体和裸电芯两者形状相互匹配,裸电芯可以充分利用壳体内腔空间,保证电芯结构紧凑,且在单位体积的电池包能容纳更多的电芯,提高电池包的蓄能量。
本申请的电芯的一个实施例中,所述裸电芯设置有至少两个,至少两个所述裸电芯在所述壳体内并联在一起。
本申请的实施中,壳体内适于放置两个裸电芯或者更多个,至少两个裸电芯在壳体内并联在一起后,可以提高整个电芯的电流,提高电芯的性能。
本申请的电芯的一个实施例中,所述裸电芯还包括正极极耳、负极极耳,所述正极极耳、负极极耳分别位于裸电芯相对的两个延伸端上,或者位于裸电芯同一延伸端上。
正极极耳用于电连接正极片和壳体上的正极柱,负极极耳用于电连接负极片和壳体上的负极柱。正极柱和负极柱用于与外部电路电连接形成电流回路。正极片和负极片与电解液发生化学反应时,该电流回路上将会有电流通过。
本申请的电芯的一个实施例中,在所述壳体内设有电解液,至少所述裸电芯相对的两个延伸端被构造为始终浸入到所述电解液中。
裸电芯的延伸端始终浸入电解液中,可以提供充足的电解液量吸入极片之间间隙内,从而可以降低发生析锂现象的概率,保证电池的性能。
本申请另一方面还提供一种电池包,包括至少两个上述的电芯,以及两个与所述电芯形状相适配的束缚部;至少两个所述电芯在高度方向上堆叠在一起,且被束缚在两个所述束缚部之间。
电池包在两个束缚部之间设置至少两个电芯,可以根据用电设备的需电量来设置电芯的数量,至少可以满足最小的用电需求。
本申请的电池包的一个实施例中,在高度方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第一转接片连接在一起,以将相邻两个电芯串联在一起。
该电池包内的多个电芯之间通过第一转接片完成串联,电池包只引出正极引出线和负极引出线,正极引出线和负极引出线再与外部电路电连接,整体结构紧凑且简单。
本申请的电池包的一个实施例中,包括至少两个上述的电芯,以及两个与所述电芯形状相适配的束缚部;至少两个所述电芯在垂直于电芯延伸的方向上堆叠在一起,且被束缚在两个所述束缚部之间。
该电池包可以充分利用束缚部的结构能在单位体积上布置更多的电芯。
本申请的电池包的一个实施例中,在垂直于电芯延伸的方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第二转接片连接在一起,以将相邻两个电芯串联在一起。
该电池包内的多个电芯之间通过第二转接片完成串联,电池包正极引出线和负极引出线,正极引出线和负极引出线再与外部电路电连接,整体结构紧凑且简单。
本申请的电池包的一个实施例中,包括多个上述的电芯,以及两个与所述电芯形状相适配的束缚部;至少两个所述电芯在垂直于电芯延伸的方向上堆叠在一起,至少两个所述电芯在高度方向上堆叠在一起,且多个所述电芯被束缚在两个所述束缚部之间。
该电池包可以充分利用束缚部的结构能在单位体积上布置更多的电芯。
本申请的电池包的一个实施例中,在高度方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第一转接片连接在一起,以将相邻两个电芯串联在一起;
在垂直于电芯延伸的方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第二转接片连接在一起,以将相邻两个电芯串联在一起。
本申请的电池包内的多个电芯之间通过第一转接片和第二转接片完成串联,正极引出线和负极引出线,正极引出线和负极引出线再与外部电路电连接,整体结构紧凑且简单。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
有益效果
由于该电芯的裸电芯形成一个中间高边缘低的结构,壳体内电解液液面高度位于裸电芯的中部区域以下,且在其延伸端以上,以便在壳体预留容纳气体的空间的同时,还可以为提供吸入极片之间间隙内电解液,从而可以降低发生析锂现象的概率,保证电池的性能。
附图说明
通过阅读对下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是本申请的电芯的一个实施例的立体结构示意图;
图2至图4分别是本申请的电芯的一个实施例使用状态下的主视、俯视和侧视结构示意图;
图5是图3的A-A向剖视图;
图6是图5的Ⅰ处局部放大图;
图7是图3的B-B向剖视图;
图8是图7的Ⅱ处局部放大图;
图9是本申请的电池包的一个实施例的立体结构示意图;
图10至图13分别是本申请的电池包的一个实施例使用状态下的主视、俯视、左侧视和右侧视结构示意图;
图14是图11的C-C向剖视图;
图15是图11的D-D向剖视图。
图1和图15中各组件名称和附图标记之间的一一对应关系如下:
1电芯、10壳体、100壳体主体、101端盖、11裸电芯、110正极极耳、112正极柱、2束缚部、3第一转接片、4第二转接片、5正极引出线、6负极引出线。
本发明的实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
电池在充放电过程中,因锂离子在裸电芯的阳极片和阴极片之间的转移,两个极片都会产生不同程度的收缩,尤其是阳极片收缩程度较大,继而会将位于极片之间的电解液挤出或者将壳体内的电解液吸入极片之间。这种情况在特定工况下会影响到电池性能,尤其是在电池放电时尤为明显。
详细地,当电池充电时,锂离子从裸电芯的阴极片中脱离,嵌入到阳极片中,造成阳极片膨胀,挤压阳极片和阴极片之间的电解液。反之,当电池放电时,锂离子从裸电芯的阳极片脱出,并嵌入到阴极片中,引起阳极片、阴极片收缩,极片之间的束缚力降低,极片之间的缝隙变大,会将电解液吸入到极片之间的间隙中。
为了给电解液化学反应产生的气体预留空间,电解液不能完全充满壳体,电池放电过程中,存在裸电芯的一端没有浸入到电解液中的问题。在这种情况下,极片之间的间隙则无电解液可吸入,或者极片之间的部分间隙中吸入了电解液,另一部分则只吸入少量电解液或完全没有电解液吸入,这样裸电芯将会出现析锂现象,继而影响电池的性能。
为此,本申请提供了一种电芯,以降低裸电芯出现析锂现象的可能性,从而保证电池的性能。
参见图1至图8,根据本申请的一些实施例,本申请的电芯包括壳体10、以及位于壳体内腔中的裸电芯11;裸电芯11至少具有相对的两个延伸端,以及位于裸电芯11相对两个延伸端之间的中部区域;裸电芯11相对的两个延伸端被构造为在高度方向上低于裸电芯的中部区域。其中,高度方向是指电池在使用状态下裸电芯11的厚度方向。
由于该电芯1的裸电芯11形成一个中间高边缘低的结构,壳体10内电解液液面高度位于裸电芯11的中部区域以下,且在其延伸端以上,以便在壳体10预留容纳气体的空间的同时,保证了裸电芯11的两个延伸端可以始终浸入到电极液中,从而可以降低发生析锂现象的概率,保证电池的性能。
其中,壳体10包括壳体主体100和端盖101,端盖101盖合于壳体主体100的开口处以将电芯1的内部环境隔绝于外部环境的部件。
不限地,端盖101的形状可以与壳体主体100的形状相适应以配合壳体。可选地,端盖101可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖101在受挤压碰撞时就不易发生形变,使电芯1能够具备更高的结构强度,安全性能也可以有所提高。端盖101上可以设置有如正极柱和负极柱等的功能性部件。正极柱和负极柱可以用于与裸电芯11电连接,以用于输出或输入电芯1的电能。
在一些实施例中,端盖101上还可以设置有用于在电芯1的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖101的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖101的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体10内的电连接部件与端盖101,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体主体100是用于配合端盖101以形成电芯1的内部环境的组件,其中,形成的内部环境可以用于容纳裸电芯11、电解液以及其他部件。壳体主体100和端盖101可以是独立的部件,可以于壳体主体100上设置开口,通过在开口处使端盖101盖合开口以形成电芯1的内部环境。不限地,也可以使端盖101和壳体主体100一体化。壳体10可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体10的形状可以根据裸电芯11的具体形状和尺寸大小来确定。壳体主体的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
裸电芯11是电芯1中发生电化学反应的部件。
根据本申请的一个实施例,本申请的裸电芯11包括正极片(图中未示出)、隔膜(图中未示出)和负极片(图中未示出)。其中,正极片、隔膜、负极片依次堆叠在一起,裸电芯11周向方向上的边缘位置被构造为在高度方向上向下延伸。
其中,正极片上具有正极活性物质,负极片上具有负极活性物质,当裸电芯11与电解液接触时,正极活性物质和负极活性物质与电解液发生化学反应,且正极片和负极片分别与壳体10上的正极柱112和负极柱(图中未示出)电连接而形成电流回路。
隔膜由绝缘材质制成,设置在正极片和负极片之间以起到绝缘作用。
根据本申请的一个实施例,本申请的裸电芯11的正极片、隔膜、负极片依次堆叠在一起形成方形结构,其周向方向上具有四个边缘。这四个边缘相对于其中部区域向下延伸,也就是说,裸电芯11的至少这四个边缘浸入电解液内。当电池放电时,正极片和负极片可以通过这四个边缘将电解液吸入两个极片之间的间隙内。
根据本申请的一个实施例,本申请的裸电芯11的正极片、隔膜、负极片依次堆叠在一起形成圆形结构,其周向方向上具有圆形边缘。圆形边缘相对于其中部区域向下延伸,也就是说,裸电芯11的至少圆形边缘浸入电解液内。当电池放电时,正极片和负极片可以通过该圆形边缘将电解液吸入两个极片之间的间隙内。
根据本申请的一个实施例,本申请的裸电芯11包括正极片、隔膜、负极片,正极片、隔膜、负极片卷绕在一起;位于垂直于裸电芯11卷绕方向上的两端分别为两个的延伸端。
该裸电芯11的制作过程包括:先将正极片、隔膜、负极片三者堆叠放置,然后在从其一个边缘沿一个方向顺时针或逆时针卷绕直至达到与该边缘相对的边缘;然后将该边缘粘接在卷绕形成的圆柱的外周壁上,再将该圆柱形裸电芯11压扁;最后将其折弯成中部区域高于两个延伸端的结构。基于这种制作过程,这种裸电芯11上位于垂直于卷绕方向上的两个端部形成延伸端,该延伸端在高度方向上基于裸电芯11的中部区域。
当电池放电时,正极片和负极片可以通过该这两个延伸端将电解液吸入两个极片之间的间隙内。
根据本申请的一个实施例,参见图2,本申请的裸电芯11呈弧形结构,具体地,裸电芯11的中部区域相对于两个相对延伸端向上凸起,且两个相对延伸端和中部区域通过平滑的曲面过渡。
弧形结构的裸电芯11可以避免在其内部形成应力集中区域,在保证裸电芯11使用寿命的同时能提高其抗外力的能力。
本实施例中,本申请的壳体10具有与裸电芯11相适配的形状,具体地,该壳体10也呈弧形结构。如此设置,壳体10和裸电芯11两者形状相互匹配,裸电芯11可以充分利用壳体10的内腔空间,保证电芯结构紧凑,且在单位体积的电池包能容纳更多的电芯,提高电池包的蓄能量。
根据本申请的一个实施例,参见图6,本申请的裸电芯11还包括正极极耳110、负极极耳(图中未示出),且正极极耳110和负极极耳分别位于裸电芯11相对的两个延伸端上,以便分别与分设在壳体10两端的正极柱112和负极柱电连接。
其中,正极极耳110用于电连接正极片和壳体10上的正极柱112,负极极耳用于电连接负极片和壳体10上的负极柱。正极柱112和负极柱子用于与外部电路电连接形成电流回路。正极片和负极片与电解液发生化学反应时,该电流回路上将会有电流通过。
正极片和负极片具有活性物质的部分构成裸电芯11的主体部,正极片和负极片不具有活性物质的部分分别各自构成正极极耳110和负极极耳。当然,正极极耳110和负极极耳也可以独立于正极片和负极片成型,再通过激光焊等方式将正极极耳110电连接在正极片上,将负极极耳电连接在负极片上。
根据本申请的另一个实施例,本申请的裸电芯11还包括正极极耳110、负极极耳,且正极极耳110和负极极耳分别位于裸电芯11同一延伸端上,以便分别与分设在壳体10一端的正极柱112和负极柱子电连接。
如前所述,裸电芯11的正极片和负极片需要与电解液发生化学反应继而在电流回路中产生电流。根据本申请的一个实施例,本申请的壳体10内设有电解液,至少裸电芯11相对的两个延伸端被构造为始终浸入电解液中。
裸电芯11的延伸端始终浸入电解液中,可以提供充足的电解液量以吸入极片之间间隙内,从而可以降低发生析锂现象的概率,保证电池的性能。
根据本申请的另一个实施例,壳体10内设置有至少两个裸电芯11,例如设置两个、三个或者更多个。至少两个裸电芯11在壳体10内并联在一起,以提高整个电芯的储能能力。
除上述电池外,本申请还提供一种电池包,请参见图9至图15,该电池包包括两个与电芯1形状相适配的束缚部2,以及至少两个如上任意一实施例所述的电芯1,至少两个电芯1在高度方向上堆叠在一起,且被束缚在两个束缚部2之间。
其中,束缚部2的作用在于将至少两个电芯1束缚,以限制至少两个电芯1之间的相对运动,防止至少两个电芯1随意相对运动而破坏相互之间的电连接,从而保证至少两个电芯1之间的电连接关系稳定性和安全性。
电池包在两个束缚部2之间设置至少两个电芯1,可以根据用电设备的需电量来设置电芯的数量,至少可以满足最小的用电需求。
电池包内的各个电芯1可以分别与外部电路电连接,比如每个电芯的正极柱112和负极柱分别与外部电路电连接,这些外部电路再被串联整合。但是,这种电池包结构引入多个外部电路,而且外部电路中还需要另外设置串联整合电路,结构过于复杂。
为此,根据本申请的一个实施例,本申请的电池包包括第一转接片3,第一转接片3被构造为用于连接在高度方向上堆叠的相邻两个电芯1之间的正极柱112和负极柱,以将相邻两个电芯1串联。
比如,在高度方向上堆叠的四个电芯1由上至下分别记为第一电芯、第二电芯、第三电芯和第四电芯。其中,第一电芯和第二电芯通过第一个第一连接片3连接,第二电芯和第三电芯通过第二个第一转接片3连接,第三电芯和第四电芯通过第三个第一转接片3连接。
该电池包内的多个电芯1之间通过第一转接片3完成串联,电池包只引出正极引出线5和负极引出线6,正极引出线5和负极引出线6再与外部电路电连接,整体结构紧凑且简单。
根据本申请的一个实施例,参见图10,本申请的电池包在高度方向上堆叠了四个电芯1。
根据本申请的一个实施例,参见图12和图13,该电池包包括两个与电芯形状相适配的束缚部2,以及至少两个如上任意一实施例所述的电芯1,至少两个电芯1在垂直于电芯1延伸的方向上堆叠在一起,且被束缚在两个束缚部2之间。
参见图10,垂直于电芯1延伸方向是指垂直于纸面的方向。如此设置,可以充分利用束缚部2的结构能在单位体积上布置更多的电芯1。
同样,本申请的电池包还包括第二转接片4,第二转接片4被构造为用于连接在垂直于电芯1延伸的方向上堆叠的相邻两个电芯1之间的正极柱112和负极柱,以将相邻两个电芯1串联。
该电池包内的多个电芯1之间通过第二转接片4完成串联,电池包正极引出线5和负极引出线6,正极引出线5和负极引出线6再与外部电路电连接,整体结构紧凑且简单。
根据本申请的一个实施例,参见图10,本申请的电池包包括两个与电芯1形状相适配的束缚部2;还包括如上任意实施例所述的电芯1;电芯1设置有多个,至少两个电芯1在高度方向上堆叠在一起,至少两个电芯1在垂直于电芯1延伸的方向上堆叠在一起,且被束缚在两个束缚部2之间。
根据本申请的一个实施例,参见图11至图15,本申请的电池包包括四十八个电芯1,其中,四十八个电芯1均分为十二组,每组包括四个电芯1,且四个电芯1在高度方向上堆叠在一起。十二组沿垂直于电芯1延伸上堆叠在一起。
根据本申请的一个实施例,参见图12,本申请的电池包包括第一转接片3和第二转接片4。其中,第一转接片1被构造为用于连接在高度方向上堆叠的相邻两个电芯1之间的正极柱112和负极柱,以将相邻两个电芯1串联。第二转接片4被构造为用于连接在垂直于电芯1延伸的方向上堆叠的相邻两个电芯1之间的正极柱112和负极柱,以将相邻两个电芯1串联。
比如,在高度方向上堆叠的四个电芯1由上至下分别记为第一电芯、第二电芯、第三电芯和第四电芯。其中,第一电芯和第二电芯通过第一个第一连接片3连接,第二电芯和第三电芯通过第二个第一转接片3连接,第三电芯和第四电芯通过第三个第一转接片3连接。
本申请的电池包内的多个电芯1之间通过第一转接片3和第二转接片4完成串联,正极引出线5和负极引出线6再与外部电路电连接,整体结构紧凑且简单。
根据本申请的一个实施例,参见图14和15,本申请的电池包包括两个束缚部2,这两个束缚部2呈弧形。该电池包还包括四十八个电芯1,其中,四十八个电芯1均分为十二组电芯组,每组电芯组包括四个电芯1,且四个电芯1在高度方向上堆叠在一起。十二组电芯组沿垂直于电芯1延伸上堆叠在一起。四十八个电芯1被束缚在两个束缚部2之间。且四十八个电芯1通过第一转接片3和第二转接片4依次串联连接在一起,最后引出用于与外部电路电连接的正极引出线5和负极引出线6。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电芯,其中,包括壳体、以及位于壳体内腔中的裸电芯;所述裸电芯至少具有相对的两个延伸端,以及位于裸电芯相对两个延伸端之间的中部区域;所述裸电芯相对的两个延伸端被构造为在高度方向上低于裸电芯的中部区域。
  2. 根据权利要求1所述的电芯,其中,所述裸电芯包括正极片、隔膜、负极片,所述正极片、隔膜、负极片依次堆叠在一起,所述裸电芯周向方向上的边缘位置被构造为在高度方向上向下延伸。
  3. 根据权利要求1所述的电芯,其中,所述裸电芯包括正极片、隔膜、负极片,所述正极片、隔膜、负极片卷绕在一起;位于垂直于裸电芯卷绕方向上的两端分别为两个所述的延伸端。
  4. 根据权利要求1至3任一项所述的电芯,其中,所述裸电芯呈弧形结构;所述壳体具有与裸电芯相适配的形状。
  5. 根据权利要求1至4任一项所述的电芯,其中,所述裸电芯设置有至少两个,至少两个所述裸电芯在所述壳体内并联在一起。
  6. 根据权利要求1至5任一项所述的电芯,其中,所述裸电芯还包括正极极耳、负极极耳,所述正极极耳、负极极耳分别位于裸电芯相对的两个延伸端上,或者位于裸电芯同一延伸端上。
  7. 根据权利要求1至6任一项所述的电芯,其中,在所述壳体内设有电解液,至少所述裸电芯相对的两个延伸端被构造为始终浸入到所述电解液中。
  8. 根据权利要求2-6中的任一项所述的电芯,其中,所述裸电芯的正极片、隔膜、负极片依次堆叠在一起形成方形结构,其周向方向上具有四个边缘;所述四个边缘相对于其中部区域向下延伸,所述裸电芯的至少所述四个边缘浸入电解液内。
  9. 根据权利要求2-6中的任一项所述的电芯,其中,所述裸电芯的正极片、隔膜、负极片依次堆叠在一起形成圆形结构,其周向方向上具有圆形边缘;所述圆形边缘相对于其中部区域向下延伸,所述裸电芯的至少所述圆形边缘浸入电解液内。
  10. 根据权利要求1至9任一项所述的电芯,其中,所述壳体10包括壳体主体和端盖,所述端盖盖合于所述壳体主体的开口处以将所述电芯的内部环境隔绝于外部环境的部件。
  11. 根据权利要求10所述的电芯,其中,所述端盖上还设置有用于在所述电芯的内部压力或温度达到阈值时泄放内部压力的泄压机构。
  12. 一种电池包,其中,包括至少两个根据权利要求1至10任一项所述的电芯,以及两个与所述电芯形状相适配的束缚部;至少两个所述电芯在高度方向上堆叠在一起,且被束缚在两个所述束缚部之间。
  13. 根据权利要求12所述的电池包,其中,在高度方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第一转接片连接在一起,以将相邻两个电芯串联在一起。
  14. 一种电池包,其中,包括至少两个根据权利要求1至10任一项所述的电芯,以及两个与所述电芯形状相适配的束缚部;至少两个所述电芯在垂直于电芯延伸的方向上堆叠在一起,且被束缚在两个所述束缚部之间。
  15. 根据权利要求14所述的电池包,其中,在垂直于电芯延伸的方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第二转接片连接在一起,以将相邻两个电芯串联在一起。
  16. 一种电池包,其中,包括多个根据权利要求1至10任一项所述的电芯,以及两个与所述电芯形状相适配的束缚部;至少两个所述电芯在垂直于电芯延伸的方向上堆叠在一起,至少两个所述电芯在高度方向上堆叠在一起,且多个所述电芯被束缚在两个所述束缚部之间。
  17. 根据权利要求16所述的电池包,其中,
    在高度方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第一转接片连接在一起,以将相邻两个电芯串联在一起;
    在垂直于电芯延伸的方向上堆叠的至少两个电芯中,相邻两个电芯之间的正极柱、负极柱通过第二转接片连接在一起,以将相邻两个电芯串联在一起。
PCT/CN2022/133333 2021-12-01 2022-11-21 电芯和电池包 WO2023098509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22900314.0A EP4354636A1 (en) 2021-12-01 2022-11-21 Battery cell and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122992772.6U CN216958422U (zh) 2021-12-01 2021-12-01 电芯和电池包
CN202122992772.6 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098509A1 true WO2023098509A1 (zh) 2023-06-08

Family

ID=82306441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133333 WO2023098509A1 (zh) 2021-12-01 2022-11-21 电芯和电池包

Country Status (3)

Country Link
EP (1) EP4354636A1 (zh)
CN (1) CN216958422U (zh)
WO (1) WO2023098509A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216958422U (zh) * 2021-12-01 2022-07-12 宁德时代新能源科技股份有限公司 电芯和电池包

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943885A (zh) * 2013-01-18 2014-07-23 威力新能源(吉安)有限公司 一种弯形软包锂离子充电电池及其制作方法
CN203859195U (zh) * 2014-04-17 2014-10-01 惠州基安比新能源有限公司 一种极耳侧面收尾的弧形软包锂离子电池
CN104201300A (zh) * 2014-07-10 2014-12-10 浙江努奥罗新能源科技有限公司 一种锂电池
CN110048171A (zh) * 2019-05-28 2019-07-23 珠海格力电器股份有限公司 单体充电电池、充电电池组和充电电池包
CN216958422U (zh) * 2021-12-01 2022-07-12 宁德时代新能源科技股份有限公司 电芯和电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943885A (zh) * 2013-01-18 2014-07-23 威力新能源(吉安)有限公司 一种弯形软包锂离子充电电池及其制作方法
CN203859195U (zh) * 2014-04-17 2014-10-01 惠州基安比新能源有限公司 一种极耳侧面收尾的弧形软包锂离子电池
CN104201300A (zh) * 2014-07-10 2014-12-10 浙江努奥罗新能源科技有限公司 一种锂电池
CN110048171A (zh) * 2019-05-28 2019-07-23 珠海格力电器股份有限公司 单体充电电池、充电电池组和充电电池包
CN216958422U (zh) * 2021-12-01 2022-07-12 宁德时代新能源科技股份有限公司 电芯和电池包

Also Published As

Publication number Publication date
CN216958422U (zh) 2022-07-12
EP4354636A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
CN104871358B (zh) 包括阶梯结构的电池单体
CN104885255B (zh) 设有切口部分的电池单体和包括该电池单体的电池组
WO2015016465A1 (ko) 휘어진 형상의 전극 적층체 및 이를 포함하는 전지팩
KR100614391B1 (ko) 젤리롤 형 전극 조립체를 가지는 이차전지
CN104813530B (zh) 具有交错排列结构的电极组件的电池单体
WO2022156478A1 (zh) 电池单体、电池以及用电装置
CN212161993U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置
CN109461849A (zh) 电池单体、电池组和装置
WO2023098509A1 (zh) 电芯和电池包
WO2002043166A1 (en) Square battery
WO2018145361A1 (zh) 一种柱型电池及其用途
KR20090081966A (ko) 이차 전지
CN218498139U (zh) 卷芯、电池和用电设备
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
CN115064757B (zh) 电池单体、电池及用电装置
WO2023093331A1 (zh) 电芯组件、电池单体、电池及用电装置
CN114188673B (zh) 电芯及电子设备
WO2023115744A1 (zh) 一种便于成组的锂离子电池
WO2022246839A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
CN113540706A (zh) 电芯以及电池
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
CN219106241U (zh) 电池和车辆
CN219371158U (zh) 电池及电池组
CN209461604U (zh) 一种石墨烯锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022900314

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022900314

Country of ref document: EP

Effective date: 20240109