WO2023098489A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023098489A1
WO2023098489A1 PCT/CN2022/132763 CN2022132763W WO2023098489A1 WO 2023098489 A1 WO2023098489 A1 WO 2023098489A1 CN 2022132763 W CN2022132763 W CN 2022132763W WO 2023098489 A1 WO2023098489 A1 WO 2023098489A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
indication information
information
paging
service
Prior art date
Application number
PCT/CN2022/132763
Other languages
English (en)
French (fr)
Inventor
孙晓姬
黄泽旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098489A1 publication Critical patent/WO2023098489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel

Definitions

  • the embodiments of the present application relate to fields such as communications, and in particular, to a communication method and device.
  • the network side When a terminal device in an idle state has mobile terminal (MT) services, the network side will perform paging processing on the terminal device. For example, the mobility management network element sends a paging message to the access network device, and the access network device Then send a paging message to the terminal device. After the wireless connection is established between the terminal equipment and the network side, the MT service is connected.
  • MT mobile terminal
  • Embodiments of the present application provide a communication method and device for deciding which access network devices are to paging a terminal device.
  • a communication method wherein a data plane network element receives first information from an Internet protocol (internet protocol, IP) multimedia subsystem (IP multimedia subsystem, IMS) network element, and the first information includes a first Differentiated services code point (differentiated services code point, DSCP) information and first indication information, the first indication information is used to indicate a first service type, and the first service type is the service scope indicated by the first DSCP information One of the included service types; different service types included in the same service scope correspond to different paging strategies, and the paging strategy is used to indicate at least one access network device that needs to page the terminal device. Then, the data plane network element may send second indication information to a mobility management network element, where the second indication information is used to indicate the first service type included in the service scope indicated by the first DSCP information.
  • IP Internet protocol
  • IMS Internet multimedia subsystem
  • the IMS network element informs the data plane network element of the service type, and the data plane network element informs the mobility management network element of the service type, so that the mobility management network element can make a decision based on the paging policy associated with the service type Which access network devices perform paging for the terminal device, so as to avoid resource waste of the access network device and reduce the paging delay to the terminal device.
  • the first service type notified by the IMS network element to the data plane network element is a finer-grained service type within a larger service range
  • the paging strategy determined based on the finer-grained service type is more accurate and more accurate. Precise paging strategy can further optimize the resource usage of access network equipment and reduce the delay from paging to terminal equipment.
  • the second indication information may include the first DSCP information and third indication information, and the third indication information is used to indicate the first service type; the third indication information It may be the same as or different from the first indication information.
  • the second indication information may also be indication information corresponding to the first service type among the service types included in the service ranges respectively indicated by multiple DSCP information, and the multiple DSCP information includes the first DSCP information. For any network element, it can determine how to indicate the service type by itself, which is more controllable.
  • the first information may be a network layer protocol message, a transport layer protocol message, or an application layer protocol message.
  • Multi-layer protocol messages can indicate finer-grained service types and cover a wider range.
  • the first indication information may be included in the message header of the first information, which makes it easier to parse out the service type and has lower requirements on system performance. Or, include the first indication information in the message body of the first information.
  • the transport layer protocol message may be a Transmission Control Protocol TCP connection establishment request message.
  • the service type can be known before the service is established.
  • the data plane network element may obtain the first indication information by performing deep packet analysis (DPI) on the message body of the application layer protocol message.
  • DPI deep packet analysis
  • the data plane network element does not analyze and process the message body of the application layer protocol message, but directly transfers it out.
  • the data plane network element in this application can realize the analysis and processing of the message body of the application layer protocol message without changing the Some transmission mechanisms use the original DPI function of the user plane network element to realize service identification.
  • a communication method where a mobility management network element receives second indication information from a data plane network element, where the second indication information is used to indicate the first service included in the service scope indicated by the first DSCP information Type; different service types included in the same service scope correspond to different paging strategies, and the paging strategy is used to indicate at least one access network device that needs to page the terminal device. Then, the mobility management network element may determine the first paging strategy corresponding to the first service type according to the second indication information, and paging the terminal device as indicated by the first paging strategy At least one of the access network devices sends a paging message.
  • the data plane network element informs the mobility management network element of the service type, so that the mobility management network element decides which access network devices to page the terminal device based on the paging policy associated with the service type, In order to avoid resource waste of access network equipment and reduce paging delay to terminal equipment.
  • the first service type notified by the data plane network element to the mobility management network element is a finer-grained service type within a larger service range
  • the paging policy determined based on the finer-grained service type is more accurate
  • a more precise paging strategy can further optimize the resource usage of access network devices and reduce the paging delay to terminal devices.
  • the second indication information may include the first DSCP information and third indication information, and the third indication information is used to indicate the first service type; the third indication information It may be the same as or different from the first indication information.
  • the second indication information may also be indication information corresponding to the first service type among the service types included in the service ranges respectively indicated by multiple DSCP information, and the multiple DSCP information includes the first DSCP information. For any network element, it can determine how to indicate the service type by itself, which is more controllable.
  • the mobility management network element may respectively send paging messages to N (N ⁇ 1) access network devices indicated by the first paging strategy that need to page the terminal device ;
  • the paging message sent to the i-th access network device includes fourth indication information, and the fourth indication information is used to instruct the i-th access network device to paging the terminal device Priority, the i takes any positive integer from 1 to N.
  • each access network device can decide the paging packet loss rate in a congestion scenario based on its own paging priority, which can reduce the paging pressure of the access network device.
  • the access network device can try to ensure that paging messages with high priority are processed, and discard paging messages with low priority. It not only guarantees the success rate of paging, but also guarantees the requirements of different services.
  • a communication method where a data plane network element receives first information from an Internet Protocol Multimedia Subsystem IMS network element, where the first information includes first Differentiated Services Code Point DSCP information and first indication information,
  • the first indication information is used to indicate the first service type, and the first service type is one of the service types included in the service scope indicated by the first DSCP information; different service types included in the same service scope correspond to Different paging strategies, the paging strategy is used to indicate at least one access network device that needs to page the terminal device.
  • the data plane network element sends paging policy indication information to the mobility management network element, where the paging policy indication information is used to indicate a first paging policy, and the first paging policy is the first service The paging policy corresponding to the type.
  • the IMS network element informs the data plane network element of the service type, and the data plane network element determines the corresponding paging policy based on the service type, and informs the mobility management network element of the paging policy, so that mobility Based on the paging policy, the management network element decides which access network devices should page the terminal device, so as to avoid resource waste of the access network device and reduce the paging delay to the terminal device.
  • the paging strategy determined based on the finer-grained service type is more accurate and more accurate. Precise paging strategy can further optimize the resource usage of access network equipment and reduce the delay from paging to terminal equipment.
  • the difference between the third aspect and the first aspect includes: in the first aspect, the user plane network element sends service type indication information (that is, the second indication information) to the mobility management network element; and in the third aspect, the user plane network element The paging policy can be determined based on the service type, and the user plane network element sends the paging policy indication information to the mobility management network element.
  • service type indication information that is, the second indication information
  • the user plane network element sends the paging policy indication information to the mobility management network element.
  • a communication device in the fourth aspect, has the function of realizing the above-mentioned first aspect and any possible implementation of the first aspect, or realizing the above-mentioned second aspect and any possible implementation of the second aspect function, or realize the function in the third aspect and any possible implementation of the third aspect.
  • These functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • the hardware or software includes one or more functional modules corresponding to the above functions.
  • a communication device including a processor, and optionally, a memory; the processor is coupled to the memory; the memory is used to store computer programs or instructions; the processor, Used to execute part or all of the computer programs or instructions in the memory, when the part or all of the computer programs or instructions are executed, the data used to implement the above first aspect and any possible implementation method of the first aspect.
  • the function of the network element on the plane, or the function of the mobility management network element in the second aspect and any possible realization of the second aspect, or the data plane network element in the third aspect and any possible realization of the third aspect Function.
  • the present application provides a system-on-a-chip, which includes one or more processors (also referred to as processing circuits), and the electrical coupling between the processors and memories (also referred to as storage media)
  • the memory may or may not be located in the chip system; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the memory
  • a computer program or instruction, when part or all of the computer program or instruction is executed, is used to realize the function of the data plane network element in the above first aspect and any possible implementation method of the first aspect, or to realize the above second aspect
  • the function of the mobility management network element in any possible implementation of the aspect and the second aspect, or the function of the data plane network element in the third aspect and any possible implementation of the third aspect.
  • system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for realizing the functions in the first aspect and any possible implementation of the first aspect, or for realizing The second aspect and instructions for the functions in any possible implementation of the second aspect, or instructions for realizing the third aspect and any possible implementation of the third aspect.
  • a computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can execute the data network in the first aspect and any possible implementation method of the first aspect.
  • a computer program product includes computer program code, and when the computer program code is run on a computer, the computer executes the above first aspect and any possible implementation of the first aspect
  • the method performed by the data plane network element, or the method performed by the mobility management network element in the second aspect and any possible implementation of the second aspect, or the third aspect and any possible implementation of the third aspect A method executed by a data plane network element during implementation.
  • a communication system includes a data plane network element for performing the first aspect and any possible implementation method of the first aspect and a network element for performing the second aspect and the first aspect The mobility management network element in any possible implementation method in the second aspect.
  • Figure 1a and Figure 1b are respectively a schematic structural diagram of a communication system provided in the embodiment of the present application.
  • FIG. 2a is a schematic diagram of an Internet Protocol IP packet format provided in the embodiment of the present application.
  • FIG. 2b is a schematic diagram of a transmission control protocol TCP message format provided in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication process provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication process provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication process provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication process provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication process provided in an embodiment of the present application.
  • FIG. 8 is a structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 9 is a structural diagram of a communication device provided in an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as satellite communication systems and traditional mobile communication systems.
  • the satellite communication system may be integrated with a traditional mobile communication system (ie, a ground communication system).
  • Communication systems such as: wireless local area network (wireless local area network, WLAN) communication system, wireless fidelity (wireless fidelity, WiFi) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) ) system, LTE time division duplex (time division duplex, TDD), fifth generation (5th generation, 5G) system or new radio (new radio, NR), sixth generation (6th generation, 6G) system, and other future Communication systems, etc., also support communication systems that integrate multiple wireless technologies. For example, they can also be applied to non-terrestrial networks such as unmanned aerial vehicles, satellite communication systems, and high altitude platform station (HAPS) communications.
  • NTN is a system that integrates terrestrial mobile communication networks.
  • This application uses a 5G communication system as an example for illustration.
  • FIG. 1a is a schematic diagram of a 5G communication system architecture to which this application can be applied.
  • FIG. 1a is a schematic diagram of a 5G network architecture based on a service-based architecture.
  • FIG. 1 b is a schematic diagram of another 5G communication system architecture to which the present application can be applied.
  • FIG. 1b is a schematic diagram of a point-to-point-based 5G architecture.
  • the main difference between FIG. 1a and FIG. 1b is that the interfaces between network elements in FIG. 1a are service interfaces, and the interfaces between network elements in FIG. 1b are point-to-point interfaces.
  • the 5G network architecture shown in Figure 1a and Figure 1b may include a terminal device part, an access network part, and a core network part. Optionally, it also includes data network (data network, DN) and application function (application function, AF) network element parts.
  • the terminal accesses the core network through the access network, and the core network communicates with the DN or AF.
  • the functions of some of the network elements are briefly introduced and described below.
  • Terminal device also known as user equipment (UE) is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the (R)AN device in this application is a device that provides a wireless communication function for a terminal device, and the (R)AN device is also called an access network device.
  • the RAN equipment in this application includes but is not limited to: next-generation base station (g nodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • 5G evolved node B (evolved node B, eNB), radio network controller (radio network controller
  • the names of devices with base station functions may be different.
  • RAN Fifth Generation
  • gNB Fifth Generation NodeB
  • eNB evolved Node B
  • 3rd generation, 3G 3rd generation
  • the data network DN can deploy various services, and can provide data and/or voice services for terminal equipment.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • Sensors and control servers are deployed in DN, and the control server can provide services for sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is a company's internal office network, and the mobile phone or computer of the company's employees can be a terminal device, and the employee's mobile phone or computer can access information and data resources on the company's internal office network.
  • the application network element mainly supports interaction with the 3rd generation partnership project (3GPP) core network to provide services, such as influencing data routing decisions, policy control functions, or providing some third-party services to the network side.
  • 3GPP 3rd generation partnership project
  • the application network element may be an application function (application function, AF) network element.
  • the application network element may still be an AF network element, or may have other names, which are not limited in this application.
  • the core network part may include one or more of the following network elements:
  • the access management network element (also called the mobility management network element) is the control plane network element provided by the operator network, which is responsible for the access control and mobility management of the terminal equipment accessing the operator network, such as including the mobility status Manage, assign user temporary identities, authentication and user functions.
  • the access management network element may be an access and mobility management function (access and mobility management function, AMF) network element.
  • AMF access and mobility management function
  • the access management network element may still be an AMF network element, or may have other names, which are not limited in this application.
  • the session management network element is mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions include assigning IP addresses to users, selecting user-plane network elements that provide packet forwarding functions, and so on.
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element may still be an SMF network element, or may have other names, which are not limited in this application.
  • a user plane network element (also called a data plane network element) is responsible for forwarding and receiving user data in a terminal device. It can receive user data from the data network and transmit it to the terminal device through the access network device; the user plane network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions that provide services for terminal equipment in user plane network elements are managed and controlled by SMF network elements.
  • the user plane network element may be a user plane function (user plane function, UPF) network element.
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or may have other names, which are not limited in this application.
  • the data management network element is used to generate authentication credentials, user identification processing (such as storing and managing user permanent identities, etc.), access control and subscription data management, etc.
  • the data management network element may be a unified data management (unified data management, UDM) network element.
  • UDM unified data management
  • the unified data management may still be a UDM network element, or may have other names, which are not limited in this application.
  • the policy control network element mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the network functions of the control layer, and is responsible for obtaining user subscription information related to policy decisions.
  • the policy control network element may be a policy and charging rules function (policy and charging rules function, PCRF) network element.
  • policy control network element may be a policy control function (policy control function, PCF) network element.
  • policy control network element may still be a PCF network element, or may have other names, which are not limited in this application.
  • the network storage network element can be used to provide the network element discovery function, and provide network element information corresponding to the network element type based on the request of other network elements.
  • NRF also provides network element management services, such as network element registration, update, de-registration, network element status subscription and push, etc.
  • the network storage network element may be a network registry function (network repository function, NRF) network element.
  • NRF network repository function
  • the network storage network element may still be an NRF network element, or may have other names, which are not limited in this application.
  • the network opening function network element can be used to provide services and capabilities for safely opening services and capabilities provided by 3GPP network function equipment to the outside.
  • the network exposure function network element may be a network exposure function (network exposure function, NEF) network element.
  • NEF network exposure function
  • the network element with the network opening function may still be an NEF network element, or may have other names, which are not limited in this application.
  • Network slicing selects network elements, which can be used to select appropriate network slices for terminal services.
  • the network slice selection network element may be a network slice selection function (network slice selection function, NSSF) network element.
  • NSSF network slice selection function
  • the network element with the network opening function may still be an NSSF network element, or may have other names, which are not limited in this application.
  • Network data analysis network elements can be analyzed from various network functions (network function, NF), such as policy control network elements, session management network elements, user plane network elements, access management network elements, application function network elements (through the network capability opening function network elements) to collect data and perform analysis and prediction.
  • network function such as policy control network elements, session management network elements, user plane network elements, access management network elements, application function network elements (through the network capability opening function network elements) to collect data and perform analysis and prediction.
  • the network data analysis network element may be a network data analysis function (network data analytics function, NWDAF).
  • NWDAF network data analytics function
  • the network element with the network opening function may still be the NWDAF network element, or may have other names, which are not limited in this application.
  • the unified data storage network element is responsible for storing structured data information, including contract information, policy information, and network data or service data defined in a standard format.
  • the unified data storage network element may be a unified data storage (unified data repository, UDR).
  • the network element with the network opening function may still be a UDR network element, or may have other names, which are not limited in this application.
  • the above-mentioned network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • IP multimedia subsystem IP multimedia subsystem
  • IMS Internet protocol multimedia subsystem
  • the local subscriber server (home subscriber server, HSS) is used as a database for user information storage in the IMS, mainly storing user authentication information, specific information of subscribers, dynamic information of subscribers, network policy rules and device identification register information for User business data management. It is a logical entity that can physically consist of multiple physical databases.
  • Call session control function (call session control function, CSCF), is the core part of IMS, mainly used for SIP session control based on packet switching. In IMS, CSCF is responsible for processing the user's multimedia session.
  • the multimedia resource function (MRF) mainly completes the functions of multi-party calling and multimedia conference.
  • Gateway functions mainly include: breakout gateway control function (BGCF), media gateway control function (MGCF), IMS media gateway (media gateway, MGW) and signaling gateway (signaling gateway, SGW).
  • BGCF breakout gateway control function
  • MGCF media gateway control function
  • IMS media gateway media gateway, MGW
  • SGW signaling gateway
  • the seven-layer model also known as the open system interconnection (OSI) model
  • OSI open system interconnection
  • the seven layers of the OSI model from top to bottom are: application layer, presentation layer, session layer, transport layer, network layer, data link layer, and physical layer.
  • the upper layer i.e. application layer, presentation layer, session layer, transport layer
  • the lower 3 layers i.e. network layer, data link layer, physical layer
  • the TCP/IP protocol family is a four-layer protocol system, from bottom to top: data link layer, network layer, transport layer and application layer. Each layer performs different functions and is realized through several protocols, and the upper-layer protocol uses the services provided by the lower-layer protocol.
  • Application layer an interface between network services and end users.
  • the transport layer defines the protocol port number for transmitting data, as well as flow control and error checking.
  • the transport layer provides end-to-end communication between applications on two hosts. Different from the hop-by-hop communication method used by the network layer, the transport layer only cares about the origin and destination of the communication, and does not care about the transfer process of data packets.
  • Transport layer protocols include: transmission control protocol (transmission control protocol, TCP), user datagram protocol (user datagram protocol, UDP), etc.
  • the network layer performs logical address addressing and realizes path selection between different networks. Define the end-to-end packet transmission, define the logical address that can identify all nodes, and the way of routing implementation and learning.
  • Network layer protocols include: Internet protocol (internet protocol, IP) and the like. For example, how to deliver the data packet is determined according to the destination IP address of the data packet. If the data packet cannot be sent directly to the target host, then IP will find a suitable next hop router for it, and deliver the data packet to the router for forwarding. This process is repeated many times, and the packet eventually reaches the destination host, or is dropped due to delivery failure. IP uses hop by hop (hop by hop) to determine the communication path.
  • IP uses hop by hop (hop by hop) to determine the communication path.
  • the data link layer implements the network driver of the network card interface to handle the transmission of data on the physical medium (such as Ethernet, token ring, etc.).
  • IP Precedence is represented by the highest 3 bits, and 8 priorities can be defined, namely: 7 reserved, 6 reserved, 5 voice, 4 video conference, 3 call signal, 2 high priority data , 1 for medium priority data, 0 for best effort data. Priority can be applied to flow classification.
  • Source Port and Destination Port each 16 bits in length, specifies the source and destination applications for the encapsulated data.
  • Serial number The field length is 32 bits, which determines the location of the encapsulated data in the data stream sent by the sender.
  • Confirmation number The length is 32 bits, which determines the sequence number that the source expects to receive from the target next time, and implicitly confirms that the last data packet with this number has been received.
  • Header Length The length is 4 bits, specifying the header length in units of 32-bit words.
  • Flags 6 or 8 bits for flow and connection control. For example, 6 digits from left to right are: URG, ACK, PSH, RST, SYN, FIN.
  • Window size The field length is 16 bits, mainly used for flow control.
  • the window size indicates the size of the receiver's receive buffer.
  • Checksum The length is 16 bits, and the header and the encapsulated data are checked.
  • Urgent pointer the length is 16 bits, which is added to the sequence number to indicate the end of the urgent data.
  • Deep packet inspection is essentially a data packet filtering technology.
  • the so-called “depth” is relative to “common packet analysis”. Ordinary packet inspection only analyzes the IP quintuple (source address, destination address, source port, destination port, and protocol type) of the data packet.
  • DPI also increases the analysis of application layer payload (Payload), which can identify various application types and their contents. In short, the so-called “depth” is to see the actual business content of the data flow.
  • MT mobile terminal
  • the network side will perform paging processing for the UE, and after the UE establishes a wireless connection with the network side, the MT service is connected.
  • Many types of services are involved in the IMS system, for example, MT short message service (short messaging service, SMS) service, MT voice call (voice call) service, and the like. Requirements such as delay and reliability of different types of services will be different. For example, compared with the voice service, the short message service requires a slightly lower service connection delay.
  • different paging policies (or called paging reasons) can be set to optimize resource usage of access network equipment.
  • Step 300 the terminal device sends a message to the IMS network element, and the message includes a differentiated services code point (differentiated services code point, DSCP) value.
  • a differentiated services code point differentiated services code point, DSCP
  • the terminal device on the calling side sends a message to an IMS network element (such as a CSCF network element).
  • an IMS network element such as a CSCF network element
  • the terminal device on the calling side sends a message to the CSCF network element through the access network device and data plane network element on the calling side message, so that the CSCF network element can send a paging message to the terminal device on the called side through the data plane network element and access network device on the called side.
  • Step 301 The IMS network element sends a data message to a data plane network element (for example, a user plane function UPF or a user plane gateway GW-U), and the header of the data message carries a DSCP.
  • a data plane network element for example, a user plane function UPF or a user plane gateway GW-U
  • pack the DSCP value in the IP packet header For example, pack the DSCP value in the IP packet header.
  • the DSCP value is packed in the service type TOS identification byte as shown in Fig. 2a.
  • Step 302 The data plane network element sends a downlink message to the control plane network element (such as SMF), and the downlink message includes paging policy indicator (PPI) information.
  • the control plane network element such as SMF
  • PPI paging policy indicator
  • the data plane network element After the data plane network element receives the data packet, it maps the paging strategy to indicate the PPI based on the DSCP value.
  • the data plane network element carries the PPI information mapped by the DSCP in a downlink message (for example, a downlink data report (downlink data report)).
  • a downlink data report downlink data report
  • different DSCP values map to different PPI values.
  • control plane network element sends an acknowledgment (acknowledge, ACK) message to the data plane network element to indicate that the PPI information from the data plane network element is received.
  • acknowledgment acknowledgement
  • Step 303 The control plane network element performs message transfer (message transfer) to the mobility management network element (such as AMF), and informs the mobility management network element of the paging policy indication PPI information.
  • the mobility management network element such as AMF
  • the mobility management network element sends a response (response) message to the control plane network element to indicate that the PPI information from the control plane network element is received.
  • Step 304 The mobility management network element triggers a corresponding paging policy according to the PPI. That is, the paging message is sent to at least one access network device indicated by the paging policy that needs to page the terminal device.
  • the DSCP value itself is used to distinguish the priority of packets to implement traffic classification.
  • the method of mapping the paging policy through the DSCP value is not accurate enough to determine the access network device used for paging the terminal device.
  • this application proposes a method of determining the paging strategy based on the service type. For different types of services, setting different paging strategies can make the determination of the access network device used for paging the terminal device more accurate and avoid The resource waste of the access network equipment can also reduce the paging delay to the terminal equipment.
  • a communication method is provided; the method can be applied to the communication system shown in FIG. 1a or FIG. 1b.
  • the data plane network element mentioned below may be UPF, or GW-U, etc.
  • the mobility management network element may be MME, or AMF, etc.
  • the IMS network element may be a CSCF network element or the like.
  • Step 401 The IMS network element sends the first information to the data plane network element.
  • the data plane network element receives the first information from the IMS network element.
  • the first information includes first differential service code point DSCP information and first indication information.
  • the DSCP information carried in the first information is referred to as first DSCP information.
  • DSCP information can occupy 1 or more bits.
  • each DSCP information indicates its corresponding service scope, and each service scope includes one or more service types.
  • the first indication information may be used to indicate a first service type, and the first service type is one of the service types included in the service scope indicated by the first DSCP information.
  • the first indication information may occupy 1 or more bits.
  • the service scope is, for example, an IMS service scope, or a non-IMS service scope.
  • IMS business scope includes short message service SMS, voice call (voice call), fax or other business types that require special paging strategies.
  • the non-IMS business scope includes OTT (over the top, referring to the Internet over the operator) voice calls, OTT video calls and other business types.
  • the paging strategy is used to indicate at least one access network device that needs to page the terminal device.
  • the paging strategy is precise paging, and the precise paging is used to instruct the access network device (such as last gNB/eNB) where the terminal equipment camped on last time to page the terminal equipment.
  • the paging strategy is to perform paging within the range of the tracking area (tracking area, TA) list (list), and the paging within the range of the tracking area list is used to indicate the access network within the range of the tracking area list for which the terminal equipment is registered. device to page the terminal device.
  • the paging policy corresponding to the voice call service within the IMS service scope is to perform paging within the scope of the tracking area list, which can ensure that the UE is paged as soon as possible and the connection delay is guaranteed.
  • the paging policy corresponding to the short message service SMS service within the scope of the IMS service is precise paging. Waste of resources can be avoided.
  • the first information is a transport layer protocol message (a message may also be called a packet).
  • Transport layer protocol messages such as Transmission Control Protocol TCP messages, or User Datagram Protocol UDP messages.
  • TCP message When the first information is a TCP message, it may be a TCP connection establishment request message.
  • the TCP connection establishment request message is used to indicate the request to establish the connection between the IMS network element and the data plane network element. In this way, the service type can be known before the service is established.
  • the first information is an application layer protocol message.
  • Application layer protocol messages can also be called business messages.
  • session initiation protocol session initiation protocol (session initiation protocol, SIP) messages.
  • SIP session initiation protocol
  • the SIP message is, for example, an invite (invite) message.
  • the first message may be a network layer protocol message.
  • Network layer protocol messages may be IP messages, for example.
  • the message header of the first information may include the first indication information; or the message body of the first information may include the first indication information.
  • the first indication information is carried in the "option" bit as shown in FIG. 2a, and the first indication information may also be carried in the "data” bit as shown in FIG. 2a.
  • the first indication information may be carried in the "reserved” bit as shown in FIG. 2b, or the first indication information may be carried in the "data” bit as shown in FIG. 2b.
  • the message header of the first information may include the first DSCP information; or the message body of the first information may include the first DSCP information.
  • the first DSCP information is carried in the "option" bit as shown in FIG. 2a, and the first DSCP information may also be carried in the "data" bit as shown in FIG. 2a.
  • the first DSCP information may be carried in the "reserved” bit as shown in FIG. 2b, or the first DSCP information may be carried in the "data" bit as shown in FIG. 2b.
  • the data plane network element may obtain the first indication information by performing deep packet analysis (DPI) on the message body of the application layer protocol message.
  • DPI deep packet analysis
  • the data plane network element does not process the message body of the application layer message, but directly forwards it out.
  • the data plane network element can realize the analysis and processing of the message body of the application layer protocol message without changing the The existing transmission mechanism uses the original DPI function of the user plane network element to realize service identification.
  • Step 402 The data plane network element sends the second indication information to the mobility management network element, and correspondingly, the mobility management network element receives the second indication information from the data plane network element.
  • the second indication information may be used to indicate the first service type included in the service scope indicated by the first DSCP information.
  • the second indication information may include the first DSCP information and third indication information, where the third indication information is used to indicate the first service type.
  • the third indication information may be the same as or different from the first indication information.
  • the first indication information and the third indication information are the same.
  • the first indication information occupies 2 bits, and the value of 2 bits is 00 (that is, the value corresponding to the first service type agreed by the IMS network element and the data plane network element is 00).
  • the third indication information also occupies 2 bits, and the value of 2 bits is also 00 (that is, the value corresponding to the first service type agreed by the data plane network element and the mobility management network element is also 00).
  • the first indication information is different from the third indication information.
  • the number of bits occupied by the first indication information and the third indication information are the same, but the values of the bits are different for the first service type, then the first indication information and the third indication information are different.
  • the second indication information is indication information corresponding to the first service type among the service types included in the service ranges respectively indicated by multiple DSCP information, and the multiple DSCP information includes the Describe the first DSCP information. In this case, it can be considered that the second indication information does not include the first DSCP information. For any network element, it can determine how to indicate the service type by itself, which is more controllable.
  • DSCP information occupies 1 bit, 0 indicates DSCP1: IMS service, and 1 indicates DSCP2: non-IMS service.
  • the service type occupies 2 bits.
  • DSCP1 includes 3 service types: short message service SMS, voice call (voice call), and fax, respectively represented by 00, 01, and 10;
  • DSCP2 includes 2 service types: OTT voice call, OTT video call, They are represented by 00 and 01 respectively.
  • the first service type is the service type represented by 00 in DSCP2 (that is, an OTT voice call of a non-IMS service).
  • These 5 service types (3 service types included in DSCP1 and 2 service types included in DSCP2) are remarked as 000, 001, 010, 011, 100, and 101 respectively. If the service type represented by 00 in DSCP2 is marked with 011, the second indication information is 011.
  • the data plane network element may directly send the second indication information to the mobility management network element or send it to the mobility management network element through an intermediate network element (such as a control plane network element, such as an SMF network element) .
  • an intermediate network element such as a control plane network element, such as an SMF network element
  • Step 403 The mobility management network element determines the first paging strategy corresponding to the first service type according to the second indication information, and sends at least One (for example, N (N ⁇ 1)) access network devices sends a paging message.
  • the mobility management network element may analyze the first service type from the second indication information, and then according to the service The corresponding relationship between the type and the paging strategy determines the first paging strategy corresponding to the first service type.
  • the mobility management network element may respectively send a paging message to N (N ⁇ 1) access network devices indicated by the first paging policy that need to page the terminal device.
  • N N ⁇ 1 access network devices indicated by the first paging policy that need to page the terminal device.
  • the mobility management network element may respectively send paging messages to the access network devices within the range of the tracking area list.
  • the mobility management network element may send a paging message to the access network device (such as last gNB/eNB) where the terminal device camped last time. If the terminal device cannot be paged, then let the access network device in the TA list page the terminal device.
  • the message from the IMS network element to the access network device may carry the identifier of the terminal device to be paged (which can be understood as the terminal device on the called side).
  • the IMS network element informs the data plane network element of the service type, and the data plane network element informs the mobility management network element of the service type, so that the mobility management network element can decide which The access network device performs paging for the terminal device, so as to avoid resource waste of the access network device and reduce the time delay from paging to the terminal device.
  • the paging strategy determined based on the finer-grained service type is more accurate and more accurate. Precise paging strategy can further optimize the resource usage of access network equipment and reduce the delay from paging to terminal equipment.
  • the paging policy corresponding to the IMS service may be paging within the scope of the tracking area TA list.
  • the paging strategy is formulated for finer-grained service types.
  • the paging strategy corresponding to the short message service SMS service within the IMS service scope is precise paging , compared with paging within the scope of the tracking area list, it is more accurate and can optimize the resource usage of the access network device.
  • the data plane network element determines the paging policy based on the service type, and sends paging policy indication information to the mobility management network element to indicate the first service type included in the service scope indicated by the first DSCP information The corresponding first paging policy. For example:
  • the IMS network element sends the first information to the data plane network element.
  • the data plane network element receives the first information from the IMS network element.
  • the first information is the same as the first information introduced above, and will not be described again.
  • the data plane network element determines the first paging policy corresponding to the first service type according to the first indication information, and sends the paging policy indication information to the mobility management network element, and correspondingly, the mobility management network element receives Paging policy indication information from data plane NEs.
  • the paging strategy indication information is used to indicate the first paging strategy corresponding to the first service type included in the service scope indicated by the first DSCP information.
  • the data plane network element may parse out the first service type from the first indication information, and then determine the first paging policy corresponding to the first service type according to the correspondence between the service type and the paging policy.
  • the mobility management network element determines a first paging strategy based on the paging strategy indication information (directly parses the first paging strategy from the paging strategy indication information), and reports to the first paging strategy
  • the indicated at least one access network device that needs to page the terminal device sends a paging message.
  • the IMS network element informs the data plane network element of the service type, and the data plane network element determines the corresponding paging policy based on the service type, and informs the mobility management network element of the paging policy, so that the mobility management network element can use the paging policy based on the paging policy To decide which access network devices to page the terminal device, so as to avoid resource waste of the access network device and reduce the paging delay to the terminal device.
  • the paging strategy determined based on the finer-grained service type is more accurate and more accurate. Precise paging strategy can further optimize the resource usage of access network equipment and reduce the delay from paging to terminal equipment.
  • the process of determining the paging policy based on the service type may be determined by the IMS network element, so that the first information sent by the IMS network element to the data plane network element is used to indicate the first paging policy, and the data plane The network element sends paging policy indication information to the mobility management network element, which is used to indicate the first paging policy.
  • the paging message sent to the i-th (the i is any positive integer from 1 to N) access network device includes a fourth indication information, the fourth indication information is used to indicate the priority of the i-th access network device for paging the terminal device, and the priority may also be referred to as paging probability.
  • the priority of paging the terminal device can also be understood as the processing priority of the paging message, where the processing is to execute the paging corresponding to the paging message.
  • the priority (or paging probability) carried in the paging message can inform the access network device whether the terminal device that needs to be paged is easy to be paged, so that the access network device can reasonably arrange resources to Paging the terminal device. For example, when the priority is higher, the access network device may preferentially process the paging of the terminal device.
  • the mobility management network element may dynamically record the ID of the access network device (last gNB/eNB) where the UE camped last time. In the next paging process for the UE, the mobility management network element can send a paging message to the access network device where the UE camped last time, and the priority indicated by the fourth indication information in the paging message is higher If it is necessary to send paging messages to other access network devices, the priority indicated to other access network devices is lower.
  • the access network device last gNB/eNB
  • the access network device that receives the paging message from the mobility management network element can decide whether to send the paging message to the terminal device and when to send it to the terminal device based on the fourth indication information and the current congestion situation.
  • Access network devices can decide the paging packet loss rate in congestion scenarios based on their own paging priority (paging probability), which can reduce the paging pressure of access network devices.
  • the access network device can try to ensure that paging messages with high priority are processed, and discard paging messages with low priority. It not only guarantees the success rate of paging, but also guarantees the requirements of different services.
  • a specific communication method is introduced. Include the following steps:
  • Step 500 A terminal device (for example, a calling UE) sends a TCP connection establishment request message to an IMS network element, and the TCP connection establishment request message includes first differential service code point DSCP information and first indication information.
  • the first indication information is used to indicate the first service type.
  • the first service type is one of the service types included in the service scope indicated by the first DSCP information.
  • the terminal device When the terminal device has MT services, it can trigger the establishment of a TCP connection, and the terminal device establishes a TCP connection with the IMS network element.
  • This application extends the existing TCP connection establishment request message, the message header can be extended, and the message body can also be extended to carry the first DSCP information and the first indication information.
  • the "reserved" bits shown in Figure 2b can be extended to identify different service types by one or more bits.
  • a new information element is used to indicate different service types.
  • the first indication information is carried in the "reserved” bit as shown in FIG. 2b, or the first indication information may be carried in the "data” bit as shown in FIG. 2b.
  • the first DSCP information is carried in the "reserved” bit as shown in FIG. 2b, and the first DSCP information may also be carried in the "data” bit as shown in FIG. 2b.
  • Step 501 The IMS network element sends a TCP connection establishment request message to the data plane network element, and the TCP connection establishment request message includes first DSCP information and first indication information.
  • the IMS network element may send a TCP connection establishment request message to the data plane network element.
  • the IMS network element may send the first DSCP information and the first indication information in the TCP connection establishment request message sent to the data plane network element, and the first DSCP information in the TCP connection establishment request message received by the IMS network element in step 500 It is the same as the first indication information, and will not be repeated here.
  • Step 502 The data plane network element sends a downlink message to the control plane network element (for example, SMF), and the downlink message includes the second indication information.
  • the control plane network element for example, SMF
  • the second indication information may be regarded as paging strategy indication PPI information.
  • the data plane network element parses out the first DSCP information in the message header of the TCP connection establishment request message, and parses out the first service type indicated by the first indication information in the message header or message body of the TCP connection establishment request message, Based on the correspondence between service types and paging policies, a first paging policy corresponding to the first service type is determined. And send paging policy indication PPI information to the control plane network element.
  • the second indication information indicates the first service type included in the service scope indicated by the first DSCP information
  • the second indication information may be regarded as service type indication information.
  • the second indication information includes the first DSCP information and third indication information
  • the third indication information is used to indicate the first service type.
  • the third indication information may be the same as or different from the first indication information.
  • the second indication information is indication information corresponding to the first service type among the service types included in the service ranges respectively indicated by the plurality of DSCP information, and the plurality of DSCP information includes the first DSCP information. In this case, it can be considered that the second indication information does not include the first DSCP information.
  • the data plane network element parses out the first DSCP information in the message header of the TCP connection establishment request message, and parses out the first service type indicated by the first indication information in the message header or message body of the TCP connection establishment request message, And send the service type indication information to the control plane network element.
  • the data plane network element can first check whether there is a downlink transmission path corresponding to the service, and then parse the TCP connection establishment request message if there is no downlink transmission path corresponding to the service .
  • control plane network element sends an acknowledgment ACK message to the data plane network element to indicate that the message from the data plane network element is received.
  • Step 503 The control plane network element performs message transfer (message transfer) to the mobility management network element (such as AMF), and sends the second indication information (ie paging policy indication information or service type indication information) to the mobility management network element.
  • the mobility management network element such as AMF
  • the second indication information ie paging policy indication information or service type indication information
  • the mobility management network element sends a response (response) message to the control plane network element to indicate that the message from the control plane network element is received.
  • Step 504 The mobility management network element initiates different paging strategies for different paging strategy indications or service type indications.
  • a paging message is sent to at least one access network device indicated by the first paging policy that needs to page the terminal device.
  • the access network device can send a paging message to the terminal device (for example, the called UE), so as to realize the paging of the terminal device.
  • the mobility management network element When the mobility management network element receives the paging policy indication information, it can directly parse out the first paging policy.
  • the mobility management network element When the mobility management network element receives the service type indication information, it can directly parse out the first service type, and find the corresponding first paging strategy based on the correspondence between the service type and the paging strategy.
  • the paging strategy corresponding to the voice call service within the IMS service scope is to perform paging within the scope of the tracking area list.
  • the paging policy corresponding to the short message service SMS service within the scope of the IMS service is precise paging.
  • the paging message sent by the mobility management network element to the access network device includes fourth indication information, where the fourth indication information is used to indicate that the i-th access network device is The paging priority of the terminal device.
  • the mobility management dynamically records the ID of the access network device (last gNB/eNB) where each UE camped last time.
  • the mobility management network element can send a higher priority to the paging message sent to the access network device where the UE camped last time (issue a high probability indication) , the priority indicated in the paging message sent to other access network devices is lower (delivering a low probability indication).
  • the access network equipment in the congested state can prioritize paging requests with high probability, improving the paging success rate.
  • a specific communication method is introduced by taking the first information as a service message (that is, an application layer protocol message) as an example.
  • the first indication information is carried in the message header of the service message.
  • Step 600 A terminal device (for example, a calling UE) sends a service message (a service message may also be called an application layer protocol message) to an IMS network element.
  • the message header of the service message includes the first differential service code point DSCP information and the first indication information.
  • the first indication information is used to indicate the first service type.
  • the first service type is one of the service types included in the service scope indicated by the first DSCP information.
  • the terminal device on the calling side After the terminal device on the calling side is successfully established with the IMS network, it can send service messages.
  • This application extends the existing service message, and the message header can be extended to carry the first DSCP information and the first indication information.
  • Step 601 The IMS network element sends a service message (the service message may also be called an application layer protocol message) to the data plane network element, and the message header of the service message includes first DSCP information and first indication information.
  • a service message the service message may also be called an application layer protocol message
  • the message header of the service message includes first DSCP information and first indication information.
  • the IMS network element side extends the data packet header of the application layer to the user plane network element, and adds service type indication information to the extended packet header to identify different service types.
  • the first DSCP information and the first indication information in the service message that the IMS network element may send to the data plane network element may be the same as the first DSCP information and the first indication information in the service message received by the IMS network element in step 600. same.
  • the data plane network element When the data plane network element finds that there is no downlink path that needs to be paged for the UE, the data plane network element analyzes the service packet header to obtain the corresponding service type or other information that can identify the paging policy indication.
  • the data plane network element when the data plane network element checks that there is no downlink transmission path corresponding to the service, it analyzes the service message to obtain the first service type.
  • Step 602 The data plane network element sends a downlink message to the control plane network element (for example, SMF), and the downlink message includes the second indication information. It is the same as step 502 and will not be repeated here.
  • the control plane network element for example, SMF
  • Step 603 The control plane network element performs message transfer (message transfer) to the mobility management network element (such as AMF), and sends the second indication information (ie paging policy indication information or service type indication information) to the mobility management network element. It is the same as step 503 and will not be repeated here.
  • the mobility management network element such as AMF
  • the second indication information ie paging policy indication information or service type indication information
  • Step 604 The mobility management network element initiates different paging strategies for different paging strategy indications or service type indications. It is the same as step 504 and will not be repeated here.
  • the paging message sent by the mobility management network element to the access network device includes fourth indication information, where the fourth indication information is used to indicate that the i-th access network device is The paging priority of the terminal device.
  • a specific communication method is introduced by taking the first information as a service message (that is, an application layer protocol message) as an example. Carry the first indication information in the message body of the service message.
  • a service message that is, an application layer protocol message
  • Step 700 A terminal device (for example, a calling UE) sends a service message (for example, an invite message) to an IMS network element (the service message may also be called an application layer protocol message).
  • the service message includes first differential service code point DSCP information and first indication information.
  • the first indication information is located in the message body of the service message, and the first DSCP information is located in the message body or message header of the service message.
  • the first indication information is used to indicate the first service type.
  • the first service type is one of the service types included in the service scope indicated by the first DSCP information.
  • the service message is, for example, an invite message, and the terminal device at the calling side can send the service message after the connection with the IMS network is established successfully.
  • This application extends the existing service message, and the message body can be extended to carry the first indication information.
  • Step 701 The IMS network element sends a service message (such as an invite message) to the data plane network element (the service message may also be called an application layer protocol message), and the service message includes the first DSCP information and the first indication information.
  • a service message such as an invite message
  • the service message may also be called an application layer protocol message
  • the IMS network element side carries the first indication information in the data message body of the application layer to identify different service types.
  • the first DSCP information is located in the message body or message header of the service message.
  • the first DSCP information and the first indication information in the service message that the IMS network element may send to the data plane network element may be the same as the first DSCP information and the first indication information in the service message received by the IMS network element in step 700. same.
  • the data plane network element performs in-depth packet analysis DPI on the message body of the service message to obtain the first indication information. If the first DSCP information is also located in the message body, the first DSCP information can also be parsed out through the DPI.
  • the data plane network element when the data plane network element checks that there is no downlink transmission path corresponding to the service, it analyzes the service message to obtain the first service type.
  • Step 702 The data plane network element sends a downlink message to the control plane network element (for example, SMF), and the downlink message includes the second indication information. It is the same as step 502 and will not be repeated here.
  • the control plane network element for example, SMF
  • Step 703 The control plane network element performs message transfer (message transfer) to the mobility management network element (such as AMF), and sends the second indication information (ie paging policy indication information or service type indication information) to the mobility management network element. It is the same as step 503 and will not be repeated here.
  • the mobility management network element such as AMF
  • the second indication information ie paging policy indication information or service type indication information
  • Step 704 The mobility management network element initiates different paging strategies for different paging strategy indications or service type indications. It is the same as step 504 and will not be repeated here.
  • the paging message sent by the mobility management network element to the access network device includes fourth indication information, where the fourth indication information is used to indicate that the i-th access network device is The paging priority of the terminal device.
  • the method in the embodiment of the present application is introduced above, and the device in the embodiment of the present application will be introduced in the following.
  • the method and the device are based on the same technical concept. Since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present application may divide the device into functional modules according to the above method example, for example, each function may be divided into each functional module, or two or more functions may be integrated into one module.
  • These modules can be implemented not only in the form of hardware, but also in the form of software function modules. It should be noted that the division of the modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner during specific implementation.
  • the device 800 may include: a processing module 810, and optionally, a receiving module 820a, a sending module 820b, and a storage module 830 .
  • the processing module 810 may be connected to the storage module 830 and the receiving module 820a and the sending module 820b respectively, and the storage module 830 may also be connected to the receiving module 820a and the sending module 820b.
  • the above-mentioned receiving module 820a and sending module 820b may also be integrated together and defined as a transceiver module.
  • the apparatus 800 may be a data plane network element, or may be a chip or a functional unit applied to a data plane network element.
  • the apparatus 800 has any function of the data plane network element in the above method, for example, the apparatus 800 can execute the various steps performed by the data plane network element in the above methods in FIGS. 4-7 .
  • the receiving module 820a may perform the receiving action performed by the data plane network element in the above method embodiment.
  • the sending module 820b can execute the sending action performed by the data plane network element in the above method embodiment.
  • the processing module 810 may execute other actions except the sending action and the receiving action among the actions performed by the data plane network element in the above method embodiment.
  • the receiving module 820a is configured to receive first information from an Internet Protocol Multimedia Subsystem IMS network element, where the first information includes first Differentiated Services Code Point DSCP information and first indication information, the The first indication information is used to indicate the first service type, and the first service type is one of the service types included in the service scope indicated by the first DSCP information; different service types included in the same service scope correspond to different a paging strategy, where the paging strategy is used to indicate at least one access network device that needs to page the terminal device;
  • the sending module 820b is configured to send second indication information to a mobility management network element, where the second indication information is used to indicate the first service type included in the service scope indicated by the first DSCP information.
  • the second indication information includes the first DSCP information and third indication information, and the third indication information is used to indicate the first service type; or, the second indication information is the Indication information corresponding to the first service type among the service types included in the service scopes respectively indicated by the information, the plurality of DSCP information includes the first DSCP information.
  • the first information is a network layer protocol message, a transport layer protocol message, or an application layer protocol message.
  • a message header of the first information includes the first indication information; or, a message body of the first information includes the first indication information.
  • the transport layer protocol message is a Transmission Control Protocol TCP connection establishment request message.
  • the processing module 810 is configured to perform deep packet analysis (DPI) on the message body of the application layer protocol message to obtain the first indication information.
  • DPI deep packet analysis
  • the storage module 830 may store computer-executed instructions of the method performed by the data plane network element, so that the processing module 810, the receiving module 820a, and the sending module 820b execute the method performed by the data plane network element in the above example .
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits.
  • the storage module may be a register, a cache, or a RAM, etc., and the storage module may be integrated with the processing module.
  • the storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, and the like.
  • the apparatus 800 may be a mobility management network element, or may be a chip or a functional unit applied to the mobility management network element.
  • the apparatus 800 has any function of the mobility management network element in the above method, for example, the apparatus 800 can execute the various steps performed by the mobility management network element in the above methods in FIGS. 4-7 .
  • the receiving module 820a may perform the receiving action performed by the mobility management network element in the above method embodiments.
  • the sending module 820b can execute the sending action performed by the mobility management network element in the above method embodiments.
  • the processing module 810 may execute other actions except the sending action and the receiving action among the actions performed by the mobility management network element in the above method embodiments.
  • the receiving module 820a is configured to receive second indication information from a data plane network element, where the second indication information is used to indicate the first service type included in the service scope indicated by the first DSCP information; Different service types included in the same service scope correspond to different paging strategies, and the paging strategy is used to indicate at least one access network device that needs to page the terminal device;
  • the processing module 810 is configured to determine a first paging strategy corresponding to the first service type according to the second indication information
  • the sending module 820b is configured to send a paging message to at least one access network device indicated by the first paging policy that needs to page the terminal device.
  • the second indication information includes the first DSCP information and third indication information, and the third indication information is used to indicate the first service type; or, the second indication information is the Indication information corresponding to the first service type among the service types included in the service scopes respectively indicated by the information, the plurality of DSCP information includes the first DSCP information.
  • the sending module 820b is specifically used for the mobility management network element to send paging messages to the N access network devices indicated by the first paging strategy that need to page the terminal device;
  • the paging message sent by the i access network device includes fourth indication information, where the fourth indication information is used to indicate the priority of the i th access network device for paging the terminal device.
  • i takes any positive integer from 1 to N.
  • the storage module 830 may store computer-executed instructions of the method executed by the mobility management network element, so that the processing module 810, the receiving module 820a, and the sending module 820b execute the method executed by the mobility management network element in the above example method.
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits.
  • the storage module may be a register, a cache, or a RAM, etc., and the storage module may be integrated with the processing module.
  • the storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, and the like.
  • the device can be realized by a general bus architecture.
  • FIG. 9 a schematic block diagram of a communication device 900 is provided.
  • the apparatus 900 may include: a processor 910 , and optionally, a transceiver 920 and a memory 930 .
  • the transceiver 920 can be used to receive programs or instructions and transmit them to the processor 910, or the transceiver 920 can be used for the device 900 to communicate with other communication devices, such as interactive control signaling and/or service data etc.
  • the transceiver 920 may be a code and/or data read/write transceiver, or the transceiver 920 may be a signal transmission transceiver between the processor and the transceiver.
  • the processor 910 is electrically coupled to the memory 930 .
  • the apparatus 900 may be a data plane network element, or may be a chip applied to a data plane network element. It should be understood that the device has any function of the data plane network element in the above method, for example, the device 900 can execute the various steps performed by the data plane network element in the above methods in FIGS. 4-7 .
  • the memory 930 is used to store computer programs; the processor 910 can be used to call the computer programs or instructions stored in the memory 930 to execute the methods performed by the data plane network elements in the above examples, or by The transceiver 920 executes the method executed by the data plane network element in the foregoing example.
  • the apparatus 900 may be a mobility management network element, or may be a chip applied to a mobility management network element. It should be understood that the device has any function of the mobility management network element in the above method, for example, the device 900 can execute the various steps performed by the mobility management network element in the above methods in FIGS. 4-7 .
  • the memory 930 is used to store computer programs; the processor 910 can be used to call the computer programs or instructions stored in the memory 930 to execute the method performed by the mobility management network element in the above example, or by The transceiver 920 executes the method executed by the mobility management network element in the above examples.
  • the processing module 810 in FIG. 8 may be implemented by the processor 910 .
  • the receiving module 820a and the sending module 820b in FIG. 8 may be implemented by the transceiver 920 .
  • the transceiver 920 is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the sending module.
  • the storage module 830 in FIG. 8 may be implemented by the memory 930 .
  • the device may be implemented by a general-purpose processor (a general-purpose processor may also be referred to as a chip or system-on-a-chip).
  • a general-purpose processor may also be referred to as a chip or system-on-a-chip.
  • the general-purpose processor that implements the device applied to the data plane network element or the device for the mobility management network element includes: a processing circuit (the processing circuit may also be called a processor); optionally, it also includes : an input/output interface and a storage medium (the storage medium may also be referred to as a memory) connected and communicated with the processing circuit, the storage medium is used to store instructions executed by the processing circuit to perform data plane network elements or move A method for managing network element execution.
  • the processing module 810 in FIG. 8 may be implemented by a processing circuit.
  • the receiving module 820a and the sending module 820b in FIG. 8 can be implemented through input and output interfaces.
  • the input-output interface is divided into an input interface and an output interface, the input interface performs the function of the receiving module, and the output interface performs the function of the sending module.
  • the storage module 830 in FIG. 8 may be implemented by a storage medium.
  • the device of the embodiment of the present application can also be realized using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a computer, the computer can be used to execute the above-mentioned communication method.
  • the computer program includes instructions for implementing the above communication method.
  • the embodiment of the present application also provides a computer program product, including: computer program code, when the computer program code is run on the computer, the computer can execute the communication method provided above.
  • An embodiment of the present application further provides a communication system, where the communication system includes: a data plane network element and a mobility management network element executing the above communication method.
  • the data plane network element is configured to receive first information from an Internet Protocol Multimedia Subsystem IMS network element, where the first information includes first Differentiated Services Code Point DSCP information and first indication information, and the The first indication information is used to indicate the first service type, and the first service type is one of the service types included in the service scope indicated by the first DSCP information; different service types included in the same service scope correspond to different A paging strategy, where the paging strategy is used to indicate at least one access network device that needs to page the terminal device; and sends second indication information to a mobility management network element, where the second indication information is used to indicate The first service type included in the service scope indicated by the first DSCP information.
  • the first information includes first Differentiated Services Code Point DSCP information and first indication information
  • the first indication information is used to indicate the first service type
  • the first service type is one of the service types included in the service scope indicated by the first DSCP information
  • different service types included in the same service scope correspond to different A paging strategy, where the paging strategy
  • the mobility management network element is configured to determine a first paging strategy corresponding to the first service type according to the second indication information, and paging the terminal device as indicated by the first paging strategy At least one of the access network devices sends a paging message.
  • the second indication information includes the first DSCP information and third indication information, and the third indication information is used to indicate the first service type; or, the second indication information is Indication information corresponding to the first service type among the service types included in the service range indicated by the plurality of DSCP information respectively, the plurality of DSCP information includes the first DSCP information.
  • the first information is a network layer protocol message, a transport layer protocol message, or an application layer protocol message.
  • a message header of the first information includes the first indication information; or, a message body of the first information includes the first indication information.
  • the transport layer protocol message is a Transmission Control Protocol TCP connection establishment request message.
  • the data plane network element is further configured to perform deep message analysis DPI on the message body of the application layer protocol message to obtain the first indication information.
  • the mobility management network element is specifically configured to send a paging message to N (N ⁇ 1) access network devices indicated by the first paging strategy that need to page the terminal device ;
  • the paging message sent to the i-th access network device includes fourth indication information, and the fourth indication information is used to instruct the i-th access network device to paging the terminal device Priority, the i takes any positive integer from 1 to N.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), a baseband processor, and the baseband processor and the CPU may be integrated or separated, or may be a network processor (network processing unit).
  • processor NP
  • processors may further include hardware chips or other general-purpose processors.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the above PLD can be complex programmable logic device (complex programmable logic device, CPLD), field-programmable logic gate array (field-programmable gate array, FPGA), general array logic (generic array logic, GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc., or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • GAL generator array logic
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus RAM, DR RAM
  • the transceiver mentioned in the embodiment of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated. Transceivers can operate under the direction of corresponding processors.
  • the transmitter may correspond to the transmitter in the physical device, and the receiver may correspond to the receiver in the physical device.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium Among them, several instructions are included to make a computer device (which may be a personal computer, a server, or a second device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,提供一种通信方法及装置,用以决策由哪些接入网设备对终端设备进行寻呼。数据面网元接收来自IMS网元的第一信息,第一信息包括第一DSCP信息和第一指示信息,第一指示信息用于指示第一业务类型,第一业务类型为第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,寻呼策略用于指示需要对终端进行寻呼的至少一个接入网设备。数据面网元向移动性管理网元发送第二指示信息,用于指示第一DSCP信息指示的业务范围包括的第一业务类型。以便移动性管理网元基于业务类型关联的寻呼策略来决策哪些接入网设备对终端进行寻呼,避免接入网设备资源浪费。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年12月02日提交中国专利局、申请号为202111456170.7、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信等领域,尤其涉及一种通信方法及装置。
背景技术
空闲态终端设备在有移动端(mobile terminal,MT)业务时,网络侧会针对该终端设备进行寻呼处理,例如,移动性管理网元向接入网设备发送寻呼消息,接入网设备再向终端设备发送寻呼消息。终端设备和网络侧建立无线连接后,MT业务接通。
在寻呼终端设备时,如何决策由哪些接入网设备对终端设备进行寻呼,是需要解决的技术问题。
发明内容
本申请实施例提供一种通信方法及装置,用以决策由哪些接入网设备对终端设备进行寻呼。
第一方面,提供了一种通信方法,数据面网元接收来自因特网协议(internet protocol,IP)多媒体子系统(IP multimedia subsystem,IMS)网元的第一信息,所述第一信息包括第一差分服务代码点(differentiated services code point,DSCP)信息和第一指示信息,所述第一指示信息用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备。然后,所述数据面网元可以向移动性管理网元发送第二指示信息,所述第二指示信息用于指示所述第一DSCP信息指示的业务范围包括的所述第一业务类型。
在该第一方面中,IMS网元向数据面网元告知业务类型,数据面网元将业务类型告知给移动性管理网元,以便移动性管理网元基于业务类型关联的寻呼策略来决策哪些接入网设备对终端设备进行寻呼,以避免接入网设备的资源浪费和降低寻呼到终端设备的时延。另外,由于IMS网元向数据面网元告知的第一业务类型是在一个较大的业务范围内的更细粒度的业务类型,基于更细粒度的业务类型确定的寻呼策略更加精准,更加精准的寻呼策略可以进一步优化接入网设备的资源使用和降低寻呼到终端设备的时延。
在一种可能的实现中,所述第二指示信息可以包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;所述第三指示信息和所述第一指示信息可以相同,也可以不同。在各个网元上进行业务类型的全局规划,统一业务类型的指示方式,即通过DSCP信息和更细粒度的业务类型指示信息来指示业务类型,对于其中任一 网元来说,无需更多的处理。
或者,所述第二指示信息也可以为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。对于任一网元来说,可以自行确定如何来指示业务类型,可控性更强。
在一种可能的实现中,所述第一信息可以为网络层协议消息或传输层协议消息或应用层协议消息。多层协议消息均可以指示更细粒度的业务类型,覆盖面较广。
在一种可能的实现中,可以在所述第一信息的消息头中包括所述第一指示信息,这样可以更容易解析出业务类型,对于系统性能要求较低。或者,在所述第一信息的消息体中包括所述第一指示信息。
在一种可能的实现中,所述传输层协议消息可以为传输控制协议TCP连接建立请求消息。这样在业务建立之前就可以知道业务类型。
在一种可能的实现中,所述数据面网元可以通过对所述应用层协议消息的消息体进行深度报文解析DPI,得到所述第一指示信息。目前,数据面网元不对应用层协议消息的消息体进行解析处理,而是直接转出去,本申请中的数据面网元可以实现对应用层协议消息的消息体进行解析处理,可以不改变现有的传输机制,利用用户面网元原有的DPI功能实现业务识别。
第二方面,提供了一种通信方法,移动性管理网元接收来自数据面网元的第二指示信息,所述第二指示信息用于指示第一DSCP信息指示的业务范围包括的第一业务类型;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备。然后,所述移动性管理网元可以根据所述第二指示信息确定所述第一业务类型对应的第一寻呼策略,并向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
在该第二方面中,数据面网元将业务类型告知给移动性管理网元,以便移动性管理网元基于业务类型关联的寻呼策略来决策哪些接入网设备对终端设备进行寻呼,以避免接入网设备的资源浪费和降低寻呼到终端设备的时延。另外,由于数据面网元向移动性管理网元告知的第一业务类型是在一个较大的业务范围内的更细粒度的业务类型,基于更细粒度的业务类型确定的寻呼策略更加精准,更加精准的寻呼策略可以进一步优化接入网设备的资源使用和降低寻呼到终端设备的时延。
在一种可能的实现中,所述第二指示信息可以包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;所述第三指示信息和所述第一指示信息可以相同,也可以不同。在各个网元上进行业务类型的全局规划,统一业务类型的指示方式,即通过DSCP信息和更细粒度的业务类型指示信息来指示业务类型,对于其中任一网元来说,无需更多的处理。
或者,所述第二指示信息还可以为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。对于任一网元来说,可以自行确定如何来指示业务类型,可控性更强。
在一种可能的实现中,所述移动性管理网元可以分别向所述第一寻呼策略指示的需要对终端设备进行寻呼的N(N≥1)个接入网设备发送寻呼消息;其中,向第i个接入网设备发送的寻呼消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设 备对所述终端设备进行寻呼的优先级,所述i取遍1至N中的任意一个正整数。这样,各个接入网设备可以基于自己的寻呼优先级决策在拥塞场景下的寻呼丢包率,可以降低接入网设备的寻呼压力。接入网设备可以尽量保证高优先级的寻呼消息被处理,丢弃低优先级的寻呼消息。既保证寻呼成功率、又能保证不同业务的需求。
第三方面,提供了一种通信方法,数据面网元接收来自因特网协议多媒体子系统IMS网元的第一信息,所述第一信息包括第一差分服务代码点DSCP信息和第一指示信息,所述第一指示信息用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备。然后,所述数据面网元向移动性管理网元发送寻呼策略指示信息,所述寻呼策略指示信息用于指示第一寻呼策略,所述第一寻呼策略为所述第一业务类型对应的寻呼策略。
在该第三方面中,IMS网元向数据面网元告知业务类型,数据面网元基于业务类型确定出对应的寻呼策略,并将寻呼策略告知给移动性管理网元,以便移动性管理网元基于寻呼策略来决策哪些接入网设备对终端设备进行寻呼,以避免接入网设备的资源浪费和降低寻呼到终端设备的时延。另外,由于IMS网元向数据面网元告知的第一业务类型是在一个较大的业务范围内的更细粒度的业务类型,基于更细粒度的业务类型确定的寻呼策略更加精准,更加精准的寻呼策略可以进一步优化接入网设备的资源使用和降低寻呼到终端设备的时延。
该第三方面与第一方面的区别包括:第一方面中用户面网元向移动性管理网元发送业务类型指示信息(即第二指示信息);而在第三方面中,用户面网元可以基于业务类型确定寻呼策略,用户面网元向移动性管理网元发送寻呼策略指示信息。另外,关于第一信息和第二指示信息的具体细节可以参考第一方面的描述,不再重复赘述。
第四方面,提供了一种通信装置,所述装置具有实现上述第一方面及第一方面任一可能的实现中的功能,或实现上述第二方面及第二方面任一可能的实现中的功能,或实现上述第三方面及第三方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第五方面,提供了一种通信装置,包括处理器,可选的,还包括存储器;所述处理器和所述存储器耦合;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中数据面网元的功能,或实现上述第二方面及第二方面任一可能的实现中移动性管理网元的功能,或实现上述第三方面及第三方面任一可能的实现中数据面网元的功能。
第六方面,本申请提供了一种芯片系统,该芯片系统包括一个或多个处理器(也可以称为处理电路),所述处理器与存储器(也可以称为存储介质)之间电耦合;所述存储器可以位于所述芯片系统中,也可以不位于所述芯片系统中;所述存储器,用于存储计算机 程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中数据面网元的功能,或实现上述第二方面及第二方面任一可能的实现中移动性管理网元的功能,或实现上述第三方面及第三方面任一可能的实现中数据面网元的功能。
在一种可能的实现中,该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于实现第一方面及第一方面任一可能的实现中的功能的指令,或用于实现第二方面及第二方面任一可能的实现中的功能的指令,或用于实现第三方面及第三方面任一可能的实现中的功能的指令。
或者,一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被计算机执行时,可以使得所述计算机执行上述第一方面及第一方面任一可能的实现的方法中数据面网元执行的方法,或执行上述第二方面及第二方面任一可能的实现中移动性管理网元执行的方法,或执行上述第三方面及第三方面任一可能的实现中数据面网元执行的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由数据面网元执行的方法,或执行上述第二方面及第二方面任一可能的实现中由移动性管理网元执行的方法,或执行上述第三方面及第三方面任一可能的实现中由数据面网元执行的方法。
第九方面,提供了一种通信系统,所述通信系统包括用于执行上述第一方面及第一方面任一可能的实现的方法中的数据面网元和用于执行上述第二方面及第二方面任一可能的实现的方法中的移动性管理网元。
上述第四方面至第九方面的技术效果可以参照上述第一方面至第三方面中的相应效果描述,重复之处不再赘述。
附图说明
图1a和图1b分别为本申请实施例中提供的一种通信系统结构示意图;
图2a为本申请实施例中提供的一种因特网协议IP报文格式示意图;
图2b为本申请实施例中提供的一种传输控制协议TCP报文格式示意图;
图3为本申请实施例中提供的一种通信流程示意图;
图4为本申请实施例中提供的一种通信流程示意图;
图5为本申请实施例中提供的一种通信流程示意图;
图6为本申请实施例中提供的一种通信流程示意图;
图7为本申请实施例中提供的一种通信流程示意图;
图8为本申请实施例中提供的一种通信装置结构图;
图9为本申请实施例中提供的一种通信装置结构图。
具体实施方式
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的方法的系统架构 进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、传统的移动通信系统。其中,所述卫星通信系统可以与传统的移动通信系统(即地面通信系统)相融合。通信系统例如:无线局域网(wireless local area network,WLAN)通信系统,无线保真(wireless fidelity,WiFi)系统,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR),第六代(6th generation,6G)系统,以及其他未来的通信系统等,还支持多种无线技术融合的通信系统,例如,还可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)融合地面移动通信网络的系统。
以下作为示例性说明,仅以第五代通信系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
本申请以5G通信系统进行举例说明。
例如,图1a为本申请可以适用的一种5G的通信系统架构示意图。具体的,图1a为基于服务化架构的5G网络架构示意图。
例如,图1b为本申请可以适用的另一种5G的通信系统架构示意图。具体的,图1b为基于点对点的5G架构示意图。图1a与图1b的主要区别在于,图1a中的各个网元之间的接口是服务化的接口,图1b的各个网元之间的接口是点对点的接口。
图1a和图1b所示的5G网络架构中可包括终端设备部分、接入网部分,核心网部分。可选的,还包括数据网络(data network,DN)和应用功能(application function,AF)网元部分。终端通过接入网接入核心网,核心网与DN或AF进行通信。下面对其中的部分网元的功能进行简单介绍说明。
终端设备(terminal device),也可以称为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请中的(R)AN设备,是一种为终端设备提供无线通信功能的设备,(R)AN设备也称为接入网设备。本申请中的RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第五代(5th generation,5G)系统中,称为RAN或者gNB(5G NodeB);在LTE系统中,称为演进的节点B(evolved NodeB,eNB 或者eNodeB);在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。
数据网络DN,可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器和控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
应用网元,主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
核心网部分可包括以下网元中的一个或多个:
接入管理网元(也可以称为移动性管理网元),是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和用户等功能。在5G通信系统中,该接入管理网元可以是接入与移动性管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
会话管理网元,主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的用户面网元等。在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
用户面网元(也可以称为数据面网元),负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;用户面网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。用户面网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
数据管理网元,用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入控制和签约数据管理等。在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
策略控制网元,主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
网络存储网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应 的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。在5G通信系统中,该网络存储网元可以是网络注册功能(network repository function,NRF)网元。在未来通信系统中,网络存储网元仍可以是NRF网元,或者,还可以有其它的名称,本申请不做限定。
网络开放功能网元,可用于提供用于安全地向外部开放由3GPP网络功能设备提供的业务和能力等。在5G通信系统中,网络开放功能网元可以是网络开放功能(network exposure function,NEF)网元。在未来通信系统中,网络开放功能网元仍可以是NEF网元,或者,还可以有其它的名称,本申请不做限定。
网络切片选择网元,可用于为终端的业务选择合适的网络切片。在5G通信系统中,网络切片选择网元可以是网络切片选择功能(network slice selection function,NSSF)网元。在未来通信系统中,网络开放功能网元仍可以是NSSF网元,或者,还可以有其它的名称,本申请不做限定。
网络数据分析网元,可以从各个网络功能(network function,NF),例如策略控制网元、会话管理网元、用户面网元、接入管理网元、应用功能网元(通过网络能力开放功能网元)收集数据,并进行分析和预测。在5G通信系统中,网络数据分析网元可以是网络数据分析功能(network data analytics function,NWDAF)。在未来通信系统中,网络开放功能网元仍可以是NWDAF网元,或者,还可以有其它的名称,本申请不做限定。
统一数据存储网元,负责存储结构化的数据信息,其中包括签约信息,策略信息,以及有标准格式定义的网络数据或业务数据。在5G通信系统中,统一数据存储网元可以是统一数据存储(unified data repository,UDR)。在未来通信系统中,网络开放功能网元仍可以是UDR网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。一种可能的实现方式,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
另外,因特网协议(internet protocol,IP)多媒体子系统(IP multimedia subsystem,IMS)实现移动与固网融合,引入语音、数据、视频三重融合。IMS系统中涉及的主要功能实体包括:
本地用户服务器(home subscriber server,HSS),在IMS中作为用户信息存储的数据库,主要存放用户认证信息、签约用户的特定信息、签约用户的动态信息、网络策略规则和设备标识寄存器信息,用于用户业务数据管理。它是一个逻辑实体,物理上可以由多个物理数据库组成。
呼叫会话控制功能(call session control function,CSCF),是IMS的核心部分,主要用于基于分组交换的SIP会话控制。在IMS中,CSCF负责对用户多媒体会话进行处理。
多媒体资源功能(multimedia resource function,MRF),主要完成多方呼叫与多媒体会议功能。
网关功能,主要包括:断开网关控制功能(breakout gateway control function,BGCF)、媒体网关控制功能(media gateway control function,MGCF)、IMS媒体网关(media gateway,MGW)和信令网关(signaling gateway,SGW)。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)、七层模型,亦称开放系统互连(open system interconnection,OSI)模型,OSI模型有7层结构,每层可以有一个或多个子层。OSI模型的7层从上到下分别是:应用层、表示层、会话层、传输层、网络层、数据链路层、物理层。高层(即应用层、表示层、会话层、传输层)定义了应用程序的功能,下面3层(即网络层、数据链路层、物理层)主要面向通过网络的端到端,点到点的数据流。
TCP/IP协议族是一个四层协议系统,自下而上分别是:数据链路层、网络层、传输层和应用层。每一层完成不同的功能,且通过若干协议来实现,上层协议使用下层协议提供的服务。
应用层,网络服务与最终用户的一个接口。
传输层,定义传输数据的协议端口号,以及流控和差错校验。传输层为两台主机上的应用程序提供端到端(end to end)的通信。与网络层使用的逐跳通信方式不同,传输层只关心通信的起始端和目的端,而不在乎数据包的中转过程。传输层协议包括:传输控制协议(transmission control protocol,TCP),用户数据报协议(user datagram protocol,UDP)等。
网络层,进行逻辑地址寻址,实现不同网络之间的路径选择。对端到端的包传输进行定义,定义了能够标识所有结点的逻辑地址,及路由实现的方式和学习的方式。网络层协议包括:因特网协议(internet protocol,IP)等。例如,根据数据包的目的IP地址来决定如何投递数据包。如果数据包不能直接发送给目标主机,那么IP就为它寻找一个合适的下一跳(next hop)路由器,并将数据包交付给该路由器来转发。多次重复这一过程,数据包最终到达目标主机,或者由于发送失败而被丢弃。IP使用逐跳(hop by hop)的方式确定通信路径。
数据链路层,实现了网卡接口的网络驱动程序,以处理数据在物理媒介(比如以太网、令牌环等)上的传输。
2)、如图2a所示,提供了一种IP报文格式的示意图,差分服务代码点(differentiated services code point,DSCP)在数据包IP头部的服务类型TOS标识字节中,DSCP占用多个比特,通过多个比特的编码值来区分报文的优先级。例如,IP优先级(IP Precedence)使用最高3比特来表示,可以定义8个优先级,分别为:7预留、6预留、5语音、4视频会议、3呼叫信号、2高优先级数据、1中优先级数据、0尽力服务数据。优先级可以应用于流分类。
3)如图2b所示,提供了一种TCP报文格式的示意图:
源端口和目的端口:长度各为16位,为封装的数据指定了源和目的应用程序。
序列号:字段长度为32位,确定了发送方发送的数据流中被封装的数据所在位置。
确认号:长度为32位,确定了源点下一次期望从目标接受的序列号,隐含地确认了收到了该编号的上一个数据包。
报头长度:长度为4位,指定了以32位字为单位的报头长度。
保留:长度为4位或6位,通常设置为0。
标记:6位或8位,用于流和连接控制。例如,6位时从左到右依次是:URG、ACK、PSH、RST、SYN、FIN。
窗口大小:字段长度16位,主要用于流控制。窗口大小指明接收方接收缓冲区的大小。
校验和:长度为16位,对报头和被封装数据进行校验。
紧急指针:长度为16位,被添加到序列号上用于指明紧急数据的结束。
4)深度数据包检测(deep packet inspection,DPI),本质是一种数据报文过滤技术。所谓“深度”是相对“普通的报文解析”而言的。普通报文检测仅会分析数据报文的IP五元组(源地址、目的地址、源端口、目的端口以及协议类型)。而DPI除了支持报文首部解析之外,还增加了对应用层有效载荷(Payload)的解析,可以识别各种应用类型及其内容。简而言之,所谓“深度”就是要看见数据流实际的业务内容。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在现网业务部署中,空闲态UE在有移动端(mobile terminal,MT)业务时,网络侧会针对该UE进行寻呼处理,UE和网络侧建立无线连接后,MT业务接通。IMS系统中涉及很多类型的业务,例如,MT短信息服务(short messaging service,SMS)业务、MT语音通话(voice call)业务等。不同类型的业务时延、可靠性等要求会有所不同。例如,短信业务相对于语音业务来讲,业务接通时延要求略低一些。针对不同类型的业务,可以设置不同的寻呼策略(或者称为寻呼原因),以优化接入网设备的资源使用。
如图3所示,介绍了一种寻呼方法的流程。
步骤300:终端设备向IMS网元发送消息,消息中包括差分服务代码点(differentiated services code point,DSCP)值。
例如,主叫侧的终端设备向IMS网元(例如CSCF网元)发送消息,具体的,主叫侧的终端设备通过主叫侧的接入网设备、数据面网元等向CSCF网元发送消息,以便CSCF网元可以通过被叫侧的数据面网元、接入网设备等向被叫侧的终端设备发送寻呼消息。
步骤301:IMS网元向数据面网元(例如用户面功能UPF或用户面网关GW-U)发送数据报文,数据报文的报文头中携带DSCP。
例如,在IP报文头中打包DSCP值。例如,在如图2a所示的服务类型TOS标识字节中打包DSCP值。
步骤302:数据面网元向控制面网元(例如SMF)发送下行消息,所述下行消息中包括寻呼策略指示(paging policy indicator,PPI)信息。
数据面网元收到数据报文后,基于DSCP值映射寻呼策略指示PPI。数据面网元在下行消息(例如下行数据报告(downlink data report))中携带DSCP映射的PPI信息。通常,不同DSCP值映射不同的PPI值。
可选的,控制面网元向数据面网元发送确认(acknowledge,ACK)消息,以表示接收到来自数据面网元的PPI信息。
步骤303:控制面网元向移动性管理网元(例如AMF)进行消息传递(message transfer),将寻呼策略指示PPI信息告知给移动性管理网元。
可选的,移动性管理网元向控制面网元发送响应(response)消息,以表示接收到来 自控制面网元的PPI信息。
步骤304:移动性管理网元根据PPI,触发对应的寻呼策略。即向寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
DSCP值本身是用来区分报文的优先级,以实现流分类的,通过DSCP值来映射寻呼策略的方式,所决策出的用于寻呼终端设备的接入网设备是不够准确的。
基于此,本申请提出来基于业务类型确定寻呼策略的方式,针对不同类型的业务,设置不同的寻呼策略,可以使确定出用于寻呼终端设备的接入网设备更加准确,可以避免接入网设备的资源浪费,也可以降低寻呼到终端设备的时延。
接下来将结合附图对方案进行详细介绍。附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
实施例1:
图4所示,提供了一种通信的方法;该方法可以应用于如图1a或如图1b所示的通信系统。下文提及的数据面网元可以是UPF、或GW-U等,移动性管理网元可以是MME、或AMF等。IMS网元可以是CSCF网元等。
步骤401:IMS网元向数据面网元发送第一信息。相应的,数据面网元接收来自IMS网元的第一信息。
所述第一信息包括第一差分服务代码点DSCP信息和第一指示信息。
将第一信息中携带的DSCP信息称为第一DSCP信息。DSCP信息可以占用1个或多个bit。在本申请中,每个DSCP信息指示其对应的业务范围,每个业务范围中包括一个或多个业务类型。
所述第一指示信息可以用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种。第一指示信息可以占用1个或多个bit。
同一业务范围包括的不同的业务类型对应不同的寻呼策略(寻呼策略也可以称为寻呼原因)。例如,业务范围例如为IMS业务范围,或非IMS业务范围。IMS业务范围包括短信息服务SMS、语音通话(voice call)、传真或者其他需要特殊寻呼策略的业务类型。非IMS业务范围包括OTT(over the top,指互联网越过运营商)语音通话、OTT视频通话等业务类型。
所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备。例如寻呼策略为精准寻呼,该精准寻呼用于指示终端设备上一次驻留的接入网设备(例如last gNB/eNB)来对终端设备进行寻呼。例如寻呼策略为在跟踪区(tracking area,TA)列表(list)范围内进行寻呼,该在跟踪区列表范围内进行寻呼用于指示终端设备注册的跟踪区列表范围内的接入网设备来对终端设备进行寻呼。
例如,IMS业务范围内的语音通话业务对应的寻呼策略为在跟踪区列表范围内进行寻呼,可以保证尽快寻呼到UE,保证接通时延。
例如,IMS业务范围内的短信息服务SMS业务对应的寻呼策略为精准寻呼。可以避免资源浪费。
在一种可选的示例中,所述第一信息为传输层协议消息(消息也可以称为报文)。传输层协议消息例如传输控制协议TCP消息,或用户数据报协议UDP消息。当第一信息为TCP消息时,可以是TCP连接建立请求消息。TCP连接建立请求消息用于指示请求建立IMS网元与数据面网元的连接。这样在业务建立之前就可以知道业务类型。
在一种可选的示例中,所述第一信息为应用层协议消息。应用层协议消息也可以称为业务消息。例如,会话初始协议(session initiation protocol,SIP)消息。SIP消息例如为邀请(invite)消息。
在一种可选的示例中,所述第一消息可以为网络层协议消息。网络层协议消息例如可以是IP消息。
第一信息在包含第一指示信息时,可以是第一信息的消息头中包括所述第一指示信息;也可以是第一信息的消息体中包括所述第一指示信息。例如,在如图2a所示的“可选项”位中携带第一指示信息,也可以在如图2a所示的“数据”位中携带第一指示信息。再例如,可以在如图2b所示的“保留”位中携带第一指示信息,也可以在如图2b所示的“数据”位中携带第一指示信息。
第一信息在包含第一DSCP信息时,可以是第一信息的消息头中包括所述第一DSCP信息;也可以是第一信息的消息体中包括所述第一DSCP信息。例如,在如图2a所示的“可选项”位中携带第一DSCP信息,也可以在如图2a所示的“数据”位中携带第一DSCP信息。再例如,可以在如图2b所示的“保留”位中携带第一DSCP信息,也可以在如图2b所示的“数据”位中携带第一DSCP信息。
在一种可选的示例中,所述数据面网元可以通过对所述应用层协议消息的消息体进行深度报文解析DPI,得到所述第一指示信息。通常数据面网元不会对应用层消息的消息体进行处理,而是直接转出去,而在本申请中,数据面网元可以实现对应用层协议消息的消息体进行解析处理,可以不改变现有的传输机制,利用用户面网元原有的DPI功能实现业务识别。
步骤402:所述数据面网元向移动性管理网元发送第二指示信息,相应的,移动性管理网元接收来自数据面网元的第二指示信息。
所述第二指示信息可以用于指示所述第一DSCP信息指示的业务范围包括的所述第一业务类型。
一种可选的示例中,所述第二指示信息可以包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型。所述第三指示信息和所述第一指示信息可以相同,也可以不同。在各个网元上进行业务类型的全局规划,统一业务类型的指示方式,即通过DSCP信息和更细粒度的业务类型指示信息来指示业务类型,对于其中任一网元来说,无需更多的处理。
例如,当第一指示信息与第三指示信息占用的比特数相同,且比特位的取值也相同,则第一指示信息与第三指示信息相同。例如第一指示信息占用2bit,2bit的取值为00(即IMS网元与数据面网元约定第一业务类型对应的取值为00)。第三指示信息也占用2bit,且2bit的取值也为00(即数据面网元与移动性管理网元约定第一业务类型对应的取值也为00)。
再例如,第一指示信息与第三指示信息占用的比特位的数目不同,则第一指示信息与第三指示信息不同。
再例如,第一指示信息与第三指示信息占用的比特位的数目相同,但针对第一业务类型,比特位的取值不同,则第一指示信息与第三指示信息不同。
一种可选的示例中,所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一 DSCP信息。在这种情况下,可以看做是第二指示信息不包括第一DSCP信息。对于任一网元来说,可以自行确定如何来指示业务类型,可控性更强。
例如,DSCP信息占用1bit,0表示DSCP1:IMS业务,1表示DSCP2:非IMS业务。业务类型占用2bit,DSCP1包括3个业务类型:短信息服务SMS、语音通话(voice call)、传真,分别用00、01、10表示;DSCP2包括2个业务类型:OTT语音通话、OTT视频通话,分别用00、01表示。第一业务类型为DSCP2中的00所表示的业务类型(即非IMS业务的OTT语音通话)。对这5个业务类型(DSCP1包括的3个业务类型,DSCP2包括的2个业务类型)进行重新标记,分别为000、001、010、011、100、101。若DSCP2中的00表示的业务类型用011标记,则第二指示信息为011。
另外,可以理解的是数据面网元可以将第二指示信息直接发送给移动性管理网元或者通过某个中间网元(例如控制面网元,例如SMF网元)发送给移动性管理网元。
步骤403:移动性管理网元根据所述第二指示信息确定所述第一业务类型对应的第一寻呼策略,并向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个(例如N(N≥1)个)接入网设备发送寻呼消息。
移动性管理网元在根据所述第二指示信息确定第一业务类型对应的第一寻呼策略时,可以是移动性管理网元从第二指示信息中解析出第一业务类型,然后根据业务类型与寻呼策略的对应关系,确定第一业务类型对应的第一寻呼策略。
移动性管理网元可以分别向所述第一寻呼策略指示的需要对终端设备进行寻呼的N(N≥1)个接入网设备发送寻呼消息。例如,第一寻呼策略为在跟踪区列表范围内进行寻呼时,则移动性管理网元可以分别向跟踪区列表范围内的接入网设备发送寻呼消息。例如,第一寻呼策略为精准寻呼时,移动性管理网元可以向终端设备上一次驻留的接入网设备(例如last gNB/eNB)发送寻呼消息。若寻呼不到终端设备,则再让TA list内的接入网设备来寻呼终端设备。
另外,可以理解的是,为了寻呼终端设备,从IMS网元到接入网设备的消息中,都可以带需要寻呼的终端设备(可以理解为被叫侧的终端设备)的标识。
在该实施例中,IMS网元向数据面网元告知业务类型,数据面网元将业务类型告知给移动性管理网元,以便移动性管理网元基于业务类型关联的寻呼策略来决策哪些接入网设备对终端设备进行寻呼,以避免接入网设备的资源浪费和降低寻呼到终端设备的时延。另外,由于IMS网元向数据面网元告知的第一业务类型是在一个较大的业务范围内的更细粒度的业务类型,基于更细粒度的业务类型确定的寻呼策略更加精准,更加精准的寻呼策略可以进一步优化接入网设备的资源使用和降低寻呼到终端设备的时延。
例如,如果只考虑业务范围,不考虑业务类型,IMS业务可能对应的寻呼策略为在跟踪区TA list范围内进行寻呼。本申请中考虑到业务范围内的更细粒度的业务类型,针对更细粒度的业务类型来制定寻呼策略,例如,IMS业务范围内的短信息服务SMS业务对应的寻呼策略为精准寻呼,相对于在跟踪区列表范围内进行寻呼,更加精准,可以优化接入网设备的资源使用。
实施例2:
在另一种实施例中,数据面网元基于业务类型确定寻呼策略,向移动性管理网元发送寻呼策略指示信息,用以指示第一DSCP信息指示的业务范围包括的第一业务类型对应的第一寻呼策略。例如:
首先,IMS网元向数据面网元发送第一信息。相应的,数据面网元接收来自IMS网元的第一信息。所述第一信息与上文介绍的第一信息相同,不再重复描述。
然后,数据面网元根据所述第一指示信息确定所述第一业务类型对应的第一寻呼策略,向移动性管理网元发送寻呼策略指示信息,相应的,移动性管理网元接收来自数据面网元的寻呼策略指示信息。
所述寻呼策略指示信息用于指示所述第一DSCP信息指示的业务范围包括的第一业务类型对应的第一寻呼策略。
例如,数据面网元可以从第一指示信息中解析出第一业务类型,然后根据业务类型与寻呼策略的对应关系,确定第一业务类型对应的第一寻呼策略。
接下来,移动性管理网元基于所述寻呼策略指示信息确定出第一寻呼策略(直接从寻呼策略指示信息中解析出第一寻呼策略),并向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
该实施例涉及的具体过程可以参考上文,不再重复赘述。
IMS网元向数据面网元告知业务类型,数据面网元基于业务类型确定出对应的寻呼策略,并将寻呼策略告知给移动性管理网元,以便移动性管理网元基于寻呼策略来决策哪些接入网设备对终端设备进行寻呼,以避免接入网设备的资源浪费和降低寻呼到终端设备的时延。另外,由于IMS网元向数据面网元告知的第一业务类型是在一个较大的业务范围内的更细粒度的业务类型,基于更细粒度的业务类型确定的寻呼策略更加精准,更加精准的寻呼策略可以进一步优化接入网设备的资源使用和降低寻呼到终端设备的时延。
实施例3:
在另一种实施例中,基于业务类型确定寻呼策略的过程可以由IMS网元确定,这样,IMS网元向数据面网元发送的第一信息用于指示第一寻呼策略,数据面网元向移动性管理网元发送寻呼策略指示信息,用于指示第一寻呼策略。
适用于上述任一实施例的一种可选的示例中,向第i个(所述i取遍1至N中的任意一个正整数)接入网设备发送的寻呼消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级,优先级也可以称为寻呼概率,寻呼概率越大,则优先级越高。对所述终端设备进行寻呼的优先级也可以理解为对该寻呼消息的处理优先级,此处的处理为执行该寻呼消息对应的寻呼。本申请中,在寻呼消息中携带优先级(或称为寻呼概率),可以告知接入网设备需要寻呼的终端设备是否容易被寻呼到,以便于接入网设备合理安排资源来对该终端设备进行寻呼。例如当优先级较高时,接入网设备可以优先处理对该终端设备的寻呼。
例如,移动性管理网元可以动态记录UE上一次驻留的接入网设备(last gNB/eNB)的标识ID。在下次针对该UE的寻呼流程中,移动性管理网元可以向该UE上一次驻留的接入网设备发送寻呼消息,寻呼消息中的第四指示信息所指示的优先级较高些,如果还需要向其它接入网设备发送寻呼消息,则向其它接入网设备所指示的优先级较低些。
接收到来自移动性管理网元的寻呼消息的接入网设备可以基于第四指示信息以及当前的拥塞情况,来决定是否向,以及什么时候向终端设备发送寻呼消息。接入网设备基于自己的寻呼优先级(寻呼概率)可以决策在拥塞场景下的寻呼丢包率,可以降低接入网设 备的寻呼压力。接入网设备可以尽量保证高优先级的寻呼消息被处理,丢弃低优先级的寻呼消息。既保证寻呼成功率、又能保证不同业务的需求。
如图5所示,以第一信息为TCP连接建立请求消息为例,介绍一种具体通信方法。包括以下步骤:
步骤500:终端设备(例如,主叫UE)向IMS网元发送TCP连接建立请求消息,TCP连接建立请求消息中包括第一差分服务代码点DSCP信息和第一指示信息。
所述第一指示信息用于指示第一业务类型。所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种。
终端设备在有MT业务时,可以触发TCP连接建立,终端设备与IMS网元建立TCP连接。本申请对现有的TCP连接建立请求消息进行扩展,可以扩展消息头,也可以扩展消息体,来携带第一DSCP信息和第一指示信息。例如,可以扩展如图2b所示的“保留”位,通过1个或多个bit标识不同的业务类型。再例如,在TCP连接建立请求消息的消息体中,通过一个新的信元指示不同的业务类型。
具体的,例如,在如图2b所示的“保留”位中携带第一指示信息,也可以在如图2b所示的“数据”位中携带第一指示信息。例如,在如图2b所示的“保留”位中携带第一DSCP信息,也可以在如图2b所示的“数据”位中携带第一DSCP信息。
步骤501:IMS网元向数据面网元发送TCP连接建立请求消息,TCP连接建立请求消息中包括第一DSCP信息和第一指示信息。
终端设备在有呼叫业务时,可以先建立终端设备与IMS网络之间的连接,才能传输业务报文。在采用TCP传输场景中,IMS网元可以向数据面网元发送TCP连接建立请求消息。IMS网元可以向数据面网元发送的TCP连接建立请求消息中的第一DSCP信息和第一指示信息,与步骤500中的IMS网元接收到的TCP连接建立请求消息中的第一DSCP信息和第一指示信息相同,不再重复赘述。
步骤502:数据面网元向控制面网元(例如SMF)发送下行消息,所述下行消息中包括第二指示信息。
所述第二指示信息在指示第一寻呼策略时,第二指示信息可以看做是寻呼策略指示PPI信息。例如数据面网元在TCP连接建立请求消息的消息头中解析出第一DSCP信息,以及在TCP连接建立请求消息的消息头或消息体中解析出第一指示信息所指示的第一业务类型,基于业务类型与寻呼策略的对应关系,确定第一业务类型对应的第一寻呼策略。并向控制面网元发送寻呼策略指示PPI信息。
所述第二指示信息在指示第一DSCP信息指示的业务范围包括的第一业务类型时,第二指示信息可以看做是业务类型指示信息。前文已经介绍,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型。所述第三指示信息和所述第一指示信息可以相同,也可以不同。或者,所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。在这种情况下,可以看做是第二指示信息不包括第一DSCP信息。例如数据面网元在TCP连接建立请求消息的消息头中解析出第一DSCP信息,以及在TCP连接建立请求消息的消息头或消息体中解析出第一指示信息所指示的第一业务类型,并向控制面网元发送业务类型指示信息。
可选的,数据面网元在接收到TCP连接建立请求后,可以先查看是否有该业务对应的下行传输路径,在没有该业务对应的下行传输路径时,再对TCP连接建立请求消息进行解析。
可选的,控制面网元向数据面网元发送确认ACK消息,以表示接收到来自数据面网元的消息。
步骤503:控制面网元向移动性管理网元(例如AMF)进行消息传递(message transfer),向移动性管理网元发送第二指示信息(即寻呼策略指示信息或业务类型指示信息)。
可选的,移动性管理网元向控制面网元发送响应(response)消息,以表示接收到来自控制面网元的消息。
步骤504:移动性管理网元针对不同的寻呼策略指示或业务类型指示,发起不同的寻呼策略。
即向第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。这样,接入网设备就可以向终端设备(例如被叫UE)发送寻呼消息,实现对终端设备的寻呼。
移动性管理网元在接收到寻呼策略指示信息的情况下,可以直接解析出第一寻呼策略。
移动性管理网元在接收到业务类型指示信息的情况下,可以直接解析出第一业务类型,并基于业务类型与寻呼策略的对应关系,找到对应的第一寻呼策略。例如,IMS业务范围内的语音通话业务对应的寻呼策略为在跟踪区列表范围内进行寻呼。例如,IMS业务范围内的短信息服务SMS业务对应的寻呼策略为精准寻呼。
在一种并列的方案中,移动性管理网元发送给接入网设备的寻呼paging消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级。具体过程可以参考上文描述,不再重复赘述。
例如,移动性管理动态记录每个UE上一次驻留的接入网设备(last gNB/eNB)的标识ID。在下次针对该UE的寻呼流程中,移动性管理网元可以向该UE上一次驻留的接入网设备发送的寻呼消息中所指示的优先级较高些(下发高概率指示),向其它接入网设备发送寻呼消息中所指示的优先级较低些(下发低概率指示)。
这样,处于拥塞状态的接入网设备可以优先保证高概率的寻呼请求,提升寻呼成功率。
如图6所示,以第一信息为业务消息(即应用层协议消息)为例,介绍一种具体通信方法。在业务消息的消息头中携带第一指示信息。
步骤600:终端设备(例如,主叫UE)向IMS网元发送业务消息(业务消息也可以称为应用层协议消息)。业务消息的消息头中包括第一差分服务代码点DSCP信息和第一指示信息。
所述第一指示信息用于指示第一业务类型。所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种。
主叫侧的终端设备在与IMS网络连接建立成功后,可以发送业务消息。本申请对现有的业务消息进行扩展,可以扩展消息头,来携带第一DSCP信息和第一指示信息。
步骤601:IMS网元向数据面网元发送业务消息(业务消息也可以称为应用层协议消息),业务消息的消息头中包括第一DSCP信息和第一指示信息。
在该示例中,IMS网元侧扩展应用层的数据报文头发送给用户面网元,扩展的报文头中增加业务类型指示信息,来标识不同的业务类型。IMS网元可以向数据面网元发送的业务消息中的第一DSCP信息和第一指示信息,与步骤600中的IMS网元接收到的业务消息中的第一DSCP信息和第一指示信息可以相同。
数据面网元发现没有下行路径需要寻呼UE,数据面网元解析业务报文头,获知对应业务类型或者其他可标识寻呼策略指示的信息。
可选的,数据面网元查看没有该业务对应的下行传输路径时,对业务消息进行解析,获知第一业务类型。
步骤602:数据面网元向控制面网元(例如SMF)发送下行消息,所述下行消息中包括第二指示信息。与步骤502相同,不再重复赘述。
步骤603:控制面网元向移动性管理网元(例如AMF)进行消息传递(message transfer),向移动性管理网元发送第二指示信息(即寻呼策略指示信息或业务类型指示信息)。与步骤503相同,不再重复赘述。
步骤604:移动性管理网元针对不同的寻呼策略指示或业务类型指示,发起不同的寻呼策略。与步骤504相同,不再重复赘述。
在一种并列的方案中,移动性管理网元发送给接入网设备的寻呼paging消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级。具体过程可以参考上文描述,不再重复赘述。
数据面网元至终端设备的寻呼过程可以参考图5的示例,不再重复赘述。
如图7所示,以第一信息为业务消息(即应用层协议消息)为例,介绍一种具体通信方法。在业务消息的消息体中携带第一指示信息。
步骤700:终端设备(例如,主叫UE)向IMS网元发送业务消息(例如邀请invite消息)(业务消息也可以称为应用层协议消息)。业务消息中包括第一差分服务代码点DSCP信息和第一指示信息。
第一指示信息位于业务消息的消息体中,第一DSCP信息位于业务消息的消息体或者消息头中。
所述第一指示信息用于指示第一业务类型。所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种。
业务消息例如为invite消息,主叫侧的终端设备在与IMS网络连接建立成功后,可以发送业务消息。本申请对现有的业务消息进行扩展,可以扩展消息体,来携带第一指示信息。
步骤701:IMS网元向数据面网元发送业务消息(例如邀请invite消息)(业务消息也可以称为应用层协议消息),业务消息中包括第一DSCP信息和第一指示信息。
在该示例中,IMS网元侧在应用层的数据报文体中携带第一指示信息,来标识不同的业务类型。第一DSCP信息位于业务消息的消息体或者消息头中。IMS网元可以向数据面网元发送的业务消息中的第一DSCP信息和第一指示信息,与步骤700中的IMS网元接收到的业务消息中的第一DSCP信息和第一指示信息可以相同。
数据面网元对业务消息的消息体进行深度报文解析DPI,得到所述第一指示信息。如果第一DSCP信息也位于消息体中,通过DPI也可以解析出第一DSCP信息。
可选的,数据面网元查看没有该业务对应的下行传输路径时,对业务消息进行解析,获知第一业务类型。
步骤702:数据面网元向控制面网元(例如SMF)发送下行消息,所述下行消息中包括第二指示信息。与步骤502相同,不再重复赘述。
步骤703:控制面网元向移动性管理网元(例如AMF)进行消息传递(message transfer),向移动性管理网元发送第二指示信息(即寻呼策略指示信息或业务类型指示信息)。与步骤503相同,不再重复赘述。
步骤704:移动性管理网元针对不同的寻呼策略指示或业务类型指示,发起不同的寻呼策略。与步骤504相同,不再重复赘述。
在一种并列的方案中,移动性管理网元发送给接入网设备的寻呼paging消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级。具体过程可以参考上文描述,不再重复赘述。
数据面网元至终端设备的寻呼过程可以参考图5的示例,不再重复赘述。
前文介绍了本申请实施例的方法,下文中将介绍本申请实施例中的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例可以根据上述方法示例,对装置进行功能模块的划分,例如,可以对应各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。这些模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,具体实现时可以有另外的划分方式。
基于与上述方法的同一技术构思,参见图8,提供了一种通信装置800结构示意图,该装置800可以包括:处理模块810,可选的,还包括接收模块820a、发送模块820b、存储模块830。处理模块810可以分别与存储模块830和接收模块820a和发送模块820b相连,所述存储模块830也可以与接收模块820a和发送模块820b相连。
在一种示例中,上述的接收模块820a和发送模块820b也可以集成在一起,定义为收发模块。
在一种示例中,该装置800可以为数据面网元,也可以为应用于数据面网元中的芯片或功能单元。该装置800具有上述方法中数据面网元的任意功能,例如,该装置800能够执行上述图4-图7的方法中由数据面网元执行的各个步骤。
所述接收模块820a,可以执行上述方法实施例中数据面网元执行的接收动作。
所述发送模块820b,可以执行上述方法实施例中数据面网元执行的发送动作。
所述处理模块810,可以执行上述方法实施例中数据面网元执行的动作中,除发送动作和接收动作外的其它动作。
在一种示例中,所述接收模块820a,用于接收来自因特网协议多媒体子系统IMS网元的第一信息,所述第一信息包括第一差分服务代码点DSCP信息和第一指示信息,所述第一指示信息用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备;
所述发送模块820b,用于向移动性管理网元发送第二指示信息,所述第二指示信息用于指示所述第一DSCP信息指示的业务范围包括的所述第一业务类型。
例如,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;或者,所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。
例如,所述第一信息为网络层协议消息或传输层协议消息或应用层协议消息。
例如,所述第一信息的消息头中包括所述第一指示信息;或者,所述第一信息的消息体中包括所述第一指示信息。
例如,所述传输层协议消息为传输控制协议TCP连接建立请求消息。
所述处理模块810,用于对所述应用层协议消息的消息体进行深度报文解析DPI,得到所述第一指示信息。
在一种示例中,所述存储模块830,可以存储数据面网元执行的方法的计算机执行指令,以使处理模块810和接收模块820a和发送模块820b执行上述示例中数据面网元执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
在一种示例中,该装置800可以为移动性管理网元,也可以为应用于移动性管理网元中的芯片或功能单元。该装置800具有上述方法中移动性管理网元的任意功能,例如,该装置800能够执行上述图4-图7的方法中由移动性管理网元执行的各个步骤。
所述接收模块820a,可以执行上述方法实施例中移动性管理网元执行的接收动作。
所述发送模块820b,可以执行上述方法实施例中移动性管理网元执行的发送动作。
所述处理模块810,可以执行上述方法实施例中移动性管理网元执行的动作中,除发送动作和接收动作外的其它动作。
在一种示例中,所述接收模块820a,用于接收来自数据面网元的第二指示信息,所述第二指示信息用于指示第一DSCP信息指示的业务范围包括的第一业务类型;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备;
所述处理模块810,用于根据所述第二指示信息确定所述第一业务类型对应的第一寻呼策略;
所述发送模块820b,用于向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
例如,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;或者,所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。
所述发送模块820b,具体用于所述移动性管理网元分别向所述第一寻呼策略指示的需要对终端设备进行寻呼的N个接入网设备发送寻呼消息;其中,向第i个接入网设备发送的寻呼消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级,所述i取遍1至N中的任意一个正整数。
在一种示例中,所述存储模块830,可以存储移动性管理网元执行的方法的计算机执行指令,以使处理模块810和接收模块820a和发送模块820b执行上述示例中移动性管理网元执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
作为一种可能的产品形态,装置可以由一般性的总线体系结构来实现。
如图9所示,提供了一种通信装置900的示意性框图。
该装置900可以包括:处理器910,可选的,还包括收发器920、存储器930。该收发器920,可以用于接收程序或指令并传输至所述处理器910,或者,该收发器920可以用于该装置900与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器920可以为代码和/或数据读写收发器,或者,该收发器920可以为处理器与收发机之间的信号传输收发器。所述处理器910和所述存储器930之间电耦合。
一种示例中,该装置900可以为数据面网元,也可以为应用于数据面网元中的芯片。应理解,该装置具有上述方法中数据面网元的任意功能,例如,所述装置900能够执行上述图4-图7的方法中由数据面网元执行的各个步骤。示例的,所述存储器930,用于存储计算机程序;所述处理器910,可以用于调用所述存储器930中存储的计算机程序或指令,执行上述示例中数据面网元执行的方法,或者通过所述收发器920执行上述示例中数据面网元执行的方法。
一种示例中,该装置900可以为移动性管理网元,也可以为应用于移动性管理网元中的芯片。应理解,该装置具有上述方法中移动性管理网元的任意功能,例如,所述装置900能够执行上述图4-图7的方法中由移动性管理网元执行的各个步骤。示例的,所述存储器930,用于存储计算机程序;所述处理器910,可以用于调用所述存储器930中存储的计算机程序或指令,执行上述示例中移动性管理网元执行的方法,或者通过所述收发器920执行上述示例中移动性管理网元执行的方法。
图8中的处理模块810可以通过所述处理器910来实现。
图8中的接收模块820a和发送模块820b可以通过所述收发器920来实现。或者,收发器920分为接收器和发送器,接收器执行接收模块的功能,发送器执行发送模块的功能。
图8中的存储模块830可以通过所述存储器930来实现。
作为一种可能的产品形态,装置可以由通用处理器(通用处理器也可以称为芯片或芯片系统)来实现。
一种可能的实现方式中,实现应用于数据面网元的装置或移动性管理网元的装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中数据面网元或移动性管理网元执行的方法。
图8中的处理模块810可以通过处理电路来实现。
图8中的接收模块820a和发送模块820b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。
图8中的存储模块830可以通过存储介质来实现。
作为一种可能的产品形态,本申请实施例的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述通信方法。或者说:所述计算机程序包括用于实现上述通信方法的指令。
本申请实施例还提供了一种计算机程序产品,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述提供的通信方法。
本申请实施例还提供了一种通信的系统,所述通信系统包括:执行上述通信方法的数据面网元和移动性管理网元。
一种示例中,所述数据面网元,用于接收来自因特网协议多媒体子系统IMS网元的第一信息,所述第一信息包括第一差分服务代码点DSCP信息和第一指示信息,所述第一指示信息用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备;并向移动性管理网元发送第二指示信息,所述第二指示信息用于指示所述第一DSCP信息指示的业务范围包括的所述第一业务类型。
所述移动性管理网元,用于根据所述第二指示信息确定所述第一业务类型对应的第一寻呼策略,并向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
一种示例中,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;或者,所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。
一种示例中,所述第一信息为网络层协议消息或传输层协议消息或应用层协议消息。
一种示例中,所述第一信息的消息头中包括所述第一指示信息;或者,所述第一信息的消息体中包括所述第一指示信息。
一种示例中,所述传输层协议消息为传输控制协议TCP连接建立请求消息。
一种示例中,所述数据面网元,还用于对所述应用层协议消息的消息体进行深度报文 解析DPI,得到所述第一指示信息。
一种示例中,所述移动性管理网元,具体用于分别向所述第一寻呼策略指示的需要对终端设备进行寻呼的N(N≥1)个接入网设备发送寻呼消息;其中,向第i个接入网设备发送的寻呼消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级,所述i取遍1至N中的任意一个正整数。
另外,本申请实施例中提及的处理器可以是中央处理器(central processing unit,CPU),基带处理器,基带处理器和CPU可以集成在一起,或者分开,还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中提及的收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接 耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者第二装置等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    数据面网元接收来自因特网协议多媒体子系统IMS网元的第一信息,所述第一信息包括第一差分服务代码点DSCP信息和第一指示信息,所述第一指示信息用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备;
    所述数据面网元向移动性管理网元发送第二指示信息,所述第二指示信息用于指示所述第一DSCP信息指示的业务范围包括的所述第一业务类型。
  2. 如权利要求1所述的方法,其特征在于,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;或者,
    所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。
  3. 如权利要求1所述的方法,其特征在于,所述第一信息为网络层协议消息或传输层协议消息或应用层协议消息。
  4. 如权利要求3所述的方法,其特征在于,所述第一信息的消息头中包括所述第一指示信息;或者,所述第一信息的消息体中包括所述第一指示信息。
  5. 如权利要求3或4所述的方法,其特征在于,所述传输层协议消息为传输控制协议TCP连接建立请求消息。
  6. 如权利要求3或4所述的方法,其特征在于,还包括:
    所述数据面网元对所述应用层协议消息的消息体进行深度报文解析DPI,得到所述第一指示信息。
  7. 一种通信方法,其特征在于,包括:
    移动性管理网元接收来自数据面网元的第二指示信息,所述第二指示信息用于指示第一DSCP信息指示的业务范围包括的第一业务类型;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备;
    所述移动性管理网元根据所述第二指示信息确定所述第一业务类型对应的第一寻呼策略,并向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
  8. 如权利要求7所述的方法,其特征在于,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;或者,
    所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。
  9. 如权利要求7所述的方法,其特征在于,所述移动性管理网元向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息,包括:
    所述移动性管理网元分别向所述第一寻呼策略指示的需要对终端设备进行寻呼的N个接入网设备发送寻呼消息;其中,向第i个接入网设备发送的寻呼消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级, 所述i取遍1至N中的任意一个正整数。
  10. 一种通信系统,其特征在于,包括:数据面网元和移动性管理网元;
    所述数据面网元,用于接收来自因特网协议多媒体子系统IMS网元的第一信息,所述第一信息包括第一差分服务代码点DSCP信息和第一指示信息,所述第一指示信息用于指示第一业务类型,所述第一业务类型为所述第一DSCP信息指示的业务范围包括的业务类型中的一种;同一业务范围包括的不同的业务类型对应不同的寻呼策略,所述寻呼策略用于指示需要对终端设备进行寻呼的至少一个接入网设备;并向移动性管理网元发送第二指示信息,所述第二指示信息用于指示所述第一DSCP信息指示的业务范围包括的所述第一业务类型
    所述移动性管理网元,用于根据所述第二指示信息确定所述第一业务类型对应的第一寻呼策略,并向所述第一寻呼策略指示的需要对终端设备进行寻呼的至少一个接入网设备发送寻呼消息。
  11. 如权利要求10所述的系统,其特征在于,所述第二指示信息包括所述第一DSCP信息和第三指示信息,所述第三指示信息用于指示所述第一业务类型;或者,
    所述第二指示信息为在多个DSCP信息分别指示的业务范围包括的业务类型中,所述第一业务类型对应的指示信息,所述多个DSCP信息包括所述第一DSCP信息。
  12. 如权利要求10所述的系统,其特征在于,所述第一信息为网络层协议消息或传输层协议消息或应用层协议消息。
  13. 如权利要求12所述的系统,其特征在于,所述第一信息的消息头中包括所述第一指示信息;或者,所述第一信息的消息体中包括所述第一指示信息。
  14. 如权利要求12或13所述的系统,其特征在于,所述传输层协议消息为传输控制协议TCP连接建立请求消息。
  15. 如权利要求12或13所述的系统,其特征在于,所述数据面网元,还用于对所述应用层协议消息的消息体进行深度报文解析DPI,得到所述第一指示信息。
  16. 如权利要求10所述的系统,其特征在于,所述移动性管理网元,具体用于分别向所述第一寻呼策略指示的需要对终端设备进行寻呼的N个接入网设备发送寻呼消息;其中,向第i个接入网设备发送的寻呼消息中包括第四指示信息,所述第四指示信息用于指示所述第i个接入网设备对所述终端设备进行寻呼的优先级,所述i取遍1至N中的任意一个正整数。
  17. 一种通信装置,其特征在于,包括:用于实现如权利要求1-6任一项所述方法的功能模块、或用于实现如权利要求7-9任一项所述方法的功能模块。
  18. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    当所述存储器中存储的部分或者全部计算机程序或指令被所述处理器执行时,实现如权利要求1-6任一项所述的方法、或实现如权利要求7-9任一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器存储有计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,以实现如权利要求1-6任一项所述的方法、或实现如权利要求7-9任一项所述的方法。
  20. 一种芯片系统,其特征在于,包括:处理电路;所述处理电路与存储介质耦合;
    所述处理电路,用于执行所述存储介质中的部分或者全部计算机程序或指令,以实现 如权利要求1-6任一项所述的方法、或实现如权利要求7-9任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现权利要求1-6任一项所述的方法的指令、或实现权利要求7-9任一项所述的方法的指令。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1-6任一项所述的方法、或执行如权利要求7-9任一项所述的方法。
PCT/CN2022/132763 2021-12-02 2022-11-18 一种通信方法及装置 WO2023098489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111456170.7A CN116234010A (zh) 2021-12-02 2021-12-02 一种通信方法及装置
CN202111456170.7 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023098489A1 true WO2023098489A1 (zh) 2023-06-08

Family

ID=86584743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132763 WO2023098489A1 (zh) 2021-12-02 2022-11-18 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116234010A (zh)
WO (1) WO2023098489A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106611A1 (en) * 2018-11-19 2020-05-28 Intel Corporation Paging cause determination for an inactive device in a 5g system
US20210127351A1 (en) * 2019-09-26 2021-04-29 Intel Corporation Paging cause determination for inactive device in the 5g system
WO2021162393A1 (ko) * 2020-02-13 2021-08-19 엘지전자 주식회사 멀티 액세스 pdu 세션과 관련된 통신
US20210352619A1 (en) * 2019-03-11 2021-11-11 Ofinno, Llc Wireless Device Paging by a Wireless Network
WO2021233264A1 (zh) * 2020-05-21 2021-11-25 华为技术有限公司 一种通信方法、设备及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106611A1 (en) * 2018-11-19 2020-05-28 Intel Corporation Paging cause determination for an inactive device in a 5g system
US20210352619A1 (en) * 2019-03-11 2021-11-11 Ofinno, Llc Wireless Device Paging by a Wireless Network
US20210127351A1 (en) * 2019-09-26 2021-04-29 Intel Corporation Paging cause determination for inactive device in the 5g system
WO2021162393A1 (ko) * 2020-02-13 2021-08-19 엘지전자 주식회사 멀티 액세스 pdu 세션과 관련된 통신
WO2021233264A1 (zh) * 2020-05-21 2021-11-25 华为技术有限公司 一种通信方法、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Solution for paging delivery with traffic type", 3GPP DRAFT; S2-1909745_PAGING DELIEVRY WITH TRAFFIC TYPE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Split, Croatia; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051795834 *

Also Published As

Publication number Publication date
CN116234010A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN112889254B (zh) 使用策略处理数据包的方法和系统
US10980084B2 (en) Supporting multiple QOS flows for unstructured PDU sessions in wireless system using non-standardized application information
CN111758279B (zh) 跟踪QoS违规事件
US11671373B2 (en) Systems and methods for supporting traffic steering through a service function chain
CN111406415B (zh) 多播和广播服务的方法和系统
KR20180124033A (ko) 네트워크 슬라이싱 동작
US20180359662A1 (en) Method for transmitting and receiving signal related to data-off function
EP3952599A1 (en) Method for establishing communication bearer, device and system
WO2021227599A1 (zh) 一种通信的方法及装置
CN116097886A (zh) 用于冗余传输的策略控制
US20170280270A1 (en) Method for controlling application related to third party server in wireless communication system and device for same
WO2022012361A1 (zh) 一种通信方法及装置
WO2023098489A1 (zh) 一种通信方法及装置
WO2021213000A1 (zh) 媒体报文的传输方法、装置及系统
WO2021159415A1 (zh) 通信方法、装置及系统
JP2023510410A (ja) マルチアクセス関連情報を伴うプロビジョニングトラフィック操向
WO2023179331A1 (zh) 一种发送数据包的方法、通信装置及通信系统
WO2023213177A1 (zh) 一种通信方法及装置
WO2023016262A1 (zh) 一种通信方法及装置
WO2024012376A1 (zh) 一种通信方法、通信装置及通信系统
WO2023020046A1 (zh) 一种通信方法及通信装置
US20230136984A1 (en) Method and apparatus for verifying compliance with ue route selection policy
WO2023056784A1 (zh) 数据收集方法、通信装置及通信系统
EP4325929A1 (en) Wireless communication method, communication apparatus and communication system
WO2023151345A1 (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900294

Country of ref document: EP

Kind code of ref document: A1