WO2023016262A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023016262A1
WO2023016262A1 PCT/CN2022/108354 CN2022108354W WO2023016262A1 WO 2023016262 A1 WO2023016262 A1 WO 2023016262A1 CN 2022108354 W CN2022108354 W CN 2022108354W WO 2023016262 A1 WO2023016262 A1 WO 2023016262A1
Authority
WO
WIPO (PCT)
Prior art keywords
smf
multicast
message
network element
multicast address
Prior art date
Application number
PCT/CN2022/108354
Other languages
English (en)
French (fr)
Inventor
王亚鑫
李岩
李濛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3228659A priority Critical patent/CA3228659A1/en
Priority to KR1020247006545A priority patent/KR20240037337A/ko
Priority to EP22855245.1A priority patent/EP4369746A1/en
Priority to AU2022326664A priority patent/AU2022326664A1/en
Publication of WO2023016262A1 publication Critical patent/WO2023016262A1/zh
Priority to US18/435,534 priority patent/US20240179801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the embodiments of the present application relate to fields such as communications, and in particular, to a communication method and device.
  • MBS multicast/broadcast service
  • Embodiments of the present application provide a communication method and device, which are used to propose a manner of providing a multicast service for a terminal device.
  • a communication method is provided, and the execution subject of the method may be a first SMF network element, or may be a component applied to the first SMF network element, such as a chip, a processor, and the like.
  • the following description is made by taking the execution subject as an example of the first SMF network element.
  • the first session management function SMF network element receives a first message from the terminal device, the first message includes a multicast address, and the first message is used to instruct the terminal device to request to join the multicast address corresponding to the Multicast session.
  • the first SMF network element sends a second message to the network registration function NRF network element, the second message includes the multicast address, and the second message is used to query the multicast address corresponding to the multicast address.
  • SMF for establishing multicast sessions for broadcast services Then, the first SMF network element receives a third message from the NRF, where the third message is used to indicate that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been found.
  • the first SMF network element sends a fourth message to the terminal device, where the fourth message is used to indicate that the terminal device is refused to join the multicast session corresponding to the multicast address.
  • the NRF network element uses the second message to distinguish the multicast session establishment scenario from the multicast session configuration scenario, so that the NRF network element knows that the SMF to be queried in the current scenario is used to establish a multicast session, not to configure multicast Conversational.
  • the NRF when there is no SMF currently serving the multicast service corresponding to the multicast address, the NRF will select an MB-SMF and feed it back to the first SMF according to slice and other information to establish Multicast session.
  • the SMF network element can perform authorization verification on the multicast service, and when the authorization verification fails, send an indication message of refusal to join to the terminal device, so as to avoid resource waste of the terminal device.
  • the SMF network element queries the NRF network element for a suitable SMF, and determines whether the authorization verification is passed according to the query result. If the NRF network element does not allocate the SMF to the first SMF network element to establish the multicast session, the authorization verification fails. Not allocating SMF can avoid waste of resources and illegal attacks. In this way, the multicast service can be reasonably provided for the terminal equipment.
  • the second message further includes: a first indication, where the first indication is used to indicate establishment of a multicast session.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • the third message includes: a second indication, where the second indication is used to indicate that the query fails; and/or, an empty SMF list.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • the third message includes an empty SMF list, the format of the existing message may be used, which has strong versatility.
  • a communication method is provided, and the execution body of the method may be a first SMF network element, or may be a component applied to the first SMF network element, such as a chip, a processor, and the like.
  • the following description is made by taking the execution subject as an example of the first SMF network element.
  • the first session management function SMF network element receives a first message from the terminal device, the first message includes a multicast address, and the first message is used to instruct the terminal device to request to join the multicast address corresponding to the Multicast session.
  • the first SMF network element sends a second message to the network registration function NRF network element, the second message includes the multicast address, and the second message is used to query the multicast address corresponding to the multicast address.
  • SMF for establishing multicast sessions for broadcast services.
  • the first SMF network element receives a third message from the NRF, the third message includes a second SMF, and the second SMF supports establishing a multicast for the multicast service corresponding to the multicast address session.
  • the first SMF network element sends a fourth message to the terminal device, where the fourth message is used to indicate that the terminal device is accepted to join the multicast session corresponding to the multicast address.
  • the SMF network element can perform authorization verification on the multicast service, and when the authorization verification is passed, send an instruction to accept joining to the terminal device.
  • the SMF network element queries the NRF network element for a suitable SMF, and determines whether the authorization verification is passed according to the query result. If the NRF network element assigns the SMF to the first SMF network element to establish the multicast session, the authorization verification passes, so that the multicast service can be reasonably provided for the terminal device.
  • the second message further includes: a first indication, where the first indication is used to indicate establishment of a multicast session.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • a communication method is provided, and the execution body of the method may be an NRF network element with a network registration function, or may be a component applied to the NRF network element, such as a chip, a processor, and the like.
  • the network registration function NRF network element receives a second message from the first SMF network element, the second message includes a multicast address, and the second message is used to query the establishment of a multicast service corresponding to the multicast address SMF for multicast sessions.
  • the NRF sends a third message to the first SMF network element, where the third message is used to indicate that no SMF that establishes a multicast session for the multicast service corresponding to the multicast address has been found.
  • the NRF network element uses the second message to distinguish the multicast session establishment scenario from the multicast session configuration scenario, so that the NRF network element knows that the SMF to be queried in the current scenario is used to establish a multicast session, not to configure multicast Conversational.
  • the NRF when there is no SMF currently serving the multicast service corresponding to the multicast address, the NRF will select an MB-SMF and feed it back to the first SMF according to slice and other information to establish Multicast session.
  • the SMF network element can perform authorization verification on the multicast service, and when the authorization verification fails, send an indication message of refusal to join to the terminal device, so as to avoid resource waste of the terminal device.
  • the SMF network element queries the NRF network element for a suitable SMF, and determines whether the authorization verification is passed according to the query result. If the NRF network element does not allocate the SMF to the first SMF network element to establish the multicast session, the authorization verification fails. Not allocating SMF can avoid waste of resources and illegal attacks. In this way, the multicast service can be reasonably provided for the terminal equipment.
  • the second message further includes: a first indication, where the first indication is used to indicate establishment of a multicast session.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • the third message includes: a second indication, where the second indication is used to indicate that the query fails; and/or, an empty SMF list.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • the third message includes an empty SMF list, the format of the existing message may be used, which has strong versatility.
  • the NRF sends a third message to the first SMF network element, including: the allowed multicast address of the SMF supporting the establishment of a multicast session for a multicast service does not include the multicast address
  • the NRF sends a third message to the first SMF network element; or, if there is no SMF that currently serves the multicast service corresponding to the multicast address, and supports the establishment of multiple
  • the NRF sends a third message to the first SMF network element; if the allowed multicast address of the operator does not include the multicast In the case of the address, the NRF sends a third message to the first SMF network element.
  • the NRF network element receives an allowed multicast address of an SMF that supports establishment of a multicast session for a multicast service, where the allowed multicast address does not include the multicast address.
  • the NRF network element receives an operator's allowed multicast address, where the operator's allowed multicast address does not include the multicast address.
  • the NRF network element inquires locally whether the multicast address belongs to the operator's allowed multicast address; or, the NRF inquires whether the multicast address belongs to the unified data storage UDR network element Allowed multicast addresses belonging to the carrier.
  • a communication method is provided, and the execution body of the method may be an NRF network element with a network registration function, or may be a component applied to the NRF network element, such as a chip, a processor, and the like.
  • the network registration function NRF network element receives a second message from the first SMF network element, the second message includes a multicast address, and the second message is used to query the establishment of a multicast service corresponding to the multicast address SMF for multicast sessions.
  • the NRF network element sends a third message to the first SMF network element, the third message includes a second SMF, and the second SMF supports establishing a multicast for the multicast service corresponding to the multicast address session.
  • the SMF network element can perform authorization verification on the multicast service, and when the authorization verification is passed, send an instruction message to accept joining to the terminal device.
  • the SMF network element queries the NRF network element for a suitable SMF, and determines whether the authorization verification is passed according to the query result. If the NRF network element assigns the SMF to the first SMF network element to establish the multicast session, the authorization verification passes, so that the multicast service can be reasonably provided for the terminal device.
  • the second message further includes: a first indication, where the first indication is used to indicate establishment of a multicast session.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • the second SMF is the SMF currently serving the multicast session corresponding to the multicast address; or, the allowed multicast address of the second SMF includes the multicast address.
  • the NRF network element receives the allowed multicast address of the second SMF, where the allowed multicast address of the second SMF includes the multicast address.
  • the NRF network element An SMF configured to establish a multicast session for the multicast service corresponding to the multicast address.
  • the NRF network element receives an operator's allowed multicast address, where the operator's allowed multicast address includes the multicast address.
  • the NRF network element inquires locally whether the multicast address belongs to the operator's allowed multicast address; or, the NRF inquires whether the multicast address belongs to the unified data storage UDR network element Allowed multicast addresses belonging to the carrier.
  • a communication device in the fifth aspect, has the function of realizing the above-mentioned first aspect and any possible implementation of the first aspect, or realizing the above-mentioned second aspect and any possible implementation of the second aspect functions, or realize the above-mentioned third aspect and the functions in any possible implementation of the third aspect, or realize the above-mentioned fourth aspect and the functions in any possible implementation of the fourth aspect.
  • These functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • the hardware or software includes one or more functional modules corresponding to the above functions.
  • a communication device including a processor, and optionally, a memory; the processor is coupled to the memory; the memory is used to store computer programs or instructions; the processor, It is used to execute part or all of the computer programs or instructions in the memory, and when the part or all of the computer programs or instructions are executed, it is used to implement the first aspect above and any possible implementation method of the first aspect.
  • the function of a SMF network element, or the function of the first SMF network element in the second aspect and any possible realization method of the second aspect, or the NRF in the third aspect and any possible realization method of the third aspect A function of the network element, or a function of the NRF network element in the fourth aspect and any possible implementation of the fourth aspect.
  • the apparatus may further include a transceiver, where the transceiver is configured to send a signal processed by the processor, or receive a signal input to the processor.
  • the transceiver may perform the sending action or receiving action performed by the first SMF network element in the first aspect and any possible implementation of the first aspect; or, perform the first aspect and the first aspect in any possible implementation of the second aspect.
  • the sending action or receiving action performed by the SMF network element; or, performing the sending action or receiving action performed by the NRF network element in any possible implementation of the third aspect and the third aspect; or, performing any of the fourth aspect and the fourth aspect A sending action or a receiving action performed by an NRF network element in a possible implementation.
  • the present application provides a system-on-a-chip, which includes one or more processors (also referred to as processing circuits), and the electrical coupling between the processors and memories (also referred to as storage media)
  • the memory may or may not be located in the chip system; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the memory
  • a computer program or instruction, when part or all of the computer program or instruction is executed, is used to realize the function of the first SMF network element in the above first aspect and any possible implementation method of the first aspect, or to realize the above first aspect
  • the chip system may further include an input and output interface (also referred to as a communication interface), the input and output interface is used to output the signal processed by the processor, or receive an input to the signal to the processor.
  • the input and output interface can perform the sending action or receiving action performed by the first SMF network element in the first aspect and any possible implementation of the first aspect; or, perform the second aspect and the first aspect in any possible implementation of the second aspect.
  • a sending action or a receiving action performed by an SMF network element; or, performing a sending action or a receiving action performed by an NRF network element in any possible implementation of the third aspect and the third aspect; or, performing any of the fourth aspect and the fourth aspect A sending action or a receiving action performed by an NRF network element in a possible implementation.
  • the output interface performs a sending action
  • the input interface performs a receiving action.
  • system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for realizing the functions of the first aspect and any possible implementation of the first aspect, or for realizing Instructions for the functions of the second aspect and any possible implementation of the second aspect.
  • a computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can execute the first SMF in the above-mentioned first aspect and any possible implementation method of the first aspect.
  • the method performed by the network element, or the method performed by the first SMF network element in the second aspect and any possible implementation of the second aspect, or the NRF network element in the third aspect and any possible implementation of the third aspect Execute the method, or execute the fourth aspect and the method executed by the NRF network element in any possible implementation of the fourth aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute the above-mentioned first aspect and any possible method of the first aspect.
  • the method performed by the first SMF network element in the implementation, or the method performed by the first SMF network element in the implementation of any possible implementation of the second aspect and the second aspect above, or the implementation of any possibility of the third aspect and the third aspect above The method performed by the NRF network element in the implementation of the above, or the method performed by the NRF network element in any possible implementation of the fourth aspect and the fourth aspect.
  • a communication system in a tenth aspect, includes the first SMF network element performing the above first aspect and any possible implementation method of the first aspect and performing the above third aspect and any of the methods of the third aspect.
  • An NRF network element in a possible implementation method.
  • the communication system includes the first SMF network element performing the second aspect and any possible implementation method of the second aspect and the NRF performing the fourth aspect and any possible implementation method of the fourth aspect network element.
  • FIG. 1a is a schematic diagram of a communication system architecture provided in an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a communication system architecture provided in an embodiment of the present application.
  • FIG. 1c is a schematic diagram of a communication system architecture provided in an embodiment of the present application.
  • FIG. 2 is a flow chart of a multicast session establishment process provided by the implementation of the present application
  • FIG. 3 is a flow chart of a communication process provided by the implementation of the present application.
  • FIG. 4 is a flow chart of a communication process provided by the implementation of the present application.
  • FIG. 5 is a flow chart of a communication process provided by the implementation of the present application.
  • FIG. 6 is a communication transposition structure diagram provided by the implementation of this application.
  • FIG. 7 is a communication transposition structure diagram provided by the implementation of this application.
  • system architecture of the method provided by the embodiments of the present application will be briefly described below. It can be understood that the system architecture described in the embodiments of the present application is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as satellite communication systems and traditional mobile communication systems.
  • the satellite communication system may be integrated with a traditional mobile communication system (ie, a ground communication system).
  • Communication systems such as: wireless local area network (wireless local area network, WLAN) communication system, wireless fidelity (wireless fidelity, WiFi) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) ) system, LTE time division duplex (time division duplex, TDD), fifth generation (5th generation, 5G) system or new radio (new radio, NR), sixth generation (6th generation, 6G) system, and other future Communication systems, etc., also support communication systems that integrate multiple wireless technologies. For example, they can also be applied to non-terrestrial networks such as unmanned aerial vehicles, satellite communication systems, and high altitude platform station (HAPS) communications.
  • NTN is a system that integrates terrestrial mobile communication networks.
  • This application uses a 5G communication system as an example for illustration.
  • FIG. 1a is a schematic diagram of a 5G communication system architecture to which this application can be applied.
  • FIG. 1a is a schematic diagram of a 5G network architecture based on a service-based architecture.
  • FIG. 1 b is a schematic diagram of another 5G communication system architecture to which the present application can be applied.
  • FIG. 1b is a schematic diagram of a point-to-point-based 5G architecture.
  • the main difference between FIG. 1a and FIG. 1b is that the interfaces between network elements in FIG. 1a are service interfaces, and the interfaces between network elements in FIG. 1b are point-to-point interfaces.
  • the 5G network architecture shown in Figure 1a and Figure 1b may include a terminal equipment part, an access network part, and a core network part. Optionally, it also includes data network (data network, DN) and application function (application function, AF) network element parts.
  • the terminal accesses the core network through the access network, and the core network communicates with the DN or AF.
  • the functions of some of the network elements are briefly introduced and described below.
  • Terminal device also known as user equipment (UE) is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the (R)AN device in this application is a device that provides a wireless communication function for a terminal device, and the (R)AN device is also called an access network device.
  • the RAN equipment in this application includes but is not limited to: next-generation base station (g nodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • 5G evolved node B (evolved node B, eNB), radio network controller (radio network controller
  • the names of devices with base station functions may be different.
  • RAN Fifth Generation
  • gNB Fifth Generation NodeB
  • eNB evolved Node B
  • 3rd generation, 3G 3rd generation
  • the data network DN can deploy various services, and can provide data and/or voice services for terminal equipment.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • Sensors and control servers are deployed in DN, and the control server can provide services for sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is a company's internal office network, and the mobile phone or computer of the company's employees can be a terminal device, and the employee's mobile phone or computer can access information and data resources on the company's internal office network.
  • the application network element mainly supports the interaction with the 3rd generation partnership project (3rd generation partnership project, 3GPP) core network to provide services, such as influencing data routing decisions, policy control functions or providing some third-party services to the network side.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • the application network element may be an application function (application function, AF) network element.
  • AF application function
  • the application network element may still be an AF network element, or may have other names, which are not limited in this application.
  • the core network part may include one or more of the following network elements:
  • the access management network element is the control plane network element provided by the operator network, which is responsible for access control and mobility management of terminal equipment accessing the operator network, for example, including mobility status management, allocation of user temporary identities, authentication and user and other functions.
  • the access management network element may be an access and mobility management function (access and mobility management function, AMF) network element.
  • AMF access and mobility management function
  • the access management network element may still be an AMF network element, or may have other names, which are not limited in this application.
  • the session management network element is mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions include assigning IP addresses to users, selecting user-plane network elements that provide packet forwarding functions, and so on.
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element may still be an SMF network element, or may have other names, which are not limited in this application.
  • the user plane network element is responsible for forwarding and receiving user data in terminal equipment. It can receive user data from the data network and transmit it to the terminal device through the access network device; the user plane network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions that provide services for terminal equipment in user plane network elements are managed and controlled by SMF network elements.
  • the user plane network element may be a user plane function (user plane function, UPF) network element.
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or may have other names, which are not limited in this application.
  • the data management network element is used to generate authentication credentials, user identification processing (such as storing and managing user permanent identities, etc.), access control and subscription data management, etc.
  • the data management network element may be a unified data management (unified data management, UDM) network element.
  • UDM unified data management
  • the unified data management may still be a UDM network element, or may have other names, which are not limited in this application.
  • the policy control network element mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the network functions of the control layer, and is responsible for obtaining user subscription information related to policy decisions.
  • the policy control network element may be a policy and charging rules function (policy and charging rules function, PCRF) network element.
  • policy control network element may be a policy control function (policy control function, PCF) network element.
  • policy control network element may still be a PCF network element, or may have other names, which are not limited in this application.
  • the network storage network element can be used to provide a network element discovery function, and provide network element information corresponding to the network element type based on the request of other network elements.
  • NRF also provides network element management services, such as network element registration, update, de-registration, network element status subscription and push, etc.
  • the network storage network element may be a network registry function (network repository function, NRF) network element.
  • NRF network repository function
  • the network storage network element may still be an NRF network element, or may have other names, which are not limited in this application.
  • the network opening function network element can be used to provide services and capabilities for safely opening services and capabilities provided by 3GPP network function equipment to the outside.
  • the network exposure function network element may be a network exposure function (network exposure function, NEF) network element.
  • NEF network exposure function
  • the network element with the network opening function may still be an NEF network element, or may have other names, which are not limited in this application.
  • Network slicing selects network elements, which can be used to select appropriate network slices for terminal services.
  • the network slice selection network element may be a network slice selection function (network slice selection function, NSSF) network element.
  • NSSF network slice selection function
  • the network element with the network opening function may still be an NSSF network element, or may have other names, which are not limited in this application.
  • Network data analysis network elements can be analyzed from various network functions (network function, NF), such as policy control network elements, session management network elements, user plane network elements, access management network elements, application function network elements (through the network capability opening function network elements) to collect data and perform analysis and prediction.
  • network function such as policy control network elements, session management network elements, user plane network elements, access management network elements, application function network elements (through the network capability opening function network elements) to collect data and perform analysis and prediction.
  • the network data analysis network element may be a network data analysis function (network data analytics function, NWDAF).
  • NWDAF network data analytics function
  • the network element with the network opening function may still be the NWDAF network element, or may have other names, which are not limited in this application.
  • the unified data storage network element is responsible for storing structured data information, including contract information, policy information, and network data or service data defined in a standard format.
  • the unified data storage network element may be a unified data storage (unified data repository, UDR).
  • the network element with the network opening function may still be a UDR network element, or may have other names, which are not limited in this application.
  • the above-mentioned network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • "network element” may be omitted.
  • SMF network element and SMF in this application have the same meaning, but for the convenience of description, the word network element is omitted, and the rest are similar.
  • FIG. 1c a schematic diagram of the multicast/broadcast service MBS system architecture under the fifth generation mobile communication system is provided. Compared with the system architecture in Figure 1a, the main differences include:
  • MB-SMF multicast/broadcast service function
  • MB-UPF multicast/broadcast service function
  • MBS requirement configuration between AF and MB-SMF.
  • MB-UPF is configured by MB-SMF, and connects with AF/AS (possibly including Content Provider) through N6 connection, and obtains multicast data, and connects with NG-RAN through N3 connection, and sends downlink multicast data to RAN broadcast data.
  • the MBSF initiates multicast session establishment/management requirements to the MB-SMF based on the multicast service requirements of the AF/AS, and performs related configurations.
  • MBS session configuration procedure (session configuration procedure)
  • MBS session establishment procedure (session establishment procedure).
  • the MBS session configuration process may be initiated by the application function AF network element.
  • the AF sends a temporary mobile group identity (TMGI) allocation request to a core network element (for example, a network presence function NEF network element, or a multicast/broadcast service function MBSF network element), and the TMGI is used to identify a MBS session.
  • a core network element for example, a network presence function NEF network element, or a multicast/broadcast service function MBSF network element
  • the core network element for example, NEF/MBSF
  • the core network element performs authorization verification on the AF, and only opens the MBS session configuration authority to the AF that meets the authorization verification.
  • the MBS session configuration process may be initiated by the MB-SMF.
  • This scenario is usually to support multicast services without AF, or to support multicast services without AF initiating the MBS session configuration process.
  • the operator may pre-configure some default quality of service (quality of service, QoS) information and the like for the multicast service.
  • QoS quality of service
  • the unicast SMF detects the UE's request to join the multicast service, the unicast SMF sends an information query request to the MB-SMF, and then the MB-SMF initiates the MBS session configuration process.
  • This application mainly focuses on the process of establishing an MBS session, and will not introduce the process of configuring an MBS session in detail.
  • Step 201 UE sends a request message for joining an MBS session to a unicast SMF, and the message includes an MBS session ID.
  • the MBS session ID is a multicast address (such as an IP multicast address), indicating that the UE requests to join the multicast session corresponding to the multicast address.
  • the UE sends a request message for joining the MBS session to the unicast SMF through the established unicast session in the form of a protocol data unit (protocol data unit, PDU) session modification request message through the N1 message, and the request message includes MBS session ID.
  • protocol data unit protocol data unit
  • Step 202 Perform UE authorization (UE authorization).
  • the unicast SMF sends an authorization request to the UE to the UDM network element, verifies the subscription information of the UE, and determines whether the UE can use the multicast service. When it is determined that the UE can use the multicast service, subsequent steps are performed.
  • Step 203 If the unicast SMF inquires that there is no local context information of the MBS session, it means that the unicast SMF has not been associated with the MBS session, and queries the NRF for the MB-SMF corresponding to the MBS session. It is also understood as querying the NRF for the MB-SMF serving the MBS session.
  • Step 204 NRF feeds back MB-SMF to unicast SMF.
  • the NRF may feed back the MB-SMF currently serving the MBS session to the unicast SMF. If the NRF does not find the MB-SMF currently serving the MBS session, it selects one or more MB-SMFs according to information such as slices, and feeds them back to the unicast SMF.
  • the "feedback of MB-SMF" here may be based on the registration information of MB-SMF, and the entity information of MB-SMF is fed back, and the entity information may be a part of the registration information.
  • Step 205 The unicast SMF initiates an information query request to the MB-SMF to query related information of the MBS session, and the query request includes the MBS session ID.
  • the relevant information is, for example, information such as the quality of service (QoS) corresponding to the MBS session.
  • QoS quality of service
  • MB-SMF After receiving the information query request, MB-SMF can check whether there is context information of the MBS session locally. If there is no context information of the MBS session locally, it means that the multicast address has not been configured for multicast sessions. MB-SMF The SMF may initiate the MBS session configuration procedure.
  • Step 206 MB-SMF feeds back relevant information of the MBS session, such as QoS information, to the unicast SMF.
  • the MBS session establishment procedure (session establishment procedure) can be executed, for example, the following procedure is executed:
  • the unicast SMF feeds back the context information corresponding to the MBS session to the RAN through the AMF, and determines to add the UE to the multicast session.
  • the RAN initiates the MBS session establishment process, and establishes a downlink data path from the content provider (content provider) to the RAN.
  • the RAN notifies the UE of the success of joining the group, and allocates transmission resources on the RAN side.
  • the RAN reports to the unicast SMF the execution status of the UE joining the multicast group, and the unicast SMF records and adjusts the context information related to the UE.
  • authorization verification is only performed on whether the UE can use the multicast service (for example, step 202), and no authorization verification is performed on the multicast service (which can also be understood as the multicast address requested by the terminal device) itself .
  • the multicast address that the UE requests to join is not within a reasonable range (for example, the range allowed by the operator)
  • MB-SMF will still perform a session configuration process for the multicast service
  • the session configuration process involved Network elements, such as MB-SMF and MB-UPFUE, will reserve resources for the multicast service.
  • the operator cannot provide the multicast service for the multicast address, resulting in context occupation and resource waste. If an illegal UE uses this mechanism to launch a DDoS attack, normal multicast services may also be unavailable.
  • this application proposes various schemes to perform authorization verification on multicast services to avoid waste of resources or illegal attacks.
  • the first SMF network element in this application is a unicast SMF network element
  • the second SMF network element is an MB-SMF network element.
  • the SMF for establishing a multicast session for a multicast service corresponding to a multicast address may also be an MB-SMF.
  • the SMF supporting the establishment of a multicast session for a multicast service may also be an MB-SMF.
  • Step 301 The terminal device sends a first message to a first SMF network element, and correspondingly, the first SMF network element receives the first message from the terminal device.
  • the first message includes a multicast address, and the first message is used to instruct the terminal device to request to join a multicast session corresponding to the multicast address.
  • Step 302 The first SMF network element sends a second message to the network registration function NRF network element, and correspondingly, the network registration function NRF network element receives the second message from the first SMF network element.
  • the second message includes the multicast address, and the second message is used to query an SMF that establishes a multicast session for a multicast service corresponding to the multicast address.
  • the session establishment scenario or the session configuration scenario is not distinguished, and
  • the second message is different from the existing query message.
  • the second message of this application can distinguish the multicast session establishment scenario from the multicast session configuration scenario.
  • NRF can perform Actions corresponding to different scenes respectively.
  • the NRF can be distinguished through the second message, and the SMF to be queried in the current scenario is used for establishing a multicast session, not for configuring a multicast session.
  • the second message may be a new message, or an improvement on an existing message.
  • the second message may further include: a first indication, where the first indication is used to indicate establishment of a multicast session.
  • a new indication information is added in the existing message to indicate the scene of establishing a multicast session, which has strong versatility.
  • the SMF that establishes the multicast session for the multicast service corresponding to the multicast address may be queried, and after step 302, step 303a and step 304a may be performed. It is also possible that no SMF that establishes a multicast session for the multicast service corresponding to the multicast address is found, then after step 302, step 303b and step 304b may be performed.
  • Embodiment 1 and Embodiment 2 may be queried, and after step 302, step 303a and step 304a may be performed.
  • Embodiment 1 The SMF that establishes the multicast session for the multicast service corresponding to the multicast address is not found.
  • Step 303a The NRF network element sends a third message to the first SMF network element, and correspondingly, the first SMF network element receives the third message from the NRF.
  • the third message is used to indicate that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been queried.
  • the third message includes: a second indication, where the second indication is used to indicate that the query fails.
  • the second indication may occupy one bit, for example, 0 indicates that the query fails, and 1 indicates that the query succeeds. Indicating through the indication information can save occupied bits and resources.
  • the third message includes: an empty SMF list.
  • An empty SMF list can be an empty list with a header form.
  • the third message may follow the format of the existing message, which has strong versatility.
  • the third message includes: the second indication and an empty SMF list.
  • the second indication and/or an empty SMF list indicates that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been queried.
  • the message name of the third message indicates that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been queried.
  • the NRF network element may indicate to the first SMF network element that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been found in the following circumstances:
  • Case 2a There is no SMF currently serving the multicast service corresponding to the multicast address, and the allowed multicast address of the SMF supporting the establishment of a multicast session for the multicast service does not include the multicast address.
  • the allowed multicast address based on the SMF must include the If it is selected based on certain conditions, then the SMF currently serving the multicast service corresponding to the multicast address must be one of the SMFs that allow the multicast address to include the multicast address.
  • the SMF that serves the multicast service corresponding to any multicast address is selected, it is based on the SMF's condition that the multicast address includes the multicast address, or other conditions (for example, based on slice selection, AF selection) If selected, the SMF currently serving the multicast service corresponding to the multicast address may or may not be any SMF among the SMFs that allow the multicast address to include the multicast address.
  • the SMF currently serving the multicast service corresponding to the multicast address must be: when the multicast address is allowed to include a certain SMF in the SMF of the multicast address, as long as it supports the establishment of a multicast service If the allowed multicast address of the SMF of the multicast session does not include the multicast address, it can be determined that there is no SMF currently serving the multicast service corresponding to the multicast address, and it is not necessary to repeatedly judge whether there is an SMF currently serving the multicast service corresponding to the multicast address. The SMF of the multicast service corresponding to the broadcast address.
  • the SMF currently serving the multicast service corresponding to the multicast address may or may not be any SMF in the SMFs that allow the multicast address to include the multicast address, it may first be determined whether there is a SMF currently serving the multicast address. SMF of the multicast service corresponding to the multicast address. When there is no SMF currently serving the multicast service corresponding to the multicast address, it is determined whether the allowed multicast address of the SMF supporting the establishment of a multicast session for the multicast service includes the multicast address.
  • the SMF that establishes a multicast session for the multicast service can report its allowed multicast address to the NRF network element, and the NRF network element can receive the allowed multicast address of the SMF that supports the establishment of a multicast session for the multicast service. In this way, the NRF network element can determine whether the allowed multicast address of the SMF supporting the establishment of a multicast session for the multicast service includes the multicast address requested by the terminal device. address, the terminal device may be refused to join the multicast session corresponding to the multicast address.
  • the allowed multicast address in the SMF may be configured by the operator for the SMF.
  • Case 3a The operator's permitted multicast address does not include the multicast address.
  • the NRF may inquire whether the allowed multicast address of the operator includes the multicast address requested by the terminal device.
  • the operator may configure the operator's allowed multicast address in the NRF, for example, the NRF network element receives the operator's allowed multicast address. In this way, the NRF network element can locally inquire whether the multicast address belongs to the allowed multicast address of the operator. In this case 3a, the allowed multicast addresses of the operator do not include the multicast address requested by the terminal device.
  • the operator may configure the allowed multicast address in the unified data storage UDR, and then the NRF queries the network element of the unified data storage UDR whether the multicast address belongs to the allowed multicast address of the operator.
  • the allowed multicast addresses of the operator do not include the multicast address requested by the terminal device.
  • situation 3a can be further limited, there is no SMF currently serving the multicast service corresponding to the multicast address, and the operator's allowed multicast address does not include the multicast address, the NRF network The element indicates to the first SMF network element that no SMF that establishes a multicast session for the multicast service corresponding to the multicast address has been found.
  • Step 304a The first SMF network element sends a fourth message to the terminal device, where the fourth message is used to indicate that the terminal device is refused to join the multicast session corresponding to the multicast address.
  • the NRF when there is no SMF currently serving the multicast service corresponding to the multicast address, the NRF will select an MB-SMF and feed it back to the first SMF according to information such as slices for establishment/configuration Multicast session.
  • the NRF can be distinguished through the second message, and the SMF to be queried in the current scenario is used for establishing a multicast session, not for configuring a multicast session.
  • the SMF network element can perform authorization verification on the multicast service, and when the authorization verification fails, send an indication message of refusal to join to the terminal device to avoid waste of resources on the terminal device.
  • the SMF network element queries the NRF network element for a suitable SMF, and determines whether the authorization verification is passed according to the query result. If the NRF network element does not allocate the SMF to the first SMF network element to establish the multicast session, the authorization verification fails. Not allocating SMF can avoid waste of resources and illegal attacks.
  • Embodiment 2 The SMF that establishes the multicast session for the multicast service corresponding to the multicast address is queried.
  • Step 303b The NRF network element sends a third message to the first SMF network element, and correspondingly, the first SMF network element receives the third message from the NRF.
  • the third message includes a second SMF, and the second SMF supports establishing a multicast session for a multicast service corresponding to the multicast address.
  • the NRF network element may indicate the second SMF to the first SMF network element under the following circumstances:
  • Case 1b There is an SMF currently serving the multicast session corresponding to the multicast address.
  • the SMF currently serving the multicast address determines the SMF currently serving the multicast address as the second SMF. Then, the second SMF is the SMF currently serving the multicast session corresponding to the multicast address.
  • case 1b can be further limited, there is an SMF currently serving the multicast service corresponding to the multicast address, and the operator's allowed multicast address includes the multicast address, and the NRF network element sends The first SMF network element indicates the second SMF.
  • Case 2b a case where the allowed multicast address of the SMF supporting the establishment of a multicast session for a multicast service includes the multicast address.
  • the NRF network element may first determine whether there is an SMF currently serving the multicast service corresponding to the multicast address. When there is no SMF currently serving the multicast service corresponding to the multicast address, it is determined whether the allowed multicast address of the SMF supporting the establishment of a multicast session for the multicast service includes the multicast address. If the allowed multicast address of an SMF supporting the establishment of a multicast session for a multicast service includes the multicast address requested by the terminal device, the SMF may be determined as the second SMF. That is, if there is no SMF currently serving the multicast address, the SMF that allows the multicast address to include the multicast address can be determined as the second SMF, then the permission of the second SMF A multicast address includes said multicast address.
  • the SMF (including the second SMF) that establishes a multicast session for the multicast service can report its own allowed multicast address to the NRF network element, and correspondingly, the NRF network element can receive the SMF that supports the establishment of a multicast session for the multicast service (including the second SMF) allowed multicast address. In this way, the NRF network element can determine whether the allowed multicast address of the SMF (including the second SMF) that supports the establishment of a multicast session for the multicast service includes the multicast address requested by the terminal device, when these allowed multicast addresses If the multicast address requested by the terminal device is included, the SMF that allows the multicast address to include the multicast address may be notified to the first SMF.
  • the allowed multicast address in the SMF may be configured by the operator for the SMF.
  • Case 3b When there is no SMF currently serving the multicast service corresponding to the multicast address, and the multicast address belongs to the operator's allowed multicast address, the NRF network element is the multicast The multicast service corresponding to the address establishes a multicast session and configures the SMF. Furthermore, a third message is sent to the first SMF network element, where the third message includes the second SMF.
  • the NRF network element may first determine whether there is an SMF currently serving the multicast service corresponding to the multicast address. When there is an SMF previously serving the multicast service corresponding to the multicast address, the SMF currently serving the multicast address may be determined as the second SMF. Corresponds to case 1b.
  • the NRF network element When there is no SMF currently serving the multicast service corresponding to the multicast address, it is possible to inquire whether the operator's allowed multicast address includes the multicast address requested by the terminal device. If the multicast address belongs to the allowed multicast address of the operator, the NRF network element establishes a multicast session configuration SMF for the multicast service corresponding to the multicast address.
  • the NRF network element can first query whether the operator's allowed multicast address includes the multicast address requested by the terminal device, if not included, it corresponds to the above-mentioned situation 3a; if it is included, it can be further judged Whether there is an SMF currently serving the multicast service corresponding to the multicast address.
  • the operator may configure the allowed multicast address in the NRF, for example, the NRF network element receives the allowed multicast address of the operator. In this way, the NRF network element can locally inquire whether the multicast address belongs to the allowed multicast address of the operator. In this case 3b, the allowed multicast address of the operator includes the multicast address requested by the terminal device.
  • the operator may configure the allowed multicast address in the unified data storage UDR, and then the NRF queries the network element of the unified data storage UDR whether the multicast address belongs to the allowed multicast address of the operator.
  • the allowed multicast address of the operator includes the multicast address requested by the terminal device.
  • Step 304b The first SMF network element sends a fourth message to the terminal device, where the fourth message is used to indicate that the terminal device is accepted to join the multicast session corresponding to the multicast address.
  • the NRF when there is no SMF currently serving the multicast service corresponding to the multicast address, the NRF will select an MB-SMF and feed it back to the first SMF according to information such as slices for establishment/configuration Multicast session.
  • the NRF can be distinguished through the second message, and the SMF to be queried in the current scenario is used for establishing a multicast session, not for configuring a multicast session.
  • the SMF network element can perform authorization verification on the multicast service, and when the authorization verification is passed, send an instruction to accept joining to the terminal device.
  • the SMF network element queries the NRF network element for a suitable SMF, and determines whether the authorization verification is passed according to the query result. If the NRF network element assigns the SMF to the first SMF network element to establish the multicast session, the authorization verification passes, so that the multicast service can be reasonably provided for the terminal device.
  • a flow chart of a communication method is introduced.
  • the SMF that supports the establishment of a multicast session for a multicast service reports to the NRF, and the allowed multicast address of the SMF can be applied to situations such as 1a, 2a, 1b, and 2b introduced above.
  • the first SMF network element in this application is a unicast SMF network element
  • the second SMF network element is an MB-SMF network element.
  • the SMF for establishing a multicast session for a multicast service corresponding to a multicast address may also be an MB-SMF.
  • the SMF supporting the establishment of a multicast session for a multicast service may also be an MB-SMF.
  • Step 400 The SMF that supports the establishment of a multicast session for a multicast service (for ease of understanding, the SMF that supports the establishment of a multicast session for a multicast service is referred to as MB-SMF hereinafter) reports to the NRF, and the MB-SMF allows multicast address.
  • the NRF network element receives the allowed multicast address of the MB-SMF.
  • the MB-SMF may report the allowed multicast address of the MB-SMF when creating a network function configuration file (NF profile create), or report the MB-SMF when updating a network function configuration file (NF profile update). SMF's allowed multicast address. For example, when the MB-SMF creates or updates the NF profile of the MB-SMF to the NRF, the NF profile includes: the allowed multicast address of the MB-SMF.
  • the allowed multicast address may be pre-configured by the operator to the MB-SMF, and the MB-SMF may serve the multicast service corresponding to the pre-configured multicast address.
  • the allowed multicast address may be one, or multiple, or a range of allowed multicast addresses, and the allowed multicast addresses may be reported to the NRF in the form of a list.
  • the multicast address is an IP multicast address.
  • Step 401 The terminal device sends a first message to a first SMF network element, and correspondingly, the first SMF network element receives the first message from the terminal device.
  • the first message includes a multicast address, and the first message is used to instruct the terminal device to request to join a multicast session corresponding to the multicast address.
  • the first message may be a request (request), for example, an MBS session join request (MBS session Join Request).
  • request for example, an MBS session join request (MBS session Join Request).
  • the UE when the UE detects that the application layer sends a multicast address Internet group management protocol (internet group management protocol, IGMP) Join message, it sends an MBS session join request (MBS session Join Request) to the first SMF. broadcast address.
  • Internet group management protocol Internet group management protocol, IGMP
  • MBS session join Request MBS session Join Request
  • the UE sends an MBS session join request (MB Session Join Request) to the first SMF through the established unicast session in the form of a PDU session modification request message through the N1 message.
  • MBS session join request MB Session Join Request
  • the UE may be verified (UE authorization).
  • the first SMF sends an authorization request to the UE to a UDM network element, verifies the subscription information of the UE, and determines whether the UE can use the multicast service. When it is determined that the UE can use the multicast service, subsequent steps are performed. This step can also not be performed.
  • Step 402 The first SMF network element sends a second message to the NRF network element, and correspondingly, the NRF network element receives the second message from the first SMF network element.
  • the second message includes the multicast address, and the second message is used to query an SMF that establishes a multicast session for a multicast service corresponding to the multicast address.
  • the SMF for establishing a multicast session for the multicast service corresponding to the multicast address, not the SMF for configuring the multicast session for the multicast service corresponding to the multicast address.
  • the first SMF may first inquire whether there is context information corresponding to the multicast address locally. If there is no context information corresponding to the multicast address locally, it means that the first SMF has not established an association with the multicast address. Then the first SMF may use the multicast address to query the NRF for the SMF that establishes the multicast session for the multicast service corresponding to the multicast address.
  • the second message may be a request, for example, a network function discovery request (Nnrf NF Discovery request) of the service interface.
  • a network function discovery request Nnrf NF Discovery request
  • the second message may be a new message, or an improvement on an existing message. For example, improve the existing network function discovery request (NF Discovery request), for example, add a session establishment indication (session Establishment indication) in the existing network function discovery request (NF Discovery request), that is, the first described above An indication for establishing a multicast session.
  • NF Discovery request improve the existing network function discovery request
  • NF Discovery request add a session establishment indication (session Establishment indication) in the existing network function discovery request (NF Discovery request)
  • Step 403 The NRF network element sends a third message to the first SMF network element, and correspondingly, the first SMF network element receives the third message from the NRF.
  • the third message is used to indicate that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been queried.
  • the third message includes a second SMF (MB-SMF instance), where the second SMF supports establishing a multicast session for the multicast service corresponding to the multicast address.
  • NRF performs MS-SMF profile query for unconfigured MBS sessions (MS-SMF profile query for unconfigured MBS session).
  • the NRF can query the configuration file (profile) of the MB-SMF, and the allowed multicast address of each MB-SMF is recorded in the profile.
  • the multicast address may also be queried in the allowed multicast addresses of the MB-SMF. If the multicast address of the MB-SMF does not include the multicast address (it can also be understood that there is no MB-SMF allowed to serve the multicast service corresponding to the multicast address), the NRF will no longer provide the multicast address for the multicast address.
  • the multicast service corresponding to the multicast address is assigned an MB-SMF, and the NRF may feed back to the first SMF that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been found.
  • the SMF that establishes the multicast session for the multicast service corresponding to the multicast address is not queried, for example, it may be that the query fails or the MB-SMF list is empty.
  • the NRF may feed back relevant information of the SMF serving the multicast service corresponding to the multicast address to the first SMF. If the multicast address is queried in the allowed multicast address of MB-SMF, the NRF can feed back to the first SMF: the allowed multicast address includes the SMF of the multicast address (it can also be understood as allowing the multicast The MB-SMF of the multicast service corresponding to the address).
  • one MB-SMF may be fed back to the first SMF, or multiple MB-SMFs may be fed back, for example, the entity list of the MB-SMF is sent to the SMF .
  • the third message may be a response (response), for example, a network function discovery response (Nnrf NF Discovery response) of the service interface.
  • response for example, a network function discovery response (Nnrf NF Discovery response) of the service interface.
  • the second message queries the SMF for configuring the multicast session for the multicast service corresponding to the multicast address.
  • the present application does not limit the processing process of the NRF.
  • the first SMF performs corresponding actions according to the third message fed back by the NRF.
  • Step 404a If the third message includes the second SMF, the first SMF authorizes the join request corresponding to the multicast address after determining that the NRF has found an SMF that can establish a multicast session for the multicast service corresponding to the multicast address (Accept UE to join).
  • the first SMF may also select an MB-SMF.
  • Step 404b If the third message indicates that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been found, reject the join request corresponding to the multicast address, and the first SMF may subsequently send a message to the UE or the access network device Sending indication information for refusing the terminal device to join the multicast session corresponding to the multicast address.
  • Step 405 The first SMF sends an information query request to the second SMF.
  • the second SMF receives the information query request from the first SMF, and the information query request is used to query information related to establishing a multicast session corresponding to the multicast address , such as Qos information.
  • the information query request includes a multicast address.
  • the information query request may be, for example, Nmbsmf information request, where N represents a service interface and Nnrf mbsmf represents MB-SMF.
  • Step 406 The second SMF inquires whether there is context information of the multicast address locally. If there is no context information of the multicast address locally, it means that the multicast address has not been configured with a multicast session, and it may decide to initiate a multicast configuration Session (decide to configure MBS Session).
  • Step 407 The second SMF initiates the MBS Session Configuration process to configure the multicast session corresponding to the multicast address.
  • Step 408 After the multicast session configuration is completed, the second SMF feeds back an information query response to the first SMF.
  • the information query response may be, for example, an Nmbsmf information response.
  • the information query response may include Qos information.
  • Step 409 Multicast session establishment procedure (session establishment procedure).
  • the MB-SMF when the MB-SMF registers or updates with the NRF, it notifies the NRF of its allowed multicast address range.
  • the second message can distinguish the multicast session establishment scenario from the multicast session configuration scenario.
  • the NRF queries the MB-SMF entity, it will first query the current multicast session The MB-SMF of the multicast service corresponding to the broadcast address.
  • the multicast address in the allowed multicast addresses of the MB-SMF that is, query the multicast address corresponding to the multicast address allowed to be MB-SMF of the business service
  • an indication not found will be replied to the first SMF.
  • the unqueried message can be fed back, and no new MB-SMF will be allocated, so that illegal requests can be processed through the unqueried indication identify.
  • MB-SMF For other query requests used to establish a multicast session, such as AF/NEF/MBSF, according to the existing normal logic, when the MB-SMF is not available, new MBs are allocated according to other information such as slices and DNNs. -SMF.
  • a flow chart of a communication method is provided.
  • the operator configures the allowed multicast address to the NRF, which can be applied to situations 3a and 3b described above.
  • the first SMF network element in this application is a unicast SMF network element
  • the second SMF network element is an MB-SMF network element.
  • the SMF for establishing a multicast session for a multicast service corresponding to a multicast address may also be an MB-SMF.
  • the SMF supporting the establishment of a multicast session for a multicast service may also be an MB-SMF.
  • Step 500a The operator sends the operator's allowed multicast addresses to the NRF, and these allowed multicast addresses can support the configuration process of triggering a multicast session by UE Join.
  • Step 500b The operator sends the operator's allowed multicast addresses to the UDR, and these allowed multicast addresses can support the configuration process of triggering the multicast session by UE Join.
  • Step 501 The terminal device sends a first message to a first SMF network element, and correspondingly, the first SMF network element receives the first message from the terminal device.
  • the first message includes a multicast address, and the first message is used to instruct the terminal device to request to join a multicast session corresponding to the multicast address.
  • Step 501 is the same as step 401 and will not be repeated here.
  • Step 502 The first SMF network element sends a second message to the NRF network element, and correspondingly, the NRF network element receives the second message from the first SMF network element.
  • the second message includes the multicast address, and the second message is used to query an SMF that establishes a multicast session for a multicast service corresponding to the multicast address.
  • Step 502 is the same as step 402 and will not be repeated here.
  • Step 503a The NRF network element locally inquires whether the multicast address belongs to the allowed multicast address of the operator.
  • Step 503b The NRF network element inquires whether the multicast address belongs to the allowed multicast address of the operator from the unified data storage UDR network element.
  • Step 503a and step 503b can be selected to be executed, or both can be executed.
  • the NRF network element may query the UDR whether the multicast address belongs to the allowed multicast address of the operator.
  • the NRF network element may first query whether there is an SMF currently serving the multicast service corresponding to the multicast address, if the multicast service corresponding to the multicast address is not found In the case of the SMF of the service, the NRF queries the UDR whether the multicast address belongs to the allowed multicast address of the operator.
  • Step 504 The NRF network element sends a third message to the first SMF network element, and correspondingly, the first SMF network element receives the third message from the NRF.
  • the third message is used to indicate that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been queried.
  • the third message includes a second SMF (MB-SMF instance), where the second SMF supports establishing a multicast session for the multicast service corresponding to the multicast address. If the multicast address does not belong to the operator's allowed multicast address, the NRF will no longer allocate MB-SMF for the multicast service corresponding to the multicast address, and the NRF can feed back to the first SMF that it has not found the MB-SMF for the multicast service.
  • the multicast service corresponding to the address establishes the SMF for the multicast session.
  • the SMF that establishes the multicast session for the multicast service corresponding to the multicast address is not queried, for example, it may be that the query fails or the MB-SMF list is empty.
  • the NRF may feed back relevant information of the SMF serving the multicast service corresponding to the multicast address to the first SMF.
  • the NRF network element If the query finds that the multicast address belongs to the allowed multicast address of the operator, the NRF network element establishes a multicast session configuration SMF for the multicast service corresponding to the multicast address. Furthermore, a third message is sent to the first SMF network element, where the third message includes the second SMF.
  • the third message may be a response (response), for example, a network function discovery response (Nnrf NF Discovery response) of the service interface.
  • response for example, a network function discovery response (Nnrf NF Discovery response) of the service interface.
  • the second message queries the SMF for configuring the multicast session for the multicast service corresponding to the multicast address.
  • the present application does not limit the processing process of the NRF.
  • the first SMF performs corresponding actions according to the third message fed back by the NRF.
  • Step 505a described below is the same as step 404a
  • step 505b is the same as step 404b
  • step 506-step 510 is the same as step 405-step 409.
  • Step 505a If the third message includes the second SMF, the first SMF authorizes the join request corresponding to the multicast address after determining that the NRF has found an SMF that can establish a multicast session for the multicast service corresponding to the multicast address (accept UE to join).
  • the first SMF may also select an MB-SMF.
  • Step 505b If the third message indicates that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been found, reject the join request corresponding to the multicast address, and the first SMF may then send a message to the UE or the access network device Sending indication information for refusing the terminal device to join the multicast session corresponding to the multicast address.
  • Step 506 The first SMF sends an information query request to the second SMF.
  • the second SMF receives the information query request from the first SMF, and the information query request is used to query information related to establishing a multicast session corresponding to the multicast address , such as Qos information.
  • the information query request includes a multicast address.
  • the information query request may be, for example, Nmbsmf information request, where N represents a service interface and Nnrf mbsmf represents MB-SMF.
  • Step 507 The second SMF inquires whether there is context information of the multicast address locally. If there is no context information of the multicast address locally, it means that the multicast address has not yet been configured with a multicast session, and it may decide to initiate a multicast configuration Session (decide to ConfigurationMBS Session).
  • Step 508 The second SMF initiates the MBS Session Configuration process to configure the multicast session corresponding to the multicast address.
  • Step 509 After the multicast session configuration is completed, the second SMF feeds back an information query response to the first SMF.
  • the information query response may be, for example, an Nmbsmf information response.
  • the information query response may include Qos information.
  • Step 510 Multicast session establishment procedure (session establishment procedure).
  • the operator configures the operator-allowed multicast address range to the NRF or UDR.
  • the second message can distinguish the multicast session establishment scenario from the multicast session configuration scenario.
  • the NRF queries the MB-SMF entity, if there is no current The MB-SMF of the multicast service corresponding to the broadcast address.
  • the multicast address is not in the allowed multicast addresses of the operator, then reply to the first SMF with an indication of not being found.
  • the unqueried message can be fed back, and no new MB-SMF will be allocated, so that for illegal requests, it can be performed through the unqueried indication identify.
  • query requests used to establish a multicast session such as AF/NEF/MBSF
  • new MBs are allocated according to other information such as slices and DNNs. -SMF.
  • the method in the embodiment of the present application is introduced above, and the device in the embodiment of the present application will be introduced in the following.
  • the method and the device are based on the same technical concept. Since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present application may divide the device into functional modules according to the above method example, for example, each function may be divided into each functional module, or two or more functions may be integrated into one module.
  • These modules can be implemented not only in the form of hardware, but also in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods during specific implementation.
  • the device 600 may include: a processing module 610, and optionally, a receiving module 620a, a sending module 620b, and a storage module 630 .
  • the processing module 610 may be connected to the storage module 630 and the receiving module 620a and the sending module 620b respectively, and the storage module 630 may also be connected to the receiving module 620a and the sending module 620b.
  • the above-mentioned receiving module 620a and sending module 620b may also be integrated together and defined as a transceiver module.
  • the apparatus 600 may be a first SMF network element, or may be a chip or a functional unit applied to the first SMF network element.
  • the apparatus 600 has any function of the first SMF network element in the above method, for example, the apparatus 600 can execute the various steps performed by the first SMF network element in the above methods in FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 5 .
  • the receiving module 620a may perform the receiving action performed by the first SMF network element in the above method embodiment.
  • the sending module 620b can execute the sending action performed by the first SMF network element in the above method embodiment.
  • the processing module 610 may execute other actions except the sending action and the receiving action among the actions performed by the first SMF network element in the above method embodiment.
  • the receiving module 620a is configured to receive a first message from a terminal device, where the first message includes a multicast address, and the first message is used to indicate that the terminal device requests to join the multicast The multicast session corresponding to the broadcast address;
  • the sending module 620b is configured to send a second message to the network registration function NRF network element, the second message includes the multicast address, and the second message is used to query the multicast address corresponding to the multicast address SMF for business establishment of multicast session;
  • the receiving module 620a is further configured to receive a third message from the NRF, where the third message is used to indicate that no SMF for establishing a multicast session for the multicast service corresponding to the multicast address has been found;
  • the sending module 620b is further configured to send a fourth message to the terminal device, where the fourth message is used to indicate that the terminal device is refused to join the multicast session corresponding to the multicast address.
  • the receiving module 620a is configured to receive a first message from a terminal device, where the first message includes a multicast address, and the first message is used to indicate that the terminal device requests to join the multicast The multicast session corresponding to the address;
  • the sending module 620b is configured to send a second message to the network registration function NRF network element, the second message includes the multicast address, and the second message is used to query the multicast address corresponding to the multicast address SMF for business establishment of multicast session;
  • the receiving module 620a is configured to receive a third message from the NRF, where the third message includes a second SMF, and the second SMF supports establishing a multicast session for a multicast service corresponding to the multicast address;
  • the sending module 620b is configured to send a fourth message to the terminal device, where the fourth message is used to indicate that the terminal device is accepted to join the multicast session corresponding to the multicast address.
  • the processing module 610 is configured to generate a second message, generate a fourth message, and so on.
  • the storage module 630 may store computer-executed instructions of the method executed by the first SMF network element, so that the processing module 610, the receiving module 620a, and the sending module 620b execute the first SMF network element in the above example. Methods.
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits.
  • the storage module may be a register, cache or RAM, etc., and the storage module may be integrated with the processing module.
  • the storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, and the like.
  • the apparatus 600 may be an NRF network element, or may be a chip or a functional unit applied to the NRF network element.
  • the apparatus 600 has any function of the NRF network element in the above method, for example, the apparatus 600 can execute the various steps performed by the NRF network element in the above methods in FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 5 .
  • the receiving module 620a may perform the receiving action performed by the NRF network element in the above method embodiment.
  • the sending module 620b can execute the sending action performed by the NRF network element in the above method embodiment.
  • the processing module 610 may execute other actions except the sending action and the receiving action among the actions performed by the NRF network element in the above method embodiments.
  • the receiving module 620a is configured to receive a second message from the first SMF network element, the second message includes a multicast address, and the second message is used to query for the multicast address
  • the corresponding multicast service establishes the SMF of the multicast session
  • the sending module 620b is configured to send a third message to the first SMF network element, where the third message is used to indicate that no SMF establishing a multicast session for the multicast service corresponding to the multicast address has been queried.
  • the third message includes a second SMF, where the second SMF supports establishing a multicast session for a multicast service corresponding to the multicast address.
  • the processing module 610 is configured to locally inquire whether the multicast address belongs to an operator's allowed multicast address
  • the processing module 610 is configured to query the unified data storage UDR network element whether the multicast address belongs to the allowed multicast address of the operator.
  • the storage module 630 may store computer-executed instructions of the method executed by the NRF network element, so that the processing module 610, the receiving module 620a, and the sending module 620b execute the method executed by the NRF network element in the above example.
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits.
  • the storage module may be a register, cache or RAM, etc., and the storage module may be integrated with the processing module.
  • the storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, and the like.
  • the device can be realized by a general bus architecture.
  • FIG. 7 a schematic block diagram of a communication device 700 is provided.
  • the apparatus 700 may include: a processor 710 , and optionally, a transceiver 720 and a memory 730 .
  • the transceiver 720 can be used to receive programs or instructions and transmit them to the processor 710, or the transceiver 720 can be used for the device 700 to communicate and interact with other communication devices, such as interactive control signaling and/or business data etc.
  • the transceiver 720 may be a code and/or data read/write transceiver, or the transceiver 720 may be a signal transmission transceiver between the processor and the transceiver.
  • the processor 710 is electrically coupled to the memory 730 .
  • the apparatus 700 may be the first SMF network element, or may be a chip applied to the first SMF network element. It should be understood that the device has any function of the first SMF network element in the above method, for example, the device 700 can execute each step.
  • the memory 730 is configured to store a computer program; the processor 710 may be configured to call the computer program or instruction stored in the memory 730 to execute the method performed by the first SMF network element in the above example, or The transceiver 720 executes the method executed by the first SMF network element in the foregoing example.
  • the apparatus 700 may be an NRF network element, or may be a chip applied to an NRF network element. It should be understood that the device has any function of the NRF network element in the above method, for example, the device 700 can execute the various steps performed by the NRF network element in the above methods in FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 5 .
  • the memory 730 is used to store computer programs; the processor 710 can be used to call the computer programs or instructions stored in the memory 730 to execute the method performed by the NRF network element in the above example, or through the The transceiver 720 performs the method performed by the NRF network element in the above example.
  • the processing module 610 in FIG. 6 may be implemented by the processor 710 .
  • the receiving module 620a and the sending module 620b in FIG. 6 may be implemented by the transceiver 720 .
  • the transceiver 720 is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the sending module.
  • the storage module 630 in FIG. 6 may be implemented by the memory 730 .
  • the device may be implemented by a general-purpose processor (a general-purpose processor may also be referred to as a chip or system-on-a-chip).
  • a general-purpose processor may also be referred to as a chip or system-on-a-chip.
  • the general-purpose processor implementing the device applied to the first SMF network element or the device of the NRF network element includes: a processing circuit (the processing circuit may also be referred to as a processor); optionally, further includes: An input and output interface and a storage medium (the storage medium may also be referred to as a memory) for internal communication with the processing circuit, the storage medium is used to store instructions executed by the processing circuit to execute the first SMF network element or NRF in the above examples The method executed by the network element.
  • the processing module 610 in FIG. 6 may be implemented by a processing circuit.
  • the receiving module 620a and the sending module 620b in FIG. 6 can be implemented through input and output interfaces.
  • the input-output interface is divided into an input interface and an output interface, the input interface performs the function of the receiving module, and the output interface performs the function of the sending module.
  • the storage module 630 in FIG. 6 may be implemented by a storage medium.
  • the device of the embodiment of the present application can also be realized using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a computer, the computer can be used to execute the above-mentioned communication method.
  • the computer program includes instructions for implementing the above communication method.
  • the embodiment of the present application also provides a computer program product, including: computer program code, when the computer program code is run on the computer, the computer can execute the communication method provided above.
  • the embodiment of the present application also provides a communication system, and the communication system includes: a first SMF network element and an NRF network element executing the above communication method.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), a baseband processor, and the baseband processor and the CPU may be integrated or separated, or may be a network processor (network processing unit).
  • processor NP
  • processors may further include hardware chips or other general-purpose processors.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the above PLD can be complex programmable logic device (complex programmable logic device, CPLD), field programmable logic gate array (field-programmable gate array, FPGA), general array logic (generic array logic, GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc., or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field programmable logic gate array
  • GAL general array logic
  • GAL generator array logic
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus RAM, DR RAM
  • the transceiver mentioned in the embodiment of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated. Transceivers can operate under the direction of corresponding processors.
  • the transmitter may correspond to the transmitter in the physical device, and the receiver may correspond to the receiver in the physical device.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium
  • several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请涉及通信技术领域。提供一种通信方法及装置,用以提出一种为终端设备提供多播服务的方式。SMF接收来自终端的第一消息,包括多播地址。SMF向NRF发送第二消息,第二消息用于查询为多播地址对应的多播业务建立多播会话的SMF。第一SMF接收来自NRF的第三消息,第三消息用于指示未查询到为多播地址对应的多播业务建立多播会话的SMF。第一SMF向终端发送第四消息,第四消息用于指示拒绝终端加入多播地址对应的多播会话。通过第二消息将多播会话建立场景和多播会话配置场景区分开来,且可以对该多播业务进行授权验证。在不通过时,NRF不向第一SMF分配SMF来建立多播会话,从而实现合理地为终端设备提供多播服务。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月10日提交中国专利局、申请号为202110915602.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信等领域,尤其涉及一种通信方法及装置。
背景技术
随着全球网络的迅猛发展,通信业务量迅速上升。视频点播、可视电话、视频会议等视音频业务,车联网、物联网等业务,与一般业务相比,有着数据量大、时延敏感性强、持续时间长等特点。基于这些业务需求,提出了多播/广播服务(multicast/broadcast service,MBS),MBS成为了网络演进的重点技术之一。
在多播业务中,如何合理地为终端设备提供多播服务是需要解决的技术问题。
发明内容
本申请实施例提供一种通信方法及装置,用以提出一种为终端设备提供多播服务的方式。
第一方面,提供了一种通信方法,该方法的执行主体可以是第一SMF网元,也可以是应用于第一SMF网元中的部件,例如芯片、处理器等。下面以执行主体是第一SMF网元为例进行描述。首先,第一会话管理功能SMF网元接收来自终端设备的第一消息,所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话。然后,所述第一SMF网元向网络注册功能NRF网元发送第二消息,所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。再然后,所述第一SMF网元接收来自所述NRF的第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。接下来,所述第一SMF网元向所述终端设备发送第四消息,所述第四消息用于指示拒绝所述终端设备加入所述多播地址对应的多播会话。
通过第二消息将多播会话建立场景和多播会话配置场景区分开来,以便于NRF网元知道,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。另外,在现有技术中,当不存在当前为所述多播地址对应的多播业务服务的SMF时,NRF会根据切片等信息,选择出一个MB-SMF反馈给第一SMF,用来建立多播会话。而在本申请中,SMF网元可以对该多播业务进行授权验证,在授权验证不通过时,向终端设备发送拒绝加入的指示信息,避免终端设备的资源浪费。另外,在授权验证过程中,SMF网元向NRF网元查询合适的SMF,根据查询结果确定授权验证是否通过。如果NRF网元不向第一SMF网元分配SMF来建立多播会话,则授权验证不通过。不分配SMF可以避免资源浪费和非法攻击。从而实现合理地为终端设备提供多播服务。
在一种可能的实现中,所述第二消息还包括:第一指示,所述第一指示用于指示建立多播会话。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。
在一种可能的实现中,所述第三消息包括:第二指示,所述第二指示用于指示查询失败;和/或,空的SMF列表。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。在第三消息包括空的SMF列表时,可以是沿用现有消息的格式,通用性较强。
第二方面,提供了一种通信方法,该方法的执行主体可以是第一SMF网元,也可以是应用于第一SMF网元中的部件,例如芯片、处理器等。下面以执行主体是第一SMF网元为例进行描述。首先,第一会话管理功能SMF网元接收来自终端设备的第一消息,所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话。然后,所述第一SMF网元向网络注册功能NRF网元发送第二消息,所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。再然后,所述第一SMF网元接收来自所述NRF的第三消息,所述第三消息包括第二SMF,所述第二SMF支持为所述多播地址对应的多播业务建立多播会话。接下来,所述第一SMF网元向所述终端设备发送第四消息,所述第四消息用于指示接受所述终端设备加入所述多播地址对应的多播会话。
通过第二消息将多播会话建立场景和多播会话配置场景区分开来,以便于NRF网元知道,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。在建立多播会话场景中,SMF网元可以对该多播业务进行授权验证,在授权验证通过时,向终端设备发送接受加入的指示信息。另外,在授权验证过程中,SMF网元向NRF网元查询合适的SMF,根据查询结果确定授权验证是否通过。如果NRF网元向第一SMF网元分配SMF来建立多播会话,则授权验证通过,从而实现合理地为终端设备提供多播服务。
在一种可能的实现中,所述第二消息还包括:第一指示,所述第一指示用于指示建立多播会话。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。
第三方面,提供了一种通信方法,该方法的执行主体可以是网络注册功能NRF网元,也可以是应用于NRF网元中的部件,例如芯片、处理器等。下面以执行主体是NRF网元为例进行描述。首先,网络注册功能NRF网元接收来自第一SMF网元的第二消息,所述第二消息包括多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。然后,所述NRF向所述第一SMF网元发送第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。
通过第二消息将多播会话建立场景和多播会话配置场景区分开来,以便于NRF网元知道,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。另外,在现有技术中,当不存在当前为所述多播地址对应的多播业务服务的SMF时,NRF会根据切片等信息,选择出一个MB-SMF反馈给第一SMF,用来建立多播会话。而在本申请中,SMF网元可以对该多播业务进行授权验证,在授权验证不通过时,向终端设备发送拒绝加入的指示信息,避免终端设备的资源浪费。另外,在授权验证过程中,SMF网元 向NRF网元查询合适的SMF,根据查询结果确定授权验证是否通过。如果NRF网元不向第一SMF网元分配SMF来建立多播会话,则授权验证不通过。不分配SMF可以避免资源浪费和非法攻击。从而实现合理地为终端设备提供多播服务。
在一种可能的实现中,所述第二消息还包括:第一指示,所述第一指示用于指示建立多播会话。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。
在一种可能的实现中,所述第三消息包括:第二指示,所述第二指示用于指示查询失败;和/或,空的SMF列表。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。在第三消息包括空的SMF列表时,可以是沿用现有消息的格式,通用性较强。
在一种可能的实现中,所述NRF向所述第一SMF网元发送第三消息,包括:在支持为多播业务建立多播会话的SMF的允许多播地址不包括所述多播地址的情况下,所述NRF向所述第一SMF网元发送第三消息;或者,在不存在当前为所述多播地址对应的多播业务服务的SMF,且在支持为多播业务建立多播会话的SMF的允许多播地址不包括所述多播地址的情况下,所述NRF向所述第一SMF网元发送第三消息;在运营商的允许多播地址不包括所述多播地址的情况下,所述NRF向所述第一SMF网元发送第三消息。
在一种可能的实现中,所述NRF网元接收支持为多播业务建立多播会话的SMF的允许多播地址,其中,所述允许多播地址不包括所述多播地址。
在一种可能的实现中,所述NRF网元接收运营商的允许多播地址,其中,所述运营商的允许多播地址不包括所述多播地址。
在一种可能的实现中,所述NRF网元在本地查询所述多播地址是否属于运营商的允许多播地址;或者,所述NRF向统一数据存储UDR网元查询所述多播地址是否属于运营商的允许多播地址。
第四方面,提供了一种通信方法,该方法的执行主体可以是网络注册功能NRF网元,也可以是应用于NRF网元中的部件,例如芯片、处理器等。下面以执行主体是NRF网元为例进行描述。首先,网络注册功能NRF网元接收来自第一SMF网元的第二消息,所述第二消息包括多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。然后,所述NRF网元向所述第一SMF网元发送第三消息,所述第三消息包括第二SMF,所述第二SMF支持为所述多播地址对应的多播业务建立多播会话。
通过第二消息将多播会话建立场景和多播会话配置场景区分开来,以便于NRF网元知道,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。SMF网元可以对该多播业务进行授权验证,在授权验证通过时,向终端设备发送接受加入的指示信息。另外,在授权验证过程中,SMF网元向NRF网元查询合适的SMF,根据查询结果确定授权验证是否通过。如果NRF网元向第一SMF网元分配SMF来建立多播会话,则授权验证通过,从而实现合理地为终端设备提供多播服务。
在一种可能的实现中,所述第二消息还包括:第一指示,所述第一指示用于指示建立多播会话。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。
在一种可能的实现中,所述第二SMF为当前为所述多播地址对应的多播会话服务的 SMF;或者,所述第二SMF的允许多播地址包括所述多播地址。
在一种可能的实现中,所述NRF网元接收所述第二SMF的允许多播地址,其中,所述第二SMF的允许多播地址包括所述多播地址。
在一种可能的实现中,在不存在当前为所述多播地址对应的多播业务服务的SMF,且所述多播地址属于运营商的允许多播地址的情况下,所述NRF网元配置为所述多播地址对应的多播业务建立多播会话的SMF。
在一种可能的实现中,所述NRF网元接收运营商的允许多播地址,其中,所述运营商的允许多播地址包括所述多播地址。
在一种可能的实现中,所述NRF网元在本地查询所述多播地址是否属于运营商的允许多播地址;或者,所述NRF向统一数据存储UDR网元查询所述多播地址是否属于运营商的允许多播地址。
第五方面,提供了一种通信装置,所述装置具有实现上述第一方面及第一方面任一可能的实现中的功能,或实现上述第二方面及第二方面任一可能的实现中的功能,或实现上述第三方面及第三方面任一可能的实现中的功能,或实现上述第四方面及第四方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第六方面,提供了一种通信装置,包括处理器,可选的,还包括存储器;所述处理器和所述存储器耦合;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中第一SMF网元的功能,或实现上述第二方面及第二方面任一可能的实现的方法中第一SMF网元的功能,或实现上述第三方面及第三方面任一可能的实现中NRF网元的功能,或实现上述第四方面及第四方面任一可能的实现中NRF网元的功能。
在一种可能的实现中,所述装置还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述收发器可以执行第一方面及第一方面任一可能的实现中第一SMF网元执行的发送动作或接收动作;或者,执行第二方面及第二方面任一可能的实现中第一SMF网元执行的发送动作或接收动作;或者,执行第三方面及第三方面任一可能的实现中NRF网元执行的发送动作或接收动作;或者,执行第四方面及第四方面任一可能的实现中NRF网元执行的发送动作或接收动作。
第七方面,本申请提供了一种芯片系统,该芯片系统包括一个或多个处理器(也可以称为处理电路),所述处理器与存储器(也可以称为存储介质)之间电耦合;所述存储器可以位于所述芯片系统中,也可以不位于所述芯片系统中;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中第一SMF网元的功能,或实现上述第二方面及第二方面任一可能的实 现的方法中第一SMF网元的功能,或实现上述第三方面及第三方面任一可能的实现中NRF网元的功能,或实现上述第四方面及第四方面任一可能的实现中NRF网元的功能。
在一种可能的实现中,所述芯片系统还可以包括输入输出接口(也可以称为通信接口),所述输入输出接口,用于输出所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述输入输出接口可以执行第一方面及第一方面任一可能的实现中第一SMF网元执行的发送动作或接收动作;或者,执行第二方面及第二方面任一可能的实现中第一SMF网元执行的发送动作或接收动作;或者,执行第三方面及第三方面任一可能的实现中NRF网元执行的发送动作或接收动作;或者,执行第四方面及第四方面任一可能的实现中NRF网元执行的发送动作或接收动作。具体的,输出接口执行发送动作,输入接口执行接收动作。
在一种可能的实现中,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于实现第一方面及第一方面任一可能的实现中的功能的指令,或用于实现第二方面及第二方面任一可能的实现中的功能的指令。
或者,一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被计算机执行时,可以使得所述计算机执行上述第一方面及第一方面任一可能的实现的方法中第一SMF网元执行的方法,或执行上述第二方面及第二方面任一可能的实现中第一SMF网元执行的方法,或执行上述第三方面及第三方面任一可能的实现中NRF网元执行的方法,或执行上述第四方面及第四方面任一可能的实现中NRF网元执行的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由第一SMF网元执行的方法,或执行上述第二方面及第二方面任一可能的实现中第一SMF网元执行的方法,或执行上述第三方面及第三方面任一可能的实现中NRF网元执行的方法,或执行上述第四方面及第四方面任一可能的实现中NRF网元执行的方法。
第十方面,提供了一种通信系统,所述通信系统包括执行上述第一方面及第一方面任一可能的实现的方法中的第一SMF网元和执行上述第三方面及第三方面任一可能的实现的方法中的NRF网元。或者,所述通信系统包括执行上述第二方面及第二方面任一可能的实现的方法中的第一SMF网元和执行上述第四方面及第四方面任一可能的实现的方法中的NRF网元。
上述第五方面至第十方面的技术效果可以参照第一方面至第四方面中的描述,重复之处不再赘述。
附图说明
图1a为本申请实施例中提供的一种通信系统架构示意图;
图1b为本申请实施例中提供的一种通信系统架构示意图;
图1c为本申请实施例中提供的一种通信系统架构示意图;
图2为本申请实施提供的一种多播会话建立过程流程图;
图3为本申请实施提供的一种通信过程流程图;
图4为本申请实施提供的一种通信过程流程图;
图5为本申请实施提供的一种通信过程流程图;
图6为本申请实施提供的一种通信转置结构图;
图7为本申请实施提供的一种通信转置结构图。
具体实施方式
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的方法的系统架构进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、传统的移动通信系统。其中,所述卫星通信系统可以与传统的移动通信系统(即地面通信系统)相融合。通信系统例如:无线局域网(wireless local area network,WLAN)通信系统,无线保真(wireless fidelity,WiFi)系统,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR),第六代(6th generation,6G)系统,以及其他未来的通信系统等,还支持多种无线技术融合的通信系统,例如,还可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)融合地面移动通信网络的系统。
以下作为示例性说明,仅以第五代通信系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
本申请以5G通信系统进行举例说明。
例如,图1a为本申请可以适用的一种5G的通信系统架构示意图。具体的,图1a为基于服务化架构的5G网络架构示意图。
例如,图1b为本申请可以适用的另一种5G的通信系统架构示意图。具体的,图1b为基于点对点的5G架构示意图。图1a与图1b的主要区别在于,图1a中的各个网元之间的接口是服务化的接口,图1b的各个网元之间的接口是点对点的接口。
图1a和图1b所示的5G网络架构中可包括终端设备部分、接入网部分,核心网部分。可选的,还包括数据网络(data network,DN)和应用功能(application function,AF)网元部分。终端通过接入网接入核心网,核心网与DN或AF进行通信。下面对其中的部分网元的功能进行简单介绍说明。
终端设备(terminal device),也可以称为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中 的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请中的(R)AN设备,是一种为终端设备提供无线通信功能的设备,(R)AN设备也称为接入网设备。本申请中的RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第五代(5th generation,5G)系统中,称为RAN或者gNB(5G NodeB);在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB);在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。
数据网络DN,可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器和控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
应用网元,主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
核心网部分可包括以下网元中的一个或多个:
接入管理网元,是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和用户等功能。在5G通信系统中,该接入管理网元可以是接入与移动性管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
会话管理网元,主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的用户面网元等。在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
用户面网元,负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;用户面网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。用户面网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的 名称,本申请不做限定。
数据管理网元,用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入控制和签约数据管理等。在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
策略控制网元,主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
网络存储网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。在5G通信系统中,该网络存储网元可以是网络注册功能(network repository function,NRF)网元。在未来通信系统中,网络存储网元仍可以是NRF网元,或者,还可以有其它的名称,本申请不做限定。
网络开放功能网元,可用于提供用于安全地向外部开放由3GPP网络功能设备提供的业务和能力等。在5G通信系统中,网络开放功能网元可以是网络开放功能(network exposure function,NEF)网元。在未来通信系统中,网络开放功能网元仍可以是NEF网元,或者,还可以有其它的名称,本申请不做限定。
网络切片选择网元,可用于为终端的业务选择合适的网络切片。在5G通信系统中,网络切片选择网元可以是网络切片选择功能(network slice selection function,NSSF)网元。在未来通信系统中,网络开放功能网元仍可以是NSSF网元,或者,还可以有其它的名称,本申请不做限定。
网络数据分析网元,可以从各个网络功能(network function,NF),例如策略控制网元、会话管理网元、用户面网元、接入管理网元、应用功能网元(通过网络能力开放功能网元)收集数据,并进行分析和预测。在5G通信系统中,网络数据分析网元可以是网络数据分析功能(network data analytics function,NWDAF)。在未来通信系统中,网络开放功能网元仍可以是NWDAF网元,或者,还可以有其它的名称,本申请不做限定。
统一数据存储网元,负责存储结构化的数据信息,其中包括签约信息,策略信息,以及有标准格式定义的网络数据或业务数据。在5G通信系统中,统一数据存储网元可以是统一数据存储(unified data repository,UDR)。在未来通信系统中,网络开放功能网元仍可以是UDR网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。一种可能的实现方式,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。另外,在下文中,为了方便描述,可以省略“网元”。例如,本申请的SMF网元与SMF表达同一含义,只是为了方便描述,省略了网元这两个字,其余的类似。
如图1c所示,提供了一种第五代移动通信系统下的多播/广播服务MBS系统架构示意 图,相比于图1a的系统架构,主要差别包括:
新增了MB-SMF、MB-UPF和多播/广播服务功能(multicast/broadcast service function,MBSF)网元。其中,MB-SMF用于多播会话配置,MB-UPF用于多播数据传输,MBSF用于在AF和MB-SMF之间进行多播/广播服务MBS需求配置。其中MB-UPF由MB-SMF进行配置,并通过N6连接与AF/AS(可能包括Content Provider)进行连接,并获取多播数据,同时通过N3连接与NG-RAN进行连接,向RAN发送下行多播数据。MBSF则主要根据AF/AS的多播业务需求,向MB-SMF发起多播会话建立/管理需求,并进行相关的配置。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在多播业务中,包括MBS会话配置过程(session configuration procedure)和MBS会话建立过程(session establishment procedure)。
一种示例中,可以由应用功能AF网元发起MBS会话配置过程。例如,AF向核心网网元(例如,网络呈现功能NEF网元、或多播/广播服务功能MBSF网元)发送临时移动组标识(temporary mobile group identity,TMGI)分配请求,TMGI用于标识一个MBS会话。然后,核心网网元(例如,NEF/MBSF)对AF进行授权验证,只对符合授权验证的AF开放MBS会话配置权限。
另一示例中,可以由MB-SMF发起MBS会话配置过程。该场景通常是为了支持无AF的多播业务,或支持AF未发起MBS会话配置过程的多播业务。在该场景中,运营商可能为多播业务预配置一些默认的服务质量(quality of service,QoS)信息等。由单播SMF检测到UE加入该多播业务的请求时,单播SMF向MB-SMF发送信息查询请求后,由MB-SMF再发起MBS会话配置流程。
本申请主要关注MBS会话建立过程,对于MBS会话配置过程不再详细介绍。
如图2所示,介绍了一种通信过程示意图。
步骤201:UE向单播SMF发送加入MBS会话的请求消息,该消息中包含MBS会话ID。
例如,MBS会话ID为多播地址(例如IP多播地址),表示UE请求加入该多播地址对应的多播会话。
例如,UE通过N1消息,以协议数据单元(protocol data unit,PDU)会话修改请求消息的形式,通过已建立的单播会话,向单播SMF发送加入MBS会话的请求消息,该请求消息中包含MBS会话ID。
步骤202:进行UE授权(UE authorization)。
例如,单播SMF向统一数据管理UDM网元发送对UE的授权请求,验证UE的签约信息,确定UE是否可以使用多播业务。当确定UE可以使用多播业务时,则执行后续步骤。
步骤203:单播SMF若查询到本地没有该MBS会话的上下文信息,则说明该单播SMF尚未与MBS会话建立关联,则向NRF查询该MBS会话对应的MB-SMF。也理解为,向NRF查询为所述MBS会话服务的MB-SMF。
步骤204:NRF向单播SMF反馈MB-SMF。
例如,若NRF查询到当前为所述MBS会话服务的MB-SMF,则可以向单播SMF反馈该当前为所述MBS会话服务的MB-SMF。若NRF未查询到当前为所述MBS会话服务的MB-SMF,则根据切片等信息选取一个或多个MB-SMF,反馈给单播SMF。
此处的“反馈MB-SMF”,可以是基于MB-SMF的注册信息,反馈MB-SMF的实体信息,该实体信息可以是注册信息中的一部分。
步骤205:单播SMF向MB-SMF发起信息查询请求,查询MBS会话的相关信息,该查询请求中包括MBS会话ID。
相关信息例如为MBS会话对应的服务质量QoS等信息。
MB-SMF在接收到该信息查询请求后,可以查询本地是否有该MBS会话的上下文信息,若本地无该MBS会话的上下文信息,则说明该多播地址尚未进行多播会话的配置,MB-SMF可能发起MBS会话配置流程。
步骤206:MB-SMF向单播SMF反馈MBS会话的相关信息,例如,QoS信息。
接下来就可以执行MBS会话建立过程(session establishment procedure),例如,执行以下过程:
单播SMF通过AMF向RAN反馈MBS会话对应的上下文信息,确定将UE加入该多播会话。
RAN根据自身是否已经可以接收多播会话的下行数据,发起MBS会话建立流程,建立从内容提供商(content provider)到RAN的下行数据通路。
RAN向UE通知加入群组成功,并分配RAN侧的传输资源。
RAN向单播SMF上报UE加入多播群组的执行情况,单播SMF记录并调整与UE相关的上下文信息。
在图2的示例中,仅对UE是否可以使用多播业务进行了授权验证(例如步骤202),对于多播业务(也可以理解为对终端设备请求的多播地址)本身并没有进行授权验证。这样就会导致:若UE请求加入的多播地址不在合理的范围(例如,运营商允许的范围)内,MB-SMF仍会为该多播业务进行会话配置流程,该会话配置流程所涉及的网元,例如MB-SMF、MB-UPFUE等均会为该多播业务预留资源。但是,由于该多播地址不合法,所以,运营商无法为该多播地址提供多播服务,从而导致上下文占用和资源浪费。若有非法UE利用该机制进行DDoS攻击,可能会导致正常的多播业务也无法使用。
基于此,本申请提出多种方案,对多播业务进行授权验证,以避免资源浪费或非法攻击。
如图3所示,提供了一种通信方法流程图,包括以下步骤:
需要注意的是,本申请的第一SMF网元为单播SMF网元,第二SMF网元为MB-SMF网元。为多播地址对应的多播业务建立多播会话的SMF也可以是MB-SMF。支持为多播业务建立多播会话的SMF也可以是MB-SMF。
步骤301:终端设备向第一SMF网元发送第一消息,相应的,第一SMF网元接收来自终端设备的第一消息。
所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话。
步骤302:所述第一SMF网元向网络注册功能NRF网元发送第二消息,相应的,网 络注册功能NRF网元接收来自第一SMF网元的第二消息。
所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。
需要注意的是,在现有技术中,在查询为多播地址对应的多播业务服务的SMF时(例如步骤203中查询MB-SMF),是不区分会话建立场景或会话配置场景的,而在本申请中,第二消息不同于现有的查询消息,本申请的第二消息可以将多播会话建立场景和多播会话配置场景区分开来,这样,NRF就可以针对不同的场景,执行与不同的场景分别对应的动作。在图3的方案中,NRF可以通过第二消息区分出来,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。
该第二消息可以是新的消息,也可以是对现有消息进行改进。
一种可选的示例中,所述第二消息还可以包括:第一指示,所述第一指示用于指示建立多播会话。通过对现有消息的改进,在现有消息中增加一个新的指示信息来指示建立多播会话的场景,通用性较强。
对于NRF网元来说,可能会查询到为所述多播地址对应的多播业务建立多播会话的SMF,则在步骤302之后,可以执行步骤303a和步骤304a。也可能未查询到为所述多播地址对应的多播业务建立多播会话的SMF,则在步骤302之后,可以执行步骤303b和步骤304b。以下分为实施例1和实施例2分别进行介绍。
实施例1:未查询到为多播地址对应的多播业务建立多播会话的SMF。
步骤303a:NRF网元向所述第一SMF网元发送第三消息,相应的,所述第一SMF网元接收来自所述NRF的第三消息。
所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。
一种可选的示例中,所述第三消息包括:第二指示,所述第二指示用于指示查询失败。第二指示可以占用一个比特位,例如,0表示查询失败,1表示查询成功。通过指示信息来指示,可以节省占用的比特位,可以节省资源。
一种可选的示例中,所述第三消息包括:空的SMF列表。空的SMF列表可以是具有表头形式的空列表。在第三消息包括空的SMF列表时,该第三消息可以是沿用现有消息的格式,通用性较强。
一种可选的示例中,所述第三消息包括:第二指示和空的SMF列表。通过第二指示和/或空的SMF列表来指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。
一种可选的示例中,通过第三消息的消息名称,指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。
所述NRF网元可以在如下情况下,向所述第一SMF网元指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF:
情况1a:在支持为多播业务建立多播会话的SMF的允许多播地址不包括所述多播地址的情况。
情况2a:在不存在当前为所述多播地址对应的多播业务服务的SMF,且在支持为多播业务建立多播会话的SMF的允许多播地址不包括所述多播地址的情况。
需要注意的是,针对任一多播地址,如果在选择为该任一多播地址对应的多播业务服务的SMF时,是基于该SMF的允许多播地址必须包括该任一多播地址这个条件来选择的, 则该当前为所述多播地址对应的多播业务服务的SMF,一定是允许多播地址包括所述多播地址的SMF中的某一SMF。
如果在选择为任一多播地址对应的多播业务服务的SMF时,是基于该SMF的允许多播地址包括该任一多播地址的条件、或者其它条件(例如基于切片选择、AF选择)来选择的,则该当前为所述多播地址对应的多播业务服务的SMF,可能是或可能不是允许多播地址包括所述多播地址的SMF中的任一SMF。
基于此,如果,当前为所述多播地址对应的多播业务服务的SMF,一定为:允许多播地址包括所述多播地址的SMF中的某一SMF时,只要支持为多播业务建立多播会话的SMF的允许多播地址不包括所述多播地址,就可以确定不存在当前为所述多播地址对应的多播业务服务的SMF,可以无需重复判断是否存在当前为所述多播地址对应的多播业务服务的SMF。
如果,当前为所述多播地址对应的多播业务服务的SMF,可能是或可能不是允许多播地址包括所述多播地址的SMF中的任一SMF,则可以先判断是否存在当前为所述多播地址对应的多播业务服务的SMF。当不存在当前为所述多播地址对应的多播业务服务的SMF时,再判断支持为多播业务建立多播会话的SMF的允许多播地址是否包括所述多播地址。
另外,为多播业务建立多播会话的SMF可以向NRF网元上报自身的允许多播地址,相应的,NRF网元可以接收支持为多播业务建立多播会话的SMF的允许多播地址。这样,NRF网元就可以确定支持为多播业务建立多播会话的SMF的允许多播地址中是否包括终端设备请求的多播地址,当这些允许多播地址中不包括终端设备请求的多播地址时,则可以拒绝终端设备加入所述多播地址对应的多播会话。
SMF中的允许多播地址可以是运营商配置给该SMF的。
情况3a:运营商的允许多播地址不包括所述多播地址的情况。
NRF可以查询运营商的允许多播地址是否包括终端设备请求的该多播地址。
例如,运营商可以将运营商允许多播地址配置在NRF中,例如,所述NRF网元接收运营商的允许多播地址。这样,所述NRF网元就可以在本地查询所述多播地址是否属于运营商的允许多播地址。在该情况3a中,所述运营商的允许多播地址不包括终端设备请求的多播地址。
再例如,运营商可以将允许多播地址配置在统一数据存储UDR中,则所述NRF向统一数据存储UDR网元查询所述多播地址是否属于运营商的允许多播地址。在该情况3a中,所述运营商的允许多播地址不包括终端设备请求的多播地址。
一种可选的示例,可以将情况3a进一步限定,不存在当前为所述多播地址对应的多播业务服务的SMF,且运营商的允许多播地址不包括所述多播地址,NRF网元向所述第一SMF网元指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。
步骤304a:所述第一SMF网元向所述终端设备发送第四消息,所述第四消息用于指示拒绝所述终端设备加入所述多播地址对应的多播会话。
在现有技术中,当不存在当前为所述多播地址对应的多播业务服务的SMF时,NRF会根据切片等信息,选择出一个MB-SMF反馈给第一SMF,用来建立/配置多播会话。而在该实施例1中,NRF可以通过第二消息区分出来,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。在建立多播会话场景中,SMF网元可以对该多播业务进行授权验证,在授权验证不通过时,向终端设备发送拒绝加入的指示信息,避 免终端设备的资源浪费。另外,在授权验证过程中,SMF网元向NRF网元查询合适的SMF,根据查询结果确定授权验证是否通过。如果NRF网元不向第一SMF网元分配SMF来建立多播会话,则授权验证不通过。不分配SMF可以避免资源浪费和非法攻击。
实施例2:查询到为多播地址对应的多播业务建立多播会话的SMF。
步骤303b:NRF网元向所述第一SMF网元发送第三消息,相应的,所述第一SMF网元接收来自所述NRF的第三消息。
所述第三消息包括第二SMF,所述第二SMF支持为所述多播地址对应的多播业务建立多播会话。
所述NRF网元可以在如下情况下,向所述第一SMF网元指示第二SMF:
情况1b:存在当前为所述多播地址对应的多播会话服务的SMF的情况。
在存在当前为所述多播地址服务的SMF的情况下,将所述当前为所述多播地址服务的SMF确定为所述第二SMF。则,所述第二SMF为当前为所述多播地址对应的多播会话服务的SMF。
一种可选的示例,可以将情况1b进一步限定,存在当前为所述多播地址对应的多播业务服务的SMF,且运营商的允许多播地址包括所述多播地址,NRF网元向所述第一SMF网元指示第二SMF。
情况2b:支持为多播业务建立多播会话的SMF的允许多播地址包括所述多播地址的情况。
NRF网元可以先判断是否存在当前为所述多播地址对应的多播业务服务的SMF。当不存在当前为所述多播地址对应的多播业务服务的SMF时,再判断支持为多播业务建立多播会话的SMF的允许多播地址是否包括所述多播地址。如果某一支持为多播业务建立多播会话的SMF的允许多播地址包括终端设备请求的多播地址,则可以将该SMF确定为第二SMF。也就是在不存在当前为所述多播地址服务的SMF的情况下,可以将允许多播地址包括所述多播地址的SMF确定为所述第二SMF,则,所述第二SMF的允许多播地址包括所述多播地址。
另外,为多播业务建立多播会话的SMF(包括第二SMF)可以向NRF网元上报自身的允许多播地址,相应的,NRF网元可以接收支持为多播业务建立多播会话的SMF(包括第二SMF)的允许多播地址。这样,NRF网元就可以确定支持为多播业务建立多播会话的SMF(包括所述第二SMF)的允许多播地址中是否包括终端设备请求的多播地址,当这些允许多播地址中包括终端设备请求的多播地址时,则可以将允许多播地址包括所述多播地址的SMF,告知给第一SMF。
SMF中的允许多播地址可以是运营商配置给该SMF的。
情况3b:在不存在当前为所述多播地址对应的多播业务服务的SMF,且所述多播地址属于运营商的允许多播地址的情况下,所述NRF网元为所述多播地址对应的多播业务建立多播会话配置SMF。进而,向所述第一SMF网元发送第三消息,第三消息包括第二SMF。
一种可选的示例,NRF网元可以先判断是否存在当前为所述多播地址对应的多播业务服务的SMF。当存在前为所述多播地址对应的多播业务服务的SMF时,可以将所述当前为所述多播地址服务的SMF确定为所述第二SMF。与情况1b相对应。
当不存在当前为所述多播地址对应的多播业务服务的SMF时,可以再查询运营商的 允许多播地址是否包括终端设备请求的该多播地址。如果多播地址属于运营商的允许多播地址的情况下,所述NRF网元为所述多播地址对应的多播业务建立多播会话配置SMF。
一种可选的示例,NRF网元可以先查询运营商的允许多播地址是否包括终端设备请求的该多播地址,如果不包括,则对应上述介绍的情况3a;如果包括,则可以进一步判断是否存在当前为所述多播地址对应的多播业务服务的SMF。
例如,运营商可以将允许多播地址配置在NRF中,例如,所述NRF网元接收运营商的允许多播地址。这样,所述NRF网元就可以在本地查询所述多播地址是否属于运营商的允许多播地址。在该情况3b中,所述运营商的允许多播地址包括终端设备请求的多播地址。
再例如,运营商可以将允许多播地址配置在统一数据存储UDR中,则所述NRF向统一数据存储UDR网元查询所述多播地址是否属于运营商的允许多播地址。在该情况3b中,所述运营商的允许多播地址包括终端设备请求的多播地址。
步骤304b:所述第一SMF网元向所述终端设备发送第四消息,所述第四消息用于指示接受所述终端设备加入所述多播地址对应的多播会话。
在现有技术中,当不存在当前为所述多播地址对应的多播业务服务的SMF时,NRF会根据切片等信息,选择出一个MB-SMF反馈给第一SMF,用来建立/配置多播会话。而在该实施例2中,NRF可以通过第二消息区分出来,当前场景下要查询的SMF是用于建立多播会话的,而不是用于配置多播会话的。在建立多播会话场景中,SMF网元可以对该多播业务进行授权验证,在授权验证通过时,向终端设备发送接受加入的指示信息。另外,在授权验证过程中,SMF网元向NRF网元查询合适的SMF,根据查询结果确定授权验证是否通过。如果NRF网元向第一SMF网元分配SMF来建立多播会话,则授权验证通过,从而实现合理地为终端设备提供多播服务。
如图4所示,介绍一种通信方式流程图。在该示例中,支持为多播业务建立多播会话的SMF向NRF上报,该SMF的允许多播地址,可以适用于前文介绍的1a、2a、1b、2b等情况。
需要注意的是,本申请的第一SMF网元为单播SMF网元,第二SMF网元为MB-SMF网元。为多播地址对应的多播业务建立多播会话的SMF也可以是MB-SMF。支持为多播业务建立多播会话的SMF也可以是MB-SMF。
步骤400:支持为多播业务建立多播会话的SMF(为了方便理解,下文将支持为多播业务建立多播会话的SMF称为MB-SMF)向NRF上报,该MB-SMF的允许多播地址。相应的,NRF网元接收MB-SMF的允许多播地址。
该MB-SMF可以是在创建网络功能配置文件(NF profile create)时,上报该MB-SMF的允许多播地址,也可以是在更新网络功能配置文件(NF profile update)时,上报该MB-SMF的允许多播地址。例如,MB-SMF在向NRF创建或更新该MB-SMF的NF profile时,该NF profile中包括:该MB-SMF的允许多播地址。
该允许多播地址可以是运营商预先配置给该MB-SMF的,该MB-SMF可以服务于预配置的多播地址对应的多播业务。
该允许多播地址可以是一个,也可以是多个,也可以是允许的多播地址的范围,该允许多播地址可以是以列表的形式上报给NRF的。
例如,多播地址为IP多播地址。
步骤401:终端设备向第一SMF网元发送第一消息,相应的,第一SMF网元接收来自终端设备的第一消息。
所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话。
该第一消息可以是请求(request),例如,MBS会话加入请求(MBS session Join Request)。
例如,UE检测到应用层发出多播地址的因特网组管理协议(internet group management protocol,IGMP)Join等消息时,向第一SMF发送MBS会话加入请求(MBS session Join Request),该请求中包含多播地址。
例如,UE通过N1消息,以PDU会话修改请求消息的形式,通过已建立的单播会话,向第一SMF发送MBS会话加入请求(MB Ssession Join Request)。
可选的,可以对UE进行检验(UE authorization)。例如,第一SMF向统一数据管理UDM网元发送对UE的授权请求,验证UE的签约信息,确定UE是否可以使用多播业务。当确定UE可以使用多播业务时,则执行后续步骤。该步骤也可以不执行。
步骤402:所述第一SMF网元向网络注册功能NRF网元发送第二消息,相应的,网络注册功能NRF网元接收来自第一SMF网元的第二消息。
所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。
需要注意的是,此处查询的是为多播地址对应的多播业务建立多播会话的SMF,而不是为多播地址对应的多播业务配置多播会话的SMF。
第一SMF可以先查询本地是否有该多播地址对应的上下文信息,如果本地没有该多播地址对应的上下文信息,则说明该第一SMF尚未与该多播地址建立关联。则第一SMF可以使用多播地址向NRF查询为所述多播地址对应的多播业务建立多播会话的SMF。
该第二消息可以是请求(request),例如,服务化接口的网络功能发现请求(Nnrf NF Discovery request)。
该第二消息可以是新的消息,也可以是对现有的消息进行改进。例如,对现有的网络功能发现请求(NF Discovery request)进行改进,例如,在现有的网络功能发现请求(NF Discovery request)中增加会话建立指示(session Establishment indication),即上文介绍的第一指示,用于指示建立多播会话。
步骤403:NRF网元向所述第一SMF网元发送第三消息,相应的,所述第一SMF网元接收来自所述NRF的第三消息。
所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。或者,所述第三消息包括第二SMF(MB-SMF instance),所述第二SMF支持为所述多播地址对应的多播业务建立多播会话。
也可以理解为:NRF执行对未配置的MBS会话的MS-SMF配置文件查询(MS-SMF profile query for unconfigured MBS session)。
NRF可以查询MB-SMF的配置文件(profile),profile中记录有每个MB-SMF的允许多播地址。
若未查询到当前为该多播地址对应的多播业务服务的SMF,也可以在MB-SMF的允 许多播地址中查询该多播地址。若MB-SMF的允许多播地址中不包括该多播地址(也可以理解为,不存在允许为该多播地址对应的多播业务服务的MB-SMF)的情况下,NRF不再为该多播地址对应的多播业务分配MB-SMF,NRF可以向第一SMF反馈未查询到为所述多播地址对应的多播业务建立多播会话的SMF。未查询到为所述多播地址对应的多播业务建立多播会话的SMF,例如可以是该查询失败或空的MB-SMF列表。
若查询到当前为该多播地址对应的多播业务服务的SMF,则NRF可以向第一SMF反馈该正在为该多播地址对应的多播业务服务的SMF的相关信息。若在MB-SMF的允许多播地址中查询到该多播地址,则NRF可以向第一SMF反馈:允许多播地址包括所述多播地址的SMF(也可以理解为,允许为该多播地址对应的多播业务服务的MB-SMF)。当在多个MB-SMF的允许多播地址中查询到该多播地址,则可以向第一SMF反馈一个MB-SMF,或者反馈多个MB-SMF,例如向SMF发送MB-SMF的实体列表。
该第三消息可以是响应(response),例如,服务化接口的网络功能发现响应(Nnrf NF Discovery response)。
需要注意的是,如果该第二消息查询的是为多播地址对应的多播业务配置多播会话的SMF。对于NRF的处理过程,本申请不进行限定。
接下来第一SMF根据NRF反馈的第三消息,执行对应的动作。
步骤404a:若第三消息中包括第二SMF,第一SMF在确定NRF查询到了可以为多播地址对应的多播业务建立多播会话的SMF,则对该多播地址对应的加入请求进行授权(接受UE加入)。
可选的,在第三消息包括的多个第二SMF时,第一SMF还可以进行MB-SMF的选择。
步骤404b:若第三消息指示未查询到为多播地址对应的多播业务建立多播会话的SMF,则拒绝该多播地址对应的加入请求,后续第一SMF可以向UE或接入网设备发送拒绝所述终端设备加入所述多播地址对应的多播会话的指示信息。
步骤405:第一SMF向第二SMF发送信息查询请求,相应的,第二SMF接收来自第一SMF的信息查询请求,该信息查询请求用于查询建立该多播地址对应多播会话的相关信息,例如Qos信息。该信息查询请求中包括多播地址。
该信息查询请求例如可以是Nmbsmf information request,其中,N表示服务化接口Nnrf mbsmf表示MB-SMF。
步骤406:第二SMF查询本地是否有该多播地址的上下文信息,若本地无该多播地址的上下文信息,则说明该多播地址尚未进行多播会话的配置,则可以决定发起配置多播会话(decide to configure MBS Session)。
步骤407:第二SMF发起MBS Session Configuration流程,以对该多播地址对应的多播会话进行配置。
步骤408:第二SMF在多播会话配置完成后,向第一SMF反馈信息查询响应。
该信息查询响应例如可以是Nmbsmf information response。
该信息查询响应中可以包括Qos信息。
步骤409:多播会话建立流程(session establishment procedure)。
在图4的示例中,MB-SMF会向NRF注册或更新时,将自己的允许多播地址范围告知给NRF。另外,第二消息可以将多播会话建立场景和多播会话配置场景区分开来,当第二消息用于建立多播会话时,则NRF在查询MB-SMF实体时,优先查询当前为该多播地 址对应的多播业务服务的MB-SMF。若没有当前为该多播地址对应的多播业务服务的MB-SMF,则再在MB-SMF的允许多播地址中查询该多播地址(即再查询允许为该多播地址对应的多播业务服务的MB-SMF),若都查不到,则向第一SMF回复未查询到的指示。相比于现有技术,当第二消息用于建立多播会话时,可以反馈未查询到的消息,不再分配新的MB-SMF,这样对于非法请求,就可以通过未查询到的指示进行识别。而其他用于建立多播会话的查询请求,如AF/NEF/MBSF进行查询时,按照现有正常逻辑,在查询不到MB-SMF可用时,根据其他信息如切片、DNN等分配新的MB-SMF。
如图5所示,提供了一种通信方法流程图。在该示例中,运营商向NRF配置允许多播地址,可以适用于前文介绍的3a、3b等情况。
需要注意的是,本申请的第一SMF网元为单播SMF网元,第二SMF网元为MB-SMF网元。为多播地址对应的多播业务建立多播会话的SMF也可以是MB-SMF。支持为多播业务建立多播会话的SMF也可以是MB-SMF。
步骤500a:运营商向NRF发送运营商的允许多播地址,这些允许多播地址可以支持由UE Join触发多播会话的配置流程。
步骤500b:运营商向UDR发送运营商的允许多播地址,这些允许多播地址可以支持由UE Join触发多播会话的配置流程。
步骤501:终端设备向第一SMF网元发送第一消息,相应的,第一SMF网元接收来自终端设备的第一消息。
所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话。
步骤501与步骤401相同,不再重复赘述。
步骤502:所述第一SMF网元向网络注册功能NRF网元发送第二消息,相应的,网络注册功能NRF网元接收来自第一SMF网元的第二消息。
所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF。
步骤502与步骤402相同,不再重复赘述。
步骤503a:NRF网元在本地查询所述多播地址是否属于运营商的允许多播地址。
步骤503b:NRF网元向统一数据存储UDR网元查询所述多播地址是否属于运营商的允许多播地址。
步骤503a和步骤503b可以选择其一执行,也可以均执行。
例如,NRF网元可以在接收到第二消息后,向UDR查询所述多播地址是否属于运营商的允许多播地址。可选的,NRF网元可以在接收到第二消息后,先查询是否存在当前为该多播地址对应的多播业务服务的SMF,若未查询到当前为该多播地址对应的多播业务服务的SMF的情况下,NRF向UDR查询所述多播地址是否属于运营商的允许多播地址。
步骤504:NRF网元向所述第一SMF网元发送第三消息,相应的,所述第一SMF网元接收来自所述NRF的第三消息。
所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。或者,所述第三消息包括第二SMF(MB-SMF instance),所述第二SMF支持为所述多播地址对应的多播业务建立多播会话。若多播地址不属于运营商的允许多播地址的情况下,NRF不再为该多播地址对应的多播业务分配MB-SMF,NRF可以向第一SMF反馈 未查询到为所述多播地址对应的多播业务建立多播会话的SMF。未查询到为所述多播地址对应的多播业务建立多播会话的SMF,例如可以是该查询失败或空的MB-SMF列表。
若查询到当前为该多播地址对应的多播业务服务的SMF,则NRF可以向第一SMF反馈该正在为该多播地址对应的多播业务服务的SMF的相关信息。
若查询到多播地址属于运营商的允许多播地址的情况下,则NRF网元为所述多播地址对应的多播业务建立多播会话配置SMF。进而,向所述第一SMF网元发送第三消息,第三消息包括第二SMF。
该第三消息可以是响应(response),例如,服务化接口的网络功能发现响应(Nnrf NF Discovery response)。
需要注意的是,如果该第二消息查询的是为多播地址对应的多播业务配置多播会话的SMF。对于NRF的处理过程,本申请不进行限定。
接下来第一SMF根据NRF反馈的第三消息,执行对应的动作。
下文介绍的步骤505a与步骤404a相同,步骤505b与步骤404b相同,步骤506-步骤510,与步骤405-步骤409相同。
步骤505a:若第三消息中包括第二SMF,第一SMF在确定NRF查询到了可以为多播地址对应的多播业务建立多播会话的SMF,则对该多播地址对应的加入请求进行授权(接受UE加入)。
可选的,在第三消息包括的多个第二SMF时,第一SMF还可以进行MB-SMF的选择。
步骤505b:若第三消息指示未查询到为多播地址对应的多播业务建立多播会话的SMF,则拒绝该多播地址对应的加入请求,后续第一SMF可以向UE或接入网设备发送拒绝所述终端设备加入所述多播地址对应的多播会话的指示信息。
步骤506:第一SMF向第二SMF发送信息查询请求,相应的,第二SMF接收来自第一SMF的信息查询请求,该信息查询请求用于查询建立该多播地址对应多播会话的相关信息,例如Qos信息。该信息查询请求中包括多播地址。
该信息查询请求例如可以是Nmbsmf information request,其中,N表示服务化接口Nnrf mbsmf表示MB-SMF。
步骤507:第二SMF查询本地是否有该多播地址的上下文信息,若本地无该多播地址的上下文信息,则说明该多播地址尚未进行多播会话的配置,则可以决定发起配置多播会话(decide to ConfigurationMBS Session)。
步骤508:第二SMF发起MBS Session Configuration流程,以对该多播地址对应的多播会话进行配置。
步骤509:第二SMF在多播会话配置完成后,向第一SMF反馈信息查询响应。
该信息查询响应例如可以是Nmbsmf information response。
该信息查询响应中可以包括Qos信息。
步骤510:多播会话建立流程(session establishment procedure)。
在图5的示例中,运营商向NRF或UDR配置运营商允许多播地址范围。另外,第二消息可以将多播会话建立场景和多播会话配置场景区分开来,当第二消息用于建立多播会话时,则NRF在查询MB-SMF实体时,若无当前为该多播地址对应的多播业务服务的MB-SMF。且该多播地址不在运营商的允许多播地址内,则向第一SMF回复未查询到的指示。相比于现有技术,当第二消息用于建立多播会话时,可以反馈未查询到的消息,不再 分配新的MB-SMF,这样对于非法请求,就可以通过未查询到的指示进行识别。而其他用于建立多播会话的查询请求,如AF/NEF/MBSF进行查询时,按照现有正常逻辑,在查询不到MB-SMF可用时,根据其他信息如切片、DNN等分配新的MB-SMF。
前文介绍了本申请实施例的方法,下文中将介绍本申请实施例中的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例可以根据上述方法示例,对装置进行功能模块的划分,例如,可以对应各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。这些模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,具体实现时可以有另外的划分方式。
基于与上述方法的同一技术构思,参见图6,提供了一种通信装置600结构示意图,该装置600可以包括:处理模块610,可选的,还包括接收模块620a、发送模块620b、存储模块630。处理模块610可以分别与存储模块630和接收模块620a和发送模块620b相连,所述存储模块630也可以与接收模块620a和发送模块620b相连。
在一种示例中,上述的接收模块620a和发送模块620b也可以集成在一起,定义为收发模块。
在一种示例中,该装置600可以为第一SMF网元,也可以为应用于第一SMF网元中的芯片或功能单元。该装置600具有上述方法中第一SMF网元的任意功能,例如,该装置600能够执行上述图2、图3、图4、图5的方法中由第一SMF网元执行的各个步骤。
所述接收模块620a,可以执行上述方法实施例中第一SMF网元执行的接收动作。
所述发送模块620b,可以执行上述方法实施例中第一SMF网元执行的发送动作。
所述处理模块610,可以执行上述方法实施例中第一SMF网元执行的动作中,除发送动作和接收动作外的其它动作。
在一种示例中,所述接收模块620a,用于接收来自终端设备的第一消息,所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话;
所述发送模块620b,用于向网络注册功能NRF网元发送第二消息,所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF;
所述接收模块620a,还用于接收来自所述NRF的第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF;
所述发送模块620b,还用于向所述终端设备发送第四消息,所述第四消息用于指示拒绝所述终端设备加入所述多播地址对应的多播会话。
一种示例中,所述接收模块620a,用于接收来自终端设备的第一消息,所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话;
所述发送模块620b,用于向网络注册功能NRF网元发送第二消息,所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的 SMF;
所述接收模块620a,用于接收来自所述NRF的第三消息,所述第三消息包括第二SMF,所述第二SMF支持为所述多播地址对应的多播业务建立多播会话;
所述发送模块620b,用于向所述终端设备发送第四消息,所述第四消息用于指示接受所述终端设备加入所述多播地址对应的多播会话。
所述处理模块610,用于生成第二消息,生成第四消息等。
在一种示例中,所述存储模块630,可以存储第一SMF网元执行的方法的计算机执行指令,以使处理模块610和接收模块620a和发送模块620b执行上述示例中第一SMF网元执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
在一种示例中,该装置600可以为NRF网元,也可以为应用于NRF网元中的芯片或功能单元。该装置600具有上述方法中NRF网元的任意功能,例如,该装置600能够执行上述图2、图3、图4、图5的方法中由NRF网元执行的各个步骤。
所述接收模块620a,可以执行上述方法实施例中NRF网元执行的接收动作。
所述发送模块620b,可以执行上述方法实施例中NRF网元执行的发送动作。
所述处理模块610,可以执行上述方法实施例中NRF网元执行的动作中,除发送动作和接收动作外的其它动作。
在一种示例中,所述接收模块620a,用于接收来自第一SMF网元的第二消息,所述第二消息包括多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF;
所述发送模块620b,用于向所述第一SMF网元发送第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。或者,所述第三消息包括第二SMF,所述第二SMF支持为所述多播地址对应的多播业务建立多播会话。
所述处理模块610,用于在本地查询所述多播地址是否属于运营商的允许多播地址;
所述处理模块610,用于向统一数据存储UDR网元查询所述多播地址是否属于运营商的允许多播地址。
在一种示例中,所述存储模块630,可以存储NRF网元执行的方法的计算机执行指令,以使处理模块610和接收模块620a和发送模块620b执行上述示例中NRF网元执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
作为一种可能的产品形态,装置可以由一般性的总线体系结构来实现。
如图7所示,提供了一种通信装置700的示意性框图。
该装置700可以包括:处理器710,可选的,还包括收发器720、存储器730。该收发器720,可以用于接收程序或指令并传输至所述处理器710,或者,该收发器720可以用于该装置700与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器720可以为代码和/或数据读写收发器,或者,该收发器720可以为处理器与收发机之间的信号传输收发器。所述处理器710和所述存储器730之间电耦合。
一种示例中,该装置700可以为第一SMF网元,也可以为应用于第一SMF网元中的芯片。应理解,该装置具有上述方法中第一SMF网元的任意功能,例如,所述装置700能够执行上述图2、图3、图4、图5的方法中由第一SMF网元执行的各个步骤。示例的,所述存储器730,用于存储计算机程序;所述处理器710,可以用于调用所述存储器730中存储的计算机程序或指令,执行上述示例中第一SMF网元执行的方法,或者通过所述收发器720执行上述示例中第一SMF网元执行的方法。
一种示例中,该装置700可以为NRF网元,也可以为应用于NRF网元中的芯片。应理解,该装置具有上述方法中NRF网元的任意功能,例如,所述装置700能够执行上述图2、图3、图4、图5的方法中由NRF网元执行的各个步骤。示例的,所述存储器730,用于存储计算机程序;所述处理器710,可以用于调用所述存储器730中存储的计算机程序或指令,执行上述示例中NRF网元执行的方法,或者通过所述收发器720执行上述示例中NRF网元执行的方法。
图6中的处理模块610可以通过所述处理器710来实现。
图6中的接收模块620a和发送模块620b可以通过所述收发器720来实现。或者,收发器720分为接收器和发送器,接收器执行接收模块的功能,发送器执行发送模块的功能。
图6中的存储模块630可以通过所述存储器730来实现。
作为一种可能的产品形态,装置可以由通用处理器(通用处理器也可以称为芯片或芯片系统)来实现。
一种可能的实现方式中,实现应用于第一SMF网元的装置或NRF网元的装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中第一SMF网元或NRF网元执行的方法。
图6中的处理模块610可以通过处理电路来实现。
图6中的接收模块620a和发送模块620b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。
图6中的存储模块630可以通过存储介质来实现。
作为一种可能的产品形态,本申请实施例的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述通信方法。或者说:所述计算机程序包括用于实现上述通信方法的指令。
本申请实施例还提供了一种计算机程序产品,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述提供的通信方法。
本申请实施例还提供了一种通信的系统,所述通信系统包括:执行上述通信方法的第一SMF网元和NRF网元。
另外,本申请实施例中提及的处理器可以是中央处理器(central processing unit,CPU),基带处理器,基带处理器和CPU可以集成在一起,或者分开,还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中提及的收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    第一会话管理功能SMF网元接收来自终端设备的第一消息,所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话;
    所述第一SMF网元向网络注册功能NRF网元发送第二消息,所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF;
    所述第一SMF网元接收来自所述NRF的第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF;
    所述第一SMF网元向所述终端设备发送第四消息,所述第四消息用于指示拒绝所述终端设备加入所述多播地址对应的多播会话。
  2. 如权利要求1所述的方法,其特征在于,所述第二消息为网络功能发现请求。
  3. 如权利要求1或2所述的方法,其特征在于,所述第三消息为网络功能发现响应。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第三消息包括:第二指示,所述第二指示用于指示查询失败。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第三消息包括:空的SMF列表。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一消息包括多播/广播服务MBS会话加入请求。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一会话管理功能SMF网元接收来自终端设备的第一消息,包括:
    所述第一SMF网元通过协议数据单元PDU会话修改请求消息接收所述第一消息。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一SMF网元为单播SMF网元,所述为所述多播地址对应的多播业务建立多播会话的SMF为多播/广播MB-SMF。
  9. 一种通信方法,其特征在于,包括:
    网络注册功能NRF网元接收来自第一会话管理功能SMF网元的第二消息,所述第二消息包括多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF;
    所述NRF向所述第一SMF网元发送第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF。
  10. 如权利要求9所述的方法,其特征在于,所述第三消息包括:第二指示,所述第二指示用于指示查询失败。
  11. 如权利要求9或10所述的方法,其特征在于,所述第三消息包括:空的SMF列表。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述第二消息为网络功能发现请求。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述第三消息为网络功能发现响应。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述NRF向所述第一SMF网元发送第三消息,包括:
    在多播/广播MB-SMF的允许多播地址不包括所述多播地址的情况下,所述NRF向所 述第一SMF网元发送所述第三消息。
  15. 如权利要求9-13任一项所述的方法,其特征在于,所述NRF向所述第一SMF网元发送第三消息,包括:
    在不存在当前为所述多播地址对应的多播业务服务的多播/广播MB-SMF,且MB-SMF的允许多播地址不包括所述多播地址的情况下,所述NRF向所述第一SMF网元发送所述第三消息。
  16. 如权利要求14或15所述的方法,其特征在于,所述MB-SMF的允许多播地址是由运营商预先配置给所述MB-SMF的。
  17. 如权利要求14-16任一项所述的方法,其特征在于,所述MB-SMF的允许多播地址为允许的多播地址的范围。
  18. 如权利要求14-17任一项所述的方法,其特征在于,所述方法还包括:
    所述NRF接收所述MB-SMF上报的所述MB-SMF的允许多播地址。
  19. 如权利要求9-13任一项所述的方法,其特征在于,所述NRF向所述第一SMF网元发送第三消息,包括:
    在运营商的允许多播地址不包括所述多播地址的情况下,所述NRF向所述第一SMF网元发送所述第三消息。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述NRF网元接收所述运营商的允许多播地址。
  21. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述NRF网元在本地查询所述多播地址是否属于所述运营商的允许多播地址;或者,
    所述NRF向统一数据存储UDR网元查询所述多播地址是否属于所述运营商的允许多播地址。
  22. 如权利要求9-21任一项所述的方法,其特征在于,所述第一SMF网元为单播SMF网元,所述为所述多播地址对应的多播业务建立多播会话的SMF为多播/广播MB-SMF。
  23. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-8任一项所述的方法、或权利要求9-22任一项所述的方法。
  24. 一种芯片系统,其特征在于,所述芯片系统包括:处理电路;所述处理电路与存储介质耦合;
    所述处理电路,用于执行所述存储介质中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-8任一项所述的方法、或权利要求9-22任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现权利要求1-8任一项所述的方法的指令、或权利要求9-22任一项所述的方法的指令。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-8任一项所述的方法、或权利要求9-22任一项所述的方法。
  27. 一种通信系统,其特征在于,包括:第一会话管理功能SMF网元和网络注册功能NRF网元,
    所述第一SMF网元,用于执行如权利要求1-8任一项所述的方法;
    所述NRF网元,用于执行如权利要求9-22任一项所述的方法。
  28. 一种通信方法,其特征在于,包括:
    第一会话管理功能SMF网元接收来自终端设备的第一消息,所述第一消息包括多播地址,所述第一消息用于指示所述终端设备请求加入所述多播地址对应的多播会话;
    所述第一SMF网元向网络注册功能NRF网元发送第二消息,所述第二消息包括所述多播地址,所述第二消息用于查询为所述多播地址对应的多播业务建立多播会话的SMF;
    所述NRF网元接收所述第二消息,并向所述第一SMF网元发送第三消息,所述第三消息用于指示未查询到为所述多播地址对应的多播业务建立多播会话的SMF;
    所述第一SMF网元接收所述第三消息,并向所述终端设备发送第四消息,所述第四消息用于指示拒绝所述终端设备加入所述多播地址对应的多播会话。
PCT/CN2022/108354 2021-08-10 2022-07-27 一种通信方法及装置 WO2023016262A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3228659A CA3228659A1 (en) 2021-08-10 2022-07-27 Communication method and apparatus
KR1020247006545A KR20240037337A (ko) 2021-08-10 2022-07-27 통신 방법 및 장치
EP22855245.1A EP4369746A1 (en) 2021-08-10 2022-07-27 Communication method and apparatus
AU2022326664A AU2022326664A1 (en) 2021-08-10 2022-07-27 Communication method and apparatus
US18/435,534 US20240179801A1 (en) 2021-08-10 2024-02-07 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110915602.X 2021-08-10
CN202110915602.XA CN115706933A (zh) 2021-08-10 2021-08-10 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/435,534 Continuation US20240179801A1 (en) 2021-08-10 2024-02-07 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023016262A1 true WO2023016262A1 (zh) 2023-02-16

Family

ID=85180047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108354 WO2023016262A1 (zh) 2021-08-10 2022-07-27 一种通信方法及装置

Country Status (7)

Country Link
US (1) US20240179801A1 (zh)
EP (1) EP4369746A1 (zh)
KR (1) KR20240037337A (zh)
CN (1) CN115706933A (zh)
AU (1) AU2022326664A1 (zh)
CA (1) CA3228659A1 (zh)
WO (1) WO2023016262A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114938A1 (en) * 2017-12-12 2019-06-20 Nokia Solutions And Networks Oy Method, system and apparatus for multicast session management in a 5g communication network
CN111225344A (zh) * 2018-11-27 2020-06-02 华为技术有限公司 一种通信方法、装置及系统
CN111491346A (zh) * 2020-05-13 2020-08-04 腾讯科技(深圳)有限公司 多播通信方法、装置、计算机可读介质及电子设备
WO2021109475A1 (en) * 2020-05-19 2021-06-10 Zte Corporation Methods and systems for multicast and broadcast service establishment in wireless communication networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114938A1 (en) * 2017-12-12 2019-06-20 Nokia Solutions And Networks Oy Method, system and apparatus for multicast session management in a 5g communication network
CN111225344A (zh) * 2018-11-27 2020-06-02 华为技术有限公司 一种通信方法、装置及系统
CN111491346A (zh) * 2020-05-13 2020-08-04 腾讯科技(深圳)有限公司 多播通信方法、装置、计算机可读介质及电子设备
WO2021109475A1 (en) * 2020-05-19 2021-06-10 Zte Corporation Methods and systems for multicast and broadcast service establishment in wireless communication networks

Also Published As

Publication number Publication date
KR20240037337A (ko) 2024-03-21
AU2022326664A1 (en) 2024-02-15
US20240179801A1 (en) 2024-05-30
CA3228659A1 (en) 2023-02-16
CN115706933A (zh) 2023-02-17
EP4369746A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US11716780B2 (en) Methods and systems for multicast-broadcast session release and modification
US11917498B2 (en) Communication method and communications apparatus
EP3745807B1 (en) Session establishment method and device
CN112514422B (zh) 支持组通信的系统与方法
US10952046B2 (en) Method and apparatus for supporting vehicle communications in 5G system
CN111448808A (zh) 用于IoT应用的5G网络中的多播和广播服务
KR20180134685A (ko) 통신 시스템에서 PDU(Protocol Data Unit) 세션을 설립하는 방법
US20230078317A1 (en) Relay Link Establishment Method, Configuration Information Sending Method, Apparatus, and Readable Storage Medium
KR20220159371A (ko) 멀티캐스트 또는 브로드캐스트 세션 확립 및 관리
CN111556539A (zh) Ue执行的方法及ue、以及smf实体执行的方法及smf实体
WO2021227599A1 (zh) 一种通信的方法及装置
CN114270885A (zh) 移动通信网络中支持多播和广播服务的网络结构及服务提供方法
US20230232196A1 (en) Data communication method and communication apparatus
US20220263879A1 (en) Multicast session establishment method and network device
WO2023213177A1 (zh) 一种通信方法及装置
WO2023016262A1 (zh) 一种通信方法及装置
WO2022213799A1 (zh) 一种多播业务的通信方法及装置
WO2023179331A1 (zh) 一种发送数据包的方法、通信装置及通信系统
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
WO2023015973A1 (zh) 一种网络切片准入控制方法和装置
WO2023138349A1 (zh) 一种验证方法、通信装置及通信系统
US20230188976A1 (en) Communication method and apparatus
WO2023016236A1 (zh) 一种配置mbs会话的方法和装置
WO2023143212A1 (zh) 一种通信方法及装置
WO2023143111A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022326664

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022855245

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3228659

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022855245

Country of ref document: EP

Effective date: 20240207

ENP Entry into the national phase

Ref document number: 2022326664

Country of ref document: AU

Date of ref document: 20220727

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247006545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006545

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE