WO2023098450A1 - 一种炼焦和烟气处理系统及方法 - Google Patents

一种炼焦和烟气处理系统及方法 Download PDF

Info

Publication number
WO2023098450A1
WO2023098450A1 PCT/CN2022/131331 CN2022131331W WO2023098450A1 WO 2023098450 A1 WO2023098450 A1 WO 2023098450A1 CN 2022131331 W CN2022131331 W CN 2022131331W WO 2023098450 A1 WO2023098450 A1 WO 2023098450A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
unit
coking
carbon dioxide
flue gas
Prior art date
Application number
PCT/CN2022/131331
Other languages
English (en)
French (fr)
Inventor
徐列
张立新
康健
薛改凤
Original Assignee
华泰永创(北京)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华泰永创(北京)科技股份有限公司 filed Critical 华泰永创(北京)科技股份有限公司
Publication of WO2023098450A1 publication Critical patent/WO2023098450A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment

Definitions

  • the disclosure relates to the technical field of coking and waste gas treatment, in particular to a coking and flue gas treatment system and method.
  • coking production with recycling of chemical products requires external air and gas for production, and the main products are coke and chemical products.
  • the high-temperature flue gas generated by combustion is discharged after heat exchange in the furnace, and the waste gas discharged into the environment contains CO2, SO2, NOX and soot and other non-environmentally friendly gases; coking production without chemical product recovery, self-produced raw gas, Only external air is needed for combustion.
  • the main product is coke, and the waste heat is converted into electric energy.
  • the high-temperature flue gas generated by the combustion of raw coal gas and combustion-supporting gas is discharged through the waste heat recovery system.
  • the main problems are: the main product structure is too single, and there are still gaps in the coking industry. Waste gas emission problem, green coking production has not been realized.
  • the purpose of the embodiments of the present disclosure is to provide a coking and flue gas treatment system and method capable of reducing waste gas emissions.
  • the specific technical scheme is as follows:
  • the embodiment of the first aspect of the present disclosure proposes a coking and flue gas treatment system, including: a coking device having a gas supply pipeline and an exhaust pipeline, and the gas supply pipeline includes a first gas supply pipeline and a second gas supply pipeline ;
  • a flow regulating unit arranged on the first air supply pipeline and the second air supply pipeline;
  • a gas treatment unit connected to said gas activation unit via a first recovery conduit;
  • the oxygen supply unit is configured to provide pure oxygen, and the gas supply unit is configured to provide air or carbon dioxide or air and carbon dioxide;
  • the flow adjustment unit is configured to adjust the flow of gas passing through the first gas supply pipeline and the second gas supply pipeline;
  • the coking device is configured to use pure oxygen and air, or pure oxygen and carbon dioxide, or pure oxygen, air, and carbon dioxide to obtain a combustion-supporting gas for coking production;
  • the gas activation unit is configured to use the coke oven flue gas discharged from the exhaust pipe to mix with pure oxygen and water vapor to obtain a reaction gas source and activate the carbonized material to obtain a mixed gas and activated carbon, and the mixed gas includes syngas , exhaust gas and carbon dioxide;
  • the gas processing unit is configured to separate the mixed gas to obtain synthesis gas.
  • the pure oxygen provided by the oxygen supply unit enters the coking device through the first air supply pipeline, and the air or carbon dioxide or air and carbon dioxide provided by the air supply unit enters through the second air supply pipeline
  • the flow regulating unit can adjust the flow rate of the gas passing through the first gas supply pipeline and the second gas supply pipeline.
  • the coking device uses pure oxygen and air, or pure oxygen and carbon dioxide, or pure oxygen and air, carbon dioxide to obtain Combustion-supporting gas for coking production.
  • the coke oven flue gas generated in the coking device enters the gas activation unit through the exhaust pipe, and the pure oxygen provided by the oxygen supply unit enters the gas activation unit.
  • the gas activation unit uses coke oven flue gas mixed with pure oxygen and water vapor to obtain reaction gas
  • the source and the carbonized material undergo an activation reaction to obtain a mixed gas and activated carbon.
  • the mixed gas includes synthesis gas, waste gas and carbon dioxide.
  • the mixed gas enters the gas processing unit through the first recovery pipeline, and the synthesis gas is obtained after gas separation.
  • the flow regulating unit can adjust the flow rate of the gas to adjust the concentration of oxygen in the combustion-supporting gas, so that the concentration of oxygen in the combustion-supporting gas is greater than the concentration of oxygen in the air, thus realizing oxygen-enriched combustion and reducing the
  • the generation of nitrogen oxides in the flue gas and the enrichment of carbon dioxide in the exhaust gas after combustion are beneficial to the capture and utilization of carbon dioxide; the carbon dioxide and water vapor in the coke oven flue gas are processed by the gas activation unit and the gas treatment unit to obtain synthesis gas , and syngas can be used as chemical raw materials, so it not only reduces carbon dioxide emissions, but also turns waste into treasure, realizing low-carbon emission reduction and green production.
  • a coking and flue gas treatment system may also have the following additional technical features:
  • the system further includes a preheating unit, the preheating unit is arranged in the coking device, and the preheating unit is configured to preheat the combustion-supporting gas.
  • the gas processing unit is further configured to separate the mixed gas to obtain carbon dioxide and waste gas respectively, the gas processing unit is connected to the gas activation unit through a second recovery pipeline, and the second recovery pipeline used to pass the exhaust gas into the gas activation unit, the gas treatment unit is connected to the gas supply unit through a third recovery pipeline, and the third recovery pipeline is used to pass the carbon dioxide into the gas supply unit unit.
  • the system further includes a water vapor supply unit connected to the gas activation unit.
  • the system further includes a flue gas temperature regulation and conditioning unit, and the flue gas temperature regulation and conditioning unit includes a gas detection element, a temperature detection element, a flow regulating valve, and a central control system.
  • a flow regulating valve is arranged on the exhaust pipe, between the oxygen supply unit and the gas activation unit, and between the water vapor supply unit and the gas activation unit.
  • the gas activation unit includes a premix chamber, and the premix The chamber is used to mix coke oven flue gas with pure oxygen and water vapor to obtain a reaction gas source, the gas detection element and the temperature detection element are arranged in the premixing chamber, and the gas detection element is used to detect the reaction
  • the concentration of carbon dioxide and water vapor in the gas source, the temperature detection element is used to detect the temperature of the reaction gas source in the premixing chamber;
  • the central control system is configured to detect the carbon dioxide and water vapor according to the gas detection element
  • the concentration of water vapor and the temperature detected by the temperature detection element control three flow regulating valves to respectively adjust the flow of coke oven flue gas passing through the exhaust pipe and the flow of pure oxygen passing between the oxygen supply unit and the gas activation unit , The flow rate of water vapor passing between the water vapor supply unit and the gas activation unit.
  • the system further includes a waste heat recovery device, the waste heat recovery device is arranged between the gas activation unit and the gas treatment unit, and the waste heat recovery device is configured to recover the mixed The heat of the gas.
  • the waste heat recovery device includes a waste heat boiler, and the coking device is a heat recovery coke oven.
  • the flow adjustment unit includes two flow adjustment valves respectively disposed on the first air supply pipeline and the second air supply pipeline.
  • the gas activation unit is configured to use the coke oven flue gas discharged from the exhaust pipe to mix with pure oxygen and water vapor to obtain a reaction gas source and a carbonized material to undergo a gasification reaction to obtain a mixed gas
  • the mixed gas includes synthesis gas, waste gas and carbon dioxide
  • the gas activation unit is configured to use the coke oven flue gas discharged from the exhaust pipe to mix with pure oxygen and water vapor to obtain a reaction gas source and carbonized material generation gas
  • Chemical reaction and activation reaction to obtain mixed gas and activated carbon
  • the mixed gas includes synthesis gas, waste gas and carbon dioxide.
  • the embodiment of the second aspect of the present disclosure proposes a coking and flue gas treatment method, which is implemented by applying the coking and flue gas treatment system in the embodiment of the first aspect above, and the coking and flue gas treatment method includes:
  • the mixed gas is separated in the gas processing unit to obtain synthesis gas.
  • Fig. 1 is a flow chart of a coking and flue gas treatment system according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of another coking and flue gas treatment system according to an embodiment of the present disclosure.
  • the first aspect of the present application proposes a coking and flue gas treatment system, including: a coking device 1 with a gas supply pipeline a and an exhaust pipeline b, the gas supply pipeline a includes a first gas supply pipeline a1 and the second gas supply pipeline a2; the oxygen supply unit 2 connected to the first gas supply pipeline a1; the gas supply unit 3 connected to the second gas supply pipeline a2; A flow regulating unit 4 on the pipeline a2; a gas activation unit 5 connected to the exhaust pipeline b and the oxygen supply unit 2; and a gas processing unit 6 connected to the gas activation unit 5 through the first recovery pipeline c1;
  • the oxygen supply unit 2 is configured to provide pure oxygen
  • the gas supply unit 3 is configured to provide air or carbon dioxide or air and carbon dioxide
  • the flow regulating unit 4 is configured to adjust the flow rate of the gas passing through the first gas supply pipeline a1 and the second gas supply pipeline a2 flow rate
  • the coking device 1 is configured to use pure oxygen and air, or pure oxygen and carbon dioxide, or pure oxygen, air, and carbon dioxide to obtain a combustion-supporting gas for coking production
  • the gas activation unit 5 is configured to use the coke oven smoke discharged from the exhaust pipe b
  • the gas is mixed with pure oxygen and water vapor to obtain a reaction gas source, and the carbonized material undergoes an activation reaction to obtain a mixed gas and activated carbon.
  • the mixed gas includes synthesis gas, waste gas and carbon dioxide;
  • the gas processing unit 6 is configured to separate the mixed gas to obtain a synthesis gas.
  • the pure oxygen provided by the oxygen supply unit 2 enters the coking device 1 through the first air supply pipeline a1, and the air or carbon dioxide or air and carbon dioxide provided by the air supply unit 3 pass through the second
  • the gas supply pipeline a2 enters the coking device 1, and the flow regulating unit 4 can adjust the flow rate of the gas passing through the first gas supply pipeline a1 and the second gas supply pipeline a2.
  • the coking device 1 utilizes pure oxygen and air, or pure oxygen and carbon dioxide , or pure oxygen mixed with air and carbon dioxide to obtain combustion-supporting gas for coking production.
  • the coke oven flue gas generated in the coking device 1 enters the gas activation unit 5 through the exhaust pipe b, and the pure oxygen provided by the oxygen supply unit 2 enters the gas activation unit 5.
  • the gas activation unit utilizes coke oven flue gas, pure oxygen, water
  • the steam is mixed to obtain the reaction gas source and the carbonization material to undergo an activation reaction to obtain a mixed gas and activated carbon.
  • the mixed gas includes synthesis gas, waste gas and carbon dioxide.
  • the mixed gas enters the gas processing unit 6 through the first recovery pipeline c1, and is synthesized after gas separation. gas.
  • the flow regulating unit 4 can adjust the flow rate of the gas to adjust the concentration of oxygen in the combustion-supporting gas, so that the concentration of oxygen in the combustion-supporting gas is greater than the concentration of oxygen in the air, thus realizing oxygen-enriched combustion and reducing coke.
  • the formation of nitrogen oxides in the furnace flue gas and the enrichment of carbon dioxide in the exhaust gas after combustion are beneficial to the capture and utilization of carbon dioxide; the carbon dioxide and water vapor in the coke oven flue gas are processed by the gas activation unit 5 to obtain activated carbon and mixed gas , the synthesis gas is obtained after the gas separation in the gas treatment unit 6, and the activated carbon has an adsorption effect, which can absorb harmful gases, and the synthesis gas can be used as a chemical raw material. Therefore, it not only reduces the emission of carbon dioxide, but also turns waste into treasure, realizing Low-carbon emission reduction, green production.
  • synthesis gas includes carbon monoxide and hydrogen, and these gases can be used as raw material gases for chemical production; the generated carbon monoxide and hydrogen can also be used as reducing agents in the steel and metallurgical industries, usually called reducing gases, and can also be separated by gas Separately get hydrogen as clean energy.
  • the carbon dioxide and water vapor in the coke oven flue gas can be activated and reacted with activated carbon in the gas activation unit to generate activated carbon, so the coking and flue gas treatment system in the embodiment of the present disclosure can not only produce coke, but also can be used in coking production , producing a variety of products such as reducing gas and activated carbon, with a wide range of products.
  • activated carbon may be referred to as carbon residue.
  • the flow adjustment unit 4 can adjust the flow rate of the gas passing through the first gas supply pipeline a1 and the second gas supply pipeline a2, thereby adjusting the concentration of oxygen in the combustion-supporting gas, so that the volume ratio of oxygen If it is greater than 21%, even if the concentration of oxygen in the combustion-supporting gas is greater than that in the air, oxygen-enriched combustion can be realized, which can reduce the formation of nitrogen oxides in the coke oven flue gas.
  • the enrichment of carbon dioxide in the exhaust gas after combustion is beneficial to carbon dioxide capture and utilization.
  • the pure oxygen provided in the oxygen supply unit 2 can be obtained directly from a factory, and the oxygen supply unit 2 can also include an oxygen generator, and the pure oxygen is obtained by the oxygen generator.
  • the gas supply unit 3 is used to provide air or carbon dioxide or air and carbon dioxide, that is to say, the combustion-supporting gas can be composed of pure oxygen and air, or pure oxygen and carbon dioxide, or can be composed of It is composed of pure oxygen, air and carbon dioxide.
  • the concentration of oxygen in the combustion-supporting gas is greater than the concentration of oxygen in the air after the adjustment of the flow adjustment unit, oxygen-enriched combustion can be realized, which can reduce the formation of nitrogen oxides in coke oven flue gas.
  • the air supply unit 3 can also be used to provide water vapor. Further, the air supply unit 3 can also provide air and water vapor or carbon dioxide and water vapor or air and carbon dioxide and water vapor.
  • the combustion-supporting gas can thus also consist of pure oxygen and air, carbon dioxide and water vapour.
  • the carbonization material required by the gas activation unit 5 can be purchased externally. It should be noted that, in the embodiments of the present disclosure, the carbonized material can also be referred to as carbon-containing material, and the carbon-containing material can include biochar, semi-coke, and coal.
  • the system also includes a carbonized material preparation system (not shown in the figure), the carbonized material preparation system is connected to the gas activation unit 5, the carbonized material preparation system is configured to prepare carbonized material, and the carbonized material preparation system will
  • the carbonized material can be obtained by carbonizing the coal raw material after treatment.
  • the gas processing unit 6 can be purification and flue gas separation equipment, such as including a desulfurization device and a pressure swing adsorption separation device.
  • the mixed gas first passes through the desulfurization device to complete desulfurization, and then enters the pressure swing adsorption separation device Gas separation is performed to obtain synthesis gas (comprising carbon monoxide and hydrogen).
  • the system further includes a preheating unit 7 disposed in the coking device 1 , and the preheating unit 7 is configured to preheat the combustion-supporting gas.
  • the coke oven flue gas produced by the coking device 1 can first pass through the preheating unit 7 to preheat the combustion-supporting gas in the preheating unit 7, and then the coke oven flue gas enters the exhaust pipe b. After the combustion-supporting gas is preheated by the preheating unit 7, it is passed into the coking device 1 for coking, which can effectively reduce the heat consumption of coking, shorten the coking cycle, and improve production efficiency.
  • the preheating unit 7 can also be arranged outside the coking device 1 .
  • the gas processing unit 6 is also configured to separate the mixed gas to obtain carbon dioxide and waste gas respectively.
  • the gas processing unit 6 is connected to the gas activation unit 5 through the second recovery pipeline c2, and the second The recovery pipeline c2 is used to pass waste gas into the gas activation unit 5
  • the gas processing unit 6 is connected to the gas supply unit 3 through the third recovery pipeline c3
  • the third recovery pipeline c3 is used to pass carbon dioxide into the gas supply unit 3 .
  • the exhaust gas mainly contains SO 2 , NO X , etc., and the exhaust gas is only a very small part in the mixed gas.
  • the carbon dioxide separated by the gas processing unit 6 enters the gas supply unit 3 through the third recovery pipeline c3, so that the gas supply unit 3 can use the recovered carbon dioxide and the pure oxygen provided by the oxygen supply unit 2 to form a combustion-supporting gas for coking, and the carbon dioxide
  • the recycled gas can be used not only to generate syngas, but also to be recycled for coking. In this way, the problem of carbon dioxide emission can be solved from the source, and there is no carbon dioxide emission in the whole system, which truly achieves "carbon neutrality" and achieves resource The maximization of utilization realizes green coking.
  • the combustion temperature and flame temperature during coking production can be controlled, thereby adjusting important production parameters such as coking time and heating uniformity, thereby improving coking production efficiency. Optimize the coking production process.
  • the carbon dioxide in the gas supply unit 3 is mainly recovered carbon dioxide, and can also be supplemented by other carbon dioxide gas sources.
  • the exhaust gas separated by the gas treatment unit 6 enters the gas activation unit 5 through the second recovery pipeline c2, thereby avoiding the exhaust gas from being discharged into the air, thus avoiding air pollution.
  • the exhaust gas passed into the gas activation unit 5 is mainly nitrogen , water vapor, etc., nitrogen is an inert gas, so it will not react with the carbonized material and other gases in the gas activation unit 5, thereby not affecting the normal operation of the gas activation unit 5. Therefore, the coking and flue gas treatment system of the disclosed embodiment can recycle the carbon dioxide and waste gas generated during coking production, no waste gas is emitted after coking, and the production environment is better.
  • the system further includes a water vapor supply unit 8, the water vapor supply unit 8 is connected to the gas activation unit 5, and the water vapor supplied by the water vapor supply unit 8 can be used to adjust the reaction The temperature of the gas source and the concentration of water in the reaction gas source.
  • the system further includes a flue gas temperature and conditioning unit 9, which includes a gas detection element, a temperature detection element, a flow regulating valve, and a central control unit.
  • a flue gas temperature and conditioning unit 9 which includes a gas detection element, a temperature detection element, a flow regulating valve, and a central control unit.
  • the gas activation unit 5 includes a premix chamber, and the premix The chamber is used to mix coke oven flue gas with pure oxygen and water vapor to obtain a reaction gas source.
  • the gas detection element and temperature detection element are set in the premixing chamber.
  • the gas detection element is used to detect the concentration of carbon dioxide and water vapor in the reaction gas source.
  • the temperature detection element is used to detect the temperature of the reaction gas source in the premixing chamber; the central control system is configured to control the three flow regulating valves according to the concentration of carbon dioxide and water vapor detected by the gas detection element and the temperature detected by the temperature detection element.
  • the temperature detection element can be a temperature sensor
  • the gas detection element can be a gas sensor, for example, a semiconductor gas sensor can be used to detect the concentration of carbon dioxide, and a thermal conductivity gas sensor can be used to detect the concentration of water vapor.
  • the concentration of water vapor in the reaction gas source can be adjusted.
  • the concentration of water in the reaction gas source By adjusting the concentration of water in the reaction gas source, the carbon-hydrogen ratio in the reaction gas source can be adjusted, and the output of the reaction product can be adjusted. For example, the input With more water vapor, there will be correspondingly more hydrogen elements in the reaction gas source, and correspondingly more hydrogen production in the reaction products.
  • supplementary carbon materials such as coal, charcoal, etc.
  • supplementary carbon materials can also be added to combust the supplementary carbon materials and the gas generated during the activation process in the gas activation unit 5 to obtain carbon dioxide, and then Adjust the concentration of carbon dioxide in the reaction gas source, and then adjust the carbon-hydrogen ratio in the reaction gas source by adjusting the concentration of carbon dioxide in the reaction gas source, and then adjust the output of the reaction product.
  • the reaction gas source There will be correspondingly more carbon elements, and the output of carbon monoxide in the reaction product will be correspondingly more.
  • the composition and yield of the reaction product can be adjusted by controlling the amount of coke oven flue gas, pure oxygen, water vapor, and carbonized material.
  • the activation reaction can obtain activated carbon and Synthesis gas of carbon monoxide and hydrogen
  • the amount of carbon is small, only the gasification reaction takes place in the gas activation unit 5 to generate synthesis gas containing carbon monoxide and hydrogen.
  • the amount of raw materials is adjusted to adjust the composition and output of reaction products to meet production needs.
  • the system further includes a waste heat recovery device 10, which is arranged between the gas activation unit 5 and the gas processing unit 6, and the waste heat recovery device 10 is configured to recover the mixed gas After recovering the heat, the low-temperature mixed gas enters the gas processing unit 6 for gas separation.
  • a waste heat recovery device 10 which is arranged between the gas activation unit 5 and the gas processing unit 6, and the waste heat recovery device 10 is configured to recover the mixed gas After recovering the heat, the low-temperature mixed gas enters the gas processing unit 6 for gas separation.
  • the waste heat recovery device 10 recovers waste heat to obtain steam, and the obtained steam can be used to drive a turbogenerator to generate electricity.
  • the waste heat recovery device 10 can be connected to the steam supply unit 8 through a pipeline, so that the steam obtained by recovering waste heat from the waste heat recovery device 10 can be passed into the steam supply unit 8 through the pipeline.
  • the waste heat recovery device 10 includes a waste heat boiler, and the coking device 1 is a heat recovery coke oven.
  • Coking unit 1 is preferably a heat-exchanging vertical heat recovery coke oven, and may also be a horizontal heat recovery coke oven.
  • the heat recovery coke oven is composed of furnace roof, carbonization chamber, combustion chamber, heat exchange chamber, preheating unit, flue and other main structures; coking coal is burned, heat transferred, heated and dry-distilled into coke in the carbonization chamber, and high-temperature raw gas is produced , High-temperature raw coal gas and combustion-supporting gas are burned in the combustion chamber to generate high-temperature coke oven flue gas, and the high-temperature coke oven flue gas is discharged through the flue after heat exchange through the preheating unit.
  • the preheating unit in the heat recovery coke oven can preheat the combustion-supporting gas. After the gas from the first gas supply pipeline a1 and the second gas supply pipeline a2 enters the heat recovery coke oven and mixes it to obtain the combustion-supporting gas, it can be preheated in the preheating unit first, and then use the preheated combustion-supporting gas to carry out coking. It can effectively reduce the heat consumption of coking, shorten the coking cycle and improve production efficiency.
  • the flow adjustment unit 4 includes two flow adjustment valves respectively disposed on the first air supply pipeline a1 and the second air supply pipeline a2 .
  • the flow rate of the gas passing through the first gas supply pipeline a1 and the second gas supply pipeline a2 can be controlled by the opening of the two flow regulating valves, thereby controlling the concentration of oxygen in the combustion-supporting gas.
  • the flow adjustment unit 4 may also include a gas detection monitoring element and a central control system, the gas detection element and the flow regulating valve are respectively connected to the central control system through a signal cable and a control cable, and the gas detection element is used to detect the gas in the combustion-supporting gas in the coking device 1 Oxygen concentration, the central control system adjusts the opening of the flow regulating valve according to the concentration data, and then controls the oxygen content in the combustion-supporting gas.
  • the gas activation unit 5 is configured to use the coke oven flue gas discharged from the exhaust pipe b to mix with pure oxygen and water vapor to obtain a reaction gas source and a carbonized material to undergo a gasification reaction to obtain a mixed gas.
  • the gas includes synthesis gas, exhaust gas and carbon dioxide; or, the gas activation unit 5 is configured to use the coke oven flue gas discharged from the exhaust pipe b to mix with pure oxygen and water vapor to obtain a reaction gas source and carbonized material for gasification and activation reactions, Get mixed gas and activated carbon, the mixed gas includes synthesis gas, waste gas and carbon dioxide.
  • both gasification reaction and activation reaction can occur in the gas activation unit 5, or only the gasification reaction can occur in the gas activation unit 5. There is no activation reaction in the gasification reaction. Specifically, when the carbonized material is excessive, both gasification reaction and activation reaction take place in the gas activation unit 5 to obtain mixed gas and activated carbon, the mixed gas including synthesis gas containing carbon monoxide and hydrogen. When the amount of carbon is small, only the gasification reaction takes place in the gas activation unit 5 to obtain a mixed gas, which includes synthesis gas containing carbon monoxide and hydrogen. Thus, the composition and output of the reaction product of the gas activation unit 5 can be adjusted to meet production requirements. It can be understood that, since the gasification reaction occurs in the gas activation unit 5, the gas activation unit 5 can also be called a gasification unit.
  • Coking and flue gas treatment methods include:
  • Make the coking unit 1 carry out coking production under the assistance of a combustion-supporting gas obtained by mixing pure oxygen and air, or pure oxygen and carbon dioxide, or pure oxygen, air and carbon dioxide;
  • the mixed gas is separated in the gas treatment unit 6 to obtain synthesis gas.
  • the flow regulating unit 4 can adjust the flow rate of the gas to adjust the concentration of oxygen in the combustion-supporting gas, so that the concentration of oxygen in the combustion-supporting gas is greater than the concentration of oxygen in the air, thus realizing oxygen-enriched combustion and reducing coke.
  • the formation of nitrogen oxides in the furnace flue gas and the enrichment of carbon dioxide in the exhaust gas after combustion are beneficial to the capture and utilization of carbon dioxide; the carbon dioxide and water vapor in the coke oven flue gas are processed by the gas activation unit 5 to obtain activated carbon and mixed gas , the synthesis gas is obtained after the gas separation in the gas treatment unit 6, and the activated carbon has an adsorption effect, which can absorb harmful gases, and the synthesis gas can be used as a chemical raw material. Therefore, it not only reduces the emission of carbon dioxide, but also turns waste into treasure, realizing Low-carbon emission reduction, green production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本公开实施例提供了一种炼焦和烟气处理系统及方法,该系统包括:炼焦装置、供氧单元、供气单元、流量调节单元、气体活化单元以及气体处理单元。在本公开实施例中,流量调节单元可以通过调节气体的流量进而调节助燃气体中氧气的浓度,使助燃气体中氧气的浓度大于空气中氧气的浓度,因此实现了富氧燃烧,可以减少焦炉烟气中氮氧化物的生成,燃烧后废气中二氧化碳富集,有利于二氧化碳的捕集和利用;焦炉烟气中的二氧化碳和水蒸气经过气体活化单元、气体处理单元的处理后得到合成气,而合成气可以用作化工原料,因此,既减少了二氧化碳的排放,又变废为宝,实现了低碳减排,绿色生产。

Description

一种炼焦和烟气处理系统及方法
本申请要求于2021年11月30日提交中国专利局、申请号为202111435864.2、发明名称为“一种炼焦和烟气处理系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及炼焦及废气处理技术领域,特别是涉及一种炼焦和烟气处理系统及方法。
背景技术
在相关炼焦生产技术中,可分为有化产品回收和无化产品回收两大类工业技术,其中,有化产品回收的焦化生产,生产需外供空气和煤气,产出主要产品焦炭及化学副产品,燃烧生成的高温烟气经炉内换热后排放,排放到环境中的废气,含有CO2、SO2、NOX和烟尘等不环保的气体;无化产品回收的焦化生产,自产荒煤气,仅需外供空气助燃,主要产品为焦炭,余热转换成电能,荒煤气与助燃气体燃烧生成的高温烟气经余热回收系统后排出,主要问题有:主要产品结构过于单一,仍存在炼焦工业的废气排放问题,未实现绿色化炼焦生产。
所以,相关炼焦生产技术中,均存在未能实现绿色化炼焦生产的问题,因此,为了解决炼焦过程中绿色生产问题,开发一种能够减少废气排放的炼焦和烟气处理系统是十分有必要的。
发明内容
本公开实施例的目的在于提供一种能够减少废气排放的炼焦和烟气处理系统及方法。具体技术方案如下:
本公开第一方面的实施例提出了一种炼焦和烟气处理系统,包括:具有供气管道和排气管道的炼焦装置,所述供气管道包括第一供气管道和第二供气管道;
与所述第一供气管道连接的供氧单元;
与所述第二供气管道连接的供气单元;
设置在所述第一供气管道和所述第二供气管道上的流量调节单元;
与所述排气管道和供氧单元连接的气体活化单元;以及
通过第一回收管道与所述气体活化单元连接的气体处理单元;
所述供氧单元配置为提供纯氧,所述供气单元配置为提供空气或者二氧化碳或者空气和二氧化碳;
所述流量调节单元配置为调节所述第一供气管道、所述第二供气管道内通过的气体的流量;
所述炼焦装置配置为利用纯氧和空气、或者纯氧和二氧化碳、或者纯氧和空气、二氧化碳混合得到助燃气体进行炼焦生产;
所述气体活化单元配置为利用所述排气管道排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生活化反应,得到混合气和活性炭,所述混合气包括合成气、废气和二氧化碳;
所述气体处理单元配置为分离混合气得到合成气。
根据本公开实施例的炼焦和烟气处理系统,供氧单元提供的纯氧经过第一供气管道进入炼焦装置中,供气单元提供的空气或者二氧化碳或者空气和二氧化碳经过第二供气管道进入炼焦装置中,流量调节单元可以调节第一供气管道、第二供气管道内通过的气体的流量,炼焦装置利用纯氧和空气、或者纯氧和二氧化碳、或者纯氧和空气、二氧化碳混合得到助燃气体进行炼焦生产。炼焦装置内产生的焦炉烟气经过排气管道进入气体活化单元中,供氧单元提供的纯氧进入气体活化单元中,气体活化单元利用焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生活化反应,得到混合气和活性炭,所述混合气包括合成气、废气和二氧化碳,混合气经第一回收管道进入气体处理单元中,经过气体分离后得到合成气。在本公开实施例中,流量调节单元可以通过调节气体的流量进而调节助燃气体中氧气的浓度,使助燃气体中氧气的浓度大于空气中氧气的浓度,因此实现了富氧燃烧,可以减少焦炉烟气中氮氧化物的生成,燃烧后废气中二氧化碳富集,有利于二氧化碳的捕集和利用;焦炉烟气中的二氧化碳和水蒸气经过气体活化单元、气体处理单元的处理后得到合成气,而合成气可以用作化工原料,因此,既减少了二氧化碳的排放,又变废为宝,实现了低碳减排,绿色生产。
另外,根据本公开实施例的一种炼焦和烟气处理系统,还可具有如下附 加的技术特征:
在本公开的一些实施例中,所述系统还包括预热单元,所述预热单元设置在所述炼焦装置内,所述预热单元配置为对所述助燃气体进行预热。
在本公开的一些实施例中,所述气体处理单元还配置为分离混合气分别得到二氧化碳和废气,所述气体处理单元通过第二回收管道与所述气体活化单元连接,所述第二回收管道用于将所述废气通入所述气体活化单元,所述气体处理单元通过第三回收管道与所述供气单元连接,所述第三回收管道用于将所述二氧化碳通入所述供气单元。
在本公开的一些实施例中,所述系统还包括水蒸气供应单元,所述水蒸气供应单元与所述气体活化单元连接。
在本公开的一些实施例中,所述系统还包括烟气调温调质单元,所述烟气调温调质单元包括气体检测元件、温度检测元件、流量调节阀和中控系统,在所述排气管道上、所述供氧单元和气体活化单元之间以及所述水蒸气供应单元和气体活化单元之间均设置流量调节阀,所述气体活化单元包括预混室,所述预混室用于将焦炉烟气与纯氧、水蒸气混合得到反应气源,所述气体检测元件和所述温度检测元件设置在所述预混室内,所述气体检测元件用于检测所述反应气源中的二氧化碳和水蒸气的浓度,所述温度检测元件用于检测所述预混室内的所述反应气源的温度;所述中控系统配置为根据所述气体检测元件检测的二氧化碳和水蒸气的浓度,以及所述温度检测元件检测的温度控制三个流量调节阀分别调节排气管道内通过的焦炉烟气的流量、供氧单元与气体活化单元之间通过的纯氧的流量、水蒸气供应单元和气体活化单元之间通过的水蒸气的流量。
在本公开的一些实施例中,所述系统还包括余热回收装置,所述余热回收装置设置在所述气体活化单元和所述气体处理单元之间,所述余热回收装置配置为回收所述混合气的热量。
在本公开的一些实施例中,所述余热回收装置包括余热锅炉,所述炼焦装置为热回收焦炉。
在本公开的一些实施例中,所述流量调节单元包括分别设置在所述第一供气管道和所述第二供气管道上的两个流量调节阀。
在本公开的一些实施例中,所述气体活化单元配置为利用所述排气管道排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生气化反应,得到混合气,所述混合气包括合成气、废气和二氧化碳;或者,所述气体活化单元配置为利用所述排气管道排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生气化反应和活化反应,得到混合气和活性炭,所述混合气包括合成气、废气和二氧化碳。
本公开第二方面的实施例提出了一种炼焦和烟气处理方法,其应用上述第一方面的实施例中的炼焦和烟气处理系统而实施,炼焦和烟气处理方法包括:
调节第一供气管道、第二供气管道内通过的气体的流量;
使供氧单元供给的纯氧以及供气单元供给的空气或者二氧化碳或者空气和二氧化碳通入炼焦装置内;
使炼焦装置在纯氧和空气、或者纯氧和二氧化碳、或者纯氧、空气和二氧化碳混合得到的助燃气体的辅助作用下进行炼焦生产;
提供水蒸气,并将水蒸气与炼焦装置排放的焦炉烟气以及供氧单元供给的纯氧一并通入气体活化单元,并在气体活化单元内混合得到反应气源;
使反应气源与炭化料在气体活化单元内发生活化反应,得到混合气和活性炭;
使混合气在气体处理单元内分离得到合成气。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本公开实施例的一种炼焦和烟气处理系统的流程图;
图2为本公开实施例的另一种炼焦和烟气处理系统的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而 不是全部的实施例。基于本公开中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本申请的第一方面提出了一种炼焦和烟气处理系统,包括:具有供气管道a和排气管道b的炼焦装置1,供气管道a包括第一供气管道a1和第二供气管道a2;与第一供气管道a1连接的供氧单元2;与第二供气管道a2连接的供气单元3;设置在第一供气管道a1和第二供气管道a2上的流量调节单元4;与排气管道b和供氧单元2连接的气体活化单元5;以及通过第一回收管道c1与气体活化单元5连接的气体处理单元6;
供氧单元2配置为提供纯氧,供气单元3配置为提供空气或者二氧化碳或者空气和二氧化碳;流量调节单元4配置为调节第一供气管道a1、第二供气管道a2内通过的气体的流量;炼焦装置1配置为利用纯氧和空气、或者纯氧和二氧化碳、或者纯氧和空气、二氧化碳混合得到助燃气体进行炼焦生产;气体活化单元5配置为利用排气管道b排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生活化反应,得到混合气和活性炭,混合气包括合成气、废气和二氧化碳;气体处理单元6配置为分离混合气得到合成气。
根据本公开实施例的炼焦和烟气处理系统,供氧单元2提供的纯氧经过第一供气管道a1进入炼焦装置1中,供气单元3提供的空气或者二氧化碳或者空气和二氧化碳经过第二供气管道a2进入炼焦装置1中,流量调节单元4可以调节第一供气管道a1、第二供气管道a2内通过的气体的流量,炼焦装置1利用纯氧和空气、或者纯氧和二氧化碳、或者纯氧和空气、二氧化碳混合得到助燃气体进行炼焦生产。炼焦装置1内产生的焦炉烟气经过排气管道b进入气体活化单元5中,供氧单元2提供的纯氧进入气体活化单元5中,气体活化单元利用焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生活化反应,得到混合气和活性炭,混合气包括合成气、废气和二氧化碳,混合气经第一回收管道c1进入气体处理单元6中,经过气体分离后得到合成气。在本公开实施例中,流量调节单元4可以通过调节气体的流量进而调节助燃气体中氧气的浓度,使助燃气体中氧气的浓度大于空气中氧气的浓度,因此实现了富氧燃烧,可以减少焦炉烟气中氮氧化物的生成,燃烧后废气中二氧化碳富集,有利于二氧化碳的捕集和利用;焦炉烟气中的二氧化碳和水蒸气经 过气体活化单元5的处理后得到活性炭和混合气,经过气体处理单元6的气体分离后得到合成气,而活性炭具有吸附作用,可以吸附有害气体,合成气可以用作化工原料,因此,既减少了二氧化碳的排放,又变废为宝,实现了低碳减排,绿色生产。
可理解的是,合成气包括一氧化碳和氢气,这些气体可以作为化工生产的原料气;生成的一氧化碳和氢气也可以作为钢铁、冶金行业的还原剂,通常称之为还原气,还可以经过气体分离单独得到氢气,作为清洁能源。
另外,焦炉烟气中的二氧化碳、水蒸气可以在气体活化单元中与活性炭发生活化反应生成活性炭,由此本公开实施例的炼焦和烟气处理系统既可以生产焦炭,又可以在炼焦生产中,生产还原气、活性碳等多类产品,产品种类丰富。需要说明的是,在本公开实施例中,活性炭可以称之为残碳物质。在本公开的一些实施例中,流量调节单元4可以通过调节第一供气管道a1、第二供气管道a2内通过的气体的流量,进而调节助燃气体中氧气的浓度,使氧气的体积比大于21%,即使助燃气体中氧气的浓度大于空气中氧气的浓度,进而实现富氧燃烧,可以减少焦炉烟气中氮氧化物的生成,同时,燃烧后废气中二氧化碳富集,有利于二氧化碳的捕集和利用。
在本公开的一些实施例中,供氧单元2中提供的纯氧可以从工厂中直接获取,供氧单元2也可以包括制氧机,纯氧由制氧机制取。
在本公开的一些实施例中,供气单元3用于提供空气或者二氧化碳或者空气和二氧化碳,也就是说,助燃气体可以由纯氧和空气组成,也可以由纯氧和二氧化碳组成,也可以由纯氧和空气、二氧化碳组成,只要经过流量调节单元的调节后,助燃气体中氧气的浓度大于空气中氧气的浓度即可实现富氧燃烧,可以减少焦炉烟气中氮氧化物的生成。
在本公开的一些实施例中,供气单元3还可以用于提供水蒸气。进一步地,供气单元3还可以提供空气和水蒸气或者二氧化碳和水蒸气或者空气和二氧化碳和水蒸气。由此,助燃气体也可以由纯氧和空气、二氧化碳以及水蒸气组成。
在本公开的一些实施例中,气体活化单元5所需的炭化料可以外供采买。需要说明的是,在本公开实施例中,炭化料也可以称之为含炭物质,含炭物 质可以包括生物质炭、兰炭以及煤炭等。
在本公开的一些实施例中,系统还包括炭化料制备系统(图中未示出),炭化料制备系统与气体活化单元5连接,炭化料制备系统配置为制备炭化料,炭化料制备系统将煤炭原料处理后炭化即可得到炭化料。
在本公开的一些实施例中,气体处理单元6可以为净化和烟气分离设备,如包括脱硫装置和变压吸附分离装置,混合气先经过脱硫装置完成脱硫后,进入变压吸附分离装置内进行气体分离,得到合成气(包含一氧化碳和氢气)。
在本公开的一些实施例中,如图2所示,系统还包括预热单元7,预热单元7设置在炼焦装置1内,预热单元7配置为对助燃气体进行预热。炼焦装置1产生的焦炉烟气可以先经过预热单元7,将预热单元7内的助燃气体进行预热,然后焦炉烟气再进入排气管道b。将助燃气体经过预热单元7的预热后,再通入炼焦装置1进行炼焦,可以有效地降低炼焦耗热量,缩短结焦周期,提高生产效率。
在本公开的一些实施例中,预热单元7也可以设置在炼焦装置1的外部。
在本公开的一些实施例中,如图2所示,气体处理单元6还配置为分离混合气分别得到二氧化碳和废气,气体处理单元6通过第二回收管道c2与气体活化单元5连接,第二回收管道c2用于将废气通入气体活化单元5,气体处理单元6通过第三回收管道c3与供气单元3连接,第三回收管道c3用于将二氧化碳通入供气单元3。其中,废气主要包含SO 2、NO X等,在混合气中,废气只是非常少一部分。
气体处理单元6分离出的二氧化碳经过第三回收管道c3进入了供气单元3,这样,供气单元3就可以利用回收的二氧化碳与供氧单元2提供的纯氧组成助燃气体用于炼焦,二氧化碳为循环气体,既能用于生成合成气,也能回收用于炼焦,这样一来,可以从源头解决二氧化碳的排放问题,整个系统中无二氧化碳排放,真正做到了“碳中和”,达到资源的最大化利用,实现了绿色炼焦。另外,通过调节进入炼焦装置1的助燃气体中的二氧化碳量,可以控制炼焦生产时的燃烧温度和火焰温度,从而调节结焦时间,加热均匀性等重要生产参数,由此,可以提高炼焦生产效率,优化炼焦生产工艺。
需要说明的是,在本公开实施例中,供气单元3中的二氧化碳以回收的 二氧化碳为主,另外还可以通过其他的二氧化碳气源进行补充。
气体处理单元6分离出的废气经过第二回收管道c2进入了气体活化单元5中,由此可以避免废气排放到空气中,因此避免了空气污染,通入气体活化单元5中的废气主要是氮气、水蒸气等,氮气为惰性气体,因此不会和气体活化单元5内的炭化料以及其他气体反应,从而不会影响气体活化单元5的正常工作。由此,本公开实施例的炼焦和烟气处理系统在炼焦生产中产生的二氧化碳和废气可以循环利用,炼焦后无废气排放,生产环境较好。
在本公开的一些实施例中,如图2所示,系统还包括水蒸气供应单元8,水蒸气供应单元8与气体活化单元5连接,水蒸气供应单元8供应的水蒸气可以用来调节反应气源的温度和反应气源中的水的浓度。
在本公开的一些实施例中,如图2所示,系统还包括烟气调温调质单元9,烟气调温调质单元9包括气体检测元件、温度检测元件、流量调节阀和中控系统,在排气管道b上、供氧单元2和气体活化单元5之间以及水蒸气供应单元8和气体活化单元5之间均设置流量调节阀,气体活化单元5包括预混室,预混室用于将焦炉烟气与纯氧、水蒸气混合得到反应气源,气体检测元件和温度检测元件设置在预混室内,气体检测元件用于检测反应气源中的二氧化碳和水蒸气的浓度,温度检测元件用于检测预混室内的反应气源的温度;中控系统配置为根据气体检测元件检测的二氧化碳和水蒸气的浓度,以及温度检测元件检测的温度控制三个流量调节阀分别调节排气管道b内通过的焦炉烟气的流量、供氧单元2与气体活化单元5之间通过的纯氧的流量、水蒸气供应单元8和气体活化单元5之间通过的水蒸气的流量。可以理解的是,温度检测元件可为温度传感器,气体检测元件可为气体传感器,例如检测二氧化碳的浓度可以采用半导体式气体传感器,检测水蒸气的浓度可以采用热导式气体传感器。
通过调节水蒸气的流量,可以调节反应气源中水蒸气的浓度,通过调节反应气源中水的浓度进而调节反应气源中的碳氢比,进而调节反应产物的产量,比如,通入的水蒸气多一点,反应气源中的氢元素就会相应多一些,反应产物中氢气的产量就会相应多一些。
在本公开的一些实施例中,在气体活化单元5中还可以通过加入补充炭 材料,例如,煤炭、木炭等,使补充炭材料与气体活化单元5中活化过程产生的煤气燃烧得到二氧化碳,进而调节反应气源中二氧化碳的浓度,通过调节反应气源中二氧化碳的浓度进而调节反应气源中的碳氢比,进而调节反应产物的产量,比如,加入的补充炭材料多一些,反应气源中的碳元素就会相应多一些,反应产物中一氧化碳的产量就会相应多一些。
在本公开的一些实施例中,可以通过控制焦炉烟气、纯氧、水蒸气以及炭化料的量,调节反应产物的组成及产量,比如当炭化料过量时,活化反应可以得到活性炭和包含一氧化碳和氢气的合成气,当炭量少时,气体活化单元5内只发生气化反应,生成包含一氧化碳和氢气的合成气,因此,可以通过控制焦炉烟气、纯氧、水蒸气以及炭化料的量,调节反应产物的组成及产量,以满足生产需求。
在本公开的一些实施例中,如图2所示,系统还包括余热回收装置10,余热回收装置10设置在气体活化单元5和气体处理单元6之间,余热回收装置10配置为回收混合气的热量,回收热量后,低温的混合气进入气体处理单元6中进行气体分离。
余热回收装置10回收余热可以得到蒸汽,得到的蒸汽可以用于驱动汽轮发电机发电。
在本公开的一些实施例中,余热回收装置10可以通过管道与水蒸气供应单元8连接,这样一来,余热回收装置10回收余热得到的蒸汽,可以通过管道通入水蒸气供应单元8中。
在本公开的一些实施例中,余热回收装置10包括余热锅炉,炼焦装置1为热回收焦炉。炼焦装置1首选换热立式热回收焦炉,还可为卧式热回收焦炉。
热回收焦炉由炉顶、炭化室、燃烧室、换热室、预热单元、烟道等主要结构组成;炼焦煤在炭化室内被燃烧、传热、加热干馏成焦炭,并产生高温荒煤气,高温荒煤气与助燃气体在燃烧室燃烧生成高温焦炉烟气,高温焦炉烟气通过预热单元换热后通过烟道排出。
可以理解的是,热回收焦炉中的预热单元可以将助燃气体进行预热。来自第一供气管道a1和第二供气管道a2的气体,进入热回收焦炉混合得到助燃 气体后,可以先在预热单元内进行预热,再利用预热后的助燃气体进行炼焦,可以有效地降低炼焦耗热量,缩短结焦周期,提高生产效率。
在本公开的一些实施例中,流量调节单元4包括分别设置在第一供气管道a1和第二供气管道a2上的两个流量调节阀。可以通过两个流量调节阀的开度来控制第一供气管道a1和第二供气管道a2内通过的气体的流量,进而控制助燃气体中氧气的浓度。
流量调节单元4还可以包括气体检测监测元件和中控系统,气体检测元件和流量调节阀分别与中控系统通过信号电缆、控制电缆连接,气体检测元件用于检测炼焦装置1中助燃气体中的氧气的浓度,中控系统根据浓度数据调节流量调节阀的开度,进而控制助燃气体中氧气的含量。
在本公开的一些实施例中,气体活化单元5配置为利用排气管道b排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生气化反应,得到混合气,混合气包括合成气、废气和二氧化碳;或者,气体活化单元5配置为利用排气管道b排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生气化反应和活化反应,得到混合气和活性炭,混合气包括合成气、废气和二氧化碳。
在本公开实施例中,通过控制焦炉烟气、纯氧、水蒸气以及炭化料的量,可以使气体活化单元5中既发生气化反应又发生活化反应,或者气体活化单元5中只发生气化反应不发生活化反应。具体地,当炭化料过量时,气体活化单元5中既发生气化反应又发生活化反应,得到混合气和活性炭,混合气包括含有一氧化碳和氢气的合成气。当炭量少时,气体活化单元5内只发生气化反应,得到混合气,混合气包括含有一氧化碳和氢气的合成气。由此,可以调节气体活化单元5的反应产物的组成及产量,以满足生产需求。可以理解的是,由于气体活化单元5中发生气化反应,气体活化单元5也可以称为气化单元。
本公开第二方面的实施例提出了一种炼焦和烟气处理方法,其应用上述第一方面的实施例中的炼焦和烟气处理系统而实施。炼焦和烟气处理方法包括:
调节第一供气管道a1、第二供气管道a2内通过的气体的流量;
使供氧单元2供给的纯氧以及供气单元3供给的空气或者二氧化碳或者空气和二氧化碳通入炼焦装置1内;
使炼焦装置1在纯氧和空气、或者纯氧和二氧化碳、或者纯氧、空气和二氧化碳混合得到的助燃气体的辅助作用下进行炼焦生产;
提供水蒸气,并将水蒸气与炼焦装置1排放的焦炉烟气以及供氧单元2供给的纯氧一并通入气体活化单元5,并在气体活化单元5内混合得到反应气源;
使反应气源与炭化料在气体活化单元5内发生活化反应,得到混合气和活性炭;
使混合气在气体处理单元6内分离得到合成气。
在本公开实施例中,流量调节单元4可以通过调节气体的流量进而调节助燃气体中氧气的浓度,使助燃气体中氧气的浓度大于空气中氧气的浓度,因此实现了富氧燃烧,可以减少焦炉烟气中氮氧化物的生成,燃烧后废气中二氧化碳富集,有利于二氧化碳的捕集和利用;焦炉烟气中的二氧化碳和水蒸气经过气体活化单元5的处理后得到活性炭和混合气,经过气体处理单元6的气体分离后得到合成气,而活性炭具有吸附作用,可以吸附有害气体,合成气可以用作化工原料,因此,既减少了二氧化碳的排放,又变废为宝,实现了低碳减排,绿色生产。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本公开的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本公开的较佳实施例,并非用于限定本公开的保护范围。 凡在本公开的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本公开的保护范围内。

Claims (10)

  1. 一种炼焦和烟气处理系统,其特征在于,包括:
    具有供气管道和排气管道的炼焦装置,所述供气管道包括第一供气管道和第二供气管道;
    与所述第一供气管道连接的供氧单元;
    与所述第二供气管道连接的供气单元;
    设置在所述第一供气管道和所述第二供气管道上的流量调节单元;
    与所述排气管道和供氧单元连接的气体活化单元;以及
    通过第一回收管道与所述气体活化单元连接的气体处理单元;
    所述供氧单元配置为提供纯氧,所述供气单元配置为提供空气或者二氧化碳或者空气和二氧化碳;
    所述流量调节单元配置为调节所述第一供气管道、所述第二供气管道内通过的气体的流量;
    所述炼焦装置配置为利用纯氧和空气、或者纯氧和二氧化碳、或者纯氧和空气、二氧化碳混合得到助燃气体进行炼焦生产;
    所述气体活化单元配置为利用所述排气管道排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生活化反应,得到混合气和活性炭,所述混合气包括合成气、废气和二氧化碳;所述气体处理单元配置为分离混合气得到合成气。
  2. 根据权利要求1所述的炼焦和烟气处理系统,其特征在于,所述系统还包括预热单元,所述预热单元设置在所述炼焦装置内,所述预热单元配置为对所述助燃气体进行预热。
  3. 根据权利要求1所述的炼焦和烟气处理系统,其特征在于,所述气体处理单元还配置为分离混合气分别得到二氧化碳和废气,所述气体处理单元通过第二回收管道与所述气体活化单元连接,所述第二回收管道用于将所述废气通入所述气体活化单元,所述气体处理单元通过第三回收管道与所述供气单元连接,所述第三回收管道用于将所述二氧化碳通入所述供气单元。
  4. 根据权利要求1所述的炼焦和烟气处理系统,其特征在于,所述系统还包括水蒸气供应单元,所述水蒸气供应单元与所述气体活化单元连接。
  5. 根据权利要求4所述的炼焦和烟气处理系统,其特征在于,所述系统还包括烟气调温调质单元,所述烟气调温调质单元包括气体检测元件、温度检测元件、流量调节阀和中控系统,在所述排气管道上、所述供氧单元和气体活化单元之间以及所述水蒸气供应单元和气体活化单元之间均设置流量调节阀,所述气体活化单元包括预混室,所述预混室用于将焦炉烟气与纯氧、水蒸气混合得到反应气源,所述气体检测元件和所述温度检测元件设置在所述预混室内,所述气体检测元件用于检测所述反应气源中的二氧化碳和水蒸气的浓度,所述温度检测元件用于检测所述预混室内的所述反应气源的温度;所述中控系统配置为根据所述气体检测元件检测的二氧化碳和水蒸气的浓度,以及所述温度检测元件检测的温度控制三个流量调节阀分别调节排气管道内通过的焦炉烟气的流量、供氧单元与气体活化单元之间通过的纯氧的流量、水蒸气供应单元和气体活化单元之间通过的水蒸气的流量。
  6. 根据权利要求1所述的炼焦和烟气处理系统,其特征在于,所述系统还包括余热回收装置,所述余热回收装置设置在所述气体活化单元和所述气体处理单元之间,所述余热回收装置配置为回收所述混合气的热量。
  7. 根据权利要求6所述的炼焦和烟气处理系统,其特征在于,所述余热回收装置包括余热锅炉,所述炼焦装置为热回收焦炉。
  8. 根据权利要求1所述的炼焦和烟气处理系统,其特征在于,所述流量调节单元包括分别设置在所述第一供气管道和所述第二供气管道上的两个流量调节阀。
  9. 根据权利要求1所述的炼焦和烟气处理系统,其特征在于,
    所述气体活化单元配置为利用所述排气管道排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生气化反应,得到混合气,所述混合气包括合成气、废气和二氧化碳;
    或者,所述气体活化单元配置为利用所述排气管道排出的焦炉烟气与纯氧、水蒸气混合得到反应气源与炭化料发生气化反应和活化反应,得到混合气和活性炭,所述混合气包括合成气、废气和二氧化碳。
  10. 一种炼焦和烟气处理方法,应用权利要求1-9中任一项所述的炼焦和烟气处理系统而实施,其特征在于,所述炼焦和烟气处理方法包括:
    调节第一供气管道、第二供气管道内通过的气体的流量;
    使供氧单元供给的纯氧以及供气单元供给的空气或者二氧化碳或者空气和二氧化碳通入炼焦装置内;
    使炼焦装置在纯氧和空气、或者纯氧和二氧化碳、或者纯氧、空气和二氧化碳混合得到的助燃气体的辅助作用下进行炼焦生产;
    提供水蒸气,并将水蒸气与炼焦装置排放的焦炉烟气以及供氧单元供给的纯氧一并通入气体活化单元,并在气体活化单元内混合得到反应气源;
    使反应气源与炭化料在气体活化单元内发生活化反应,得到混合气和活性炭;使混合气在气体处理单元内分离得到合成气。
PCT/CN2022/131331 2021-11-30 2022-11-11 一种炼焦和烟气处理系统及方法 WO2023098450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111435864.2 2021-11-30
CN202111435864.2A CN113845942B (zh) 2021-11-30 2021-11-30 一种炼焦和烟气处理系统及方法

Publications (1)

Publication Number Publication Date
WO2023098450A1 true WO2023098450A1 (zh) 2023-06-08

Family

ID=78982261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131331 WO2023098450A1 (zh) 2021-11-30 2022-11-11 一种炼焦和烟气处理系统及方法

Country Status (2)

Country Link
CN (1) CN113845942B (zh)
WO (1) WO2023098450A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845942B (zh) * 2021-11-30 2022-02-18 华泰永创(北京)科技股份有限公司 一种炼焦和烟气处理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130152595A1 (en) * 2011-12-20 2013-06-20 Alexander Alekseev Process for the enhancement of power plant with co2 capture and system for realization of the process
CN110144228A (zh) * 2019-05-27 2019-08-20 中冶焦耐(大连)工程技术有限公司 一种清洁炼焦生产工艺及系统
CN113845942A (zh) * 2021-11-30 2021-12-28 华泰永创(北京)科技股份有限公司 一种炼焦和烟气处理系统及方法
CN216572397U (zh) * 2021-11-30 2022-05-24 华泰永创(北京)科技股份有限公司 一种炼焦和烟气处理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244805B (zh) * 2008-03-13 2010-10-06 四川天一科技股份有限公司 一种焦炉气非催化纯氧-蒸汽转化制备甲醇合成气的方法
CN101434879B (zh) * 2008-12-15 2012-09-19 四川天一科技股份有限公司 以焦炉煤气和煤为原料制甲醇合成气和压缩天然气的方法
CN102559310B (zh) * 2010-12-08 2014-09-17 杭州林达化工科技有限公司 用焦炉气等工业废气进行煤碳加氢气化制天然气等烃类的方法
CN103509608B (zh) * 2012-06-19 2015-08-05 北京华泰焦化工程技术有限公司 一种荒煤气冷却分馏方法及炼焦装置
US9631553B2 (en) * 2012-12-29 2017-04-25 Institute Of Engineering Thermophysics, Chinese Academy Of Sciences Process and equipment for coal gasification, and power generation system and power generation process thereof
CN106829861A (zh) * 2017-01-22 2017-06-13 太原中宁烃转化工程有限公司 一种荒焦炉煤气自热式部分氧化制取合成气的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130152595A1 (en) * 2011-12-20 2013-06-20 Alexander Alekseev Process for the enhancement of power plant with co2 capture and system for realization of the process
CN110144228A (zh) * 2019-05-27 2019-08-20 中冶焦耐(大连)工程技术有限公司 一种清洁炼焦生产工艺及系统
CN113845942A (zh) * 2021-11-30 2021-12-28 华泰永创(北京)科技股份有限公司 一种炼焦和烟气处理系统及方法
CN216572397U (zh) * 2021-11-30 2022-05-24 华泰永创(北京)科技股份有限公司 一种炼焦和烟气处理系统

Also Published As

Publication number Publication date
CN113845942B (zh) 2022-02-18
CN113845942A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
RU2604624C2 (ru) Способ и устройство для газификации биомассы путем рециркуляции диоксида углерода без кислорода
WO2023010885A1 (zh) 一种带非催化转化炉的玻璃窑炉燃烧工艺
TWI407998B (zh) 從廢氣隔離二氧化碳之方法及裝置
CN212293338U (zh) 一种适用于水泥窑的二氧化碳纯化捕集的系统
WO2023098450A1 (zh) 一种炼焦和烟气处理系统及方法
CN115159876B (zh) 一种低能耗碳捕集水泥熟料生产系统及制备水泥熟料方法
US20190047911A1 (en) Plant for production of cement with reduced emission of pollutant gasses
CN103525465B (zh) 一种采用高温富氧与高温蒸汽为气化剂的煤气生产方法与装置
CN103509605B (zh) 一种采用高温空气与高温蒸汽为气化剂的煤气生产方法与装置
US8771638B2 (en) Method and apparatus for sequestering carbon dioxide from a spent gas
CN216572397U (zh) 一种炼焦和烟气处理系统
RU2597612C2 (ru) Способ и устройство для производства кокса в ходе газификации с косвенным нагреванием
JP2013525591A (ja) 合成ガス製造時の合成ガスの炭素注入および再循環の方法および装置
CN203530252U (zh) 一种采用高温富氧与高温蒸汽为气化剂的煤气生产装置
CN205328629U (zh) 制备电石的装置
CN212403960U (zh) 不排碳石灰窑制煤气装置
CN114735956A (zh) 一种水泥熟料的低碳生产方法及其系统
GB2363388A (en) Pyrolysis and gasification process and apparatus
EA028730B1 (ru) Способ и устройство для секвестрации диоксида углерода из отработавшего газа
CN105001913A (zh) 一种轮胎热解碳黑生产可燃气的装置及制备方法
CN205527775U (zh) 制备电石的系统
CN114751665B (zh) 捕集水泥生料分解产生的co2气体的方法、水泥生产方法及系统
CN218710169U (zh) 一种炼焦和烟气处理的耦合系统
RU2819848C1 (ru) Способ производства синтез-газа с использованием паровой каталитической конверсии
CN112403180B (zh) 一种集中加热的烟气脱硫脱硝处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024103276

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005721

Country of ref document: BR