WO2023098441A1 - 基于地层记录沉降反演被动陆缘地壳结构的方法及装置 - Google Patents

基于地层记录沉降反演被动陆缘地壳结构的方法及装置 Download PDF

Info

Publication number
WO2023098441A1
WO2023098441A1 PCT/CN2022/131035 CN2022131035W WO2023098441A1 WO 2023098441 A1 WO2023098441 A1 WO 2023098441A1 CN 2022131035 W CN2022131035 W CN 2022131035W WO 2023098441 A1 WO2023098441 A1 WO 2023098441A1
Authority
WO
WIPO (PCT)
Prior art keywords
crustal
basement
subsidence
stratigraphic
density
Prior art date
Application number
PCT/CN2022/131035
Other languages
English (en)
French (fr)
Inventor
赵中贤
孙珍
Original Assignee
中国科学院南海海洋研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南海海洋研究所 filed Critical 中国科学院南海海洋研究所
Priority to AU2022399667A priority Critical patent/AU2022399667A1/en
Publication of WO2023098441A1 publication Critical patent/WO2023098441A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters
    • G01V2210/6242Elastic parameters, e.g. Young, Lamé or Poisson
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the field of crustal structure, in particular to a method and device for retrieving passive continental margin crustal structure based on stratigraphic record settlement.
  • the passive continental margin is a stable transition zone between the continent and the ocean, with a global length of about 105,000 km, which is 2.6 times the circumference of the earth; it is the most important sedimentation site on the surface and the accumulation area of oil and gas mineral resources, providing important resources for the sustainable development of human economy and society. Assure.
  • the passive continental margin is formed after the continental lithosphere is stretched, thinned, and ruptured. Due to the influence of different degrees of magma, metamorphism, and sedimentation, it has different structural types and affects the evolution of continental margin basins and the formation of oil and gas resources. Therefore, the crustal structure of passive continental margin is of great significance to the understanding of continental margin extension, thinning process, continent-ocean transformation process, basin formation mechanism and oil and gas evaluation.
  • Patent document CN113740915A discloses a method for jointly inverting the crustal structure parameters of gravity and receiver function in a spherical coordinate system.
  • the data of gravity and receiver function are simultaneously fitted, and the complementarity of gravity and receiver function is realized through the joint inversion algorithm. It can reduce the ambiguity of inversion of a single data volume.
  • the influence of the curvature of the earth is considered in the joint inversion, and the forward modeling method of the Tesseroid unit body in the spherical coordinate system is introduced; this takes into account the high resolution of the gravity in the horizontal direction and the high resolution of the receiver function in the depth direction near the station rate, so as to obtain more accurate crustal structure parameters. But this method still needs to provide additional data.
  • Multi-channel seismic is a common method to detect the crustal structure of the passive continental margin.
  • a fast and efficient 1.
  • the invention provides a method and device for inverting passive continental margin crustal structure based on stratigraphic record settlement.
  • the present invention provides a method for inverting passive continental margin crustal structure based on subsidence of stratigraphic records, the method comprising:
  • Step 1 Based on multi-channel seismic data, under the constraints of oil and gas drilling or ocean drilling data, carry out stratigraphic correlation and division, sedimentary basement and crust-mantle boundary Moho interpretation, establish shallow stratigraphic framework, and perform time-depth conversion to obtain strata depth profile;
  • Step 2 Under the constraints of drilling or borehole lithology, carry out stripping analysis according to the crustal Airy equilibrium principle, strip all the strata and water above the sedimentary basement, and then correct the base level to obtain the measured total structural subsidence of the basement ;
  • Step 3 According to the multi-channel seismic interpretation of the sedimentary basement and the crust-mantle boundary Moho, calculate the crustal double-layer reflection travel time between the sedimentary basement and the crust-mantle boundary Moho;
  • Step 4 assign an initial value to the average density of the crust
  • Step 5 Calculate the average crustal velocity according to the empirical formula of the velocity-density relationship; calculate the crustal thickness and Moho surface depth by using the average crustal velocity and the two-way travel time;
  • Step 6 According to the thickness and density of the crust, calculate the corresponding theoretical total structural subsidence of the basement;
  • Step 7 Comparing the calculated total structural subsidence with the measured basement, if the two are consistent, it is considered that the assigned crustal density is reasonable, and the crustal structure information is obtained; if the two are not consistent, the average crustal density is increased by the set value each time, and Repeat steps 5-7 until the result that meets the precision requirements is obtained.
  • the present invention provides a device for retrieving passive continental margin crustal structure based on subsidence of stratigraphic records, said device comprising:
  • the Stratigraphic Depth Profile Module is used to analyze stratigraphic correlation and division, sedimentary basement and crust-mantle boundary Moho interpretation based on multi-channel seismic data, under the constraints of oil and gas drilling or ocean drilling data, establish shallow stratigraphic framework, and perform temporal Depth conversion to obtain the formation depth profile;
  • the measured basement total structural subsidence module is used to carry out stripping analysis according to the crustal Airy equilibrium principle under the constraints of drilling or drilling to stratum lithology, stripping all the strata and water above the sedimentary basement, and then correcting by the base level. Obtain the total structural subsidence of the measured basement;
  • the crustal double-layer reflection traveltime module is used to calculate the crustal double-layer reflection traveltime between the sedimentary basement and the crust-mantle boundary Moho based on the interpretation of the sedimentary basement and the crust-mantle boundary Moho by multi-channel seismic;
  • the initial value module is used to assign an initial value to the average density of the crust
  • the calculation module is used to calculate the average crustal velocity according to the empirical formula of the velocity-density relationship; calculate the crustal thickness and Moho surface depth by using the average crustal velocity and the two-way travel time;
  • the theoretical basement total structural subsidence module is used to calculate the corresponding theoretical basement total structural subsidence according to the thickness and density of the crust;
  • the comparison module is used to compare the calculated total structural subsidence with the measured basement. If the two are consistent, it is considered that the assigned crustal density is reasonable, and the crustal structure information is obtained; if the two are not consistent, the average crustal density is increased by the set value each time , and repeatedly execute the calculation module, the theoretical base total structural settlement module and the comparison module until the results that meet the accuracy requirements are obtained.
  • the present invention provides a device for inverting passive continental margin crustal structure based on stratigraphic record subsidence, including a memory, a processor, and a computer program stored in the memory and operable on the processor, the When the processor executes the computer program, the steps of the above method are realized.
  • the present invention provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above method are implemented.
  • the present invention has the beneficial effects of:
  • the present invention does not need to provide additional gravity or refraction seismic data, and only relies on the reflection information of multi-channel seismic to strata, sedimentary basement and crust-mantle boundary, and can quickly, efficiently and widely calculate the average crustal density, velocity and thickness, and establish Crustal properties and deep structure.
  • the invention provides an effective means for obtaining spatial change information of the crustal structure on the passive continental margin lacking data, and further provides an important basis for understanding the formation, basin formation and accumulation mechanism of the passive continental margin.
  • Fig. 1 is a flowchart of a method for inverting crustal structure of a passive continental margin based on subsidence of stratigraphic records provided by Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of the establishment of a depth profile of the crustal structure based on the interpretation of the shallow strata, the sedimentary basement (Basement) and the crust-mantle boundary (Moho) by multi-channel seismic, and the inversion of the crustal density, velocity attribute, and thickness based on the stratigraphic record and tectonic subsidence.
  • Basement sedimentary basement
  • Moho crust-mantle boundary
  • Fig. 3 is a schematic diagram of the composition of the device for inverting the passive continental margin crustal structure based on the subsidence of stratigraphic records provided by Embodiment 2 of the present invention.
  • Fig. 4 is a schematic diagram of the composition of the device for inverting the crustal structure of the passive continental margin based on the subsidence of stratigraphic records provided by Embodiment 3 of the present invention.
  • Step 1 First, based on the multi-channel seismic reflection data, combined with the existing core data of oil and gas drilling and ocean drilling, carry out stratigraphic correlation and division, and interpret the Moho reflection of the sedimentary basement and crust-mantle boundary (attachment 2a); establish the shallow strata grid, and perform time-depth conversion to obtain the formation depth profile (accompanying drawing 2f);
  • Step 2 Using the formation lithology information revealed by drilling or boreholes, carry out backstripping analysis on the shallow formations according to the principle of crustal Airy equilibrium, strip all the formations and water above the sedimentary basement, and then go through the initial cracking datum level and the current datum level The correction of the difference between the surfaces is calculated to obtain the total structural subsidence of the measured basement (figure 2e);
  • Step 3 According to the multi-channel seismic interpretation of the sedimentary basement and the crust-mantle boundary Moho, calculate the crustal double-layer reflection travel time thickness between the sedimentary basement and the crust-mantle boundary Moho (Fig. 2a);
  • Step 4 Assign an initial value of 1500kg/m 3 to the average density of the earth's crust
  • Step 5 Then calculate the average crustal velocity (km/s) according to the empirical formula 1 of the velocity V-density D relationship; calculate the crustal thickness and Moho surface depth by using the average crustal velocity and the two-way travel time thickness;
  • Step 6 According to the thickness and density of the crust, calculate the corresponding theoretical total structural subsidence of the basement;
  • Step 7 Comparing the calculated total structural subsidence with the measured basement, if the two are consistent (attached 2e), it is considered that the assigned crustal density is reasonable, and the corresponding crustal density (attached 2b) and velocity (attached 2c ), thickness (attached 2d) and Moho depth (attached 2f); if they are inconsistent, increase the average crustal density by 1kg/m 3 each time, and repeat steps 5-7 until the The result of the precision requirement.
  • the method of the present invention does not need to provide additional gravity or refraction seismic data, and only relies on the reflection information of multi-channel seismic to strata, sedimentary basement and crust-mantle boundary, which can be fast, efficient and large-scale Carry out the calculation of the average density, velocity and thickness of the crust, and establish the properties and depth structure of the crust.
  • the invention provides an effective means for obtaining spatial change information of the crustal structure on the passive continental margin lacking data, and further provides an important basis for understanding the formation, basin formation and accumulation mechanism of the passive continental margin.
  • the device for inverting the crustal structure of the passive continental margin based on the subsidence of stratigraphic records includes:
  • the Stratigraphic Depth Profile Module is used to analyze stratigraphic correlation and division, sedimentary basement and crust-mantle boundary Moho interpretation based on multi-channel seismic data, under the constraints of oil and gas drilling or ocean drilling data, establish shallow stratigraphic framework, and perform temporal Depth conversion to obtain the formation depth profile;
  • the measured basement total structural subsidence module is used to carry out stripping analysis according to the crustal Airy equilibrium principle under the constraints of drilling or drilling to stratum lithology, stripping all the strata and water above the sedimentary basement, and then correcting by the base level. Obtain the total structural subsidence of the measured basement;
  • the crustal double-layer reflection traveltime module is used to calculate the crustal double-layer reflection traveltime between the sedimentary basement and the crust-mantle boundary Moho based on the interpretation of the sedimentary basement and the crust-mantle boundary Moho by multi-channel seismic;
  • the initial value module is used to assign an initial value to the average density of the earth's crust; in this embodiment, the initial value is 1500kg/m 3 ;
  • the calculation module is used to calculate the average crustal velocity according to the empirical formula of the velocity-density relationship; calculate the crustal thickness and Moho surface depth by using the average crustal velocity and the two-way travel time;
  • the theoretical basement total structural subsidence module is used to calculate the corresponding theoretical basement total structural subsidence according to the thickness and density of the crust;
  • the comparison module is used to compare the calculated total structural subsidence with the measured basement. If the two are consistent, it is considered that the assigned crustal density is reasonable, and the crustal structure information is obtained; if the two are not consistent, the average crustal density is increased by 1kg/m each time. 3 , and repeatedly execute the calculation module, the theoretical base total structural settlement module and the comparison module until the results that meet the accuracy requirements are obtained.
  • the present invention does not need to provide additional gravity or refraction seismic data, and only relies on the reflection information of multi-channel seismic to strata, sedimentary basement and crust-mantle boundary, and can quickly, efficiently and widely calculate the average crustal density, velocity and thickness, and establish Crustal properties and deep structure.
  • the invention provides an effective means for obtaining spatial change information of the crustal structure on the passive continental margin lacking data, and further provides an important basis for understanding the formation, basin formation and accumulation mechanism of the passive continental margin.
  • the device for inverting passive continental margin crustal structure based on stratigraphic record subsidence includes a processor, a memory, and a computer program stored in the memory and operable on the processor, for example based on A methodological procedure for inversion of passive continental margin crustal structure by stratigraphically recorded subsidence.
  • the processor executes the computer program, the steps in Embodiment 1 above are realized, for example, the steps shown in FIG. 1 .
  • the processor executes the computer program, the functions of the modules in Embodiment 2 above are implemented.
  • the computer program may be divided into one or more modules/units, and the one or more modules/units are stored in the memory and executed by the processor to complete the present invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the use of the computer program in the device for inverting passive continental margin crustal structure based on stratigraphic records and subsidence execution process.
  • the device for subsidence inversion of passive continental margin crustal structure based on stratigraphic records may be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the device for inverting passive continental margin crustal structure based on stratigraphic record subsidence may include, but not limited to, a processor and a memory.
  • Fig. 4 is only an example of the device for inverting passive continental margin crustal structure based on stratigraphic record subsidence, and does not constitute a limitation of the device for inverting passive continental margin crustal structure based on stratigraphic record subsidence. Show more or less components, or combine certain components, or different components, for example, the device for inverting passive continental margin crustal structure based on stratigraphic record settlement may also include input and output equipment, network access equipment, bus, etc. .
  • the so-called processor can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory may be an internal storage element of the device for inverting passive continental margin crustal structure based on stratigraphic record settlement, for example, a hard disk or memory of the device for inverting passive continental margin crustal structure based on stratigraphic record subsidence.
  • the memory may also be an external storage device of the device for inverting passive continental margin crustal structure based on stratigraphic records, for example, a plug-in hard disk equipped on the device for inverting passive continental margin crustal structure based on stratigraphic records, Smart Memory Card (SmartMedia Card, SMC), Secure Digital (Secure Digital, SD) card, Flash Card (Flash Card), etc.
  • the memory may also include both an internal storage unit and an external storage device of the device for inverting passive continental margin crustal structure based on stratigraphic record settlement.
  • the memory is used to store the computer program and other programs and data required by the device for inverting passive continental margin crustal structure based on stratigraphic record settlement.
  • the memory can also be used to temporarily store data that has been output or will be output.
  • This embodiment provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method described in Embodiment 1 are implemented.
  • the illustrated computer readable medium can be any means that can contain, store, communicate, propagate or transport the program for use by or in connection with an instruction execution system, apparatus or device. More specific examples (non-exhaustive list) of computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, for example by optically scanning the paper or other medium, followed by editing, interpretation or other suitable means if necessary The process then obtains the program electronically and stores it in the computer memory.

Abstract

一种基于地层记录沉降反演被动陆缘地壳结构的方法及装置,包括7个步骤,与现有技术相比,不需额外提供重力或折射地震数据,仅仅依靠多道地震对地层、沉积基底和壳幔边界的反射信息,即可快速、高效、大范围开展地壳平均密度、速度和厚度的计算,建立地壳属性和深度结构。对缺少资料被动陆缘获得地壳结构空间变化信息提供了一种有效手段,进而对认识被动陆缘形成、成盆和成藏机制提供重要依据。

Description

基于地层记录沉降反演被动陆缘地壳结构的方法及装置 技术领域:
本发明涉及地壳结构领域,具体涉及基于地层记录沉降反演被动陆缘地壳结构的方法及装置。
背景技术:
被动大陆边缘是大陆和大洋之间稳定过渡带,全球长约105000km,是地球周长的2.6倍;为地表最重要的沉积沉降场所和油气矿产资源聚集区,给人类经济社会可持续发展提供重要保障。被动大陆边缘是大陆岩石圈伸展、薄化、破裂后形成的,由于受不同程度岩浆、变质和沉积作用影响,有不同的结构类型,且影响了陆缘盆地演化和油气资源形成。因此,被动陆缘地壳结构对认识陆缘伸展、薄化过程、陆-洋转换过程、成盆机制和油气评价有重要意义。
认识陆缘地壳结构主要依靠钻孔、海底地震和多道地震等。其中海底钻探和海底地震成本高,数据少,限制了对地壳结构空间特征的认识。多道地震探测成本相对低,可开展高密度、高精度测量,对浅部地层、壳内反射和深部壳幔边界Moho成像清晰,为认识深部地壳反射结构在空间上变化提供了一种有效方法。然而,仅仅根据地震反射特征还很难确定地壳属性和厚度等信息,通常还需要联合其他数据进行模拟分析。比如,在多道地震对浅部地层约束下,联合重力数据开展重震模拟地壳密度属性和厚度,或联合折射地震走时信息开展射线追踪模拟地壳速度属性和厚度。显而易见,这些方法不仅需要额外提供数据,增加成本,而且模拟的地壳属性单一,模拟结果也可能有多解性。
专利文献CN113740915A公开了一种球坐标系重力和接收函数联合反演地壳结构参数的方法,该方法反演过程中同时拟合重力和接收函数数据,通过联合反演算法实现重力和接收 函数的互补作用,减少单一数据体反演的多解性。并且,在联合反演中考虑到了地球曲率的影响,引入了球坐标系下Tesseroid单元体的正演方法;该考虑到重力在横向的高分辨率和接收函数在台站附近深度方向的高分辨率,从而获取更加精确的地壳结构参数。但该方法仍然需要额外提供数据。
发明内容:
多道地震作为探测被动陆缘地壳结构的常用方法,为解决在缺少重力和折射地震数据情况下,仅根据多道地震对地层、沉积基底和壳幔边界Moho的解释,就可开展快速、高效、大范围计算地壳密度、速度属性和厚度,本发明提供了一种基于地层记录沉降反演被动陆缘地壳结构的方法及装置。
为实现上述目的,本发明的技术方案是:
第一方面,本发明提供了一种基于地层记录沉降反演被动陆缘地壳结构的方法,所述方法包括:
步骤1:根据多道地震数据,在油气钻井或大洋钻孔资料约束下,开展地层对比和划分、沉积基底和壳幔边界Moho解释,建立浅部地层格架,并进行时深转换,得到地层深度剖面;
步骤2:在钻井或钻孔对地层岩性的约束下,根据地壳Airy均衡原理开展回剥分析,剥去沉积基底上部全部的地层和水,再经过基准面校正,得到实测基底总构造沉降量;
步骤3:根据多道地震对沉积基底和壳幔边界Moho的解释,计算沉积基底与壳幔边界Moho之间的地壳双层反射走时;
步骤4:对地壳平均密度赋予一个初始值;
步骤5:根据速度-密度关系经验公式计算地壳平均速度;利用地壳平均速度和双程走时 计算地壳厚度和Moho面深度;
步骤6:根据地壳厚度和密度,计算相应的理论基底总构造沉降量;
步骤7:比较计算与实测基底总构造沉降量,如果两者一致,即认为赋值地壳密度是合理的,得到地壳结构信息;如果两者不一致,则每次使地壳平均密度增加设定值,并重复执行步骤5-7,直至得到满足精度要求的结果。
第二方面,本发明提供了一种基于地层记录沉降反演被动陆缘地壳结构的装置,所述装置包括:
地层深度剖面模块,用于分析根据多道地震数据,在油气钻井或大洋钻孔资料约束下,开展地层对比和划分、沉积基底和壳幔边界Moho解释,建立浅部地层格架,并进行时深转换,得到地层深度剖面;
实测基底总构造沉降量模块,用于在钻井或钻孔对地层岩性的约束下,根据地壳Airy均衡原理开展回剥分析,剥去沉积基底上部全部的地层和水,再经过基准面校正,得到实测基底总构造沉降量;
地壳双层反射走时模块,用于根据多道地震对沉积基底和壳幔边界Moho的解释,计算沉积基底与壳幔边界Moho之间的地壳双层反射走时;
初始值模块,用于对地壳平均密度赋予一个初始值;
计算模块,用于根据速度-密度关系经验公式计算地壳平均速度;利用地壳平均速度和双程走时计算地壳厚度和Moho面深度;
理论基底总构造沉降量模块,用于根据地壳厚度和密度,计算相应的理论基底总构造沉降量;
比较模块,用于比较计算与实测基底总构造沉降量,如果两者一致,即认为赋值地壳密度是合理的,得到地壳结构信息;如果两者不一致,则每次使地壳平均密度增加设定值,并重复执行计算模块、理论基底总构造沉降量模块以及比较模块,直至得到满足精度要求的结果。
第三方面,本发明提供一种基于地层记录沉降反演被动陆缘地壳结构的装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述方法的步骤。
第四方面,本发明提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上所述方法的步骤。
本发明与现有技术相比,其有益效果在于:
本发明不需额外提供重力或折射地震数据,仅仅依靠多道地震对地层、沉积基底和壳幔边界的反射信息,即可快速、高效、大范围开展地壳平均密度、速度和厚度的计算,建立地壳属性和深度结构。本发明对缺少资料被动陆缘获得地壳结构空间变化信息提供了一种有效手段,进而对认识被动陆缘形成、成盆和成藏机制提供重要依据。
附图说明
图1为本发明实施例1提供的基于地层记录沉降反演被动陆缘地壳结构的方法的流程图。
图2为根据多道地震对浅部地层、沉积基底(Basement)和壳幔边界(Moho)的解释,基于地层记录构造沉降反演地壳密度、速度属性和厚度,建立地壳结构深度剖面示意图。
图3为本发明实施例2提供的基于地层记录沉降反演被动陆缘地壳结构的装置的组成示意图。
图4为本发明实施例3提供的基于地层记录沉降反演被动陆缘地壳结构的装置的组成示意图。
具体实施方式:
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
南海被动陆缘陆洋转换过程是当前大洋钻探和国际地学研究的焦点和前沿。在南海北部陆缘洋陆过渡带,多道地震对浅部地层、沉积基底和深部壳幔反射进行了清晰成像,这里以该剖面为实施例说明应用基于地层记录沉降反演被动陆缘地壳结构的方法的具体过程,如图1-2所示,具体包括如下步骤:
步骤1:首先根据多道地震反射资料,结合已有的油气钻井和大洋钻孔岩芯数据,开展地层对比和划分,沉积基底和壳幔边界Moho反射解释(附图2a);建立浅部地层格架,并进行时深转换,获得地层深度剖面(附图2f);
步骤2:利用钻井或钻孔揭示的地层岩性信息,根据地壳Airy均衡原理对浅部地层开展回剥分析,剥去沉积基底上部全部的地层和水,再经过初始张裂基准面和现今基准面之间差值的校正,计算得到实测基底总构造沉降量(附图2e);
步骤3:根据多道地震对沉积基底和壳幔边界Moho的解释,计算沉积基底与壳幔边界Moho之间的地壳双层反射走时厚度(附图2a);
步骤4:对地壳平均密度赋初始值1500kg/m 3
步骤5:然后根据速度V-密度D关系经验公式1计算地壳平均速度(km/s);利用地壳平均速度和双程走时厚度计算地壳厚度和Moho面深度;
V=0.002831·D-1.593994(1)
步骤6:根据地壳厚度和密度,计算相应的理论基底总构造沉降量;
步骤7:比较计算与实测基底总构造沉降量,如果两者一致(附图2e),即认为赋值地壳密度是合理的,即可得到相应的地壳密度(附图2b)、速度(附图2c)、厚度(附图2d)和Moho深度(附图2f)等地壳结构信息;如果两者不一致,则每次使地壳平均密度增加1kg/m 3,并重复执行步骤5-7,直至得到满足精度要求的结果。
由此可见,与现有技术相比,本发明方法不需额外提供重力或折射地震数据,仅仅依靠多道地震对地层、沉积基底和壳幔边界的反射信息,即可快速、高效、大范围开展地壳平均密度、速度和厚度的计算,建立地壳属性和深度结构。本发明对缺少资料被动陆缘获得地壳结构空间变化信息提供了一种有效手段,进而对认识被动陆缘形成、成盆和成藏机制提供重要依据。
实施例2
参阅图3所示,本实施例提供的基于地层记录沉降反演被动陆缘地壳结构的装置,所述装置包括:
地层深度剖面模块,用于分析根据多道地震数据,在油气钻井或大洋钻孔资料约束下,开展地层对比和划分、沉积基底和壳幔边界Moho解释,建立浅部地层格架,并进行时深转换,得到地层深度剖面;
实测基底总构造沉降量模块,用于在钻井或钻孔对地层岩性的约束下,根据地壳Airy均衡原理开展回剥分析,剥去沉积基底上部全部的地层和水,再经过基准面校正,得到实测基底总构造沉降量;
地壳双层反射走时模块,用于根据多道地震对沉积基底和壳幔边界Moho的解释,计算沉积基底与壳幔边界Moho之间的地壳双层反射走时;
初始值模块,用于对地壳平均密度赋予一个初始值;在本实施例中,该初始值为1500kg/m 3
计算模块,用于根据速度-密度关系经验公式计算地壳平均速度;利用地壳平均速度和双程走时计算地壳厚度和Moho面深度;
理论基底总构造沉降量模块,用于根据地壳厚度和密度,计算相应的理论基底总构造沉降量;
比较模块,用于比较计算与实测基底总构造沉降量,如果两者一致,即认为赋值地壳密度是合理的,得到地壳结构信息;如果两者不一致,则每次使地壳平均密度增加1kg/m 3,并重复执行计算模块、理论基底总构造沉降量模块以及比较模块,直至得到满足精度要求的结果。
本发明不需额外提供重力或折射地震数据,仅仅依靠多道地震对地层、沉积基底和壳幔边界的反射信息,即可快速、高效、大范围开展地壳平均密度、速度和厚度的计算,建立地壳属性和深度结构。本发明对缺少资料被动陆缘获得地壳结构空间变化信息提供了一种有效手段,进而对认识被动陆缘形成、成盆和成藏机制提供重要依据。
实施例3
参阅图4所示,本实施例提供的基于地层记录沉降反演被动陆缘地壳结构的装置包括处理器、存储器以及存储在该存储器中并可在所述处理器上运行的计算机程序,例如基于地层记录沉降反演被动陆缘地壳结构的方法处理程序。该处理器执行所述计算机程序时实现上述 实施例1步骤,例如图1所示的步骤。或者,所述处理器执行该计算机程序时实现上述实施例2中各模块的功能。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器中,并由所述处理器执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述基于地层记录沉降反演被动陆缘地壳结构的装置中的执行过程。
所述基于地层记录沉降反演被动陆缘地壳结构的装置可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述基于地层记录沉降反演被动陆缘地壳结构的装置可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,图4仅仅是基于地层记录沉降反演被动陆缘地壳结构的装置的示例,并不构成基于地层记录沉降反演被动陆缘地壳结构的装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述基于地层记录沉降反演被动陆缘地壳结构的装置还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器可以是所述基于地层记录沉降反演被动陆缘地壳结构的装置的内部存储元,例如基于地层记录沉降反演被动陆缘地壳结构的装置的硬盘或内存。所述存储器也可以是所 述基于地层记录沉降反演被动陆缘地壳结构的装置的外部存储设备,例如所述基于地层记录沉降反演被动陆缘地壳结构的装置上配备的插接式硬盘,智能存储卡(SmartMedia Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器还可以既包括所述基于地层记录沉降反演被动陆缘地壳结构的装置的内部存储单元也包括外部存储设备。所述存储器用于存储所述计算机程序以及所述基于地层记录沉降反演被动陆缘地壳结构的装置所需的其他程序和数据。所述存储器还可以用于暂时地存储已经输出或者将要输出的数据。
实施例4
本实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现实施例1所述方法的步骤。
所示计算机可读介质可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理再以电子方式获得所述程序,然后将其存储在计算机存储器中。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本 发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种基于地层记录沉降反演被动陆缘地壳结构的方法,其特征在于,所述方法包括:
    步骤1:根据多道地震数据,在油气钻井或大洋钻孔资料约束下,开展地层对比和划分、沉积基底和壳幔边界Moho解释,建立浅部地层格架,并进行时深转换,得到地层深度剖面;
    步骤2:在钻井或钻孔对地层岩性的约束下,根据地壳Airy均衡原理开展回剥分析,剥去沉积基底上部全部的地层和水,再经过基准面校正,得到实测基底总构造沉降量;
    步骤3:根据多道地震对沉积基底和壳幔边界Moho的解释,计算沉积基底与壳幔边界Moho之间的地壳双层反射走时;
    步骤4:对地壳平均密度赋予一个初始值;
    步骤5:根据速度-密度关系经验公式计算地壳平均速度;利用地壳平均速度和双程走时计算地壳厚度和Moho面深度;
    步骤6:根据地壳厚度和密度,计算相应的理论基底总构造沉降量;
    步骤7:比较计算与实测基底总构造沉降量,如果两者一致,即认为赋值地壳密度是合理的,得到地壳结构信息;如果两者不一致,则每次使地壳平均密度增加设定值,并重复执行步骤5-7,直至得到满足精度要求的结果。
  2. 如权利要求1所述的基于地层记录沉降反演被动陆缘地壳结构的方法,其特征在于,所述速度V-密度D关系经验公式为:
    V=0.002831·D-1.593994。
  3. 如权利要求1所述的基于地层记录沉降反演被动陆缘地壳结构的方法,其特征在于,在步骤7中,所述设定值为1kg/m 3
  4. 如权利要求1所述的基于地层记录沉降反演被动陆缘地壳结构的方法,其特征在于,所述初始值为1500kg/m 3
  5. 一种基于地层记录沉降反演被动陆缘地壳结构的装置,其特征在于,所述装置包括:
    地层深度剖面模块,用于分析根据多道地震数据,在油气钻井或大洋钻孔资料约束下,开展地层对比和划分、沉积基底和壳幔边界Moho解释,建立浅部地层格架,并进行时深转换,得到地层深度剖面;
    实测基底总构造沉降量模块,用于在钻井或钻孔对地层岩性的约束下,根据地壳Airy均衡原理开展回剥分析,剥去沉积基底上部全部的地层和水,再经过基准面校正,得到实测基底总构造沉降量;
    地壳双层反射走时模块,用于根据多道地震对沉积基底和壳幔边界Moho的解释,计算沉积基底与壳幔边界Moho之间的地壳双层反射走时;
    初始值模块,用于对地壳平均密度赋予一个初始值;
    计算模块,用于根据速度-密度关系经验公式计算地壳平均速度;利用地壳平均速度和双程走时计算地壳厚度和Moho面深度;
    理论基底总构造沉降量模块,用于根据地壳厚度和密度,计算相应的理论基底总构造沉降量;
    比较模块,用于比较计算与实测基底总构造沉降量,如果两者一致,即认为赋值地壳密度是合理的,得到地壳结构信息;如果两者不一致,则每次使地壳平均密度增加设定值,并重复执行计算模块、理论基底总构造沉降量模块以及比较模块,直至得到满足精度要求的结果。
  6. 如权利要求5所述的基于地层记录沉降反演被动陆缘地壳结构的方法,其特征在于,所述速度V-密度D关系经验公式为:
    V=0.002831·D-1.593994。
  7. 如权利要求5所述的基于地层记录沉降反演被动陆缘地壳结构的装置,其特征在于,在比较模块中,所述设定值为1kg/m 3
  8. 如权利要求5所述的基于地层记录沉降反演被动陆缘地壳结构的装置,其特征在于,所述初始值为1500kg/m 3
  9. 一种基于地层记录沉降反演被动陆缘地壳结构的装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4任一所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4任一所述方法的步骤。
PCT/CN2022/131035 2022-08-09 2022-11-10 基于地层记录沉降反演被动陆缘地壳结构的方法及装置 WO2023098441A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022399667A AU2022399667A1 (en) 2022-08-09 2022-11-10 Method and apparatus for inversion of crustal structure of passive continental margin based on subsidence in stratigraphic record

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210951025.4 2022-08-09
CN202210951025.4A CN115373024B (zh) 2022-08-09 2022-08-09 基于地层记录沉降反演被动陆缘地壳结构的方法及装置

Publications (1)

Publication Number Publication Date
WO2023098441A1 true WO2023098441A1 (zh) 2023-06-08

Family

ID=84064344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131035 WO2023098441A1 (zh) 2022-08-09 2022-11-10 基于地层记录沉降反演被动陆缘地壳结构的方法及装置

Country Status (3)

Country Link
CN (1) CN115373024B (zh)
AU (1) AU2022399667A1 (zh)
WO (1) WO2023098441A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117555025A (zh) * 2024-01-11 2024-02-13 应急管理部国家自然灾害防治研究院 一种基于重力数据的多层地壳结构反演方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117572530B (zh) * 2024-01-17 2024-04-05 自然资源部第二海洋研究所 一种重力反演莫霍面和海底地震联合厘定洋陆边界的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201121603D0 (en) * 2011-12-15 2012-01-25 Statoil Petroleum As ASEP+D Method:identifying anomalous areas of the earths lower crust
CN104459795A (zh) * 2014-12-08 2015-03-25 中国科学院南海海洋研究所 一种深度变密度的地壳伸展系数热校正重力异常反演方法
CN110244352A (zh) * 2019-06-11 2019-09-17 西安石油大学 一种基于变密度的地壳厚度重力反演方法
CN112285771A (zh) * 2020-09-03 2021-01-29 田晓峰 一种城市活断层探测中的隐伏断裂成像方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094019A (zh) * 2016-04-12 2016-11-09 中国石油化工股份有限公司 基于地质信息映射的深度域地层结构反演方法
CN107589448B (zh) * 2017-07-13 2019-02-05 西安交通大学 一种多道地震记录反射系数序列同时反演方法
CN110221344B (zh) * 2019-06-17 2020-08-28 中国地质大学(北京) 一种地壳三维密度结构的地震全波形与重力联合反演方法
CN111337993A (zh) * 2020-03-30 2020-06-26 中国地质科学院 一种基于变密度变深度约束的重力密度界面反演方法
CN111610561B (zh) * 2020-06-05 2021-05-07 中国地质大学(北京) 定量建立海平面变化及海进-海退曲线计算方法
CN113514900B (zh) * 2021-07-12 2022-05-17 吉林大学 基于密度约束的球坐标系重力和重力梯度联合反演方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201121603D0 (en) * 2011-12-15 2012-01-25 Statoil Petroleum As ASEP+D Method:identifying anomalous areas of the earths lower crust
CN104459795A (zh) * 2014-12-08 2015-03-25 中国科学院南海海洋研究所 一种深度变密度的地壳伸展系数热校正重力异常反演方法
CN110244352A (zh) * 2019-06-11 2019-09-17 西安石油大学 一种基于变密度的地壳厚度重力反演方法
CN112285771A (zh) * 2020-09-03 2021-01-29 田晓峰 一种城市活断层探测中的隐伏断裂成像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEIYU WANG, ZHANG JIAN, AI YIFEI: "Analysis of tectonic evolution characteristics of Wan'an Basin in the southwest of the South China Sea", JOURNAL OF UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, vol. 37, no. 6, 30 November 2020 (2020-11-30), pages 784 - 792, XP093069450, ISSN: 2095-6134 *
ZHANG YONGQIAN, L. QINGTIAN, TENG JIWEN, WANG QIANSHEN, XU TAO: "Discussion on the Crustal Density Structure and the Deep Mineralization Background in the middle and lower reaches and adjacent areas of the Yangtze River--Constraints from Gravity", ACTA PETROLOGICA SINICA, vol. 30, no. 4, 15 April 2014 (2014-04-15), pages 931 - 940, XP093069454 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117555025A (zh) * 2024-01-11 2024-02-13 应急管理部国家自然灾害防治研究院 一种基于重力数据的多层地壳结构反演方法
CN117555025B (zh) * 2024-01-11 2024-04-02 应急管理部国家自然灾害防治研究院 一种基于重力数据的多层地壳结构反演方法

Also Published As

Publication number Publication date
AU2022399667A1 (en) 2024-02-22
CN115373024A (zh) 2022-11-22
CN115373024B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Tao et al. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography
WO2023098441A1 (zh) 基于地层记录沉降反演被动陆缘地壳结构的方法及装置
Malinverno et al. Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes
US8830788B2 (en) Sensitivity kernal-based migration velocity analysis in 3D anisotropic media
CN102636809B (zh) 一种传播角度域共成像点道集的生成方法
Yuan et al. Seismic source tracking with six degree‐of‐freedom ground motion observations
Ktenidou et al. Directional dependence of site effects observed near a basin edge at Aegion, Greece
Li et al. Source process featuring asymmetric rupture velocities of the 2021 Mw 7.4 Maduo, China, earthquake from teleseismic and geodetic data
Xie et al. A multi‐array back‐projection approach for tsunami warning
Eisen et al. Age estimates of isochronous reflection horizons by combining ice core, survey, and synthetic radar data
Klaeschen et al. Estimating movement of reflectors in the water column using seismic oceanography
CN103678883B (zh) 一种面向多源海洋环境监测数据的空间抽样方法
CN109188522B (zh) 速度场构建方法及装置
Chen et al. A simple algorithm for local earthquake location using 3D VP and VS models: Test examples in the central United States and in central eastern Taiwan
CN114647003B (zh) 转换波角度域共成像点道集剩余时差计算方法和设备
Lovely et al. A structural VP model of the Salton Trough, California, and its implications for seismic hazard
US11255993B2 (en) Variable aperture estimation using bottom-up ray tracing
Imanishi et al. An inversion method to analyze rupture processes of small earthquakes using stopping phases
Whitten et al. Fold geometry within part of Michigan Basin, Michigan
Krueger et al. Investigating segmentation in Cascadia: anisotropic crustal structure and mantle wedge serpentinization from receiver functions
CN111474580A (zh) 一种基于炮检距矢量片的方位角道集提取方法和系统
CN110261896A (zh) 稳定的各向异性ti介质正演模拟方法
CN113607920B (zh) 岩浆底辟对沉积盆地的改造分析方法、实验装置和介质
CN117094152B (zh) 一种耦合沉积作用的盆地沉降史模拟方法及装置
CN112394393B (zh) 一种crp道集数据体重构的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022399667

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022399667

Country of ref document: AU

Date of ref document: 20221110

Kind code of ref document: A