WO2023098317A1 - 一种充电控制方法、装置及电子设备 - Google Patents

一种充电控制方法、装置及电子设备 Download PDF

Info

Publication number
WO2023098317A1
WO2023098317A1 PCT/CN2022/125439 CN2022125439W WO2023098317A1 WO 2023098317 A1 WO2023098317 A1 WO 2023098317A1 CN 2022125439 W CN2022125439 W CN 2022125439W WO 2023098317 A1 WO2023098317 A1 WO 2023098317A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
terminal
battery
charger
power
Prior art date
Application number
PCT/CN2022/125439
Other languages
English (en)
French (fr)
Inventor
肖建华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023098317A1 publication Critical patent/WO2023098317A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of charging, in particular to a charging control method, device and electronic equipment.
  • Embodiments of the present application provide a charging control method, device, and electronic equipment.
  • an embodiment of the present application provides a charging control method, the method including: obtaining the system power consumption value of the terminal; determining that the terminal is charged by a charger and is in a high-load working state, The charging current value is used to determine the charging required power of the battery; according to the system power consumption value and the charging required power, the charging parameters are determined, wherein the temperature-controlled charging current value is when the battery does not generate heat during charging The maximum current value; determine the charging output power of the charger according to the charging parameters, so that the charger charges the terminal according to the charging output power.
  • an embodiment of the present application provides a charging control device, including: an acquisition module configured to acquire a system power consumption value of a terminal; a determination module configured to determine that the terminal is charged by a charger and is working under a high load According to the temperature-controlled charging current value of the battery, the charging required power of the battery is determined; according to the system power consumption value and the charging required power, charging parameters are determined, wherein the temperature-controlled charging current value is the The maximum current value of the battery under the condition of charging without heating; the control module is configured to determine the charging output power of the charger according to the charging parameters, so that the charger charges the terminal according to the charging output power .
  • an embodiment of the present application provides an electronic device, including: a memory, a processor, and a computer program stored in the memory and operable on the processor. When the processor executes the computer program, the application is implemented.
  • the charging control method provided by the embodiment.
  • the embodiment of the present application provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the charging control method provided in the embodiment of the present application is implemented.
  • FIG. 1 is a schematic flowchart of a charging control method provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an implementation process of another embodiment of step S2000 in FIG. 1;
  • FIG. 3 is a schematic diagram of an implementation process of another embodiment of step S2000 in FIG. 1;
  • Fig. 4 is a schematic diagram of the implementation process of another embodiment of step S2200 in Fig. 2
  • FIG. 5 is a schematic diagram of an implementation process of another embodiment of step S2210 in FIG. 4;
  • FIG. 6 is a schematic diagram of an implementation process of another embodiment of step S2220 in FIG. 4;
  • FIG. 7 is a schematic diagram of an implementation process of another embodiment of step S2400 in FIG. 2;
  • Fig. 8 is a structural diagram of a charging control device provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • At least one of the following and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, or Can be multiple.
  • the charging control method involved in the embodiment of the present application is based on the programmable power supply protocol (Programmable Power Supply, PPS).
  • PPS Programmable Power Supply
  • the output power of the charger needs to be adjusted to achieve Battery protection, terminal temperature control and other functions.
  • the terminal performance and charging efficiency put forward higher requirements for charging control. Therefore, adopting a scientific and reasonable charging control method can more effectively exert the performance of the terminal in the charging state, especially when the terminal is under high load operation, it can not only ensure that the terminal performance is fully utilized, but also effectively improve the terminal performance. charging efficiency.
  • the classic scenario of charging control is: when the battery power of the terminal is very low, it is necessary to continue to use the terminal intensively, and the charger must be plugged in to maintain the power.
  • rapid heating of the terminal often occurs due to the superposition of charging heating and high-load heating.
  • the existing conventional charging control method is as follows: when charging, the charging current required by the battery is calculated mainly based on factors such as the temperature and power of the battery, and then the charger is set according to the charging demand of the battery output current for charging.
  • the problem with this control method is that when the system load is heavy, the heat generated by the processor and the heat generated by charging are superimposed, which will cause the overall temperature of the system to rise rapidly. After the temperature rises, various protective actions are generally triggered to achieve the purpose of cooling down, such as reducing the main frequency of the CPU, reducing the brightness of the LCD, reducing the charging current, etc., and these protective actions will seriously limit the performance of the terminal and affect the user experience. .
  • embodiments of the present application provide a charging control method, device, electronic equipment, and computer-readable storage medium.
  • the charging required power of the battery is determined; according to the system power consumption value and the charging required power , determine the charging parameters; determine the charging output power of the charger according to the charging parameters, so that the charger can charge the terminal according to the charging output power, so as to effectively alleviate the contradiction between the system power supply and battery charging under high-load operating conditions, and maintain the terminal
  • the stable power supply and temperature control ensure the charging stability of the terminal under the premise of ensuring the user experience.
  • FIG. 1 shows a flow of a charging control method provided by an embodiment of the present application.
  • the charging control method in the embodiment of the present application includes the following steps:
  • the power consumption value of each main component can be directly obtained, and the power consumption value of the main power consumption components of the terminal is collected and counted regularly, and the system power consumption value of the terminal can be combined to obtain.
  • Obtaining the power consumption value of each component of the terminal through detection software belongs to the prior art, and will not be repeated here.
  • the main components of the mobile terminal include a display screen, a CPU, a sensor, a camera, a speaker, and the like.
  • the display screen is hot and bright during the working process, especially the resolution of most of the current mobile terminal display screens is above 1080P, which consumes a lot of power during long-term use.
  • all operations of the mobile terminal are controlled by the CPU, and the performance index of the CPU directly determines the system performance index of the mobile terminal.
  • the CPU has the following basic functions: data communication, resource sharing, distributed processing and providing system reliability. Therefore, the display screen and CPU are the most power-hungry mobile terminal components in the normal use of mobile phones.
  • the power consumption of other components can also occupy most of the system power consumption of the mobile terminal.
  • the camera and the speaker become the main components of power consumption.
  • the system power consumption value of the terminal can be obtained.
  • the system power consumption of the terminal can be obtained by subtracting the actual charging power of the battery from the input power of the charger.
  • the calculation formula is as follows:
  • P sys is the system power consumption value of the terminal
  • U in is the input voltage value of the charger
  • I in is the input current value of the charger
  • U bat is the input voltage value of the battery
  • I bat is the charging current of the battery.
  • step S2000 at least includes the following steps:
  • the terminal can determine whether the terminal is connected to the power supply through the charger by detecting the input voltage value and the input current value of the charging interface.
  • the terminal can collect the status of the battery through the charging chip to determine whether the battery is charged by the charger, such as whether the battery has a charging voltage or charging current, and whether the battery power is increasing, and then determine whether the terminal is connected to the power supply through the charger , the charger provides power to the components of the terminal, and charges the battery through the charging chip.
  • step S2200 includes at least the following steps:
  • the high-load working state means that the terminal is in a state of high energy consumption due to high resource usage of main components.
  • the mobile terminal is running multiple application programs, or programs that occupy a large amount of CPU and memory resources, such as large-scale games, cameras, image processing software, etc.
  • the mobile terminal is in a state of high energy consumption and high heat generation.
  • protection mechanisms are generally provided, such as turning on cooling components, limiting CPU output performance, reducing the brightness of the display screen, and forcibly shutting down the terminal.
  • the temperature is controlled within a safe range.
  • step S2210 includes at least the following steps:
  • the power threshold is a preset value, and its numerical value reflects that the current terminal is in a high-load working state. Therefore, for terminals with different hardware configurations, software configurations and operating environments, their power thresholds need to be adjusted and matched so that the power thresholds can accurately represent the operating status of the terminals.
  • the power threshold of the mobile terminal is set to 8W. When the terminal is charged by a charger, when the current system power consumption value is greater than 8W, it is determined that the mobile terminal is in a high-load working state.
  • the system power consumption value is greater than the power threshold, that is, the input power of the charger minus the actual charging power of the battery terminal is greater than the power threshold, this is because the main components of the terminal are in a state of high energy consumption and the system power consumption value occupies the charger The proportion of the input power increases, and then it is determined that the terminal is in a high-load working state.
  • step S2210 includes at least the following steps:
  • the processor occupancy rate is the processor resource occupied by the program running on the terminal, which indicates the situation of the terminal running the program at a certain point in time.
  • the processor occupancy rate can be obtained regularly and accurately, and then the current operation status of the terminal can be judged in a timely manner.
  • the occupancy rate threshold is also a preset value, and its numerical value reflects that the current terminal is in a high-load working state. Therefore, for terminals with different hardware configurations, software configurations and operating environments, the occupancy threshold needs to be adjusted and matched so that the occupancy threshold can accurately represent the operating status of the terminal.
  • the occupancy rate threshold of the mobile terminal is set to 30%, and when the terminal is being charged by a charger, when the processor occupancy rate of the current terminal is greater than 30%, it is determined that the mobile terminal is in a high-load working state.
  • the processor usage of the terminal is greater than the usage threshold, that is, the processor is in a high energy consumption running state.
  • the performance index of the processor directly determines the system performance index of the mobile terminal. Therefore, when the processor usage rate of the terminal is greater than 30%, it indicates that the processor and other core components are in a state of high energy consumption, and thus it is determined that the terminal is in a high-load working state.
  • step S2210 includes at least the following steps:
  • the continuous display time of the terminal's display screen is the time during which the terminal's display screen is continuously in the working state, indicating that the terminal is in the working state during this period of time.
  • the continuous display time of the display screen can directly reflect the running state of the terminal. Through the existing terminal detection software, the continuous display time of the display screen can be obtained in real time, and then the current operation status of the terminal can be judged in a timely manner.
  • the time threshold is also a preset value, and its numerical value reflects that the current terminal is in a high-load working state. Therefore, for terminals with different resolutions and operating environments, the time threshold needs to be adjusted and matched, so that the time threshold can accurately represent the operating state of the terminal.
  • the time threshold of the mobile terminal is set to 30 minutes. When the terminal is charged by a charger, when the display screen of the current terminal continues to display for more than 30 minutes, it is determined that the mobile terminal is in a high-load working state.
  • the continuous display time of the display screen of the terminal is longer than the time threshold, that is, the display screen of the terminal is in the running state for a long time.
  • the energy consumption of the display screen of the mobile terminal occupies a considerable proportion of the system power consumption value of the terminal, so the continuous working time of the display screen directly determines the energy consumption value of the mobile terminal. Therefore, when the display screen lasts for more than 30 minutes, it indicates that both the display screen and the mobile terminal are in a state of high energy consumption, and thus it is determined that the terminal is in a high-load working state.
  • one or more different conditions in the above steps S2211, S2213, and S2215 can be combined to judge, that is, at least satisfy the middle system function Only when the consumption value is greater than the power threshold, the processor occupancy rate of the terminal is greater than the occupancy threshold, and the display duration of the terminal is greater than the time threshold is at least one of the conditions, it can be confirmed that the terminal is in a high-load working state.
  • the processor occupancy rate of the terminal and the continuous display time of the terminal display screen are used as the judgment basis for determining whether the terminal is in a high-load working state
  • other operating parameters of the terminal can also be used as the judgment basis.
  • operating parameters such as the operating memory occupancy rate of the terminal and the current temperature of the CPU of the terminal can also be used as reference indicators for judging whether the terminal is in a high-load working state. The judging process is consistent with the above step S2210, and will not be repeated here. .
  • step S2220 includes at least the following steps:
  • the temperature increase value of the battery can be controlled within a certain range under the condition of inputting a specific charging current, thereby effectively reducing the temperature rise of the battery while ensuring the charging efficiency of the battery in the early stage. Avoid the rapid temperature increase of the battery during charging, which will affect other components of the terminal.
  • the process of obtaining the maximum current value needs to be carried out in an environment with a constant temperature, for example, a charging test is performed in a constant temperature laboratory.
  • a charging test is performed in a constant temperature laboratory.
  • the current room temperature is set to 25 degrees Celsius
  • the preset time is 30 minutes
  • the temperature threshold is 1 degree Celsius.
  • Charge the battery for 30 minutes with the rated charging current I test and collect and count the battery temperature. If the battery temperature rises less than 1 degree Celsius within 30 minutes, record the current value of the current I test and use it as a reference value for the temperature-controlled charging current value.
  • Increase the rated charging current repeat the above charging process, and record multiple rated charging currents I test that meet the temperature control conditions.
  • the maximum value I max is selected as the temperature control charging current value. That is, when the charging current of the battery is I max , on the premise of ensuring the charging efficiency of the battery, the temperature increase value of the battery is less than the temperature threshold, so that the temperature of the battery is controlled within a certain range, and the battery and the terminal are avoided from occurring during the charging process. If the temperature is too high, it will affect the safety of the battery and the performance of the terminal.
  • P bat is the current charging demand power
  • I max is the temperature-controlled charging current value of the battery.
  • S2300 Determine that the terminal is in a low-load working state, and obtain charging demand power according to the technical parameters of the battery and the current power.
  • the low-load working state means that the terminal is in a state of low energy consumption due to low resource usage of main components.
  • the process of determining that the terminal is in the low-load working state can refer to the above step S2210.
  • the terminal does not meet the above-mentioned conditions of the high-load working state, it can be determined that the terminal is in the low-load working state.
  • the system power consumption value is less than the power threshold
  • the processor occupancy rate of the terminal is greater than the occupancy rate threshold
  • the continuous display duration of the display screen of the terminal is less than the time threshold
  • the charger can fully meet the charging demand of the battery, and provide sufficient charging current and charging voltage to the battery according to the demand, performance and current power of the battery. For example, if the battery of the terminal can support 20W fast charging, then calculate the power demand for the charger according to the battery status, and calculate the maximum charging power of 20W allowed by the battery according to the battery specification and the current battery condition, as the charging power for the charger. The output power requirement does not need to consider the power consumption of the system. At this time, the calculation formula of the current charging demand power P bat is as follows:
  • P max is the maximum charging power allowed by the current battery.
  • the current ideal battery input voltage value U bat and battery charging current I bat are obtained, and then the charger Dynamically adjusting the output power to meet the charging requirements of the battery belongs to the existing charging control technology, and will not be repeated here.
  • step S2400 includes at least the following steps:
  • the charger outputs part of the power to supply power to the peripherals of the terminal, and the other part is used to charge the battery through the charging chip. Therefore, in the case of the obtained system power consumption value and charging demand power, the total output power P total can be calculated, and the calculation formula is as follows:
  • the total output power is obtained by adding the system power consumption value and the charging demand power, which can ensure that the charger provides the power required by the terminal system, and can also output stable charging power to the battery, which can prevent the terminal from being caused by insufficient power supply and excessive heating.
  • the performance of the battery is limited, and the charging efficiency of the battery is also guaranteed.
  • the nominal voltage of the battery refers to its normal use, that is, the voltage value that can be maintained for a long time when it is in a discharged state. And when the battery is in the charging state, due to the effect of its internal resistance, the input voltage value U bat of the battery increases. Therefore, in general, the input voltage value U bat is about 20% higher than the nominal voltage of the battery.
  • the output voltage of the charger is more than twice the nominal voltage of the battery to ensure that the input voltage value U bat is higher than that of the battery.
  • the nominal voltage of the battery is 20% higher, the battery can distribute enough charging power, and make the charging efficiency of the battery reach the best.
  • the output voltage of the charger can be calculated according to the performance parameters of the battery and the input voltage U bat of the battery.
  • the output voltage of the charger is set to 9V to ensure that the battery can allocate enough charging power to ensure the charging efficiency of the battery.
  • the voltage demand of the battery in order to ensure that the battery can be in an ideal charging state, the voltage demand of the battery should be satisfied first, so as to ensure that the input voltage U bat of the battery is 20% higher than the nominal voltage of the battery. Then, meet the input current of the battery according to the charging demand.
  • the charger output current can be calculated according to the calculation formula that the total output power is equal to the product of the charger output voltage and the charger output current.
  • the total output power P total is 27W and the output voltage of the charger is 9V
  • the output current of the charger is 3A.
  • the charger After obtaining the charger output voltage and charger output current, the charger can output the corresponding voltage and current values by controlling the charger, so that the output power of the charger can meet the charging requirements of the terminal and realize the temperature control and terminal performance of the battery guarantee. In practical applications, it is also necessary to compare the total output power with the maximum output power of the charger to ensure that the charger can charge the battery within a safe range, so as to avoid potential safety hazards caused by the overload of the charger. Under the condition that the output voltage of the charger and the output current of the charger are both within the performance parameter range of the charger, the charging parameters of the charger are determined.
  • S3000 Determine the charging output power of the charger according to the charging parameters, so that the charger charges the terminal according to the charging output power.
  • the terminal After determining the charging parameters, the terminal sends a charging request to the charger, and the charger charges the terminal according to the charger output voltage and charger output current, thereby ensuring that the charger supplies power to the terminal peripherals and charges the battery according to the charging output power.
  • the charger dynamically adjusts the charging output power to charge the terminal, so as to ensure that the terminal peripherals are under the premise of stable power supply, and improve the efficiency and safety of battery charging.
  • the charging parameters of the charger are mainly adjusted according to the system power consumption value P sys of the terminal, To ensure the stable performance of the terminal.
  • the charging parameters of the charger are mainly adjusted according to the technical parameters of the battery and the current power to ensure the charging efficiency of the battery.
  • the charging control method provided in the embodiment of the present application is applicable to various terminals, such as mobile phones, tablet computers, drones, automobiles, and other electrical terminals that can be charged. Its applied devices include power supply, charging head, charging cable and terminal.
  • the power supply can be an ordinary 220V household power supply, or a power supply of other specifications; the charging head and the charging cable can be set separately, or they can be combined chargers.
  • the charging control method provided by the embodiment of the present application supports the current common fast chargers, such as those that support fast charging technology (Quick Charge 3.0, QC3), USB fast charging protocol (USB Power Delivery Specification, USB PD), PPS and other protocols charger.
  • Fig. 8 is a schematic structural diagram of the charging control device provided by the embodiment of the present application.
  • the entire process of the charging control method provided by the embodiment of the present application involves the following modules in the charging control device: the acquisition module 400, the determination module 500 and the Control module 600.
  • the acquiring module 400 is configured to acquire the system power consumption value of the terminal
  • the determination module 500 is configured to determine that the terminal is charged by the charger and is in a high-load working state, determine the charging demand power of the battery according to the temperature-controlled charging current value of the battery; determine the charging parameters according to the system power consumption value and the charging demand power, Among them, the temperature-controlled charging current value is the maximum current value when the battery is charging without heating;
  • the control module 600 is configured to determine the charging output power of the charger according to the charging parameters, so that the charger charges the terminal according to the charging output power.
  • FIG. 9 shows an electronic device 700 provided by an embodiment of the present application.
  • the electronic device 700 includes but is not limited to:
  • Memory 701 used to store programs
  • the processor 702 is configured to execute the program stored in the memory 701 , and when the processor 702 executes the program stored in the memory 701 , the processor 702 is configured to execute the above charging control method.
  • the processor 702 and the memory 701 may be connected through a bus or in other ways.
  • the memory 701 can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the charging control method described in any embodiment of the present application.
  • the processor 702 implements the above charging control method by running the non-transitory software program and instructions stored in the memory 701 .
  • the memory 701 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store and execute the charging control method described above.
  • the memory 701 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 701 may include memory located remotely relative to the processor 702, and these remote memories may be connected to the processor 702 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transient software programs and instructions required to implement the above charging control method are stored in the memory 701, and when executed by one or more processors 702, the charging control method provided by any embodiment of the present application is executed.
  • the embodiment of the present application also provides a storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the charging control method described above.
  • the storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 702, for example, executed by one of the processors 702 in the electronic device 700, so that the above-mentioned One or more processors 702 execute the charging control method provided in any embodiment of the present application.
  • the system power consumption value of the terminal is obtained; after confirming that the terminal is in a high-load working state, the charging demand power is obtained according to the maximum current value of battery charging; according to the system power consumption value and the charging demand power, to determine the charging parameters; according to the charging parameters, adjust the charging output power.
  • the solution of the embodiment of the present application can maintain stable power supply and temperature control for the terminal during the charging process, and ensure the charging stability of the terminal on the premise of ensuring the user experience. It is especially suitable for stabilizing the mobile terminal under high-load operation. , Safe charging, real-time adjustment of charging output power according to terminal usage and charging conditions, thereby improving user experience and charging stability.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例公开了一种充电控制方法、装置及电子设备,所述方法包括:获取终端的系统功耗值(S1000);确定终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定电池的充电需求功率;根据系统功耗值和充电需求功率,确定充电参数,其中,温控充电电流值为电池在充电不发热情况下的最大电流值(S2000);根据充电参数确定充电器的充电输出功率,以使充电器按照充电输出功率对终端充电(S3000)。

Description

一种充电控制方法、装置及电子设备
相关申请的交叉引用
本申请基于申请号为202111459619.5、申请日为2021年12月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及充电技术领域,特别是涉及一种充电控制方法、装置及电子设备。
背景技术
随着技术的发展,以手机、平板电脑为代表的终端产品,在充电速度和性能上都了很大的发展。其中,大功率的充电器、高性能的处理器(Central Processing Unit,CPU)、高刷新率的液晶显示器(Liquid Crystal Display,LCD)等硬件在终端产品上的应用越来越普及,这些技术在带来用户体验提升的同时,也带来了终端产品明显的供电和发热问题。例如,在设备电量很低的情况下,用户还需要继续高强度使用终端,这时候只能插上充电器维持电量。在这种高功耗充电场景下,不仅影响终端系统的正常供电,还存在充电升温和高负载升温叠加而引起的终端快速发热现象,从而发生CPU限频、系统卡顿等问题,从而显著影响用户体验。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种充电控制方法、装置及电子设备。
第一方面,本申请实施例提供一种充电控制方法,所述方法包括:获取所述终端的系统功耗值;确定所述终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定所述电池的充电需求功率;根据所述系统功耗值和所述充电需求功率,确定充电参数,其中,所述温控充电电流值为所述电池在充电不发热情况下的最大电流值;根据所述充电参数确定所述充电器的充电输出功率,以使所述充电器按照所述充电输出功率对所述终端充电。
第二方面,本申请实施例提供一种充电控制装置,包括:获取模块,被设置为获取终端的系统功耗值;确定模块,被设置为确定所述终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定所述电池的充电需求功率;根据所述系统功耗值和所述充电需求功率,确定充电参数,其中,所述温控充电电流值为所述电池在充电不发热情况下的最大电流值;控制模块,被设置为根据所述充电参数确定所述充电器的充电输出功率,以使所述充电器按照所述充电输出功率对所述终端充电。
第三方面,本申请实施例提供一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现本申请实施例提供的充电控制方法。
第四方面,本申请实施例提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,实现本申请实施例提供的充电控制方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和得到。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例提供的一种充电控制方法的流程示意图;
图2是图1中步骤S2000的另一实施例的实现过程示意图;
图3是图1中步骤S2000的另一实施例的实现过程示意图;
图4是图2中步骤S2200的另一实施例的实现过程示意图
图5是图4中步骤S2210的另一实施例的实现过程示意图;
图6是图4中步骤S2220的另一实施例的实现过程示意图;
图7是图2中步骤S2400的另一实施例的实现过程示意图;
图8是本申请实施例提供的一种充电控制装置的结构图;
图9是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例涉及的充电控制方法,是基于可编程电源协议(Programmable Power Supply,PPS),为了适应不同终端在不同的应用场景下的充电需求,需要对充电器的输出功率进行调整,以达到电池保护、终端温度控制等功能。而在实际应用中,随着充电器性能的不断提升、终端的单个部件功耗值日渐增高,终端性能和充电效率对充电控制提出了更高的要求。因此,采用科学合理的充电控制的方式能更加有效地在充电状态下发挥终端的性能,尤其是在终端处于高负载运作的情况下,既能保证终端性能得到充分的发挥,也能有效提高终端的充电效率。示例性的,充电控制的经典场景为:在终端电池电量很低的情况下,还需 要继续高强度地使用终端,必须插上充电器维持电量。在这种高功耗充电场景下,往往会发生因充电升温和高负载升温叠加而导致的终端快速发热现象。
为了保证终端充电的安全性,现有的常规充电控制方法为:在充电时主要是根据电池的温度和电量等因素,计算得到电池需要的充电电流,再根据电池的这个充电需求来设置充电器的输出电流进行充电。这种控制方法的问题在于当系统负载较大的时候,处理器的发热和充电的发热叠加,会导致系统整体温度迅速上升。而温度上升后一般会触发各种保护性的动作来达到降温的目的,比如降低CPU主频、降低LCD亮度、降低充电电流等,而这些保护动作会严重地限制了终端的性能,影响用户体验。
而为了保证手机在充电状态下的性能,部分手机厂商在解决低电量高负载使用时的充电发热的问题上,提供了一种充电分离的控制模式。在打开该模式的情况下,插上充电器后,充电器完全不给电池充电而只提供系统消耗,这种方法在保证手机性能的前提下确实能实现对电池的温控。但这种方案的问题在于在高负载下,由于电池一直无法进行充电,充电器无法使电池电量得到增长,电池处于低电量状态导致损坏;另外,由于用户在使用终端时无法离开充电器使用,给用户带来诸多不便。
基于以上,本申请实施例提供一种充电控制方法、装置、电子设备及计算机可读存储介质,根据电池的温控充电电流值,确定电池的充电需求功率;根据系统功耗值和充电需求功率,确定充电参数;根据充电参数确定充电器的充电输出功率,以使充电器按照充电输出功率对终端充电,以实现有效缓解高负载运行状态下系统供电和电池充电之间的矛盾,保持对终端的稳定供电和温度控制,在确保用户的使用体验的前提下保证终端的充电稳定性。
请参见图1,图1示出了本申请实施例提供的一种充电控制方法的流程。如图1所示,本申请实施例的充电控制方法包括以下步骤:
S1000,获取终端的系统功耗值。
通过现有的终端检测软件,能直接获取各个主要部件的功耗值,将终端的主要耗电部件的功耗值进行定期的收集和统计,就能合并得出终端的系统功耗值。通过检测软件获取终端各个部件的功耗值属于现有技术,此处不再赘述。
示例性的,移动终端的主要部件包括显示屏、CPU、传感器、摄像头、扬声器等。其中,显示屏在工作过程中发热发亮,尤其是目前的移动终端显示屏的分辨率绝大部分都在1080P以上,在长时间的使用过程中会耗费大量的电量。另外,移动终端的所有操作都受CPU控制,CPU的性能指标直接决定了移动终端的系统性能指标。CPU具有以下几个方面的基本功能:数据通信,资源共享,分布式处理和提供系统可靠性,因此,在正常使用手机的情况下显示屏和CPU是最耗电的移动终端部件。当然,在某些特定场景下,其他部件的耗电量也能占据移动终端大部分的系统功耗值。示例性的,在长时间使用摄像头进行拍摄,长时间使用扬声器进行音乐外放等情况下,摄像头和扬声器等成为电量消耗的主要部件。计算其功耗值的总和,就能获取终端的系统功耗值。
在实际应用中,为了便于实时计算终端的系统功耗值,终端的系统功耗值能用充电器的输入功率减去电池的实际充电功率得到,其计算公式如下所示:
P sys=U in*I in-U bat*I bat
其中,P sys为终端的系统功耗值,U in为充电器的输入电压值,I in为充电器的输入电流值,U bat为电池的输入电压值,I bat为电池充电电流。
S2000,确定终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定电池的充电需求功率;根据系统功耗值和充电需求功率,确定充电参数,其中,温控充电电流值为电池在充电不发热情况下的最大电流值。
请参见图2和图3,图2和图3均示出了上述步骤S2000的一种实现过程示意图。如图2和图3所示,步骤S2000至少包括以下步骤:
S2100,确定终端通过充电器充电。
终端能通过检测充电接口的输入电压值和输入电流值,判断终端是否经过充电器与电源连通。示例性的,终端能通过充电芯片采集电池的状态判断电池是否通过充电器进行充电,比如电池是否存在充电电压或者充电电流,以及电池的电量是否处于增长状态,进而判断终端通过充电器与电源连接,充电器对终端的部件提供供电,并通过充电芯片对电池进行充电。
S2200,确定终端处于高负载工作状态,根据电池的温控充电电流值,确定电池的充电需求功率。
请参见图4,图4示出了上述步骤S2200的一种实现过程示意图。如图4所示,步骤S2200至少包括以下步骤:
S2210,确定终端处于高负载工作状态。
高负载工作状态是指终端处于因主要部件的资源占用率高而处于高能耗状态。示例性的,移动终端在运行多个应用程序,或者运行占用大量CPU和内存资源的程序时,如大型游戏、照相机、图象处理软件等,移动终端处于能耗高、发热量大的状态。当终端处于高负载工作状态时,为了避免核心部件因温度过高发生损坏,一般都设置有保护机制,如开启散热部件、限制CPU输出性能、降低显示屏亮度、强行关机等,以把终端的温度控制在安全范围内。
请参见图5,图5示出了上述步骤S2210的一种实现过程示意图。如图5所示,步骤S2210至少包括以下步骤:
S2211,比较系统功耗值与功率阈值。
功率阈值为预设值,其数值大小反映出当前终端处于高负载工作状态。因此,针对不同的硬件配置、软件配置和运行环境的终端,其功率阈值需要进行调整和匹配,以便于功率阈值能准确地表征终端的运行状态。示例性的,移动终端的功率阈值设置为8W,在终端通过充电器充电的情况下,当前的系统功耗值大于8W时,即确定移动终端处于高负载工作状态。
S2216,判定终端处于高负载工作状态。
在系统功耗值大于功率阈值的情况下,即充电器的输入功率减去电池的实际充电功率终端大于功率阈值,这是因为终端的主要部件处于高能耗状态而导致系统功耗值占用充电器的输入功率的比例增大,进而确定终端处于高负载工作状态。
另一个实施例中,步骤S2210至少包括以下步骤:
S2212,获取终端的处理器占用率。
处理器占用率是终端运行的程序占用的处理器资源,表示终端在某个时间点的运行程序的情况。处理器占用率越高,说明终端在这个时间上运行了很多程序,反之较少。因此,处理器占用率的大小能直接反映出终端的运行状态。通过现有的终端检测软件,能定期、准确地获取处理器占用率,进而及时地判断出当前终端的运行情况。
S2213,比较终端的处理器占用率与占用率阈值。
占用率阈值同样为预设值,其数值大小反映出当前终端处于高负载工作状态。因此,针 对不同的硬件配置、软件配置和运行环境的终端,其占用率阈值需要进行调整和匹配,以便于占用率阈值能准确地表征终端的运行状态。示例性的,移动终端的占用率阈值设置为30%,在终端通过充电器充电的情况下,当前终端的处理器占用率大于30%时,即确定移动终端处于高负载工作状态。
S2216,判定终端处于高负载工作状态。
在终端的处理器占用率大于占用率阈值的情况下,即处理器处于高能耗运行状态。示例性的,移动终端的所有操作都受处理器控制,处理器的性能指标直接决定了移动终端的系统性能指标。因此,在终端的处理器占用率大于30%的情况下,表明处理器及其他核心部件均处于高能耗状态,进而确定终端处于高负载工作状态。
另一个实施例中,步骤S2210至少包括以下步骤:
S2214,获取终端的显示屏持续显示时长。
终端的显示屏持续显示时长是终端运行的显示屏连续处于工作状态的时间,表示终端在该时间段内处于工作状态。尤其是随着高刷新率的LCD屏幕普及,移动终端中显示屏的能耗占比越发提高。终端的显示屏持续显示时长越大,说明终端在这个时间段内持续运行并消耗功率。因此,显示屏持续显示时长的大小能直接反映出终端的运行状态。通过现有的终端检测软件,能实时地获取显示屏持续显示时长,进而及时地判断出当前终端的运行情况。
S2215,比较终端的显示屏持续显示时长与时间阈值。
时间阈值同样为预设值,其数值大小反映出当前终端处于高负载工作状态。因此,针对不同分辨率的显示屏和运行环境的终端,其时间阈值需要进行调整和匹配,以便于时间阈值能准确地表征终端的运行状态。示例性的,移动终端的时间阈值设置为30分钟,在终端通过充电器充电的情况下,当前终端的显示屏持续显示时长大于30分钟时,即确定移动终端处于高负载工作状态。
S2216,判定终端处于高负载工作状态。
在终端的显示屏持续显示时长大于时间阈值的情况下,即终端的显示屏长时间处于运行状态。示例性的,移动终端的显示屏的能耗占据终端的系统功耗值相当的比例,因此显示屏的连续工作时长直接决定了移动终端的能耗值。因此,在显示屏持续显示时长大于30分钟的情况下,表明显示屏和移动终端均处于高能耗状态,进而确定终端处于高负载工作状态。
在实际应用中,为了提高对终端是否处于高负载工作状态判断的时效性和精准性,可以对上述步骤S2211、步骤S2213和步骤S2215一个或多个不同条件进行组合判断,即至少满足中系统功耗值大于功率阈值、终端的处理器占用率大于占用率阈值、终端的显示屏持续显示时长大于时间阈值中至少一个条件,才能确认终端处于高负载工作状态。
除了步骤S2210中系统功耗值、终端的处理器占用率和终端的显示屏持续显示时长作为确定终端是否处于高负载工作状态的判断依据外,终端的其他运行参数也能作为判断依据。示例性的,终端的运行内存占用率、终端的CPU当前温度等运行参数也能作为参考指标,用于判断终端是否处于高负载工作状态,其判断过程与上述步骤S2210一致,此处不再赘述。
S2220,获取最大电流值。
请参见图6,图6示出了上述步骤S2220的一种实现过程示意图。如图6所示,步骤S2220至少包括以下步骤:
S2221,在恒温环境下,以不同的额定充电电流对电池进行充电,并确保在预设时间内电 池的温度增长值小于温度阈值。
由于电池的性能相对稳定,在输入某个特定的充电电流情况下,电池的温度增长值能控制在一定范围内,进而在保证电池的充电效率的前期下,能有效地减少电池的温度上涨,避免电池在充电过程中温度增长过快,对终端的其他部件带来影响。
为了保证额定充电电流对电池的温度的影响,最大电流值的获取过程需要在温度恒定的环境下进行,比如,在恒温实验室内进行充电测试。示例性的,在恒温实验室内,当前室温设置为25摄氏度,预设时间为30分钟,温度阈值为1摄氏度。以额定充电电流I test对电池充电30分钟,并对电池温度值进行采集和统计。如果30分钟内电池温度上升小于1摄氏度,则将当前I test的电流值记录,并作为温控充电电流值的参考值。提高额定充电电流,重复上述的充电过程,记录多个符合温控条件的额定充电电流I test
S2222,从不同的额定充电电流中选取最大值作为电池在充电不发热情况下的最大电流值。
从多个符合温控条件的额定充电电流I test中,选取最大值I max作为温控充电电流值。即当电池的充电电流为I max时,在保证电池的充电效率的前提下,电池的温度增长值小于温度阈值,使电池的温度控制在一定范围内,避免发生电池和终端在充电过程中发生温度过高的情况,影响电池的安全性和终端的性能。
S2230,根据温控充电电流值和电池的输入电压值,确定充电需求功率。
在充电过程中,由于电池的输入电压值U bat随着充电器的输入电压值U in和终端的系统功耗值P sys的改变而改变,因此需要根据当前电池的输入电压值U bat和温控充电电流值,计算出当前充电需求功率,其计算公式如下所示:
P bat=U bat*I max
其中,P bat为当前充电需求功率,I max电池的温控充电电流值。
S2300,确定终端处于低负载工作状态,根据电池的技术参数和当前电量,获得充电需求功率。
低负载工作状态指终端处于因主要部件的资源占用率不高而处于低能耗状态。确定终端处于低负载工作状态的过程可以参照上述步骤S2210,当终端不满足上述高负载工作状态的条件,即可确定终端处于低负载工作状态。示例性的,当系统功耗值小于功率阈值、终端的处理器占用率大于占用率阈值、终端的显示屏持续显示时长小于时间阈值时,即可判定终端处于低负载工作状态。
当终端处于低负载工作状态时,由于系统功耗值较小,只消耗少部分充电器的总输出功率。因此,在这种情况下,充电器能充分满足电池的充电需求,根据电池的需求、性能和当前电量,对电池提供足够的充电电流和充电电压。示例性的,终端的电池能支持20W快充,则根据电池状态计算对充电器的功率需求,根据电池的规格书和当前电池的情况,计算电池允许的最大充电功率20W,作为对充电器的输出功率需求,并不需要考虑系统的功耗情况。此时,当前充电需求功率P bat的计算公式如下所示:
P bat=P max
其中,P max为当前电池允许的最大充电功率。
通过电池的规格和当前电池充电情况,比如电池的种类、容量、电池当前电量、电池的温度等等,获取电池当前理想的电池的输入电压值U bat和电池充电电流I bat,进而使充电器动 态调整输出功率,满足电池的充电需求,属于现有的充电控制技术,此处不再赘述。
S2400,根据系统功耗值和充电需求功率,确定充电参数。
请参见图7,图7示出了上述步骤S2400的一种实现过程示意图。如图7所示,步骤S2400至少包括以下步骤:
S2410,根据系统功耗值和充电需求功率确定总输出功率。
充电器连接终端并对其进行充电的过程中,充电器输出一部分功率对终端的外设进行供电,另外一部分则通过充电芯片对电池进行充电。因此,在获取的系统功耗值和充电需求功率的情况下,即能计算出总输出功率P total,其计算公式如下所示:
P total=P sys+P bat
通过系统功耗值和充电需求功率相加得到总输出功率,能保证充电器提供终端系统所需要的电能,也能向电池输出稳定的充电功率,既能避免终端因供电不足和发热过快导致的性能受限,也保证了电池的充电效率。
S2420,根据电池的输入电压值确定充电器输出电压。
电池的标称电压是指其正常使用,即处于放电状态时,能够维持较长时间的电压值。而当电池处于充电状态时,由于其内阻的作用,使得电池的输入电压值U bat升高。因此,在一般情况下,输入电压值U bat比电池的标称电压高20%左右。另外,根据终端电池的实际测试数据,由于充电器的输出端分别与终端外设和电池相连,因此充电器输出电压为电池的标称电压的两倍以上,才能保证输入电压值U bat比电池的标称电压高20%,电池才能分配到足够的充电功率,并使电池的充电效率达到最佳。因此,能根据电池性能参数和电池的输入电压值U bat,计算出充电器输出电压。示例性的,当前电池的输入电压值与标称电压均为4V时,则把充电器输出电压设置为9V,以确保电池能分配到足够的充电功率,保证电池的充电效率。
在充电参数的确定过程中,为了确保电池能处于理想的充电状态,应优先满足电池的电压需求,以保证电池的输入电压值U bat比电池的标称电压高20%。然后,再根据充电需求满足电池的输入电流。
S2430,根据总输出功率和充电器输出电压确定充电器输出电流。
在确定总输出功率和充电器输出电压后,根据总输出功率等于充电器输出电压和充电器输出电流的乘积的计算公式,就能计算出充电器输出电流。示例性的,当总输出功率P total为27W,充电器输出电压为9V,由于充电器输出电流等于总输出功率P total除以充电器输出电压,进而得到充电器输出电流为3A。
S2440,根据充电器输出电压和充电器输出电流确定充电参数。
在获得充电器输出电压和充电器输出电流后,就能通过控制充电器输出相对应的电压值和电流值,进而使充电器的输出功率满足终端的充电需求并实现电池的温度控制和终端性能的保证。在实际应用中,还需要比较总输出功率与充电器的最大输出功率,以保证充电器在安全范围内对电池进行充电操作,以免充电器超负荷工作带来安全隐患。在确保充电器输出电压和充电器输出电流均在充电器的性能参数范围内的情况下,确定充电器的充电参数。
S3000,根据充电参数确定充电器的充电输出功率,以使充电器按照充电输出功率对终端充电。
在确定充电参数后,终端向充电器发出充电需求,充电器按照充电器输出电压和充电器输出电流向终端进行充电,进而保证充电器按照充电输出功率对终端外设进行供电和电池充 电。
在实际应用中,通过定期获取充电参数,充电器动态地调整充电输出功率对终端进行充电,以保证终端外设处于稳定供电的前提下,提高电池充电的效率性和安全性。示例性的,在终端通过充电器充电且处于高负载工作状态的情况下,由于电池的当前充电需求功率P bat恒定,充电器的充电参数主要是根据终端的系统功耗值P sys进行调整,以保证终端的性能得到稳定的发挥。而当终端通过充电器充电且处于低负载工作状态的情况下,充电器的充电参数主要是根据电池的技术参数和当前电量进行调整,以保证电池的充电效率。
本申请实施例提供的充电控制方法适用于各种终端,例如手机、平板电脑、无人机、汽车等各类可以被充电的用电终端。其应用的装置包括电源、充电头、充电线和终端。其中电源可以是普通的220V家用电源,也可以是其他规格的电源;充电头和充电线可以分开设置,也可以是合并在一起的充电器。此外,本申请实施例提供的充电控制方法支持目前常见的快速充电器,如支持快充技术(Quick Charge 3.0,QC3)、USB快速充电协议(USB Power Delivery Specification,USB PD)、PPS等协议的充电器。
参见图8,图8是本申请实施例提供的充电控制装置的结构示意图,本申请实施例提供的充电控制方法的整个流程中涉及充电控制装置中的以下模块:获取模块400、确定模块500和控制模块600。
其中,获取模块400,被设置为获取终端的系统功耗值;
确定模块500,被设置为确定终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定电池的充电需求功率;根据系统功耗值和充电需求功率,确定充电参数,其中,温控充电电流值为电池在充电不发热情况下的最大电流值;
控制模块600,被设置为根据充电参数确定充电器的充电输出功率,以使充电器按照充电输出功率对终端充电。
上述装置的模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其功能及带来的技术效果,可参见方法实施例部分,此处不再赘述。
图9示出了本申请实施例提供的电子设备700。该电子设备700包括但不限于:
存储器701,用于存储程序;
处理器702,用于执行存储器701存储的程序,当处理器702执行存储器701存储的程序时,处理器702用于执行上述的充电控制方法。
处理器702和存储器701可以通过总线或者其他方式连接。
存储器701作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的充电控制方法。处理器702通过运行存储在存储器701中的非暂态软件程序以及指令,从而实现上述的充电控制方法。
存储器701可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的充电控制方法。此外,存储器701可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器701可包括相对于处理器702远程设置的存储器,这些远程存储器可以通过网络连接至该处理器702。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的充电控制方法所需的非暂态软件程序以及指令存储在存储器701中,当被一 个或者多个处理器702执行时,执行本申请任意实施例提供的充电控制方法。
本申请实施例还提供了一种存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的充电控制方法。
在一实施例中,该存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器702执行,比如,被上述电子设备700中的一个处理器702执行,可使得上述一个或多个处理器702执行本申请任意实施例提供的充电控制方法。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本申请实施例,获取所述终端的系统功耗值;确认所述终端处于高负载工作状态,根据电池充电的最大电流值,获得充电需求功率;根据所述系统功耗值和所述充电需求功率,确定充电参数;根据所述充电参数,调整充电输出功率。本申请实施例的方案能够充电过程中保持对终端的稳定供电和温度控制,在确保用户的使用体验的前提下保证终端的充电稳定性,特别适用于移动终端在高负载运行的情况下进行稳定、安全的充电,实时根据终端使用情况和充电情况调整充电输出功率,进而提升用户的使用体验和充电稳定性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施方式进行了说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的。共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种充电控制方法,应用于终端,所述方法包括:
    获取所述终端的系统功耗值;
    确定所述终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定所述电池的充电需求功率;根据所述系统功耗值和所述充电需求功率,确定充电参数,其中,所述温控充电电流值为所述电池在充电不发热情况下的最大电流值;
    根据所述充电参数确定所述充电器的充电输出功率,以使所述充电器按照所述充电输出功率对所述终端充电。
  2. 根据权利要求1所述的方法,其中,所述根据电池的温控充电电流值,确定所述电池的充电需求功率,包括:
    获取所述最大电流值;
    根据所述最大电流值和所述电池的输入电压值,确定所述充电需求功率。
  3. 根据权利要求2所述的方法,其中,所述根据所述系统功耗值和所述充电需求功率,确定充电参数,包括:
    根据所述系统功耗值和所述充电需求功率确定总输出功率;
    根据所述电池的输入电压值确定充电器输出电压;
    根据所述总输出功率和所述充电器输出电压确定充电器输出电流;
    根据所述充电器输出电压和所述充电器输出电流确定所述充电参数。
  4. 根据权利要求2所述的方法,其中,所述获取所述最大电流值,包括:
    在恒温环境下,以不同的额定充电电流对所述电池进行充电,并确保在预设时间内所述电池的温度增长值小于温度阈值;
    从所述不同的额定充电电流中选取最大值作为所述电池在充电不发热情况下的最大电流值。
  5. 根据权利要求1所述的方法,其中,所述确定所述终端通过充电器充电且处于高负载工作状态,包括:
    在所述系统功耗值大于功率阈值的情况下,确定所述终端处于高负载工作状态。
  6. 根据权利要求1所述的方法,其中,所述确定所述终端通过充电器充电且处于高负载工作状态,包括:
    获取所述终端的处理器占用率;
    在所述终端的处理器占用率大于占用率阈值的情况下,确定所述终端处于高负载工作状态。
  7. 根据权利要求1所述的方法,其中,所述确定所述终端通过充电器充电且处于高负载工作状态,包括:
    获取所述终端的显示屏持续显示时长;
    在所述终端的显示屏持续显示时长大于时间阈值的情况下,确定所述终端处于高负载工作状态。
  8. 根据权利要求1所述的方法,还包括:
    确定所述终端通过充电器充电且处于低负载工作状态,根据所述电池的技术参数和当前 电量,获得所述充电需求功率。
  9. 一种充电控制装置,包括:
    获取模块,被设置为获取终端的系统功耗值;
    确定模块,被设置为确定所述终端通过充电器充电且处于高负载工作状态,根据电池的温控充电电流值,确定所述电池的充电需求功率;根据所述系统功耗值和所述充电需求功率,确定充电参数,其中,所述温控充电电流值为所述电池在充电不发热情况下的最大电流值;
    控制模块,被设置为根据所述充电参数确定所述充电器的充电输出功率,以使所述充电器按照所述充电输出功率对所述终端充电。
  10. 一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1至8任意一项所述的充电控制方法。
  11. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1至8任意一项所述的充电控制方法。
PCT/CN2022/125439 2021-12-01 2022-10-14 一种充电控制方法、装置及电子设备 WO2023098317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111459619.5A CN116207807A (zh) 2021-12-01 2021-12-01 一种充电控制方法、装置及电子设备
CN202111459619.5 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098317A1 true WO2023098317A1 (zh) 2023-06-08

Family

ID=86516135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125439 WO2023098317A1 (zh) 2021-12-01 2022-10-14 一种充电控制方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN116207807A (zh)
WO (1) WO2023098317A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885319A (zh) * 2023-09-06 2023-10-13 广东技术师范大学 用于锂离子电池的温度控制方法和系统
CN117317421A (zh) * 2023-11-28 2023-12-29 深圳市深创高科电子有限公司 一种电池充电方案智能优化方法
CN117748688A (zh) * 2024-01-30 2024-03-22 中煤科工机器人科技有限公司 一种用于四差速轮式巡检机器人的自动充电管理系统
CN117937699A (zh) * 2024-03-19 2024-04-26 广东亿昇达科技有限公司 电池测试设备的输出电压钳位系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054145A (zh) * 2017-04-28 2017-08-18 北京新能源汽车股份有限公司 一种充电控制方法、装置、整车控制器及电动汽车
CN108092360A (zh) * 2017-12-25 2018-05-29 深圳市汉普电子技术开发有限公司 控制移动终端充电电流方法、装置及计算机可读存储介质
CN111404228A (zh) * 2020-03-31 2020-07-10 Oppo广东移动通信有限公司 终端电池的充电方法及装置、设备、存储介质
JP2021097555A (ja) * 2019-12-19 2021-06-24 株式会社デンソーウェーブ 端末装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054145A (zh) * 2017-04-28 2017-08-18 北京新能源汽车股份有限公司 一种充电控制方法、装置、整车控制器及电动汽车
CN108092360A (zh) * 2017-12-25 2018-05-29 深圳市汉普电子技术开发有限公司 控制移动终端充电电流方法、装置及计算机可读存储介质
JP2021097555A (ja) * 2019-12-19 2021-06-24 株式会社デンソーウェーブ 端末装置
CN111404228A (zh) * 2020-03-31 2020-07-10 Oppo广东移动通信有限公司 终端电池的充电方法及装置、设备、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUANQIAN JIANG, LI ZHIYONG, HU YUNHUA, WEI YONGQIANG: "Study and Design of Lithium-ion Battery a Mmart Charge Controller", SCIENCE AND TECHNOLOGY INNOVATION HERALD, vol. 2019, no. 20, 11 July 2013 (2013-07-11), pages 56 - 57, XP093070160 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885319A (zh) * 2023-09-06 2023-10-13 广东技术师范大学 用于锂离子电池的温度控制方法和系统
CN116885319B (zh) * 2023-09-06 2023-11-14 广东技术师范大学 用于锂离子电池的温度控制方法和系统
CN117317421A (zh) * 2023-11-28 2023-12-29 深圳市深创高科电子有限公司 一种电池充电方案智能优化方法
CN117317421B (zh) * 2023-11-28 2024-03-19 深圳市深创高科电子有限公司 一种电池充电方案智能优化方法
CN117748688A (zh) * 2024-01-30 2024-03-22 中煤科工机器人科技有限公司 一种用于四差速轮式巡检机器人的自动充电管理系统
CN117937699A (zh) * 2024-03-19 2024-04-26 广东亿昇达科技有限公司 电池测试设备的输出电压钳位系统

Also Published As

Publication number Publication date
CN116207807A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2023098317A1 (zh) 一种充电控制方法、装置及电子设备
US9372521B2 (en) Systems and methods for providing auxiliary reserve current for powering information handling systems
WO2018126558A1 (zh) 充电电流门限调整方法、终端设备和图形用户界面
KR101770933B1 (ko) 휴대용 전자 디바이스 내의 배터리 모니터링
CN108170256B (zh) 一种usb-c动态分配功率系统及其功率检测方法
US20130328399A1 (en) Method for reducing the number of power terminal connectors
US20080238358A1 (en) Electronic apparatus, charging method therefor, and battery
CN110546846B (zh) 包括双向充电调节器的混合电池组
EP2711803A2 (en) Host apparatus and method of charging user terminal apparatus
CN110112810A (zh) 一种手机壳以及充电方法
EP4134789A1 (en) Brown out condition detection
WO2019119326A1 (zh) 充电方法、装置、终端设备及计算机可读存储介质
CN104980561A (zh) 一种智能调节充电电流的移动终端及其实现方法
WO2018072443A1 (zh) 一种充电方法、设备及存储介质
TW201411325A (zh) 電子系統、電子裝置以及電源管理方法
CN107357392A (zh) 移动终端温升控制方法、移动终端及可读存储介质
US20140173309A1 (en) Information processing apparatus, and control method for information processing apparatus
WO2019223450A1 (zh) 一种充电方法、装置、终端和计算机可读存储介质
WO2016180241A1 (zh) 终端节能管理方法、装置及终端
CN115986895B (zh) 充电状态控制方法和电子设备
CN113835517A (zh) 快速动态电容、频率、和/或电压节流装置和方法
CN204539366U (zh) 电子装置
TW201541803A (zh) 可攜式電子裝置及其充電控制方法
TWI568137B (zh) 智慧充電裝置及其充電排程管控方法
WO2022121512A1 (zh) 充电控制方法及装置、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022900122

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022900122

Country of ref document: EP

Effective date: 20240618