WO2023097867A1 - 一种无线通信系统同步块发送指示方法和设备 - Google Patents

一种无线通信系统同步块发送指示方法和设备 Download PDF

Info

Publication number
WO2023097867A1
WO2023097867A1 PCT/CN2022/070474 CN2022070474W WO2023097867A1 WO 2023097867 A1 WO2023097867 A1 WO 2023097867A1 CN 2022070474 W CN2022070474 W CN 2022070474W WO 2023097867 A1 WO2023097867 A1 WO 2023097867A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
communication system
wireless communication
adjustment
basic
Prior art date
Application number
PCT/CN2022/070474
Other languages
English (en)
French (fr)
Inventor
焦慧颖
王志勤
魏贵明
徐菲
杜滢
沈霞
闫志宇
刘晓峰
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2023097867A1 publication Critical patent/WO2023097867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a method and device for indicating synchronization block transmission in a wireless communication system.
  • the NR System Synchronous Broadcast Block Set is a collection of multiple simultaneous broadcast blocks within a certain period of time. In the same period, each simultaneous broadcast block corresponds to a beam direction, and the beam direction of each simultaneous broadcast block in an SSB covers the whole neighborhood.
  • the terminal equipment UE needs to obtain the current SSB block index information from the PBCH block to obtain the complete downlink timing of the air interface.
  • the terminal After successfully detecting the primary and secondary synchronization signals, the terminal starts to receive the broadcast channel, and the SSB index in the broadcast channel is used to indicate the SSB subcarrier offset.
  • the SSB index in the broadcast channel is used to indicate the SSB subcarrier offset.
  • NR PBCH DM RS also indicates the SSB index, which helps to reduce the number of bits of PBCH.
  • the spatial signal shaping function of the intermediate node is based on controlling the propagation of electromagnetic waves in the communication channel to improve the performance of the communication system.
  • a smart metasurface is a metasurface composed of a large number of tiny elements that diffusely reflect incoming signals in a controllable manner.
  • the application of smart metasurfaces in communication systems increases the requirements for real-time reconfigurability and control of communication systems.
  • the phase and other parameters of the metasurface are controlled by the base station to better control the diffuse reflection incident signal to realize the controllable propagation of electromagnetic waves in the communication channel, so as to improve the performance of the communication system in terms of coverage, capacity and energy efficiency.
  • the beam from the base station will change the direction of the beam passing through the metasurface, and the metasurface can realize the controllable propagation of multiple phase changes.
  • the SSB beam sent by the base station passes through the RIS unit, it will reflect multiple beamformers.
  • the sending cycle and sending pattern of the synchronization block need to be redesigned.
  • This application proposes a synchronization block transmission instruction method and equipment in a wireless communication system to solve the problem of how to realize beam identification through synchronization blocks after being reflected by an intermediate node.
  • the present application proposes a synchronization block transmission instruction method in a wireless communication system
  • the sending period of SSB in the R+1 beams is R+1 times of the basic period; the basic period is the basic sending period of the basic beam SSB under the condition of no intermediate node device.
  • the sending period is greater than 5ms.
  • the number of SSB indexes under the condition of intermediate node equipment is R+1 times of the number of SSB indexes under the condition of no intermediate node equipment; the number of bits of the SSB index is 3+log 2 (R ⁇ L), where L is all The number of basic beams in the basic period mentioned above.
  • the DM-RS sequence initialization scrambling code sent in the (r+1)th SSB basic period is a function of the rth adjustment coefficient identifier, and the function value changes with the value of the adjustment coefficient identifier.
  • the value of R is preset, or indicated to the terminal device by signaling.
  • the preset R value is the maximum value of the adjustment capability of the intermediate node device.
  • the method described in any one embodiment of the first aspect of the present application is used for network equipment, and includes the following steps:
  • the SSB response signal is received, and the adjustment beam direction occupied by the response signal is determined according to the adjustment coefficient identifier and/or SSB index corresponding to the SSB response signal.
  • the method described in any one embodiment of the first aspect of the present application is used for a terminal device, and includes the following steps:
  • the SSB signal is received, and the adjustment beam direction occupied by the SSB signal is determined according to the adjustment coefficient identifier and/or the SSB index corresponding to the SSB signal.
  • the terminal device determines the sending period of the SSB and/or the number of SSB indexes according to the value R.
  • the embodiment of the present application proposes a network device, which is used to implement the wireless communication system synchronization block transmission instruction method described in any embodiment of the present application, and at least one module in the network device is used for at least one of the following Function: send out R+1 SSB basic periodic signals through the basic beam; receive the SSB response signal, and determine the adjustment beam direction occupied by the response signal according to the adjustment coefficient identification and/or SSB index corresponding to the SSB response signal.
  • the embodiment of the present application proposes a terminal device, which is used to implement the synchronization block transmission instruction method of the wireless communication system described in any embodiment of the present application, and at least one module in the terminal device is used for at least one of the following Function: receive the SSB signal, determine the adjustment beam direction occupied by the SSB signal according to the adjustment coefficient identifier and/or SSB index corresponding to the SSB signal; determine the SSB transmission cycle and/or the number of SSB indexes according to the value R.
  • the present application also proposes a communication device, including: a memory, a processor, and a computer program stored in the memory and operable on the processor, when the computer program is executed by the processor Implement the steps of the method described in any one embodiment of the first aspect of the present application.
  • the present application also proposes a computer-readable medium, on which a computer program is stored, and when the computer program is executed by a processor, the computer program as described in any one of the embodiments of the first aspect of the present application is implemented. method steps.
  • the present application further proposes a mobile communication system, including at least one network device as described in any embodiment of the present application and/or at least one terminal device as described in any embodiment of the present application.
  • the patent of the present invention proposes a synchronization block transmission method in a wireless communication system with a metasurface reflection device intermediate node device, which enables the terminal to identify the optimal beam among multiple beams, and obtains the index value of the beam, which solves the problem of intelligent
  • using the proposed synchronization block transmission method can allow the terminal to scan all the beams and minimize the overhead of signaling instructions.
  • Fig. 1 is the SSB sending time configuration of the prior art
  • Fig. 2 is the embodiment that SSB sends cycle change
  • FIG. 3 is a flow chart of an embodiment of the method of the present application used in a network device
  • FIG. 4 is a flow chart of an embodiment of the method of the present application applied to a terminal device
  • FIG. 5 is a schematic diagram of an embodiment of a network device
  • FIG. 6 is a schematic diagram of an embodiment of a terminal device
  • FIG. 7 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • Fig. 8 is a block diagram of a terminal device according to another embodiment of the present invention.
  • This application proposes a synchronization block transmission instruction method in a wireless communication system
  • the wireless communication system includes network equipment, an intermediate node device, and user equipment; the service signal sent by the network equipment is reflected to the user equipment through the intermediate node device, or, The service signal sent by the network device is directly received by the user equipment.
  • An SSB is a collection of multiple simulcast blocks within a certain period of time, each simulcast block corresponds to a beam direction within a unified period, and the beam directions of each simulcast block in one SSB cover the entire cell.
  • the adjustment coefficient is a specific value adjusted by the intermediate node to the phase, amplitude, polarization, etc. of the network device or the terminal device, and the adjustment coefficient is identified as the adjustment coefficient identification.
  • the network device The transmission cycle T of the SSB is R+1 times of 5ms.
  • the SSB transmission of NR is shown in Figure 1, and the SSB transmission time configuration in the prior art.
  • the basic beam sending basic period is 5 ms.
  • the NR system supports six synchronization signal periods, namely 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the terminal assumes that the period of the synchronization signal is 20ms.
  • an SSB set is limited to a half frame of 5 ms, and starts from the first time slot of the half frame.
  • the transmission cycle of the SSB on R+1 beams of the basic beam and the adjustment beam is R+1 times of the basic cycle; the basic cycle is the SSB under the condition of no intermediate node device sending cycle.
  • the number of SSB indexes under the condition of intermediate node equipment is R+1 times of the number of SSB indexes under the condition of no intermediate node equipment; the number of bits of the SSB index is 3+log 2 (R ⁇ L), where L is all The number of basic beams in the basic period mentioned above.
  • NR R15 supports five SSB set patterns, which are related to the frequency band where the current system works:
  • the UE needs to obtain the current SSB block index information from the PBCH block to obtain the air interface Complete downlink timing.
  • the number of extended basic SSBs sent is (R+1) ⁇ L.
  • the number of extended basic SSBs sent is 12, and the SSB indexes can be identified as SSB0, SSB1, SSB2, SSB3,..., SSB11.
  • the DM-RS sequence initialization scrambling code sent by the r+1th SSB is a function of the rth adjustment coefficient identifier, and the function value changes with the value of the adjustment coefficient identifier.
  • the PBCH DM RS sequence initialization introduces the RIS adjustment coefficient identification ID (RID), which is used to distinguish the PBCH DM RS sequence transmission corresponding to different adjustment coefficients.
  • RID RIS adjustment coefficient identification ID
  • the number of transmitted extended basic SSBs is 12, and the SSB index can be identified as SSB0_0, SSB0_1, SSB0_2, SSB0_3, SSB1_0, SSB1_1, SSB1_2, SSB1_3, SSB2_0, SSB2_1, SSB2_2, SSB2_3, that is, the index (RID) of the adjustment coefficient combined with the SSB block index (SSB_index) corresponding to each adjustment coefficient.
  • the index (RID) of the adjustment coefficient combined with the SSB block index (SSB_index) corresponding to each adjustment coefficient.
  • the DM RS sequence used for the SSB block is a gold sequence
  • the initialization of the sequence generation adds the RIS regulation flag
  • the UE can obtain the index information of the lower 3 bits of the SSB by checking the DM RS, and can obtain the semi-radio frame identifier (indicating whether the PBCH is sent in the first half subframe or the second half subframe of the frame) at the same time.
  • L 4
  • the UE will obtain the SSB index of the lower 3 bits by checking the detected PBCH DM RS.
  • the NR PBCH DM RS sequence is a random sequence generated by a Gold sequence with an order of 31, and the required DM RS sequence is obtained through QPSK adjustment.
  • the parameters used for scrambling sequence initialization include PCID, semi-radio frame identifier and SSB index.
  • the parameters used for the initialization of the scrambling sequence include PCID and 3 LSBs (lower bits) of the SSB index.
  • the UE can obtain the 3 low-bit index information of the SSB by checking the DM RS, and can even obtain the semi-radio frame identification at the same time.
  • the interference between SSB blocks sent by different RIS adjustment coefficients can be suppressed, and the terminal can distinguish the corresponding RIS adjustment coefficient (RID) when detecting, and each SSB corresponding to the adjustment coefficient RID
  • Recommended f(RID) RID, or
  • the RIS adjustment coefficient can also include multiple different RIS entities, which are identified by RIS ID.
  • the RIS ID corresponding to each RIS entity has a different adjustment coefficient.
  • the RIS adjustment coefficient is the adjustment coefficient corresponding to all RIS entities. of and.
  • the terminal can identify the adjustment coefficient (RID) of the corresponding beam through blind detection of PBCH DM RS, and at the same time identify the lower 3 bits (issb), combined with the upper 3 bits of broadcast signaling, the index value of SSB can be obtained .
  • This method does not need to increase the number of bits of broadcast signaling.
  • the lower 3 bits and the upper 3 bits make a total of 6 bits, which can indicate up to 64 SSB index values.
  • the value of R is preset, or indicated to the terminal device through signaling.
  • the preset R value is the maximum value of the adjustment capability of the intermediate node device.
  • the number of bits of the SSB index of the channel is 3+log 2 (R ⁇ L) bits, where the value of R is the value of the adjustment capability of the intermediate node in the system.
  • the number of SSB indexes increases from L to (R+1) ⁇ L, so the number of bits of SSB indexes also increases to 3+log 2 (R ⁇ L) bits.
  • the terminal still indicates the existing SSB index when the RIS is not enabled, and the newly added log 2 (R ⁇ L) bits are used to indicate the newly added SSB index.
  • FIG. 3 is a flow chart of an embodiment of the method of the present application applied to a network device.
  • the method described in any one embodiment of the first aspect of the present application is used for network equipment, and includes the following steps 201-204:
  • Step 201 Determine the number R of intermediate node adjustment coefficients.
  • the value of R is indicated by the base station to the terminal.
  • Step 202 Determine the basic period for sending the SSB and the number of bits of the SSB index according to R and L.
  • the basic period is the transmission period of the basic beam SSB under the condition that there is no intermediate node device.
  • the number of bits of the SSB index is 3+log 2 (R ⁇ L).
  • Step 203 sending out R+1 SSB signals through the basic beam.
  • the SSB basic period corresponds to the rth adjustment coefficient identifier.
  • the DM-RS sequence initialization scrambling code is implemented, and the DM-RS sequence initialization scrambling code sent by the r+1th SSB is a function of the rth adjustment coefficient identification, and the function value varies with the adjustment The value change identified by the coefficient.
  • Step 204 Receive the SSB response signal, and determine the adjustment beam direction occupied by the response signal according to the adjustment coefficient identifier and/or SSB index corresponding to the SSB response signal.
  • step 204 the network device adjusts the adjustment coefficient of the intermediate node correspondingly according to the SSB optimal beam information reported by the terminal, and sends the optimal SSB beam.
  • FIG. 4 is a flow chart of an embodiment of the method of the present application applied to a terminal device.
  • the method described in any one embodiment of the first aspect of the present application is used for a terminal device, and includes the following steps 301-304:
  • Step 301 the terminal device determines the SSB transmission period and/or the number of SSB indexes according to the values R and L.
  • Step 302 Receive the SSB signal, and determine the adjustment beam direction occupied by the SSB signal according to the adjustment coefficient identifier and/or the SSB index corresponding to the SSB signal.
  • the DM-RS sequence initialization scrambling code sent in the (r+1)th SSB basic period is a function of the rth adjustment coefficient identifier, and the function value changes with the value of the adjustment coefficient identifier.
  • step 303 the index (RID) of the adjustment coefficient is combined with the SSB block index (SSB_index) corresponding to each adjustment coefficient to obtain the SSB index corresponding to the adjusted beam direction.
  • the terminal equipment recognizes the lower 3 bits (issb), the lower bits are obtained through blind detection of PBCH DMRS, combined with the upper 3 bits of the broadcast signaling, the higher bits are indicated by the broadcast signaling, and the SSB index can be obtained value.
  • the terminal device obtains the current SSB block index information from the PBCH block, and obtains the complete downlink timing of the air interface.
  • Step 304 Send an SSB response signal, where the SSB response signal corresponds to the access opportunity indicated by the SSB index corresponding to the adjusted beam direction.
  • the terminal blindly detects the DM RS of the SSB block to obtain the lower 3 bits of the SSB index, and then decodes the PBCH broadcast signaling to obtain the upper log 2 (R ⁇ L) bits.
  • the terminal blindly detects the DM RS of the SSB block to obtain the lower 3 bits of the SSB index and the corresponding adjustment coefficient identification, and then decodes the PBCH broadcast signaling to obtain the upper 3 bits.
  • Both of the above two methods can obtain the adjustment coefficient of the intermediate device and the optimal beam information of the SSB.
  • Fig. 5 is a schematic diagram of an embodiment of a network device.
  • the embodiment of the present application also proposes a network device, using the method of any one of the embodiments of the present application, the network device is used to: send R+1 SSB basic periodic signals through the basic beam; receive the SSB response signal, according to the SSB The adjustment coefficient identifier and/or SSB index corresponding to the response signal determines the adjustment beam direction occupied by the response signal.
  • a network device 400 proposed in this application includes a network sending module 401 , a network determining module 402 , and a network receiving module 403 .
  • the network sending module is configured to send the SSB signal, and the DMRS of the SSB signal is scrambled by the initialization scrambling code.
  • the network determination module is used to determine the transmission period of the SSB and the number of bits of the SSB index according to R and L; it is also used to determine the corresponding adjustment beam as the optimal beam according to the received SSB response signal.
  • the network receiving module is configured to receive the SSB response signal.
  • Fig. 6 is a schematic diagram of an embodiment of a terminal device.
  • the present application also proposes a terminal device, using the method in any one of the embodiments of the present application, the terminal device is configured to: receive the SSB signal, and determine the SSB signal according to the adjustment coefficient identifier and/or the SSB index corresponding to the SSB signal Occupied adjustment beam direction; according to the values R and L, determine the transmission period of the SSB and/or the number of SSB indexes.
  • a terminal device 500 proposed in this application includes a terminal sending module 501 , a terminal determining module 502 , and a terminal receiving module 503 .
  • the terminal receiving module is configured to receive the SSB signal.
  • the terminal determination module is used to determine the SSB transmission period and/or the number of SSB indexes according to the values R and L; it is also used to determine the DM-RS sequence initialization scrambling code through descrambling, and further determine the adjustment coefficient identifier, and then Combined with the SSB block index (SSB_index) corresponding to each adjustment coefficient, the SSB index corresponding to the adjusted beam direction is obtained.
  • SSB_index SSB block index
  • the terminal sending module is used to send SSB response information.
  • the terminal equipment mentioned in this application may refer to mobile terminal equipment.
  • a network device 600 includes a processor 601 , a wireless interface 602 , and a memory 603 .
  • the wireless interface may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the wireless interface realizes the communication function with the terminal equipment, and processes the wireless signal through the receiving and transmitting device, and the data carried by the signal communicates with the memory or the processor through the internal bus structure.
  • the memory 603 contains a computer program for executing any one embodiment of the present application, and the computer program runs or changes on the processor 601 .
  • the bus system includes a data bus, a power bus, a control bus and a status signal bus, which will not be repeated here.
  • Fig. 8 is a block diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device 700 includes at least one processor 701 , a memory 702 , a user interface 703 and at least one network interface 704 .
  • Various components in the terminal device 700 are coupled together through a bus system.
  • a bus system is used to implement the connection communication between these components.
  • the bus system includes data bus, power bus, control bus and status signal bus.
  • the user interface 703 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball, a touch pad, or a touch screen.
  • Memory 702 stores executable modules or data structures.
  • An operating system and application programs can be stored in the memory.
  • the operating system includes various system programs, such as framework layer, core library layer, driver layer, etc., for realizing various basic services and processing tasks based on hardware.
  • the application program includes various application programs, such as a media player, a browser, etc., and is used to implement various application services.
  • the memory 702 includes a computer program for executing any embodiment of the present application, and the computer program is run or changed on the processor 701 .
  • the memory 702 includes a computer-readable storage medium, and the processor 701 reads the information in the memory 702 and completes the steps of the above method in combination with its hardware. Specifically, a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 701, each step of the method embodiment as described in any one of the foregoing embodiments is implemented.
  • the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the method of the present application can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, an off-the-shelf programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • Various methods, steps and logic block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in the embodiments of the present invention may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • a device of the present application includes one or more processors (CPUs), input/output user interfaces, network interfaces and memory.
  • the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present application also proposes a computer-readable medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any one embodiment of the present application are implemented.
  • the memory 603, 702 of the present invention may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory ( flash RAM).
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • this application also proposes a mobile communication system, including at least one embodiment of any terminal device in this application and or at least one embodiment of any network device in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信系统同步块发送指示方法,所述无线通信系统中包含网络设备、中间节点装置和用户设备;所述网络设备发出的业务信号经中间节点装置反射至用户设备,或,所述网络设备发出的业务信号直接被用户设备接收,所述中间节点设备具有R个调整系数,网络设备的任意1个基础波束经过所述中间节点设备后,形成R个调整波束;1个基础波束和R个调整波束分别对应于1个SSB基础周期,第r+1(其中r=1~R)个SSB基础周期对应于第r个调整系数标识。本申请还包含用于实现所述方法的装置。本申请解决经中间节点反射后如何通过同步块实现波束识别的问题。

Description

一种无线通信系统同步块发送指示方法和设备
本申请要求于2021年12月03日提交中国国家知识产权局、申请号为202111470640.5、发明名称为“一种无线通信系统同步块发送指示方法和设备”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种无线通信系统同步块发送指示方法和设备。
背景技术
NR系统同步广播块集合(SSB)是一定时间周期内的多个同步广播块的集合,在统一周期内每个同步广播块对应一个波束方向,且一个SSB内的各个同步广播块的波束方向覆盖了整个小区。终端设备UE要从PBCH块中获取当前SSB块索引信息,才能得到空口的完整下行定时。
终端在成功检测主辅同步信号后,开始接收广播信道,广播信道中的SSB索引,用于指示SSB子载波偏移。NR PBCH DM RS除了用于信道估计外,还指示SSB索引,有助于减少PBCH的比特数。
中间节点的空间信号整形功能建立在控制电磁波在通信信道中的传播以提高通信系统性能的基础上。例如,智能超表面(RIS)是一个由大量微小元素组成的元表面,这些元素以可控的方式漫反射入射信号。智能超表面应用在通信系统中,对通信系统增加了具有实时可重构性和控制的要求。具体地是通过基站来控制超表面的相位等参数,来更好的控制漫反射入射信号实现电磁波在通信信道中的可控传播,以提高通信系统的覆盖、容量和能效等方面的性能。
由于控制如智能超表面这样的中间节点是新引入通信系统中的实体,来自基站的波束经过超表面会带来波束方向的改变,超表面可以实现多个相位变化的可控传播,已有的基站发送的SSB波束经过RIS单元后,会反射出多个波束赋形,为方便终端检测接收信号强度获得最优波束方向,同步块的发送周期和发送图样均需要重新设计。
发明内容
本申请提出一种无线通信系统同步块发送指示方法和设备,解决经中间节 点反射后如何通过同步块实现波束识别的问题。
第一方面,本申请提出一种无线通信系统同步块发送指示方法,所述无线通信系统中包含网络设备、中间节点装置和用户设备;所述网络设备发出的业务信号经中间节点装置反射至用户设备,或,所述网络设备发出的业务信号直接被用户设备接收,所述中间节点设备具有R个调整系数,网络设备的任意1个基础波束经过所述中间节点设备后,形成R个调整波束;1个基础波束和R个调整波束分别对应于1个SSB基础周期,第r+1(其中r=1~R)个SSB基础周期对应于中间节点设备的第r个调整系数标识。
优选地,R+1个波束中SSB的发送周期,是基础周期的R+1倍;所述基础周期,是无中间节点装置条件下的基础波束SSB的发送基础周期。
优选地,所述发送周期大于5ms。
进一步地,有中间节点设备条件下SSB索引的数量为无中间节点设备条件下SSB索引数量的R+1倍;SSB索引的比特数为3+log 2(R×L),其中,L为所述基础周期内的基础波束数量。
进一步地,第r+1个SSB基础周期中发送的DM-RS序列初始化扰码是第r个调整系数标识的函数,且所述函数值随所述调整系数标识的值变化。
优选地,R的值是预设的,或者,由信令向终端设备指示的。
优选地,预设的R值是所述中间节点设备调节能力的最大数值。
本申请第一方面任意一项实施例所述方法,用于网络设备,包含以下步骤:
通过基础波束发出R+1个SSB基础周期信号;
接收SSB响应信号,根据SSB响应信号对应的调整系数标识和/或SSB索引,确定响应信号占用的调整波束方向。
本申请第一方面任意一项实施例所述方法,用于终端设备,包含以下步骤:
接收SSB信号,根据所述SSB信号对应的调整系数标识和/或SSB索引,确定SSB信号占用的调整波束方向。
进一步地,所述终端设备根据数值R,确定SSB的发送周期和/或SSB索引的数量。
第二方面,本申请实施例提出一种网络设备,用于实现本申请任意一项实施例所述无线通信系统同步块发送指示方法,所述网络设备中至少一个模块,用于以下至少一项功能:通过基础波束发出R+1个SSB基础周期信号;接收 SSB响应信号,根据SSB响应信号对应的调整系数标识和/或SSB索引,确定响应信号占用的调整波束方向。
第三方面,本申请实施例提出一种终端设备,用于实现本申请任意一项实施例所述无线通信系统同步块发送指示方法,所述终端设备中至少一个模块,用于以下至少一项功能:接收SSB信号,根据所述SSB信号对应的调整系数标识和/或SSB索引,确定SSB信号占用的调整波束方向;根据数值R,确定SSB的发送周期和/或SSB索引的数量。
第四方面,本申请还提出一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本申请第一方面任意一项实施例所述方法的步骤。
第五方面,本申请还提出一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如本申请第一方面任意一项实施例所述的方法的步骤。
第六方面,本申请还提出一种移动通信系统,包含至少一个如本申请任意一实施例所述的网络设备和/或至少一个如本申请任意一项实施例所述的终端设备。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本发明专利提出了带有超表面反射装置中间节点设备的无线通信系统中的同步块的发送方法,能够让终端识别出多个波束中的最优波束,并且获得波束的索引数值,解决了智能超表面系统中波束数量增加的问题,利用所提出的同步块的发送方法,能够让终端扫描到所有的波束,并且尽量降低信令指示的开销。
附图说明
图1为现有技术的SSB发送时间配置;
图2为SSB发送周期变化的实施例;
图3为本申请的方法用于网络设备的实施例流程图;
图4为本申请的方法用于终端设备的实施例流程图;
图5为网络设备实施例示意图;
图6是终端设备的实施例示意图;
图7为本发明另一实施例的网络设备的结构示意图;
图8是本发明另一个实施例的终端设备的框图。
具体实施方式
以下结合附图,详细说明本申请各实施例提供的技术方案。
本申请提出一种无线通信系统同步块发送指示方法,所述无线通信系统中包含网络设备、中间节点装置和用户设备;所述网络设备发出的业务信号经中间节点装置反射至用户设备,或,所述网络设备发出的业务信号直接被用户设备接收。SSB是一定时间周期内的多个同步广播块的集合,在统一周期内每个同步广播块对应一个波束方向,且一个SSB内的各个同步广播块的波束方向覆盖了整个小区。所述中间节点设备具有R个调整系数,网络设备的任意1个基础波束经过所述中间节点设备后,形成R个调整波束;1个基础波束和R个调整波束分别对应于1个SSB基础周期,第r+1(其中r=1~R)个SSB基础周期对应于所述中间节点设备的第r个调整系数标识。所述调整系数为中间节点对网络设备或者终端设备的相位、幅度、极化等调整的具体数值,将所述调整系数进行身份标识,即为所述的调整系数标识。
实施例1、
网络设备控制无线通信节点子阵列的R个调整系数,网络设备的L个基础波束组成的基础波束集合经过无线通信节点转发后,形成M=L×R个调整波束组成的调整波束集合,网络设备的同步广播块(SSB)的发送周期T为5ms的R+1倍。第r(r=1,2,...,R)个SSB基础周期的发送,对应于第r个中间节点的调整系数。
以15kHz子载波间隔,3GHz以下频段和3-6GHz为例,NR的SSB的发送如图1,现有技术的SSB发送时间配置。
优选地,所述基础波束发送基础周期为5ms。例如,NR系统支持6种同步信号周期,即5ms、10ms、20ms、40ms、80ms、160ms。在小区搜索过程中,终端假定同步信号的周期为20ms。在NR系统中,一个SSB集合被限制在某个5ms的半帧内,且从这个半帧的第一个时隙开始。
优选地,对应于每一个基础波束,基础波束和调整波束共R+1个波束上SSB的发送周期,是基础周期的R+1倍;所述基础周期,是无中间节点装置条件下的SSB的发送周期。
图2为SSB发送周期变化的实施例。举例来说,以15kHz子载波间隔, 3GHz以下频段和3-6GHz为例,引入中间节点,可调节的调整系数R=2,则新设计的SSB的发送如图所示,SSB的发送周期变为5ms×(R+1)=15ms。
进一步地,有中间节点设备条件下SSB索引的数量为无中间节点设备条件下SSB索引数量的R+1倍;SSB索引的比特数为3+log 2(R×L),其中,L为所述基础周期内的基础波束数量。
例如,NR R15支持5种SSB集合图样,这些图样与当前系统工作的频带有关:
Case A-SSB块为15kHz子载波间隔,0-3GHz,5ms周期内最大发送次数L=4,3GHz-6GHz,最大发送次数L=8。Case B-SSB块为30kHz子载波间隔,0-3GHz,5ms周期内最大发送次数L=4,3GHz到6GHz,最大发送次数L=8。Case C-SSB块为30kHz子载波间隔,对于FDD分为0-3GHz,3GHz到6GHZ两种情况,对于TDD,分为0-2.4GHz,2.4-6GHz两种情况,其中低频段5ms周期内最大发送次数L=4,高频段最大发送次数L=8。Case D-SSB块为120kHz子载波间隔,针对6GHz以上频率,5ms周期内最大发送次数L=64。Case E-SSB块为240kHz子载波间隔,针对6GHZ以上频率,5ms周期内最大发送次数L=64。对于5种case,SSB周期内发送的最大个数L=4/8/64,每个SSB的索引从0到L-1,UE要从PBCH块中获取当前SSB块索引信息,才能得到空口的完整下行定时。
本申请扩展基础SSB的发送个数为(R+1)×L个,3GHz的情况下,扩展基础SSB的发送个数为12个,SSB索引可以标识为SSB0,SSB1,SSB2,SSB3,…,SSB11。
实施例2、
进一步地,第r+1个SSB发送的DM-RS序列初始化扰码是第r个调整系数标识的函数,且所述函数值随所述调整系数标识的值变化。
PBCH DM RS序列初始化引入RIS调整系数标识ID(RID),用于区分不同调整系数所对应的PBCH的DM RS序列发送。
举例来说,以15kHz子载波间隔,3GHz以下频段和3-6GHz为例,引入中间节点,可调节的调整系数数量R=2,则新设计的SSB的发送如下图所示,SSB的基础周期变为5ms×(R+1)=15ms,扩展基础SSB的发送个数为(R+1) ×L个,3GHz的情况下,扩展基础SSB的发送个数为12个,SSB索引可以标识为SSB0_0,SSB0_1,SSB0_2,SSB0_3,SSB1_0,SSB1_1,SSB1_2,SSB1_3,SSB2_0,SSB2_1,SSB2_2,SSB2_3,也就是调整系数的索引(RID)结合每个调整系数对应的SSB块索引(SSB_index)。
用于SSB块的DM RS序列为gold序列
Figure PCTCN2022070474-appb-000001
序列生成的初始化加入RIS调节标识
Figure PCTCN2022070474-appb-000002
这里当L=4时,
Figure PCTCN2022070474-appb-000003
UE通过检查DM RS可获得SSB低3位的索引信息,可以同时获得半无线帧标识(指示PBCH是在帧的前半个子帧发送还是后半个子帧发送),当L>4的时候
Figure PCTCN2022070474-appb-000004
UE将通过检查检测的PBCH DM RS获得低3位比特的SSB索引。
通过PBCH DM RS携带的一部分SSB索引信息最多为3比特,并且是SSB索引的低3位比特。在一个实施例中,NR PBCH DM RS序列是通过阶数为31的Gold序列产生随机序列,并通过QPSK调整得到所需的DM RS序列。当SSB突发集中的SSB数量L为4时,加扰序列初始化所用的参数包括PCID、半无线帧标识和SSB的索引。当每个SSB突发集中的最大SSB数量L为64时,加扰序列初始化所用的参数包括PCID和SSB索引的3个LSB(低比特位)。当L=4或8时,UE通过检查DM RS可获得SSB的3个低比特位索引信息,甚至可以同时获得半无线帧标识。当L=64时,UE将通过检测PBCH DM RS获得SSB索引的3个LSB。
通过增加RID相关的函数f(RID),可以抑制不同RIS调整系数发送SSB块之间的干扰,终端在检测的时候能够区分出所对应的RIS调整系数(RID),每个对应调整系数RID的SSB块的DM RS的初始化函数加入RID的函数f(RID)。推荐的f(RID)=RID,或者
Figure PCTCN2022070474-appb-000005
这里RIS调整系数(RID),还可以包括多个不同的RIS实体,用RIS ID标识,每个RIS实体对应的RIS ID有不同的调整系数,这时的RIS调整系数 是所有RIS实体对应调整系数的和。
终端通过盲检PBCH DM RS可以识别出所对应的波束是哪种调整系数(RID),同时识别出低3位比特(issb),结合广播信令的高3位比特,就可以获得SSB的索引值。这种方法不需要增加广播信令的比特数。低3位比特结高3位比特,共计6位比特,可以指示最多64个SSB索引值。
在本申请的实施例中,R的值是预设的,或者,由信令向终端设备指示的。优选地,预设的R值是所述中间节点设备调节能力的最大数值。
网络设备控制无线通信节点子阵列的R个调整系数,网络设备的L个基础波束组成的基础波束集合经过无线通信节点转发后,形成M=L×R个调整波束组成的调整波束集合,增加广播信道的SSB索引的比特数到3+log 2(R×L)比特,其中R的数值为系统中中间节点调节能力的数值。
由于中间节点的引入,SSB索引的数量由L个增加到(R+1)×L个,所以SSB索引的比特数也要增加到3+log 2(R×L)比特。低位的3比特,终端在没有开启RIS情况,仍然指示已有的SSB索引,而新增加的log 2(R×L)比特用于指示新增加的SSB索引。
图3为本申请的方法用于网络设备的实施例流程图。
本申请第一方面任意一项实施例所述方法,用于网络设备,包含以下步骤201~204:
步骤201、确定中间节点调整系数的数量R。
可选的,R的数值由基站指示给终端。
可选的,R=R max的数值为预定义的,根据系统中中间节点的调节能力和多面板的数量,定义一个最大数值。
步骤202、根据R、L确定SSB的发送基础周期、SSB索引的比特数。
确定R+1个波束上全部SSB的发送周期,是基础周期的R+1倍。所述基础周期,是无中间节点装置条件下的基础波束SSB的发送周期。
SSB索引的比特数为3+log 2(R×L)。
步骤203、通过基础波束发出R+1个SSB信号。
网络设备的任意1个基础波束经过所述中间节点设备后,形成R个调整波束;1个基础波束和R个调整波束分别对应于1个SSB基础周期,第r+1(其中r=1~R)个SSB基础周期对应于第r个调整系数标识。
所述网络设备发送SSB时实施DM-RS序列初始化扰码,第r+1个SSB发送的DM-RS序列初始化扰码是第r个调整系数标识的函数,且所述函数值随所述调整系数标识的值变化。
步骤204、接收SSB响应信号,根据SSB响应信号对应的调整系数标识和/或SSB索引,确定响应信号占用的调整波束方向。
在步骤204中,网络设备根据终端上报的SSB最优波束信息,相应的调节中间节点的调整系数,发送最优SSB的波束。
图4为本申请的方法用于终端设备的实施例流程图。
本申请第一方面任意一项实施例所述方法,用于终端设备,包含以下步骤301~304:
步骤301、所述终端设备根据数值R、L,确定SSB的发送周期和/或SSB索引的数量。
步骤302、接收SSB信号,根据所述SSB信号对应的调整系数标识和/或SSB索引,确定SSB信号占用的调整波束方向。
由于,第r+1个SSB基础周期发送的DM-RS序列初始化扰码是第r个调整系数标识的函数,且所述函数值随所述调整系数标识的值变化。根据设定的函数确定DM-RS序列初始化扰码,终端通过盲检PBCH DM RS可以识别出所对应的波束是来自哪个调整系数(RID)。
步骤303、调整系数的索引(RID)结合每个调整系数对应的SSB块索引(SSB_index),得到调整波束方向对应的SSB索引。
终端设备识别出低3位比特(issb),低比特位是通过盲检PBCH DMRS获得的,结合广播信令的高3位比特,高比特位是广播信令指示的,就可以获得SSB的索引值。终端设备从PBCH块中获取当前SSB块索引信息,得到空口的完整下行定时。
步骤304、发送SSB响应信号,所述SSB响应信号对应于调整波束方向对应的SSB索引所表示的接入时机。
需要说明的是:
终端盲检SSB块的DM RS获取SSB索引低3比特位,再解码PBCH广播信令获取高log 2(R×L)比特位。
终端盲检SSB块的DM RS获取SSB索引低3比特位,以及所对应的调 整系数标识,再解码PBCH广播信令获取高3比特位。
以上两种方法都可以获取到中间设备的调整系数,以及SSB的最优波束信息。
图5为网络设备实施例示意图。
本申请实施例还提出一种网络设备,使用本申请中任意一项实施例的方法,所述网络设备用于:通过基础波束发出R+1个SSB基础周期信号;接收SSB响应信号,根据SSB响应信号对应的调整系数标识和/或SSB索引,确定响应信号占用的调整波束方向。
为实施上述技术方案,本申请提出的一种网络设备400,包含网络发送模块401、网络确定模块402、网络接收模块403。
所述网络发送模块,用于发送SSB信号、所述SSB信号的DMRS通过所述初始化扰码加扰。
所述网络确定模块,用于确定根据R、L确定SSB的发送周期、SSB索引的比特数;还用于根据接收的SSB响应信号确定相应的调整波束为最优波束。
所述网络接收模块,用于接收SSB响应信号。
实现所述网络发送模块、网络确定模块、网络接收模块功能的具体方法,如本申请各方法实施例所述,这里不再赘述。
图6是终端设备的实施例示意图。
本申请还提出一种终端设备,使用本申请任意一项实施例的方法,所述终端设备用于:接收SSB信号,根据所述SSB信号对应的调整系数标识和/或SSB索引,确定SSB信号占用的调整波束方向;根据数值R、L,确定SSB的发送周期和/或SSB索引的数量。
为实施上述技术方案,本申请提出的一种终端设备500,包含终端发送模块501、终端确定模块502、终端接收模块503。
所述终端接收模块,用于接收所述SSB信号。
所述终端确定模块,用于根据数值R、L,确定SSB的发送周期和/或SSB索引的数量;还用于通过解扰确定DM-RS序列初始化扰码,并进一步确定调整系数标识,再结合每个调整系数对应的SSB块索引(SSB_index),得到调整波束方向对应的SSB索引。
所述终端发送模块,用于发送SSB响应信息。
实现所述终端发送模块、终端确定模块、终端接收模块功能的具体方法如本申请各方法实施例所述,这里不再赘述。
本申请所述终端设备,可以指移动终端设备。
图7示出了本发明另一实施例的网络设备的结构示意图。如图所示,网络设备600包括处理器601、无线接口602、存储器603。其中,所述无线接口可以是多个组件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。所述无线接口实现和所述终端设备的通信功能,通过接收和发射装置处理无线信号,其信号所承载的数据经由内部总线结构与所述存储器或处理器相通。所述存储器603包含执行本申请任意一个实施例的计算机程序,所述计算机程序在所述处理器601上运行或改变。当所述存储器、处理器、无线接口电路通过总线系统连接。总线系统包括数据总线、电源总线、控制总线和状态信号总线,这里不再赘述。
图8是本发明另一个实施例的终端设备的框图。终端设备700包括至少一个处理器701、存储器702、用户接口703和至少一个网络接口704。终端设备700中的各个组件通过总线系统耦合在一起。总线系统用于实现这些组件之间的连接通信。总线系统包括数据总线,电源总线、控制总线和状态信号总线。
用户接口703可以包括显示器、键盘或者点击设备,例如,鼠标、轨迹球、触感板或者触摸屏等。
存储器702存储可执行模块或者数据结构。所述存储器中可存储操作系统和应用程序。其中,操作系统包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序包含各种应用程序,例如媒体播放器、浏览器等,用于实现各种应用业务。
在本发明实施例中,所述存储器702包含执行本申请任意一个实施例的计算机程序,所述计算机程序在所述处理器701上运行或改变。
存储器702中包含计算机可读存储介质,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器701执行时实现如上述任意一个实施例所述的方法实施例的各步骤。
处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软 件形式的指令完成。所述处理器701可以是通用处理器、数字信号处理器、专用集成电路、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。在一个典型的配置中,本申请的设备包括一个或多个处理器(CPU)、输入/输出用户接口、网络接口和存储器。
此外,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
因此,本申请还提出一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现本申请任意一项实施例所述的方法的步骤。例如,本发明的存储器603,702可包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
基于图5~8的实施例,本申请还提出一种移动通信系统,包含至少1个本申请中任意一个终端设备的实施例和或至少1个本申请中任意一个网络设备 的实施例。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包含一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种无线通信系统同步块发送指示方法,所述无线通信系统中包含网络设备、中间节点装置和用户设备;所述网络设备发出的业务信号经中间节点装置反射至用户设备,或,所述网络设备发出的业务信号直接被用户设备接收,其特征在于,
    所述中间节点设备具有R个调整系数,网络设备的任意1个基础波束经过所述中间节点设备后,形成R个调整波束;
    1个基础波束和R个调整波束分别对应于1个SSB基础周期,第r+1(其中r=1~R)个SSB基础周期对应于中间节点设备的第r个调整系数标识。
  2. 如权利要求1所述无线通信系统同步块发送指示方法,其特征在于,R+1个波束中SSB的发送周期,是基础周期的R+1倍;
    所述基础周期,是无中间节点装置条件下的基础波束SSB的发送周期。
  3. 如权利要求2所述无线通信系统同步块发送指示方法,其特征在于,所述发送周期大于5ms。
  4. 如权利要求1所述无线通信系统同步块发送指示方法,其特征在于,
    有中间节点设备条件下SSB索引的数量为无中间节点设备条件下SSB索引数量的R+1倍;
    SSB索引的比特数为3+log 2(R×L),其中,L为所述基础周期内的基础波束数量。
  5. 如权利要求1所述无线通信系统同步块发送指示方法,其特征在于,
    第r+1个SSB基础周期中发送的DM-RS序列初始化扰码是第r个调整系数标识的函数,且所述函数值随所述调整系数标识的值变化。
  6. 如权利要求1所述无线通信系统同步块发送指示方法,其特征在于,
    R的值是预设的,或者,由信令向终端设备指示的。
  7. 如权利要求6所述无线通信系统同步块发送指示方法,其特征在于,
    预设的R值是所述中间节点设备调节能力的最大数值。
  8. 如权利要求1~7任意一项所述无线通信系统同步块发送指示方法,用于网络设备,其特征在于,
    通过基础波束发出R+1个SSB基础周期信号;
    接收SSB响应信号,根据SSB响应信号对应的调整系数标识和/或SSB索引,确定响应信号占用的调整波束方向。
  9. 如权利要求1~7任意一项所述无线通信系统同步块发送指示方法,用于终端设备,其特征在于,
    接收SSB信号,根据所述SSB信号对应的调整系数标识和/或SSB索引,确定SSB信号占用的调整波束方向。
  10. 如权利要求9所述无线通信系统同步块发送指示方法,其特征在于,
    所述终端设备根据数值R,确定SSB的发送周期和/或SSB索引的数量。
  11. 一种网络设备,用于实现权利要求1~7任意一项所述无线通信系统同步块发送指示方法,其特征在于,
    所述网络设备中至少一个模块,用于以下至少一项功能:通过基础波束发出R+1个SSB基础周期信号;接收SSB响应信号,根据SSB响应信号对应的调整系数标识和/或SSB索引,确定响应信号占用的调整波束方向。
  12. 一种终端设备,用于实现权利要求1~7任意一项所述无线通信系统同步块发送指示方法,其特征在于,
    所述终端设备中至少一个模块,用于以下至少一项功能:接收SSB信号,根据所述SSB信号对应的调整系数标识,确定SSB信号占用的调整波束方向;根据数值R,确定SSB的发送周期和/或SSB索引的数量。
  13. 一种通信设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1~10中任意一项所述无线通信系统同步块发送指示方法的步骤。
  14. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1~10任意一项所述的无线通信系统同步块发送指示方法的步骤。
  15. 一种移动通信系统,包含至少1个如权利要求11所述的网络设备和/或至少1个如权利要求12所述的终端设备。
PCT/CN2022/070474 2021-12-03 2022-01-06 一种无线通信系统同步块发送指示方法和设备 WO2023097867A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111470640.5 2021-12-03
CN202111470640.5A CN114205834A (zh) 2021-12-03 2021-12-03 一种无线通信系统同步块发送指示方法和设备

Publications (1)

Publication Number Publication Date
WO2023097867A1 true WO2023097867A1 (zh) 2023-06-08

Family

ID=80650515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070474 WO2023097867A1 (zh) 2021-12-03 2022-01-06 一种无线通信系统同步块发送指示方法和设备

Country Status (2)

Country Link
CN (1) CN114205834A (zh)
WO (1) WO2023097867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116506865A (zh) * 2023-06-28 2023-07-28 中国电信股份有限公司 Ssb周期的重置方法及装置、计算机存储介质、电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117676613A (zh) * 2022-09-30 2024-03-08 中国电信股份有限公司 传输控制方法、网络节点设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382439A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信息上报方法、接入方式确定方法、终端和网络设备
WO2021180053A1 (zh) * 2020-03-09 2021-09-16 维沃移动通信有限公司 测量配置方法、终端及网络侧设备
CN113596784A (zh) * 2021-07-24 2021-11-02 浙江以正通信技术有限公司 一种智能反射表面辅助d2d通信系统的鲁棒性传输设计方法
CN113727363A (zh) * 2021-07-23 2021-11-30 中国信息通信研究院 一种中间节点的波束管理方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN108370290B (zh) * 2017-09-20 2021-04-02 北京小米移动软件有限公司 同步块的指示及确定方法、装置、基站、用户设备
WO2019143937A1 (en) * 2018-01-19 2019-07-25 Idac Holdings, Inc. Synchronization signal and paging for new radio-unlicensed (nr-u) band communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382439A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信息上报方法、接入方式确定方法、终端和网络设备
WO2021180053A1 (zh) * 2020-03-09 2021-09-16 维沃移动通信有限公司 测量配置方法、终端及网络侧设备
CN113727363A (zh) * 2021-07-23 2021-11-30 中国信息通信研究院 一种中间节点的波束管理方法和设备
CN113596784A (zh) * 2021-07-24 2021-11-02 浙江以正通信技术有限公司 一种智能反射表面辅助d2d通信系统的鲁棒性传输设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116506865A (zh) * 2023-06-28 2023-07-28 中国电信股份有限公司 Ssb周期的重置方法及装置、计算机存储介质、电子设备
CN116506865B (zh) * 2023-06-28 2023-10-03 中国电信股份有限公司 Ssb周期的重置方法及装置、计算机存储介质、电子设备

Also Published As

Publication number Publication date
CN114205834A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023097867A1 (zh) 一种无线通信系统同步块发送指示方法和设备
CN111726873B (zh) 一种上行链路切换的方法、通信装置和通信系统
US10980064B2 (en) Radio communications using random access in wireless networks
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US9692459B2 (en) Using multiple frequency bands with beamforming assistance in a wireless network
US11737124B2 (en) System and method of system information request in a cell supporting multiple uplink carriers
US11212718B2 (en) User equipment (UE) and method for performing random access for beamforming-based connected mode handover
WO2023024401A1 (zh) 一种波束管理方法和设备
CN107889244A (zh) 通信方法、装置及系统
US20180077645A1 (en) Information processing method, base station, and terminal
CN114051284B (zh) 一种波束识别随机接入方法和设备
TW201834495A (zh) 控制隨機存取通道(rach)重傳以用於無線通訊
WO2019238007A1 (zh) 检测波束的方法和装置
CN114126062A (zh) 一种无线通信系统节点波束指示方法和设备
US11382010B2 (en) Method and apparatus of master information block (MIB) acquisition upon handover
TW202037207A (zh) 實體上行鏈路控制通道/實體上行鏈路共享通道與實體隨機存取通道的分頻多工傳輸
CN111669240B (zh) 一种支持方向性先听后发传输方法、设备和系统
WO2023241647A1 (zh) 一种波束选择的方法、终端及网络侧设备
CN111669239B (zh) 一种支持方向性先听后发传输方法、设备和系统
WO2023179368A1 (zh) 感知方法及装置
WO2023205957A1 (en) Scaling factor in rrc_idle for fr2-2
WO2021146963A1 (zh) 传输随机接入前导的方法和装置
WO2023104106A1 (zh) 检测及配置参考信号的方法、装置、终端及网络侧设备
WO2023000256A1 (zh) 可重构表面装置、基站和用户装置
WO2020108606A1 (zh) 资源分配方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899693

Country of ref document: EP

Kind code of ref document: A1