WO2023097669A1 - 控制处理方法及装置、存储介质 - Google Patents

控制处理方法及装置、存储介质 Download PDF

Info

Publication number
WO2023097669A1
WO2023097669A1 PCT/CN2021/135395 CN2021135395W WO2023097669A1 WO 2023097669 A1 WO2023097669 A1 WO 2023097669A1 CN 2021135395 W CN2021135395 W CN 2021135395W WO 2023097669 A1 WO2023097669 A1 WO 2023097669A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc
rrc release
rlf
terminal
release message
Prior art date
Application number
PCT/CN2021/135395
Other languages
English (en)
French (fr)
Inventor
熊艺
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004163.5A priority Critical patent/CN116569604A/zh
Priority to PCT/CN2021/135395 priority patent/WO2023097669A1/zh
Publication of WO2023097669A1 publication Critical patent/WO2023097669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection

Definitions

  • the present disclosure relates to the communication field, and in particular, to a control processing method and device, and a storage medium.
  • the terminal will not immediately execute the subsequent process when receiving the RRC Release message, but wait for the agreed length of time after receiving the RRC Release message, or When the lower layer of the terminal (lower than the RRC layer) indicates that it has successfully confirmed the receipt of the RRC Release message (based on the earlier of the two time points), the subsequent operations are performed.
  • the terminal may detect RLF (Radio Link Failure, radio link failure) or RRC re-establishment within the time period of waiting for the processing delay stipulated in the protocol or the confirmation message of the lower layer. If the terminal performs RRC Release-related actions during RRC reconstruction, the reconstruction will fail.
  • RLF Radio Link Failure, radio link failure
  • RRC Radio Link Failure
  • NTN Non-Terrestrial Networks, non-terrestrial network
  • embodiments of the present disclosure provide a control processing method and device, and a storage medium.
  • a control processing method is provided, the method is applied to a terminal, including:
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions
  • the target process is a radio link failure RLF-related process or RRC re-establishment process.
  • stopping or canceling the target process includes:
  • the method also includes:
  • stopping or canceling the target process includes:
  • the specified timer In response to receiving the RRC release message when starting the specified timer, the specified timer is not started; wherein the specified timer is a timer corresponding to the RLF-related process.
  • not starting the specified timer includes:
  • the specified timer In response to receiving the RRC release message when the start condition corresponding to the specified timer is met, the specified timer is not started.
  • the method also includes:
  • start the specified timer In response to not receiving the RRC release message when starting a specified timer, start the specified timer; wherein the specified timer is a timer corresponding to the RLF-related procedure.
  • the starting the specified timer in response to not receiving the RRC release message when starting the specified timer includes:
  • stopping or canceling the target process includes:
  • the method also includes:
  • stopping or canceling the target process includes:
  • stopping or canceling the RRC release procedure includes:
  • stopping or canceling the RRC release procedure in response to performing the target procedure during the delay period comprising:
  • the method also includes:
  • the RRC release procedure is performed in response to not detecting RLF before expiration of the delay period.
  • the target process is an RLF-related process
  • the radio link failure information includes indication information; wherein the indication information is used to indicate whether the terminal has received the RRC release message when RLF is detected.
  • the indication information is an enumeration type or a Boolean type.
  • stopping or canceling the target process includes:
  • the RRC re-establishment procedure is not started in response to not satisfying any condition for starting RRC re-establishment or receiving the RRC release message.
  • the method also includes:
  • stopping or canceling the radio resource control RRC release procedure includes:
  • the RRC release procedure is stopped or canceled in response to the RRC re-establishment procedure being initiated before the delay period expires.
  • the stopping or canceling the RRC release process in response to starting the RRC reestablishment process before the delay period expires includes:
  • the RRC release procedure is stopped or canceled in response to either condition for initiating RRC re-establishment being met before the delay period expires.
  • the method also includes:
  • the RRC release procedure is continued.
  • continuing to perform the RRC release process includes:
  • the RRC release procedure continues.
  • a control processing device the device is applied to a terminal, including:
  • a control module configured to stop or cancel the target procedure or the RRC release procedure in response to receiving a radio resource control RRC release message when executing the target procedure or executing the target procedure during a delay period;
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions
  • the target process is a radio link failure RLF-related process or RRC re-establishment process.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute the control processing method described in any one of the above.
  • a control processing device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the control processing method described in any one of the above.
  • the terminal when the terminal receives the RRC release message when executing the target procedure, it can stop or cancel the target procedure or the RRC release procedure. Or, if the terminal executes the target procedure during the delay period, the terminal can also stop or cancel the target procedure or the RRC release procedure.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions
  • the target process is a radio link failure RLF-related process or an RRC re-establishment process.
  • the disclosure can reduce the influence of the RRC release process on the RLF related process of radio link failure and the RRC reconstruction process, improve the reliability of the radio link, and further improve system performance.
  • Fig. 1 is a schematic diagram of an RRC release process according to an exemplary embodiment.
  • Fig. 2A to Fig. 2B are schematic diagrams showing an RRC reestablishment process according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of a control processing method according to an exemplary embodiment.
  • Fig. 4 is a schematic flowchart showing another control processing method according to an exemplary embodiment.
  • Fig. 5 is a schematic flow chart showing another control processing method according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 7 is a schematic flowchart showing another control processing method according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart showing another control processing method according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart showing another control processing method according to an exemplary embodiment.
  • Fig. 11 is a schematic flowchart showing another control processing method according to an exemplary embodiment.
  • Fig. 12 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 13 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 14 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 15 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 16 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 17 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 18 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 19 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 20 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 21 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 22 is a schematic flowchart of another control processing method according to an exemplary embodiment.
  • Fig. 23 is a block diagram of a control processing device according to an exemplary embodiment.
  • Fig. 24 is a schematic structural diagram of a control processing device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • the purpose of the RRC release process is mainly to: release the RRC connection, including releasing the established radio bearer and all radio resources; only when establishing SRB2 (Signalling Radio Bearer 2, signaling radio bearer 2) and at least one DRB (Data Radio Bearer, data radio bearer), suspend the RRC connection, including suspending the establishment of the radio bearer.
  • SRB2 is established after RRC reconfiguration, and is used to bear the SRB of NAS (Non-Access Stratum, non-access stratum) signaling.
  • the network side initiates the RRC release process to switch the terminal to an idle state or an inactive state, or to release the terminal and redirect it to another frequency.
  • a delay of 60 milliseconds is introduced for the RRC release process, and the delayed processing of the RRC release message is for sending HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) and RLC (Radio Link Control, radio link layer control The protocol) confirms (s) enough time for the network side to know that the RRC release message has been received by the terminal, so that there is no state mismatch between the terminal and the network side.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • RLC Radio Link Control, radio link layer control The protocol
  • the detection of RLF by the terminal includes but is not limited to any of the following situations: In the first situation, when the timer T310 expires in PCell (Primary Cell, primary cell)/PSCell (Primary Secondary Cell, primary secondary cell), determine RLF detected. In the second case, when the timer T312 expires in the PCell/PSCell, it is determined that RLF is detected.
  • the MCG Master Cell group, main cell group
  • MAC Media Access Control, Media Access Control
  • the MCG MAC sends out a consistent uplink LBT (Listen Before Talk) fault indication; or the SCG MAC sends out a consistent uplink LBT fault indication to determine that RLF is detected.
  • a consistent uplink LBT Listen Before Talk
  • the terminal can send a RRC ReestablishmentRequest (RRC Reestablishment Request) message to a network side device such as a base station, and the network side device feeds back the RRCReestablishment message to the terminal when the RRC reestablishment is successful, and the terminal sends the RRCReestablishmentComplete message after receiving it. (RRC reestablishment complete) message to the network side device.
  • RRC ReestablishmentRequest RRC Reestablishment Request
  • a network side device such as a base station
  • the terminal may send a RRC ReestablishmentRequest message to a network side device such as a base station, and the network side device falls back to RRC establishment, that is, the network side device feeds back an RRCSetup (RRC establishment) message to the terminal, and the terminal sends an RRCSetupComplete( RRC establishment complete) message to the network side device.
  • a network side device such as a base station
  • RRCSetup RRC establishment
  • RRCSetupComplete RRC establishment complete
  • the RRC re-establishment process is to re-establish the RRC connection.
  • a terminal in the connected state which has activated AS (Access Stratum, access stratum) security using SRB2 and has at least one DRB setup, can initiate a process to continue the RRC connection.
  • Connection re-establishment succeeds if the network is able to find and verify a valid terminal context, or if the terminal context cannot be retrieved and the network responds with an RRCSetup message. If AS security has not been activated, the terminal does not start the procedure but goes directly to the idle state with a release reason of "other". If AS security is activated, but SRB2 and at least one DRB are not set, the terminal does not start the procedure, but directly transfers to the idle state, releasing the RRC connection to fail.
  • AS Access Stratum, access stratum
  • the present disclosure provides the following control processing methods.
  • FIG. 3 is a flow chart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 301 the target procedure or the RRC release procedure is stopped or canceled in response to receiving a radio resource control RRC release message when executing the target procedure or executing the target procedure within a delay period.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions
  • the target process is a radio link failure RLF-related process or RRC re-establishment process.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • performing RRC release-related behaviors includes but is not limited to at least one of the following: entering a non-connected state, including but not limited to entering Idle (idle state) or entering inactive (inactive state); stopping or starting related timers, including but not limited to Limited to stop timer T310, stop timer T320, stop timer T316, stop timer T350, stop timer T331, start timer T320, start or restart timer T325; store cell reselection priority information; determine the content of VarMeasIdleConfig ; If CHO (Conditional HandOver, conditional handover) is configured, remove the CHO-related configuration stored in the terminal, etc.
  • CHO Conditional HandOver, conditional handover
  • RLF-related processes include but are not limited to at least one of the following: RLF detection; physical layer problem detection; recovery of physical layer problems; RLM (Radio Link Monitoring, wireless link monitoring); start and stop of specified timers; RLF cause determination; RLF report content determination, etc.
  • the RLF detection process includes but not limited to the processing process after RLF is detected, and the designated timer is a timer corresponding to the RLF related process, including but not limited to timer T310 and timer T312.
  • the determination of the content of the RLF report includes but is not limited to determining the content of failure information. In a possible implementation, determining the content of the RLF report includes determining the content of the varRLF-report.
  • the RRC reestablishment process includes, but is not limited to, starting RRC reestablishment and subsequent operations after RRC reestablishment is initiated, and subsequent operations include but not limited to cell selection, sending RRC reestablishment request messages, and the like.
  • the impact of the RRC release process on the RLF-related process and the RRC re-establishment process of radio link failure can be reduced, and the reliability of the radio link can be improved, thereby improving system performance.
  • the embodiments of the present disclosure further provide several other control processing methods.
  • the target process is a radio link failure RLF related process or an RRC reestablishment process.
  • RLF-related processes include but are not limited to at least one of the following: RLF detection; physical layer problem detection; recovery of physical layer problems; RLM (Radio Link Monitoring, wireless link monitoring); start and stop of specified timers; RLF cause determination; RLF report content determination, etc.
  • the RLF detection process includes but not limited to the processing process after RLF is detected, and the designated timer is a timer corresponding to the RLF related process, including but not limited to timer T310 and timer T312.
  • the determination of the content of the RLF report includes but is not limited to determining the content of failure information. In a possible implementation, determining the content of the RLF report includes determining the content of the varRLF-report.
  • the RRC reestablishment process includes, but is not limited to, starting RRC reestablishment and subsequent operations after RRC reestablishment is initiated, and subsequent operations include but not limited to cell selection, sending RRC reestablishment request messages, and the like.
  • the target procedure is not executed in response to receiving the RRC release message, and the RRC release procedure continues to be executed.
  • the target process is a radio link failure RLF related process or an RRC reestablishment process.
  • RLF-related processes include but are not limited to at least one of the following: RLF detection; physical layer problem detection; physical layer problem recovery; RLM; start and stop of a specified timer; RLF cause determination; RLF report content determination, etc.
  • the RLF detection process includes but not limited to the processing process after RLF is detected, and the designated timer is a timer corresponding to the RLF related process, including but not limited to timer T310 and timer T312.
  • the determination of the content of the RLF report includes but is not limited to determining the content of failure information. In a possible implementation, determining the content of the RLF report includes determining the content of the varRLF-report.
  • the RRC reestablishment process includes, but is not limited to, starting RRC reestablishment and subsequent operations after RRC reestablishment is initiated, and subsequent operations include but not limited to cell selection, sending RRC reestablishment request messages, and the like.
  • the RRC release procedure continues to be performed.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions
  • the target process is a radio link failure RLF-related process or RRC re-establishment process.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • the target procedure is a radio link failure RLF related procedure or an RRC reestablishment procedure.
  • RLF-related processes include but are not limited to at least one of the following: RLF detection; physical layer problem detection; physical layer problem recovery; RLM; start and stop of a specified timer; RLF cause determination; RLF report content determination, etc.
  • the RLF detection process includes but not limited to the processing process after RLF is detected, and the designated timer is a timer corresponding to the RLF related process, including but not limited to timer T310 and timer T312.
  • the determination of the content of the RLF report includes but is not limited to determining the content of failure information. In a possible implementation, determining the content of the RLF report includes determining the content of the varRLF-report.
  • the RRC reestablishment process includes, but is not limited to, starting RRC reestablishment and subsequent operations after RRC reestablishment is initiated, and subsequent operations include but not limited to cell selection, sending RRC reestablishment request messages, and the like.
  • the purpose of reducing the impact of the RRC release process on the RLF related process and the RRC reestablishment process of the radio link failure is also achieved, the reliability of the radio link is improved, and the system performance is further improved.
  • FIG. 4 is a flow chart of a control processing method according to an embodiment, which may be used in a terminal. The method may include the following steps:
  • step 401 in response to receiving an RRC release message when RLF is detected, stop or cancel the process related to RLF detection.
  • the RLF detection process includes but not limited to the processing process after the RLF is detected.
  • Receiving the RRC release message includes that the terminal has received the RRC release message.
  • the detection of RLF by the terminal includes but is not limited to any of the following situations: In the first situation, when the timer T310 expires in the PCell/PSCell, it is determined that RLF is detected. In the second case, when the timer T312 expires in the PCell/PSCell, it is determined that RLF is detected. In the third case, when the timers T300, T301, T304, T311 and T319 are not running, the MCG MAC issues a random access problem indication; or when the SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF has been detected.
  • the MCG/SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF is detected.
  • the MCG MAC sends a consistent uplink LBT failure indication; or the SCG MAC sends a consistent uplink LBT failure indication, and determines that RLF is detected.
  • RLF-related processes include but are not limited to at least one of the following: RLF detection; physical layer problem detection; recovery of physical layer problems; RLM (Radio Link Monitoring, wireless link monitoring); start and stop of specified timers; RLF cause determination; RLF report content determination, etc.
  • the RLF detection process includes but not limited to the processing process after RLF is detected, and the designated timer is a timer corresponding to the RLF related process, including but not limited to timer T310 and timer T312.
  • the determination of the content of the RLF report includes but is not limited to determining the content of failure information. In a possible implementation, determining the content of the RLF report includes determining the content of the varRLF-report.
  • the terminal if it has received the RRC release message when it detects RLF, it can stop or cancel the RLF detection related process, avoiding the impact of the RRC release process on the RLF detection related process, and improving the reliability of the wireless link.
  • FIG. 5 is a flow chart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 501 in response to not receiving an RRC release message when RLF is detected, continue to perform the processing after RLF is detected.
  • the detection of the RLF by the terminal includes but not limited to any of the following situations: In the first situation, when the timer T310 expires in the PCell/PSCell, it is determined that the RLF is detected. In the second case, when the timer T312 expires in the PCell/PSCell, it is determined that RLF is detected. In the third case, when the timers T300, T301, T304, T311 and T319 are not running, the MCG MAC issues a random access problem indication; or when the SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF has been detected.
  • the MCG/SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF is detected.
  • the MCG MAC sends a consistent uplink LBT failure indication; or the SCG MAC sends a consistent uplink LBT failure indication, and determines that RLF is detected.
  • the processing after detecting the RLF includes but is not limited to at least one of the following: Report RLC failure (report RLC failure); store RLF information in VarRLF-report (radio link failure report information); enter idle state; Report MCG RLF ( Report the radio link failure of the primary cell group); start RRC re-establishment, etc.
  • the terminal if the terminal does not receive the RRC release message when RLF is detected, it can continue to perform the processing after RLF is detected, which also improves the radio link reliability and high availability.
  • FIG. 6 is a flow chart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 601 in response to receiving an RRC release message when starting the specified timer, the specified timer is not started.
  • the designated timer is a timer corresponding to an RLF-related process, including but not limited to at least one of timers T310 and T312.
  • Receiving the RRC release message includes that the terminal has received the RRC release message.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the terminal if the terminal has received the RRC release message when starting the designated timer, it does not start the designated timer.
  • the designated timer is a timer corresponding to the RLF-related process. In this way, the impact of the RRC release process on the RLF detection related process is avoided, and the reliability of the wireless link is improved.
  • FIG. 7 is a flow chart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 701 in response to receiving the RRC release message when the start condition corresponding to the specified timer is met, the specified timer is not started.
  • the specified timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the starting condition for starting the designated timer is met, and the RRC release message is received including the terminal having received the RRC release message, the corresponding designated timer is not started.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the start condition of the start timer T310 is met, and if the terminal has received the RRC release message, then The timer T310 is not started.
  • useT312 in reportConfig is set to "true”, and the timer T310 is running, that is, the start condition of the timer T312 is met, and the terminal has received If the RRC releases the message, the timer T312 will not be started.
  • the terminal may not start the designated timer.
  • the designated timer is a timer corresponding to the RLF-related process. In this way, the impact of the RRC release process on the RLF detection related process is avoided, and the reliability of the wireless link is improved.
  • FIG. 8 is a flow chart of a control processing method according to an embodiment, which may be used in a terminal. The method may include the following steps:
  • step 801 in response to not receiving the RRC release message when starting the specified timer, start the specified timer.
  • the specified timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the terminal if the terminal does not receive the RRC release message when starting the specified timer, it starts the specified timer.
  • the designated timer is a timer corresponding to the RLF-related process. In this way, the impact of the RRC release process on the RLF detection related process is avoided, and the reliability of the wireless link is improved.
  • FIG. 9 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal, and the method may include the following steps:
  • step 901 the specified timer is started in response to the terminal not receiving the RRC release message when the start condition corresponding to the specified timer is satisfied.
  • the specified timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the terminal starts the corresponding specified timer.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the start condition of the timer T310 is met, and if the terminal does not receive the RRC release message, the timer T310 is started.
  • useT312 in reportConfig is set to "true”, and the timer T310 is running, that is, the start condition of the timer T312 is met, and the terminal does not receive When the RRC releases the message, the timer T312 is started.
  • the terminal may start the specified timer.
  • the designated timer is a timer corresponding to the RLF-related process. In this way, the RRC release process is prevented from affecting the process related to RLF detection, and the reliability of the radio link is improved.
  • the present disclosure adds at least one of a new start condition and a stop condition to the specified timer.
  • the designated timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the new start condition may be that the RRC release message is not received.
  • the new start condition can be satisfied at the same time as other start conditions corresponding to the specified timer, that is, the terminal starts the specified timer.
  • the new stop condition may be that an RRC release message is received.
  • the terminal when the terminal receives the RRC release message, that is, when a new stop condition is satisfied, the terminal may stop the specified timer.
  • the terminal stops the designated timer if any one of the original stopping conditions of the designated timer is met.
  • the terminal when the terminal meets a new stop condition or meets any original stop condition, that is, when the terminal receives an RRC release message or meets any original stop condition, the terminal stops Specifies the timer.
  • a new start condition and/or a new stop condition are provided for the specified timer, thereby avoiding the impact of the RRC release process on the RLF detection related process and improving the reliability of the radio link.
  • FIG. 10 is a flowchart of a control processing method according to an embodiment, which may be used in a terminal. The method may include the following steps:
  • step 1001 in response to receiving an RRC release message when performing physical layer problem detection in RRC connected state, stop or cancel the physical layer problem detection process.
  • physical layer problem detection includes but not limited to synchronous detection and/or asynchronous detection.
  • Receiving the RRC release message includes that the terminal has received the RRC release message.
  • the terminal if the terminal receives the RRC release message when performing the physical layer problem detection in the RRC connection state, the terminal can stop or cancel the physical layer problem detection process.
  • the RRC release process is prevented from affecting the RLF detection related process, and the reliability of the wireless link is improved.
  • FIG. 11 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1101 in response to not receiving an RRC release message when performing physical layer problem detection, continue to perform the physical layer problem detection process.
  • physical layer problem detection includes but not limited to synchronous detection and/or asynchronous detection.
  • the terminal may continue to perform the physical layer problem detection process.
  • the purpose of avoiding the impact of the RRC release process on the RLF detection related process is also achieved, and the reliability of the wireless link is improved.
  • FIG. 12 is a flowchart of a control processing method according to an embodiment, which may be used in a terminal. The method may include the following steps:
  • step 1201 in response to receiving an RRC release message while the designated timer is running, the designated timer is stopped.
  • the designated timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the terminal when the terminal receives the RRC release message, if the specified timer is running, the terminal can immediately stop the specified timer.
  • the terminal does not need to wait for the processing delay of the RRC release message to expire before stopping the designated timer.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal does not need to wait for the lower layer of the terminal to indicate that it has successfully confirmed the receipt of the RRC release message, and then stops the specified timer.
  • the terminal does not need to wait for the earlier of the processing delay of the RRC release message to expire and the lower layer of the terminal to indicate that the receipt of the RRC release message has been successfully confirmed, and then stop the specified timer.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the designated timer when the designated timer is running, if the terminal receives the RRC release message, the designated timer can be stopped immediately.
  • the RRC release process is prevented from affecting the RLF detection related process, and the reliability of the wireless link is improved.
  • the present disclosure adds a new stop condition of the specified timer, specifically, the new stop condition may include receiving an RRC release message.
  • the designated timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the RLF related process is similar to the RLF related process involved in the above embodiment, and will not be repeated here.
  • the terminal may stop the corresponding designated timer.
  • the terminal stops the corresponding specified timer if any one of the other stop conditions is satisfied, that is, any one of the existing stop conditions stipulated in the protocol is satisfied.
  • the terminal stops The corresponding specified timer if the new stop condition or any of the other stop conditions are met, that is, the terminal receives the RRC release message or meets any of the existing stop conditions stipulated in the protocol.
  • a new stop condition is added for the designated timer, which is easy to implement and has high usability.
  • FIG. 13 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1301 in response to receiving an RRC release message after the radio link monitoring RLM procedure is started, stop or cancel the RLM procedure.
  • the terminal once the terminal receives the RRC release message, it can immediately stop the RLM process.
  • the terminal can immediately stop the RLM process without waiting for the processing delay to expire.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal can immediately stop the RLM process without waiting for the lower layer to indicate that the RRC release message has been successfully acknowledged.
  • the terminal can immediately stop the RLM process without waiting for the earlier of the processing delay to expire or the lower layer to indicate that the receipt of the RRC release message has been successfully confirmed.
  • the RLM process includes monitoring and reporting processes.
  • Monitoring means monitoring the downlink radio link quality of the current cell, and reporting means indicating the synchronous/asynchronous state to a higher layer.
  • the impact of the RRC release process on the RLM process is reduced, the reliability of the radio link is improved, and the system performance is further improved.
  • FIG. 14 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1401 in response to receiving an RRC release message when RLF is detected, the RRC release procedure is stopped or canceled.
  • the terminal stops or cancels subsequent RRC release-related behaviors.
  • the detection of RLF by the terminal includes but not limited to any of the following situations: In the first situation, when the timer T310 expires in the PCell/PSCell, it is determined that the RLF is detected. In the second case, when the timer T312 expires in the PCell/PSCell, it is determined that RLF is detected. In the third case, when the timers T300, T301, T304, T311 and T319 are not running, the MCG MAC issues a random access problem indication; or when the SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF has been detected.
  • the MCG/SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF is detected.
  • the MCG MAC sends a consistent uplink LBT failure indication; or the SCG MAC sends a consistent uplink LBT failure indication, and determines that RLF is detected.
  • Performing RRC release-related behaviors includes but is not limited to at least one of the following: entering a non-connected state, including but not limited to entering Idle or entering inactive; stopping or starting related timers, including but not limited to stopping timer T310, stopping timer T320, Stop timer T316, stop timer T350, stop timer T331, start timer T320, start or restart timer T325; store cell reselection priority information; determine the content of VarMeasIdleConfig; if CHO is configured, remove the terminal stored CHO related configuration, etc.
  • the terminal can immediately stop or cancel subsequent RRC release-related behaviors without waiting for the processing delay to expire.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal can immediately stop or cancel subsequent RRC release-related behaviors without waiting for the lower layer of the terminal to indicate that the RRC release message has been successfully confirmed.
  • the terminal does not need to wait for the earlier time between the expiration of the processing delay of the RRC release message and the indication from the lower layer of the terminal that the reception of the RRC release message has been successfully confirmed, before stopping the designated timer.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal when the terminal detects RLF and receives the RRC release message, the terminal can stop or cancel the RRC release process, reduce the impact of the RRC release process on the radio link failure RLF related process, improve the reliability of the radio link, and then improve system performance.
  • FIG. 15 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1501 the RRC release procedure is stopped or canceled in response to detecting RLF within a delay period.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicating successful confirmation of reception The shorter time between the time to RRC release message.
  • the terminal starts when receiving the RRC release message, and when the processing delay specified in the protocol (generally 60 milliseconds) expires, within this period, once the terminal detects RLF, the terminal stops or Cancel the RRC release procedure.
  • the processing delay specified in the protocol generally 60 milliseconds
  • the terminal starts when it receives the RRC release message, and within the time period from when the terminal receives the RRCRelease message to when the lower layer (lower than the RRC layer) indicates that the RRC release message has been successfully confirmed, once the terminal When RLF is detected, the terminal stops or cancels the RRC release process.
  • the terminal starts when it receives the RRC release message, and when the processing delay specified in the protocol (generally 60 milliseconds) expires and receives the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) ) indicates that within the shorter duration of the successful confirmation of receipt of the RRC release message, once the terminal detects the RLF, the terminal stops or cancels the RRC release process.
  • the processing delay specified in the protocol generally 60 milliseconds
  • the detection of RLF by the terminal includes but not limited to any of the following situations: In the first situation, when the timer T310 expires in the PCell/PSCell, it is determined that the RLF is detected. In the second case, when the timer T312 expires in the PCell/PSCell, it is determined that RLF is detected. In the third case, when the timers T300, T301, T304, T311 and T319 are not running, the MCG MAC issues a random access problem indication; or when the SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF has been detected.
  • the MCG/SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF is detected.
  • the MCG MAC sends a consistent uplink LBT failure indication; or the SCG MAC sends a consistent uplink LBT failure indication, and determines that RLF is detected.
  • the terminal if it detects RLF within the delay period, it can stop or cancel the RRC release process, reduce the impact of the RRC release process on the radio link failure RLF related process, improve the reliability of the radio link, and then improve the system performance .
  • FIG. 16 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1601 in response to not detecting RLF before the delay period expires, an RRC release procedure is performed.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • the terminal executes the RRC release process.
  • the terminal executes RRC release process.
  • the terminal starts when the RRC release message is received, whichever is earlier until the processing delay (typically 60 ms) expires and the terminal lower layer indicates that it has successfully acknowledged receipt of the RRC release message , within this period, if the terminal does not detect RLF, then the terminal executes the RRC release process.
  • the processing delay typically 60 ms
  • the detection of RLF by the terminal includes but is not limited to any of the following situations: In the first situation, when the timer T310 expires in the PCell/PSCell, it is determined that RLF is detected. In the second case, when the timer T312 expires in the PCell/PSCell, it is determined that RLF is detected. In the third case, when the timers T300, T301, T304, T311 and T319 are not running, the MCG MAC issues a random access problem indication; or when the SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF has been detected.
  • the MCG/SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF is detected.
  • the MCG MAC sends a consistent uplink LBT failure indication; or the SCG MAC sends a consistent uplink LBT failure indication, and determines that RLF is detected.
  • performing RRC release-related behaviors includes but is not limited to at least one of the following: entering a non-connected state, including but not limited to entering Idle or entering inactive; stopping or starting related timers, including but not limited to stopping the timer T310, stopping the timer T320, stop timer T316, stop timer T350, stop timer T331, start timer T320, start or restart timer T325; store cell reselection priority information; determine the content of VarMeasIdleConfig; if CHO is configured, remove the terminal Stored CHO-related configurations, etc.
  • the terminal executes the RRC release process, which is simple to implement and has high usability.
  • the terminal may record the receipt of the RRC release message in the radio link failure information. That is, the radio link failure information includes indication information, where the indication information is used to indicate whether the terminal has received the RRC release message when RLF is detected.
  • the indication information may be stored in a VarRLF-Report.
  • the indication information may be an enumeration type or a Boolean type.
  • the optional value is "true”, and when the indication information is "true”, it is used to indicate that the terminal has received an RRC release message when RLF is detected.
  • the indication information is empty, not configured or "false", it is used to indicate that the terminal has not received the RRC release message when RLF is detected.
  • the optional value is “0” or "1"
  • the indication information is “1”
  • the indication information is “0” it is used to indicate that the terminal has not received an RRC release message when RLF is detected.
  • the indication information is “0”, it is used to indicate that the terminal has received an RRC release message when RLF is detected.
  • the indication information is "1" it is used to indicate that the terminal has not received an RRC release message when RLF is detected.
  • the indication information may be stored in a VarRLF-Report, and the indication information may be an enumeration type or a Boolean type.
  • the indication information may be recorded in other failure information.
  • the indication information may be recorded in other failure information, and the indication information may be an enumeration type or a Boolean type.
  • the indication information may be a displayed indication message.
  • the indication information may be implicit indication information.
  • the implicit indication information may be derived from messages stored or reported by the terminal.
  • the indication information for indicating whether the terminal has received the RRC release message when RLF is detected may be included in the radio link failure information, so that the terminal can report the radio link failure information to the base station, and the base station based on
  • the instruction information is optimized for network resources and has high availability.
  • FIG. 17 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1701 in response to not satisfying any condition for starting RRC reestablishment or receiving an RRC release message, the RRC reestablishment process is not started.
  • the conditions for starting RRC reconstruction include but are not limited to at least one of the following:
  • Condition 1 when MCG radio link failure is detected and t316 is not configured, it is determined that the condition for RRC reestablishment is met;
  • Condition 2 when the radio link failure of the MCG is detected and the SCG transmission is suspended, it is determined that the conditions for RRC reestablishment are met;
  • Condition 3 When the MCG wireless link failure is detected during the PSCell change or PSCell addition process, it is determined that the conditions for RRC reconstruction are met;
  • Condition 4 When the MCG reconfigures with a synchronous failure, it is determined that the conditions for RRC reconstruction are met;
  • Condition 7 When the reconfiguration of the RRC connection fails, it is determined that the conditions for RRC re-establishment are met;
  • Condition 8 When the MCG transmission is suspended and the radio link failure of the SCG is detected at the same time, it is determined that the condition for RRC reestablishment is met;
  • Condition thirteen when T316 expires, it is determined that the conditions for RRC reconstruction are met.
  • the terminal does not start the RRC re-establishment process if any of the above-mentioned conditions for starting the RRC re-establishment is not met.
  • the terminal does not start the RRC reestablishment process when receiving the RRC release message.
  • the terminal does not start the RRC re-establishment process when any of the above conditions for starting the RRC re-establishment is not met or the RRC release message is received.
  • the terminal detects that the MCG radio link is faulty and t316 is not configured but the terminal receives the RRCRelease message, the RRC re-establishment process is not started
  • the terminal detects that the MCG radio link is faulty and the SCG transmission is suspended but the UE receives the RRCRelease message, the reestablishment process is not started.
  • the RRC reestablishment process includes, but is not limited to, starting RRC reestablishment and subsequent operations after RRC reestablishment is started, and the subsequent operations include but not limited to cell selection, sending an RRC reestablishment request message, and the like.
  • the terminal may not start the RRC re-establishment process if any condition for starting the RRC re-establishment is not met or the RRC release message is received. Reduce the impact of the RRC release process on the RRC re-establishment process, improve the reliability of the wireless link, and then improve the system performance.
  • FIG. 18 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1801 in response to meeting any condition for starting RRC reestablishment and not receiving the RRC release message, start the RRC reestablishment process.
  • the terminal may start the RRC reestablishment process when any condition for starting RRC reestablishment is met and the RRC release message is not received.
  • the conditions for starting the RRC reestablishment include but not limited to any conditions provided in the above embodiments. I won't repeat them here.
  • the RRC reestablishment process includes, but is not limited to, starting RRC reestablishment and subsequent operations after RRC reestablishment is initiated, and subsequent operations include but not limited to cell selection, sending RRC reestablishment request messages, and the like.
  • the terminal may start the RRC reestablishment process when any condition for starting RRC reestablishment is met and the RRC release message is not received.
  • the purpose of reducing the impact of the RRC release process on the RRC reestablishment process is achieved, the reliability of the wireless link is improved, and the system performance is further improved.
  • the present disclosure provides new start conditions for RRC reestablishment.
  • the new start condition may include: no RRC release message is received.
  • the new start condition can be satisfied at the same time as any one of the start conditions for starting RRC re-establishment provided in the above embodiments, that is, the terminal does not receive any of the above start conditions for RRC re-establishment In the case of an RRC release message, an RRC reestablishment process is started.
  • a new starting condition is provided for RRC reestablishment, which reduces the impact of the RRC release process on the RRC reestablishment process, and has high usability.
  • FIG. 19 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 1901 the RRC release procedure is stopped or canceled in response to the RRC reestablishment procedure being initiated before the delay period expires.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • the terminal starts the RRC reestablishment process during the period from the terminal receiving the RRC release message to the expiration of the processing delay, and the terminal may stop or cancel the RRC release process.
  • the terminal from the time when the terminal receives the RRC release message, until the lower layer of the terminal indicates that it has successfully confirmed the receipt of the RRC release message, during this period, the terminal starts the RRC reestablishment process, and the terminal can stop or cancel RRC release process.
  • the terminal from the time when the terminal receives the RRC release message to the earlier time when the processing delay expires and the lower layer indicates that the terminal has successfully confirmed the receipt of the RRC release message, during this period, the terminal starts If the RRC reestablishment process is completed, the terminal can stop or cancel the RRC release process.
  • the purpose of reducing the impact of the RRC release process on the RRC reestablishment process is achieved, the reliability of the radio link is improved, and the system performance is further improved.
  • FIG. 20 is a flowchart of a control processing method according to an embodiment, which may be used in a terminal. The method may include the following steps:
  • step 2001 the RRC release procedure is stopped or canceled in response to any condition for initiating RRC re-establishment being met before the delay period expires.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • the terminal can stop or cancel the RRC release process.
  • the terminal can stop Or cancel the RRC release procedure.
  • the terminal can stop or cancel the RRC release process.
  • the purpose of reducing the impact of the RRC release process on the RRC reestablishment process is achieved, the reliability of the radio link is improved, and the system performance is further improved.
  • FIG. 21 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 2101 in response to the RRC re-establishment procedure not being started before the delay period expires, the RRC release procedure continues to be performed.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • the terminal may continue to perform the RRC release process.
  • the terminal can continue to execute RRC release process.
  • the terminal can continue to perform the RRC release process.
  • the purpose of reducing the impact of the RRC release process on the RRC reestablishment process is achieved, the reliability of the radio link is improved, and the system performance is further improved.
  • FIG. 22 is a flowchart of a control processing method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 2201 in response to none of the conditions for initiating RRC re-establishment being met before the delay period expires, the RRC release procedure continues.
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions.
  • the specified duration is the processing delay stipulated by the protocol (generally 60 ms), or the processing delay specified by the protocol (generally 60 ms) and the receipt of the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) indicates successful confirmation of reception The shorter time between the time to RRC release message.
  • the terminal may continue to perform the RRC release process.
  • the terminal can Continue to execute the RRC release procedure.
  • the terminal can continue to perform the RRC release process.
  • the purpose of reducing the impact of the RRC release process on the RRC reestablishment process is achieved, the reliability of the radio link is improved, and the system performance is further improved.
  • the handover control method provided by the present disclosure is further illustrated as follows with an example.
  • the handover control method includes:
  • the RLF-related process includes but is not limited to at least one of the following: RLF detection; physical layer problem detection; physical layer problem recovery; RLM (Radio Link Monitoring, wireless link monitoring); specified timer start and stop; RLF reason Confirmed; RLF report content determined, etc.
  • the RLF detection process includes but not limited to the processing process after RLF is detected, and the designated timer is a timer corresponding to the RLF related process, including but not limited to timer T310 and timer T312.
  • the determination of the content of the RLF report includes but is not limited to determining the content of failure information. In a possible implementation, determining the content of the RLF report includes determining the content of the varRLF-report.
  • the terminal detects the RLF, if it does not receive the RRC release message, it continues the process after the RLF is detected.
  • the processing after RLF is detected includes but is not limited to at least one of the following: Report RLC failure; store RLF information in VarRLF-report; enter idle state; Report MCG RLF; start RRC reconstruction, etc.
  • the terminal detects the RLF and receives the RRC release message, it stops or cancels the process related to the RLF detection.
  • the RLF detection process includes but not limited to the processing process after the RLF is detected.
  • Receiving the RRC release message includes that the terminal has received the RRC release message.
  • the specified timer is a timer corresponding to an RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the terminal When starting the designated timer, the terminal does not receive the RRC release message, and starts the designated timer.
  • the designated timer T310 when an RRC release message is received when N310 consecutive SpCell (including PCell and PSCell) out-of-sync indications are received from the lower layer of the terminal, the designated timer T310 is not started.
  • useT312 in reportConfig is set to "true”, and the timer T310 is running, and the terminal does not receive the RRC release message, the specified timer T312 is started.
  • the terminal when the terminal starts the physical layer problem detection in RRC_CONNECTED (RRC connected state), it needs to judge whether it has received the RRC release message.
  • the physical layer problem detection includes but not limited to synchronous detection and/or asynchronous detection.
  • the terminal starts physical layer problem detection, if it receives an RRC release message, it stops or cancels the triggered physical layer problem detection process.
  • the terminal stops the designated timer.
  • the designated timer is a timer corresponding to the RLF-related process, including but not limited to at least one of timers T310 and T312.
  • the terminal after receiving the RRC release message, the terminal stops the designated timer immediately if the designated timer is running, without waiting for the processing delay of the RRCRelease message to expire before stopping the designated timer.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal after the terminal receives the RRC release message, if the specified timer is running, it immediately stops the specified timer, without waiting for the lower layer of the terminal to indicate that it has successfully confirmed the receipt of the RRC release message, and then stops the specified timer. timer.
  • the terminal after the terminal receives the RRC release message, if the specified timer is running, it immediately stops the specified timer, without waiting for the processing delay of the RRC release message to expire and the lower layer of the terminal to indicate that it has succeeded Acknowledge receipt of an earlier time in the RRC release message before stopping the designated timer.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal stops or cancels the radio link monitoring RLM process.
  • the RLM process includes monitoring and reporting processes. Monitoring means monitoring the downlink radio link quality of the current cell, and reporting means indicating the synchronous/asynchronous state to a higher layer.
  • the terminal after receiving the RRC release message, the terminal immediately stops the RLM process, that is, it does not need to wait for the RRC Release message processing delay to expire before stopping the RLM process.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal can immediately stop the RLM process without waiting for the lower layer to indicate that the RRC release message has been successfully acknowledged.
  • the terminal can immediately stop the RLM process without waiting for the earlier of the processing delay to expire or the lower layer to indicate that the receipt of the RRC release message has been successfully confirmed.
  • the terminal detects the RLF when it detects the RLF, if it receives the RRC message, it stops or cancels the RRC release process.
  • the situation that the terminal detects the RLF is similar to the situation that the terminal detects the RLF provided in the above embodiment, and details are not repeated here.
  • the terminal can immediately stop or cancel subsequent RRC release-related behaviors without waiting for the processing delay to expire.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal can immediately stop or cancel subsequent RRC release-related behaviors without waiting for the lower layer of the terminal to indicate that the RRC release message has been successfully confirmed.
  • the terminal does not need to wait for the earlier time between the expiration of the processing delay of the RRC release message and the indication from the lower layer of the terminal that the reception of the RRC release message has been successfully confirmed, before stopping the designated timer.
  • the processing delay is the processing delay stipulated in the protocol, which is generally 60 milliseconds.
  • the terminal needs to determine whether RLF is detected.
  • the terminal executes RRC release process.
  • the terminal starts when the RRC release message is received, whichever is earlier until the processing delay (typically 60 ms) expires and the terminal lower layer indicates that it has successfully acknowledged receipt of the RRC release message , within this period, if the terminal does not detect RLF, then the terminal executes the RRC release process.
  • the processing delay typically 60 ms
  • the terminal starts when receiving the RRC release message, and when the processing delay specified in the protocol (generally 60 milliseconds) expires, within this period, once the terminal detects RLF, the terminal stops or Cancel the RRC release procedure.
  • the processing delay specified in the protocol generally 60 milliseconds
  • the terminal starts when it receives the RRC release message, and within the time period from when the terminal receives the RRCRelease message to when the lower layer (lower than the RRC layer) indicates that the RRC release message has been successfully confirmed, once the terminal When RLF is detected, the terminal stops or cancels the RRC release procedure.
  • the terminal starts when it receives the RRC release message, and when the processing delay specified in the protocol (generally 60 milliseconds) expires and receives the RRCRelease message from the terminal to the lower layer (lower than the RRC layer) ) indicates that within the shorter duration of the successful confirmation of receipt of the RRC release message, once the terminal detects the RLF, the terminal stops or cancels the RRC release process.
  • the processing delay specified in the protocol generally 60 milliseconds
  • the terminal may record in the failure information that the RRC release message has been received.
  • the radio link failure information may include indication information, where the indication information is used to indicate whether the terminal has received the RRC release message when RLF is detected.
  • the indication information may be stored in a VarRLF-Report.
  • the indication information may be an enumeration type or a Boolean type.
  • the optional value is "true”, and when the indication information is "true”, it is used to indicate that the terminal has received an RRC release message when RLF is detected.
  • the indication information is empty, not configured or "false", it is used to indicate that the terminal has not received the RRC release message when RLF is detected.
  • the optional value is “0” or "1"
  • the indication information is “1”
  • the indication information is “0” it is used to indicate that the terminal has not received an RRC release message when RLF is detected.
  • the indication information is “0”, it is used to indicate that the terminal has received an RRC release message when RLF is detected.
  • the indication information is "1" it is used to indicate that the terminal has not received an RRC release message when RLF is detected.
  • the indication information may be stored in a VarRLF-Report, and the indication information may be an enumeration type or a Boolean type.
  • the indication information may be recorded in other failure information.
  • the indication information may be recorded in other failure information, and the indication information may be an enumeration type or a Boolean type.
  • the indication information may be a displayed indication message.
  • the indication information may be implicit indication information.
  • the implicit indication information may be derived from messages stored or reported by the terminal.
  • the detection of RLF by the terminal mentioned above includes but is not limited to at least one of the following situations:
  • the MCG MAC issues a random access problem indication; or when the SCG RLC indicates that the maximum number of retransmissions has been reached, it is determined that RLF has been detected.
  • the MCG MAC when the timer T304 is not running, the MCG MAC sends a consistent uplink LBT failure indication; or the SCG MAC sends a consistent uplink LBT failure indication, and determines that RLF is detected.
  • the impact of the RRC release process on the RLF related process of radio link failure is reduced, the reliability of the radio link is improved, and the system performance is further improved.
  • the handover control method includes:
  • the activation conditions include but are not limited to at least one of the following:
  • Condition 1 when MCG radio link failure is detected and t316 is not configured, it is determined that the condition for RRC reestablishment is met;
  • Condition 2 when the radio link failure of the MCG is detected and the SCG transmission is suspended, it is determined that the conditions for RRC reestablishment are met;
  • Condition 3 When the MCG wireless link failure is detected during the PSCell change or PSCell addition process, it is determined that the conditions for RRC reconstruction are met;
  • Condition 4 When the MCG reconfigures with a synchronous failure, it is determined that the conditions for RRC reconstruction are met;
  • Condition 7 When the reconfiguration of the RRC connection fails, it is determined that the conditions for RRC re-establishment are met;
  • Condition 8 When the MCG transmission is suspended and the radio link failure of the SCG is detected at the same time, it is determined that the condition for RRC reestablishment is met;
  • Condition thirteen when T316 expires, it is determined that the conditions for RRC reconstruction are met.
  • the terminal needs to determine whether the RRC reestablishment process is started.
  • the terminal may continue to perform the RRC release process.
  • the terminal can continue to execute RRC release process.
  • the terminal can continue to perform the RRC release process.
  • the terminal starts the RRC reestablishment process during the delay period, and stops or cancels the RRC release process.
  • the terminal can stop or cancel the RRC release process.
  • the terminal can stop Or cancel the RRC release process.
  • the terminal can stop or cancel the RRC release process.
  • the purpose of reducing the impact of the RRC release process on the RRC reestablishment process is achieved, the reliability of the radio link is improved, and the system performance is further improved.
  • the present disclosure also provides embodiments of apparatuses for implementing application functions.
  • FIG. 23 is a block diagram of a control processing device according to an exemplary embodiment.
  • the device is used for a terminal, and includes:
  • the control module 2301 is configured to stop or cancel the target procedure or the RRC release procedure in response to receiving a radio resource control RRC release message when executing the target procedure or executing the target procedure within a delay period;
  • the delay period is a time period from when the terminal receives the RRC release message to when the terminal delays for a specified period of time to perform RRC release-related actions
  • the target process is a radio link failure RLF-related process or RRC re-establishment process.
  • control module includes:
  • the first control submodule is configured to stop or cancel the process related to RLF detection in response to receiving the RRC release message when RLF is detected.
  • the device also includes:
  • the first execution module is configured to, in response to not receiving the RRC release message when the RLF is detected, continue to execute the processing after the RLF is detected.
  • control module includes:
  • the second control submodule is configured to not start the specified timer in response to receiving the RRC release message when starting the specified timer; wherein the specified timer is a timer corresponding to the RLF-related process .
  • the second control submodule is further configured to:
  • the specified timer In response to receiving the RRC release message when the start condition corresponding to the specified timer is met, the specified timer is not started.
  • the device also includes:
  • the first starting module is configured to start the specified timer in response to not receiving the RRC release message when starting the specified timer; wherein the specified timer is a timer corresponding to the RLF-related process .
  • the first startup module includes:
  • the starting submodule is configured to start the specified timer in response to the terminal not receiving the RRC release message when the start condition corresponding to the specified timer is met.
  • control module includes:
  • the third control submodule is configured to stop or cancel the physical layer problem detection process in response to receiving the RRC release message when performing the physical layer problem detection in the RRC connected state.
  • the device also includes:
  • the second execution module is configured to continue to execute the physical layer problem detection process in response to not receiving the RRC release message when performing the physical layer problem detection.
  • control module includes:
  • the fourth control submodule is configured to stop the specified timer in response to receiving the RRC release message while the specified timer is running; wherein the specified timer is a timer corresponding to the RLF-related process .
  • control module includes:
  • the fifth control submodule is configured to stop or cancel the RRC release process in response to receiving the RRC release message when RLF is detected.
  • control module includes:
  • the sixth control submodule is configured to stop or cancel the RRC release process in response to detecting RLF within the delay period.
  • the device also includes:
  • a third executing module configured to execute the RRC release procedure in response to the RLF not being detected before the delay period expires.
  • the target process is an RLF-related process
  • the radio link failure information includes indication information; wherein the indication information is used to indicate whether the terminal has received the RRC when RLF is detected release message.
  • the indication information is an enumeration type or a Boolean type.
  • control module includes:
  • the seventh control submodule is configured to not start the RRC reestablishment process in response to not meeting any condition for starting RRC reestablishment or receiving the RRC release message.
  • the device also includes:
  • the second starting module is configured to start the RRC reestablishment process in response to meeting any condition for starting RRC reestablishment and not receiving the RRC release message.
  • control module includes:
  • the eighth control submodule is configured to stop or cancel the RRC release procedure in response to the RRC reestablishment procedure being started before the delay period expires.
  • the eighth control submodule is further configured to:
  • the RRC release procedure is stopped or canceled in response to either condition for initiating RRC re-establishment being met before the delay period expires.
  • the device also includes:
  • the fourth execution module is configured to continue to execute the RRC release process in response to the RRC reestablishment process not being started before the delay period expires.
  • the fourth execution module is further configured to:
  • the RRC release procedure continues.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the above-mentioned units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in a place, or can also be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the disclosed solution. It can be understood and implemented by those skilled in the art without creative effort.
  • the present disclosure also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute any one of the control processing methods described above.
  • control processing device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the control processing methods described above.
  • Fig. 24 is a block diagram of a control processing device 2400 according to an exemplary embodiment.
  • the device 2400 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle-mounted user device, an ipad, or a smart TV.
  • apparatus 2400 may include one or more of the following components: processing component 2402, memory 2404, power supply component 2406, multimedia component 2408, audio component 2410, input/output (I/O) interface 2412, sensor component 2416, and Communication component 2418.
  • the processing component 2402 generally controls the overall operations of the device 2400, such as those associated with display, phone calls, data random access, camera operations, and recording operations.
  • the processing component 2402 may include one or more processors 2420 to execute instructions to complete all or part of the steps of the above-mentioned control processing method.
  • processing component 2402 may include one or more modules that facilitate interaction between processing component 2402 and other components.
  • processing component 2402 may include a multimedia module to facilitate interaction between multimedia component 2408 and processing component 2402 .
  • the processing component 2402 may read executable instructions from the memory, so as to implement the steps of a control processing method provided in the foregoing embodiments.
  • the memory 2404 is configured to store various types of data to support operations at the device 2400 . Examples of such data include instructions for any application or method operating on device 2400, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 2404 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 2406 provides power to the various components of the device 2400 .
  • Power components 2406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2400.
  • the multimedia component 2408 includes a display screen that provides an output interface between the device 2400 and the user.
  • the multimedia component 2408 includes a front camera and/or a rear camera.
  • the front camera and/or the rear camera can receive external multimedia data.
  • Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 2410 is configured to output and/or input audio signals.
  • the audio component 2410 includes a microphone (MIC), which is configured to receive external audio signals when the device 2400 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 2404 or sent via communication component 2418 .
  • the audio component 2410 also includes a speaker for outputting audio signals.
  • the I/O interface 2412 provides an interface between the processing component 2402 and a peripheral interface module, and the above peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 2416 includes one or more sensors for providing status assessments of various aspects of device 2400 .
  • the sensor component 2416 can detect the open/closed state of the device 2400, the relative positioning of components, such as the display and keypad of the device 2400, and the sensor component 2416 can also detect a change in the position of the device 2400 or a component of the device 2400 , the presence or absence of user contact with the device 2400, the device 2400 orientation or acceleration/deceleration and the temperature change of the device 2400.
  • Sensor assembly 2416 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 2416 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor assembly 2416 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 2418 is configured to facilitate wired or wireless communication between the apparatus 2400 and other devices.
  • the device 2400 can access wireless networks based on communication standards, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • the communication component 2418 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2418 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • apparatus 2400 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components, and is used to execute any one of the control processing methods described above on the terminal side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components, and is used to execute any one of the control processing methods described above on the terminal side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Implemented by
  • non-transitory machine-readable storage medium including instructions, such as the memory 2404 including instructions, which can be executed by the processor 2420 of the device 2400 to complete the above information reporting method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种控制处理方法及装置、存储介质,其中,所述控制处理方法包括:响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程;其中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。本公开可以降低RRC释放过程对无线链路失败RLF相关过程、RRC重建过程的影响,提高无线链路可靠性,进而提升系统性能。

Description

控制处理方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及控制处理方法及装置、存储介质。
背景技术
在RRC(Radio Resource Control,无线资源控制)Release(释放)过程中,终端在接收到RRC Release消息时不会立刻执行后续的流程,而是在接收到RRC Release消息之后等待协议约定的时长,或者在终端较低层(低于RRC层)表示已成功确认收到RRC Release消息时(以两个时间点中较早的为准),再执行后续的操作。
但是在等待协议约定的处理时延或较低层的确认消息的时长内,终端有可能检测到RLF(Radio Link Failure,无线链路失败)或者RRC重建。如果在执行RRC重建的过程中,终端执行了RRC Release相关的行为会导致重建失败。在NTN(Non-Terrestrial Networks,非地面网络)中,由于传输时延大,所以在NTN中可能需要延长RRCRelease相关行为的delay(时延)时长,所以相应的影响会更大。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种控制处理方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种控制处理方法,所述方法应用于终端,包括:
响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程;
其中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无 线链路失败RLF相关过程或RRC重建过程。
可选地,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
响应于检测到RLF时接收到了所述RRC释放消息,停止或取消RLF检测相关过程。
可选地,所述方法还包括:
响应于检测到RLF时未接收到所述RRC释放消息,继续执行检测到RLF之后的处理过程。
可选地,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
响应于启动指定定时器时接收到了所述RRC释放消息,不启动所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
可选地,所述响应于在启动指定定时器时接收到了所述RRC释放消息,不启动所述指定定时器,包括:
响应于在满足所述指定定时器对应的启动条件时接收到了所述RRC释放消息,不启动所述指定定时器。
可选地,所述方法还包括:
响应于在启动指定定时器时未接收到所述RRC释放消息,启动所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
可选地,所述响应于在启动指定定时器时未接收到所述RRC释放消息,启动所述指定定时器,包括:
响应于在满足所述指定定时器对应的启动条件时所述终端未接收到所述RRC释放消息,启动所述指定定时器。
可选地,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
响应于执行RRC连接态下的物理层问题检测时接收到了所述RRC释放消息,停止或取消物理层问题检测过程。
可选地,所述方法还包括:
响应于执行物理层问题检测时未接收到所述RRC释放消息,继续执行物理层问题检测过程。
可选地,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
响应于指定定时器正在运行时接收到了所述RRC释放消息,停止所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
可选地,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消RRC释放过程,包括:
响应于检测到RLF时接收到了所述RRC释放消息,停止或取消所述RRC释放过程。
可选地,响应于在延迟时段执行目标过程,停止或取消RRC释放过程,包括:
响应于在所述延迟时段内检测到RLF,停止或取消RRC释放过程。
可选地,所述方法还包括:
响应于在所述延迟时段到期前未检测到RLF,执行所述RRC释放过程。
可选地,所述目标过程是RLF相关过程,无线链路失败信息中包含指示信息;其中,所述指示信息用于指示在检测到RLF时所述终端是否接收到了所述RRC释放消息。
可选地,所述指示信息为枚举型或布尔型。
可选地,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
响应于不满足启动RRC重建的任一条件或接收到了所述RRC释放消息,不启动所述RRC重建过程。
可选地,所述方法还包括:
响应于满足启动RRC重建的任一条件且未接收到所述RRC释放消息, 启动所述RRC重建过程。
可选地,响应于在延迟时段执行目标过程,停止或取消无线资源控制RRC释放过程,包括:
响应于在所述延迟时段到期前启动了所述RRC重建过程,停止或取消所述RRC释放过程。
可选地,所述响应于在所述延迟时段到期前启动了所述RRC重建过程,停止或取消所述RRC释放过程,包括:
响应于在所述延迟时段到期前满足启动RRC重建的任一条件,停止或取消所述RRC释放过程。
可选地,所述方法还包括:
响应于在所述延迟时段到期前未启动所述RRC重建过程,继续执行所述RRC释放过程。
可选地,所述响应于在所述延迟时段到期前未启动所述RRC重建过程,继续执行所述RRC释放过程,包括:
响应于在所述延迟时段到期前未满足启动RRC重建的任一条件,继续执行所述RRC释放过程。
根据本公开实施例的第二方面,提供一种控制处理装置,所述装置应用于终端,包括:
控制模块,被配置为响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程;
其中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。
根据本公开实施例的第三方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一项所述的控制处理方法。
根据本公开实施例的第四方面,提供一种控制处理装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述任一项所述的控制处理方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,终端在执行目标过程时接收到了RRC释放消息,则可以停止或取消所述目标过程或RRC释放过程。或者,终端在延迟时段执行目标过程,则终端同样可以停止或取消所述目标过程或RRC释放过程。其中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。本公开可以降低RRC释放过程对无线链路失败RLF相关过程、RRC重建过程的影响,提高无线链路可靠性,进而提升系统性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种RRC释放过程示意图。
图2A至图2B是根据一示例性实施例示出的RRC重建过程示意图。
图3是根据一示例性实施例示出的一种控制处理方法流程示意图。
图4是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图5是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图6是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图7是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图8是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图9是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图10是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图11是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图12是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图13是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图14是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图15是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图16是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图17是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图18是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图19是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图20是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图21是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图22是根据一示例性实施例示出的另一种控制处理方法流程示意图。
图23是根据一示例性实施例示出的一种控制处理装置框图。
图24是本公开根据一示例性实施例示出的一种控制处理装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还 应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在介绍本公开提供的控制处理方法之前,先介绍一下RRC释放过程。
参照图1所示,RRC释放过程的目的主要是:释放RRC连接,包括释放已建立的无线承载以及所有无线资源;仅在建立SRB2(Signalling Radio Bearer 2,信令无线承载2)和至少一个DRB(Data Radio Bearer,数据无线承载)时暂停RRC连接,其中包括暂停建立的无线承载。其中,SRB2是RRC重配置之后建立的,用于承载NAS(Non-Access Stratum,非接入层)信令的SRB。
网络侧通过发起RRC释放过程,将终端切换到空闲态或非激活态,或者用于释放终端并将其重定向到另一个频率。
相关技术中,针对RRC释放过程引入了60毫秒的时延,延迟处理RRC释放消息是为了给发送HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)和RLC(Radio Link Control,无线链路层控制协议)确认(s)足够的时间,使网络侧知道RRC释放消息已被终端接收,使终端和网络侧之间没有状态不匹配。
另外,终端检测到RLF包括但不限于以下任一种情况:第一种情况,定时器T310在PCell(Primary Cell,主小区)/PSCell(Primary Secondary Cell,主辅小区)中到期时,确定检测到RLF。第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG(Master Cell group,主小 区组)MAC(Media Access Control,媒体访问控制)发出随机接入问题指示;或在SCG(Secondary Cell group,辅小区组)RLC指示已达到最大重传次数时,确定检测到RLF。第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。第五种情况,如果作为IAB(Integrated Access and Backhaul,接入和回传一体化)节点连接,在从MCG/SCG收到BAP(Broadband Access Point,宽带接入点)实体上的BH RLF指示后,确定检测到RLF。第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT(Llisten Before Talk先听后发)故障指示;或SCG MAC发出一致的上行LBT故障指示,确定检测到RLF。
另外,关于RRC重建过程,参照图2A所示,终端可以向网络侧设备例如基站发送RRC ReestablishmentRequest(RRC重建请求)消息,网络侧设备在RRC重建成功时反馈RRCReestablishment消息给终端,终端接收后发送RRCReestablishmentComplete(RRC重建完成)消息给网络侧设备。
或者,参照图2B所示,终端可以向网络侧设备例如基站发送RRC ReestablishmentRequest消息,网络侧设备回退到RRC建立,即网络侧设备反馈RRCSetup(RRC建立)消息给终端,终端接收后发送RRCSetupComplete(RRC建立完成)消息给网络侧设备。
RRC重建过程是为了重新建立RRC连接。连接态中的终端其已经使用SRB2激活AS(Access Stratum,接入层)安全性并且至少一个DRB设置,可以发起过程以便继续RRC连接。如果网络能够查找并验证有效的终端上下文,或者如果无法检索到终端上下文,并且网络以RRCSetup消息响应,则连接重建成功。如果尚未激活AS安全性,则终端不会启动该过程,而是直接转到空闲态,释放原因为“other”。如果已激活AS安全性,但未设置SRB2和至少一个DRB,则终端不会启动该过程,而是直接转移到空闲态,释放导致RRC连接失败。
为了降低RRC释放过程对无线链路失败RLF相关过程、RRC重建过 程的影响,本公开提供了以下控制处理方法。
本公开实施例提供了一种控制处理方法,参照图3所示,图3是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤301中,响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程。
在本公开实施例中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
其中,执行RRC释放相关行为包括但不限于以下至少一项:进入非连接态,包括但不限于进入Idle(空闲态)或进入inactive(非激活态);停止或启动相关定时器,包括但不限于停止定时器T310,停止定时器T320,停止定时器T316,停止定时器T350,停止定时器T331,启动定时器T320,启动或重启定时器T325;存储小区重选优先级信息;确定VarMeasIdleConfig的内容;如果配置了CHO(Conditional HandOver,条件切换),移除终端存储的CHO相关配置等。
RLF相关过程包括但不限于以下至少一项:RLF检测;物理层问题检测;物理层问题的恢复;RLM(Radio Link Monitoring,无线链路监测);指定定时器的启动与停止;RLF原因确定;RLF报告内容确定等。
其中,RLF检测过程包括但不限于检测到RLF后的处理过程,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和定时器T312等。RLF报告内容确定包括但不限于确定失败信息的内容。在一个可能的实现方式中,RLF报告内容确定包括确定varRLF-report的内容。
RRC重建过程包括但不限于启动RRC重建以及RRC重建启动后的后续操作,后续操作包括但不限于小区选择、发送RRC重建请求消息等。
上述实施例中,可以降低RRC释放过程对无线链路失败RLF相关过程、RRC重建过程的影响,提高无线链路可靠性,进而提升系统性能。
在一些可选实施例中,本公开实施例还提供了其他几种控制处理方法。
在一个可能的实现方式中,响应于执行目标过程时未接收到了RRC释放消息,继续执行所述目标过程。
其中,目标过程是无线链路失败RLF相关过程或RRC重建过程。
RLF相关过程包括但不限于以下至少一项:RLF检测;物理层问题检测;物理层问题的恢复;RLM(Radio Link Monitoring,无线链路监测);指定定时器的启动与停止;RLF原因确定;RLF报告内容确定等。
其中,RLF检测过程包括但不限于检测到RLF后的处理过程,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和定时器T312等。RLF报告内容确定包括但不限于确定失败信息的内容。在一个可能的实现方式中,RLF报告内容确定包括确定varRLF-report的内容。
RRC重建过程包括但不限于启动RRC重建以及RRC重建启动后的后续操作,后续操作包括但不限于小区选择、发送RRC重建请求消息等。
在另一个可能的实现方式中,响应于接收到了RRC释放消息未执行目标过程,继续执行RRC释放过程。
其中,目标过程是无线链路失败RLF相关过程或RRC重建过程。
RLF相关过程包括但不限于以下至少一项:RLF检测;物理层问题检测;物理层问题的恢复;RLM;指定定时器的启动与停止;RLF原因确定;RLF报告内容确定等。
其中,RLF检测过程包括但不限于检测到RLF后的处理过程,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和定时器T312等。RLF报告内容确定包括但不限于确定失败信息的内容。在一个可能的实现方式中,RLF报告内容确定包括确定varRLF-report的内容。
RRC重建过程包括但不限于启动RRC重建以及RRC重建启动后的后续操作,后续操作包括但不限于小区选择、发送RRC重建请求消息等。
在另一个可能的实现方式中,响应于在延迟时段未执行目标过程,则继续执行RRC释放过程。
在本公开实施例中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。目标过程是无线链路失败RLF相关过程或RRC重建过程。
RLF相关过程包括但不限于以下至少一项:RLF检测;物理层问题检测;物理层问题的恢复;RLM;指定定时器的启动与停止;RLF原因确定;RLF报告内容确定等。
其中,RLF检测过程包括但不限于检测到RLF后的处理过程,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和定时器T312等。RLF报告内容确定包括但不限于确定失败信息的内容。在一个可能的实现方式中,RLF报告内容确定包括确定varRLF-report的内容。
RRC重建过程包括但不限于启动RRC重建以及RRC重建启动后的后续操作,后续操作包括但不限于小区选择、发送RRC重建请求消息等。
上述实施例中,同样实现了降低RRC释放过程对无线链路失败RLF相关过程、RRC重建过程的影响的目的,提高无线链路可靠性,进而提升系统性能。
在一些可选实施例中,参照图4所示,图4是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
步骤401中,响应于检测到RLF时接收到了RRC释放消息,停止或取消RLF检测相关过程。
其中所述RLF检测过程包括但不限于检测到RLF之后的处理过程。接收到了RRC释放消息包括终端已经接收到了RRC释放消息。
终端检测到RLF包括但不限于以下任一种情况:第一种情况,定时器T310在PCell/PSCell中到期时,确定检测到RLF。第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG MAC发出随机接入问题指示;或在SCG RLC指示已达到最大重传次数时,确定检测到RLF。第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。第五种情况,如果作为IAB节点连接,在从MCG/SCG收到BAP实体上的BH RLF指示后,确定检测到RLF。第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT故障指示;或SCG MAC发出一致的上行LBT故障指示,确定检测到RLF。
RLF相关过程包括但不限于以下至少一项:RLF检测;物理层问题检测;物理层问题的恢复;RLM(Radio Link Monitoring,无线链路监测);指定定时器的启动与停止;RLF原因确定;RLF报告内容确定等。
其中,RLF检测过程包括但不限于检测到RLF后的处理过程,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和定时器T312等。RLF报告内容确定包括但不限于确定失败信息的内容。在一个可能的实现方式中,RLF报告内容确定包括确定varRLF-report的内容。
上述实施例中,终端检测到RLF时如果已经接收到了RRC释放消息,则可以停止或取消RLF检测相关过程,避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,参照图5所示,图5是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
步骤501中,响应于检测到RLF时未接收到RRC释放消息,继续执行检测到RLF之后的处理过程。
在本公开实施例中,终端检测到RLF包括但不限于以下任一种情况: 第一种情况,定时器T310在PCell/PSCell中到期时,确定检测到RLF。第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG MAC发出随机接入问题指示;或在SCG RLC指示已达到最大重传次数时,确定检测到RLF。第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。第五种情况,如果作为IAB节点连接,在从MCG/SCG收到BAP实体上的BH RLF指示后,确定检测到RLF。第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT故障指示;或SCG MAC发出一致的上行LBT故障指示,确定检测到RLF。
检测到RLF之后的处理过程包括但不限于以下至少一项:Report RLC failure(报告RLC失败);在VarRLF-report(无线链路失败报告信息)中存储RLF信息;进入空闲态;Report MCG RLF(报告主小区组无线链路失败);启动RRC重建等。
上述实施例中,终端在检测到RLF时如果未接收到RRC释放消息,则可以继续执行检测到RLF之后的处理过程,同样提升了无线链路可靠性,可用性高。
在一些可选实施例中,参照图6所示,图6是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤601中,响应于启动指定定时器时接收到了RRC释放消息,不启动所述指定定时器。
在本公开实施例中,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。接收到了RRC释放消息包括终端已经接收到了RRC释放消息。
RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
上述实施例中,终端如果在启动指定定时器时已经接收到了RRC释放消息,则不启动指定定时器。其中,指定定时器是与RLF相关过程对应的 定时器。从而避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,参照图7所示,图7是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤701中,响应于在满足指定定时器对应的启动条件时接收到了所述RRC释放消息,不启动所述指定定时器。
在本公开实施例中,指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。在满足启动该指定定时器的启动条件时,接收到了RRC释放消息包括终端已经接收到了RRC释放消息,则不启动对应的指定定时器。
RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
在一个可能的实现方式中,当从终端下层接收到N310次连续的SpCell(包括PCell和PSCell)的不同步指示时,满足启动定时器T310的启动条件,如果终端已经接收到了RRC释放消息,则不启动该定时器T310。
在另一个可能的实现方式中,如果终端满足配置的测量事件的触发条件,reportConfig中useT312设置为“true”,且定时器T310正在运行,即满足启动定时器T312的启动条件,终端已经接收到了RRC释放消息,则不启动定时器T312。
上述实施例中,在满足指定定时器对应的启动条件时接收到了RRC释放消息,则终端可以不启动指定定时器。其中,指定定时器是与RLF相关过程对应的定时器。从而避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,参照图8所示,图8是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤801中,响应于在启动指定定时器时未接收到所述RRC释放消息,启动所述指定定时器。
在本公开实施例中,指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。
RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
上述实施例中,终端如果在启动指定定时器时未接收到RRC释放消息,则启动指定定时器。其中,指定定时器是与RLF相关过程对应的定时器。从而避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,参照图9所示,图9是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤901中,响应于在满足指定定时器对应的启动条件时终端未接收到所述RRC释放消息,启动所述指定定时器。
在本公开实施例中,指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。在满足启动该指定定时器的启动条件时,终端未接收到RRC释放消息,则启动对应的指定定时器。
RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
在一个可能的实现方式中,当从终端下层接收到N310次连续的SpCell的不同步指示时,满足启动定时器T310的启动条件,如果终端未接收到RRC释放消息,则启动该定时器T310。
在另一个可能的实现方式中,如果终端满足配置的测量事件的触发条件,reportConfig中useT312设置为“true”,且定时器T310正在运行,即满足启动定时器T312的启动条件,终端未接收到RRC释放消息,则启动定时器T312。
上述实施例中,在满足指定定时器对应的启动条件时未接收到RRC释放消息,则终端可以启动指定定时器。其中,指定定时器是与RLF相关过程对应的定时器。从而避免RRC释放过程对RLF检测相关过程造成影响, 提升了无线链路可靠性。
在一些可选实施例中,本公开为指定定时器增加了新的启动条件和停止条件中的至少一项。其中,指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
在本公开实施例中,新的启动条件可以为未接收到RRC释放消息。
在一个可能的实现方式中,新的启动条件可以与指定定时器对应的其他启动条件同时满足,即在未接收到RRC释放消息且满足该定时器原有的启动条件的情况下,终端启动指定定时器。
在本公开实施例中,新的停止条件可以为接收到了RRC释放消息。
在一个可能的实现方式中,终端接收到了RRC释放消息,即满足新的停止条件的情况下,终端可以停止指定定时器。
在另一个可能的实现方式中,满足指定定时器原有的停止条件中的任一项,则终端停止指定定时器。
在另一个可能的实现方式中,终端满足新的停止条件或者满足原有的任一停止条件的情况下,即终端接收到RRC释放消息或者满足原有的任一停止条件的情况下,终端停止指定定时器。
上述实施例中,为指定定时器提供了新的启动条件和/或新的停止条件,从而避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,参照图10所示,图10是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1001中,响应于执行RRC连接态下的物理层问题检测时接收到了RRC释放消息,停止或取消物理层问题检测过程。
在本公开实施例中,物理层问题检测包括但不限于同步检测和/或异步检测。接收到了RRC释放消息包括终端已经接收到了RRC释放消息。
上述实施例中,终端在执行RRC连接态下的物理层问题检测时如果接 收到了RRC释放消息,则终端可以停止或取消物理层问题检测过程。避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,参照图11所示,图11是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1101中,响应于执行物理层问题检测时未接收到RRC释放消息,继续执行物理层问题检测过程。
在本公开实施例中,物理层问题检测包括但不限于同步检测和/或异步检测。
上述实施例中,终端在执行RRC连接态下的物理层问题检测时如果未接收到RRC释放消息,则终端可以继续执行物理层问题检测过程。同样实现了避免RRC释放过程对RLF检测相关过程造成影响的目的,提升了无线链路可靠性。
在一些可选实施例中,参照图12所示,图12是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1201中,响应于指定定时器正在运行时接收到了RRC释放消息,停止所述指定定时器。
在本公开实施例中,所述指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
其中,终端在接收到RRC释放消息时,如果指定定时器正在运行,则终端可以立即停止指定定时器。
在一个可能的实现方式中,终端无需等待RRC释放消息的处理时延到期,再停止指定定时器。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
在另一个可能的实现方式中,终端无需等待终端较低层指示已成功确认接收到RRC释放消息,再停止指定定时器。
在另一个可能的实现方式中,终端无需等待RRC释放消息的处理时延 到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,再停止指定定时器。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
上述实施例中,指定定时器正在运行时,如果终端接收到了RRC释放消息,则可以立即停止指定定时器。避免RRC释放过程对RLF检测相关过程造成影响,提升了无线链路可靠性。
在一些可选实施例中,本公开增加了指定定时器的新的停止条件、具体地,新的停止条件可以包括接收到了RRC释放消息。指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。RLF相关过程与上述实施例中涉及到的RLF相关过程类似,在此不再赘述。
在一个可能的实现方式中,满足新的停止条件,即接收到RRC释放消息,则终端可以停止对应的指定定时器。
在另一个可能的实现方式中,满足其他停止条件中的任一项,即满足协议约定的已有的停止条件中的任一项,终端停止对应的指定定时器。
在另一个可能的实现方式中,满足新的停止条件或满足其他停止条件中的任一项,即终端接收到了RRC释放消息或者满足协议约定的已有的停止条件中的任一项,终端停止对应的指定定时器。
上述实施例中,为指定定时器增加了新的停止条件,实现简便,可用性高。
在一些可选实施例中,参照图13所示,图13是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1301中,响应于无线链路监测RLM过程启动后接收到了RRC释放消息,停止或取消RLM过程。
在本公开实施例中,终端一旦接收到RRC释放消息,则可以立即停止RLM过程。
在一个可能的实现方式中,终端无需等待处理时延到期,就可以立即 停止RLM过程。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
在另一个可能的实现方式中,终端无需等待较低层指示已成功确认接收到RRC释放消息,就可以立即停止RLM过程。
在另一个可能的实现方式中,终端无需等待处理时延到期或较低层指示已成功确认接收到RRC释放消息中较早的时刻,就可以立即停止RLM过程。
其中,RLM过程包括监听和上报过程,监听即监听当前小区的下行链路的无线链路质量,上报即向更高层指示同步/异步状态。
上述实施例中,降低RRC释放过程对RLM过程的影响,提高无线链路可靠性,进而提升系统性能。
在一些可选实施例中,参照图14所示,图14是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1401中,响应于检测到RLF时接收到了RRC释放消息,停止或取消RRC释放过程。
在本公开实施例中,终端检测到RLF时如果已经接收到RRC释放消息,则终端停止或取消后续的RRC释放相关行为。
其中,终端检测到RLF包括但不限于以下任一种情况:第一种情况,定时器T310在PCell/PSCell中到期时,确定检测到RLF。第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG MAC发出随机接入问题指示;或在SCG RLC指示已达到最大重传次数时,确定检测到RLF。第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。第五种情况,如果作为IAB节点连接,在从MCG/SCG收到BAP实体上的BH RLF指示后,确定检测到RLF。第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT故障指示;或SCG MAC发出一致的上行LBT故障指示,确定检测到RLF。
执行RRC释放相关行为包括但不限于以下至少一项:进入非连接态,包括但不限于进入Idle或进入inactive;停止或启动相关定时器,包括但不限于停止定时器T310,停止定时器T320,停止定时器T316,停止定时器T350,停止定时器T331,启动定时器T320,启动或重启定时器T325;存储小区重选优先级信息;确定VarMeasIdleConfig的内容;如果配置了CHO,移除终端存储的CHO相关配置等。
在一个可能的实现方式中,终端无需等待处理时延到期,就可以立即停止或取消后续的RRC释放相关行为。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
在另一个可能的实现方式中,终端无需等待终端较低层指示已成功确认接收到RRC释放消息,就可以立即停止或取消后续的RRC释放相关行为。
在另一个可能的实现方式中,终端无需等待RRC释放消息的处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,再停止指定定时器。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
上述实施例中,终端检测到RLF时接收到了RRC释放消息,则终端可以停止或取消RRC释放过程,降低RRC释放过程对无线链路失败RLF相关过程的影响,提高无线链路可靠性,进而提升系统性能。
在一些可选实施例中,参照图15所示,图15是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1501中,响应于在延迟时段内检测到RLF,停止或取消RRC释放过程。
在本公开实施例中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC 层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
在一个可能的实现方式中,终端在接收到RRC释放消息时开始,在协议规定的处理时延(一般为60毫秒)到期时,在这个时段内,一旦终端检测到RLF,则终端停止或取消RRC释放过程。
在另一个可能的实现方式中,终端在接收到RRC释放消息时开始,在从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长内,一旦终端检测到RLF,则终端停止或取消RRC释放过程。
在另一个可能的实现方式中,终端在接收到RRC释放消息时开始,在协议规定的处理时延(一般为60毫秒)到期和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长内,一旦终端检测到RLF,则终端停止或取消RRC释放过程。
其中,终端检测到RLF包括但不限于以下任一种情况:第一种情况,定时器T310在PCell/PSCell中到期时,确定检测到RLF。第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG MAC发出随机接入问题指示;或在SCG RLC指示已达到最大重传次数时,确定检测到RLF。第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。第五种情况,如果作为IAB节点连接,在从MCG/SCG收到BAP实体上的BH RLF指示后,确定检测到RLF。第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT故障指示;或SCG MAC发出一致的上行LBT故障指示,确定检测到RLF。
上述实施例中,终端如果在延迟时段内检测到RLF,则可以停止或取消RRC释放过程,降低RRC释放过程对无线链路失败RLF相关过程的影响,提高无线链路可靠性,进而提升系统性能。
在一些可选实施例中,参照图16所示,图16是根据一实施例示出的 一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1601中,响应于在延迟时段到期前未检测到RLF,执行RRC释放过程。
在本公开实施例中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
在一个可能的实现方式中,从终端接收到RRC释放消息时开始,到处理时延(一般为60毫秒)到期时,在这个时段内,终端未检测到RLF,则终端执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息时开始,到终端较低层指示已成功确认接收到了RRC释放消息时,在这个时段内,终端未检测到RLF,则终端执行RRC释放过程。
在另一个可能的实现方式中,终端在接收到RRC释放消息时开始,到处理时延(一般为60毫秒)到期和终端较低层指示已成功确认接收到了RRC释放消息中较早的时刻,在这个时段内,终端未检测到RLF,则终端执行RRC释放过程。
终端检测到RLF包括但不限于以下任一种情况:第一种情况,定时器T310在PCell/PSCell中到期时,确定检测到RLF。第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG MAC发出随机接入问题指示;或在SCG RLC指示已达到最大重传次数时,确定检测到RLF。第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。第五种情况,如果作为IAB节点连接,在从MCG/SCG收到BAP实体上的BH RLF指示后,确定检测到RLF。第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT故障指示;或SCG MAC发出一致 的上行LBT故障指示,确定检测到RLF。其中,执行RRC释放相关行为包括但不限于以下至少一项:进入非连接态,包括但不限于进入Idle或进入inactive;停止或启动相关定时器,包括但不限于停止定时器T310,停止定时器T320,停止定时器T316,停止定时器T350,停止定时器T331,启动定时器T320,启动或重启定时器T325;存储小区重选优先级信息;确定VarMeasIdleConfig的内容;如果配置了CHO,移除终端存储的CHO相关配置等。
上述实施例中,终端在延迟时段未检测到RLF,则终端执行RRC释放过程,实现简便,可用性高。
在一些可选实施例中,如果终端执行RLF相关过程时接收到了RRC释放消息或者在延迟时段执行RLF相关过程,则终端可以在无线链路失败信息中记录接收到RRC释放消息。即无线链路失败信息中包含指示信息,其中,所述指示信息用于指示在检测到RLF时所述终端是否接收到了所述RRC释放消息。
在一个可能的实现方式中,该指示信息可以存储在VarRLF-Report中。
在另一个可能的实现方式中,指示信息可以为枚举型或布尔型。
其中,指示信息为枚举型时,可选值为“true”,当指示信息为“true”时,用于指示在检测到RLF时所述终端接收到了RRC释放消息。当指示信息置空、不配置或为“false”时,用于指示在检测到RLF时所述终端未接收到RRC释放消息。
其中,指示信息为布尔型时,可选值为“0”或“1”,当指示信息为“1”时,用于指示在检测到RLF时所述终端接收到了RRC释放消息。当指示信息为“0”时,用于指示在检测到RLF时所述终端未接收到RRC释放消息。反之,当指示信息为“0”时,用于指示在检测到RLF时所述终端接收到了RRC释放消息。当指示信息为“1”时,用于指示在检测到RLF时所述终端未接收到RRC释放消息。
在另一个可能的实现方式中,该指示信息可以存储在VarRLF-Report 中,且指示信息可以为枚举型或布尔型。
在另一个可能的实现方式中,指示信息可以记录在其他失败信息中。
在另一个可能的实现方式中,指示信息可以记录在其他失败信息中,且指示信息可以为枚举型或布尔型。
在另一个可能的实现方式中,指示信息可以为显示的指示消息。
在另一个可能的实现方式中,指示信息可以为隐式的指示信息。
在另一个可能的实现方式中,当指示信息为隐式的指示信息时,所述隐式的指示信息可以从终端存储或者上报的消息中推导获得。
以上仅为示例性说明,将指示信息记录在终端存储或者上报的其他信息中,以及指示信息采用其他类型从而指示在检测到RLF时所述终端是否接收到了所述RRC释放消息的实现方式均应属于本公开的保护范围。
上述实施例中,可以在无线链路失败信息中包括用于指示在检测到RLF时所述终端是否接收到了RRC释放消息的指示信息,便于终端将无线链路失败信息上报给基站,由基站基于指示信息进行网络资源优化,可用性高。
在一些可选实施例中,参照图17所示,图17是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1701中,响应于不满足启动RRC重建的任一条件或接收到了RRC释放消息,不启动所述RRC重建过程。
在本公开实施例中,启动RRC重建的条件包括但不限于以下至少一项:
条件一,在检测到MCG无线电链路故障且t316未配置时,确定满足RRC重建的条件;
条件二、检测到MCG的无线电链路故障同时SCG传输暂停时,确定满足RRC重建的条件;
条件三、PSCell变更或PSCell添加过程中检测到MCG无线链路故障时,确定满足RRC重建的条件;
条件四、在MCG出现同步故障重配置时,确定满足RRC重建的条件;
条件五、NR故障导致移动时,确定满足RRC重建的条件;
条件六、当完整性检查失败指示来自下层且与SRB1或SRB2有关,除非在RRC重建消息中检测到完整性检查失败时,确定满足RRC重建的条件;
条件七、RRC连接重新配置失败时,确定满足RRC重建的条件;
条件八、在MCG传输暂停同时检测到SCG的无线链路故障时,确定满足RRC重建的条件;
条件九、当MCG传输暂停且SCG同步故障重新配置时,确定满足RRC重建的条件;
条件十、当MCG传输暂停时,SCG变更失败,确定满足RRC重建的条件;
条件十一、暂停MCG传输时出现SCG配置故障,确定满足RRC重建的条件;
条件十二、MCG暂停且关于SRB3的完整性检查故障指示来自SCG下层,确定满足RRC重建的条件;
条件十三、T316到期时,确定满足RRC重建的条件。
在本公开实施例中,终端在不满足启动RRC重建的上述任一条件的情况下,不启动RRC重建过程。
或者,终端在接收到了RRC释放消息的情况下,不启动RRC重建过程。
或者,终端在不满足启动RRC重建的上述任一条件或者接收到了RRC释放消息的情况下,不启动RRC重建过程。
在一个可能的实现方式中,当终端检测到MCG无线链路故障且t316未配置但是终端接收到了RRCRelease消息,则不启动RRC重建过程
在另一个可能的实现方式中,当终端检测到MCG无线电链路故障,SCG传输暂停但是UE收到了RRCRelease消息,则不启动重建过程。
在本公开实施例中,RRC重建过程包括但不限于启动RRC重建以及 RRC重建启动后的后续操作,后续操作包括但不限于小区选择、发送RRC重建请求消息等。
上述实施例中,终端可以在不满足启动RRC重建的任一条件或接收到了所述RRC释放消息的情况下,不启动RRC重建过程。降低RRC释放过程对RRC重建过程的影响,提高无线链路可靠性,进而提升系统性能。
在一些可选实施例中,参照图18所示,图18是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1801中,响应于满足启动RRC重建的任一条件且未接收到所述RRC释放消息,启动所述RRC重建过程。
在本公开实施例中,终端可以在满足启动RRC重建的任一条件,且未接收到RRC释放消息的情况下,启动该RRC重建过程。
其中,启动RRC重建的条件包括但不限于以上实施例提供的任一条件。在此不再赘述。RRC重建过程包括但不限于启动RRC重建以及RRC重建启动后的后续操作,后续操作包括但不限于小区选择、发送RRC重建请求消息等。
上述实施例中,终端可以在满足启动RRC重建的任一条件同时未接收到所述RRC释放消息的情况下,启动RRC重建过程。实现了降低RRC释放过程对RRC重建过程的影响的目的,提高了无线链路可靠性,进而提升了系统性能。
在一些可选实施例中,本公开为RRC重建提供了新的启动条件。新的启动条件可以包括:未接收到RRC释放消息。
在一个可能的实现方式中,新的启动条件可以与上述实施例提供的启动RRC重建的启动条件中的任一项同时满足,即终端在满足上述启动RRC重建的任一启动条件同时未接收到RRC释放消息的情况下,启动RRC重建过程。
上述实施例中,为RRC重建提供了新的启动条件,降低RRC释放过程对RRC重建过程的影响,可用性高。
在一些可选实施例中,参照图19所示,图19是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤1901中,响应于在延迟时段到期前启动了RRC重建过程,停止或取消所述RRC释放过程。
其中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
在一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期前,在这个时段,终端启动了RRC重建过程,则终端可以停止或取消RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到终端较低层指示已成功确认接收到RRC释放消息,在这个时段,终端启动了RRC重建过程,则终端可以停止或取消RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,在这个时段,终端启动了RRC重建过程,则终端可以停止或取消RRC释放过程。
上述实施例中,实现了降低RRC释放过程对RRC重建过程的影响的目的,提高了无线链路可靠性,进而提升了系统性能。
在一些可选实施例中,参照图20所示,图20是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤2001中,响应于在延迟时段到期前满足启动RRC重建的任一条件,停止或取消所述RRC释放过程。
其中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段。指定时长为协议约定的 处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
在一个可能的实现方式中,从所述终端接收到所述RRC释放消息开始,到处理时延到期前,在这个时段,满足启动RRC重建的任一条件,则终端可以停止或取消RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到终端较低层指示已成功确认接收到RRC释放消息,在这个时段,满足启动RRC重建的任一条件,则终端可以停止或取消RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,在这个时段,满足启动RRC重建的任一条件,则终端可以停止或取消RRC释放过程。
上述实施例中,实现了降低RRC释放过程对RRC重建过程的影响的目的,提高了无线链路可靠性,进而提升了系统性能。
在一些可选实施例中,参照图21所示,图21是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤2101中,响应于在延迟时段到期前未启动所述RRC重建过程,继续执行所述RRC释放过程。
其中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
在一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期,在这个时段,终端未启动RRC重建过程,则终端可以继续执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到终端较低层指示已成功确认接收到RRC释放消息,在这个时段,终端未启动RRC重建过程,则终端可以继续执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,在这个时段,终端未启动RRC重建过程,则终端可以继续执行RRC释放过程。
上述实施例中,实现了降低RRC释放过程对RRC重建过程的影响的目的,提高了无线链路可靠性,进而提升了系统性能。
在一些可选实施例中,参照图22所示,图22是根据一实施例示出的一种控制处理方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤2201中,响应于在延迟时段到期前未满足启动RRC重建的任一条件,继续执行RRC释放过程。
其中,延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段。指定时长为协议约定的处理时延(一般为60毫秒),或者为协议规定的处理时延(一般为60ms)和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长。
在一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期前,在这个时段,不满足启动RRC重建的任一条件,则终端可以继续执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到终端较低层指示已成功确认接收到RRC释放消息,在这个时段,不满足启动RRC重建的任一条件,则终端可以继续执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,在这个时段,不满足启动RRC重建的任一条件,则终端可以继续执 行RRC释放过程。
上述实施例中,实现了降低RRC释放过程对RRC重建过程的影响的目的,提高了无线链路可靠性,进而提升了系统性能。
下面对本公开提供的切换控制方法进一步举例说明如下。
目标过程是无线链路失败RLF相关过程的情况下,切换控制方法包括:
1.1、响应于执行RLF相关过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行RLF相关过程,停止或取消所述RLF相关过程;或,
1.2、响应于执行RLF相关过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行RLF相关过程,停止或取消RRC释放过程。其中,RLF相关过程包括但不限于以下至少一项:RLF检测;物理层问题检测;物理层问题的恢复;RLM(Radio Link Monitoring,无线链路监测);指定定时器的启动与停止;RLF原因确定;RLF报告内容确定等。
其中,RLF检测过程包括但不限于检测到RLF后的处理过程,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和定时器T312等。RLF报告内容确定包括但不限于确定失败信息的内容。在一个可能的实现方式中,RLF报告内容确定包括确定varRLF-report的内容。
2、针对上述1.1,终端检测到RLF时,需要判断是否接收到了RRC释放消息。
2.1、终端检测到RLF时,如果未接收到RRC释放消息,则继续检测到RLF后的过程。
在一个可能的实现方式中,检测到RLF之后的处理过程包括但不限于以下至少一项:Report RLC failure;在VarRLF-report中存储RLF信息;进入空闲态;Report MCG RLF;启动RRC重建等。
2.2、终端检测到RLF时,接收到了RRC释放消息,则停止或取消RLF检测相关过程。其中所述RLF检测过程包括但不限于检测到RLF之后的处理过程。接收到了RRC释放消息包括终端已经接收到了RRC释放消息。
3、针对上述1.1,终端在启动指定定时器时,需要判断是否接收到了RRC释放消息。其中,指定定时器是与RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。
3.1、终端在启动指定定时器时,未接收到RRC释放消息,则启动指定定时器。
3.2、终端在启动指定定时器时接收到了RRC释放消息,则不启动指定定时器。
在一个可能的实现方式中,当从终端下层接收到N310次连续的SpCell(包括PCell和PSCell)的不同步指示时未接收到RRC释放消息,则启动指定定时器T310。
在另一个可能的实现方式中,当从终端下层接收到N310次连续的SpCell(包括PCell和PSCell)的不同步指示时接收到了RRC释放消息,则不启动指定定时器T310。
在另一个可能的实现方式中,如果满足配置的测量事件的触发条件,reportConfig中useT312设置为“true”,且定时器T310正在运行,终端未接收到RRC释放消息,则启动指定定时器T312。
4、针对上述1.1,终端在启动RRC_CONNECTED(RRC连接态)下的物理层问题检测时,需要判断是否接收到了RRC释放消息。其中,物理层问题检测包括但不限于同步检测和/或异步检测。
4.1、终端在启动物理层问题检测时,如果未接收到RRC释放消息,则继续执行物理层问题检测过程。
4.2、终端在启动物理层问题检测时,如果接收到了RRC释放消息,则停止或取消触发的物理层问题检测过程。
5、针对上述1.1,终端在接收到RRC释放消息后,如果指定定时器正在运行,则停止指定定时器。其中,指定定时器是与所述RLF相关过程对应的定时器,包括但不限于定时器T310和T312中的至少一个。
在一个可能的实现方式中,终端在接收到RRC释放消息后,如果指定 定时器正在运行则立即停止指定定时器,无需等待RRCRelease消息的处理时延到期再停止指定定时器。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
在另一个可能的实现方式中,终端在接收到RRC释放消息后,如果指定定时器正在运行则立即停止指定定时器,无需等待终端较低层指示已成功确认接收到RRC释放消息,再停止指定定时器。
在另一个可能的实现方式中,终端在接收到RRC释放消息后,如果指定定时器正在运行则立即停止指定定时器,无需等待RRC释放消息的处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,再停止指定定时器。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
6、针对上述1.1,终端在接收到RRC释放消息后,停止或取消无线链路监测RLM过程。其中,RLM过程包括监听和上报过程,监听即监听当前小区的下行链路的无线链路质量,上报即向更高层指示同步/异步状态。
在一个可能的实现方式中,终端在接收到RRC释放消息后,立即停止RLM过程,即无需等待RRCRelease消息的处理时延到期,再停止RLM过程。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
在另一个可能的实现方式中,终端无需等待较低层指示已成功确认接收到RRC释放消息,就可以立即停止RLM过程。
在另一个可能的实现方式中,终端无需等待处理时延到期或较低层指示已成功确认接收到RRC释放消息中较早的时刻,就可以立即停止RLM过程。
7、针对上述1.2,终端检测到RLF时,如果接收到了RRC消息,则停止或取消RRC释放过程。其中,终端检测到RLF的情况与上述实施例中提供的检测到RLF的情况类似,在此不再赘述。
在一个可能的实现方式中,终端无需等待处理时延到期,就可以立即停止或取消后续的RRC释放相关行为。其中,该处理时延为协议约定的处 理时延,一般为60毫秒。
在另一个可能的实现方式中,终端无需等待终端较低层指示已成功确认接收到RRC释放消息,就可以立即停止或取消后续的RRC释放相关行为。
在另一个可能的实现方式中,终端无需等待RRC释放消息的处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,再停止指定定时器。其中,该处理时延为协议约定的处理时延,一般为60毫秒。
8、针对上述1.2,在延迟时段,终端需要判断是否检测到RLF。
8.1、在延迟时段若终端均未检测到RLF,则执行RRC释放过程。
在一个可能的从终端接收到RRC释放消息时开始,到处理时延(一般为60毫秒)到期时,在这个时段内,终端未检测到RLF,则终端执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息时开始,到终端较低层指示已成功确认接收到了RRC释放消息时,在这个时段内,终端未检测到RLF,则终端执行RRC释放过程。
在另一个可能的实现方式中,终端在接收到RRC释放消息时开始,到处理时延(一般为60毫秒)到期和终端较低层指示已成功确认接收到了RRC释放消息中较早的时刻,在这个时段内,终端未检测到RLF,则终端执行RRC释放过程。
8.2、在延迟时段若终端检测到RLF,停止或取消RRC释放过程。
在一个可能的实现方式中,终端在接收到RRC释放消息时开始,在协议规定的处理时延(一般为60毫秒)到期时,在这个时段内,一旦终端检测到RLF,则终端停止或取消RRC释放过程。
在另一个可能的实现方式中,终端在接收到RRC释放消息时开始,在从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长内,一旦终端检测到RLF,则终端停止或取消RRC 释放过程。
在另一个可能的实现方式中,终端在接收到RRC释放消息时开始,在协议规定的处理时延(一般为60毫秒)到期和从终端收到RRCRelease消息到较低层(低于RRC层)指示成功确认接收到RRC释放消息的时长二者中较短的时长内,一旦终端检测到RLF,则终端停止或取消RRC释放过程。
9、终端可以在失败信息中记录接收到了RRC释放消息。
9.1、无线链路失败信息中可以包含指示信息,其中,所述指示信息用于指示在检测到RLF时所述终端是否接收到了所述RRC释放消息。
在一个可能的实现方式中,该指示信息可以存储在VarRLF-Report中。
在另一个可能的实现方式中,指示信息可以为枚举型或布尔型。
其中,指示信息为枚举型时,可选值为“true”,当指示信息为“true”时,用于指示在检测到RLF时所述终端接收到了RRC释放消息。当指示信息置空、不配置或为“false”时,用于指示在检测到RLF时所述终端未接收到RRC释放消息。
其中,指示信息为布尔型时,可选值为“0”或“1”,当指示信息为“1”时,用于指示在检测到RLF时所述终端接收到了RRC释放消息。当指示信息为“0”时,用于指示在检测到RLF时所述终端未接收到RRC释放消息。反之,当指示信息为“0”时,用于指示在检测到RLF时所述终端接收到了RRC释放消息。当指示信息为“1”时,用于指示在检测到RLF时所述终端未接收到RRC释放消息。
在另一个可能的实现方式中,该指示信息可以存储在VarRLF-Report中,且指示信息可以为枚举型或布尔型。
在另一个可能的实现方式中,指示信息可以记录在其他失败信息中。
在另一个可能的实现方式中,指示信息可以记录在其他失败信息中,且指示信息可以为枚举型或布尔型。
在另一个可能的实现方式中,指示信息可以为显示的指示消息。
在另一个可能的实现方式中,指示信息可以为隐式的指示信息。
在另一个可能的实现方式中,当指示信息为隐式的指示信息时,所述隐式的指示信息可以从终端存储或者上报的消息中推导获得。
以上仅为示例性说明,将指示信息记录在终端存储或者上报的其他信息中,以及指示信息采用其他类型从而指示在检测到RLF时所述终端是否接收到了所述RRC释放消息的实现方式均应属于本公开的保护范围。
10、上述涉及到的终端检测到RLF包括但不限于以下至少一种情况:
第一种情况,定时器T310在PCell/PSCell中到期时,确定检测到RLF。
第二种情况,定时器T312在PCell/PSCell中到期时,确定检测到RLF。
第三种情况,当定时器T300、T301、T304、T311和T319均未运行时,MCG MAC发出随机接入问题指示;或在SCG RLC指示已达到最大重传次数时,确定检测到RLF。
第四种情况,MCG/SCG RLC指示已达到最大重传次数时,确定检测到RLF。
第五种情况,如果作为IAB节点连接,在从MCG/SCG收到BAP实体上的BH RLF指示后,确定检测到RLF。
第六种情况,当定时器T304未运行时,MCG MAC发出一致的上行LBT故障指示;或SCG MAC发出一致的上行LBT故障指示,确定检测到RLF。
上述实施例中,降低RRC释放过程对无线链路失败RLF相关过程的影响,提高无线链路可靠性,进而提升系统性能。
目标过程是RRC重建过程的情况下,切换控制方法包括:
11.1、响应于执行RRC重建过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行RRC重建过程,不启动RRC重建;或,
11.2、响应于执行RRC重建过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行RRC重建过程,停止或取消RRC释放过程。
12、针对11.1,当终端在评估启动RRC重建的启动条件时还需要判断 是否接收到RRC释放消息。
12.1、当满足任一启动条件且终端未接收到RRC释放消息,则执行RRC重建过程。
12.2、当满足任一启动条件被但终端接收到了RRC释放消息,则不执行RRC重建过程。
12.3、所述启动条件包括但不限于以下至少一项:
条件一,在检测到MCG无线电链路故障且t316未配置时,确定满足RRC重建的条件;
条件二、检测到MCG的无线电链路故障同时SCG传输暂停时,确定满足RRC重建的条件;
条件三、PSCell变更或PSCell添加过程中检测到MCG无线链路故障时,确定满足RRC重建的条件;
条件四、在MCG出现同步故障重配置时,确定满足RRC重建的条件;
条件五、NR故障导致移动时,确定满足RRC重建的条件;
条件六、当完整性检查失败指示来自下层且与SRB1或SRB2有关,除非在RRC重建消息中检测到完整性检查失败时,确定满足RRC重建的条件;
条件七、RRC连接重新配置失败时,确定满足RRC重建的条件;
条件八、在MCG传输暂停同时检测到SCG的无线链路故障时,确定满足RRC重建的条件;
条件九、当MCG传输暂停且SCG同步故障重新配置时,确定满足RRC重建的条件;
条件十、当MCG传输暂停时,SCG变更失败,确定满足RRC重建的条件;
条件十一、暂停MCG传输时出现SCG配置故障,确定满足RRC重建的条件;
条件十二、MCG暂停且关于SRB3的完整性检查故障指示来自SCG 下层,确定满足RRC重建的条件;
条件十三、T316到期时,确定满足RRC重建的条件。
13、针对11.2,在延迟时段,终端需要判断是否启动了RRC重建过程。
13.1、在延迟时段,若均未启动RRC重建过程,则继续执行RRC释放过程。
在一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期,在这个时段,终端未启动RRC重建过程,则终端可以继续执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到终端较低层指示已成功确认接收到RRC释放消息,在这个时段,终端未启动RRC重建过程,则终端可以继续执行RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,在这个时段,终端未启动RRC重建过程,则终端可以继续执行RRC释放过程。
13.2、在延迟时段终端启动了RRC重建过程,停止或取消RRC释放过程。
在一个可能的实现方式中,从所述终端接收到所述RRC释放消息开始,到处理时延到期前,在这个时段,满足启动RRC重建的任一条件,则终端可以停止或取消RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到终端较低层指示已成功确认接收到RRC释放消息,在这个时段,满足启动RRC重建的任一条件,则终端可以停止或取消RRC释放过程。
在另一个可能的实现方式中,从终端接收到RRC释放消息开始,到处理时延到期和终端较低层指示已成功确认接收到RRC释放消息中较早的时刻,在这个时段,满足启动RRC重建的任一条件,则终端可以停止或取消RRC释放过程。
上述实施例中,实现了降低RRC释放过程对RRC重建过程的影响的目的,提高了无线链路可靠性,进而提升了系统性能。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图23,图23是根据一示例性实施例示出的一种控制处理装置框图,所述装置用于终端,包括:
控制模块2301,被配置为响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程;
其中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。
在一些可选实施例中,所述控制模块包括:
第一控制子模块,被配置为响应于检测到RLF时接收到了所述RRC释放消息,停止或取消RLF检测相关过程。
在一些可选实施例中,所述装置还包括:
第一执行模块,被配置为响应于检测到RLF时未接收到所述RRC释放消息,继续执行检测到RLF之后的处理过程。
在一些可选实施例中,所述控制模块包括:
第二控制子模块,被配置为响应于启动指定定时器时接收到了所述RRC释放消息,不启动所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
在一些可选实施例中,所述第二控制子模块还被配置为:
响应于在满足所述指定定时器对应的启动条件时接收到了所述RRC释放消息,不启动所述指定定时器。
在一些可选实施例中,所述装置还包括:
第一启动模块,被配置为响应于在启动指定定时器时未接收到所述 RRC释放消息,启动所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
在一些可选实施例中,所述第一启动模块包括:
启动子模块,被配置为响应于在满足所述指定定时器对应的启动条件时所述终端未接收到所述RRC释放消息,启动所述指定定时器。
在一些可选实施例中,所述控制模块包括:
第三控制子模块,被配置为响应于执行RRC连接态下的物理层问题检测时接收到了所述RRC释放消息,停止或取消物理层问题检测过程。
在一些可选实施例中,所述装置还包括:
第二执行模块,被配置为响应于执行物理层问题检测时未接收到所述RRC释放消息,继续执行物理层问题检测过程。
在一些可选实施例中,所述控制模块包括:
第四控制子模块,被配置为响应于指定定时器正在运行时接收到了所述RRC释放消息,停止所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
在一些可选实施例中,所述控制模块包括:
第五控制子模块,被配置为响应于检测到RLF时接收到了所述RRC释放消息,停止或取消所述RRC释放过程。
在一些可选实施例中,所述控制模块包括:
第六控制子模块,被配置为响应于在所述延迟时段内检测到RLF,停止或取消RRC释放过程。
在一些可选实施例中,所述装置还包括:
第三执行模块,被配置为响应于在所述延迟时段到期前未检测到RLF,执行所述RRC释放过程。
在一些可选实施例中,所述目标过程是RLF相关过程,无线链路失败信息中包含指示信息;其中,所述指示信息用于指示在检测到RLF时所述终端是否接收到了所述RRC释放消息。
在一些可选实施例中,所述指示信息为枚举型或布尔型。
在一些可选实施例中,所述控制模块包括:
第七控制子模块,被配置为响应于不满足启动RRC重建的任一条件或接收到了所述RRC释放消息,不启动所述RRC重建过程。
在一些可选实施例中,所述装置还包括:
第二启动模块,被配置为响应于满足启动RRC重建的任一条件且未接收到所述RRC释放消息,启动所述RRC重建过程。
在一些可选实施例中,所述控制模块包括:
第八控制子模块,被配置为响应于在所述延迟时段到期前启动了所述RRC重建过程,停止或取消所述RRC释放过程。
在一些可选实施例中,所述第八控制子模块还被配置为:
响应于在所述延迟时段到期前满足启动RRC重建的任一条件,停止或取消所述RRC释放过程。
在一些可选实施例中,所述装置还包括:
第四执行模块,被配置为响应于在所述延迟时段到期前未启动所述RRC重建过程,继续执行所述RRC释放过程。
在一些可选实施例中,所述第四执行模块还被配置为:
响应于在所述延迟时段到期前未满足启动RRC重建的任一条件,继续执行所述RRC释放过程。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存 储有计算机程序,所述计算机程序用于执行上述任一所述的控制处理方法。
相应地,本公开还提供了一种控制处理装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述任一所述的控制处理方法。
图24是根据一示例性实施例示出的一种控制处理装置2400的框图。例如装置2400可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载用户设备、ipad、智能电视等终端。
参照图24,装置2400可以包括以下一个或多个组件:处理组件2402,存储器2404,电源组件2406,多媒体组件2408,音频组件2410,输入/输出(I/O)接口2412,传感器组件2416,以及通信组件2418。
处理组件2402通常控制装置2400的整体操作,诸如与显示,电话呼叫,数据随机接入,相机操作和记录操作相关联的操作。处理组件2402可以包括一个或多个处理器2420来执行指令,以完成上述的控制处理方法的全部或部分步骤。此外,处理组件2402可以包括一个或多个模块,便于处理组件2402和其他组件之间的交互。例如,处理组件2402可以包括多媒体模块,以方便多媒体组件2408和处理组件2402之间的交互。又如,处理组件2402可以从存储器读取可执行指令,以实现上述各实施例提供的一种控制处理方法的步骤。
存储器2404被配置为存储各种类型的数据以支持在装置2400的操作。这些数据的示例包括用于在装置2400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2406为装置2400的各种组件提供电力。电源组件2406可以 包括电源管理系统,一个或多个电源,及其他与为装置2400生成、管理和分配电力相关联的组件。
多媒体组件2408包括在所述装置2400和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件2408包括一个前置摄像头和/或后置摄像头。当装置2400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2410被配置为输出和/或输入音频信号。例如,音频组件2410包括一个麦克风(MIC),当装置2400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2404或经由通信组件2418发送。在一些实施例中,音频组件2410还包括一个扬声器,用于输出音频信号。
I/O接口2412为处理组件2402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2416包括一个或多个传感器,用于为装置2400提供各个方面的状态评估。例如,传感器组件2416可以检测到装置2400的打开/关闭状态,组件的相对定位,例如所述组件为装置2400的显示器和小键盘,传感器组件2416还可以检测装置2400或装置2400一个组件的位置改变,用户与装置2400接触的存在或不存在,装置2400方位或加速/减速和装置2400的温度变化。传感器组件2416可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2416还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2416还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2418被配置为便于装置2400和其他设备之间有线或无线方式的通信。装置2400可以接入基于通信标准的无线网络,如Wi-Fi,2G, 3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件2418经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2418还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述终端侧任一所述的控制处理方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器2404,上述指令可由装置2400的处理器2420执行以完成上述信息上报方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种控制处理方法,其特征在于,所述方法由终端执行,包括:
    响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程;
    其中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。
  2. 根据权利要求1所述的方法,其特征在于,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
    响应于检测到RLF时接收到了所述RRC释放消息,停止或取消RLF检测相关过程。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于检测到RLF时未接收到所述RRC释放消息,继续执行检测到RLF之后的处理过程。
  4. 根据权利要求1所述的方法,其特征在于,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
    响应于启动指定定时器时接收到了所述RRC释放消息,不启动所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
  5. 根据权利要求4所述的方法,其特征在于,所述响应于在启动指定定时器时接收到了所述RRC释放消息,不启动所述指定定时器,包括:
    响应于在满足所述指定定时器对应的启动条件时接收到了所述RRC释放消息,不启动所述指定定时器。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于在启动指定定时器时未接收到所述RRC释放消息,启动所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
  7. 根据权利要求6所述的方法,其特征在于,所述响应于在启动指定 定时器时未接收到所述RRC释放消息,启动所述指定定时器,包括:
    响应于在满足所述指定定时器对应的启动条件时所述终端未接收到所述RRC释放消息,启动所述指定定时器。
  8. 根据权利要求1所述的方法,其特征在于,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
    响应于执行RRC连接态下的物理层问题检测时接收到了所述RRC释放消息,停止或取消物理层问题检测过程。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于执行物理层问题检测时未接收到所述RRC释放消息,继续执行物理层问题检测过程。
  10. 根据权利要求1所述的方法,其特征在于,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
    响应于指定定时器正在运行时接收到了所述RRC释放消息,停止所述指定定时器;其中,所述指定定时器是与所述RLF相关过程对应的定时器。
  11. 根据权利要求1所述的方法,其特征在于,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消RRC释放过程,包括:
    响应于检测到RLF时接收到了所述RRC释放消息,停止或取消所述RRC释放过程。
  12. 根据权利要求1所述的方法,其特征在于,响应于在延迟时段执行目标过程,停止或取消RRC释放过程,包括:
    响应于在所述延迟时段内检测到RLF,停止或取消RRC释放过程。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于在所述延迟时段到期前未检测到RLF,执行所述RRC释放过程。
  14. 根据权利要求1所述的方法,其特征在于,所述目标过程是RLF相关过程,无线链路失败信息中包含指示信息;其中,所述指示信息用于 指示在检测到RLF时所述终端是否接收到了所述RRC释放消息。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信息为枚举型或布尔型。
  16. 根据权利要求1所述的方法,其特征在于,响应于执行目标过程时接收到了无线资源控制RRC释放消息,停止或取消所述目标过程,包括:
    响应于不满足启动RRC重建的任一条件或接收到了所述RRC释放消息,不启动所述RRC重建过程。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于满足启动RRC重建的任一条件且未接收到所述RRC释放消息,启动所述RRC重建过程。
  18. 根据权利要求1所述的方法,其特征在于,响应于在延迟时段执行目标过程,停止或取消无线资源控制RRC释放过程,包括:
    响应于在所述延迟时段到期前启动了所述RRC重建过程,停止或取消所述RRC释放过程。
  19. 根据权利要求18所述的方法,其特征在于,所述响应于在所述延迟时段到期前启动了所述RRC重建过程,停止或取消所述RRC释放过程,包括:
    响应于在所述延迟时段到期前满足启动RRC重建的任一条件,停止或取消所述RRC释放过程。
  20. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于在所述延迟时段到期前未启动所述RRC重建过程,继续执行所述RRC释放过程。
  21. 根据权利要求20所述的方法,其特征在于,所述响应于在所述延迟时段到期前未启动所述RRC重建过程,继续执行所述RRC释放过程,包括:
    响应于在所述延迟时段到期前未满足启动RRC重建的任一条件,继续执行所述RRC释放过程。
  22. 一种控制处理装置,其特征在于,所述装置应用于终端,包括:
    控制模块,被配置为响应于执行目标过程时接收到了无线资源控制RRC释放消息或者在延迟时段执行目标过程,停止或取消所述目标过程或RRC释放过程;
    其中,所述延迟时段是从所述终端接收到所述RRC释放消息开始到所述终端延迟指定时长执行RRC释放相关行为的时间段,所述目标过程是无线链路失败RLF相关过程或RRC重建过程。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-21任一项所述的控制处理方法。
  24. 一种控制处理装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-21任一项所述的控制处理方法。
PCT/CN2021/135395 2021-12-03 2021-12-03 控制处理方法及装置、存储介质 WO2023097669A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004163.5A CN116569604A (zh) 2021-12-03 2021-12-03 控制处理方法及装置、存储介质
PCT/CN2021/135395 WO2023097669A1 (zh) 2021-12-03 2021-12-03 控制处理方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/135395 WO2023097669A1 (zh) 2021-12-03 2021-12-03 控制处理方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023097669A1 true WO2023097669A1 (zh) 2023-06-08

Family

ID=86611361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135395 WO2023097669A1 (zh) 2021-12-03 2021-12-03 控制处理方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN116569604A (zh)
WO (1) WO2023097669A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102907165A (zh) * 2010-04-05 2013-01-30 高通股份有限公司 便于实现中继启动和无线链路失败(rlf)处理的方法和装置
US20130171986A1 (en) * 2010-09-17 2013-07-04 Fujitsu Limited Wireless communication system, relay station, user equipment, and wireless communication method
WO2014119921A1 (en) * 2013-01-29 2014-08-07 Lg Electronics Inc. Method and apparatus for transmitting indicator in wireless communication system
CN110582128A (zh) * 2018-06-07 2019-12-17 华为技术有限公司 Rrc连接重建立方法及终端
CN111903157A (zh) * 2018-03-28 2020-11-06 瑞典爱立信有限公司 避免不必要动作的连接建立的方法和ue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102907165A (zh) * 2010-04-05 2013-01-30 高通股份有限公司 便于实现中继启动和无线链路失败(rlf)处理的方法和装置
US20130171986A1 (en) * 2010-09-17 2013-07-04 Fujitsu Limited Wireless communication system, relay station, user equipment, and wireless communication method
WO2014119921A1 (en) * 2013-01-29 2014-08-07 Lg Electronics Inc. Method and apparatus for transmitting indicator in wireless communication system
CN111903157A (zh) * 2018-03-28 2020-11-06 瑞典爱立信有限公司 避免不必要动作的连接建立的方法和ue
CN110582128A (zh) * 2018-06-07 2019-12-17 华为技术有限公司 Rrc连接重建立方法及终端

Also Published As

Publication number Publication date
CN116569604A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
EP3780852B1 (en) Information transmission method and information transmission device
JP7136912B2 (ja) 情報を報告する方法および装置、ならびに帯域幅部分に基づく動作方法および装置
US20220295590A1 (en) Inactivity timer control method and device
WO2018076820A1 (zh) 一种无线链路失败的处理方法和装置
CN109565753B (zh) 控制波束失败恢复流程的方法及装置
WO2018129940A1 (zh) 用户设备的状态控制方法、装置、用户设备和基站
US11357068B2 (en) Random access failure processing method and apparatus
US20220070960A1 (en) Connection processing method and apparatus
WO2020024266A1 (zh) 随机接入控制方法和随机接入控制装置
WO2020047696A1 (zh) 小区切换方法及装置
WO2023028782A1 (zh) 上报信息的方法、装置、通信设备及存储介质
WO2022257136A1 (zh) 波束失败恢复方法、装置及存储介质
WO2022016471A1 (zh) 定时器的控制方法、装置、通信设备及存储介质
JP7074810B2 (ja) デュアルsim携帯電話のページング衝突を対処する方法、装置及び媒体
CN111345068B (zh) 数据通信方法、装置、通信设备及存储介质
WO2023097669A1 (zh) 控制处理方法及装置、存储介质
WO2023130472A1 (zh) 提早识别的方法、装置、通信设备及存储介质
CN106793150B (zh) 无线链路的建立方法及终端
WO2022236498A1 (zh) 连接失败检测方法及装置、通信设备及存储介质
WO2022120540A1 (zh) 连接建立方法和装置
JP7421502B2 (ja) Ac規制方法及び装置
WO2023097670A1 (zh) 切换控制方法及装置、存储介质
WO2024020889A1 (zh) 一种通信方法、装置及存储介质
CN106658620B (zh) 一种接入点切换的方法和装置
WO2024000545A1 (zh) 信息上报、信息接收方法及装置、存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004163.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966095

Country of ref document: EP

Kind code of ref document: A1