WO2023096245A1 - 자연 방열 기능을 구비한 배터리 케이스 - Google Patents

자연 방열 기능을 구비한 배터리 케이스 Download PDF

Info

Publication number
WO2023096245A1
WO2023096245A1 PCT/KR2022/017935 KR2022017935W WO2023096245A1 WO 2023096245 A1 WO2023096245 A1 WO 2023096245A1 KR 2022017935 W KR2022017935 W KR 2022017935W WO 2023096245 A1 WO2023096245 A1 WO 2023096245A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
battery
battery case
heat
hole
Prior art date
Application number
PCT/KR2022/017935
Other languages
English (en)
French (fr)
Inventor
유치곤
이진현
정대호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220147774A external-priority patent/KR20230076095A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22898927.3A priority Critical patent/EP4297152A1/en
Priority to JP2023552238A priority patent/JP2024509125A/ja
Priority to US18/280,637 priority patent/US20240154205A1/en
Priority to CN202280022629.9A priority patent/CN116998049A/zh
Publication of WO2023096245A1 publication Critical patent/WO2023096245A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery case having a natural heat dissipation function capable of lowering the internal temperature of the case by dissipating heat generated from stored battery cells or battery modules to the outside without a separate cooling device.
  • secondary batteries are an alternative energy source for fossil fuels that cause air pollutants, and are used in electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (P-HEVs) and energy storage devices (ESSs). etc. are applied.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • P-HEVs plug-in hybrid electric vehicles
  • ESSs energy storage devices
  • lithium ion batteries lithium polymer batteries
  • nickel cadmium batteries nickel hydride batteries
  • nickel zinc batteries and the like.
  • the operating voltage of such a unit secondary battery cell is about 2.0V to 5.0V. Therefore, when a higher output voltage is required, a plurality of battery cells are connected in series to form a cell module assembly, and cell module assemblies are connected in series or parallel according to the required output voltage or charge/discharge capacity.
  • a battery module may also be configured. In addition, it is common to manufacture a battery pack by adding additional components using such at least one battery module.
  • an air cooling method using a cooling gas may be used, and in this case, a device such as a cooling fan is generally provided.
  • Patent Document 1 relates to an air cooling device for a battery system, and is provided with devices such as a cooling fan and a cooling passage to cool the battery system.
  • devices such as a cooling fan and a cooling passage to cool the battery system.
  • the production cost increases due to the addition of a cooling device or the energy density decreases according to the installation space.
  • Patent Document 1 Korean Patent Publication No. 2015-0044162
  • an object of the present invention is to provide a battery case having a structure capable of dissipating heat generated from battery cells or battery modules stored inside the case without a separate cooling device. .
  • the battery case according to the present invention for achieving the above object is a case body 100 of a hollow structure in which one or more openings 110 are formed; and a ventilation unit 200 mounted in the opening 110, and the ventilation unit 200 includes a frame 210 forming an outer portion and a plate shape inclined at a predetermined angle inside the frame 210.
  • the lower edge of the first heat dissipating portion 220 is inclined toward the outer side of the case body 100 than the upper edge.
  • the first heat dissipation part 220 is characterized in that it is positioned parallel to the first surface of the case body 100 .
  • the first heat dissipation part 220 is characterized in that it is formed to form an acute angle with the first surface of the case body 100 .
  • the first heat dissipation part 220 is characterized in that it is made of a metal material or a thermally conductive resin.
  • the second heat dissipation part 230 is characterized in that it is made of a metal material or a thermally conductive resin.
  • a plurality of third through-holes 241 are provided and a plate-shaped third heat dissipation part 240 located on the outer surface of the first heat dissipation part 220 is further included,
  • the first heat dissipation part 220 is provided with a plurality of first through-holes 221, while the third heat dissipation part 240 is spaced apart from the outer surface of the first heat dissipation part 220 by a predetermined interval so as to be slidable.
  • a support part 222 covering an edge of the third heat dissipation part 240 is provided, and the movement of the third heat dissipation part 240 causes the first through hole 221 and the third through hole 241 to move. It is characterized in that some or all of them overlap, or all of them do not overlap.
  • the first heat dissipation part 220, the second heat dissipation part 230, and the third heat dissipation part 240 are characterized in that they are made of a metal material.
  • the coating layer 250 having a plurality of fourth through-holes 251 is positioned on the inner or outer surface of the second heat dissipating part 230, and the fourth through-holes 251 ) has a cross-sectional area larger than that of the second through hole 231, all of the second through hole 231 is exposed by the fourth through hole 251, and the coating layer 250 is the second heat dissipation. It is characterized in that it is made of a thermally conductive resin that melts at a lower temperature than the part 230.
  • the first heat dissipation part 220 is characterized in that it is formed to form an acute angle with the first surface of the case body 100 .
  • the battery case described above and a plurality of battery cells accommodated in the battery case.
  • the battery cell is characterized in that any one of a cylindrical battery cell, a prismatic battery cell, and a pouch-type battery cell.
  • the battery case described above and a plurality of battery modules accommodated in the battery case.
  • the battery case of the present invention includes a ventilation unit having a through hole, heat inside the battery case can be discharged to the outside without a separate cooling device.
  • the battery case of the present invention has the advantage of being able to omit or minimize a separate cooling device, thereby increasing energy density due to volume and weight reduction, as well as reducing production costs.
  • the battery case of the present invention has an advantage in that the opening and closing area of the through hole can be adjusted according to the external environment.
  • the battery case of the present invention is provided with a coating layer capable of closing the through hole when the temperature rises above a certain level, and thus has the advantage of minimizing the possibility of a fire by blocking air flowing into the case. .
  • FIG. 1 is a perspective view of a battery case according to a first preferred embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the battery case shown in FIG. 1;
  • FIG. 3 is an enlarged perspective view of the ventilation unit shown in FIG. 1;
  • FIG. 4 is a cross-sectional view taken along line A-A′ of FIG. 1 .
  • FIG. 5 is an enlarged perspective view of a ventilation unit according to a second preferred embodiment of the present invention.
  • FIG. 6 is an enlarged perspective view of the ventilation unit shown in FIG. 5 viewed from another angle.
  • FIG. 7 is an exploded perspective view of the ventilation unit shown in FIG. 5;
  • FIG. 8 is a view for explaining the function of the third heat dissipation unit according to the external environment.
  • FIG. 9 is a cross-sectional view taken along line BB′ of FIG. 5 as a third preferred embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of a second heat dissipation part and a coating layer.
  • FIG. 11 is an exploded perspective view of a second heat dissipation part and a coating layer as a fourth preferred embodiment of the present invention.
  • the description related to the vertical direction may mean downward and upward, or one and the other, depending on the installation direction of each component.
  • FIG. 1 is a perspective view of a battery case according to a first preferred embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the battery case shown in FIG.
  • FIG. 3 is an enlarged perspective view of the ventilation unit shown in FIG. 1
  • FIG. 4 is a cross-sectional view taken along line AA′ of FIG. 1 .
  • the battery case according to the first embodiment of the present invention with reference to FIGS. 1 to 4, it is configured to include a case body 100 and a ventilation unit 200.
  • the case body 100 serves to protect one or more battery cells (not shown) or battery modules (not shown) accommodated therein, and is surrounded by bottom, side and top surfaces.
  • the bottom and side surfaces form a body
  • the top surface may be a cover.
  • the bottom surface will be defined as a first surface
  • the side surface as a second surface
  • the top surface as a third surface.
  • At least one ventilation unit 200 is mounted on a second surface constituting the case body 100, and an opening 110 is formed on the second surface to allow the ventilation unit 200 to be mounted.
  • the number of openings 110 is preferably formed equal to the number of ventilation units 200 to be mounted.
  • the ventilation unit 200 When describing the ventilation unit 200 mounted in the opening 110 of the case body 100 in more detail, the ventilation unit 200 includes a frame 210, a first heat dissipation unit 220 and a second heat dissipation unit ( 230) may be configured.
  • the frame 210 forms an outer portion of the ventilation unit 200 by connecting a plurality of unit members having a predetermined width and length, and although the overall shape is shown as a rectangle in the drawings, the shape can be changed as much as desired.
  • the first heat dissipating part 220 having a plate shape is configured to dissipate heat generated inside the case body 100 to the outside while being fixed to the frame 210, that is, heat exchange between the inside and the outside of the case body 100 is performed. .
  • the first heat dissipation unit 220 is made of a material having high thermal conductivity so that heat exchange can be performed smoothly, and considering processability, etc., it is preferable to be made of a metal such as aluminum or copper or a resin having excellent thermal conductivity.
  • the resin having excellent thermal conductivity is not particularly limited as long as it is solid at room temperature.
  • urethane or silicone is preferable, and metal particles such as alumina are more preferably added.
  • the first heat dissipating part 220 may be provided in plurality. At this time, by being fixed to the frame 210 in an inclined shape while having a certain angle with the opening 110, the case body 100 and the outside air The contact area can be widened, which can contribute to enhancing the heat dissipation effect.
  • the inclined angle of the first heat dissipating part 220 is not particularly limited, but to minimize the inflow of water or moisture into the second through hole 231 of the second heat dissipating part 230 to be described later, the upper side It is preferable that the lower edge than the edge is inclined toward the outside of the case body 100 (left side in FIG. 1), and it is more preferable that the lower edge does not protrude beyond the second surface of the case body 100.
  • the second heat dissipation part 230 having a plate shape is located along the upper edge and/or the lower edge of the first heat dissipation part 220, and is fixed to the first heat dissipation part 220 or to the frame 210. It may be fixed, and it is preferable that a plurality of second through holes 231 are provided.
  • the second through hole 231 preferably has a diameter of about 0.5 to 1.5 mm to discharge hot air from the inside and further minimize the inflow of foreign substances or moisture.
  • the second heat dissipation unit 230 is preferably located parallel to the first surface of the case body 100 to ensure that foreign substances or moisture are introduced, and the angle exceeds 0° to 90°. It is more preferable to form an acute angle of less than
  • the second heat dissipation unit 230 lowers the internal temperature of the case body 100 through heat exchange, and therefore is made of the same material as the first heat dissipation unit 220, such as metal or thermally conductive resin. It may be formed, but it may be made of a different material as long as it can perform a heat dissipation function.
  • the ventilation unit 200 described above that is, the frame 210, the first heat dissipation unit 220, and the second heat dissipation unit 230 are manufactured in an integrated state through injection or mold, or insert injection method in the case of different materials. can be manufactured through
  • FIG. 5 is an enlarged perspective view of the ventilation unit according to a second preferred embodiment of the present invention
  • FIG. 6 is an enlarged perspective view of the ventilation unit shown in FIG. 5 viewed from another angle
  • 7 is an exploded perspective view of the ventilation unit shown in FIG. 5
  • FIG. 8 is a view for explaining the function of the third heat dissipation unit according to the outdoor environment.
  • the ventilation unit 200 includes a frame 210, a first heat dissipation unit 220, a second heat dissipation unit 230, and a third heat dissipation unit 240, Since the frame 210 is the same as that of the first embodiment, redundant description will be omitted.
  • the first heat dissipation part 220 includes the first through hole 221 and the support part 222, while the third heat dissipation part 240 has a plate shape and has a plurality of third through holes 241 formed therein. ) is located on the outer surface of the first heat dissipation unit 220.
  • the support part 222 is configured to support the third heat dissipation part 240, and is provided on one side or both sides of the edge of the first heat dissipation part 220, and the third heat dissipation part 240 is connected to the first heat dissipation part 220. It is spaced apart from the outer surface of the first heat dissipating part 220 by a predetermined distance so as to be positioned between the and the support part 222 .
  • the length L2 of the third heat dissipation part is slightly shorter than the length L1 of the first heat dissipation part, which is necessary to adjust the position of the third through hole 241 while sliding in the longitudinal direction from the front surface of the first heat dissipation part 220. It is for
  • the position of the third heat dissipation part 240 is adjusted so that the heat inside the case body 100 can be quickly discharged to the outside, so that the first through hole 221 and the The third through holes 241 coincide with each other (FIG. 8(a)).
  • the position of the third heat dissipation unit 240 is changed so that the first through hole 221 and the third through hole 241 can be positioned alternately (FIG. 8(b) )).
  • the position of the third heat dissipation unit 240 can be adjusted so that only a portion of the first through hole 221 and the third through hole 241 overlap if necessary.
  • the battery case according to the second embodiment of the present invention passes through the first through hole 221 of the first heat dissipation part 220 and the third through hole 241 of the third heat dissipation part 240 to the inside of the case. It is a structure in which heat can be released to the outside more quickly.
  • the first heat dissipation part 220, the support part 222, and the third heat dissipation part 240 are preferably metals such as aluminum and copper having excellent thermal conductivity.
  • the support part 222 has a plate shape
  • the shape or position of the support part is not particularly limited as long as it is slidable while supporting the third heat dissipation part 240 .
  • Figure 9 is a third preferred embodiment of the present invention, a cross-sectional view taken along line BB' of Figure 5
  • Figure 10 is an exploded perspective view of a second heat dissipation unit and a coating layer
  • Figure 11 is a fourth preferred embodiment of the present invention As an example, it is an exploded perspective view of the second heat dissipation part and the coating layer.
  • the coating layer 250 is provided on the inner surface of the second heat dissipating portion 230, and in the fourth embodiment, the coating layer 250 is provided on the outer surface of the second heat dissipating portion 230. .
  • the coating layer 250 is provided with a plurality of fourth through holes 251.
  • the cross-sectional area of the fourth through holes 251 is larger than the cross-sectional area of the second through holes 231 and all of the second through holes 231 are formed. is preferably in a state exposed by the fourth through hole 251, the coating layer 250 is more preferably made of a thermal conductive resin that melts at a lower temperature than the second heat dissipating part 230, and the case body 100 )
  • the coating layer 250 made of the thermally conductive resin melts due to thermal runaway or the like.
  • the thermally conductive resin melts.
  • the second heat dissipating part 230 to which the coating layer 250 is attached forms an acute angle with the first surface of the case body 100, the melted coating layer 250 flows along the surface of the second heat dissipating part 230. Since the second through hole 231 is filled while lowering, it is possible to minimize the inflow of outside air into the battery case.
  • the battery cell may be divided into a can-type battery cell in which the electrode assembly is embedded in a metal can and a pouch-type battery cell in which the electrode assembly is built in a pouch having a laminate sheet structure.
  • Can-type battery cells can be divided into cylindrical battery cells and prismatic battery cells according to the shape of the metal can.
  • a cap assembly may be included.
  • the cylindrical battery can may be formed of a lightweight conductive metal material such as aluminum, stainless steel, or an alloy thereof.
  • the electrode assembly is manufactured by alternately stacking electrodes and separators, and the electrode is formed by coating an electrode active material on an electrode current collector.
  • the electrode active material can be divided into a positive electrode active material and a negative electrode active material, and a conductive material and a binder are added to the active material to prepare a slurry, which is then coated on a metal foil.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the cathode active material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in the binding of the active material and the conductive material and the binding to the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , polypropylene, ethylene-propylene-diene (EPDM), sulfonated EPDM, styrene butyrene rubber, fluororubber, various copolymers, and the like.
  • the negative electrode active material examples include carbon such as non-graphitizing carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal composite oxides such as Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogens, 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , metal oxides such as Bi 2 O 5 ; conductive polymers such as polyacetylene; Li-Co-N
  • a pouch type battery cell includes a pouch case, an electrode assembly, and an electrode lead.
  • the pouch case has a pocket-shaped storage space to accommodate the electrode assembly, and generally the storage space is formed by punching a laminate sheet composed of an outer resin layer, a metal layer, and an inner resin layer.
  • the outer resin layer is located at the outermost part, and this outer resin layer has excellent heat resistance, moisture permeability, and air permeability to secure heat resistance and chemical resistance while protecting the electrode assembly to be accommodated.
  • a polymer may be used, and for example, nylon or polyethylene terephthalate may be used, but is not limited thereto.
  • the metal layer in contact with the outer resin layer corresponds to a barrier layer that prevents moisture or various gases from penetrating into the case from the outside, and a lightweight aluminum thin film having excellent formability can be used as a preferable material for the metal layer.
  • the inner resin layer since the inner resin layer directly contacts the electrode assembly, it must have insulating properties and electrolytic resistance, and sealing properties, that is, the sealing portion where the inner layers are thermally bonded to each other, must have excellent thermal bonding strength for sealing with the outside.
  • Materials for the inner resin layer include polypropylene, polyethylene, polyethylene acrylic acid, and polybutylene, which have excellent chemical resistance and good sealing properties, and polyurethane. It may be selected from resins and polyimide resins, but is not limited thereto, and polypropylene excellent in chemical resistance and mechanical properties such as tensile strength, rigidity, surface hardness, and impact resistance is most preferred.
  • the electrode assembly is a jelly-roll type electrode assembly consisting of a structure in which a separator is interposed between a long sheet-type negative electrode and a positive electrode and then wound up, or a unit cell having a structure in which rectangular positive and negative electrodes are stacked with a separator interposed therebetween.
  • a stack-type electrode assembly configured, a stack-folding type electrode assembly in which unit cells are wound by a long separation film, or a lamination-stack type electrode assembly in which unit cells are stacked and attached to each other with a separator interposed therebetween, etc. can be made, but is not limited thereto.
  • the electrode active material and the binder as described above are coated on the negative electrode and the positive electrode.
  • a pair of electrode leads composed of a positive electrode lead and a negative electrode lead are electrically connected to the positive electrode tab and the negative electrode tab, respectively, and then exposed to the outside of the pouch case.
  • connection bus bars and various circuit boards for connecting the battery modules may be mounted.
  • the battery module or battery pack described above can be used as a power source for various devices such as electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (P-HEVs), and energy storage devices (ESSs).
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • P-HEVs plug-in hybrid electric vehicles
  • ESSs energy storage devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 자연 방열 기능을 구비한 배터리 케이스에 관한 것으로, 보다 상세하게는 하나 이상의 개구부가 형성된 중공 구조의 케이스 본체; 및 상기 개구부에 장착되는 환기부를 포함하며, 상기 환기부는, 외곽부를 형성하는 프레임, 상기 프레임 내부에서 일정 각도로 경사지게 배치된 플레이트 형상을 갖는 하나 이상의 제1 방열부, 및 상기 제1 방열부의 상측 가장자리 및/또는 하측 가장자리를 따라 위치하며 복수개의 제2 관통공이 구비된 제2 방열부;를 포함하는 것을 특징으로 하는 자연 방열 기능을 구비한 배터리 케이스에 관한 것이다. (대표도) 도 1

Description

자연 방열 기능을 구비한 배터리 케이스
본 출원은 2021년 11월 23일자 한국 특허 출원 제2021-0162571호 및 2022년 11월 08일자 한국 특허 출원 제2022-0147774호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 별도의 냉각 장치없이 수납된 배터리 셀이나 배터리 모듈에서 발생한 열을 외부로 방출시켜 케이스 내부의 온도를 낮출 수 있는 자연 방열 기능을 구비한 배터리 케이스에 관한 것이다.
스마트폰, 노트북, 디지털 카메라 등 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 충방전이 가능한 이차배터리에 관한 기술이 활발해지고 있다. 또한, 이차 배터리는 대기오염 물질을 유발하는 화석 연료의 대체 에너지원으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 및 에너지 저장 디바이스(ESS) 등에 적용되고 있다.
현재 널리 사용되는 이차배터리의 종류에는 리튬 이온 배터리, 리튬 폴리머 배터리, 니켈 카드뮴 배터리, 니켈 수소 배터리, 니켈 아연 배터리 등이 있다.
이러한 단위 이차배터리 셀, 즉, 단위 배터리 셀의 작동 전압은 약 2.0V ~ 5.0V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리 셀을 직렬로 연결하여 셀 모듈 어셈블리를 구성하기도 하며, 또한 셀 모듈 어셈블리를 요구되는 출력 전압 또는 충방전 용량에 따라 직렬이나 병렬로 연결하여 배터리 모듈을 구성할 수도 있다. 게다가 이러한 적어도 하나의 배터리 모듈을 이용하여 추가적인 구성요소를 부가하여 배터리 팩을 제작하는 것이 일반적이다.
한편 배터리 모듈의 경우, 충방전 시 발생하는 열로 인하여 배터리 셀의 안정성 및 효율이 저하될 위험이 있고, 이를 방지하기 위하여 배터리 모듈의 냉각을 위한 다양한 방법을 적용하고 있다.
일 예로, 냉각 기체를 이용하는 공냉식이 사용될 수 있는데, 이 경우 냉각팬 등의 장치가 구비되는 것이 일반적이다.
특허문헌 1은 배터리 시스템을 위한 공기 냉각 장치에 관한 것으로, 냉각 팬, 냉각 유로 등의 장치를 구비하여 배터리 시스템을 냉각하고 있다. 하지만 이 경우 냉각 장치의 추가로 인한 생산 단가의 상승이나 설치 공간에 따른 에너지 밀도가 저하된다는 문제가 있다.
(선행기술문헌)
(특허문헌 1) 한국공개특허공보 제2015-0044162호
본 발명은 상기와 같은 문제점을 해결하기 위하여, 별도의 냉각 장치없이 케이스 내부에 수납된 배터리 셀이나 배터리 모듈에서 발생하는 열을 외부로 방출할 수 있는 구조를 갖는 배터리 케이스를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 케이스는 하나 이상의 개구부(110)가 형성된 중공 구조의 케이스 본체(100); 및 상기 개구부(110)에 장착되는 환기부(200)를 포함하며, 상기 환기부(200)는, 외곽부를 형성하는 프레임(210), 상기 프레임(210) 내부에서 일정 각도로 경사지게 배치된 플레이트 형상을 갖는 하나 이상의 제1 방열부(220), 및 상기 제1 방열부(220)의 상측 가장자리 및/또는 하측 가장자리를 따라 위치하며 복수개의 제2 관통공(231)이 구비된 제2 방열부(230);를 포함하는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제1 방열부(220)는 상측 가장자리 보다 하측 가장자리가 케이스 본체(100) 외측을 향하도록 경사져 있는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제1 방열부(220)는 상기 케이스 본체(100)의 제1 면과 평행하게 위치하는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제1 방열부(220)는 상기 케이스 본체(100)의 제1 면과 예각을 이루도록 형성되는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제1 방열부(220)는 금속재질 또는 열전도성 수지로 이루어지는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제2 방열부(230)는 금속재질 또는 열전도성 수지로 이루어지는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 복수개의 제3 관통공(241)이 구비되며 상기 제1 방열부(220) 외측면에 위치하는 플레이트 형상의 제3 방열부(240)를 더 포함하되, 상기 제1 방열부(220)에는 복수개의 제1 관통공(221)이 구비되는 한편, 상기 제3 방열부(240)가 슬라이딩 가능하도록 상기 제1 방열부(220) 외측면과 일정 간격 이격되어 상기 제3 방열부(240)의 가장자리를 커버하는 지지부(222)가 구비되고, 상기 제3 방열부(240)의 이동에 의해 상기 제1 관통공(221)과 상기 제3 관통공(241)의 일부 또는 전부가 중첩되거나, 전부가 중첩되지 않는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제1 방열부(220), 제2 방열부(230) 및 제3 방열부(240)는 금속재질로 이루어진 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제2 방열부(230) 내측면 또는 외측면에는 다수개의 제4 관통공(251)이 구비된 피복층(250)이 위치하되, 상기 제4 관통공(251)의 단면적은 상기 제2 관통공(231)의 단면적 보다 크고, 상기 제2 관통공(231) 전부는 상기 제4 관통공(251)에 의해 노출되며, 상기 피복층(250)은 상기 제2 방열부(230) 보다 낮은 온도에서 용융되는 열전도성 수지로 이루어지는 것을 특징으로 한다.
또한 본 발명에 따른 배터리 케이스에서, 상기 제1 방열부(220)는 상기 케이스 본체(100)의 제1 면과 예각을 이루도록 형성되는 것을 특징으로 한다.
또한 본 발명에서는 전술한 배터리 케이스; 및 상기 배터리 케이스에 수납되는 복수의 배터리 셀;을 포함하는 배터리 모듈인 것을 특징으로 한다.
또한 본 발명에 따른 배터리 모듈에서, 상기 배터리 셀은 원통형 배터리 셀, 각형 배터리 셀, 및 파우치형 배터리 셀 중 어느 하나인 것을 특징으로 한다.
또한 본 발명에서는 전술한 배터리 케이스; 및 상기 배터리 케이스에 수납되는 복수의 배터리 모듈;을 포함하는 배터리 팩인 것을 특징으로 한다.
이상에서 같이, 본 발명의 배터리 케이스에는 관통공이 형성된 환기부가 구비되어 있어 별도의 냉각 장치없이 배터리 케이스 내부의 열기를 외부로 방출시킬 수 있다는 장점이 있다.
또한 본 발명의 배터리 케이스는 냉각을 위한 별도의 장치를 생략하거나 최소화할 수 있어, 부피와 무게 감소에 따른 에너지 밀도를 높일 수 있을 뿐만 아니라 생산 원가를 절감할 수 있다는 장점이 있다.
또한 본 발명의 배터리 케이스는 외부 환경에 따라 관통공의 개폐면적을 조절할 수 있다는 이점이 있다.
게다가 본 발명의 배터리 케이스는 일정 이상으로 온도가 상승할 시 관통공을 폐쇄시킬 수 있는 피복층이 구비되어 있고, 따라서 케이스 내부로 유입되는 공기를 차단함으로써 화재로 이어질 가능성을 최소화할 수 있다는 장점이 있다.
도 1은 본 발명의 바람직한 제1 실시예에 따른 배터리 케이스의 사시도이다.
도 2는 도 1에 도시한 배터리 케이스의 분해 사시도이다.
도 3은 도 1에 도시한 환기부의 확대사시도이다.
도 4는 도 1의 A-A’선을 따라 절단한 단면도이다.
도 5는 본 발명의 바람직한 제2 실시예에 따른 환기부의 확대사시도이다.
도 6은 도 5에 도시한 환기부를 다른 각도에 바라본 확대사시도이다.
도 7은 도 5에 도시한 환기부의 분해 사시도이다.
도 8은 외기 환경에 따른 제3 방열부의 기능을 설명하기 위한 도면이다.
도 9는 본 발명의 바람직한 제3 실시예로서, 도 5의 B-B’선을 따라 절단한 단면도이다.
도 10은 제2 방열부와 피복층의 분해 사시도이다.
도 11은 본 발명의 바람직한 제4 실시예로서, 제2 방열부와 피복층의 분해 사시도이다.
본 출원에서 "포함한다", "가지다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우만이 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한 본 출원에서 상하 방향과 관련된 기재는 각 구성의 설치 방향에 따라 하방과 상방, 또는 일 방과 타 방을 의미할 수 있다.
이하, 본 발명에 따른 자연 방열 기능을 구비한 배터리 케이스에 관하여 첨부된 도면을 참조하여 설명하기로 한다.
도 1은 본 발명의 바람직한 제1 실시예에 따른 배터리 케이스의 사시도이고, 도 2는 도 1에 도시한 배터리 케이스의 분해 사시도이다. 또 도 3은 도 1에 도시한 환기부의 확대사시도 그리고 도 4는 도 1의 A-A’선을 따라 절단한 단면도이다.
이들 도 1 내지 도 4를 참조하여 본 발명의 제1 실시예에 따른 배터리 케이스에 관하여 설명하면, 케이스 본체(100) 및 환기부(200)을 포함하여 구성된다.
케이스 본체(100)는 내부에 수납되는 하나 이상의 배터리 셀(미도시)이나 배터리 모듈(미도시)을 보호하는 역할을 하며, 바닥면, 측면 및 상면으로 둘러 싸여 있다. 물론 바닥면과 측면은 몸체를 형성하며, 상면은 커버일 수 있고, 이하에는 바닥면을 제1 면, 측면을 제2 면 그리고 상면은 제3 면으로 정의하여 설명하기로 한다.
환기부(200)는 케이스 본체(100)를 구성하는 제2 면에 하나 이상 장착되며, 제2 면에는 환기부(200)가 장착될 수 있도록 개구부(110)가 형성되어 있다. 여기서, 개구부(110)의 개수는 장착되는 환기부(200) 개수와 동일하게 형성되는 것이 바람직하다.
케이스 본체(100)의 개구부(110)에 장착되는 환기부(200)에 관해 보다 상세하게 설명하면, 환기부(200)는 프레임(210), 제1 방열부(220) 및 제2 방열부(230)를 포함하여 구성될 수 있다.
프레임(210)은 소정 폭과 길이를 갖는 다수개의 단위 부재들이 연결됨으로써 환기부(200)의 외곽부를 형성하며, 비록 도면에서는 전체적인 외형이 사각형인 것으로 도시하고 있으나 형상은 얼마든지 변경이 가능하다.
플레이트 형상을 갖는 제1 방열부(220)는 프레임(210)에 고정된 채 케이스 본체(100) 내부에서 발생한 열을 외부로 방출하기 위한 구성, 즉 케이스 본체(100) 내부와 외부의 열교환이 이루어진다.
따라서 제1 방열부(220)는 열교환이 원활하게 이루어지도록 열전도도가 높은 소재로 이루어지며, 가공성 등을 함께 고려할 때, 알루미늄, 구리 등의 금속, 또는 열전도성이 우수한 수지로 이루어지는 것이 바람직하다.
열전도성이 우수한 수지로는 상온에서 고체인 경우라면 특별히 제한하지 않으며, 일 예로 우레탄 또는 실리콘인 것이 바람직하고, 알루미나(alumina)와 같은 금속 입자들이 첨가되는 것이 보다 바람직하다.
이러한 제1 방열부(220)는 복수개로 구비될 수 있는데, 이때 개구부(110)와 일정 각도를 가지면서 기울어진 형태로 프레임(210)에 고정됨으로써, 케이스 본체(100) 내부 및 외부 공기와의 접촉 면적을 넓힐 수 있고 이는 방열 효과를 높이는데 기여할 수 있다.
여기서, 제1 방열부(220)의 기울어진 각도는 특별히 제한하지 않지만, 후술할 제2 방열부(230)의 제2 관통공(231)으로 물이나 습기가 유입되는 것을 최소화할 수 있도록, 상측 가장자리 보다 하측 가장자리가 케이스 본체(100) 외측(도 1에서 왼쪽)을 향하도록 경사져 있는 것이 바람직하고, 하측 가장자리가 케이스 본체(100)의 제2 면보다 튀어 나오지 않는 것이 보다 바람직하다.
계속해서, 플레이트 형상을 갖는 제2 방열부(230)는 제1 방열부(220)의 상측 가장자리 및/또는 하측 가장자리를 따라 위치하는데, 제1 방열부(220)에 고정되거나 프레임(210)에 고정될 수 있고, 복수개의 제2 관통공(231)이 구비되는 것이 바람직하다.
이때, 제2 관통공(231)은 내부의 뜨거운 공기를 배출시키고 나아가 이물질이나 수분이 유입되는 것을 최소화할 수 있도록 0.5~1.5mm 정도의 직경을 갖는 것이 좋다.
한편 제2 방열부(230)는 케이스 본체(100)의 제1 면을 기준으로 할 시, 이물질이나 수분이 유입되는 것을 확실하게 담보할 수 있도록 평행하게 위치하는 것이 바람직하고, 0°초과 90°미만의 예각을 이루는 것이 더욱 바람직하다.
제2 방열부(230)는 제1 방열부(220)와 마찬가지로 열교환을 통해 케이스 본체(100) 내부의 온도를 낮추어 주며, 따라서 제1 방열부(220)와 동일한 소재인 금속이나 열전도성 수지로 형성될 수도 있지만, 방열 기능을 수행할 수 있다면 상이한 소재로 이루어져도 무방하다.
전술한 환기부(200), 즉 프레임(210), 제1 방열부(220) 및 제2 방열부(230)들은 사출이나 금형을 통해 일체화된 상태로 제조하거나, 상이한 소재일 시에는 인서트 사출방식을 통해 제조할 수 있다.
도 5는 본 발명의 바람직한 제2 실시예에 따른 환기부의 확대 사시도이고, 도 6은 도 5에 도시한 환기부를 다른 각도에 바라본 확대사시도이다. 또 도 7은 도 5에 도시한 환기부의 분해 사시도이며, 도 8은 외기 환경에 따른 제3 방열부의 기능을 설명하기 위한 도면이다.
이들 도 5 내지 8을 참조하면서, 본 발명의 제2 실시예에 관해 설명하기로 하며, 환기부를 제외하고 나머지 구성은 제1 실시예와 동일하다.
본 발명의 제2 실시예에 따른 환기부(200)에서는, 프레임(210), 제1 방열부(220), 제2 방열부(230) 및 제3 방열부(240)를 포함하여 이루어지는데, 프레임(210)은 제1 실시예와 동일하므로 중복되는 설명은 생략하기로 한다.
제1 방열부(220)에는 제1 관통공(221)과 지지부(222)가 구비되어 있는 한편, 플레이트 형상으로 이루어지며 복수개의 제3 관통공(241)이 형성되어 있는 제3 방열부(240)는 제1 방열부(220) 외측면에 위치한다.
지지부(222)는 제3 방열부(240)를 지지하기 위한 구성으로, 제1 방열부(220) 가장자리 일측 또는 양측에 구비되며, 또 제3 방열부(240)가 제1 방열부(220)와 지지부(222) 사이에 위치할 수 있도록 제1 방열부(220) 외측면과는 일정 간격 이격되어 있는 상태이다.
한편 제3 방열부 길이(L2)는 제1 방열부 길이(L1) 보다 조금 짧은데, 이는 제1 방열부(220) 전면에서 길이 방향으로 슬라이딩 운동하면서 제3 관통공(241)의 위치를 조절하기 위함이다.
예를 들어, 외부의 기상 조건이 양호할 시에는 케이스 본체(100) 내부의 열기가 외부로 신속하게 방출될 수 있도록 제3 방열부(240)의 위치를 조절하여 제1 관통공(221)과 제3 관통공(241)이 서로 일치시킨다(도 8(a)). 반대로 비가 오는 등 외부 환경이 좋지 않을 시에는 제1 관통공(221)과 제3 관통공(241)이 서로 엇갈리게 위치할 수 있도록 제3 방열부(240)의 위치를 변경한다(도 8(b)).
물론 필요에 따라서는 제1 관통공(221)과 제3 관통공(241)이 일부만 중첩될 수 있도록 제3 방열부(240)의 위치를 조절할 수 있음은 자명하다.
이와 같이, 본 발명의 제2 실시예에 따른 배터리 케이스는 제1 방열부(220)의 제1 관통공(221)과 제3 방열부(240)의 제3 관통공(241)을 통해 케이스 내부의 열기가 보다 빨리 외부로 방출될 수 있는 구조이다.
본 발명의 제2 실시예에서의 제1 방열부(220), 지지부(222) 및 제3 방열부(240)는 열전도도가 우수한 알루미늄, 구리 등의 금속인 것이 바람직하다.
비록 도면에서는 지지부(222)가 플레이트 형상인 것으로 도시하고 있으나, 제3 방열부(240)를 지지하면서 슬라이딩 가능하다면 지지부의 형상이나 위치는 특별히 제한하지 않는다.
도 9는 본 발명의 바람직한 제3 실시예로서, 도 5의 B-B’선을 따라 절단한 단면도, 도 10은 제2 방열부와 피복층의 분해 사시도 그리고 도 11은 본 발명의 바람직한 제4 실시예로서, 제2 방열부와 피복층의 분해 사시도이다.
도 9 내지 11를 참조하면서, 본 발명의 제3 실시예와 제4 실시예에 관해 설명하기로 하며, 피복층을 제외하고 나머지 구성은 제1 실시예 또는 제2 실시예와 동일하다.
본 발명의 제3 실시예에서는 제2 방열부(230) 내측면에 피복층(250)이 구비되어 있고, 제4 실시예에서는 제2 방열부(230) 외측면에 피복층(250)이 구비되어 있다.
그리고 피복층(250)에는 다수개의 제4 관통공(251)이 구비되어 있는데, 제4 관통공(251)의 단면적은 제2 관통공(231)의 단면적 보다 크면서 제2 관통공(231) 전부가 제4 관통공(251)에 의해 노출된 상태인 것이 바람직하고, 피복층(250)은 제2 방열부(230) 보다 낮은 온도에서 용융되는 열전도성 수지로 이루어지는 것이 보다 바람직하고, 케이스 본체(100)의 제1 면을 기준으로 할 시 제1 방열부(220)는 제1 면과 0°초과 90°미만의 예각을 이루는 것이 가장 바람직하다.
다양한 원인으로 인해 배터리 셀에서 열폭주 현상이 발생하면 배터리 셀 내부에서는 고온의 가스와 화염이 발생할 수 있는데, 제3 및 제4 실시예에서는 케이스 내부로 유입되는 공기를 차단함으로써 화재로 이어질 가능성을 최소화할 수 있다.
상세하게, 배터리 케이스에 수납된 배터리 셀들이 정상적으로 작동할 시에는 내부의 열기가 제2 관통공(231)을 통해 용이하게 방출되지만, 열폭주 등으로 인해 열전도성 수지로 이루어진 피복층(250)의 용융 온도까지 상승하면 열전도성 수지가 용융된다.
특히 피복층(250)이 부착되어 있는 제2 방열부(230)가 케이스 본체(100)의 제1 면과 예각을 이룰 시, 용융된 피복층(250)은 제2 방열부(230) 표면을 따라 흘러내리면서 제2 관통공(231)에 채워지므로, 외부 공기가 배터리 케이스 내부로 유입되는 것을 최소화할 수 있다.
한편 전술한 케이스 본체(100) 내부에 배터리 셀이 수납될 시에는 다양한 형태의 배터리 셀이 적용 가능하다.
즉, 배터리 셀은 전극 조립체가 금속 캔에 내장되어 있는 캔형 배터리 셀과, 전극 조립체가 라미네이트 시트 구조로 이루어진 파우치에 내장된 파우치형 배터리 셀로 나눌 수 있다.
캔형 배터리 셀은 금속 캔의 형태에 따라 원통형 배터리 셀과 각형 배터리 셀로 구분할 수 있는데, 원통형 배터리 셀은 원통형 배터리 캔, 배터리 캔 내부에 수용되는 젤리-롤 형태의 전극 조립체, 배터리 캔의 상부에 결합되는 캡 조립체를 포함할 수 있다. 여기서 원통형 배터리 캔은 알루미늄, 스테인리스 스틸 또는 이들의 합금과 같은 경량의 전도성 금속 재질로 형성될 수 있다.
전극 조립체는 전극과 분리막을 교대로 적층하여 제조하고, 전극은 전극 집전체 상에 전극 활물질을 도포하여 형성하게 된다.
전극 활물질은 양극 활물질과 음극 활물질로 나눌 수 있는데, 이러한 활물질에 도전재 및 바인더 등을 첨가하여 슬러리를 제조 후 금속 포일 상에 도포 하게 된다.
여기서, 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 하나 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 배터리에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
음극 활물질로는 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz(Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; Si, SiO, SiO2 단독 또는 이들의 혼합물인 Si계 등을 사용할 수 있으나, 이들만으로 한정되는 것은 아니다. 물론 음극 활물질에도 전술한 도전재, 바인더 등이 선택적으로 더 포함하여 제조될 수 있다.
파우치형 배터리 셀은 파우치 케이스, 전극 조립체, 및 전극 리드 등을 포함하여 구성된다. 파우치 케이스는 전극 조립체를 수납할 수 있도록 포켓 모양의 수납공간이 형성되어 있으며, 일반적으로 외부 수지층, 금속층 및 내부 수지층으로 이루어진 라미네이트 시트를 펀칭하여 수납공간을 형성시킨다.
상세하게는, 외부 수지층은 최외곽에 위치하며, 이러한 외부수지층은 수납되는 전극 조립체를 보호하면서 내열성과 내화학성을 확보할 수 있도록, 인장강도, 투습방지성 및 공기투과 방지성이 우수한 내열성 폴리머를 사용할 수 있고, 일 예로 나일론 또는 폴리에틸렌테레프탈레이트를 사용할 수 있으나 이에 제한하지 않는다.
외부 수지층과 접하는 금속층은 외부로부터 수분이나 각종 가스가 케이스 내부로 침투하는 것을 방지하는 배리어층에 해당되고, 이러한 금속층의 바람직한 재료로는 가벼우면서도 성형성이 우수한 알루미늄 박막을 사용할 수 있다.
그리고, 내부 수지층은 전극 조립체와 직접적으로 접촉하므로 절연성과 내전해성을 가져야 하고, 또 외부와의 밀폐를 위하여 실링성 즉, 내부층끼리 열 접착된 실링 부위는 우수한 열접착 강도를 가져야 한다. 이러한 내부 수지층의 재료로는 내화학성이 우수하면서도 실링성이 좋은 폴리프로필렌(Polypropylene), 폴리에틸렌(Polyethylene), 폴리에틸렌 아크릴산(Polyethylene Acrylic Acid), 폴리부틸렌(Polybutylene) 등의 폴리올레핀계 수지, 폴리우레탄수지, 및 폴리이미드수지로부터 선택될 수 있으나 이에 한정하지 않으며, 인장강도, 강성, 표면경도, 내충격 강도 등의 기계적 물성과 내화학성이 뛰어난 폴리프로필렌이 가장 바람직하다.
전극 조립체는 긴 시트형의 음극과 양극 사이에 분리막이 개재된 후 권취되는 구조로 이루어지는 젤리-롤형 전극 조립체, 또는 장방형의 양극 및 음극이 분리막을 사이에 개재한 상태로 적층되는 구조의 단위셀들로 구성되는 스택형 전극 조립체, 단위셀들이 긴 분리 필름에 의해 권취되는 스택-폴딩형 전극 조립체, 또는 단위셀들이 분리막을 사이에 개재한 상태로 적층되어 서로 간에 부착되는 라미네이션-스택형 전극 조립체 등으로 이루어질 수 있으나 이에 제한하지 않는다.
물론 음극과 양극에는 전술한 바와 같은 전극 활물질과 바인더 등이 도포된다.
그리고 양극 리드와 음극 리드로 이루어지는 한 쌍의 전극 리드는 양극 탭과 음극 탭에 각각 전기적으로 연결된 후 파우치 케이스 외부로 노출되는 구조로 이루어진다.
전술한 케이스 본체에 다수개의 배터리 셀이 수납되어 배터리 모듈을 구성할 시에는, 배터리 셀과 케이스 본체 이외에도 버스 바 및 각종 회로 기판 등의 다양한 부품들이 구비됨은 자명하다.
또 케이스 본체에 다수개의 배터리 모듈이 수납되어 배터리 팩을 구성할 시에는, 배터리 모듈들을 연결하기 위한 연결 버스 바 및 각종 회로 기판 등의 다양한 부품들이 장착될 수 있다.
또 전술한 배터리 모듈이나 배터리 팩은 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 및 에너지 저장 디바이스(ESS) 등의 다양한 디바이스의 전력원으로서 사용될 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니며, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
(부호의 설명)
100: 케이스 본체
110: 개구부
200: 환기부
210: 프레임
220: 제1 방열부
221: 제1 관통공 222: 지지부
230: 제2 방열부
231: 제2 관통공
240: 제3 방열부
241: 제3 관통공
250: 피복층
251: 제4 관통공
L1: 제1 방열부 길이
L2: 제2 방열부 길이

Claims (13)

  1. 하나 이상의 개구부가 형성된 중공 구조의 케이스 본체; 및
    상기 개구부에 장착되는 환기부를 포함하며,
    상기 환기부는, 외곽부를 형성하는 프레임, 상기 프레임 내부에서 일정 각도로 경사지게 배치된 플레이트 형상을 갖는 하나 이상의 제1 방열부, 및 상기 제1 방열부의 상측 가장자리 및/또는 하측 가장자리를 따라 위치하며 복수개의 제2 관통공이 구비된 제2 방열부;를 포함하는 것을 특징으로 하는 배터리 케이스.
  2. 제1항에 있어서,
    상기 제1 방열부는 상측 가장자리 보다 하측 가장자리가 케이스 본체 외측을 향하도록 경사져 있는 것을 특징으로 하는 배터리 케이스.
  3. 제1항에 있어서,
    상기 제1 방열부는 상기 케이스 본체의 제1 면과 평행하게 위치하는 것을 특징으로 하는 배터리 케이스.
  4. 제1항에 있어서,
    상기 제1 방열부는 상기 케이스 본체의 제1 면과 예각을 이루도록 형성되는 것을 특징으로 하는 배터리 케이스.
  5. 제1항에 있어서,
    상기 제1 방열부는 금속재질 또는 열전도성 수지로 이루어지는 것을 특징으로 하는 배터리 케이스.
  6. 제5항에 있어서,
    상기 제2 방열부는 금속재질 또는 열전도성 수지로 이루어지는 것을 특징으로 하는 배터리 케이스.
  7. 제1항에 있어서,
    복수개의 제3 관통공이 구비되며 상기 제1 방열부 외측면에 위치하는 플레이트 형상의 제3 방열부를 더 포함하되,
    상기 제1 방열부에는 복수개의 제1 관통공이 구비되는 한편, 상기 제3 방열부가 슬라이딩 가능하도록 상기 제1 방열부 외측면과 일정 간격 이격되어 상기 제3 방열부의 가장자리를 커버하는 지지부가 구비되고,
    상기 제3 방열부의 이동에 의해 상기 제1 관통공과 상기 제3 관통공의 일부 또는 전부가 중첩되거나, 전부가 중첩되지 않는 것을 특징으로 하는 배터리 케이스.
  8. 제7항에 있어서,
    상기 제1 방열부, 제2 방열부 및 제3 방열부는 금속재질로 이루어진 것을 특징으로 하는 배터리 케이스.
  9. 제1항에 있어서,
    상기 제2 방열부 내측면 또는 외측면에는 다수개의 제4 관통공이 구비된 피복층이 위치하되,
    상기 제4 관통공의 단면적은 상기 제2 관통공의 단면적 보다 크고, 상기 제2 관통공 전부는 상기 제4 관통공에 의해 노출되며,
    상기 피복층은 상기 제2 방열부 보다 낮은 온도에서 용융되는 열전도성 수지로 이루어지는 것을 특징으로 하는 배터리 케이스.
  10. 제9항에 있어서,
    상기 제1 방열부는 상기 케이스 본체의 제1 면과 예각을 이루도록 형성되는 것을 특징으로 하는 배터리 케이스.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 배터리 케이스; 및
    상기 배터리 케이스에 수납되는 복수의 배터리 셀;을 포함하는 것을 특징으로 하는 배터리 모듈.
  12. 제11항에 있어서,
    상기 배터리 셀은 원통형 배터리 셀, 각형 배터리 셀, 및 파우치형 배터리 셀 중 어느 하나인 것을 특징으로 하는 배터리 모듈.
  13. 제1항 내지 제10항 중 어느 한 항에 따른 배터리 케이스; 및
    상기 배터리 케이스에 수납되는 복수의 배터리 모듈;을 포함하는 것을 특징으로 하는 배터리 팩.
PCT/KR2022/017935 2021-11-23 2022-11-15 자연 방열 기능을 구비한 배터리 케이스 WO2023096245A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22898927.3A EP4297152A1 (en) 2021-11-23 2022-11-15 Battery case having natural heat-dissipating function
JP2023552238A JP2024509125A (ja) 2021-11-23 2022-11-15 自然放熱機能を有するバッテリーケース
US18/280,637 US20240154205A1 (en) 2021-11-23 2022-11-15 Battery case having natural heat dissipation function
CN202280022629.9A CN116998049A (zh) 2021-11-23 2022-11-15 具有自然散热功能的电池壳体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210162571 2021-11-23
KR10-2021-0162571 2021-11-23
KR10-2022-0147774 2022-11-08
KR1020220147774A KR20230076095A (ko) 2021-11-23 2022-11-08 자연 방열 기능을 구비한 배터리 케이스

Publications (1)

Publication Number Publication Date
WO2023096245A1 true WO2023096245A1 (ko) 2023-06-01

Family

ID=86539903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017935 WO2023096245A1 (ko) 2021-11-23 2022-11-15 자연 방열 기능을 구비한 배터리 케이스

Country Status (4)

Country Link
US (1) US20240154205A1 (ko)
EP (1) EP4297152A1 (ko)
JP (1) JP2024509125A (ko)
WO (1) WO2023096245A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015369U (ko) * 1998-12-30 2000-07-25 정길수 선박용 루버창
JP3251734B2 (ja) * 1993-08-18 2002-01-28 株式会社日立テレコムテクノロジー 電子装置の筐体構造
KR20140001394U (ko) * 2012-08-29 2014-03-10 삼성중공업 주식회사 선박용 루버장치
KR20150044162A (ko) 2013-10-16 2015-04-24 현대모비스 주식회사 배터리 시스템을 위한 공기 냉각 장치 및 이의 제어 방법
KR101528404B1 (ko) * 2013-07-12 2015-06-11 (주)폴스텍 착탈식 방충망이 구성되는 에어컨 실외기용 환기창
KR101552483B1 (ko) * 2014-05-29 2015-09-14 인지컨트롤스 주식회사 전기자동차용 배터리 하우징
KR20220147774A (ko) 2021-04-27 2022-11-04 주식회사 디엠씨 압입형 부시를 갖는 사이드 마운팅 라디에이터 브라켓

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251734B2 (ja) * 1993-08-18 2002-01-28 株式会社日立テレコムテクノロジー 電子装置の筐体構造
KR20000015369U (ko) * 1998-12-30 2000-07-25 정길수 선박용 루버창
KR20140001394U (ko) * 2012-08-29 2014-03-10 삼성중공업 주식회사 선박용 루버장치
KR101528404B1 (ko) * 2013-07-12 2015-06-11 (주)폴스텍 착탈식 방충망이 구성되는 에어컨 실외기용 환기창
KR20150044162A (ko) 2013-10-16 2015-04-24 현대모비스 주식회사 배터리 시스템을 위한 공기 냉각 장치 및 이의 제어 방법
KR101552483B1 (ko) * 2014-05-29 2015-09-14 인지컨트롤스 주식회사 전기자동차용 배터리 하우징
KR20220147774A (ko) 2021-04-27 2022-11-04 주식회사 디엠씨 압입형 부시를 갖는 사이드 마운팅 라디에이터 브라켓

Also Published As

Publication number Publication date
JP2024509125A (ja) 2024-02-29
EP4297152A1 (en) 2023-12-27
US20240154205A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2017104878A1 (ko) 배터리 팩
WO2019208911A1 (ko) 가스배출수단이 구비된 파우치형 이차전지
WO2017104877A1 (ko) 배터리 모듈
WO2012020941A2 (ko) 신규한 구조의 전지팩
CN216698555U (zh) 电池模块和包括该电池模块的电池组
WO2017213344A1 (ko) 다공성 구조의 냉각 겸용 완충 부재를 포함하는 전지모듈
WO2013151233A1 (ko) 배터리셀
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2021054595A1 (ko) 2개 이상의 금속 호일 사이에 저항층을 포함하는 전극 집전체, 이를 포함하는 전극 및 리튬 이차전지
WO2022039508A1 (ko) 안전성이 향상된 전지 셀 및 이의 제조방법
WO2022039442A1 (ko) 단열 부재를 포함하는 배터리 모듈
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018030835A1 (ko) 이차 전지
WO2023096245A1 (ko) 자연 방열 기능을 구비한 배터리 케이스
WO2021246608A1 (ko) 에너지 밀도가 증가된 파우치형 이차전지 및 이의 제조방법
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2013133540A1 (ko) 배터리셀
KR20230076095A (ko) 자연 방열 기능을 구비한 배터리 케이스
WO2023200117A1 (ko) 단선 방지 기능이 구비된 전극 탭을 포함하는 전지 셀 및 이를 포함하는 전지 모듈
WO2023214670A1 (ko) 배터리 모듈의 선택적 분리가 가능한 배터리 팩
WO2023075190A1 (ko) 안전성이 향상된 파우치형 전지셀
WO2023136496A1 (ko) 안전성이 향상된 파우치형 전지 셀 및 이를 포함하는 전지 모듈
WO2019045365A1 (ko) 열전달 부재를 포함하는 파우치형 이차전지
CN116998049A (zh) 具有自然散热功能的电池壳体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18280637

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022629.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022898927

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022898927

Country of ref document: EP

Effective date: 20230922