WO2023096147A1 - 스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템 - Google Patents

스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템 Download PDF

Info

Publication number
WO2023096147A1
WO2023096147A1 PCT/KR2022/015211 KR2022015211W WO2023096147A1 WO 2023096147 A1 WO2023096147 A1 WO 2023096147A1 KR 2022015211 W KR2022015211 W KR 2022015211W WO 2023096147 A1 WO2023096147 A1 WO 2023096147A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
depth
laser
optical system
light
Prior art date
Application number
PCT/KR2022/015211
Other languages
English (en)
French (fr)
Inventor
김명진
고영준
황인욱
Original Assignee
주식회사 휴비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴비스 filed Critical 주식회사 휴비스
Publication of WO2023096147A1 publication Critical patent/WO2023096147A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring

Definitions

  • the present invention relates to a laser welding part monitoring system using a tunable laser source for monitoring a part being laser welded using swept source optical coherence tomography (SS-OCT) using a swept laser source.
  • SS-OCT swept source optical coherence tomography
  • the quality of laser welding can be evaluated according to the shape of a bead formed by welding.
  • the surface shape of the bead may be evaluated by inspection after welding, but since the thickness of the bead is determined by the penetration depth, the penetration depth may be monitored and evaluated in real time during welding.
  • FIG. 1 is a configuration diagram of a laser welding part monitoring system disclosed in Patent Publication No. 10-2020-0097994.
  • a laser beam B1 oscillated by a laser oscillator 10 is transferred to a workpiece 1 through a collimator 21, a dichroic mirror 22, and a focus adjustment optical system 23.
  • the depth of the key hole (Key, Hole, 2) formed by being melted by the laser beam (B1) is measured with the OCT (30).
  • the interferometric optical system 32 provided in the OCT 30 obtains the light emitted from the light source 31 as split inspection light and reference light, and the inspection light B2 is directed to the workpiece 1 on the same optical axis as the laser beam B1. After being irradiated, it is reflected and incident on the spectrometer 33, and the reference light is reflected on the reference mirror 33b and incident on the spectrometer 33, so that the spectrometer 33 analyzes the interference light caused by the reference light and the inspection light. .
  • the depth of the keyhole 2 can be measured by irradiating the inspection light B2 emitted from the OCT 30 along the same optical axis as the laser beam B1. And, since the molten pool 3 is solidified and the bead 4 is formed in the area where the laser beam B1 passes, the penetration depth D that determines the thickness of the bead 4 is the depth value of the key hole 2 measure with
  • the controller 40 adjusts the measurement reference point using the linear driver 32c that adjusts the position of the reference mirror 32b, and uses the galvano-mirror 32a provided in the interference optical system 32. By irradiating the inspection light B2 to the area before and after welding, the area before and after welding is also inspected.
  • the OCT 30 is composed of SD-OCT (Spectral Domain Optical Coherence Tomography) using a light source 31 of a broadband wavelength and a spectrometer 34 that analyzes an interference spectrum according to a wavelength of light.
  • SD-OCT Spectrum Domain Optical Coherence Tomography
  • the molten pool 3 is a molten material with fluidity
  • the position of the maximum depth in the keyhole 2 formed in the molten pool 3 may not coincide with the position where the laser beam B1 is irradiated, and its Since the relative position is not constant and may fluctuate during welding along the welding line, an error between the depth of the key hole 2 measured in the configuration of FIG. 1 and the actual penetration depth may be large.
  • Patent Document 1 KR 10-2020-0097994 A 2020.08.20.
  • an object of the present invention is to provide a laser welded part monitoring system using a swept source capable of more accurately measuring a keyhole depth and measuring a maximum depth even when the maximum depth position of a keyhole is variable.
  • the present invention combines a laser processing head 20 equipped with an optical system for focusing a laser beam oscillated from a laser oscillator 10 on a workpiece 1 and uses a laser swept source for monitoring a welding area.
  • a swept laser source 110 In the welding monitoring system, a swept laser source 110, a head coupling optical system 120 aligned on the optical axis of the optical system of the laser processing head 20, and a swept emitted from the swept laser source 110
  • An interferometric optical system 130 that splits the laser beam into inspection light and reference light, emits it through the head coupling optical system 130, and generates interference light by interfering the inspection light incident and the reference light reflected by the reference arm 134, and an SS-OCT 100 including a balanced detector 140 that detects coherent light; and a controller 200 that obtains and monitors the depth of the key hole 2 generated during welding with the interference light detected by the balanced detector 140.
  • the head coupling optical system 120 controls the emission direction of inspection light
  • the controller 200 controls the head coupling optical system 120 to turn the keyhole 2 into inspection light.
  • the maximum depth obtained by scanning is determined as the depth of the key hole (2).
  • the controller 200 shows the profile obtained by scanning the key hole 2 at the time of welding along the welding line according to the coordinates on the welding line, and partially overlaps the maximum depth of the penetration depth. get a profile
  • the controller 200 acquires and stores the maximum depth position of the key hole 2 in the direction of the inspection light output, thereby obtaining a penetration depth profile formed along the welding line following the maximum depth position. .
  • the controller 200 controls the laser processing head 20 to maintain a constant key hole depth when welding along the welding line.
  • the controller 200 expands the scan range of the inspection light forward of the keyhole 2 to obtain a profile of the area before welding, and the keyhole 2 is maximized based on the area before welding.
  • the laser processing head 20 is controlled so that the depth is kept constant.
  • the interferometric optical system 130 may adjust the traveling distance of the reference light by adjusting the position of the reference mirror 134c to reflect the reference light on the reference arm 134, and the controller 200 ) is the reference mirror 32b such that the depth range of the keyhole 2 to be measured falls within the depth measurement range of the SS-OCT 100 based on the depth value detected as the surface of the workpiece 1 before welding. adjust the position of
  • the present invention configured as described above can more accurately measure the depth of the key hole 2 using the SS-OCT 100, which has advantages in imaging speed and depth resolution, and utilizes the advantage of high-speed processing to key Since the maximum depth is searched after scanning the hole 2, the welding process can be controlled to keep the depth of the key hole 2 constant during welding while obtaining a profile close to the actual penetration depth.
  • FIG. 1 is a configuration diagram of a laser welding monitoring system according to the prior art.
  • Figure 2 is a configuration diagram of a laser welding monitoring system according to an embodiment of the present invention.
  • controller 200 is a block diagram of the controller 200
  • FIG. 5 is a view showing a method of determining the penetration depth by plotting the profile of the key hole 2 on a graph with the welding progress direction as an axis.
  • SS-OCT Sestrept Source Optical Coherence Tomography
  • the profile of the penetration depth estimated according to the measured depth of the keyhole 2 is obtained. can be obtained more accurately.
  • Embodiments of the present invention may be implemented in the form of a combination of software and hardware, and the form of software and hardware may be described as parts, modules, parts, etc., and in the form of computer-readable program codes implemented in a recording medium. can be implemented as
  • FIG. 2 is a configuration diagram of a laser welding monitoring system according to an embodiment of the present invention.
  • the laser welding monitoring system detects the key hole 2 through SS-OCT (Swept Source Optical Coherence Tomography, 100) and SS-OCT 100 coupled to the laser processing head 20 for laser welding. and a controller 200 that measures the depth and obtains a profile of the penetration depth.
  • SS-OCT Send Source Optical Coherence Tomography
  • the laser processing head 20 is a laser beam oscillated by the laser oscillator 10 for laser welding.
  • a collimator (21) installed at the part incident through the optical fiber to convert the laser beam into parallel light
  • a dichroic mirror (22) to guide the laser beam converted into parallel light toward the emission direction
  • the laser beam guided by the dichroic mirror 22 is focused toward the workpiece 1 and includes a focus adjustment optical system 23 configured to adjust the focus, so that the workpiece 1 can be laser welded.
  • the dichroic mirror 22 is composed of a mirror that selectively reflects a laser beam for welding and transmits inspection light by the SS-OCT 100, and is optically coupled with the SS-OCT 100.
  • the configuration of the laser processing head 20 is not limited to the configuration shown in FIG. 2 as an example, and various modifications are possible in the technical field to which the present invention belongs, so a detailed description thereof will be omitted.
  • the SS-OCT 100 includes a swept laser source 110, a head coupling optical system 120, an interference optical system 130, and a balanced detector 140.
  • the swab laser source 110 emits narrowband coherent light having a wavelength varying within a wavelength tunable range set according to the specifications of the SS-OCT 100 at regular intervals.
  • the head coupling optical system 120 is an optical system provided in the laser processing head 20 and is optically coupled to be aligned with the output optical axis of the optical system of the laser processing head 20, and the inspection incident by the interference optical system 130 described later. Light is irradiated in the focusing direction of the laser beam, and the irradiated inspection light is reflected and incident and then proceeds to the interferometric optical system 130 .
  • the head coupling optical system 120 transmits the collimator 121 for converting the incident inspection light into parallel light and the dichroic mirror 22 by changing the direction of the inspection light converted into parallel light. After aligning it on the optical axis of the focusing optical system 23 to face the focusing optical system 23 and adjusting the irradiation direction toward the focusing optical system 23, a galvano-mirror (122) is included. do.
  • the inspection light is focused and irradiated in the direction in which the laser beam is focused for welding, is reflected on the irradiated workpiece 1 and is incident to the head coupling optical system 120 and proceeds to the interferometric optical system 130. do.
  • the interference optical system 130 splits the swept laser beam emitted from the swept laser source 110 into inspection light and reference light, and the inspection light is incident on the head coupling optical system 130 and reflected on the workpiece 1
  • a reference arm 134 is provided to direct the incident light to the balanced detector 140 and to direct the reference light to the balanced detector 140 after traveling a predetermined distance, thereby interfering the inspection light and the reference light to reduce interference light. make it create
  • the swept laser beam emitted from the swept laser source 110 travels to a fiber coupler (FC) 132 through a circulator (CIR) 131 and is split into reference light and inspection light, and the inspection light is directed toward the head-coupled optical system 120 and is reflected on the workpiece 1 and then proceeds to the balanced detector 140 through the FC 132 when incident.
  • the reference light is reflected by the reference arm 134 through a PC (Polarization Controller, 133) that adjusts the polarization state, and then is coupled with the inspection light in the FC 132, and then through the CIR 131 to the balanced detector Proceed to (140).
  • the CIR 131 causes the swept laser beam and inspection light to proceed in a certain direction as described above.
  • the reference arm 134 reflects the reference light incident through the PC 133 to the reference mirror 134c via the collimator 134a and the variable optical attenuator (VA) 134b, and then the VA 134b and the collimator ( 134a), where the position of the reference mirror 134c is adjusted by the linear actuator 134d that adjusts the distance to the VA 134b, so that the traveling distance of the reference light can be adjusted.
  • VA variable optical attenuator
  • the interference optical system 130 may be modified by various known techniques if it is an optical system for interfering reference light and inspection light.
  • the balanced detector 140 detects interference light caused by the reference light and the inspection light and outputs an electrical signal according to a distance difference between the reference light and the inspection light.
  • the controller 200 obtains a penetration depth profile based on the surface of the workpiece 1 using the SS-OCT 100 coupled to the laser processing head 20, monitors the penetration depth, and The laser processing head 20 is controlled so that the depth is kept constant along the welding line.
  • the reference arm setting unit 210, the penetration profile generator 220 and the laser It includes a processing head connection unit 230.
  • the reference arm setting unit 210 does not irradiate a laser beam to the workpiece 1, but only irradiates the inspection light by the SS-OCT 100 on the surface of the workpiece 1 before welding, and the balanced detector 140 ) by controlling the linear actuator 134d of the reference arm 134 according to the detected depth value, so that the depth range of the keyhole 2 to be measured during welding is within the depth measurement range of the SS-OCT 100. let it go in That is, since the effective depth measurement range of the SS-OCT 100 is determined, the depth can be accurately measured by adjusting the position of the linear actuator 134d to measure the depth of the key hole 2 within the depth measurement range.
  • the depth value of the surface of the workpiece (1) before welding is set to '0' or slightly lower than the surface of the workpiece (1) in consideration of the curvature of the surface of the workpiece (1) or the bead (4) protruding after welding.
  • the depth value of the high position can be set to '0'.
  • the laser processing head connection unit 230 is connected to the laser processing head 20 to obtain the coordinates of the focusing position of the laser beam according to the welding progress speed along the welding line under the control of the laser processing head 20, which will be described later. As such, in order to adjust the penetration depth, the laser processing head 20 can control the intensity of the laser beam, the welding progress speed, and the like.
  • the penetration profile generating unit 220 determines the depth of the keyhole 2 generated during welding along the welding line by the laser processing head 20 after the depth measurement standard is determined by the reference arm setting unit 210. Obtained from the interference light detected by the balanced detector 140, monitoring the depth change of the key hole 2 that proceeds along the welding line during welding, and determining the maximum depth of the key hole 2 as the penetration depth (or the depth of the solidified bead). depth) to obtain a profile showing the variation of penetration depth along the weld line.
  • the profile of the keyhole 2 is obtained by controlling the galvano mirror 122 to scan the keyhole 2 with inspection light.
  • the inspection light beam B2 scans along the welding line to obtain a profile of the cross-sectional shape of the keyhole 2 in the welding forward direction.
  • the scan range of the inspection light B2 is extended to the front of the key hole 2 to obtain a profile of the pre-weld portion on the welding line, and the surface depth of the pre-weld portion is also obtained.
  • the depth of the key hole 2 is determined by finding the maximum depth position Dmax in the profile of the key hole 2 . That is, as illustrated in FIG. 4, the maximum depth position (Dmax) may not occur in the optical axis of the laser beam (B1) due to the fluidity of the molten pool (3), and the key hole (2) is on the welding line during welding. Since the relative position with the optical axis of the laser beam (B1) may also fluctuate, the maximum depth position (Dmax) in the profile obtained by scanning the keyhole (2) is the depth of the keyhole (2). to decide Accordingly, a depth value closer to the penetration depth D can be obtained. In addition, the interval between the maximum depth positions Dmax obtained along the weld line may also be irregular.
  • the method of determining the profile representing the penetration depth, that is, the profile representing the thickness of the bead 4 after welding, using the profile representing the depth as the cross-sectional shape of the keyhole 2 can be one of the following two methods.
  • the penetration depth profile can be determined as the maximum depth obtained by overlapping the keyhole 2 profiles continuously obtained along the weld line.
  • the keyhole 2 profiles S1, S2, and S3 continuously obtained at regular intervals are partially overlapped according to coordinates on the welding wire obtained according to the welding progress speed. Then, a profile obtained by determining the depth value of the maximum depth position Dmax as the penetration depth D for the overlapping sections is obtained.
  • the profile of the penetration depth is obtained by connecting the maximum depth position Dmax obtained from each of the keyhole 2 profiles S1, S2, and S3. That is, since the maximum depth position Dmax in each of the keyhole 2 profiles S1, S2, and S3 can be obtained according to the direction of the inspection light emitted from the workpiece 1 by the galvano mirror 122, the galvano By acquiring and storing according to the control value of the mirror 122, a penetration depth profile can be obtained by connecting the accumulated maximum depth positions with a line.
  • the second method is simpler than the first method, but can obtain a profile close to the actual penetration depth while reducing the amount of data stored in a memory (not shown).
  • the penetration profile generation unit 220 may control the laser processing head 20 to minimize the variation of the depth of the key hole 2 continuously measured according to the welding progress. For example, it is possible to adjust the speed of welding progress or to adjust the output power of the laser generator 10 through the laser processing head 20.
  • the penetration profile generating unit 220 is based on the area before welding.
  • the laser processing head 20 may be controlled to minimize variation in the maximum depth of the key hole 2 . This control method is useful when the surface of the workpiece 1 is not flat.
  • Collimator 122 Galvano-mirror
  • VA variable optical attenuator
  • reference arm setting unit 220 penetration profile generating unit

Abstract

본 발명은 스웹 레이저 소스(Swept Laser Source)를 사용하는 SS-OCT(Swept Source Optical Coherence Tomography)를 이용하여 레이저 용접중인 부위를 모니터링하기 위한 파장 가변 레이저 소스를 이용한 레이저 용접부 모니터링 시스템에 관한 것으로서, 용접을 위해 레이저빔을 집속하는 가공물(1)에서 발생하는 키 홀의 깊이를 SS-OCT로 측정하여 용입 깊이의 프로파일을 얻으며, 키 홀을 스캔하여 최대 깊이 위치를 얻음으로써 보다 정확한 용입 깊이의 프로파일을 얻고, 용접선을 따라 형성되는 용입 깊이의 변동을 최소화하도록 제어할 수도 있다.

Description

스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템
본 발명은 스웹 레이저 소스(Swept Laser Source)를 사용하는 SS-OCT(Swept Source Optical Coherence Tomography)를 이용하여 레이저 용접중인 부위를 모니터링하기 위한 파장 가변 레이저 소스를 이용한 레이저 용접부 모니터링 시스템에 관한 것이다.
레이저 용접의 품질은 용접에 의해 형성된 비드(bead)의 형상에 따라 평가할 수 있다. 여기서, 비드의 표면 형상은 용접 후 검사하여 평가할 수 있으나, 비드의 두께는 용입 깊이에 의해 결정되므로 용접 중에 용입 깊이를 실시간 모니터링하여 평가할 수 있다.
도 1은 공개특허 제10-2020-0097994호에서 개시한 레이저 용접부 모니터링 시스템의 구성도이다.
도 1을 참조하면, 레이저 발진기(10)에서 발진한 레이저빔(B1)을 콜리메이터(Collimator, 21), 다이크로익 미러(Dichroic Mirror, 22) 및 초점 조절 광학계(23)를 통해 가공물(1)에 조사할 시에, 레이저빔(B1)에 의해 용융되어 형성되는 키 홀(Key, Hole, 2)의 깊이를 OCT(30)로 측정한다.
OCT(30)에 구비된 간섭 광학계(32)는 광원(31)에서 출사되는 광을 분기 검사광과 기준광을 얻고, 검사광(B2)이 레이저빔(B1)과 동일 광축으로 가공물(1)에 조사된 후 반사되어 분광계(33)에 입사되게 하고, 기준광이 기준 미러(33b)에 반사되어 분광계(33)에 입사되게 하여서, 분광계(33)에서 기준광과 검사광에 의한 간섭광을 분석하게 한다.
레이저빔(B1)이 조사되는 위치를 용접선을 따라 이동시키면, 레이저빔(B1)이 조사되는 부위가 용융하여 용융지(3)가 형성되고, 용융지(3)에 키 홀(2)이 형성되므로, OCT(30)에서 출사하는 검사광(B2)을 레이저빔(B1)과 동일 광축으로 조사하여 키 홀(2)의 깊이를 측정할 수 있다. 그리고, 레이저빔(B1)이 지나간 부위에서는 용융지(3)가 응고되어 비드(4)가 형성되므로, 비드(4)의 두께를 결정하는 용입 깊이(D)를 키 홀(2)의 깊이 값으로 측정한다.
또한, 컨트롤러(40)는 기준 미러(32b)의 위치를 조절하는 선형 구동기(32c)를 이용하여 측정 기준점을 맞추고, 간섭 광학계(32)에 구비된 갈바노 미러(Galvano-mirror, 32a)를 이용하여 검사광(B2)을 용접 전후 부위로 조사되게 함으로써, 용접 전후 부위도 검사한다.
이에 따라, 키 홀(2)의 깊이를 측정하여 얻는 용입 깊이(D)와, 용접 전후의 표면 형상에 따라 용접 품질을 평가할 수 있다. 여기서, OCT(30)는 광대역 파장의 광원(31)과, 빛의 파장에 따른 간섭 스펙트럼을 분석하는 분광계(34)를 이용하는 SD-OCT(Spectral Domain Optical Coherence Tomography)로 구성된다.
그런데, 용접 중에 실시간으로 키 홀(2)을 측정하여야 하므로, 용접선을 따라 용접함에 따라 나타나는 키 홀(2)의 변동을 보다 정확하게 측정하기 위해서는 보다 높은 측정 속도가 요구되고, 더욱이, 용접 중에 가스가 발생하더라도 좀더 침투성이 좋은 빔으로 깊이 측정하는 것이 좋다.
또한, 용융지(3)는 유동성이 있는 용융물이므로, 용융지(3)에 형성되는 키 홀(2) 중에 최대 깊이의 위치가 레이저빔(B1)이 조사되는 위치와 일치하지 않을 수 있고, 그 상대적 위치도 용접선을 따라 용접하는 중에 일정하지 아니하고 변동할 수 있으므로, 도 1의 구성으로 측정한 키 홀(2) 깊이와 실제 용입 깊이의 오차가 크게 나올 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR 10-2020-0097994 A 2020.08.20.
따라서, 본 발명의 목적은 키 홀 깊이를 보다 정확하게 측정하고, 키 홀의 최대 깊이 위치가 가변적이더라도 최대 깊이를 측정할 수 있는 스웹 소스를 이용한 레이저 용접부 모니터링 시스템을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은 레이저 발진기(10)에서 발진한 레이저빔을 가공물(1)에 집속하는 광학계를 구비한 레이저 가공 헤드(20)와 결합하여 용접 부위를 모니터링하는 스웹 소스를 이용한 레이저 용접부 모니터링 시스템에 있어서, 스웹 레이저 소스(Swept Laser Source, 110)와, 레이저 가공 헤드(20)의 광학계의 광축 상에 정렬시킨 헤드 결합 광학계(120)와, 스웹 레이저 소스(110)에서 출사되는 스웹 레이저빔을 검사광과 기준광으로 분기하여 헤드 결합 광학계(130)를 통해 출사 후 입사되게 한 검사광과 기준 암(134)으로 반사시킨 기준광을 간섭시켜 간섭광을 생성하게 한 간섭 광학계(130) 및 간섭광을 검출하는 밸런스드 디텍터(140)를 포함한 SS-OCT(100); 및 용접 중에 발생하는 키 홀(2)의 깊이를 상기 밸런스드 디텍터(140)로 검출한 간섭광으로 얻어 모니터링하는 컨트롤러(200);를 포함한다.
본 발명의 일 실시 예에 따르면, 상기 헤드 결합 광학계(120)는 검사광의 출사 방향을 조절하며, 상기 컨트롤러(200)는 상기 헤드 결합 광학계(120)를 제어하여 키 홀(2)을 검사광으로 스캔하여 얻는 최대 깊이를 키 홀(2)의 깊이로 결정한다.
본 발명의 일 실시 예에 따르면, 상기 컨트롤러(200)는 용접선을 따라 용접할 시에 키 홀(2)을 스캔하여 얻는 프로파일을 용접선 상의 좌표에 맞춰 도시하여서 부분 중첩시켜 나타나는 최대 깊이로 용입 깊이의 프로파일을 얻는다.
본 발명의 일 실시 예에 따르면, 상기 컨트롤러(200)는 키 홀(2)의 최대 깊이 위치를 검사광의 출사 방향으로 얻어 기억함으로써, 용접선을 따라 형성되는 용입 깊이의 프로파일을 최대 깊이 위치를 이어 얻는다.
본 발명의 일 실시 예에 따르면, 상기 컨트롤러(200)는 용접선을 따라 용접할 시에 키 홀 깊이가 일정하게 유지되도록 레이저 가공 헤드(20)를 제어한다.
본 발명의 일 실시 예에 따르면, 상기 컨트롤러(200)는 검사광의 스캔 범위를 키 홀(2)의 전방으로 확장하여 용접 전의 부위에 대한 프로파일을 얻고, 용접 전의 부위을 기준으로 키 홀(2) 최대 깊이가 일정하게 유지되도록 레이저 가공 헤드(20)를 제어한다.
본 발명의 일 실시 예에 따르면, 상기 간섭 광학계(130)는 상기 기준 암(134)에서 기준광을 반사시킬 기준 미러(134c)의 위치를 조절하여 기준광의 진행 거리를 조절할 수 있고, 상기 컨트롤러(200)는 용접 전에 가공물(1)의 표면으로 검출된 깊이 값을 기준으로 측정할 키 홀(2)의 깊이의 범위가 상기 SS-OCT(100)의 깊이 측정 범위에 들어가도록 상기 기준 미러(32b)의 위치를 조절한다.
상기와 같이 구성되는 본 발명은 이미지화 속도와 깊이 해상도에 있어 장점을 갖는 SS-OCT(100)를 사용하여 키 홀(2)의 깊이를 보다 정확하게 측정할 수 있고, 고속처리의 장점을 활용하여 키 홀(2)을 스캔한 후 최대 깊이를 탐색하므로, 실제 용입 깊이에 근접한 프로파일을 얻으면서, 용접 중에 키 홀(2)의 깊이를 일정하게 유지하도록 용접 공정을 제어할 수도 있다.
도 1은 종래 기술에 따른 레이저 용접부 모티터링 시스템의 구성도.
도 2는 본 발명의 실시 예에 따른 레이저 용접부 모니터링 시스템의 구성도.
도 3은 컨트롤러(200)의 블록구성도.
도 4는 키 홀(2)을 스캔하여 키 홀(2)의 최저점에 해당되는 최대 깊이 위치(Dmax)을 탐색함을 보여주는 도면.
도 5는 키 홀(2)의 프로파일을 용접 진행 방향을 축으로 하는 그래프 상에 도시하여 용입 깊이를 결정하는 방식을 보여주는 도면.
본 발명에 따른 레이저 용접부 모니터링 시스템은 SS-OCT(Swept Source Optical Coherence Tomography, 100)를 레이저 가공 헤드(20)에 결합하여 실시간 측정한 키 홀(Key Hole, 2)로 용입 깊이의 프로파일을 얻는다.
이에 따라, 축(깊이) 프로파일(A-스캔)을 고품질 및 고속으로 획득하는 SS-OCT(100)의 장점을 활용하여, 측정한 키 홀(2)의 깊이에 따라 추정한 용입 깊이의 프로파일을 더욱 정확하게 얻을 수 있다.
이하, 본 발명의 실시 예들에 대하여 첨부한 도면을 참고로 하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 구체적이고 다양한 예시들을 보여주며 설명한다. 그러나, 본 발명의 실시 예들은 본 발명의 범위 내에서 다양한 변경이나 수정을 통해 실시될 수 있음도 분명하므로, 설명하는 실시 예들에 한정되지는 않는다. 그리고, 본 발명의 실시예들은 잘 알려진 부품, 회로, 기능, 방법, 전형적인 상세한 내용에 대해서는 본 발명이 속한 기술 분야에서 통상의 지식을 가진 자가 추가하여 실시할 수 있으므로, 자세히 기술하지 않기로 한다. 본 발명의 실시 예는 소프트웨어와 하드웨어가 결합된 형태로 구현될 수 있고, 소프트웨어와 하드웨어 형태는 부품, 모듈, 부 등으로 기술될 수 있고, 기록매체에 구현된 컴퓨터에서 읽을 수 있는 프로그램 코드의 형태로 구현될 수 있다.
도 2는 본 발명의 실시 예에 따른 레이저 용접부 모니터링 시스템의 구성도이다.
도 2를 참조하면, 레이저 용접부 모니터링 시스템은 레이저 용접하는 레이저 가공 헤드(20)에 결합하는 SS-OCT(Swept Source Optical Coherence Tomography, 100)와 SS-OCT(100)을 통해 키 홀(2)의 깊이를 측정하여 용입 깊이의 프로파일을 얻는 컨트롤러(200)를 포함한다.
먼저, 상기 SS-OCT(100)가 결합되는 레이저 가공 헤드(20)를 도 2에 예시한 구성으로 설명하면, 레이저 가공 헤드(20)는 레이저 발진기(10)에서 레이저 용접을 위해 발진한 레이저빔이 광섬유를 통해 입사되는 부분에 설치하여 레이저빔을 평행광으로 변환하는 콜리메이터(Collimator, 21), 평행광으로 변환된 레이저빔을 출사 방향을 향해 안내하는 다이크로익 미러(Dichroic Mirror, 22) 및 다이크로익 미러(22)에 의해 안내된 레이저빔을 가공물(1)을 향해 집속하며 초점 조절할 수 있게 구성된 초점 조절 광하계(23)를 구비하여, 가공물(1)을 레이저 용접할 수 있다. 여기서, 다이크로익 미리(22)는 용접을 위한 레이저빔을 선택적으로 반사시키고 상기 SS-OCT(100)에 의한 검사광을 투과시키는 미러로 구성되어서, 상기 SS-OCT(100)와 광학적으로 결합시킨다. 이러한 레이저 가공 헤드(20)의 구성은 하나의 예시로서 도 2에서 보여준 구성으로 한정되는 것은 아니며 본 발명이 속한 기술분야에서 다양한 변형이 가능함은 당연하므로, 상세한 설명은 생략한다.
다음으로, 레이저 가공 헤드(20)에 광학적으로 결합하는 상기 SS-OCT(100)와, 키 홀(2) 깊이를 측정하는 상기 컨트롤러(200)에 대해서 상세하게 설명한다.
상기 SS-OCT(100)는 스웹 레이저 소스(Swept Laser Source, 110), 헤드 결합 광학계(120), 간섭 광학계(130) 및 밸런스드 디텍터(Balanced Detector, 140)를 포함한다.
상기 스웹 레이저 소스(110)는 SS-OCT(100)의 사양에 따라 설정된 파장 가변폭 내에서 파장 가변하는 협대역의 간섭성 광을 일정 주기로 출사한다.
상기 헤드 결합 광학계(120)는 레이저 가공 헤드(20)에 구비되는 광학계로서 레이저 가공 헤드(20)의 광학계의 출사 광축에 정렬되도록 광학적으로 결합되어서, 후술하는 간섭 광학계(130)에 의해 입사되는 검사광을 레이저빔의 집속 방향으로 조사되게 하고, 조사된 검사광이 반사되어 입사된 후 간섭 광학계(130)로 진행되게 한다.
구체적인 실시 예에 따르면, 상기 헤드 결합 광학계(120)는 입사되는 검사광을 평행광으로 변환시키는 콜리메이터(121)와, 평행광으로 변환된 검사광을 방향 전환하여 다이크로익 미러(22)를 투과한 후 초점 조절 광학계(23)로 향하도록 초점 조절 광학계(23)의 광축 상에 정렬시키며 초점 조절 광학계(23)를 향한 조사 방향을 조절할 수 있게 한 갈바노 미러(Galvano-mirror, 122)를 포함한다.
이에 따라, 검사광은 용접을 위해 레이저빔이 집속되는 방향으로 검사광도 집속하며 조사되고, 조사된 가공물(1)에 반사되어 상기 헤드 결합 광학계(120)로 입사되어서 상기 간섭 광학계(130)로 진행한다.
상기 간섭 광학계(130)는 상기 스웹 레이저 소스(110)에서 출사되는 스웹 레이저빔을 검사광과 기준광으로 분기하고, 검사광은 상기 헤드 결합 광학계(130)에 입사되어 가공물(1)에 반사된 후 입사될 시에 밸런스드 디텍터(140)로 향하게 하고, 기준광은 소정의 진행 거리를 진행한 후 밸런스드 디텍터(140)로 향하게 하는 기준 암(134)을 구비하여서, 검사광과 기준광을 간섭시켜 간섭광을 생성하게 한다.
구체적인 실시 예에 따라면, 상기 스웹 레이저 소스(110)에서 출사되는 스웹 레이저빔이 CIR(Circulator, 131)을 통해 FC(Fiber Coupler, 132)로 진행하여 기준광과 검사광으로 분기되게 하고, 검사광은 상기 헤드 결합 광학계(120)를 향하게 하여 가공물(1)에 반사된 후 입사될 시에 FC(132)를 통해 상기 밸런스드 디텍터(140)로 진행되게 한다. 그리고, 기준광은 편광상태를 조정하는 PC(Polarization Controller, 133)을 통해 상기 기준암(134)에 반사되어 돌아온 후 FC(132)에서 검사광과 커플링된 후 CIR(131)을 통해 상기 밸런스드 디텍터(140)로 진행되게 한다. 여기서, CIR(131)은 상기한 바와 같이 스웹 레이저빔 및 검사광을 일정한 방향으로 진행되게 한다.
상기 기준암(134)은 PC(133)를 경유하여 입사된 기준광을 콜리메이터(134a) 및 VA(variable optical attenuator, 134b)를 경유하여 기준 미러(134c)에 반사된 후 VA(134b) 및 콜리메이터(134a)를 통해 돌아가게 하며, 여기서, 기준 미러(134c)는 VA(134b)와의 거리를 조절하는 선형 구동기(134d)에 의해 위치 조절되어서, 기준광의 진행 거리를 조절할 수 있다.
하지만, 상기 간섭 광학계(130)는 기준광과 검사광을 간섭시키기 위한 광학계라면 공지된 다양한 기술에 의해 변형될 수도 있다.
상기 밸런스드 디텍터(140)는 기준광과 검사광에 의한 간섭광을 검출하여 기준광과 검사광의 진행 경로의 거리 차이에 따른 전기적 신호를 출력한다.
상기 컨트롤러(200)는 상기한 바와 같이 레이저 가공 헤드(20)에 결합한 상기 SS-OCT(100)를 이용하여 용입 깊이의 프로파일을 가공물(1)의 표면을 기준으로 얻고, 용입 깊이를 모니터링하여 용입 깊이를 용접선을 따라 일정하게 유지되도록 레이저 가공 헤드(20)를 제어하며, 이를 위해서, 도 3의 블록 구성도에 도시한 바와 같이 기준암 셋팅부(210), 용입 프로파일 생성부(220) 및 레이저 가공 헤드 연계부(230)를 포함한다.
상기 기준암 셋팅부(210)는 레이저빔을 가공물(1)에 조사하지 아니하고 상기 SS-OCT(100)에 의한 검사광만 용접 전 가공물(1)의 표면에 조사되게 하고, 상기 밸런스드 디텍터(140)로 검출되는 깊이 값에 따라 상기 기준 암(134)의 선형 구동기(134d)를 제어하여서, 용접 중에 측정할 키 홀(2)의 깊이의 범위가 상기 SS-OCT(100)의 깊이 측정 범위에 들어가게 한다. 즉, 상기 SS-OCT(100)의 유효한 깊이 측정 범위는 정해지므로, 그 깊이 측정 범위 내에서 키 홀(2)의 깊이를 측정하도록 선형 구동기(134d)의 위치를 조절하여서 깊이를 정확하게 측정할 수 있게 한다. 예를 들어, 용접 전 가공물(1)의 표면의 깊이 값이 '0'이 되게 하거나 아니면 가공물(1) 표면의 굴곡 또는 용접 후 돌출되는 비드(4)를 고려하여 가공물(1)의 표면보다 약간 높은 위치의 깊이 값이 '0'이 되게 할 수 있다.
상기 레이저 가공 헤드 연계부(230)는 레이저 가공 헤드(20)에 연결되어서, 레이저 가공 헤드(20)의 제어에 의해 용접선을 따라 진행하는 용접 진행 속도에 따라 레이저빔의 집속 위치 좌표를 얻고, 후술하는 바와 같이 용입 깊이를 조절하기 위해 레이저빔의 강도, 용접 진행 속도 등을 레이저 가공 헤드(20)에서 조절하도록 제어할 수 있게 한다.
상기 용입 프로파일 생성부(220)는 상기 기준암 셋팅부(210)에 의해서 깊이 측정의 기준이 정해진 후 레이저 가공 헤드(20)에 의해 용접선을 따라 용접하는 중에 발생하는 키 홀(2)의 깊이를 상기 밸런스드 디텍터(140)로 검출한 간섭광으로 얻고, 용접 중에 용접선을 따라 진행하는 키 홀(2)의 깊이 변화를 모니터링하며, 키 홀(2)의 최대 깊이를 용입 깊이(또는 응고되 비드의 깊이)로 결정하여, 용접선을 따라 용입 깊이의 변화를 보여주는 프로파일을 얻는다.
본 발명의 구체적인 실시 예에서는 갈바노 미러(122)을 제어하여 검사광이 키 홀(2)을 스캔하게 함으로써, 키 홀(2)의 프로파일을 얻는다.
도 4에 도시한 바와 같이, 검사광(B2)은 용접선 상을 따라 스캔하여, 용접 진향 방향의 키 홀(2) 단면 형상에 대한 프로파일을 얻는다. 또한, 검사광(B2)의 스캔 범위를 키 홀(2)의 전방으로 확장하여 용접선 상의 용접 전의 부위에 대한 프로파일도 얻어서, 용접 전 부위를 표면 깊이도 얻는다.
그리고, 키 홀(2)의 프로파일에서 최대 깊이 위치(Dmax)를 찾아 키 홀(2)의 깊이로 결정한다. 즉, 도 4에 예시한 바와 같이 최대 깊이 위치(Dmax)는 용융지(3)의 유동성에 의해서 레이저빔(B1)의 광축선에서 발생하지 않을 수 있고, 키 홀(2)이 용접 중에 용접선 상을 따라 이동하는 것으로 검출되는 데 이때 레이저빔(B1) 광축선과의 상대적 위치도 변동할 수 있으므로, 키 홀(2)을 스캔하여 얻는 프로파일에서 최대 깊이 위치(Dmax)을 키 홀(2)의 깊이로 결정한다. 이에 따라 용입 깊이(D)에 보다 근접한 깊이 값을 얻을 수 있다. 또한, 용접선 상을 따라 얻는 최대 깊이 위치(Dmax) 사이의 간격도 불규칙해질 수 있다.
여기서, 키 홀(2)의 단면 형상으로 깊이를 나타내는 프로파일을 이용하여 용입 깊이를 나타내는 프로파일, 즉, 용접 후 비드(4)의 두께를 나타내는 프로파일을 결정하는 방식은 다음 2가지 방식 중에 어느 하나로 할 수 있다.
첫째 방식으로서, 용접선을 따라 연속으로 얻는 키 홀(2) 프로파일을 중첩시켜 나타나는 최대 깊이로 용입 깊이의 프로파일을 결정할 수 있다.
도 5를 참조하며 설명하면, 일정 주기로 연속적으로 얻는 키 홀(2) 프로파일(S1, S2, S3)은 용접 진행 속도에 따라 얻는 용전선 상의 좌표에 맞춰 부분 중첩되게 한다. 그리고, 중첩된 구간에 대해 최대 깊이 위치(Dmax)의 깊이 값을 용입 깊이(D)로 결정한 프로파일을 얻는다.
둘째 방식으로서, 도 4에 예시한 바와 같이 각각의 키 홀(2) 프로파일(S1, S2, S3)에서 얻는 최대 깊이 위치(Dmax)를 이어지게 하여 용입 깊이의 프로파일을 얻는다. 즉, 각각의 키 홀(2) 프로파일(S1, S2, S3)에서 최대 깊이 위치(Dmax)는 갈바노 미러(122)에 의해서 가공물(1)을 출사되는 검사광의 방향에 따라 얻을 수 있으므로 갈바노 미러(122)의 제어값에 따라 획득하여 기억하여 둠으로써, 누적된 최대 깊이 위치를 선으로 이어서 용입 깊이의 프로파일을 얻을 수 있다. 둘째 방식은 첫재 방식에 비에 간단하지만 메모리(미도시)에 기억하는 데이터량을 줄이면서도 실제 용입 깊이에 근접한 프로파일을 얻을 수 있다.
또한, 상기 용입 프로파일 생성부(220)는 용접 진행에 따라 연속으로 측정되는 키 홀(2) 깊이의 변동을 최소화하도록 레이저 가공 헤드(20)를 제어할 수 있다. 예를 들어, 용접 진행의 속도를 조절하거나, 레이저 가공 헤드(20)를 통해 레이서 발전기(10)의 출력 파워를 조절하게 할 수 있다.
아울러, 도 4에서 보여준 바와 같이 검사광의 스캔 범위를 키 홀(2)의 전방으로 확장하여 용접선 상의 용접 전 부위에 대한 프로파일도 얻으므로, 상기 용입 프로파일 생성부(220)는 용접 전의 부위를 기준으로 키 홀(2) 최대 깊이의 변동이 최소화하도록 레이저 가공 헤드(20)를 제어할 수 있다. 이러한 제어 방식은 가공물(1)의 표면이 평탄하지 않을 때에 유용하다.
이상에서 본 발명의 기술적 사상을 예시하기 위해 구체적인 실시 예로 도시하고 설명하였으나, 본 발명은 상기와 같이 구체적인 실시 예와 동일한 구성 및 작용에만 국한되지 않고, 여러가지 변형이 본 발명의 범위를 벗어나지 않는 한도 내에서 실시될 수 있다. 따라서, 그와 같은 변형도 본 발명의 범위에 속하는 것으로 간주해야 하며, 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.
[부호의 설명]
1 : 가공물 2 : 키 홀(Key Hole)
3 : 용융지(Weld Pool) 4 : 비드(bead)
10 : 레이저 발진기
20 : 레이저 가공 헤드
21 : 콜리메이터(Collimator)
22 : 다이크로익 미러(Dichroic Mirror)
23 : 초점 조절 광학계
30 : OCT
31 : 광원
32 : 간섭 광학계 32a : 갈바노 미러(Galvano-mirror)
32b : 기준 미러 32c : 선형 구동기
33 : 분광계
40 : 컨트롤러
100 : SS-OCT(Swept Source Optical Coherence Tomography)
110 : 스웹 레이저 소스(Swept Laser Source)
120 : 헤드 결합 광학계
121 : 콜리메이터(Collimator) 122 : 갈바노 미러(Galvano-mirror)
130 : 간섭 광학계
131 : CIR(Circulator)
132 : FC(Fiber Coupler)
133 : PC(Polarization Controller)
134 : 기준 암(Reference Arm)
134a : 콜리메이터(Collimator)
134b : VA(variable optical attenuator)
134c : 기준 미러 134d : 선형 구동기
140 : 밸런스드 디텍터(Balanced Detector)
200 : 컨트롤러
210 : 기준암 셋팅부 220 : 용입 프로파일 생성부
230 : 레이저 가공 헤드 연계부

Claims (7)

  1. 레이저 발진기(10)에서 발진한 레이저빔을 가공물(1)에 집속하는 광학계를 구비한 레이저 가공 헤드(20)와 결합하여 용접 부위를 모니터링하는 스웹 소스를 이용한 레이저 용접부 모니터링 시스템에 있어서,
    스웹 레이저 소스(Swept Laser Source, 110)와, 레이저 가공 헤드(20)의 광학계의 광축 상에 정렬시킨 헤드 결합 광학계(120)와, 스웹 레이저 소스(110)에서 출사되는 스웹 레이저빔을 검사광과 기준광으로 분기하여 헤드 결합 광학계(130)를 통해 출사 후 입사되게 한 검사광과 기준 암(134)으로 반사시킨 기준광을 간섭시켜 간섭광을 생성하게 한 간섭 광학계(130) 및 간섭광을 검출하는 밸런스드 디텍터(140)를 포함한 SS-OCT(100); 및
    용접 중에 발생하는 키 홀(2)의 깊이를 상기 밸런스드 디텍터(140)로 검출한 간섭광으로 얻어 모니터링하는 컨트롤러(200);
    를 포함하는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
  2. 제 1항에 있어서,
    상기 헤드 결합 광학계(120)는
    검사광의 출사 방향을 조절하며,
    상기 컨트롤러(200)는
    상기 헤드 결합 광학계(120)를 제어하여 키 홀(2)을 검사광으로 스캔하여 얻는 최대 깊이를 키 홀(2)의 깊이로 결정하는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
  3. 제 2항에 있어서,
    상기 컨트롤러(200)는
    용접선을 따라 용접할 시에 키 홀(2)을 스캔하여 얻는 프로파일을 용접선 상의 좌표에 맞춰 도시하여서 부분 중첩시켜 나타나는 최대 깊이로 용입 깊이의 프로파일을 얻는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
  4. 제 2항에 있어서,
    상기 컨트롤러(200)는
    키 홀(2)의 최대 깊이 위치를 검사광의 출사 방향으로 얻어 기억함으로써, 용접선을 따라 형성되는 용입 깊이의 프로파일을 최대 깊이 위치를 이어 얻는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
  5. 제 2항에 있어서,
    상기 컨트롤러(200)는
    용접선을 따라 용접할 시에 키 홀 깊이가 일정하게 유지되도록 레이저 가공 헤드(20)를 제어하는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
  6. 제 2항에 있어서,
    상기 컨트롤러(200)는
    검사광의 스캔 범위를 키 홀(2)의 전방으로 확장하여 용접 전의 부위에 대한 프로파일을 얻고, 용접 전의 부위을 기준으로 키 홀(2) 최대 깊이가 일정하게 유지되도록 레이저 가공 헤드(20)를 제어하는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
  7. 제 1항에 있어서,
    상기 간섭 광학계(130)는
    상기 기준 암(134)에서 기준광을 반사시킬 기준 미러(134c)의 위치를 조절하여 기준광의 진행 거리를 조절할 수 있고,
    상기 컨트롤러(200)는
    용접 전에 가공물(1)의 표면으로 검출된 깊이 값을 기준으로 측정할 키 홀(2)의 깊이의 범위가 상기 SS-OCT(100)의 깊이 측정 범위에 들어가도록 상기 기준 미러(32b)의 위치를 조절하는
    스웹 소스를 이용한 레이저 용접부 모니터링 시스템.
PCT/KR2022/015211 2021-11-26 2022-10-07 스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템 WO2023096147A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0165413 2021-11-26
KR1020210165413A KR102649840B1 (ko) 2021-11-26 2021-11-26 스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템

Publications (1)

Publication Number Publication Date
WO2023096147A1 true WO2023096147A1 (ko) 2023-06-01

Family

ID=86539755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015211 WO2023096147A1 (ko) 2021-11-26 2022-10-07 스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템

Country Status (2)

Country Link
KR (1) KR102649840B1 (ko)
WO (1) WO2023096147A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) * 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
KR20160060112A (ko) * 2013-09-23 2016-05-27 프레시텍 옵트로닉 게엠베하 워크피스 내의 레이저 빔의 침투 깊이를 측정하기 위한 방법 및 레이저 머시닝 장치
JP2019206035A (ja) * 2019-08-14 2019-12-05 パナソニックIpマネジメント株式会社 レーザ溶接装置及びレーザ溶接方法
KR20200097994A (ko) * 2019-02-11 2020-08-20 주식회사휴비스 레이저 용접부 검사를 위한 모니터링 시스템
JP2021178334A (ja) * 2020-05-12 2021-11-18 パナソニックIpマネジメント株式会社 レーザ溶接装置及びそのキャリブレーション方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) * 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
KR20160060112A (ko) * 2013-09-23 2016-05-27 프레시텍 옵트로닉 게엠베하 워크피스 내의 레이저 빔의 침투 깊이를 측정하기 위한 방법 및 레이저 머시닝 장치
KR20200097994A (ko) * 2019-02-11 2020-08-20 주식회사휴비스 레이저 용접부 검사를 위한 모니터링 시스템
JP2019206035A (ja) * 2019-08-14 2019-12-05 パナソニックIpマネジメント株式会社 レーザ溶接装置及びレーザ溶接方法
JP2021178334A (ja) * 2020-05-12 2021-11-18 パナソニックIpマネジメント株式会社 レーザ溶接装置及びそのキャリブレーション方法

Also Published As

Publication number Publication date
KR102649840B1 (ko) 2024-03-21
KR20230078054A (ko) 2023-06-02

Similar Documents

Publication Publication Date Title
US6501061B1 (en) Laser calibration apparatus and method
JPS6322258B2 (ko)
EP0124224A3 (en) Method and apparatus for thin film thickness measurement
JPS60200219A (ja) 偏向光学系を介して導かれるレーザ光線の変位を補償する装置
GB1370908A (en) Optical position-sensing apparatus
JPH0316226B2 (ko)
WO2023096147A1 (ko) 스웹 레이저 소스를 이용한 레이저 용접부 모니터링 시스템
WO2017129095A1 (zh) 扫描反射镜监测系统及方法、调焦调平系统
JP2002219591A (ja) レーザ光照射装置
WO2022231106A1 (ko) 레이저 파워를 모니터링하는 레이저 가공 장치
JP2002277391A (ja) レーザ計測方法及びレーザ計測システム
JP2007199076A (ja) レーザ計測方法及びレーザ計測システム
US6894271B2 (en) Method for operating a positioning apparatus, and scanning microscope
WO2014126401A1 (ko) 광 간섭 단층 촬영 장치 및 방법
JPH05312538A (ja) 3次元形状測定装置
US5473423A (en) Method and apparatus for obtaining measurements in a plurality of light waveguides
KR20190123825A (ko) 레이저 노즐 어셈블리 및 이를 포함하는 레이저 장치
CN218876293U (zh) 一种打印工作面的光束垂直检测机构及3d打印装置
JP3587230B2 (ja) トロリー線の高さ測定方法
WO2023239021A1 (ko) 레이저 가공 장치
JPH1114575A (ja) 光熱反射型試料分析装置
WO2021107215A1 (ko) 비접촉식 광음향 검사 장치
JP2625331B2 (ja) 共焦点光学系のピンホール径制御方法及びその制御装置
KR100503378B1 (ko) 단층영상기의 자기진단방법
SU1171703A1 (ru) Способ контрол фотошаблона и устройство дл его осуществлени

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898830

Country of ref document: EP

Kind code of ref document: A1