WO2023095872A1 - Sputtering device - Google Patents

Sputtering device Download PDF

Info

Publication number
WO2023095872A1
WO2023095872A1 PCT/JP2022/043542 JP2022043542W WO2023095872A1 WO 2023095872 A1 WO2023095872 A1 WO 2023095872A1 JP 2022043542 W JP2022043542 W JP 2022043542W WO 2023095872 A1 WO2023095872 A1 WO 2023095872A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
auxiliary
yoke
magnetic
target
Prior art date
Application number
PCT/JP2022/043542
Other languages
French (fr)
Japanese (ja)
Inventor
僚也 北沢
文昭 石榑
辰徳 磯部
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020237040873A priority Critical patent/KR20240004669A/en
Priority to JP2023563752A priority patent/JPWO2023095872A1/ja
Priority to CN202280039644.4A priority patent/CN117413085A/en
Publication of WO2023095872A1 publication Critical patent/WO2023095872A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • the present invention relates to a sputtering apparatus, and more particularly to a technology suitable for film formation with a magnetron cathode.
  • This application claims priority based on Japanese Patent Application No. 2021-192171 filed in Japan on November 26, 2021, the content of which is incorporated herein.
  • a method of moving the magnet relative to the target is known for the purpose of improving the utilization efficiency of the target.
  • Patent Document 3 a technique for swinging a film-forming substrate with respect to a magnet and a cathode.
  • the present invention has been made in view of the above circumstances, and aims to achieve the following objects. 1. To reduce the cause of particle generation by suppressing the generation of blurred areas around non-erosion generation areas. 2. To stabilize the formed plasma distribution and improve the uniformity of film thickness distribution and film thickness characteristic distribution regardless of the swing position of the magnet.
  • the inventors of the present application succeeded in suppressing particle generation in the non-erosion region and suppressing variations in film thickness distribution and film quality characteristic distribution.
  • a magnetic field (magnetic field, magnetic lines of force) is generated from the magnet due to the applied power.
  • the plasma or electrons contributing to the sputtering are moving along the lines of magnetic force generated by the magnet.
  • the magnetic lines of force of the magnet the magnetic lines of force that contribute to plasma generation reach the S pole while forming a circular arc from the N pole of the two poles of the magnet arranged flush with the target.
  • the magnetic lines of force generated by the magnet pass through the target in the thickness direction from the N pole toward the back side and are formed in an arc shape in the plasma generation space. It penetrates in the vertical direction and returns to the S pole.
  • a ground potential portion such as an anode is arranged around the edge of the target.
  • the magnet is scanned (oscillated) and positioned near the oscillation end, the magnet is positioned close to the anode.
  • the magnetic lines of force generated from the N pole may go toward the anode, which is close to the magnetic lines of force, and may not return to the S pole.
  • the electrons are tracked (moved) along the magnetic lines of force, so they do not return to the plasma formation space and flow to the anode without contributing to plasma formation. This is called electron absorption.
  • the plasma when the electrons are absorbed by the anode, the plasma is turned on and off near the anode due to the oscillation of the magnet and other factors. As a result, sputtering by plasma is turned on and off. As a result, the possibility of generating particles due to sputtering of the redeposited film increases.
  • the generation of the non-erosion region may cause particles to be generated in the vicinity of the periphery of the film formation region that is close to the swinging region of the magnet.
  • the boundary between the non-erosion area and the erosion area is unclear, forming an erosion-non-erosion boundary area.
  • the magnetic lines of force from the magnet are directed toward the anode, that is, they are inclined outward from the target contour rather than in the thickness direction of the target.
  • the inventors of the present invention reduce the amount of absorbed electrons by directing the lines of magnetic force generated from the magnet at the oscillation end of the magnet away from the anode. found that it is possible to In other words, the inventors of the present application have found that the lines of magnetic force generated from the magnet at one end of the swinging end of the magnet are inclined toward the other end of the swinging end of the magnet rather than in the thickness direction of the target. It was found that inclining the contour of the target more inward than the vertical direction is effective in reducing the non-erosion area.
  • a non-erosion region different from the original non-erosion region may be generated due to partial fluctuations in the plasma generation conditions due to voltage fluctuations and the like. In this case, particles are generated, and variations in film thickness distribution, film quality characteristic distribution, and the like are increased.
  • the inventors of the present application prevent the magnetic lines of force generated from the magnet from going to the anode at one end of the swinging end of the magnet, thereby reducing the amount of absorbed electrons. It has been found that it is possible to reduce In other words, the inventors of the present application made the magnetic lines of force generated from the magnet at one end of the swinging end of the magnet incline toward the other end of the swinging end of the magnet rather than in the thickness direction of the target. It has been found that inclining the target inward from the target contour is effective in suppressing variations in film thickness distribution and film quality characteristic distribution.
  • a sputtering apparatus includes a cathode unit that emits sputtered particles toward a target surface of a target substrate.
  • the cathode unit has a target on which an erosion area is formed, a magnet unit, a magnet scanning unit, and an auxiliary magnet.
  • the magnet unit has a plurality of magnets arranged on the opposite side of the target from the film formation substrate to form the erosion region on the target.
  • the magnet scanning unit moves the magnet unit and the film formation substrate between a first swing end and a second swing end in a swing direction along the surface to be processed of the film formation substrate, Relatively reciprocating motion is possible.
  • the auxiliary magnet is arranged along the magnet positioned at the first swing end among the plurality of magnets extending in the cross direction crossing the swing direction along the surface to be processed of the film formation substrate. , the lines of magnetic force formed by the magnet positioned at the first swing end are tilted toward the second swing end.
  • the auxiliary magnet is arranged along the magnet positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end.
  • the auxiliary magnet may be arranged so that it can swing integrally with the magnet.
  • the auxiliary magnet may have the same polarity as the magnet positioned at the first swing end.
  • the magnetic intensity of the auxiliary magnet may be equal to or smaller than the magnetic intensity of the magnet positioned at the first swing end.
  • the auxiliary magnet may have a ridge that protrudes toward the target along the magnet.
  • the auxiliary magnet may be arranged on the opposite side of the substrate to be processed with respect to the target, and attached and fixed to a yoke forming a magnetic circuit.
  • the cathode unit includes a flat plate-shaped yoke having a central region made of a magnetic material on its surface, an auxiliary yoke adjacent to the yoke, and a straight line extending in the central region of the yoke.
  • each of the plurality of magnets constituting the magnet unit is arranged on the yoke, and the auxiliary magnet is:
  • the auxiliary magnets may be arranged parallel to the peripheral magnet portion and fixed to the yoke via the auxiliary yoke, and the auxiliary yoke may be made of a magnetic material or a dielectric material.
  • the auxiliary yoke and the auxiliary magnet may be removable from the yoke.
  • the magnet positioned at the first oscillation end among the plurality of magnets has a plurality of magnetic field generation regions divided in the cross direction, and the magnetic field Each of the generation regions has a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet.
  • the magnet having the plurality of magnetic field generation regions whose positions are adjusted may be swingable by the magnet scanning unit.
  • a sputtering apparatus includes a cathode unit that emits sputtered particles toward a target surface of a target substrate.
  • the cathode unit has a target on which an erosion area is formed, a magnet unit, a magnet scanning unit, and an auxiliary magnet.
  • the magnet unit has a plurality of magnets arranged on the opposite side of the target from the film formation substrate to form the erosion region on the target.
  • the magnet scanning unit moves the magnet unit and the film formation substrate between a first swing end and a second swing end in a swing direction along the surface to be processed of the film formation substrate, Relatively reciprocating motion is possible.
  • the auxiliary magnet is arranged along the magnet positioned at the first swing end among the plurality of magnets extending in the cross direction crossing the swing direction along the surface to be processed of the film formation substrate. , the lines of magnetic force formed by the magnet positioned at the first swing end are tilted toward the second swing end. Accordingly, the magnetic field lines formed by the magnet positioned at the first oscillation end among the plurality of magnets can be tilted using the magnetic field generated by the auxiliary magnet. Therefore, it is possible to reduce the amount of electrons absorbed by the anode. Therefore, it is possible to prevent the plasma from being absorbed and the plasma density from decreasing.
  • the auxiliary magnet is arranged along the magnet positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end.
  • the auxiliary magnet may be arranged so that it can swing integrally with the magnet.
  • the auxiliary magnet may have the same polarity as the magnet positioned at the first swing end.
  • the lines of magnetic force from the magnet that generate plasma are repelled by the lines of magnetic force from the auxiliary magnet.
  • the magnetic intensity of the auxiliary magnet may be equal to or smaller than the magnetic intensity of the magnet positioned at the first swing end.
  • the auxiliary magnet may have a ridge that protrudes toward the target along the magnet.
  • the lines of magnetic force of the auxiliary magnet can be concentrated from the ridge.
  • the size and weight of the auxiliary magnet can be reduced, and the magnet and the auxiliary magnet can be oscillated without imposing an extra burden on the magnet scanning section.
  • the formation of the erosion-non-erosion boundary region is suppressed without reducing the plasma density and generating an unnecessary non-erosion boundary region.
  • the auxiliary magnet may be arranged on the opposite side of the substrate to be processed with respect to the target, and attached and fixed to a yoke forming a magnetic circuit.
  • This allows the auxiliary magnet to swing integrally with the magnet.
  • the auxiliary magnet can keep the inclination of the magnetic lines of force with respect to the magnet positioned at the first swing end constant.
  • the magnetism of the auxiliary magnet into the magnetic circuit of the magnet formed together with the yoke, the plasma can be generated more efficiently.
  • the cathode unit includes a flat plate-shaped yoke having a central region made of a magnetic material on its surface, an auxiliary yoke adjacent to the yoke, and a straight line extending in the central region of the yoke.
  • each of the plurality of magnets constituting the magnet unit is arranged on the yoke, and the auxiliary magnet is:
  • the auxiliary magnets may be arranged parallel to the peripheral magnet portion and fixed to the yoke via the auxiliary yoke, and the auxiliary yoke may be made of a magnetic material or a dielectric material. As a result, the magnetic pole faces of the peripheral magnet portion are arranged along the plane parallel to the film formation substrate.
  • the peripheral magnet located at the first swing end in the swing direction directs the magnetic lines of force in a direction away from the second swing end rather than in the direction perpendicular to the magnetic pole face to the second swing end from at least the direction perpendicular to the magnetic pole face. Tilt in the direction you are going. As a result, even when the magnet is at the swinging position closest to the anode, the amount of electrons absorbed by the anode can be reduced. By preventing the plasma density from decreasing at the periphery in the oscillation direction, formation of an erosion-non-erosion boundary region is suppressed without generating an unnecessary non-erosion boundary region. In addition to suppressing the generation of particles, it is possible to suppress the occurrence of variations in film thickness distribution and film quality characteristic distribution.
  • the auxiliary yoke and the auxiliary magnet may be removable from the yoke. Accordingly, when processing is performed under different processing conditions in the sputtering apparatus, it is necessary to form magnetic lines of force according to the processing conditions. For this reason, it is necessary to vary the inclination angles of the lines of magnetic force from the magnet at the oscillation ends. In this case, the setting can be easily changed by replacing the auxiliary magnet.
  • the magnet positioned at the first oscillation end among the plurality of magnets has a plurality of magnetic field generation regions divided in the cross direction, and the magnetic field Each of the generation regions has a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet.
  • the magnet having the plurality of magnetic field generation regions whose positions are adjusted may be swingable by the magnet scanning unit.
  • the condition of the magnetic flux density for plasma generation is adjusted.
  • each of the plurality of magnetic field generation regions are divided, and the position of each of the plurality of magnetic field generation regions in the cross direction and the thickness direction of the yoke can be adjusted. Therefore, it is possible to adjust the condition of the magnetic flux density in each of the plurality of magnetic field generation regions.
  • each of the plurality of magnetic field generation regions divides the magnetic lines of force of the peripheral magnetic poles of the magnet positioned at the first oscillation end. can be tilted in the desired direction by In each of the plurality of magnetic field generation regions, it is possible to maintain the state in which the lines of magnetic force are inclined in the required direction.
  • the sputtering apparatus it is possible to maintain the required magnetic flux density and maintain the plasma density. Furthermore, it is possible to suppress the generation of a blurred area around the non-erosion generation area, reduce particles, and stabilize the formed plasma distribution. It is possible to achieve an effect that the uniformity of the film thickness distribution and the film thickness characteristic distribution can be improved regardless of the swing position of the magnet.
  • FIG. 1 is a schematic plan view showing a sputtering apparatus according to an embodiment of the invention
  • FIG. It is a perspective view showing a cathode unit in a sputtering apparatus according to an embodiment of the present invention.
  • It is a schematic diagram showing the positional relationship between the glass substrate and the configuration of the cathode device in the sputtering apparatus according to the embodiment of the present invention.
  • FIG. 4 is a front view showing the positional relationship among the glass substrate, the target, and the magnet unit in the sputtering apparatus according to the embodiment of the present invention;
  • FIG. 4 is a diagram showing an end portion of the magnet unit of the sputtering apparatus according to the embodiment of the present invention, and is an enlarged front view showing configurations of magnets and auxiliary magnets that constitute the magnet unit.
  • FIG. 4 is a diagram showing the end portion of the magnet unit of the sputtering apparatus according to the embodiment of the present invention, and is an enlarged sectional view showing the configuration of the magnet and the auxiliary magnet that constitute the magnet unit. It is a figure which shows typically the non-erosion area
  • FIG. 4 is a schematic diagram showing an electron tracking state in the sputtering apparatus according to the embodiment of the present invention when there is no auxiliary magnet;
  • FIG. 4 is a schematic diagram showing directions of magnetic lines of force in the sputtering apparatus according to the embodiment of the present invention when there is no auxiliary magnet;
  • It is a schematic diagram showing an electron tracking state in the sputtering apparatus according to the embodiment of the present invention.
  • It is a schematic diagram which shows the direction of the line of magnetic force in the sputtering device concerning the embodiment of the present invention.
  • FIG. 4 is a graph showing voltage changes with respect to swing positions in the sputtering apparatus according to the embodiment of the present invention; It is a graph which shows an example of film thickness distribution by the sputtering device which concerns on embodiment of this invention. It is a graph which shows an example of film resistance distribution by the sputtering device which concerns on embodiment of this invention. It is a graph which shows an example of film thickness distribution by a sputtering device. It is a graph which shows an example of film resistance distribution by a sputtering device. It is a graph which shows an example of film thickness distribution by a sputtering device. It is a graph which shows an example of film resistance distribution by a sputtering device. It is a graph which shows an example of film resistance distribution by a sputtering device.
  • FIG. 4 is a graph showing the relationship between film thickness distribution and film resistance distribution in the sputtering apparatus according to the present invention.
  • 4 is an image showing the surface of a target after processing using an auxiliary magnet in the sputtering apparatus according to the present invention;
  • FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention;
  • FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention;
  • FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention;
  • FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention
  • FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention
  • FIG. 5 is an enlarged cross-sectional view showing a modification of the auxiliary magnet of the sputtering apparatus according to the embodiment of the present invention
  • FIG. 4 is an image showing the surface of a corner of a target after treatment using an auxiliary magnet in a sputtering apparatus according to the present invention
  • FIG. FIG. 10 is an image showing the surface of the target corner after processing without the auxiliary magnet in the sputtering apparatus
  • FIG. 1 is a schematic plan view showing a sputtering apparatus according to this embodiment.
  • reference numeral 1 denotes a sputtering apparatus.
  • the sputtering apparatus 1 is an example of an interback type vacuum processing apparatus.
  • a vacuum processing apparatus is used, for example, in the manufacturing process of semiconductor devices and in the manufacturing process of FPDs (flat panel displays) such as liquid crystal displays and organic EL displays.
  • FPDs flat panel displays
  • a substrate to be processed made of glass or resin is heated and grown in a vacuum environment, such as when forming a TFT (Thin Film Transistor) on a substrate made of glass or the like. Film processing, etching processing, etc. are performed.
  • TFT Thin Film Transistor
  • the glass substrate 11 film formation substrate, transparent substrate
  • a substrate having a side length of about 100 mm or a rectangular substrate having a side length of 2000 mm or more can be applied.
  • a substrate with a thickness of 1 mm or less, a substrate with a thickness of several mm, or a substrate with a thickness of 10 mm or more can be used as the glass substrate 11 .
  • the sputtering apparatus 1 includes a load/unload chamber 2 (vacuum chamber), a film forming chamber 4 (vacuum chamber), and a transfer chamber 3, as shown in FIG.
  • a substantially rectangular glass substrate 11 is carried into the loading/unloading chamber 2 from the outside, and the loading/unloading chamber 2 is carried out to the outside.
  • a film such as a ZnO-based or In 2 O 3 -based transparent conductive film, a metal or oxide film such as aluminum or silver, or other films are deposited on the glass substrate 11 by a sputtering method. formed by The film forming chamber 4 has pressure resistance.
  • FIG. 1 shows a side sputtering type sputtering device.
  • a sputter-down type sputtering apparatus or a sputter-up type sputtering apparatus can also be employed as the sputtering apparatus 1 .
  • the sputtering apparatus 1 has a film forming chamber 4A (vacuum chamber) and a load/unload chamber 2a (vacuum chamber).
  • the plurality of vacuum chambers 2 , 2 a , 4 , 4 A described above are arranged to surround the transfer chamber 3 .
  • a sputtering apparatus 1 having such a vacuum chamber includes, for example, two load/unload chambers (vacuum chambers) adjacent to each other and a plurality of processing chambers (vacuum chambers).
  • one of the load/unload chambers 2 and 2a is a load chamber for loading the glass substrate 11 into the sputtering apparatus 1 (vacuum processing apparatus) from the outside.
  • the other of the load/unload chambers 2 and 2a is an unload chamber for unloading the glass substrate 11 from the inside of the sputtering apparatus 1 to the outside.
  • the structure which performs a mutually different film-forming process may be employ
  • a gate valve may be formed between each of these vacuum chambers 2, 2a, 4, 4A and the transfer chamber 3.
  • the loading/unloading chamber 2 may be provided with a positioning member capable of setting and aligning the mounting position of the glass substrate 11 carried inside from the outside of the sputtering apparatus 1 . Further, the loading/unloading chamber 2 is provided with a roughing evacuation device (roughing evacuation device, low vacuum evacuation device) such as a rotary pump for roughly evacuating the interior of the loading/unloading chamber 2 .
  • a roughing evacuation device roughing evacuation device, low vacuum evacuation device
  • a transfer device 3a (transfer robot) is arranged inside the transfer chamber 3, as shown in FIG. 1, a transfer device 3a (transfer robot) is arranged. In the following description, it may be referred to as a transport robot 3a.
  • the transfer device 3a has a rotating shaft, a robot arm attached to the rotating shaft, a robot hand formed at one end of the robot arm, and a vertical motion device for vertically moving the robot hand.
  • the robot arm is composed of a first active arm, a second active arm, a first driven arm, and a second driven arm that are mutually bendable.
  • the transfer device 3a can move the glass substrate 11, which is an object to be transferred, between the transfer chamber 3 and each of the vacuum chambers 2, 2a, 4, 4A.
  • the film forming chamber 4 is provided with a cathode device 10, a substrate holder 13 which is a substrate holder having a mask, etc., a gas introduction device, and a high vacuum evacuation device.
  • the interior of the film forming chamber 4 is composed of a front space 41 in which the surface of the glass substrate 11 is exposed during film formation and a rear space 42 positioned on the rear surface side of the glass substrate 11 .
  • the cathode device 10 is arranged in the front space 41 .
  • the cathode device 10 is erected at the farthest position from the transfer port 4 a connected to the transfer chamber 3 inside the film forming chamber 4 .
  • the substrate holding part 13 (substrate holding device) is provided inside the rear space 42 as shown in FIG.
  • the substrate holding part 13 can support the glass substrate 11 carried in from the transfer port 4a.
  • the substrate holding unit 13 holds the glass substrate 11 so that a target 23 to be described later faces the surface to be processed 11a (film formation surface) of the glass substrate 11 during film formation.
  • the substrate holder 13 holds the glass substrate 11 at a position corresponding to the film formation port 4b during film formation.
  • the substrate holding part 13 may include a swing shaft and a holding part.
  • the swing shaft extends substantially parallel to at least one of the transport port 4a and the film formation port 4b at a position below the back space 42 .
  • the holding part is attached to the swing shaft and holds the back surface of the glass substrate 11 .
  • the gas introduction device introduces gas into the film forming chamber 4 .
  • the high-vacuum exhaust device is, for example, a turbo-molecular pump that decompresses the inside of the film forming chamber 4 to a high-vacuum state.
  • FIG. 2 is a perspective view showing the cathode device 10 of the sputtering device 1 according to this embodiment.
  • FIG. 3 is a schematic diagram showing the positional relationship between the glass substrate and the configuration of the cathode device in the sputtering apparatus according to this embodiment.
  • the Z direction is the vertical direction (the direction of gravity). Also, the Z direction is the vertical direction of the glass substrate 11 .
  • the Y direction is the thickness direction of the glass substrate 11 . Also, it is the thickness direction of the yoke.
  • the X direction is the width direction of the glass substrate 11 . In the following description, a plane parallel to the Z direction and the X direction may be referred to as a ZX plane. Furthermore, the X direction corresponds to the swing direction. In this case, the Z direction intersecting with the X direction corresponds to the intersecting direction intersecting with the swing direction.
  • the cathode device 10 can swing the glass substrate 11 arranged at the film forming position (plasma processing position) inside the film forming chamber 4 in the X direction.
  • the cathode device 10 has a cathode box 10A and one cathode unit 22 .
  • the cathode unit 22 is arranged in the cathode box 10A, as shown in FIG.
  • FIG. 2 shows a vertical cathode device 10 in which the glass substrate 11 and the target 23 are set vertically.
  • a down-deposition type cathode device can also be used as the cathode device 10 .
  • the glass substrate 11 is placed below the target 23 so that the glass substrate 11 faces horizontally. In this state, film formation is performed on the glass substrate 11 .
  • the horizontal direction is a direction parallel to the X direction and the Y direction.
  • the cathode unit 22 is arranged along the ZX plane facing the surface of the glass substrate 11, as shown in FIG.
  • the cathode unit 22 is configured to emit sputtered particles toward the surface 11 a of the glass substrate 11 to be processed.
  • the target 23, the backing plate 24, and the magnet unit MU are arranged in this order in the direction from the glass substrate 11 toward the magnet scanning unit 29 (the direction opposite to the Y direction shown in FIG. 3). It is The magnet scanning unit 29 will be described later.
  • FIG. 4 is a front view showing the positional relationship among the glass substrate, the target, and the magnet unit in the sputtering apparatus according to this embodiment.
  • the target 23 is formed in a plate shape parallel to the ZX plane facing the glass substrate 11 .
  • the target 23 is arranged so as to face the glass substrate 11 .
  • the target 23 has a surface 23a facing the glass substrate 11, as shown in FIG.
  • the target 23 is exposed at a position facing the glass substrate 11 on the surface of the cathode box 10A, as shown in FIG.
  • the target 23 has a width larger than that of the glass substrate 11 in the Z direction, as shown in FIGS.
  • the target 23 has a width larger than that of the glass substrate 11 in the X direction.
  • An anode 28 is provided around the target 23 .
  • the anode 28 covers the backing plate 24 protruding outside the ends of the target 23 in each of the X and Z directions.
  • the anode 28 is arranged between the glass substrate 11 and the backing plate 24 in the Y direction.
  • the anodes 28 are arranged all around the target 23 in the X and Z directions.
  • the backing plate 24 is formed in a flat plate shape along the ZX plane facing the glass substrate 11 .
  • the backing plate 24 is bonded to the surface of the target 23 that does not face the glass substrate 11, that is, the surface of the target 23 opposite to the surface 23a.
  • a control unit 26 having a DC power supply is connected to the backing plate 24 .
  • DC power supplied from the DC power supply is supplied to the target 23 through the backing plate 24 .
  • a DC power supply, a pulse power supply, or an RF power supply may be used instead of the DC power supply.
  • the cathode unit 22 has a target 23 arranged along the ZX plane facing the surface 11 a of the glass substrate 11 to be processed.
  • the cathode unit 22 has a magnet unit MU.
  • the magnet unit MU is composed of a plurality of magnets 25 and two auxiliary magnets 27 .
  • the magnet unit MU is arranged on the side opposite to the target 23 with respect to the backing plate 24 .
  • the glass substrate 11 is arranged on the front side of the target 23
  • the magnet unit MU is arranged on the back side of the target 23 .
  • the magnet unit MU is a multiple magnet.
  • the plurality of magnets 25 are arranged parallel to each other and arranged at regular intervals in the X direction.
  • the plurality of magnets 25 are erected in the Z direction so that the longitudinal direction of each of the plurality of magnets 25 is parallel to the Z direction.
  • nine magnets 25 are arranged in the X direction.
  • the magnet unit MU includes a first magnet 25F, a second magnet 25S, a third magnet 25T, a fourth magnet 25Y, a fifth magnet 25G, a sixth magnet 25R, a seventh magnet 25V, an eighth magnet 25E, and It has a ninth magnet 25N.
  • the number of magnets 25 is nine.
  • the number of magnets 25 can be set according to the area of the glass substrate 11, the area of the target 23, or the oscillation region of the magnets 25, which will be described later.
  • the magnet unit MU has N (N is an integer equal to or greater than 2) magnets 25 .
  • the magnets to which the auxiliary magnet 27 is attached are the (N-1)th magnet and the Nth magnet.
  • the target 23 is fixed to the glass substrate 11 in the cathode unit 22 in this embodiment.
  • the cathode unit 22 is fixed to the film forming chamber 4 .
  • Each of the nine magnets 25 forms a magnetron magnetic field on the surface 23 a of the target 23 facing the glass substrate 11 .
  • Each of the nine magnets 25 is individually connected to the controller 26 .
  • the control unit 26 can control the magnetic field state generated in each of the nine magnets 25 .
  • Each of the nine magnets 25 has three magnetic field generation regions aligned in the Z direction, that is, a first magnetic field generation region MG1, a plurality of second magnetic field generation regions MG2, and a third magnetic field generation region MG3.
  • the first magnetic field generation region MG1 is one region in the Z direction.
  • the third magnetic field generation region MG3 is the other region in the Z direction.
  • the multiple second magnetic field generation regions MG2 are regions between the first magnetic field generation region MG1 and the third magnetic field generation region MG3. In the present embodiment, the number of multiple second magnetic field generation regions MG2 is five.
  • the number of the plurality of second magnetic field generation regions MG2 is not limited to this embodiment, and may be less than 5 or may be 6 or more. Such multiple magnetic field generation regions MG1, MG2, and MG3 may be continuously connected in the Z direction, or may be divided in the Z direction. In this embodiment, a structure in which a plurality of magnetic field generation regions MG1, MG2, and MG3 are connected will be described.
  • FIG. 5 is an enlarged front view showing an end portion of the magnet unit MU of the sputtering apparatus according to this embodiment.
  • FIG. 6 is an enlarged sectional view showing an end portion of the magnet unit MU of the sputtering apparatus according to this embodiment.
  • 5 and 6 each show the configuration of the magnets and auxiliary magnets that constitute the magnet unit MU.
  • the first magnet 25F, the second magnet 25S, and the auxiliary magnet 27 are shown.
  • the first magnet 25F and the auxiliary magnet 27 are shown.
  • FIG. 5 shows the first magnetic field generation region MG1 shown in FIG. 4 and part of the second magnetic field generation region MG2.
  • the auxiliary magnet provided in the first magnet 25F will be described, and the description of the auxiliary magnet provided in the ninth magnet 25N may be omitted.
  • the first magnet 25F to the ninth magnet 25N may be simply referred to as the magnet 25 in some cases.
  • Each of the first magnet 25F to the ninth magnet 25N has a yoke 31, an auxiliary yoke 31d, a peripheral magnet portion 32, and a central magnet portion 33, as shown in FIGS.
  • the yoke 31 is a substantially rectangular plate-like magnet base (magnetic body) when viewed in the Y direction. Yoke 31 has central region 31C on surface 31S of yoke 31 . Auxiliary yoke 31 d is a portion adjacent to yoke 31 . The auxiliary yoke 31d is made of magnetic material or dielectric material. Each of the plurality of magnets 25 forming the magnet unit MU is arranged on the yoke 31 .
  • the peripheral magnet portion 32 is separated from the central magnet portion 33 in the plane of the yoke 31 .
  • the peripheral magnet portion 32 is a substantially oval ring magnet surrounding the central magnet portion 33 .
  • the central magnet portion 33 is a composite magnet having a linear shape. The longitudinal direction of the composite magnet corresponds to the Z direction.
  • the central magnet portion 33 is arranged at the central position 31CP of the central region 31C of the yoke 31 in the X direction.
  • the central magnet portion 33 and the peripheral magnet portion 32 constitute a magnetic circuit formed on the surface 31S of the yoke 31. As shown in FIG. This magnetic circuit is arranged to overlap the backing plate 24 .
  • the central magnet portion 33 and the peripheral edge magnet portion 32 are parallel to each other.
  • a region where the central magnet portion 33 and the peripheral magnet portion 32 are parallel to each other is a parallel region PR.
  • the central magnet portion 33 is divided into a plurality of magnets in the Z direction in which the central magnet portion 33 extends. In other words, the central magnet portion 33 is composed of a plurality of divided magnets. A central magnet portion 33 is formed by arranging a plurality of divided magnets continuously in the Z direction. Similarly, the peripheral magnet portion 32 is divided into a plurality of magnets in the Z direction in which the peripheral magnet portion 32 extends. In other words, the peripheral magnet portion 32 is composed of a plurality of divided magnets. The peripheral magnet portion 32 is formed by arranging a plurality of divided magnets continuously in the Z direction. Furthermore, as shown in FIGS. 5 and 6, the peripheral magnet portion 32 has an end peripheral magnet portion 32a positioned at the end in the Z direction.
  • the end peripheral magnet portion 32a extends in the X direction. Moreover, the peripheral edge magnet part 32 has the 1st peripheral edge magnet part 32b.
  • the first peripheral magnet portion 32b is adjacent to the end peripheral magnet portion 32a in the Z direction.
  • the first peripheral magnet portion 32b extends in the Z direction, which is the longitudinal direction.
  • the end peripheral magnet portion 32a may have a portion extending in the Z direction at a position adjacent to the first peripheral magnet portion 32b. In other words, as shown in FIG. 5, at one end of the magnet 25 in the Z direction, the end peripheral magnet portion 32a may have a substantially C shape. At the other end of the magnet 25 in the Z direction, the end peripheral magnet portion 32a may have a substantially inverted C shape.
  • the peripheral magnet portion 32 has a second peripheral magnet portion 32c extending in the Z direction.
  • the second peripheral magnet portion 32c is adjacent to the first peripheral magnet portion 32b in the longitudinal direction.
  • the second peripheral magnet portion 32c is located on the side opposite to the end peripheral magnet portion 32a with respect to the first peripheral magnet portion 32b in the Z direction.
  • the peripheral magnet portion 32 has a third peripheral magnet portion 32d extending in the Z direction.
  • the third peripheral magnet portion 32d is adjacent to the second peripheral magnet portion 32c in the longitudinal direction.
  • the third peripheral magnet portion 32d is located on the side opposite to the first peripheral magnet portion 32b with respect to the second peripheral magnet portion 32c in the Z direction.
  • the peripheral magnet portion 32 has a fourth peripheral magnet portion 32e extending in the Z direction.
  • the fourth peripheral magnet portion 32e is adjacent to the third peripheral magnet portion 32d in the longitudinal direction.
  • the fourth peripheral magnet portion 32e is located on the side opposite to the second peripheral magnet portion 32c with respect to the third peripheral magnet portion 32d in the Z direction.
  • the peripheral magnet portion 32 has a fifth peripheral magnet portion 32f extending in the Z direction.
  • the fifth peripheral magnet portion 32f is adjacent to the fourth peripheral magnet portion 32e in the longitudinal direction.
  • the fifth peripheral magnet portion 32f is located on the opposite side of the fourth peripheral magnet portion 32e from the third peripheral magnet portion 32d in the Z direction.
  • the peripheral magnet portion 32 has a split portion (see FIG. 4) extending in the Z direction.
  • the divided portion is adjacent to the fifth peripheral magnet portion 32f.
  • the divided portion of the peripheral magnet portion 32 is located in the parallel region PR.
  • each of the end peripheral magnet portion 32a, the first peripheral magnet portion 32b, the second peripheral magnet portion 32c, the third peripheral magnet portion 32d, and the fourth peripheral magnet portion 32e is a permanent magnet.
  • each of the end peripheral magnet portion 32a, the first peripheral magnet portion 32b, the second peripheral magnet portion 32c, the third peripheral magnet portion 32d, and the fourth peripheral magnet portion 32e independently generates a different magnetic field. , or may be configured to generate a magnetic field of equal strength.
  • the fifth peripheral magnet portion 32f and the divided portions further extending in the Z direction from the fifth peripheral magnet portion 32f are permanent magnets.
  • the central magnet portion 33 has a first coil portion 35b, as shown in FIGS.
  • the first coil portion 35b is positioned at an end portion in the Z direction, which is the longitudinal direction.
  • the first coil portion 35b is adjacent to the end peripheral magnet portion 32a in the Z direction.
  • the first coil portion 35b is composed of a coil wire wound around an axis parallel to the Y direction, which is the direction perpendicular to the plane of FIG.
  • the first coil portion 35b has a first core portion 34b parallel to the Y direction, and is composed of a coil wire wound around the first core portion 34b.
  • the first core portion 34b is positioned at the center of the coil.
  • the first core portion 34b is a permanent magnet.
  • the first coil portion 35b is arranged at a position coinciding with the first peripheral magnet portion 32b in the Z direction.
  • the center of the first core portion 34b is arranged at substantially the same position as the center position of the first peripheral magnet portion 32b in the Z direction.
  • the first coil portion 35b is not in contact with the end peripheral magnet portion 32a and the first peripheral magnet portion 32b.
  • the central magnet portion 33 has a second coil portion 35c adjacent to the first coil portion 35b.
  • the second coil portion 35c is located on the side opposite to the end peripheral magnet portion 32a with respect to the first coil portion 35b in the Z direction.
  • the second coil portion 35c has a second core portion 34c positioned at the center of the second coil portion 35c.
  • the second core portion 34c is a permanent magnet.
  • the second coil portion 35c is arranged at a position coinciding with the second peripheral magnet portion 32c in the Z direction.
  • the center of the second core portion 34c is arranged at substantially the same position as the center position of the second peripheral magnet portion 32c in the Z direction.
  • the second coil portion 35c is not in contact with the first coil portion 35b and the second peripheral magnet portion 32c.
  • the central magnet portion 33 has a third coil portion 35d adjacent to the second coil portion 35c.
  • the third coil portion 35d is located on the side opposite to the first coil portion 35b with respect to the second coil portion 35c in the Z direction.
  • the third coil portion 35d has a third core portion 34d positioned at the center of the third coil portion 35d.
  • the third core portion 34d is a permanent magnet.
  • the third coil portion 35d is arranged at a position coinciding with the third peripheral magnet portion 32d in the Z direction.
  • the center of the third core portion 34d is arranged at substantially the same position as the center position of the third peripheral magnet portion 32d in the Z direction.
  • the third coil portion 35d is not in contact with the second coil portion 35c and the third peripheral magnet portion 32d.
  • the central magnet portion 33 has a fourth coil portion 35e adjacent to the third coil portion 35d.
  • the fourth coil portion 35e is located on the side opposite to the second coil portion 35c with respect to the third coil portion 35d in the Z direction.
  • the fourth coil portion 35e has a fourth core portion 34e positioned at the center of the fourth coil portion 35e.
  • the fourth core portion 34e is a permanent magnet.
  • the fourth coil portion 35e is arranged at a position coinciding with the fourth peripheral magnet portion 32e in the Z direction.
  • the center of the fourth core portion 34e is arranged at substantially the same position as the center position of the fourth peripheral magnet portion 32e in the Z direction.
  • the fourth coil portion 35e is not in contact with the third coil portion 35d and the fourth peripheral magnet portion 32e.
  • the central magnet portion 33 has a fifth magnet portion 37 adjacent to the fourth coil portion 35e.
  • the fifth magnet portion 37 is located on the side opposite to the third coil portion 35d with respect to the fourth coil portion 35e in the Z direction.
  • the fifth magnet portion 37 is a permanent magnet.
  • the fifth magnet portion 37 is arranged at a position coinciding with the fifth peripheral edge magnet portion 32f in the Z direction.
  • the fifth magnet portion 37 is arranged substantially parallel to the fifth peripheral edge magnet portion 32f.
  • the fifth magnet portion 37 is arranged at substantially the same position as the first core portion 34b to the fourth core portion 34e in the X direction. In other words, the first to fourth core portions 34b to 34e and the fifth magnet portion 37 are arranged in the Z direction.
  • the fifth magnet portion 37 has substantially the same length as the fifth peripheral magnet portion 32f in the Z direction.
  • the fifth magnet portion 37 is not in contact with the fourth coil portion 35e and the fifth peripheral edge magnet portion 32f.
  • the central magnet portion 33 has a split portion extending in the Z direction.
  • the divided portion is adjacent to the fifth magnet portion 37 .
  • the divided portions of the central magnet portion 33 are located in the parallel regions PR.
  • each of the first coil portion 35b, the second coil portion 35c, the third coil portion 35d, and the fourth coil portion 35e is connected to the control portion 26 (see FIG. 3) having a power supply function. ing. That is, the control unit 26 functions as a power supply.
  • current is supplied independently to each of the first coil portion 35b, the second coil portion 35c, the third coil portion 35d, and the fourth coil portion 35e. This allows the first coil portion 35b, the second coil portion 35c, the third coil portion 35d, and the fourth coil portion 35e to generate magnetic fields different from each other.
  • the central magnet portion 33 has a long core portion 36 extending in the Z direction.
  • each of the first core portion 34b, the second core portion 34c, the third core portion 34d, and the fourth core portion 34e has an end located on the opposite side of the yoke 31 in the Y direction.
  • the four ends adjoin the long core 36 .
  • the long core portion 36 is arranged at substantially the same X-direction position as the fifth magnet portion 37 . In other words, the long core portion 36 and the fifth magnet portion 37 are arranged in the Z direction.
  • the long core portion 36 is a permanent magnet or a magnetic body.
  • the long core portion 36 includes an end peripheral magnet portion 32a of the peripheral magnet portion 32, a first peripheral magnet portion 32b, a second peripheral magnet portion 32c, a third peripheral magnet portion 32d, and a fourth peripheral magnet portion. 32e and a magnetic circuit.
  • each of the first coil portion 35b to the fourth coil portion 35e is configured to be independently supplied with current. This makes it possible to adjust the magnetic field strength and the distribution of the generated magnetic field in the magnetic circuit composed of the long core portion 36 and the peripheral magnet portion 32 .
  • the first coil portion 35b to the fourth coil portion 35e forming the central magnet portion 33 are electromagnets, but the configuration of the central magnet portion 33 is not limited to electromagnets.
  • a permanent magnet corresponding to the long core portion 36 can also be used as the central magnet portion 33 .
  • FIG. 5 shows one end of the magnet 25 in the Z direction, the other end of the magnet 25 may have the same structure as the one end of the magnet 25 described above.
  • the cathode device 10 includes a magnet scanning section 29 .
  • the magnet scanning section 29 moves the magnet unit MU in a swinging direction, which is one scanning direction.
  • the swinging direction is the X direction orthogonal to the Z direction in which the plurality of magnet units MU are erected. That is, the magnet scanning section 29 can move the magnet unit MU and the glass substrate 11 in a relative reciprocating manner.
  • the magnet scanning section 29 changes the position of the magnet unit MU with respect to the target 23 .
  • the magnet scanning section 29 can swing the magnet unit MU without changing the relative positional relationship of the plurality of magnets 25 that constitute the magnet unit MU. That is, the magnet unit MU can be moved (oscillated) parallel to the particle emission surface of the target 23 by the magnet scanning section 29 with respect to the target 23 .
  • the magnet scanning unit 29 is composed of, for example, rails, rollers, and a plurality of motors.
  • the rail extends in the scanning direction.
  • a roller is attached to each of the two ends of the cathode unit 22 in the X direction.
  • a motor rotates each of the rollers.
  • the magnet scanning unit 29 may be composed of an LM guide or the like having rails extending in the scanning direction.
  • the rail of the magnet scanning unit 29 has a width equal to or greater than that of the target 23 in the scanning direction (X direction). Note that the configuration of the magnet scanning unit 29 is not limited to the configuration described above as long as the magnet scanning unit 29 can move the plurality of magnets 25 together in the scanning direction. Configurations other than those having rails, rollers, and motors may be applied to the magnet scanner 29 .
  • the two auxiliary magnets 27 are arranged at both ends of the magnet unit MU in the X direction.
  • one auxiliary magnet 27 (first auxiliary magnet) is arranged at one end (first end) of the magnet unit MU in the X direction.
  • the other auxiliary magnet 27 (second auxiliary magnet) is arranged at the other end (second end) of the magnet unit MU in the X direction.
  • the auxiliary magnet 27 is arranged on the opposite side of the glass substrate 11 with respect to the target 23 .
  • the auxiliary magnet 27 is attached and fixed to the yoke 31 forming a magnetic circuit in each of the first magnet 25F and the ninth magnet 25N.
  • the magnet unit MU is composed of an array of nine magnets 25 .
  • a first magnet 25F is arranged on one end side (first end side, first arrangement end) of the magnet unit MU in the X direction.
  • a ninth magnet 25N is arranged on the other end side (second end side, second arrangement end) of the magnet unit MU in the X direction.
  • one auxiliary magnet 27 is provided at the end (outer edge) of the first magnet 25F opposite to the second magnet 25S in the X direction.
  • the other auxiliary magnet 27 is provided at the end (outer edge) of the ninth magnet 25N opposite to the eighth magnet 25E in the X direction.
  • one auxiliary magnet 27 is positioned at the swinging end, which is one end of the magnet unit MU in the X direction. Also, the other auxiliary magnet 27 is positioned at the swinging end, which is the other end of the magnet unit MU in the X direction. That is, the auxiliary magnet 27 is arranged at the outer edge of the magnet positioned at the first swing end and the outer edge of the magnet positioned at the second swing end of the magnet unit MU at the end in the X direction.
  • the auxiliary magnet 27 directs the magnetic lines of force formed by the magnet 25 positioned at the first swing end to the second swing end along the magnet 25 positioned at the first swing end among the plurality of magnets 25 . It has a tilting function.
  • the auxiliary magnet 27 is arranged along the magnet 27 positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end.
  • the auxiliary magnet 27 is a linear magnet parallel to the peripheral edge magnet portion 32, as shown in FIGS.
  • the auxiliary magnet 27 extends in the Z direction.
  • the auxiliary magnet 27 has the same polarity as the peripheral magnet portion 32 closest to the auxiliary magnet 27 . That is, as shown in FIG. 6, if the peripheral magnet portion 32 has the N pole, the auxiliary magnet 27 has the same polarity as the peripheral magnet portion 32, that is, the N pole.
  • the auxiliary magnets 27 are located at the outermost ends of the magnet unit MU in the X direction. That is, the auxiliary magnet 27 is provided so as to be adjacent to the peripheral edge magnet portion 32 located on the outermost side of the first magnet 25F in the X direction.
  • the auxiliary magnet 27 is provided so as to be adjacent to the peripheral edge magnet portion 32 located on the outermost side of the ninth magnet 25N in the X direction. In other words, the auxiliary magnet 27 is not provided on the second magnet 25S to the eighth magnet 25E. That is, the auxiliary magnets 27 are provided only at positions corresponding to the ends of the target 23 in the X direction.
  • the auxiliary magnet 27 has the same length as the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 . That is, the Z-direction dimension of the auxiliary magnet 27 is substantially equal to the Z-direction dimension of each of the first magnet 25F and the ninth magnet 25N positioned at both ends of the magnet unit MU in the X direction.
  • the dimension in the Z direction of the auxiliary magnet 27 is about plus or minus 5 mm with respect to the dimension in the Z direction of each of the first magnet 25F and the ninth magnet 25N.
  • the auxiliary magnet 27 is a magnet having a rectangular shape in a cross-sectional view, similar to the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 .
  • the auxiliary magnet 27 has the same cross-sectional shape as the peripheral magnet portion 32 over the entire length in the Z direction.
  • the auxiliary magnet 27 is very close in the X direction to the peripheral magnet portion 32 closest to the auxiliary magnet 27 .
  • the auxiliary magnet 27 is in very close contact with the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 in the X direction, or, as will be described later, in the X direction. can also be spaced apart by a predetermined distance in .
  • the auxiliary magnet 27 has a ridge 27a.
  • the ridge 27a is a portion in which a convex portion protruding toward the target 23 continues in the Z direction with respect to the ZX plane formed by the end face 30 (magnetic pole plane) of the peripheral magnet portion 32 of the magnet 25. is.
  • the ridge 27a protrudes in the Y direction from the ZX plane while extending in the Z direction.
  • the end face 30 may be referred to as a magnetic pole plane 30.
  • the tip of the ridge 27a may protrude toward the target 23 from the magnetic pole plane 30.
  • the tip of the ridge 27a may be at the same position as the magnetic pole plane 30 in the Y direction.
  • the tip of the ridge 27 a may be further away from the target 23 than the magnetic pole plane 30 .
  • the auxiliary magnet 27 is inclined with respect to the magnetic pole plane 30. That is, as shown in FIG. 6, the auxiliary magnet 27 may have an end face that becomes a magnetic pole inclined by an angle ⁇ with respect to the ZX plane.
  • the angle ⁇ is an angle of inclination with respect to the Y direction, which is the normal to the surface 23 a of the target 23 .
  • the auxiliary magnet 27 rotates by an angle ⁇ about an axis parallel to the Z direction. This angle ⁇ can also be referred to as a "magnet tilt angle".
  • the auxiliary magnet 27 has a first magnetic pole surface 27F and a second magnetic pole surface 27S positioned opposite to the first magnetic pole surface 27F.
  • the first magnetic pole face 27 ⁇ /b>F faces the backing plate 24 .
  • the first magnetic pole surface 27F is exposed in the space SP between the backing plate 24 and the magnet 25.
  • the second magnetic pole surface 27S is a surface that contacts an auxiliary yoke 31d, which will be described later.
  • a central position of the first magnetic pole face 27F, that is, a central position between the first corner C1 and the second corner C2 is indicated by reference numeral 27Q.
  • the central position of the second magnetic pole surface 27S that is, the central position between the third corner C3 and the fourth corner C4 is indicated by reference numeral 27R.
  • a line perpendicular to the first magnetic pole surface 27F and the second magnetic pole surface 27S and passing through the central positions 27Q and 27R is a magnet inclined line 27D.
  • the line passing through the central position 27R and perpendicular to the second magnetic pole surface 27S is the magnet inclined line 27D.
  • the angle ⁇ between the magnet tilt line 27D and the Y direction, which is the normal to the surface 23a of the target 23, is the magnet tilt angle.
  • a magnet inclined line 27D extending from the second magnetic pole surface 27S toward the first magnetic pole surface 27F faces the swing region SW of the magnet 25.
  • the angle ⁇ is within the range of 0 deg to 90 deg, more preferably within the range of 0 deg to 60 deg, further within the range of 0 deg to 45 deg, and within the range of 0 deg to 30 deg.
  • FIG. 27 shows a modification of the auxiliary magnet 27.
  • the auxiliary magnet 27 shown in FIG. 27 has a pentagonal shape in a cross-sectional view.
  • the auxiliary magnet 27 has a first magnetic pole face 27F having a vertex and a second magnetic pole face 27S.
  • the first magnetic pole face 27F has two faces. A vertex connecting the two faces corresponds to the central position 27Q.
  • the second pole face 27S has a central position 27R.
  • a ridge 27a is formed at a central position 27Q of the first magnetic pole surface 27F of the auxiliary magnet 27. As shown in FIG.
  • the ridge 27a has a convex shape.
  • the line perpendicular to the second magnetic pole surface 27S and passing through the central positions 27Q and 27R is the magnet inclined line 27D.
  • the angle ⁇ between the magnet tilt line 27D and the Y direction, which is the normal to the surface 23a of the target 23, is the magnet tilt angle.
  • a magnet inclined line 27D extending from the second magnetic pole surface 27S toward the first magnetic pole surface 27F faces the swing region SW of the magnet 25. As shown in FIG.
  • the magnetic intensity of the auxiliary magnet 27 is equal to or smaller than the magnetic intensity of the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 .
  • the magnetic intensity of the auxiliary magnet 27 should be in the range of 1/2 to 3/4, or 1/2 to 1/3 of the magnetic intensity of the peripheral edge magnet portion 32 closest to the auxiliary magnet 27. can be done.
  • the magnetic intensity of the peripheral edge magnet portion 32 can be 1 to 1.5 times, or 1.1 to 1.4 times, for example, about 1.39 times the magnetic intensity of the auxiliary magnet 27 .
  • the auxiliary magnet 27 is fixed to the yoke 31 via an auxiliary yoke 31d, as shown in FIG.
  • the auxiliary yoke 31d is adjacent to the end of the yoke 31 in the X direction.
  • the auxiliary yoke 31 d may be formed integrally with the yoke 31 .
  • the auxiliary yoke 31 d is made of the same material as the yoke 31 .
  • the auxiliary yoke 31d is made of magnetic material or dielectric material.
  • the auxiliary yoke 31 d and auxiliary magnet 27 are removable from the yoke 31 .
  • the auxiliary magnet 27 is fixed to the auxiliary yoke 31d by a fixing member 27g so that the above-described predetermined angle ⁇ is obtained. Thereby, the second magnetic pole surface 27S of the auxiliary magnet 27 is in contact with the auxiliary yoke 31d. As a result, a magnetic circuit is obtained in which the magnetic circuit formed by the central magnet portion 33, the peripheral magnet portion 32, and the yoke 31 and the magnetic circuit formed by the auxiliary magnet 27 and the auxiliary yoke 31d are combined.
  • the magnet scanning section 29 reciprocates the magnet unit MU between the swing end Reverses and the swing end Forward.
  • the swing end Forward is an example of the "first swing end”.
  • the swing end Revers is an example of a "second swing end”.
  • the swing end Forward is the "second swing end”
  • the swing end Reverses is the "first swing end”.
  • the magnet scanning section 29 collectively moves the magnet units MU, which are multiple magnets composed of a plurality of magnets 25. Specifically, as shown in FIG. 3, the magnet scanning section 29 first moves the magnet unit MU rightward from the center position center in the swing direction (X direction) to the swing end Forward. After that, the magnet scanning section 29 moves the magnet unit MU leftward from the swing end Forward to the swing end Revers via the central position center. After that, the magnet scanning section 29 moves the magnet unit MU from the swing end Revers to the central position center. One scan is completed by such a series of movement operations. The cathode unit 22 repeats this scan multiple times.
  • the first coil portion 35b and the second coil of the central magnet portion 33 at the ends in the Z direction are supplied from the control portion 26 functioning as a power source.
  • a current is applied to the portion 35c, the third coil portion 35d, and the fourth coil portion 35e.
  • the magnet 25 forms a magnetic field.
  • a magnetic circuit is formed by the central magnet portion 33 , the peripheral magnet portion 32 and the yoke 31 .
  • a magnetic circuit is also formed by the auxiliary magnet 27 and the auxiliary yoke 31d.
  • the glass substrate 11 is carried inside the sputtering apparatus 1 from the outside.
  • the glass substrate 11 is placed on a positioning member in the loading/unloading chamber 2 . Thereby, the glass substrate 11 is aligned so as to be arranged at a predetermined position on the positioning member (see FIG. 1).
  • the glass substrate 11 placed on the positioning member of the loading/unloading chamber 2 is supported by the robot hand of the transfer device 3a.
  • the glass substrate 11 is taken out from the loading/unloading chamber 2 .
  • the glass substrate 11 is transferred to the film formation chamber 4 via the transfer chamber 3 .
  • the swing shaft of the substrate holding part 13 is rotated by the driving part, and the substrate holding part 13 is arranged at the horizontal mounting position. Further, the lift pins are arranged at the preparation positions protruding upward from the substrate holding portion 13 by a lift pin moving portion (not shown). In this state, the glass substrate 11 that has reached the film forming chamber 4 is inserted above the substrate holder 13 by the transfer device 3a.
  • the robot hand of the transfer device 3a approaches the substrate holding unit 13, so that the glass substrate 11 is placed on the lift pins in a state in which the glass substrate 11 is aligned with a predetermined position in the plane of the substrate holding unit 13. be done.
  • the arm of the transfer robot 3 a retreats to the transfer chamber 3 .
  • the lift pins are lowered and the glass substrate 11 is supported on the substrate holder 13 .
  • the glass substrate 11 is raised to reach the vertical processing position while being held by the substrate holding portion 13 .
  • the film formation port 4b is substantially closed by the glass substrate 11, and the glass substrate 11 is held at the film formation position.
  • plasma is generated between the surface 23a of the target 23 and the glass substrate 11 by the magnetic field generated by the magnet unit MU.
  • the target 23 is sputtered and the material forming the target 23 adheres to the surface of the glass substrate 11 . Thereby, the film formation process is performed on the glass substrate 11 .
  • the swing shaft is rotated, and the glass substrate 11 reaches the horizontal mounting position while being held by the substrate holding portion 13 .
  • the glass substrate 11 on which the film forming process has been completed is taken out from the film forming chamber 4 by the conveying device 3a. Then, the glass substrate 11 is taken out from the loading/unloading chamber 2 via the transfer chamber 3 .
  • FIG. 7 is a schematic diagram of the target surface for explaining the action of the auxiliary magnet 27.
  • FIG. 8 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing an electronic tracking state in the absence of the auxiliary magnet 27.
  • FIG. 9 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing the directions of the lines of magnetic force in the absence of the auxiliary magnet 27. As shown in FIG. First, the case without the auxiliary magnet 27 will be described.
  • plasma is generated between the surface 23 a of the target 23 and the glass substrate 11 by the magnetic field formed by the magnet unit MU having a plurality of magnets 25 .
  • a film is formed on the surface of the glass substrate 11 under the sputtering conditions described later.
  • the magnetic lines of force generated from the N-pole peripheral magnet portion 32 are directed toward the anode 28 close to the magnet 25 . extend.
  • the density of magnetic lines of force decreases.
  • the tracked electron density becomes insufficient and the plasma density becomes insufficient.
  • no erosion regions are formed on the surface 23a of the target 23, and non-erosion regions E1 are formed at both ends in the X direction.
  • the lines of magnetic force from the N-pole peripheral magnet portion 32 are tilted leftward in the X direction toward the anode 28 in FIG.
  • magnetic lines of force are formed from the peripheral magnet portion 32 of the N pole to the central magnet portion 33 of the S pole. Due to the magnetic lines of force, electrons circulate around the central magnet portion 33 surrounded by the peripheral magnet portion 32 on the surface 23 a of the target 23 . At this time, in the longitudinal direction of the magnet 25, the end of the electron movement direction, that is, the region where the electrons moving in the Z direction along the central magnet portion 33 bend in the X direction along the end peripheral magnet portion 32a. Nearby, its movement speed slows down and its density increases.
  • the density decreases at positions where electrons bend from the X direction to the Z direction along the peripheral magnet portion 32 from the end peripheral magnet portion 32a.
  • the erosion on the surface 23a of the target 23 is reduced and a non-erosion region E2 is formed.
  • the adjacent magnets 25 the direction of the electrons rotating around the central magnet portion 33 is reversed, thereby canceling out this phenomenon. Therefore, it appears in the two magnets 25 that are both ends in the X direction.
  • the positions where the non-erosion regions E2 are formed are on opposite sides in the Z direction.
  • non-erosion areas E2 are formed at two diagonal corners among the four corners of the target 23, as shown in FIG. In FIG. 7, non-erosion regions are formed near the lower left and upper right corners.
  • the non-erosion region E3 is likely to be formed in areas other than the two diagonal areas. This is because when a non-erosion region is formed, the applied power is not consumed for plasma generation and becomes redundant. This surplus power is redistributed to regions other than the two diagonal non-erosion regions, or is absorbed as an overall voltage (power) fluctuation. Therefore, it is considered that plasma generation conditions fluctuate like voltage fluctuations.
  • FIG. 10 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing an electronic tracking state when the auxiliary magnet 27 is present.
  • FIG. 11 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing the directions of the lines of magnetic force when the auxiliary magnet 27 is present.
  • the magnetic lines of force from the peripheral edge magnet portion 32 of the N pole do not move toward the anode 28 due to the magnetic lines of force from the auxiliary magnet 27 at the positions of the swing ends in the swinging region of the target 23 .
  • it is tilted rightward in the Y-direction perpendicular to the pole plane 30 or in the X-direction.
  • the magnetic force line density does not decrease. That is, as shown in FIG. 10, the tracked electron density is sufficiently maintained, and the plasma density is sufficiently maintained.
  • the non-erosion areas E1 formed in each of the magnets 25 positioned at both ends of the magnet unit MU in the X direction can be suppressed.
  • a magnetic circuit including the central magnet portion 33, the peripheral edge magnet portion 32, the yoke 31, the auxiliary magnet 27, and the auxiliary yoke 31d is formed. Therefore, electrons circulate around the central magnet portion 33 surrounded by the peripheral magnet portion 32 on the surface 23 a of the target 23 due to the magnetic lines of force directed from the N-pole peripheral magnet portion 32 to the S-pole central magnet portion 33 . Electrons that have moved in the Z direction along the central magnet portion 33 at the ends of the electron moving direction in the longitudinal direction of the magnet 25 are bent in the X direction along the end peripheral magnet portion 32a. Density increase is suppressed without slowing speed.
  • the density does not decrease at positions where electrons bend from the X direction to the Z direction along the peripheral magnet portion 32a from the end peripheral magnet portion 32a.
  • the auxiliary magnets 27 are adjacent to each other in the two magnets 25 positioned at both ends of the magnet unit MU in the X direction, it is possible to suppress the formation of the non-erosion regions E2 at two diagonal locations.
  • the auxiliary magnet 27 prevents the lines of magnetic force generated from the magnet 25 at the oscillation end of the magnet 25 from going to the anode 28 . This makes it possible to reduce the amount of electrons absorbed by the anode 28 . That is, the lines of magnetic force generated by the magnet 25 can be directed in the Y direction, or they can be tilted more rightward in FIG. Thereby, the non-erosion areas E1, E2, and E3 can be reduced.
  • the supply power is prevented from being redistributed, suppressing partial fluctuations in plasma generation conditions due to voltage fluctuations, etc., and suppressing particle generation, film thickness distribution, and film quality. Variation in characteristic distribution and the like can be suppressed.
  • FIG. 12 is a graph showing the relationship between the oscillating position of the magnet 25 and the voltage (discharge voltage) supplied from the plasma generating power source in this embodiment.
  • the magnet unit MU having a plurality of magnets 25 is caused to make two reciprocations (two scans). That is, the magnet unit MU starts from the swing end Forward shown in FIG. 12 and moves to the swing end Reverse. The magnet unit MU then moves in the opposite direction and returns to the swing end Forward. Furthermore, the magnet unit MU starts from the swing end Forward and moves to the swing end Reverse. Then, the magnet unit MU moves in the opposite direction and returns to the swing end Forward.
  • the case where the auxiliary magnet 27 is provided is indicated by a solid line
  • the case where the auxiliary magnet 27 is not provided is indicated by a broken line.
  • the provision of the auxiliary magnet 27 reduces the fluctuation range of the vertical movement of the discharge voltage due to the swing position, compared to the case without the auxiliary magnet 27 . Also, as shown in FIG. 12, it can be seen that the provision of the auxiliary magnet 27 suppresses the spike fluctuation of the discharge voltage compared to the case where the auxiliary magnet 27 is not provided.
  • FIG. 13 shows the film thickness distribution of a film formed by sputtering with condition 0 using the auxiliary magnet 27 in the sputtering apparatus 1 according to this embodiment.
  • FIG. 14 shows the film resistance value (sheet resistance value) Rs distribution of a film formed by sputtering with condition 0 using the auxiliary magnet 27 in the sputtering apparatus 1 according to this embodiment.
  • the film thickness distribution could be kept within a range of ⁇ 4.2% compared to the case without the auxiliary magnet 27.
  • FIG. 14 by providing the auxiliary magnet 27, the film resistance value Rs distribution could be kept within a range of ⁇ 12.5% compared to the case without the auxiliary magnet 27.
  • FIGS. 15 to 20 show cases where the sputtering film formation conditions are changed under three conditions in the case where the auxiliary magnet 27 is not provided.
  • 15 shows the film thickness distribution under condition 1.
  • FIG. 16 shows the film resistance value distribution under condition 1.
  • FIG. 17 shows the film thickness distribution under Condition 2.
  • FIG. 18 shows the film resistance value distribution under condition 2.
  • FIG. 19 shows the film thickness distribution under condition 3.
  • FIG. 20 shows the film resistance value distribution of condition 3.
  • the arrangement of the auxiliary magnets 27 and the peripheral edge magnet portion 32 closest to the auxiliary magnets 27 is set.
  • be the inclination angle between the Y direction and the magnet inclination line 27D.
  • Wx be the distance between the auxiliary magnet 27 and the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 in the X direction.
  • Wy be the distance between the auxiliary magnet 27 and the magnetic pole plane 30 in the Y direction.
  • the angle ⁇ is the inclination angle between the axial direction of the north and south poles of the auxiliary magnet 27 with respect to the Y direction.
  • the direction in which the magnetic line of force formed from the N pole approaches the peripheral edge magnet portion 32 is defined as the positive direction.
  • the magnet inclined line 27D extending from the second magnetic pole surface 27S toward the first magnetic pole surface 27F faces the swing region SW of the magnet 25. As shown in FIG. The value of the angle ⁇ is changed from 0deg to 90deg.
  • the distance Wx is the closest distance between the auxiliary magnet 27 and the closest peripheral magnet portion 32 in the X direction.
  • the distance is the distance from the projection 27b projecting in the X direction to the peripheral edge magnet portion 32 .
  • the distance Wx is varied from 0 mm to 30 mm.
  • the distance Wy is the distance in the Y direction between the magnetic pole plane 30 and the ridge 27a where the magnetic pole surface of the N pole of the auxiliary magnet 27 protrudes most toward the target 23 .
  • the distance Wy is varied from 0 mm to 50 mm.
  • FIGS. 23 to 26 show the plasma density on the surface 23a at the periphery of the target 23 close to the anode 28 when the arrangement of the magnet 25 and the auxiliary magnet 27 in this embodiment is changed.
  • the sign “ ⁇ ”, the sign “ ⁇ ”, the sign “ ⁇ ”, and the sign “ ⁇ ” are shown.
  • This code indicates that the plasma density is higher in this order. That is, the symbol “x” indicates the lowest plasma density.
  • the symbol “ ⁇ ” indicates that the plasma density is the highest and that it is equal to the plasma density at a position distant from the anode 28 .
  • the symbol “O” indicates that the plasma density is about 80% of the plasma density of the symbol " ⁇ ”.
  • the symbol “ ⁇ ” indicates that the plasma density is 50% or less of the plasma density of the symbol " ⁇ ".
  • the plasma density does not change when the angle ⁇ is 90 degrees.
  • the angle ⁇ , the distance Wx, and the distance Wy are not mutually independent parameters.
  • the suitable range is set only by the distance Wx. I know it's not.
  • ( ⁇ [deg], Wx [mm], Wy [mm]) is (0, 0, -10) (0, 0, 0) (0, 0, 10) (0, 10, 0) (30, 0, -10) (30, 0, 0) (30, 0, 10 ) (30, 10, 0) (30, 10, 10) (30, 20, 0) (30, 20, 10) (30, 30, 10) (60, 30, 0) It can also be a range connecting each point of .
  • each of the plurality of magnetic field generation regions MG1, MG2, MG3 has a divided yoke, a divided peripheral magnet portion, and a divided central magnet portion. Furthermore, in each of the first magnet 25F and the ninth magnet 25N, each of the plurality of magnetic field generation regions MG1, MG2, and MG3 includes a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet. have.
  • the split yoke corresponds to the yoke 31 described above.
  • the divided peripheral magnet portion corresponds to the peripheral magnet portion 32 described above.
  • the split central magnet portion corresponds to the central magnet portion 33 described above.
  • the split auxiliary magnet corresponds to the auxiliary magnet 27 described above.
  • each of the nine magnets 25 the position of each of the multiple magnetic field generation regions MG1, MG2, MG3 can be adjusted in the Z direction and the Y direction.
  • a magnet 25 having a plurality of magnetic field generation regions MG 1 , MG 2 , and MG 3 whose positions are adjusted can be swung by a magnet scanner 29 .
  • each of the plurality of magnetic field generation regions divides the magnetic lines of force of the peripheral magnetic poles of the magnet 25 positioned at the first oscillation end. It can be tilted in the required direction by an auxiliary magnet. In each of the plurality of magnetic field generation regions MG1, MG2, and MG3, it is possible to maintain the state in which the lines of magnetic force are inclined in the necessary directions.
  • auxiliary magnet 27 width of magnetic pole surface: 185 mm Angle ⁇ : 30° Wx: 17mm Wy: 20mm Auxiliary yoke 31d: SUS430
  • film formation characteristics with a film thickness distribution within 4.2% and a sheet resistance distribution within 12.5% could be obtained.
  • ITO film was formed in the same manner without using the auxiliary magnet 27 .
  • Target composition ITO Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm Film composition: ITO Film thickness: 80 nm Supply power (plasma formation power): 30 kW Bias power: unused Supply gas and gas flow rate: Ar 120 sccm Atmospheric pressure: 0.2 Pa Film formation time: 65 sec
  • Target composition ITO Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm Film composition: ITO Film thickness: 80 nm Supply power (plasma formation power): 30 kW Bias power: unused Supply gases and gas flow rates: H2O 0.5 sccm, Ar 120 sccm Atmospheric pressure: 0.5 Pa Film formation time: 74 sec
  • condition 2 as shown in FIGS. 17, 18 and 21, it was possible to obtain film formation characteristics with a film thickness distribution of 5.5% and a sheet resistance distribution of 21.3%.
  • Target composition Aluminum Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
  • Target composition Aluminum Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
  • the width of the auxiliary magnet 27 in the X direction (the width of the magnetic pole surface) is 185 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This sputtering device is provided with a cathode unit for emitting sputter particles toward a surface to be treated of a substrate on which a film is to be formed. The cathode unit has a target, a magnet unit, a magnet scanning unit, and an auxiliary magnet. The auxiliary magnet causes magnetic field lines formed by a magnet positioned at a first oscillation end to tilt toward a second oscillation end along the magnet positioned at the first oscillation end.

Description

スパッタリング装置Sputtering equipment
 本発明は、スパッタリング装置に関し、特に、マグネトロンカソードを有する成膜に用いて好適な技術に関する。
 本願は、2021年11月26日に日本に出願された特願2021-192171号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a sputtering apparatus, and more particularly to a technology suitable for film formation with a magnetron cathode.
This application claims priority based on Japanese Patent Application No. 2021-192171 filed in Japan on November 26, 2021, the content of which is incorporated herein.
 マグネトロンカソードを有する成膜装置においては、ターゲットの利用効率を向上すること等を目的として、マグネットをターゲットに対して移動させる方式が知られている。 In a film deposition apparatus having a magnetron cathode, a method of moving the magnet relative to the target is known for the purpose of improving the utilization efficiency of the target.
 また、特許文献1に開示された技術のように、成膜法により形成された膜の均一性の向上等の目的のために、マグネットの移動に加え、カソード及びターゲットを被成膜基板に対して揺動させることも知られている。 Further, as in the technique disclosed in Patent Document 1, for the purpose of improving the uniformity of the film formed by the film forming method, in addition to moving the magnet, the cathode and the target are moved with respect to the film forming substrate. It is also known to oscillate
 また、特許文献2に開示された技術のように、発生したパーティクルがスパッタ処理室内における成膜に悪影響を及ぼすことを防止する目的等で、マグネット及びカソードを揺動させることが知られている。 In addition, it is known to oscillate a magnet and a cathode for the purpose of preventing generated particles from adversely affecting film formation in a sputtering processing chamber, as in the technique disclosed in Patent Document 2.
 さらに、マグネット及びカソードに対して被成膜基板を揺動させる技術として、本出願人らは、特許文献3のような技術を公開している。 Furthermore, the applicants have disclosed a technique such as Patent Document 3 as a technique for swinging a film-forming substrate with respect to a magnet and a cathode.
日本国特開2009-41115号公報Japanese Patent Application Laid-Open No. 2009-41115 日本国特開2012-158835号公報Japanese Patent Application Laid-Open No. 2012-158835 日本国特許第6579726号公報Japanese Patent No. 6579726
 しかしながら、上記のようにターゲットに対してマグネットを走査(揺動)させる技術であっても、非エロージョン領域が発生する。マグネットの揺動領域の縁部に近接する成膜領域の周縁部付近においては、非エロージョン領域は、パーティクル発生原因となる場合がある。このような非エロージョン領域の発生を解消したいという要求があった。特に、非エロージョン領域の発生よりも、非エロージョン領域とエローション領域との境界がぼやけた場合に、これがリデポジション膜(再付着膜、ターゲットに着膜したスパッタ膜)の再スパッタ発生等、問題となるパーティクル発生の原因となることがわかった。
 また、ターゲットに対してマグネットを走査(揺動)させる技術において非エロージョン領域が発生すると、マグネットの揺動領域に近接する成膜領域の周縁部付近においては、膜厚の減少、膜厚分布や膜質分布にムラができてしまう。このような問題が、依然として解消されていない。さらに、基板の大型化によってこのような不具合に対する改善要求が大きくなっていた。
However, even with the technique of scanning (oscillating) the magnet with respect to the target as described above, a non-erosion area is generated. In the vicinity of the peripheral edge of the film forming area, which is close to the edge of the oscillation area of the magnet, the non-erosion area may cause particle generation. There has been a demand to eliminate the occurrence of such non-erosion areas. In particular, when the boundary between the non-erosion area and the erosion area becomes blurred, problems such as re-sputtering of the redeposition film (re-deposition film, sputtered film deposited on the target) occur, etc. It was found to be the cause of particle generation.
In addition, if a non-erosion area occurs in the technique of scanning (oscillating) the magnet with respect to the target, the film thickness decreases and the film thickness distribution and Uneven distribution of film quality occurs. Such problems have not yet been resolved. Furthermore, as the size of the substrate increases, there is a growing demand for improvement of such defects.
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成とする。
1.非エロージョン発生領域周りのぼやけた領域の発生を抑制して、パーティクル発生原因を減らすこと。
2.形成されたプラズマ分布を安定させ、マグネットの揺動位置にかかわらずに膜厚分布・膜厚特性分布の均一性を向上すること。
The present invention has been made in view of the above circumstances, and aims to achieve the following objects.
1. To reduce the cause of particle generation by suppressing the generation of blurred areas around non-erosion generation areas.
2. To stabilize the formed plasma distribution and improve the uniformity of film thickness distribution and film thickness characteristic distribution regardless of the swing position of the magnet.
 本願発明者らは、鋭意研究の結果、非エロージョン領域によるパーティクル発生の抑制、及び、膜厚分布、膜質特性分布のばらつきの抑制に成功した。 As a result of intensive research, the inventors of the present application succeeded in suppressing particle generation in the non-erosion region and suppressing variations in film thickness distribution and film quality characteristic distribution.
 スパッタリング中は、印加された電力によりマグネットから磁界(磁場、磁力線)が発生している。このとき、スパッタリングに寄与するプラズマまたは電子は、マグネットから発生する磁力線に沿って移動している。マグネットによる磁力線のうち、プラズマ発生に寄与する磁力線は、ターゲットと平行に面一として配置されるマグネットの両極のうち、N極からターゲットに向かい円弧を形成しながらS極に到達する。このとき、マグネットによる磁力線は、N極から、ターゲットを裏面側から表面側に向けて厚さ方向に貫通し、プラズマ発生空間で円弧状に形成され、ターゲットを表面側から裏面側に向けて厚さ方向に貫通してS極へと戻る。 During sputtering, a magnetic field (magnetic field, magnetic lines of force) is generated from the magnet due to the applied power. At this time, the plasma or electrons contributing to the sputtering are moving along the lines of magnetic force generated by the magnet. Of the magnetic lines of force of the magnet, the magnetic lines of force that contribute to plasma generation reach the S pole while forming a circular arc from the N pole of the two poles of the magnet arranged flush with the target. At this time, the magnetic lines of force generated by the magnet pass through the target in the thickness direction from the N pole toward the back side and are formed in an arc shape in the plasma generation space. It penetrates in the vertical direction and returns to the S pole.
 ターゲットの端部周辺にはアノード等のグランド電位の部分が配置されている。この状態で、マグネットを走査(揺動)させてマグネットが揺動端付近に位置した場合には、マグネットがこのアノードに近接した位置となる。
 すると、マグネットの揺動端付近においては、N極から発生する磁力線は、磁力線に近接しているアノードに向かってしまい、S極に戻らないという現象が起こる場合がある。すると、電子は磁力線に沿ってトラッキングされる(動く)ため、プラズマ形成空間に戻らず、プラズマ形成に寄与せずにアノードに流れてしまう。これを電子が吸収されると称する。
A ground potential portion such as an anode is arranged around the edge of the target. In this state, when the magnet is scanned (oscillated) and positioned near the oscillation end, the magnet is positioned close to the anode.
Then, in the vicinity of the oscillation end of the magnet, the magnetic lines of force generated from the N pole may go toward the anode, which is close to the magnetic lines of force, and may not return to the S pole. Then, the electrons are tracked (moved) along the magnetic lines of force, so they do not return to the plasma formation space and flow to the anode without contributing to plasma formation. This is called electron absorption.
 電子がアノードに吸収されると、ターゲットの表面側、つまり、プラズマ発生空間における電子密度が低下する。すると、形成されるプラズマ密度が低下する、あるいは、プラズマが発生しない、という現象が起こる場合がある。これをプラズマが吸収されると称する。このような現象が発生した場合、プラズマによりターゲットがスパッタリングされないために、非エロージョン領域が発生し、さらに、非エロージョン領域が大きくなる場合がある。 When electrons are absorbed by the anode, the electron density on the surface side of the target, that is, in the plasma generation space decreases. As a result, a phenomenon may occur in which the density of the plasma to be formed is reduced or no plasma is generated. This is called plasma absorption. When such a phenomenon occurs, the target is not sputtered by the plasma, so a non-erosion region is generated and the non-erosion region may become larger.
 ここで、電子がアノードに吸収された場合、マグネットの揺動その他に起因して、アノード付近におけるプラズマのオンオフが発生する。これにより、プラズマによるスパッタリングのオンオフが発生する。すると、リデポ膜のスパッタリングに起因するパーティクルが発生する可能性が増大する。 Here, when the electrons are absorbed by the anode, the plasma is turned on and off near the anode due to the oscillation of the magnet and other factors. As a result, sputtering by plasma is turned on and off. As a result, the possibility of generating particles due to sputtering of the redeposited film increases.
 つまり、非エロージョン領域の発生により、マグネットの揺動領域に近接する成膜領域の周縁部付近においては、パーティクル発生原因となる場合がある。
 このとき、非エロージョン領域とエロージョン領域との境界が不明瞭になっており、エロージョン-非エロージョン境界領域が形成される。
In other words, the generation of the non-erosion region may cause particles to be generated in the vicinity of the periphery of the film formation region that is close to the swinging region of the magnet.
At this time, the boundary between the non-erosion area and the erosion area is unclear, forming an erosion-non-erosion boundary area.
 このように、非エロージョン領域の発生よりも、非エロージョン領域とエローション領域との境界がぼやけた場合に、これがリデポ膜の再スパッタ発生等、問題となるパーティクル発生の原因となることがわかった。 In this way, it was found that when the boundary between the non-erosion area and the erosion area becomes blurred, rather than the occurrence of the non-erosion area, this causes the generation of problematic particles such as re-sputtering of the redeposition film. .
 上記のように、電子がアノードに吸収される場合、マグネットからの磁力線が、アノードに向かう状態、つまり、ターゲットの厚さ方向よりも、ターゲットの輪郭外向きに傾斜した状態である。 As described above, when electrons are absorbed by the anode, the magnetic lines of force from the magnet are directed toward the anode, that is, they are inclined outward from the target contour rather than in the thickness direction of the target.
 このため、本願発明者らは、このような問題を解決するために、マグネットの揺動端においてマグネットから発生する磁力線を、アノードに向かわないようにすることで、吸収される電子の量を減少することが可能であることを見出した。つまり、本願発明者らは、マグネットの揺動端の一端においてマグネットから発生する磁力線を、ターゲットの厚さ方向よりもマグネットの揺動端の他端に向けて傾斜させること、すなわち、ターゲットの厚さ方向よりもターゲットの輪郭内向きに傾斜させることが、非エロージョン領域の低減に有効であることを見出した。 Therefore, in order to solve such a problem, the inventors of the present invention reduce the amount of absorbed electrons by directing the lines of magnetic force generated from the magnet at the oscillation end of the magnet away from the anode. found that it is possible to In other words, the inventors of the present application have found that the lines of magnetic force generated from the magnet at one end of the swinging end of the magnet are inclined toward the other end of the swinging end of the magnet rather than in the thickness direction of the target. It was found that inclining the contour of the target more inward than the vertical direction is effective in reducing the non-erosion area.
 なお、上記の説明では、通常の表記に従って磁力線をN極からS極へ到達するように表記したが、逆の極性としても現象の理解には支障がない。 In the above description, the magnetic lines of force are written to reach the S pole from the N pole according to the usual notation, but there is no problem in understanding the phenomenon even if the polarity is reversed.
 さらに、非エロージョン領域が発生している場合には、プラズマ発生が抑制されていることになる。このため、印加された供給電力がプラズマ発生に消費されずに余剰となる。この余剰電力が、もともとの非エロージョン領域とは異なる領域に対して再分配される、あるいは、全体の電圧(電力)変動として吸収される。従って、電圧変動のようにプラズマ発生条件が変動してしまい、結果的に膜厚分布のばらつき、膜質特性分布のばらつき拡大の原因となる。 Furthermore, when a non-erosion region is generated, plasma generation is suppressed. Therefore, the applied power is surplus without being consumed for plasma generation. This surplus power is either redistributed to areas different from the original non-erosion area or absorbed as an overall voltage (power) fluctuation. Therefore, plasma generation conditions fluctuate like voltage fluctuations, resulting in widening variations in film thickness distribution and film quality characteristic distribution.
 つまり、電子がアノードに吸収された場合、非エロージョン領域発生に起因して、膜厚分布のばらつき、膜質特性分布のばらつきが拡大することになる。 In other words, when electrons are absorbed by the anode, variations in film thickness distribution and film quality characteristic distribution increase due to the occurrence of non-erosion regions.
 さらに、非エロージョン領域が発生している場合、電圧変動等によるプラズマ発生条件の部分的変動により、もともとの非エロージョン領域とは異なる非エロージョン領域が発生してしまうこともある。この場合、パーティクル発生、及び、膜厚分布、膜質特性分布のばらつき等が拡大してしまうことになる。 Furthermore, when a non-erosion region is generated, a non-erosion region different from the original non-erosion region may be generated due to partial fluctuations in the plasma generation conditions due to voltage fluctuations and the like. In this case, particles are generated, and variations in film thickness distribution, film quality characteristic distribution, and the like are increased.
 このため、本願発明者らは、この問題を解決するために、マグネットの揺動端の一端において、マグネットから発生する磁力線を、アノードに向かわないようにすることで、吸収される電子の量を減少することが可能であることを見出した。つまり、本願発明者らは、マグネットの揺動端の一端において、マグネットから発生する磁力線を、ターゲットの厚さ方向よりもマグネットの揺動端の他端に向けて傾斜させる、すなわち、ターゲットの厚さ方向よりもターゲットの輪郭内向きに傾斜させることが、膜厚分布、膜質特性分布のばらつき発生の抑制に有効であることを見出した。 Therefore, in order to solve this problem, the inventors of the present application prevent the magnetic lines of force generated from the magnet from going to the anode at one end of the swinging end of the magnet, thereby reducing the amount of absorbed electrons. It has been found that it is possible to reduce In other words, the inventors of the present application made the magnetic lines of force generated from the magnet at one end of the swinging end of the magnet incline toward the other end of the swinging end of the magnet rather than in the thickness direction of the target. It has been found that inclining the target inward from the target contour is effective in suppressing variations in film thickness distribution and film quality characteristic distribution.
 これらを鑑みて、本願発明者らは、以下のように本願発明を完成した。
 本発明の一態様に係るスパッタリング装置は、被成膜基板の被処理面に向けてスパッタ粒子を放出するカソードユニットを備える。前記カソードユニットは、エロージョン領域が形成されるターゲットと、マグネットユニットと、マグネット走査部と、補助マグネットとを有する。マグネットユニットは、前記ターゲットに対して前記被成膜基板とは反対側に配置されて前記ターゲットに前記エロージョン領域を形成する複数のマグネットを有する。マグネット走査部は、前記マグネットユニットと前記被成膜基板とを、前記被成膜基板の前記被処理面に沿った揺動方向における第1揺動端と第2揺動端との間で、相対的に往復動作可能である。補助マグネットは、前記被成膜基板の前記被処理面に沿って前記揺動方向に交差する交差方向に延在する前記複数のマグネットのうち、前記第1揺動端に位置するマグネットに沿って、前記第1揺動端に位置する前記マグネットが形成する磁力線を前記第2揺動端に向けて傾ける。
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記第1揺動端に位置する前記マグネットに沿って前記第1揺動端に対して前記第2揺動端と逆側に配置されており、前記補助マグネットは、前記マグネットと一体に揺動可能であってもよい。
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記第1揺動端に位置する前記マグネットと同じ極性を有してもよい。
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットの磁気強度は、前記第1揺動端に位置する前記マグネットの磁気強度と同等かまたは小さくてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記マグネットに沿って前記ターゲットに向けて突出する突条を有してもよい。
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記ターゲットに対して前記被処理基板の反対側に配置され、かつ、磁気回路を形成するヨークに取り付け固定されてもよい。
 本発明の一態様に係るスパッタリング装置においては、前記カソードユニットは、表面に磁性体からなる中央領域を有する平板状のヨークと、前記ヨークに隣接した補助ヨークと、前記ヨークの前記中央領域に直線状に配置された中央磁石部と、前記中央磁石部を囲むように周設された周縁磁石部と、前記中央磁石部及び前記周縁磁石部が互いに平行である平行領域と、前記ヨークの前記表面に設けられた磁気回路と、前記磁気回路に重ねて配置されたバッキングプレートと、を有し、前記マグネットユニットを構成する前記複数のマグネットの各々は、前記ヨークに配置され、前記補助マグネットは、前記周縁磁石部に平行に配置され、前記補助マグネットは、前記補助ヨークを介して前記ヨークに固定され、前記補助ヨークは、磁性体または誘電体からなってもよい。
 本発明の一態様に係るスパッタリング装置においては、前記補助ヨーク及び前記補助マグネットが、前記ヨークから取り外し可能であってもよい。
 本発明の一態様に係るスパッタリング装置においては、前記複数のマグネットのうちの前記第1揺動端に位置する前記マグネットは、前記交差方向に分割された複数の磁場生成領域を有し、前記磁場生成領域の各々は、分割ヨークと、分割周縁磁石部と、分割中央磁石部と、分割補助マグネットとを有し、前記交差方向及び前記ヨークの厚さ方向において、前記磁場生成領域の各々の位置は、調整可能であり、位置が調整された前記複数の磁場生成領域を有する前記マグネットは、前記マグネット走査部によって揺動可能であってもよい。
In view of these, the inventors of the present application completed the present invention as follows.
A sputtering apparatus according to an aspect of the present invention includes a cathode unit that emits sputtered particles toward a target surface of a target substrate. The cathode unit has a target on which an erosion area is formed, a magnet unit, a magnet scanning unit, and an auxiliary magnet. The magnet unit has a plurality of magnets arranged on the opposite side of the target from the film formation substrate to form the erosion region on the target. The magnet scanning unit moves the magnet unit and the film formation substrate between a first swing end and a second swing end in a swing direction along the surface to be processed of the film formation substrate, Relatively reciprocating motion is possible. The auxiliary magnet is arranged along the magnet positioned at the first swing end among the plurality of magnets extending in the cross direction crossing the swing direction along the surface to be processed of the film formation substrate. , the lines of magnetic force formed by the magnet positioned at the first swing end are tilted toward the second swing end.
In the sputtering apparatus according to an aspect of the present invention, the auxiliary magnet is arranged along the magnet positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end. The auxiliary magnet may be arranged so that it can swing integrally with the magnet.
In the sputtering apparatus according to one aspect of the present invention, the auxiliary magnet may have the same polarity as the magnet positioned at the first swing end.
In the sputtering apparatus according to one aspect of the present invention, the magnetic intensity of the auxiliary magnet may be equal to or smaller than the magnetic intensity of the magnet positioned at the first swing end.
In the sputtering apparatus according to one aspect of the present invention, the auxiliary magnet may have a ridge that protrudes toward the target along the magnet.
In the sputtering apparatus according to one aspect of the present invention, the auxiliary magnet may be arranged on the opposite side of the substrate to be processed with respect to the target, and attached and fixed to a yoke forming a magnetic circuit.
In the sputtering apparatus according to one aspect of the present invention, the cathode unit includes a flat plate-shaped yoke having a central region made of a magnetic material on its surface, an auxiliary yoke adjacent to the yoke, and a straight line extending in the central region of the yoke. a central magnet portion arranged in a shape, a peripheral edge magnet portion surrounding the central magnet portion, a parallel region where the central magnet portion and the peripheral edge magnet portion are parallel to each other, and the surface of the yoke and a backing plate superimposed on the magnetic circuit, each of the plurality of magnets constituting the magnet unit is arranged on the yoke, and the auxiliary magnet is: The auxiliary magnets may be arranged parallel to the peripheral magnet portion and fixed to the yoke via the auxiliary yoke, and the auxiliary yoke may be made of a magnetic material or a dielectric material.
In the sputtering apparatus according to one aspect of the present invention, the auxiliary yoke and the auxiliary magnet may be removable from the yoke.
In the sputtering apparatus according to an aspect of the present invention, the magnet positioned at the first oscillation end among the plurality of magnets has a plurality of magnetic field generation regions divided in the cross direction, and the magnetic field Each of the generation regions has a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet. may be adjustable, and the magnet having the plurality of magnetic field generation regions whose positions are adjusted may be swingable by the magnet scanning unit.
 本発明の一態様に係るスパッタリング装置は、被成膜基板の被処理面に向けてスパッタ粒子を放出するカソードユニットを備える。前記カソードユニットは、エロージョン領域が形成されるターゲットと、マグネットユニットと、マグネット走査部と、補助マグネットとを有する。マグネットユニットは、前記ターゲットに対して前記被成膜基板とは反対側に配置されて前記ターゲットに前記エロージョン領域を形成する複数のマグネットを有する。マグネット走査部は、前記マグネットユニットと前記被成膜基板とを、前記被成膜基板の前記被処理面に沿った揺動方向における第1揺動端と第2揺動端との間で、相対的に往復動作可能である。補助マグネットは、前記被成膜基板の前記被処理面に沿って前記揺動方向に交差する交差方向に延在する前記複数のマグネットのうち、前記第1揺動端に位置するマグネットに沿って、前記第1揺動端に位置する前記マグネットが形成する磁力線を前記第2揺動端に向けて傾ける。
 これにより、複数のマグネットのうち、第1揺動端に位置するマグネットの形成する磁力線を、補助マグネットによって発生する磁場を用いて傾けることができる。したがって、アノードに吸収される電子の量を減少することが可能となる。そのため、プラズマが吸収されてしまい、プラズマ密度が減少することを抑制できる。これにより、エロージョン-非エロージョン境界領域を効果的に低減して、エロージョン-非エロージョン境界領域が形成されることに起因するパーティクル発生を低減することができる。
 同時に、供給転圧の変動を抑制して、マグネットの揺動位置によるプラズマ密度の変動を抑制し、プラズマ発生状態を安定して、膜厚分布、膜質特性分布のばらつき発生の抑制を効果的におこなうことが可能となる。
A sputtering apparatus according to an aspect of the present invention includes a cathode unit that emits sputtered particles toward a target surface of a target substrate. The cathode unit has a target on which an erosion area is formed, a magnet unit, a magnet scanning unit, and an auxiliary magnet. The magnet unit has a plurality of magnets arranged on the opposite side of the target from the film formation substrate to form the erosion region on the target. The magnet scanning unit moves the magnet unit and the film formation substrate between a first swing end and a second swing end in a swing direction along the surface to be processed of the film formation substrate, Relatively reciprocating motion is possible. The auxiliary magnet is arranged along the magnet positioned at the first swing end among the plurality of magnets extending in the cross direction crossing the swing direction along the surface to be processed of the film formation substrate. , the lines of magnetic force formed by the magnet positioned at the first swing end are tilted toward the second swing end.
Accordingly, the magnetic field lines formed by the magnet positioned at the first oscillation end among the plurality of magnets can be tilted using the magnetic field generated by the auxiliary magnet. Therefore, it is possible to reduce the amount of electrons absorbed by the anode. Therefore, it is possible to prevent the plasma from being absorbed and the plasma density from decreasing. As a result, it is possible to effectively reduce the erosion-non-erosion boundary area and reduce particle generation due to the formation of the erosion-non-erosion boundary area.
At the same time, it suppresses fluctuations in the supply rolling pressure, suppresses fluctuations in plasma density due to the swing position of the magnet, stabilizes the plasma generation state, and effectively suppresses variations in film thickness distribution and film quality characteristic distribution. It is possible to do.
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記第1揺動端に位置する前記マグネットに沿って前記第1揺動端に対して前記第2揺動端と逆側に配置されており、前記補助マグネットは、前記マグネットと一体に揺動可能であってもよい。
 これにより、マグネットの揺動位置にかかわらず、マグネットからの磁力線の減少が抑制される。プラズマ発生状態が安定し、エロージョン-非エロージョン境界領域が形成されることが抑制される。パーティクル発生を抑制するとともに、膜厚分布、膜質特性分布のばらつき発生を抑制することができる。
In the sputtering apparatus according to an aspect of the present invention, the auxiliary magnet is arranged along the magnet positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end. The auxiliary magnet may be arranged so that it can swing integrally with the magnet.
As a result, the decrease in the lines of magnetic force from the magnet is suppressed regardless of the swing position of the magnet. The plasma generation state is stabilized, and formation of an erosion-non-erosion boundary region is suppressed. In addition to suppressing the generation of particles, it is possible to suppress the occurrence of variations in film thickness distribution and film quality characteristic distribution.
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記第1揺動端に位置する前記マグネットと同じ極性を有してもよい。
 これにより、プラズマを発生させるマグネットからの磁力線を、補助マグネットからの磁力線で反発させる。これにより、必要な磁気強度(磁束密度)を維持したまま所定の方向に傾けることが可能となる。従って、プラズマ密度の低下を生じることなく、エロージョン-非エロージョン境界領域が形成されることが抑制される。パーティクル発生を抑制するとともに、膜厚分布、膜質特性分布のばらつき発生を抑制することができる。
In the sputtering apparatus according to one aspect of the present invention, the auxiliary magnet may have the same polarity as the magnet positioned at the first swing end.
As a result, the lines of magnetic force from the magnet that generate plasma are repelled by the lines of magnetic force from the auxiliary magnet. Thereby, it becomes possible to incline in a predetermined direction while maintaining the required magnetic intensity (magnetic flux density). Therefore, formation of an erosion-non-erosion boundary region is suppressed without causing a decrease in plasma density. In addition to suppressing the generation of particles, it is possible to suppress the occurrence of variations in film thickness distribution and film quality characteristic distribution.
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットの磁気強度は、前記第1揺動端に位置する前記マグネットの磁気強度と同等かまたは小さくてもよい。
 これにより、プラズマを発生させるマグネットからの磁力線を、補助マグネットからの磁力線で過大に傾斜させることなく、所定の角度に傾斜させることが可能となる。従って、余計なプラズマ密度の低下を生じることなく、余計な非エロージョン境界領域を発生させることなく、エロージョン-非エロージョン境界領域が形成されることが抑制される。パーティクル発生を抑制するとともに、膜厚分布、膜質特性分布のばらつき発生を抑制することができる。
In the sputtering apparatus according to one aspect of the present invention, the magnetic intensity of the auxiliary magnet may be equal to or smaller than the magnetic intensity of the magnet positioned at the first swing end.
As a result, the lines of magnetic force from the magnet that generates plasma can be tilted at a predetermined angle without being excessively tilted by the lines of magnetic force from the auxiliary magnet. Therefore, the formation of the erosion-non-erosion boundary region is suppressed without causing an unnecessary decrease in plasma density and without generating an unnecessary non-erosion boundary region. In addition to suppressing the generation of particles, it is possible to suppress the occurrence of variations in film thickness distribution and film quality characteristic distribution.
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記マグネットに沿って前記ターゲットに向けて突出する突条を有してもよい。
 これにより、補助マグネットの磁力線を突条から集中して形成することができる。これにより、補助マグネットの磁力線が分散することなく、プラズマを発生させるマグネットからの磁力線を効率的に傾斜させることが可能となる。従って、補助マグネットを小型化・軽量化することができ、マグネット走査部に余計な負担をかけずにマグネット及び補助マグネットを揺動させることが可能となる。これにより、プラズマ密度の低下を生じることなく、余計な非エロージョン境界領域を発生させることなく、エロージョン-非エロージョン境界領域が形成されることが抑制される。パーティクル発生を抑制するとともに、膜厚分布、膜質特性分布のばらつき発生を抑制することができる。
In the sputtering apparatus according to one aspect of the present invention, the auxiliary magnet may have a ridge that protrudes toward the target along the magnet.
As a result, the lines of magnetic force of the auxiliary magnet can be concentrated from the ridge. As a result, it is possible to efficiently incline the magnetic lines of force from the magnet that generates plasma without scattering the magnetic lines of force of the auxiliary magnet. Therefore, the size and weight of the auxiliary magnet can be reduced, and the magnet and the auxiliary magnet can be oscillated without imposing an extra burden on the magnet scanning section. As a result, the formation of the erosion-non-erosion boundary region is suppressed without reducing the plasma density and generating an unnecessary non-erosion boundary region. In addition to suppressing the generation of particles, it is possible to suppress the occurrence of variations in film thickness distribution and film quality characteristic distribution.
 本発明の一態様に係るスパッタリング装置においては、前記補助マグネットは、前記ターゲットに対して前記被処理基板の反対側に配置され、かつ、磁気回路を形成するヨークに取り付け固定されてもよい。
 これにより、補助マグネットは、マグネットと一体的に揺動することが可能となる。さらに、揺動位置に関わりなく、補助マグネットによって、第1揺動端に位置するマグネットに対する磁力線の傾きを一定に保持することができる。また、ヨークとともに形成されるマグネットの磁気回路に補助マグネットの磁気も組み込んで、より効率的にプラズマ発生させることができる。
In the sputtering apparatus according to one aspect of the present invention, the auxiliary magnet may be arranged on the opposite side of the substrate to be processed with respect to the target, and attached and fixed to a yoke forming a magnetic circuit.
This allows the auxiliary magnet to swing integrally with the magnet. Furthermore, regardless of the swing position, the auxiliary magnet can keep the inclination of the magnetic lines of force with respect to the magnet positioned at the first swing end constant. In addition, by incorporating the magnetism of the auxiliary magnet into the magnetic circuit of the magnet formed together with the yoke, the plasma can be generated more efficiently.
 本発明の一態様に係るスパッタリング装置においては、前記カソードユニットは、表面に磁性体からなる中央領域を有する平板状のヨークと、前記ヨークに隣接した補助ヨークと、前記ヨークの前記中央領域に直線状に配置された中央磁石部と、前記中央磁石部を囲むように周設された周縁磁石部と、前記中央磁石部及び前記周縁磁石部が互いに平行である平行領域と、前記ヨークの前記表面に設けられた磁気回路と、前記磁気回路に重ねて配置されたバッキングプレートと、を有し、前記マグネットユニットを構成する前記複数のマグネットの各々は、前記ヨークに配置され、前記補助マグネットは、前記周縁磁石部に平行に配置され、前記補助マグネットは、前記補助ヨークを介して前記ヨークに固定され、前記補助ヨークは、磁性体または誘電体からなってもよい。
 これにより、被成膜基板に対して平行となる面に沿って周縁磁石部の磁極面が配置される。揺動方向で第1揺動端に位置する周縁磁石が磁極面と直交する方向よりも第2揺動端から離間する向きの磁力線を、少なくとも磁極面と直交する方向より第2揺動端に向かう方向に傾ける。これにより、マグネットが最もアノードに近接する揺動位置にあった場合でも、アノードに吸収される電子の量を低減することができる。揺動方向の周縁でプラズマ密度が減少することを防止して、余計な非エロージョン境界領域を発生させることなく、エロージョン-非エロージョン境界領域が形成されることが抑制される。パーティクル発生を抑制するとともに、膜厚分布、膜質特性分布のばらつき発生を抑制することができる。
In the sputtering apparatus according to one aspect of the present invention, the cathode unit includes a flat plate-shaped yoke having a central region made of a magnetic material on its surface, an auxiliary yoke adjacent to the yoke, and a straight line extending in the central region of the yoke. a central magnet portion arranged in a shape, a peripheral edge magnet portion surrounding the central magnet portion, a parallel region where the central magnet portion and the peripheral edge magnet portion are parallel to each other, and the surface of the yoke and a backing plate superimposed on the magnetic circuit, each of the plurality of magnets constituting the magnet unit is arranged on the yoke, and the auxiliary magnet is: The auxiliary magnets may be arranged parallel to the peripheral magnet portion and fixed to the yoke via the auxiliary yoke, and the auxiliary yoke may be made of a magnetic material or a dielectric material.
As a result, the magnetic pole faces of the peripheral magnet portion are arranged along the plane parallel to the film formation substrate. The peripheral magnet located at the first swing end in the swing direction directs the magnetic lines of force in a direction away from the second swing end rather than in the direction perpendicular to the magnetic pole face to the second swing end from at least the direction perpendicular to the magnetic pole face. Tilt in the direction you are going. As a result, even when the magnet is at the swinging position closest to the anode, the amount of electrons absorbed by the anode can be reduced. By preventing the plasma density from decreasing at the periphery in the oscillation direction, formation of an erosion-non-erosion boundary region is suppressed without generating an unnecessary non-erosion boundary region. In addition to suppressing the generation of particles, it is possible to suppress the occurrence of variations in film thickness distribution and film quality characteristic distribution.
 本発明の一態様に係るスパッタリング装置においては、前記補助ヨーク及び前記補助マグネットが、前記ヨークから取り外し可能であってもよい。
 これにより、スパッタリング装置において異なる処理条件により処理をおこなう場合においては、処理条件に応じた磁力線を形成する必要である。このために、揺動端におけるマグネットからの磁力線の傾斜角度を異ならせる必要である。この場合に、補助マグネットを取り替えることで、容易に設定変更をおこなうことが可能となる。
In the sputtering apparatus according to one aspect of the present invention, the auxiliary yoke and the auxiliary magnet may be removable from the yoke.
Accordingly, when processing is performed under different processing conditions in the sputtering apparatus, it is necessary to form magnetic lines of force according to the processing conditions. For this reason, it is necessary to vary the inclination angles of the lines of magnetic force from the magnet at the oscillation ends. In this case, the setting can be easily changed by replacing the auxiliary magnet.
 本発明の一態様に係るスパッタリング装置においては、前記複数のマグネットのうちの前記第1揺動端に位置する前記マグネットは、前記交差方向に分割された複数の磁場生成領域を有し、前記磁場生成領域の各々は、分割ヨークと、分割周縁磁石部と、分割中央磁石部と、分割補助マグネットとを有し、前記交差方向及び前記ヨークの厚さ方向において、前記磁場生成領域の各々の位置は、調整可能であり、位置が調整された前記複数の磁場生成領域を有する前記マグネットは、前記マグネット走査部によって揺動可能であってもよい。
 成膜領域全体に対する成膜状態の制御のため、例えば、交差方向及びヨークの厚さ方向において、プラズマ発生に関する磁束密度の条件を調整する場合である。この構成によれば、複数の磁場生成領域が分割されており、かつ、複数の磁場生成領域の各々における交差方向及びヨークの厚さ方向の位置を調整可能である。このため、複数の磁場生成領域の各々において磁束密度の条件を調整することが可能である。
 複数の磁場生成領域の各々を交差方向及びヨークの厚さ方向において調整することで、複数の磁場生成領域の各々では、第1揺動端に位置する前記マグネットにおける周縁磁極の磁力線を分割補助マグネットによって必要な方向に傾斜させることができる。複数の磁場生成領域の各々において、磁力線が必要な方向に傾斜させた状態を維持することができる。
In the sputtering apparatus according to an aspect of the present invention, the magnet positioned at the first oscillation end among the plurality of magnets has a plurality of magnetic field generation regions divided in the cross direction, and the magnetic field Each of the generation regions has a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet. may be adjustable, and the magnet having the plurality of magnetic field generation regions whose positions are adjusted may be swingable by the magnet scanning unit.
In order to control the state of film formation over the entire film formation region, for example, in the cross direction and the thickness direction of the yoke, the condition of the magnetic flux density for plasma generation is adjusted. According to this configuration, the plurality of magnetic field generation regions are divided, and the position of each of the plurality of magnetic field generation regions in the cross direction and the thickness direction of the yoke can be adjusted. Therefore, it is possible to adjust the condition of the magnetic flux density in each of the plurality of magnetic field generation regions.
By adjusting each of the plurality of magnetic field generation regions in the cross direction and the thickness direction of the yoke, each of the plurality of magnetic field generation regions divides the magnetic lines of force of the peripheral magnetic poles of the magnet positioned at the first oscillation end. can be tilted in the desired direction by In each of the plurality of magnetic field generation regions, it is possible to maintain the state in which the lines of magnetic force are inclined in the required direction.
 本発明の一態様に係るスパッタリング装置によれば、必要な磁束密度を維持してプラズマ密度を維持することができる。さらに、非エロージョン発生領域周りのぼやけた領域の発生を抑制して、パーティクルの削減を図ることができ、及び、形成されたプラズマ分布を安定させることができる。マグネットの揺動位置にかかわらずに膜厚分布・膜厚特性分布の均一性向上を図ることができるという効果を奏することが可能となる。 According to the sputtering apparatus according to one aspect of the present invention, it is possible to maintain the required magnetic flux density and maintain the plasma density. Furthermore, it is possible to suppress the generation of a blurred area around the non-erosion generation area, reduce particles, and stabilize the formed plasma distribution. It is possible to achieve an effect that the uniformity of the film thickness distribution and the film thickness characteristic distribution can be improved regardless of the swing position of the magnet.
本発明の実施形態に係るスパッタリング装置を示す模式平面図である。1 is a schematic plan view showing a sputtering apparatus according to an embodiment of the invention; FIG. 本発明の実施形態に係るスパッタリング装置におけるカソードユニットを示す斜視図である。It is a perspective view showing a cathode unit in a sputtering apparatus according to an embodiment of the present invention. 本発明の実施形態に係るスパッタリング装置におけるガラス基板とカソード装置の構成との位置関係を示す模式図である。It is a schematic diagram showing the positional relationship between the glass substrate and the configuration of the cathode device in the sputtering apparatus according to the embodiment of the present invention. 本発明の実施形態に係るスパッタリング装置におけるガラス基板とターゲットとマグネットユニットとの位置関係を示す正面図である。FIG. 4 is a front view showing the positional relationship among the glass substrate, the target, and the magnet unit in the sputtering apparatus according to the embodiment of the present invention; 本発明の実施形態に係るスパッタリング装置のマグネットユニットの端部を示す図であって、マグネットユニットを構成するマグネット及び補助マグネットの構成を示す拡大正面図である。FIG. 4 is a diagram showing an end portion of the magnet unit of the sputtering apparatus according to the embodiment of the present invention, and is an enlarged front view showing configurations of magnets and auxiliary magnets that constitute the magnet unit. 本発明の実施形態に係るスパッタリング装置のマグネットユニットの端部を示す図であって、マグネットユニットを構成するマグネット及び補助マグネットの構成を示す拡大断面図である。FIG. 4 is a diagram showing the end portion of the magnet unit of the sputtering apparatus according to the embodiment of the present invention, and is an enlarged sectional view showing the configuration of the magnet and the auxiliary magnet that constitute the magnet unit. 本発明の実施形態に係るスパッタリング装置のターゲットにおける非エロージョン領域とエロージョン領域と境界領域とを模式的に示す図である。It is a figure which shows typically the non-erosion area|region, erosion area|region, and boundary area|region in the target of the sputtering device which concerns on embodiment of this invention. 本発明の実施形態に係るスパッタリング装置に対して補助マグネットがない場合における電子トラッキング状態を示す模式図である。FIG. 4 is a schematic diagram showing an electron tracking state in the sputtering apparatus according to the embodiment of the present invention when there is no auxiliary magnet; 本発明の実施形態に係るスパッタリング装置に対して補助マグネットがない場合における磁力線の向きを示す模式図である。FIG. 4 is a schematic diagram showing directions of magnetic lines of force in the sputtering apparatus according to the embodiment of the present invention when there is no auxiliary magnet; 本発明の実施形態に係るスパッタリング装置における電子トラッキング状態を示す模式図である。It is a schematic diagram showing an electron tracking state in the sputtering apparatus according to the embodiment of the present invention. 本発明の実施形態に係るスパッタリング装置における磁力線の向きを示す模式図である。It is a schematic diagram which shows the direction of the line of magnetic force in the sputtering device concerning the embodiment of the present invention. 本発明の実施形態に係るスパッタリング装置における揺動位置に対する電圧変化を示すグラフである。4 is a graph showing voltage changes with respect to swing positions in the sputtering apparatus according to the embodiment of the present invention; 本発明の実施形態に係るスパッタリング装置による膜厚分布の一例を示すグラフである。It is a graph which shows an example of film thickness distribution by the sputtering device which concerns on embodiment of this invention. 本発明の実施形態に係るスパッタリング装置による膜抵抗分布の一例を示すグラフである。It is a graph which shows an example of film resistance distribution by the sputtering device which concerns on embodiment of this invention. スパッタリング装置による膜厚分布の一例を示すグラフである。It is a graph which shows an example of film thickness distribution by a sputtering device. スパッタリング装置による膜抵抗分布の一例を示すグラフである。It is a graph which shows an example of film resistance distribution by a sputtering device. スパッタリング装置による膜厚分布の一例を示すグラフである。It is a graph which shows an example of film thickness distribution by a sputtering device. スパッタリング装置による膜抵抗分布の一例を示すグラフである。It is a graph which shows an example of film resistance distribution by a sputtering device. スパッタリング装置による膜厚分布の一例を示すグラフである。It is a graph which shows an example of film thickness distribution by a sputtering device. スパッタリング装置による膜抵抗分布の一例を示すグラフである。It is a graph which shows an example of film resistance distribution by a sputtering device. 本発明に係るスパッタリング装置における膜厚分布と膜抵抗分布との関係を示すグラフである。4 is a graph showing the relationship between film thickness distribution and film resistance distribution in the sputtering apparatus according to the present invention. 本発明に係るスパッタリング装置における補助マグネットを用いた処理後のターゲットの表面を示す画像である。4 is an image showing the surface of a target after processing using an auxiliary magnet in the sputtering apparatus according to the present invention; 本発明に係るスパッタリング装置における補助マグネットの配置とプラズマ密度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention; 本発明に係るスパッタリング装置における補助マグネットの配置とプラズマ密度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention; 本発明に係るスパッタリング装置における補助マグネットの配置とプラズマ密度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention; 本発明に係るスパッタリング装置における補助マグネットの配置とプラズマ密度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the arrangement of auxiliary magnets and the plasma density in the sputtering apparatus according to the present invention; 本発明の実施形態に係るスパッタリング装置の補助マグネットの変形例を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a modification of the auxiliary magnet of the sputtering apparatus according to the embodiment of the present invention; 本発明に係るスパッタリング装置における補助マグネットを用いた処理後のターゲット隅部の表面を示す画像である。FIG. 4 is an image showing the surface of a corner of a target after treatment using an auxiliary magnet in a sputtering apparatus according to the present invention; FIG. スパッタリング装置における補助マグネットを用いない処理後のターゲット隅部の表面を示す画像である。FIG. 10 is an image showing the surface of the target corner after processing without the auxiliary magnet in the sputtering apparatus; FIG.
 以下、本発明の実施形態に係るスパッタリング装置及びスパッタリング方法を図面に基づいて説明する。
 図1は、本実施形態に係るスパッタリング装置を示す模式平面図である。図1において、符号1は、スパッタリング装置である。
A sputtering apparatus and a sputtering method according to embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic plan view showing a sputtering apparatus according to this embodiment. In FIG. 1, reference numeral 1 denotes a sputtering apparatus.
<スパッタリング装置1>
 本実施形態に係るスパッタリング装置1は、インターバック式の真空処理装置の一例である。このような真空処理装置は、例えば、半導体デバイスの製造工程、液晶ディスプレイ、有機ELディスプレイ等のFPD(flat panel display、フラットパネルディスプレイ)の製造工程に用いられる。具体的に、このような真空処理装置においては、ガラス等からなる基板上にTFT(Thin Film Transistor)を形成する場合等、ガラスや樹脂からなる被処理基板に、真空環境下で加熱処理、成膜処理、エッチング処理等を行う。
<Sputtering device 1>
The sputtering apparatus 1 according to this embodiment is an example of an interback type vacuum processing apparatus. Such a vacuum processing apparatus is used, for example, in the manufacturing process of semiconductor devices and in the manufacturing process of FPDs (flat panel displays) such as liquid crystal displays and organic EL displays. Specifically, in such a vacuum processing apparatus, a substrate to be processed made of glass or resin is heated and grown in a vacuum environment, such as when forming a TFT (Thin Film Transistor) on a substrate made of glass or the like. Film processing, etching processing, etc. are performed.
 本実施形態では、ガラス基板11(被成膜基板、透明基板)としては、100mm程度の長さの辺を有する基板や、2000mm以上の長さの辺を有する矩形基板を適用可能である。さらに、厚み1mm以下の基板、厚み数mmの基板や、厚み10mm以上の基板も、ガラス基板11に用いることができる。 In this embodiment, as the glass substrate 11 (film formation substrate, transparent substrate), a substrate having a side length of about 100 mm or a rectangular substrate having a side length of 2000 mm or more can be applied. Furthermore, a substrate with a thickness of 1 mm or less, a substrate with a thickness of several mm, or a substrate with a thickness of 10 mm or more can be used as the glass substrate 11 .
 スパッタリング装置1は、図1に示すように、ロード・アンロード室2(真空チャンバ)と、成膜室4(真空チャンバ)と、搬送室3とを備える。ロード・アンロード室2は、略矩形のガラス基板11を外部からロード・アンロード室2に搬入したり、ロード・アンロード室2を外部に搬出したりする。成膜室4においては、ガラス基板11上に、例えば、ZnO系やIn系の透明導電膜等の被膜、アルミニウムや銀等の金属や酸化物の被膜、それ以外の被膜をスパッタリング法により形成する。成膜室4は、耐圧性を有する。搬送室3は、成膜室4とロード・アンロード室2との間に位置する。
 本実施形態に係るスパッタリング装置1として、図1は、サイドスパッタ式のスパッタリング装置を示している。スパッタダウン式のスパッタリング装置、あるいは、スパッタアップ式のスパッタリング装置をスパッタリング装置1に採用することもできる。
The sputtering apparatus 1 includes a load/unload chamber 2 (vacuum chamber), a film forming chamber 4 (vacuum chamber), and a transfer chamber 3, as shown in FIG. In the loading/unloading chamber 2, a substantially rectangular glass substrate 11 is carried into the loading/unloading chamber 2 from the outside, and the loading/unloading chamber 2 is carried out to the outside. In the film forming chamber 4, a film such as a ZnO-based or In 2 O 3 -based transparent conductive film, a metal or oxide film such as aluminum or silver, or other films are deposited on the glass substrate 11 by a sputtering method. formed by The film forming chamber 4 has pressure resistance. The transfer chamber 3 is located between the film forming chamber 4 and the load/unload chamber 2 .
As a sputtering device 1 according to this embodiment, FIG. 1 shows a side sputtering type sputtering device. A sputter-down type sputtering apparatus or a sputter-up type sputtering apparatus can also be employed as the sputtering apparatus 1 .
 なお、スパッタリング装置1は、上述した構成に加えて、成膜室4A(真空チャンバ)とロード・アンロード室2a(真空チャンバ)を有する。上述の複数の真空チャンバ2、2a、4、4Aは、搬送室3の周囲を取り囲むように配置されている。こうした真空チャンバを備えるスパッタリング装置1は、例えば、互いに隣接して形成された2つのロード・アンロード室(真空チャンバ)と、複数の処理室(真空チャンバ)とを有して構成されている。例えば、ロード・アンロード室2、2aのうち一方は、外部からスパッタリング装置1(真空処理装置)の内部に向けてガラス基板11を搬入するロード室である。ロード・アンロード室2、2aのうち他方は、スパッタリング装置1の内部から外部にガラス基板11を搬出するアンロード室である。また、成膜室4と成膜室4Aにおいては、互いに異なる成膜工程を行う構成が採用されてもよい。 In addition to the configuration described above, the sputtering apparatus 1 has a film forming chamber 4A (vacuum chamber) and a load/unload chamber 2a (vacuum chamber). The plurality of vacuum chambers 2 , 2 a , 4 , 4 A described above are arranged to surround the transfer chamber 3 . A sputtering apparatus 1 having such a vacuum chamber includes, for example, two load/unload chambers (vacuum chambers) adjacent to each other and a plurality of processing chambers (vacuum chambers). For example, one of the load/unload chambers 2 and 2a is a load chamber for loading the glass substrate 11 into the sputtering apparatus 1 (vacuum processing apparatus) from the outside. The other of the load/unload chambers 2 and 2a is an unload chamber for unloading the glass substrate 11 from the inside of the sputtering apparatus 1 to the outside. Moreover, in the film-forming chamber 4 and the film-forming chamber 4A, the structure which performs a mutually different film-forming process may be employ|adopted.
 こうした各々の真空チャンバ2、2a、4、4Aと搬送室3との間には、仕切りバルブが形成されていればよい。 Between each of these vacuum chambers 2, 2a, 4, 4A and the transfer chamber 3, a gate valve may be formed.
 ロード・アンロード室2には、スパッタリング装置1の外部から内部に搬入されたガラス基板11の載置位置を設定してアライメント可能な位置決め部材が配置されていてもよい。また、ロード・アンロード室2には、ロード・アンロード室2の内部を粗く真空引きするロータリーポンプ等の粗引き排気装置(粗引き排気装置、低真空排気装置)が設けられる。 The loading/unloading chamber 2 may be provided with a positioning member capable of setting and aligning the mounting position of the glass substrate 11 carried inside from the outside of the sputtering apparatus 1 . Further, the loading/unloading chamber 2 is provided with a roughing evacuation device (roughing evacuation device, low vacuum evacuation device) such as a rotary pump for roughly evacuating the interior of the loading/unloading chamber 2 .
 搬送室3の内部には、図1に示すように、搬送装置3a(搬送ロボット)が配置されている。以下の説明では、搬送ロボット3aと称する場合がある。
 搬送装置3aは、回転軸と、この回転軸に取り付けられたロボットアームと、ロボットアームの一端に形成されたロボットハンドと、ロボットハンドを上下動させる上下動装置とを有している。ロボットアームは、互いに屈曲可能な第一の能動アーム、第二の能動アーム、第一の従動アーム、及び第二の従動アームから構成されている。搬送装置3aは、被搬送物であるガラス基板11を、真空チャンバ2、2a、4、4Aの各々と搬送室3との間で移動させることができる。
Inside the transfer chamber 3, as shown in FIG. 1, a transfer device 3a (transfer robot) is arranged. In the following description, it may be referred to as a transport robot 3a.
The transfer device 3a has a rotating shaft, a robot arm attached to the rotating shaft, a robot hand formed at one end of the robot arm, and a vertical motion device for vertically moving the robot hand. The robot arm is composed of a first active arm, a second active arm, a first driven arm, and a second driven arm that are mutually bendable. The transfer device 3a can move the glass substrate 11, which is an object to be transferred, between the transfer chamber 3 and each of the vacuum chambers 2, 2a, 4, 4A.
 成膜室4には、図1に示すように、カソード装置10と、マスク等を有する基板ホルダである基板保持部13と、ガス導入装置と、高真空排気装置と、が設けられている。
 成膜室4の内部は、図1に示すように、成膜時にガラス基板11の表面が露出する前側空間41と、ガラス基板11の裏面側に位置する裏側空間42とで構成されている。前側空間41には、カソード装置10が配置される。
As shown in FIG. 1, the film forming chamber 4 is provided with a cathode device 10, a substrate holder 13 which is a substrate holder having a mask, etc., a gas introduction device, and a high vacuum evacuation device.
As shown in FIG. 1, the interior of the film forming chamber 4 is composed of a front space 41 in which the surface of the glass substrate 11 is exposed during film formation and a rear space 42 positioned on the rear surface side of the glass substrate 11 . The cathode device 10 is arranged in the front space 41 .
 カソード装置10は、成膜室4の内部において、搬送室3に接続される搬送口4aから最も遠い位置に立設される。
 基板保持部13(基板保持装置)は、図1に示すように、裏側空間42内部に設けられている。
 基板保持部13は、搬送口4aから搬入されたガラス基板11を支持可能である。
The cathode device 10 is erected at the farthest position from the transfer port 4 a connected to the transfer chamber 3 inside the film forming chamber 4 .
The substrate holding part 13 (substrate holding device) is provided inside the rear space 42 as shown in FIG.
The substrate holding part 13 can support the glass substrate 11 carried in from the transfer port 4a.
 基板保持部13は、成膜中に後述するターゲット23とガラス基板11の被処理面11a(成膜面)とが対向するように、ガラス基板11を保持する。基板保持部13は、成膜中には、成膜口4bに対応する位置にガラス基板11を保持する。 The substrate holding unit 13 holds the glass substrate 11 so that a target 23 to be described later faces the surface to be processed 11a (film formation surface) of the glass substrate 11 during film formation. The substrate holder 13 holds the glass substrate 11 at a position corresponding to the film formation port 4b during film formation.
 基板保持部13は、揺動軸と、保持部と、を備えてもよい。揺動軸は、例えば、裏側空間42の下側位置で搬送口4a及び成膜口4bの少なくとも一方と略並行に延在する。保持部は、揺動軸に取り付けられ、ガラス基板11の裏面を保持する。
 ガス導入装置は、成膜室4の内部にガスを導入する。高真空排気装置は、成膜室4の内部を高真空状態となるように減圧するターボ分子ポンプ等である。
The substrate holding part 13 may include a swing shaft and a holding part. For example, the swing shaft extends substantially parallel to at least one of the transport port 4a and the film formation port 4b at a position below the back space 42 . The holding part is attached to the swing shaft and holds the back surface of the glass substrate 11 .
The gas introduction device introduces gas into the film forming chamber 4 . The high-vacuum exhaust device is, for example, a turbo-molecular pump that decompresses the inside of the film forming chamber 4 to a high-vacuum state.
<カソード装置10>
 図2は、本実施形態に係るスパッタリング装置1のカソード装置10を示す斜視図である。図3は、本実施形態に係るスパッタリング装置におけるガラス基板とカソード装置の構成との位置関係を示す模式図である。
<Cathode device 10>
FIG. 2 is a perspective view showing the cathode device 10 of the sputtering device 1 according to this embodiment. FIG. 3 is a schematic diagram showing the positional relationship between the glass substrate and the configuration of the cathode device in the sputtering apparatus according to this embodiment.
 図2~図6及び図8~図11においては、XYZ直交座標系が採用されている。
 Z方向は、鉛直方向(重力方向)である。また、Z方向は、ガラス基板11の縦方向である。Y方向は、ガラス基板11の厚さ方向である。また、ヨークの厚さ方向である。
 X方向は、ガラス基板11の幅方向である。以下の説明では、Z方向及びX方向に平行な面をZX平面と称する場合がある。
 さらに、X方向は、揺動方向に相当する。この場合、X方向に交差するZ方向は、揺動方向に交差する交差方向に相当する。
 カソード装置10は、成膜室4の内部における成膜位置(プラズマ処理位置)に配置されたガラス基板11をX方向に揺動可能である。
2 to 6 and 8 to 11, an XYZ orthogonal coordinate system is adopted.
The Z direction is the vertical direction (the direction of gravity). Also, the Z direction is the vertical direction of the glass substrate 11 . The Y direction is the thickness direction of the glass substrate 11 . Also, it is the thickness direction of the yoke.
The X direction is the width direction of the glass substrate 11 . In the following description, a plane parallel to the Z direction and the X direction may be referred to as a ZX plane.
Furthermore, the X direction corresponds to the swing direction. In this case, the Z direction intersecting with the X direction corresponds to the intersecting direction intersecting with the swing direction.
The cathode device 10 can swing the glass substrate 11 arranged at the film forming position (plasma processing position) inside the film forming chamber 4 in the X direction.
 カソード装置10は、カソードボックス10Aと、1つのカソードユニット22とを有する。カソードユニット22は、図2に示すように、カソードボックス10Aに配置される。
 なお、図2においては、ガラス基板11とターゲット23とが鉛直方向に立てた縦型のカソード装置10が示されている。カソード装置10としては、ダウンデポジション型のカソード装置を用いることもできる。ダウンデポジション型のカソード装置においては、ガラス基板11が水平方向に向くように、ターゲット23の下側にガラス基板11が配置される。この状態で、ガラス基板11に成膜が行われる。ここで、水平方向とは、X方向及びY方向に平行な方向である。
The cathode device 10 has a cathode box 10A and one cathode unit 22 . The cathode unit 22 is arranged in the cathode box 10A, as shown in FIG.
Note that FIG. 2 shows a vertical cathode device 10 in which the glass substrate 11 and the target 23 are set vertically. A down-deposition type cathode device can also be used as the cathode device 10 . In the down-deposition type cathode apparatus, the glass substrate 11 is placed below the target 23 so that the glass substrate 11 faces horizontally. In this state, film formation is performed on the glass substrate 11 . Here, the horizontal direction is a direction parallel to the X direction and the Y direction.
<カソードユニット22>
 カソードユニット22は、図3に示すように、ガラス基板11の表面と対向するZX平面に沿って配置されている。
 カソードユニット22は、ガラス基板11の被処理面11aに向けてスパッタ粒子を放出するように構成されている。カソードユニット22では、ガラス基板11からマグネット走査部29に向かう方向(図3に示すY方向とは反対方向)において、ターゲット23、バッキングプレート24、及びマグネットユニットMU(磁気回路)が、この順に配置されている。マグネット走査部29については後述する。
<Cathode unit 22>
The cathode unit 22 is arranged along the ZX plane facing the surface of the glass substrate 11, as shown in FIG.
The cathode unit 22 is configured to emit sputtered particles toward the surface 11 a of the glass substrate 11 to be processed. In the cathode unit 22, the target 23, the backing plate 24, and the magnet unit MU (magnetic circuit) are arranged in this order in the direction from the glass substrate 11 toward the magnet scanning unit 29 (the direction opposite to the Y direction shown in FIG. 3). It is The magnet scanning unit 29 will be described later.
<ターゲット23>
 図4は、本実施形態に係るスパッタリング装置におけるガラス基板とターゲットとマグネットユニットとの位置関係を示す正面図である。
 ターゲット23は、ガラス基板11と対向するZX平面に平行な平板状に形成されている。ターゲット23は、ガラス基板11に対向するように配置される。言い換えると、ターゲット23は、図3に示すように、ガラス基板11と対向する表面23aを有する。ターゲット23は、図2に示すように、カソードボックス10Aの表面でガラス基板11に対向する位置に露出している。
 ターゲット23は、図3及び図4に示すように、Z方向においてガラス基板11よりも大きい幅を有する。また、ターゲット23は、X方向においてガラス基板11よりも大きい幅を有する。ターゲット23の周囲には、アノード28が設けられる。アノード28は、X方向及びZ方向の各々におけるターゲット23の端部よりも外側に突出したバッキングプレート24を覆っている。言い換えると、Y方向において、アノード28は、ガラス基板11とバッキングプレート24との間に配置されている。アノード28は、X方向及びZ方向におけるターゲット23の全周に配置されている。
<Target 23>
FIG. 4 is a front view showing the positional relationship among the glass substrate, the target, and the magnet unit in the sputtering apparatus according to this embodiment.
The target 23 is formed in a plate shape parallel to the ZX plane facing the glass substrate 11 . The target 23 is arranged so as to face the glass substrate 11 . In other words, the target 23 has a surface 23a facing the glass substrate 11, as shown in FIG. The target 23 is exposed at a position facing the glass substrate 11 on the surface of the cathode box 10A, as shown in FIG.
The target 23 has a width larger than that of the glass substrate 11 in the Z direction, as shown in FIGS. Also, the target 23 has a width larger than that of the glass substrate 11 in the X direction. An anode 28 is provided around the target 23 . The anode 28 covers the backing plate 24 protruding outside the ends of the target 23 in each of the X and Z directions. In other words, the anode 28 is arranged between the glass substrate 11 and the backing plate 24 in the Y direction. The anodes 28 are arranged all around the target 23 in the X and Z directions.
<バッキングプレート24>
 バッキングプレート24は、ガラス基板11と対向するZX平面に沿った平板状に形成されている。バッキングプレート24は、ターゲット23のガラス基板11と向かい合わない面、つまり、ターゲット23の表面23aとは反対側の面に接合されている。バッキングプレート24には、直流電源を有する制御部26が接続されている。直流電源から供給される直流電力は、バッキングプレート24を通じてターゲット23に供給される。カソードの電源としては、直流電源に代えて、直流電源・パルス電源・RF電源を用いてもよい。カソードユニット22は、ガラス基板11の被処理面11aと対向するZX平面に沿ってターゲット23が配置されている。
<Backing plate 24>
The backing plate 24 is formed in a flat plate shape along the ZX plane facing the glass substrate 11 . The backing plate 24 is bonded to the surface of the target 23 that does not face the glass substrate 11, that is, the surface of the target 23 opposite to the surface 23a. A control unit 26 having a DC power supply is connected to the backing plate 24 . DC power supplied from the DC power supply is supplied to the target 23 through the backing plate 24 . As the power supply for the cathode, a DC power supply, a pulse power supply, or an RF power supply may be used instead of the DC power supply. The cathode unit 22 has a target 23 arranged along the ZX plane facing the surface 11 a of the glass substrate 11 to be processed.
<マグネットユニットMU>
 カソードユニット22は、マグネットユニットMUを有する。マグネットユニットMUは、複数のマグネット25と2本の補助マグネット27とによって構成されている。マグネットユニットMUは、バッキングプレート24に対して、ターゲット23とは反対側に配置されている。言い換えると、ターゲット23の表面側にガラス基板11が配置されており、これに対し、ターゲット23の裏面側にマグネットユニットMUが配置されている。
<Magnet unit MU>
The cathode unit 22 has a magnet unit MU. The magnet unit MU is composed of a plurality of magnets 25 and two auxiliary magnets 27 . The magnet unit MU is arranged on the side opposite to the target 23 with respect to the backing plate 24 . In other words, the glass substrate 11 is arranged on the front side of the target 23 , and the magnet unit MU is arranged on the back side of the target 23 .
 マグネットユニットMUは、多連マグネットである。マグネットユニットMUにおいて、複数のマグネット25は、互いに平行に配置され、X方向において等間隔に並んでいる。複数のマグネット25の各々の長手方向がZ方向に平行となるように、複数のマグネット25は、Z方向に立設されている。
 本実施形態に係るマグネットユニットMUでは、例えば、9本のマグネット25がX方向に並んでいる。具体的に、マグネットユニットMUは、第1マグネット25F、第2マグネット25S、第3マグネット25T、第4マグネット25Y、第5マグネット25G、第6マグネット25R、第7マグネット25V、第8マグネット25E、及び第9マグネット25Nを有する。
 本実施形態においては、マグネット25の本数は9である。マグネット25の本数は、ガラス基板11の面積、ターゲット23の面積、あるいは、後述するマグネット25の揺動領域等に応じて設定することができる。言い換えると、マグネットユニットMUは、N本(Nは2以上の整数)のマグネット25を有する。この場合、複数のマグネット25のうちの補助マグネット27が取り付けられるマグネットは、(N-1)番目のマグネットと、N番目のマグネットである。
 なお、本実施形態におけるカソードユニット22においては、ガラス基板11に対してターゲット23が固定されている。カソードユニット22は、成膜室4に固定されている。
The magnet unit MU is a multiple magnet. In the magnet unit MU, the plurality of magnets 25 are arranged parallel to each other and arranged at regular intervals in the X direction. The plurality of magnets 25 are erected in the Z direction so that the longitudinal direction of each of the plurality of magnets 25 is parallel to the Z direction.
In the magnet unit MU according to this embodiment, for example, nine magnets 25 are arranged in the X direction. Specifically, the magnet unit MU includes a first magnet 25F, a second magnet 25S, a third magnet 25T, a fourth magnet 25Y, a fifth magnet 25G, a sixth magnet 25R, a seventh magnet 25V, an eighth magnet 25E, and It has a ninth magnet 25N.
In this embodiment, the number of magnets 25 is nine. The number of magnets 25 can be set according to the area of the glass substrate 11, the area of the target 23, or the oscillation region of the magnets 25, which will be described later. In other words, the magnet unit MU has N (N is an integer equal to or greater than 2) magnets 25 . In this case, among the plurality of magnets 25, the magnets to which the auxiliary magnet 27 is attached are the (N-1)th magnet and the Nth magnet.
Note that the target 23 is fixed to the glass substrate 11 in the cathode unit 22 in this embodiment. The cathode unit 22 is fixed to the film forming chamber 4 .
 9本のマグネット25の各々は、ガラス基板11と向かい合うターゲット23の表面23aにマグネトロン磁場を形成する。9本のマグネット25の各々は、個別に制御部26に接続されている。制御部26は、9本のマグネット25の各々に発生する磁場状態を制御することが可能である。 Each of the nine magnets 25 forms a magnetron magnetic field on the surface 23 a of the target 23 facing the glass substrate 11 . Each of the nine magnets 25 is individually connected to the controller 26 . The control unit 26 can control the magnetic field state generated in each of the nine magnets 25 .
<磁場生成領域MG1、MG2、MG3>
 9本のマグネット25の各々は、Z方向に並ぶ3つの磁場生成領域、すなわち、第1磁場生成領域MG1、複数の第2磁場生成領域MG2、及び第3磁場生成領域MG3を有する。第1磁場生成領域MG1は、Z方向における一方の領域である。第3磁場生成領域MG3は、Z方向における他方の領域である。複数の第2磁場生成領域MG2は、第1磁場生成領域MG1と第3磁場生成領域MG3との間の領域である。本実施形態において、複数の第2磁場生成領域MG2の数は、5である。複数の第2磁場生成領域MG2の数は、本実施形態に限定されず、5未満であってもよいし、6以上であってもよい。
 このような複数の磁場生成領域MG1、MG2、MG3は、Z方向において連続的に繋がっていてもよいし、Z方向において分割されていてもよい。本実施形態においては、複数の磁場生成領域MG1、MG2、MG3が繋がっている場合の構造を説明する。
<Magnetic Field Generation Regions MG1, MG2, MG3>
Each of the nine magnets 25 has three magnetic field generation regions aligned in the Z direction, that is, a first magnetic field generation region MG1, a plurality of second magnetic field generation regions MG2, and a third magnetic field generation region MG3. The first magnetic field generation region MG1 is one region in the Z direction. The third magnetic field generation region MG3 is the other region in the Z direction. The multiple second magnetic field generation regions MG2 are regions between the first magnetic field generation region MG1 and the third magnetic field generation region MG3. In the present embodiment, the number of multiple second magnetic field generation regions MG2 is five. The number of the plurality of second magnetic field generation regions MG2 is not limited to this embodiment, and may be less than 5 or may be 6 or more.
Such multiple magnetic field generation regions MG1, MG2, and MG3 may be continuously connected in the Z direction, or may be divided in the Z direction. In this embodiment, a structure in which a plurality of magnetic field generation regions MG1, MG2, and MG3 are connected will be described.
 図5は、本実施形態に係るスパッタリング装置のマグネットユニットMUの端部を示す拡大正面図である。図6は、本実施形態に係るスパッタリング装置のマグネットユニットMUの端部を示す拡大断面図である。また、図5及び図6の各々は、マグネットユニットMUを構成するマグネット及び補助マグネットの構成を示している。図5においては、第1マグネット25F、第2マグネット25S、及び補助マグネット27が示されている。図5においては、第1マグネット25F及び補助マグネット27が示されている。図5は、図4に示す第1磁場生成領域MG1と、第2磁場生成領域MG2の一部とを示している。
 以下の説明においては、第1マグネット25Fに設けられた補助マグネットについて説明し、第9マグネット25Nに設けられた補助マグネットに関する説明を省略する場合がある。
 第1マグネット25F~第9マグネット25Nに共通する構造を説明する場合、第1マグネット25F~第9マグネット25Nを単にマグネット25と称する場合がある。
FIG. 5 is an enlarged front view showing an end portion of the magnet unit MU of the sputtering apparatus according to this embodiment. FIG. 6 is an enlarged sectional view showing an end portion of the magnet unit MU of the sputtering apparatus according to this embodiment. 5 and 6 each show the configuration of the magnets and auxiliary magnets that constitute the magnet unit MU. In FIG. 5, the first magnet 25F, the second magnet 25S, and the auxiliary magnet 27 are shown. In FIG. 5, the first magnet 25F and the auxiliary magnet 27 are shown. FIG. 5 shows the first magnetic field generation region MG1 shown in FIG. 4 and part of the second magnetic field generation region MG2.
In the following description, the auxiliary magnet provided in the first magnet 25F will be described, and the description of the auxiliary magnet provided in the ninth magnet 25N may be omitted.
When describing the structure common to the first magnet 25F to the ninth magnet 25N, the first magnet 25F to the ninth magnet 25N may be simply referred to as the magnet 25 in some cases.
 第1マグネット25F~第9マグネット25Nの各々は、図4~図6に示すように、ヨーク31と、補助ヨーク31dと、周縁磁石部32と、中央磁石部33とを有する。 Each of the first magnet 25F to the ninth magnet 25N has a yoke 31, an auxiliary yoke 31d, a peripheral magnet portion 32, and a central magnet portion 33, as shown in FIGS.
<ヨーク31及び補助ヨーク31d>
 ヨーク31は、Y方向に見て略矩形平板状の磁石ベース(磁性体)である。ヨーク31は、ヨーク31の表面31Sに中央領域31Cを有する。
 補助ヨーク31dは、ヨーク31に隣接した部位である。補助ヨーク31dは、磁性体または誘電体からなる。
 マグネットユニットMUを構成する複数のマグネット25の各々は、ヨーク31に配置されている。
<Yoke 31 and Auxiliary Yoke 31d>
The yoke 31 is a substantially rectangular plate-like magnet base (magnetic body) when viewed in the Y direction. Yoke 31 has central region 31C on surface 31S of yoke 31 .
Auxiliary yoke 31 d is a portion adjacent to yoke 31 . The auxiliary yoke 31d is made of magnetic material or dielectric material.
Each of the plurality of magnets 25 forming the magnet unit MU is arranged on the yoke 31 .
<周縁磁石部32及び中央磁石部33>
 周縁磁石部32は、ヨーク31の平面において、中央磁石部33から離間している。周縁磁石部32は、この中央磁石部33を囲むように周設された略長円の環磁石である。
 中央磁石部33は、直線形状を有する複合磁石体である。複合磁石体の長手方向は、Z方向に対応している。中央磁石部33は、ヨーク31の中央領域31CのX方向における中央位置31CPに配置される。
<Peripheral Magnet Portion 32 and Central Magnet Portion 33>
The peripheral magnet portion 32 is separated from the central magnet portion 33 in the plane of the yoke 31 . The peripheral magnet portion 32 is a substantially oval ring magnet surrounding the central magnet portion 33 .
The central magnet portion 33 is a composite magnet having a linear shape. The longitudinal direction of the composite magnet corresponds to the Z direction. The central magnet portion 33 is arranged at the central position 31CP of the central region 31C of the yoke 31 in the X direction.
 中央磁石部33及び周縁磁石部32は、ヨーク31の表面31Sに形成された磁気回路を構成する。この磁気回路は、バッキングプレート24に重なって配置されている。
 マグネット25の長手方向であるZ方向の中央部分MPにおいて、中央磁石部33及び周縁磁石部32は互いに平行である。中央磁石部33及び周縁磁石部32は互いに平行である領域は、平行領域PRである。
The central magnet portion 33 and the peripheral magnet portion 32 constitute a magnetic circuit formed on the surface 31S of the yoke 31. As shown in FIG. This magnetic circuit is arranged to overlap the backing plate 24 .
In the central portion MP in the Z direction, which is the longitudinal direction of the magnet 25, the central magnet portion 33 and the peripheral edge magnet portion 32 are parallel to each other. A region where the central magnet portion 33 and the peripheral magnet portion 32 are parallel to each other is a parallel region PR.
 中央磁石部33は、中央磁石部33が延在するZ方向において、複数の磁石に分割されている。言い換えると、中央磁石部33は、分割された複数の磁石より構成されている。分割された複数の磁石がZ方向に連続的に配置されることで、中央磁石部33が形成されている。
 同様に、周縁磁石部32は、周縁磁石部32が延在するZ方向において、複数の磁石に分割されている。言い換えると、周縁磁石部32は、分割された複数の磁石より構成されている。分割された複数の磁石がZ方向に連続的に配置されることで、周縁磁石部32が形成されている。
 さらに、周縁磁石部32は、図5及び図6に示すように、Z方向の端部に位置する端部周縁磁石部32aを有する。端部周縁磁石部32aは、X方向に延在する。また、周縁磁石部32は、第1周縁磁石部32bを有する。第1周縁磁石部32bは、Z方向において端部周縁磁石部32aに隣接する。第1周縁磁石部32bは、長手方向となるZ方向に延在する。
 端部周縁磁石部32aは、第1周縁磁石部32bに隣接する位置で、Z方向に延在する部分を有していてもよい。言い換えると、図5に示すように、Z方向におけるマグネット25の一端において、端部周縁磁石部32aは、略C字形状を有してもよい。また、Z方向におけるマグネット25の他端において、端部周縁磁石部32aは、略逆C字形状を有してもよい。
The central magnet portion 33 is divided into a plurality of magnets in the Z direction in which the central magnet portion 33 extends. In other words, the central magnet portion 33 is composed of a plurality of divided magnets. A central magnet portion 33 is formed by arranging a plurality of divided magnets continuously in the Z direction.
Similarly, the peripheral magnet portion 32 is divided into a plurality of magnets in the Z direction in which the peripheral magnet portion 32 extends. In other words, the peripheral magnet portion 32 is composed of a plurality of divided magnets. The peripheral magnet portion 32 is formed by arranging a plurality of divided magnets continuously in the Z direction.
Furthermore, as shown in FIGS. 5 and 6, the peripheral magnet portion 32 has an end peripheral magnet portion 32a positioned at the end in the Z direction. The end peripheral magnet portion 32a extends in the X direction. Moreover, the peripheral edge magnet part 32 has the 1st peripheral edge magnet part 32b. The first peripheral magnet portion 32b is adjacent to the end peripheral magnet portion 32a in the Z direction. The first peripheral magnet portion 32b extends in the Z direction, which is the longitudinal direction.
The end peripheral magnet portion 32a may have a portion extending in the Z direction at a position adjacent to the first peripheral magnet portion 32b. In other words, as shown in FIG. 5, at one end of the magnet 25 in the Z direction, the end peripheral magnet portion 32a may have a substantially C shape. At the other end of the magnet 25 in the Z direction, the end peripheral magnet portion 32a may have a substantially inverted C shape.
 周縁磁石部32は、Z方向に延在する第2周縁磁石部32cを有する。第2周縁磁石部32cは、長手方向において第1周縁磁石部32bに隣接する。第2周縁磁石部32cは、Z方向において、第1周縁磁石部32bに対して端部周縁磁石部32aとは逆側に位置する。
 周縁磁石部32は、Z方向に延在する第3周縁磁石部32dを有する。第3周縁磁石部32dは、長手方向において第2周縁磁石部32cに隣接する。第3周縁磁石部32dは、Z方向において、第2周縁磁石部32cに対して第1周縁磁石部32bとは逆側に位置する。
 周縁磁石部32は、Z方向に延在する第4周縁磁石部32eを有する。第4周縁磁石部32eは、長手方向において第3周縁磁石部32dに隣接する。第4周縁磁石部32eは、Z方向において、第3周縁磁石部32dに対して第2周縁磁石部32cとは逆側に位置する。
 周縁磁石部32は、Z方向に延在する第5周縁磁石部32fを有する。第5周縁磁石部32fは、長手方向において第4周縁磁石部32eに隣接する。第5周縁磁石部32fは、Z方向において、第4周縁磁石部32eに対して第3周縁磁石部32dとは逆側に位置する。
The peripheral magnet portion 32 has a second peripheral magnet portion 32c extending in the Z direction. The second peripheral magnet portion 32c is adjacent to the first peripheral magnet portion 32b in the longitudinal direction. The second peripheral magnet portion 32c is located on the side opposite to the end peripheral magnet portion 32a with respect to the first peripheral magnet portion 32b in the Z direction.
The peripheral magnet portion 32 has a third peripheral magnet portion 32d extending in the Z direction. The third peripheral magnet portion 32d is adjacent to the second peripheral magnet portion 32c in the longitudinal direction. The third peripheral magnet portion 32d is located on the side opposite to the first peripheral magnet portion 32b with respect to the second peripheral magnet portion 32c in the Z direction.
The peripheral magnet portion 32 has a fourth peripheral magnet portion 32e extending in the Z direction. The fourth peripheral magnet portion 32e is adjacent to the third peripheral magnet portion 32d in the longitudinal direction. The fourth peripheral magnet portion 32e is located on the side opposite to the second peripheral magnet portion 32c with respect to the third peripheral magnet portion 32d in the Z direction.
The peripheral magnet portion 32 has a fifth peripheral magnet portion 32f extending in the Z direction. The fifth peripheral magnet portion 32f is adjacent to the fourth peripheral magnet portion 32e in the longitudinal direction. The fifth peripheral magnet portion 32f is located on the opposite side of the fourth peripheral magnet portion 32e from the third peripheral magnet portion 32d in the Z direction.
 さらに、周縁磁石部32は、Z方向に延在する分割部分(図4参照)を有する。分割部分は、第5周縁磁石部32fに隣接する。周縁磁石部32の分割部分は、平行領域PRに位置する。
 周縁磁石部32において、端部周縁磁石部32a、第1周縁磁石部32b、第2周縁磁石部32c、第3周縁磁石部32d、及び第4周縁磁石部32eの各々は、永久磁石である。
 周縁磁石部32において、端部周縁磁石部32a、第1周縁磁石部32b、第2周縁磁石部32c、第3周縁磁石部32d、及び第4周縁磁石部32eの各々は、独立的に異なる磁場を発生するように構成されてもよいし、等しい強さの磁場を発生するように構成されてもよい。
 周縁磁石部32において、第5周縁磁石部32f、及び、第5周縁磁石部32fからZ方向にさらに延在する分割部分は、永久磁石である。
Furthermore, the peripheral magnet portion 32 has a split portion (see FIG. 4) extending in the Z direction. The divided portion is adjacent to the fifth peripheral magnet portion 32f. The divided portion of the peripheral magnet portion 32 is located in the parallel region PR.
In the peripheral magnet portion 32, each of the end peripheral magnet portion 32a, the first peripheral magnet portion 32b, the second peripheral magnet portion 32c, the third peripheral magnet portion 32d, and the fourth peripheral magnet portion 32e is a permanent magnet.
In the peripheral magnet portion 32, each of the end peripheral magnet portion 32a, the first peripheral magnet portion 32b, the second peripheral magnet portion 32c, the third peripheral magnet portion 32d, and the fourth peripheral magnet portion 32e independently generates a different magnetic field. , or may be configured to generate a magnetic field of equal strength.
In the peripheral magnet portion 32, the fifth peripheral magnet portion 32f and the divided portions further extending in the Z direction from the fifth peripheral magnet portion 32f are permanent magnets.
 中央磁石部33は、図5及び図6に示すように、第1コイル部35bを有する。第1コイル部35bは、長手方向となるZ方向における端部に位置する。第1コイル部35bは、Z方向において端部周縁磁石部32aに隣接する。第1コイル部35bは、図5における紙面垂直方向となるY方向に平行な軸線の回りに巻回されたコイル線で構成される。具体的に、第1コイル部35bは、Y方向に平行な第1芯部34bを有し、第1芯部34bの周りに巻回されたコイル線で構成される。第1芯部34bは、コイルの中心に位置する。
 第1芯部34bは、永久磁石である。第1コイル部35bは、Z方向において、第1周縁磁石部32bと一致する位置に配置される。第1芯部34bの中心は、Z方向において、第1周縁磁石部32bの中央位置とほぼ同じ位置に配置される。第1コイル部35bは、端部周縁磁石部32a及び第1周縁磁石部32bに接触していない。
The central magnet portion 33 has a first coil portion 35b, as shown in FIGS. The first coil portion 35b is positioned at an end portion in the Z direction, which is the longitudinal direction. The first coil portion 35b is adjacent to the end peripheral magnet portion 32a in the Z direction. The first coil portion 35b is composed of a coil wire wound around an axis parallel to the Y direction, which is the direction perpendicular to the plane of FIG. Specifically, the first coil portion 35b has a first core portion 34b parallel to the Y direction, and is composed of a coil wire wound around the first core portion 34b. The first core portion 34b is positioned at the center of the coil.
The first core portion 34b is a permanent magnet. The first coil portion 35b is arranged at a position coinciding with the first peripheral magnet portion 32b in the Z direction. The center of the first core portion 34b is arranged at substantially the same position as the center position of the first peripheral magnet portion 32b in the Z direction. The first coil portion 35b is not in contact with the end peripheral magnet portion 32a and the first peripheral magnet portion 32b.
 中央磁石部33は、第1コイル部35bに隣接する第2コイル部35cを有する。第2コイル部35cは、Z方向において、第1コイル部35bに対して端部周縁磁石部32aとは逆側に位置する。第2コイル部35cは、第2コイル部35cの中心に位置する第2芯部34cを有する。第2芯部34cは、永久磁石である。第2コイル部35cは、Z方向において、第2周縁磁石部32cと一致する位置に配置される。第2芯部34cの中心は、Z方向において、第2周縁磁石部32cの中央位置とほぼ同じ位置に配置される。第2コイル部35cは、第1コイル部35b及び第2周縁磁石部32cに接触していない。 The central magnet portion 33 has a second coil portion 35c adjacent to the first coil portion 35b. The second coil portion 35c is located on the side opposite to the end peripheral magnet portion 32a with respect to the first coil portion 35b in the Z direction. The second coil portion 35c has a second core portion 34c positioned at the center of the second coil portion 35c. The second core portion 34c is a permanent magnet. The second coil portion 35c is arranged at a position coinciding with the second peripheral magnet portion 32c in the Z direction. The center of the second core portion 34c is arranged at substantially the same position as the center position of the second peripheral magnet portion 32c in the Z direction. The second coil portion 35c is not in contact with the first coil portion 35b and the second peripheral magnet portion 32c.
 中央磁石部33は、第2コイル部35cに隣接する第3コイル部35dを有する。第3コイル部35dは、Z方向において、第2コイル部35cに対して第1コイル部35bとは逆側に位置する。第3コイル部35dは、第3コイル部35dの中心に位置する第3芯部34dを有する。第3芯部34dは、永久磁石である。第3コイル部35dは、Z方向において、第3周縁磁石部32dと一致する位置に配置される。第3芯部34dの中心は、Z方向において、第3周縁磁石部32dの中央位置とほぼ同じ位置に配置される。第3コイル部35dは、第2コイル部35c及び第3周縁磁石部32dに接触していない。 The central magnet portion 33 has a third coil portion 35d adjacent to the second coil portion 35c. The third coil portion 35d is located on the side opposite to the first coil portion 35b with respect to the second coil portion 35c in the Z direction. The third coil portion 35d has a third core portion 34d positioned at the center of the third coil portion 35d. The third core portion 34d is a permanent magnet. The third coil portion 35d is arranged at a position coinciding with the third peripheral magnet portion 32d in the Z direction. The center of the third core portion 34d is arranged at substantially the same position as the center position of the third peripheral magnet portion 32d in the Z direction. The third coil portion 35d is not in contact with the second coil portion 35c and the third peripheral magnet portion 32d.
 中央磁石部33は、第3コイル部35dに隣接する第4コイル部35eを有する。第4コイル部35eは、Z方向において、第3コイル部35dに対して第2コイル部35cとは逆側に位置する。第4コイル部35eは、第4コイル部35eの中心に位置する第4芯部34eを有する。第4芯部34eは、永久磁石である。第4コイル部35eは、Z方向において、第4周縁磁石部32eと一致する位置に配置される。第4芯部34eの中心は、Z方向において、第4周縁磁石部32eの中央位置とほぼ同じ位置に配置される。第4コイル部35eは、第3コイル部35d及び第4周縁磁石部32eに接触していない。 The central magnet portion 33 has a fourth coil portion 35e adjacent to the third coil portion 35d. The fourth coil portion 35e is located on the side opposite to the second coil portion 35c with respect to the third coil portion 35d in the Z direction. The fourth coil portion 35e has a fourth core portion 34e positioned at the center of the fourth coil portion 35e. The fourth core portion 34e is a permanent magnet. The fourth coil portion 35e is arranged at a position coinciding with the fourth peripheral magnet portion 32e in the Z direction. The center of the fourth core portion 34e is arranged at substantially the same position as the center position of the fourth peripheral magnet portion 32e in the Z direction. The fourth coil portion 35e is not in contact with the third coil portion 35d and the fourth peripheral magnet portion 32e.
 中央磁石部33は、第4コイル部35eに隣接する第5磁石部37を有する。第5磁石部37は、Z方向において、第4コイル部35eに対して第3コイル部35dとは逆側に位置する。第5磁石部37は、永久磁石である。第5磁石部37は、Z方向において、第5周縁磁石部32fと一致する位置に配置される。第5磁石部37は、第5周縁磁石部32fとほぼ平行に配置される。第5磁石部37は、図5に示すように、X方向において、第1芯部34b~第4芯部34eとほぼ同じ位置に配置される。言い換えると、第1芯部34b~第4芯部34e及び第5磁石部37は、Z方向に並んでいる。第5磁石部37は、Z方向において、第5周縁磁石部32fとほぼ同じ長さを有する。第5磁石部37は、第4コイル部35e及び第5周縁磁石部32fに接触していない。 The central magnet portion 33 has a fifth magnet portion 37 adjacent to the fourth coil portion 35e. The fifth magnet portion 37 is located on the side opposite to the third coil portion 35d with respect to the fourth coil portion 35e in the Z direction. The fifth magnet portion 37 is a permanent magnet. The fifth magnet portion 37 is arranged at a position coinciding with the fifth peripheral edge magnet portion 32f in the Z direction. The fifth magnet portion 37 is arranged substantially parallel to the fifth peripheral edge magnet portion 32f. As shown in FIG. 5, the fifth magnet portion 37 is arranged at substantially the same position as the first core portion 34b to the fourth core portion 34e in the X direction. In other words, the first to fourth core portions 34b to 34e and the fifth magnet portion 37 are arranged in the Z direction. The fifth magnet portion 37 has substantially the same length as the fifth peripheral magnet portion 32f in the Z direction. The fifth magnet portion 37 is not in contact with the fourth coil portion 35e and the fifth peripheral edge magnet portion 32f.
 さらに、中央磁石部33は、Z方向に延在する分割部分を有する。分割部分は、第5磁石部37に隣接する。中央磁石部33の分割部分は、平行領域PRに位置する。
 中央磁石部33において、第1コイル部35b、第2コイル部35c、第3コイル部35d、及び第4コイル部35eの各々は、電力供給機能を有する制御部26(図3参照)に接続されている。つまり、制御部26は、電源として機能する。
 中央磁石部33において、第1コイル部35b、第2コイル部35c、第3コイル部35d、及び第4コイル部35eの各々には、独立的に電流が供給される。これにより、第1コイル部35b、第2コイル部35c、第3コイル部35d、及び第4コイル部35eは、互いに異なる磁場を発生することが可能となっている。
Furthermore, the central magnet portion 33 has a split portion extending in the Z direction. The divided portion is adjacent to the fifth magnet portion 37 . The divided portions of the central magnet portion 33 are located in the parallel regions PR.
In the central magnet portion 33, each of the first coil portion 35b, the second coil portion 35c, the third coil portion 35d, and the fourth coil portion 35e is connected to the control portion 26 (see FIG. 3) having a power supply function. ing. That is, the control unit 26 functions as a power supply.
In the central magnet portion 33, current is supplied independently to each of the first coil portion 35b, the second coil portion 35c, the third coil portion 35d, and the fourth coil portion 35e. This allows the first coil portion 35b, the second coil portion 35c, the third coil portion 35d, and the fourth coil portion 35e to generate magnetic fields different from each other.
 さらに、中央磁石部33は、Z方向に延在する長芯部36を有する。
 中央磁石部33において、第1芯部34b、第2芯部34c、第3芯部34d、第4芯部34eの各々は、Y方向においてヨーク31とは反対側に位置する端部を有する。この4つの端部は、長芯部36と隣接する。長芯部36は、第5磁石部37とほぼ同じX方向位置に配置される。言い換えると、長芯部36及び第5磁石部37は、Z方向に並んでいる。長芯部36は、永久磁石または磁性体である。
 中央磁石部33において、長芯部36は、周縁磁石部32の端部周縁磁石部32a、第1周縁磁石部32b、第2周縁磁石部32c、第3周縁磁石部32d、第4周縁磁石部32eと磁気回路を構成する。
 中央磁石部33において、第1コイル部35b~第4コイル部35eの各々は、独立的に電流が供給されるように構成されている。これにより、長芯部36と周縁磁石部32とで構成される磁気回路における磁場強度及び発生磁場の分布を調整することが可能となっている。
Further, the central magnet portion 33 has a long core portion 36 extending in the Z direction.
In the central magnet portion 33, each of the first core portion 34b, the second core portion 34c, the third core portion 34d, and the fourth core portion 34e has an end located on the opposite side of the yoke 31 in the Y direction. The four ends adjoin the long core 36 . The long core portion 36 is arranged at substantially the same X-direction position as the fifth magnet portion 37 . In other words, the long core portion 36 and the fifth magnet portion 37 are arranged in the Z direction. The long core portion 36 is a permanent magnet or a magnetic body.
In the central magnet portion 33, the long core portion 36 includes an end peripheral magnet portion 32a of the peripheral magnet portion 32, a first peripheral magnet portion 32b, a second peripheral magnet portion 32c, a third peripheral magnet portion 32d, and a fourth peripheral magnet portion. 32e and a magnetic circuit.
In the central magnet portion 33, each of the first coil portion 35b to the fourth coil portion 35e is configured to be independently supplied with current. This makes it possible to adjust the magnetic field strength and the distribution of the generated magnetic field in the magnetic circuit composed of the long core portion 36 and the peripheral magnet portion 32 .
 なお、上述した例においては、中央磁石部33を構成する第1コイル部35b~第4コイル部35eは電磁石であるが、中央磁石部33の構成は電磁石に限定されない。中央磁石部33として、長芯部36に対応する永久磁石を用いることもできる。図5は、Z方向におけるマグネット25の一端を示したが、マグネット25の他端においても、上述したマグネット25の一端と同等の構成が採用されてもよい。 In the above-described example, the first coil portion 35b to the fourth coil portion 35e forming the central magnet portion 33 are electromagnets, but the configuration of the central magnet portion 33 is not limited to electromagnets. A permanent magnet corresponding to the long core portion 36 can also be used as the central magnet portion 33 . Although FIG. 5 shows one end of the magnet 25 in the Z direction, the other end of the magnet 25 may have the same structure as the one end of the magnet 25 described above.
<マグネット走査部29>
 カソード装置10は、マグネット走査部29を備える。マグネット走査部29は、マグネットユニットMUを1つの走査方向である揺動方向に移動させる。揺動方向は、複数のマグネットユニットMUが立設されるZ方向と直交するX方向である。すなわち、マグネット走査部29は、マグネットユニットMUとガラス基板11とを相対的に往復的に移動させることが可能である。
 マグネット走査部29は、ターゲット23に対するマグネットユニットMUの位置を変える。マグネット走査部29は、マグネットユニットMUを構成する複数のマグネット25の相対位置関係を変えずに、マグネットユニットMUを揺動することが可能である。
 つまり、マグネットユニットMUは、ターゲット23に対して、マグネット走査部29によってターゲット23の粒子放出面と平行に移動(揺動)可能である。
<Magnet scanning unit 29>
The cathode device 10 includes a magnet scanning section 29 . The magnet scanning section 29 moves the magnet unit MU in a swinging direction, which is one scanning direction. The swinging direction is the X direction orthogonal to the Z direction in which the plurality of magnet units MU are erected. That is, the magnet scanning section 29 can move the magnet unit MU and the glass substrate 11 in a relative reciprocating manner.
The magnet scanning section 29 changes the position of the magnet unit MU with respect to the target 23 . The magnet scanning section 29 can swing the magnet unit MU without changing the relative positional relationship of the plurality of magnets 25 that constitute the magnet unit MU.
That is, the magnet unit MU can be moved (oscillated) parallel to the particle emission surface of the target 23 by the magnet scanning section 29 with respect to the target 23 .
 マグネット走査部29は、例えば、レールと、ローラと、複数のモータ等から構成される。レールは、走査方向に延びる。ローラは、カソードユニット22におけるX方向の2つの端部の各々に取り付けられている。モータは、ローラの各々を自転させる。マグネット走査部29は、走査方向に延びるレールを有するLMガイド等から構成されてもよい。
 マグネット走査部29のレールは、走査方向(X方向)においてターゲット23と同程度かそれよりも大きい幅を有する。なお、マグネット走査部29は、走査方向に複数のマグネット25を一体として移動させることが可能であれば、マグネット走査部29の構成は上述した構成に限定されない。レール、ローラ、及びモータを有する構成以外の構成がマグネット走査部29に適用されてもよい。
The magnet scanning unit 29 is composed of, for example, rails, rollers, and a plurality of motors. The rail extends in the scanning direction. A roller is attached to each of the two ends of the cathode unit 22 in the X direction. A motor rotates each of the rollers. The magnet scanning unit 29 may be composed of an LM guide or the like having rails extending in the scanning direction.
The rail of the magnet scanning unit 29 has a width equal to or greater than that of the target 23 in the scanning direction (X direction). Note that the configuration of the magnet scanning unit 29 is not limited to the configuration described above as long as the magnet scanning unit 29 can move the plurality of magnets 25 together in the scanning direction. Configurations other than those having rails, rollers, and motors may be applied to the magnet scanner 29 .
<補助マグネット27>
 図4に示すように、2本の補助マグネット27は、X方向におけるマグネットユニットMUの両端に配置されている。言い換えると、マグネットユニットMUのX方向における一端(第1端)に、一方の補助マグネット27(第1補助マグネット)が配置されている。マグネットユニットMUのX方向における他端(第2端)に、他方の補助マグネット27(第2補助マグネット)が配置されている。
 補助マグネット27は、ターゲット23に対してガラス基板11の反対側に配置されている。補助マグネット27は、第1マグネット25F及び第9マグネット25Nの各々において、磁気回路を形成するヨーク31に取り付け固定される。
<Auxiliary magnet 27>
As shown in FIG. 4, the two auxiliary magnets 27 are arranged at both ends of the magnet unit MU in the X direction. In other words, one auxiliary magnet 27 (first auxiliary magnet) is arranged at one end (first end) of the magnet unit MU in the X direction. The other auxiliary magnet 27 (second auxiliary magnet) is arranged at the other end (second end) of the magnet unit MU in the X direction.
The auxiliary magnet 27 is arranged on the opposite side of the glass substrate 11 with respect to the target 23 . The auxiliary magnet 27 is attached and fixed to the yoke 31 forming a magnetic circuit in each of the first magnet 25F and the ninth magnet 25N.
 なお、本実施形態においては、マグネットユニットMUは、9本のマグネット25の配列で構成されている。マグネットユニットMUのX方向における一端側(第1端側、第1配列端)には、第1マグネット25Fが配置されている。マグネットユニットMUのX方向における他端側(第2端側、第2配列端)には、第9マグネット25Nが配置されている。
 この構成において、一方の補助マグネット27は、X方向における第2マグネット25Sとは反対側の第1マグネット25Fの端部(外縁)に設けられている。他方の補助マグネット27は、X方向における第8マグネット25Eとは反対側の第9マグネット25Nの端部(外縁)に設けられている。
 言い換えると、X方向におけるマグネットユニットMUの一方の端部である揺動端に、一方の補助マグネット27が位置している。また、X方向におけるマグネットユニットMUの他方の端部である揺動端に、他方の補助マグネット27が位置している。すなわち、補助マグネット27は、X方向における端部のマグネットユニットMUにおける第1揺動端に位置するマグネットの外縁と、第2揺動端に位置するマグネットの外縁とに配置される。
Incidentally, in this embodiment, the magnet unit MU is composed of an array of nine magnets 25 . A first magnet 25F is arranged on one end side (first end side, first arrangement end) of the magnet unit MU in the X direction. A ninth magnet 25N is arranged on the other end side (second end side, second arrangement end) of the magnet unit MU in the X direction.
In this configuration, one auxiliary magnet 27 is provided at the end (outer edge) of the first magnet 25F opposite to the second magnet 25S in the X direction. The other auxiliary magnet 27 is provided at the end (outer edge) of the ninth magnet 25N opposite to the eighth magnet 25E in the X direction.
In other words, one auxiliary magnet 27 is positioned at the swinging end, which is one end of the magnet unit MU in the X direction. Also, the other auxiliary magnet 27 is positioned at the swinging end, which is the other end of the magnet unit MU in the X direction. That is, the auxiliary magnet 27 is arranged at the outer edge of the magnet positioned at the first swing end and the outer edge of the magnet positioned at the second swing end of the magnet unit MU at the end in the X direction.
 つまり、補助マグネット27は、複数のマグネット25のうち、第1揺動端に位置するマグネット25に沿って、第1揺動端に位置するマグネット25が形成する磁力線を第2揺動端に向けて傾ける機能を有する。補助マグネット27は、第1揺動端に位置する前記マグネット27に沿って第1揺動端に対して第2揺動端と逆側に配置されている。 In other words, the auxiliary magnet 27 directs the magnetic lines of force formed by the magnet 25 positioned at the first swing end to the second swing end along the magnet 25 positioned at the first swing end among the plurality of magnets 25 . It has a tilting function. The auxiliary magnet 27 is arranged along the magnet 27 positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end.
 補助マグネット27は、図4~図6に示すように、周縁磁石部32と平行な直線状のマグネットである。補助マグネット27は、Z方向に延在している。補助マグネット27は、補助マグネット27に最近接する周縁磁石部32と同じ極性を有する。つまり、図6に示すように、周縁磁石部32がN極であれば、補助マグネット27は、周縁磁石部32と同じ極性、すなわち、N極である。
 補助マグネット27は、X方向におけるマグネットユニットMUの両端の最も外側に位置している。すなわち、補助マグネット27は、X方向における第1マグネット25Fの最も外側の位置する周縁磁石部32に隣接するように設けられている。また、補助マグネット27は、X方向における第9マグネット25Nの最も外側の位置する周縁磁石部32に隣接するように設けられている。言い換えると、補助マグネット27は、第2マグネット25S~第8マグネット25Eには設けられていない。
 つまり、補助マグネット27は、X方向でターゲット23の端部に対応する位置のみに設けられる。
The auxiliary magnet 27 is a linear magnet parallel to the peripheral edge magnet portion 32, as shown in FIGS. The auxiliary magnet 27 extends in the Z direction. The auxiliary magnet 27 has the same polarity as the peripheral magnet portion 32 closest to the auxiliary magnet 27 . That is, as shown in FIG. 6, if the peripheral magnet portion 32 has the N pole, the auxiliary magnet 27 has the same polarity as the peripheral magnet portion 32, that is, the N pole.
The auxiliary magnets 27 are located at the outermost ends of the magnet unit MU in the X direction. That is, the auxiliary magnet 27 is provided so as to be adjacent to the peripheral edge magnet portion 32 located on the outermost side of the first magnet 25F in the X direction. Also, the auxiliary magnet 27 is provided so as to be adjacent to the peripheral edge magnet portion 32 located on the outermost side of the ninth magnet 25N in the X direction. In other words, the auxiliary magnet 27 is not provided on the second magnet 25S to the eighth magnet 25E.
That is, the auxiliary magnets 27 are provided only at positions corresponding to the ends of the target 23 in the X direction.
 補助マグネット27は、補助マグネット27に最近接する周縁磁石部32と同じ長さを有する。つまり、補助マグネット27のZ方向の寸法は、X方向におけるマグネットユニットMUの両端に位置する第1マグネット25F及び第9マグネット25Nの各々のZ方向の寸法とほぼ等しい。ここで、補助マグネット27のZ方向の寸法は、第1マグネット25F及び第9マグネット25Nの各々のZ方向の寸法に対してプラスマイナス5mm程度である。 The auxiliary magnet 27 has the same length as the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 . That is, the Z-direction dimension of the auxiliary magnet 27 is substantially equal to the Z-direction dimension of each of the first magnet 25F and the ninth magnet 25N positioned at both ends of the magnet unit MU in the X direction. Here, the dimension in the Z direction of the auxiliary magnet 27 is about plus or minus 5 mm with respect to the dimension in the Z direction of each of the first magnet 25F and the ninth magnet 25N.
 補助マグネット27は、補助マグネット27に最近接する周縁磁石部32と同様に、断面視において矩形形状を有する磁石である。補助マグネット27は、Z方向の全長で、周縁磁石部32と同じ断面形状を有する。補助マグネット27は、補助マグネット27に最近接する周縁磁石部32に対して、X方向で極めて近接する。具体的には、図6に示すように、補助マグネット27は、補助マグネット27に最近接する周縁磁石部32に対して、X方向で極めて近接して接触しているか、後述するように、X方向において所定の距離だけ離間することもできる。 The auxiliary magnet 27 is a magnet having a rectangular shape in a cross-sectional view, similar to the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 . The auxiliary magnet 27 has the same cross-sectional shape as the peripheral magnet portion 32 over the entire length in the Z direction. The auxiliary magnet 27 is very close in the X direction to the peripheral magnet portion 32 closest to the auxiliary magnet 27 . Specifically, as shown in FIG. 6, the auxiliary magnet 27 is in very close contact with the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 in the X direction, or, as will be described later, in the X direction. can also be spaced apart by a predetermined distance in .
 補助マグネット27は、突条27aを有する。本実施形態において、突条27aは、マグネット25の周縁磁石部32の端面30(磁極平面)によって形成されるZX平面に対して、ターゲット23に向かって突出する凸部がZ方向に連続した部位である。言い換えると、突条27aは、Z方向に延在しつつ、ZX平面からY方向に向けて突出している。以下の説明では、端面30を磁極平面30と称する場合がある。 The auxiliary magnet 27 has a ridge 27a. In the present embodiment, the ridge 27a is a portion in which a convex portion protruding toward the target 23 continues in the Z direction with respect to the ZX plane formed by the end face 30 (magnetic pole plane) of the peripheral magnet portion 32 of the magnet 25. is. In other words, the ridge 27a protrudes in the Y direction from the ZX plane while extending in the Z direction. In the following description, the end face 30 may be referred to as a magnetic pole plane 30. FIG.
 なお、突条27aの先端は、磁極平面30よりもターゲット23に向かって突出していてもよい。突条27aの先端は、Y方向で磁極平面30と同じ位置にあってもよい。突条27aの先端は、磁極平面30よりもターゲット23から離間していてもよい。 The tip of the ridge 27a may protrude toward the target 23 from the magnetic pole plane 30. The tip of the ridge 27a may be at the same position as the magnetic pole plane 30 in the Y direction. The tip of the ridge 27 a may be further away from the target 23 than the magnetic pole plane 30 .
 補助マグネット27は、磁極平面30に対して傾斜している。つまり、補助マグネット27は、図6に示すように、磁極となる端面がZX平面に対して、角度θだけ傾いていてもよい。ここで、角度θは、ターゲット23の表面23aの法線であるY方向に対して傾斜する角度である。言い換えると、補助マグネット27は、Z方向に平行な軸線の回りに角度θだけ回転している。この角度θを「マグネット傾斜角」と称することもできる。 The auxiliary magnet 27 is inclined with respect to the magnetic pole plane 30. That is, as shown in FIG. 6, the auxiliary magnet 27 may have an end face that becomes a magnetic pole inclined by an angle θ with respect to the ZX plane. Here, the angle θ is an angle of inclination with respect to the Y direction, which is the normal to the surface 23 a of the target 23 . In other words, the auxiliary magnet 27 rotates by an angle θ about an axis parallel to the Z direction. This angle θ can also be referred to as a "magnet tilt angle".
 「マグネット傾斜角」について、より具体的に説明する。
 補助マグネット27は、第1磁極面27Fと、第1磁極面27Fとは反対側に位置する第2磁極面27Sとを有する。第1磁極面27Fは、バッキングプレート24に面している。言い換えると、第1磁極面27Fは、バッキングプレート24とマグネット25との間の空間SPに露出している。第2磁極面27Sは、後述する補助ヨーク31dに接触する面である。
 第1磁極面27Fの中央位置、即ち、第1角部C1と第2角部C2との間の中央位置は、符号27Qで示されている。第2磁極面27Sの中央位置、即ち、第3角部C3と第4角部C4との間の中央位置は、符号27Rで示されている。
 補助マグネット27においては、第1磁極面27F及び第2磁極面27Sに対して垂直であり、かつ、中央位置27Q、27Rを通る線は、マグネット傾斜線27Dである。言い換えると、中央位置27Rを通り、かつ、第2磁極面27Sに垂直な線がマグネット傾斜線27Dである。マグネット傾斜線27Dと、ターゲット23の表面23aの法線であるY方向との間の角度θがマグネット傾斜角である。第2磁極面27Sから第1磁極面27Fに向けて延在するマグネット傾斜線27Dは、マグネット25の揺動領域SWに向いている。角度θは、0degから90degの範囲内、より好ましくは、0degから60degの範囲内、さらに、0degから45degの範囲内、0degから30degの範囲内である。
The "magnet tilt angle" will be described more specifically.
The auxiliary magnet 27 has a first magnetic pole surface 27F and a second magnetic pole surface 27S positioned opposite to the first magnetic pole surface 27F. The first magnetic pole face 27</b>F faces the backing plate 24 . In other words, the first magnetic pole surface 27F is exposed in the space SP between the backing plate 24 and the magnet 25. As shown in FIG. The second magnetic pole surface 27S is a surface that contacts an auxiliary yoke 31d, which will be described later.
A central position of the first magnetic pole face 27F, that is, a central position between the first corner C1 and the second corner C2 is indicated by reference numeral 27Q. The central position of the second magnetic pole surface 27S, that is, the central position between the third corner C3 and the fourth corner C4 is indicated by reference numeral 27R.
In the auxiliary magnet 27, a line perpendicular to the first magnetic pole surface 27F and the second magnetic pole surface 27S and passing through the central positions 27Q and 27R is a magnet inclined line 27D. In other words, the line passing through the central position 27R and perpendicular to the second magnetic pole surface 27S is the magnet inclined line 27D. The angle θ between the magnet tilt line 27D and the Y direction, which is the normal to the surface 23a of the target 23, is the magnet tilt angle. A magnet inclined line 27D extending from the second magnetic pole surface 27S toward the first magnetic pole surface 27F faces the swing region SW of the magnet 25. As shown in FIG. The angle θ is within the range of 0 deg to 90 deg, more preferably within the range of 0 deg to 60 deg, further within the range of 0 deg to 45 deg, and within the range of 0 deg to 30 deg.
<補助マグネット27の変形例>
 図27は、補助マグネット27の変形例を示している。
 図27に示す補助マグネット27は、断面視において五角形形状を有する。補助マグネット27は、頂点を有する第1磁極面27Fと、第2磁極面27Sとを有する。第1磁極面27Fは、2つの面を有する。2つの面を繋ぐ頂点が中央位置27Qに相当する。第2磁極面27Sは、中央位置27Rを有する。補助マグネット27の第1磁極面27Fの中央位置27Qには、突条27aが形成されている。突条27aは、凸状形状を有する。
 図27に示す補助マグネット27においては、第2磁極面27Sに対して垂直であり、かつ、中央位置27Q、27Rを通る線は、マグネット傾斜線27Dである。マグネット傾斜線27Dと、ターゲット23の表面23aの法線であるY方向との間の角度θがマグネット傾斜角である。第2磁極面27Sから第1磁極面27Fに向けて延在するマグネット傾斜線27Dは、マグネット25の揺動領域SWに向いている。
<Modified Example of Auxiliary Magnet 27>
FIG. 27 shows a modification of the auxiliary magnet 27. As shown in FIG.
The auxiliary magnet 27 shown in FIG. 27 has a pentagonal shape in a cross-sectional view. The auxiliary magnet 27 has a first magnetic pole face 27F having a vertex and a second magnetic pole face 27S. The first magnetic pole face 27F has two faces. A vertex connecting the two faces corresponds to the central position 27Q. The second pole face 27S has a central position 27R. A ridge 27a is formed at a central position 27Q of the first magnetic pole surface 27F of the auxiliary magnet 27. As shown in FIG. The ridge 27a has a convex shape.
In the auxiliary magnet 27 shown in FIG. 27, the line perpendicular to the second magnetic pole surface 27S and passing through the central positions 27Q and 27R is the magnet inclined line 27D. The angle θ between the magnet tilt line 27D and the Y direction, which is the normal to the surface 23a of the target 23, is the magnet tilt angle. A magnet inclined line 27D extending from the second magnetic pole surface 27S toward the first magnetic pole surface 27F faces the swing region SW of the magnet 25. As shown in FIG.
 補助マグネット27の磁気強度は、補助マグネット27に最近接する周縁磁石部32の磁気強度と同等かまたは小さい。具体的には、補助マグネット27の磁気強度は、補助マグネット27に最近接する周縁磁石部32の磁気強度の1/2~3/4、あるいは、1/2~1/3の範囲内とすることができる。周縁磁石部32の磁気強度が、補助マグネット27の磁気強度の1~1.5倍、あるいは、1.1~1.4倍、例えば、1.39倍程度とすることができる。 The magnetic intensity of the auxiliary magnet 27 is equal to or smaller than the magnetic intensity of the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 . Specifically, the magnetic intensity of the auxiliary magnet 27 should be in the range of 1/2 to 3/4, or 1/2 to 1/3 of the magnetic intensity of the peripheral edge magnet portion 32 closest to the auxiliary magnet 27. can be done. The magnetic intensity of the peripheral edge magnet portion 32 can be 1 to 1.5 times, or 1.1 to 1.4 times, for example, about 1.39 times the magnetic intensity of the auxiliary magnet 27 .
 補助マグネット27は、図6に示すように、補助ヨーク31dを介してヨーク31に固定される。補助ヨーク31dは、ヨーク31のX方向における端部に隣接している。補助ヨーク31dは、ヨーク31と一体に形成されてもよい。この場合、補助ヨーク31dは、ヨーク31と同じ材料で形成されている。補助ヨーク31dは、磁性体または誘電体からなる。補助ヨーク31d及び補助マグネット27は、ヨーク31から取り外し可能である。
 補助マグネット27は、固定部材27gによって、上述した所定の角度θが得られるように補助ヨーク31dに固定される。これにより、補助マグネット27の第2磁極面27Sが補助ヨーク31dに当接している。これにより、中央磁石部33、周縁磁石部32、及びヨーク31によって形成された磁気回路と、補助マグネット27及び補助ヨーク31dによって形成された磁気回路とが組み合わされた磁気回路が得られる。
The auxiliary magnet 27 is fixed to the yoke 31 via an auxiliary yoke 31d, as shown in FIG. The auxiliary yoke 31d is adjacent to the end of the yoke 31 in the X direction. The auxiliary yoke 31 d may be formed integrally with the yoke 31 . In this case, the auxiliary yoke 31 d is made of the same material as the yoke 31 . The auxiliary yoke 31d is made of magnetic material or dielectric material. The auxiliary yoke 31 d and auxiliary magnet 27 are removable from the yoke 31 .
The auxiliary magnet 27 is fixed to the auxiliary yoke 31d by a fixing member 27g so that the above-described predetermined angle θ is obtained. Thereby, the second magnetic pole surface 27S of the auxiliary magnet 27 is in contact with the auxiliary yoke 31d. As a result, a magnetic circuit is obtained in which the magnetic circuit formed by the central magnet portion 33, the peripheral magnet portion 32, and the yoke 31 and the magnetic circuit formed by the auxiliary magnet 27 and the auxiliary yoke 31d are combined.
 本実施形態におけるカソードユニット22では、図3及び図4に示すように、スパッタ粒子をターゲットから放出してガラス基板11上に膜を形成する。このとき、マグネット走査部29は、マグネットユニットMUを揺動端Reversと揺動端Forwardとの間で往復移動させる。ここで、本実施形態において、揺動端Forwardは、「第1揺動端」の一例である。揺動端Reversは、「第2揺動端」の一例である。なお、揺動端Forwardは「第2揺動端」である場合には、揺動端Reversは、「第1揺動端」となる。 In the cathode unit 22 in this embodiment, as shown in FIGS. 3 and 4, sputtered particles are emitted from a target to form a film on the glass substrate 11. FIG. At this time, the magnet scanning section 29 reciprocates the magnet unit MU between the swing end Reverses and the swing end Forward. Here, in the present embodiment, the swing end Forward is an example of the "first swing end". The swing end Revers is an example of a "second swing end". When the swing end Forward is the "second swing end", the swing end Reverses is the "first swing end".
 カソードユニット22では、マグネット走査部29は、複数のマグネット25で構成された多連マグネットであるマグネットユニットMUをまとめて移動させる。具体的に、図3に示すように、マグネット走査部29は、まず、揺動方向(X方向)における中央位置centerから右向きに揺動端ForwardまでマグネットユニットMUを移動させる。その後、マグネット走査部29は、揺動端Forwardから左向きに中央位置centerを経由して揺動端ReversまでマグネットユニットMUを移動させる。その後、マグネット走査部29は、揺動端Reversから中央位置centerまでマグネットユニットMUを移動させる。このような1連の移動動作によって、1スキャンが終了する。カソードユニット22では、このスキャンを複数回繰り返す。 In the cathode unit 22, the magnet scanning section 29 collectively moves the magnet units MU, which are multiple magnets composed of a plurality of magnets 25. Specifically, as shown in FIG. 3, the magnet scanning section 29 first moves the magnet unit MU rightward from the center position center in the swing direction (X direction) to the swing end Forward. After that, the magnet scanning section 29 moves the magnet unit MU leftward from the swing end Forward to the swing end Revers via the central position center. After that, the magnet scanning section 29 moves the magnet unit MU from the swing end Revers to the central position center. One scan is completed by such a series of movement operations. The cathode unit 22 repeats this scan multiple times.
 同時に、マグネットユニットMUを構成する第1マグネット25F~第9マグネット25Nの各々では、電源として機能する制御部26から、Z方向の端部における中央磁石部33の第1コイル部35b、第2コイル部35c、第3コイル部35d、及び第4コイル部35eに対して電流が印加される。これにより、マグネット25が磁場を形成する。このとき、中央磁石部33と周縁磁石部32とヨーク31で磁気回路が形成される。さらに、第1マグネット25F及び第9マグネット25Nにおいては、補助マグネット27及び補助ヨーク31dによっても磁気回路が形成される。 At the same time, in each of the first magnet 25F to the ninth magnet 25N constituting the magnet unit MU, the first coil portion 35b and the second coil of the central magnet portion 33 at the ends in the Z direction are supplied from the control portion 26 functioning as a power source. A current is applied to the portion 35c, the third coil portion 35d, and the fourth coil portion 35e. Thereby, the magnet 25 forms a magnetic field. At this time, a magnetic circuit is formed by the central magnet portion 33 , the peripheral magnet portion 32 and the yoke 31 . Further, in the first magnet 25F and the ninth magnet 25N, a magnetic circuit is also formed by the auxiliary magnet 27 and the auxiliary yoke 31d.
 次に、本実施形態に係るスパッタリング装置1において、ガラス基板11に対する成膜について説明する。 Next, film formation on the glass substrate 11 in the sputtering apparatus 1 according to this embodiment will be described.
 まず、スパッタリング装置1の外部から内部にガラス基板11が搬入される。次に、ガラス基板11は、ロード・アンロード室2内の位置決め部材に載置される。これにより、ガラス基板11は、位置決め部材上で所定位置に配置するようにアライメントされる(図1参照)。 First, the glass substrate 11 is carried inside the sputtering apparatus 1 from the outside. Next, the glass substrate 11 is placed on a positioning member in the loading/unloading chamber 2 . Thereby, the glass substrate 11 is aligned so as to be arranged at a predetermined position on the positioning member (see FIG. 1).
 次に、ロード・アンロード室2の位置決め部材に載置されたガラス基板11は、搬送装置3aのロボットハンドで支持される。ガラス基板11は、ロード・アンロード室2から取り出される。そして、ガラス基板11は、搬送室3を経由して成膜室4へ搬送される。 Next, the glass substrate 11 placed on the positioning member of the loading/unloading chamber 2 is supported by the robot hand of the transfer device 3a. The glass substrate 11 is taken out from the loading/unloading chamber 2 . Then, the glass substrate 11 is transferred to the film formation chamber 4 via the transfer chamber 3 .
 このとき、成膜室4において、基板保持部13が駆動部によって揺動軸が回転され、基板保持部13は、水平載置位置に配置される。さらに、図示しないリフトピン移動部によって、リフトピンは、基板保持部13から上方に突出した準備位置に配置されている。
 この状態で、成膜室4へ到達したガラス基板11が、搬送装置3aによって基板保持部13の上側に挿入される。
At this time, in the film forming chamber 4, the swing shaft of the substrate holding part 13 is rotated by the driving part, and the substrate holding part 13 is arranged at the horizontal mounting position. Further, the lift pins are arranged at the preparation positions protruding upward from the substrate holding portion 13 by a lift pin moving portion (not shown).
In this state, the glass substrate 11 that has reached the film forming chamber 4 is inserted above the substrate holder 13 by the transfer device 3a.
 次いで、搬送装置3aのロボットハンドが基板保持部13に近接することで、基板保持部13の所定の面内の位置にガラス基板11がアライメントされた状態として、リフトピン上にガラス基板11が載置される。その後、搬送ロボット3aのアームが、搬送室3へ後退する。そして、リフトピンが下降し、ガラス基板11が基板保持部13上に支持される。 Next, the robot hand of the transfer device 3a approaches the substrate holding unit 13, so that the glass substrate 11 is placed on the lift pins in a state in which the glass substrate 11 is aligned with a predetermined position in the plane of the substrate holding unit 13. be done. After that, the arm of the transfer robot 3 a retreats to the transfer chamber 3 . Then, the lift pins are lowered and the glass substrate 11 is supported on the substrate holder 13 .
 次いで、揺動軸が回動されることで、基板保持部13によってガラス基板11が保持された状態で、ガラス基板11は、鉛直処理位置に到達するように立ち上がる。これにより、ガラス基板11によって成膜口4bがほぼ閉塞され、ガラス基板11が成膜位置に保持される。この状態で、マグネットユニットMUによって生成された磁場により、ターゲット23の表面23aとガラス基板11との間にプラズマが発生する。ターゲット23がスパッタリングされ、ターゲット23を構成する材料がガラス基板11の表面に付着する。これにより、ガラス基板11に対して成膜処理が行われる。 Then, by rotating the swing shaft, the glass substrate 11 is raised to reach the vertical processing position while being held by the substrate holding portion 13 . As a result, the film formation port 4b is substantially closed by the glass substrate 11, and the glass substrate 11 is held at the film formation position. In this state, plasma is generated between the surface 23a of the target 23 and the glass substrate 11 by the magnetic field generated by the magnet unit MU. The target 23 is sputtered and the material forming the target 23 adheres to the surface of the glass substrate 11 . Thereby, the film formation process is performed on the glass substrate 11 .
 成膜処理が終了した際には、揺動軸が回動されることで、基板保持部13によってガラス基板11が保持された状態で、ガラス基板11は、水平載置位置に到達する。
 成膜処理が終了したガラス基板11は、搬送装置3aによって、成膜室4から取り出される。そして、ガラス基板11は、搬送室3を経由してロード・アンロード室2から取り出される。
When the film forming process is finished, the swing shaft is rotated, and the glass substrate 11 reaches the horizontal mounting position while being held by the substrate holding portion 13 .
The glass substrate 11 on which the film forming process has been completed is taken out from the film forming chamber 4 by the conveying device 3a. Then, the glass substrate 11 is taken out from the loading/unloading chamber 2 via the transfer chamber 3 .
 以下、本実施形態における補助マグネット27の作用について説明する。
 図7は、補助マグネット27の作用を説明するためのターゲット表面を模式図である。図8は、補助マグネット27の作用を説明するための図であり、補助マグネット27がない場合における電子トラッキング状態を示す模式図である。図9は、補助マグネット27の作用を説明するための図であり、補助マグネット27がない場合における磁力線の向きを示す模式図である。まず、補助マグネット27のない場合について説明する。
The operation of the auxiliary magnet 27 in this embodiment will be described below.
FIG. 7 is a schematic diagram of the target surface for explaining the action of the auxiliary magnet 27. As shown in FIG. FIG. 8 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing an electronic tracking state in the absence of the auxiliary magnet 27. FIG. FIG. 9 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing the directions of the lines of magnetic force in the absence of the auxiliary magnet 27. As shown in FIG. First, the case without the auxiliary magnet 27 will be described.
 上述したように、複数のマグネット25を有するマグネットユニットMUによって形成された磁場により、ターゲット23の表面23aとガラス基板11との間にプラズマを発生させる。この状態で、後述するスパッタ条件とすることで、ガラス基板11の表面に成膜をおこなう。 As described above, plasma is generated between the surface 23 a of the target 23 and the glass substrate 11 by the magnetic field formed by the magnet unit MU having a plurality of magnets 25 . In this state, a film is formed on the surface of the glass substrate 11 under the sputtering conditions described later.
 ここで、スパッタリング中、図9に示すように、N極の周縁磁石部32からS極の中央磁石部33へと磁力線が形成される。中央磁石部33と周縁磁石部32とヨーク31で磁気回路が形成されている。
 これにより、図8に示すように、磁力線に沿って電子がトラッキングされる。
Here, during sputtering, as shown in FIG. 9, magnetic lines of force are formed from the N-pole peripheral magnet portion 32 to the S-pole central magnet portion 33 . A magnetic circuit is formed by the central magnet portion 33 , the peripheral magnet portion 32 and the yoke 31 .
As a result, the electrons are tracked along the lines of magnetic force, as shown in FIG.
 このとき、ターゲット23の揺動領域SWのうち揺動端となる位置では、図9に示すように、N極の周縁磁石部32から生じる磁力線は、マグネット25に近接しているアノード28に向けて延びる。ターゲット23の表面23aにおいては、磁力線密度が低下する。つまり、図8に示すように、トラッキングされる電子密度が不充分になり、プラズマ密度が不充分になる。この結果、図7に示すように、ターゲット23の表面23aにおけるエロージョン領域が形成されず、X方向の両端で、非エロージョン領域E1が形成される。
 N極の周縁磁石部32からの磁力線は、図9において、Y方向に向かうに連れて、X方向で左向きに傾いてアノード28に向かっている。
At this time, as shown in FIG. 9, in the swing end position of the swing region SW of the target 23 , the magnetic lines of force generated from the N-pole peripheral magnet portion 32 are directed toward the anode 28 close to the magnet 25 . extend. On the surface 23a of the target 23, the density of magnetic lines of force decreases. In other words, as shown in FIG. 8, the tracked electron density becomes insufficient and the plasma density becomes insufficient. As a result, as shown in FIG. 7, no erosion regions are formed on the surface 23a of the target 23, and non-erosion regions E1 are formed at both ends in the X direction.
The lines of magnetic force from the N-pole peripheral magnet portion 32 are tilted leftward in the X direction toward the anode 28 in FIG.
 また、N極の周縁磁石部32からS極の中央磁石部33へと磁力線が形成される。この磁力線により、ターゲット23の表面23aにおいては、周縁磁石部32によって囲まれた中央磁石部33の周囲を電子が周回する。このとき、マグネット25の長手方向で電子の移動方向の端部、つまり、中央磁石部33に沿ってZ方向に移動してきた電子が、端部周縁磁石部32aに沿ってX方向に曲がる領域の付近で、その移動速度が遅くなり密度が上昇する。 In addition, magnetic lines of force are formed from the peripheral magnet portion 32 of the N pole to the central magnet portion 33 of the S pole. Due to the magnetic lines of force, electrons circulate around the central magnet portion 33 surrounded by the peripheral magnet portion 32 on the surface 23 a of the target 23 . At this time, in the longitudinal direction of the magnet 25, the end of the electron movement direction, that is, the region where the electrons moving in the Z direction along the central magnet portion 33 bend in the X direction along the end peripheral magnet portion 32a. Nearby, its movement speed slows down and its density increases.
 その結果、端部周縁磁石部32aから周縁磁石部32に沿って、電子がX方向からZ方向に曲がる位置においては、密度が減少する。この結果、ターゲット23の表面23aにおけるエロージョンが減少し、非エロージョン領域E2が形成される。この現象は、隣り合うマグネット25においては、中央磁石部33のまわりを回る電子の向きが逆になって打ち消し合って相殺される。このため、X方向の両端となる2本のマグネット25において発現する。しかも、X方向におけるマグネットユニットMUの両端に位置するマグネット25の各々では、非エロージョン領域E2の形成される位置は、Z方向で反対側となる。 As a result, the density decreases at positions where electrons bend from the X direction to the Z direction along the peripheral magnet portion 32 from the end peripheral magnet portion 32a. As a result, the erosion on the surface 23a of the target 23 is reduced and a non-erosion region E2 is formed. In the adjacent magnets 25, the direction of the electrons rotating around the central magnet portion 33 is reversed, thereby canceling out this phenomenon. Therefore, it appears in the two magnets 25 that are both ends in the X direction. Moreover, in each of the magnets 25 positioned at both ends of the magnet unit MU in the X direction, the positions where the non-erosion regions E2 are formed are on opposite sides in the Z direction.
 この結果、補助マグネット27のない場合には、図7に示すように、ターゲット23の四隅のうち、対角となる2箇所に非エロージョン領域E2が形成される。図7においては、左下と右上の角部付近に非エロージョン領域が形成される。また、このように非エロージョン領域E1、E2が形成されると、対角となる2箇所以外にも、非エロージョン領域E3が形成されやすい。これは、非エロージョン領域が形成された場合、印加された供給電力がプラズマ発生に消費されずに余剰となる。この余剰電力が、対角となる2箇所の非エロージョン領域とは異なる領域に対して再分配される、あるいは、全体の電圧(電力)変動として吸収される。従って、電圧変動のようにプラズマ発生条件が変動してしまうと考えられる。 As a result, in the absence of the auxiliary magnet 27, non-erosion areas E2 are formed at two diagonal corners among the four corners of the target 23, as shown in FIG. In FIG. 7, non-erosion regions are formed near the lower left and upper right corners. Moreover, when the non-erosion regions E1 and E2 are formed in this manner, the non-erosion region E3 is likely to be formed in areas other than the two diagonal areas. This is because when a non-erosion region is formed, the applied power is not consumed for plasma generation and becomes redundant. This surplus power is redistributed to regions other than the two diagonal non-erosion regions, or is absorbed as an overall voltage (power) fluctuation. Therefore, it is considered that plasma generation conditions fluctuate like voltage fluctuations.
 図10は、補助マグネット27の作用を説明するための図であり、補助マグネット27がある場合における電子トラッキング状態を示す模式図である。図11は、補助マグネット27の作用を説明するための図であり、補助マグネット27がある場合における磁力線の向きを示す模式図である。
 次に、補助マグネット27のある場合について説明する。
FIG. 10 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing an electronic tracking state when the auxiliary magnet 27 is present. FIG. 11 is a diagram for explaining the action of the auxiliary magnet 27, and is a schematic diagram showing the directions of the lines of magnetic force when the auxiliary magnet 27 is present.
Next, the case where the auxiliary magnet 27 is present will be described.
 ここで、スパッタリング中、図11に示すように、N極の周縁磁石部32からS極の中央磁石部33へと磁力線が形成される。このとき、中央磁石部33と周縁磁石部32とヨーク31に加えて、補助マグネット27と補助ヨーク31dとも含んで磁気回路が形成されている。
 これにより、図10に示すように、磁力線に沿って電子がトラッキングされる。
Here, during sputtering, as shown in FIG. 11, magnetic lines of force are formed from the N-pole peripheral magnet portion 32 to the S-pole central magnet portion 33 . At this time, in addition to the central magnet portion 33, the peripheral magnet portion 32 and the yoke 31, a magnetic circuit is formed including the auxiliary magnet 27 and the auxiliary yoke 31d.
As a result, the electrons are tracked along the lines of magnetic force, as shown in FIG.
 このとき、ターゲット23の揺動領域のうち揺動端となる位置では、図11に示すように、N極の周縁磁石部32からの磁力線が、補助マグネット27からの磁力線によってアノード28に向かわないように、磁極平面30に直交するY方向、あるいは、X方向で右向きに傾いている。
 すると、ターゲット23の表面23aにおいては、磁力線密度が低下することがない。つまり、図10に示すように、トラッキングされる電子密度が充分に維持され、プラズマ密度が充分に維持される。この結果、図7に示したターゲット23の表面23aにおいて、X方向におけるマグネットユニットMUの両端に位置するマグネット25の各々に形成されていた非エロージョン領域E1を抑制することができる。
At this time, as shown in FIG. 11, the magnetic lines of force from the peripheral edge magnet portion 32 of the N pole do not move toward the anode 28 due to the magnetic lines of force from the auxiliary magnet 27 at the positions of the swing ends in the swinging region of the target 23 . As such, it is tilted rightward in the Y-direction perpendicular to the pole plane 30 or in the X-direction.
Then, on the surface 23a of the target 23, the magnetic force line density does not decrease. That is, as shown in FIG. 10, the tracked electron density is sufficiently maintained, and the plasma density is sufficiently maintained. As a result, on the surface 23a of the target 23 shown in FIG. 7, the non-erosion areas E1 formed in each of the magnets 25 positioned at both ends of the magnet unit MU in the X direction can be suppressed.
 また、補助マグネット27を含む構造においては、中央磁石部33と周縁磁石部32とヨーク31と補助マグネット27と補助ヨーク31dとを含む磁気回路が形成されている。このため、N極の周縁磁石部32からS極の中央磁石部33へと向かう磁力線により、ターゲット23の表面23aにおいて周縁磁石部32によって囲まれた中央磁石部33の周囲を電子が周回する。マグネット25の長手方向での電子の移動方向の端部で、中央磁石部33に沿ってZ方向に移動してきた電子は、端部周縁磁石部32aに沿ってX方向に曲がるが、電子の移動速度が遅くなることがなく、密度上昇が抑制される。 In addition, in the structure including the auxiliary magnet 27, a magnetic circuit including the central magnet portion 33, the peripheral edge magnet portion 32, the yoke 31, the auxiliary magnet 27, and the auxiliary yoke 31d is formed. Therefore, electrons circulate around the central magnet portion 33 surrounded by the peripheral magnet portion 32 on the surface 23 a of the target 23 due to the magnetic lines of force directed from the N-pole peripheral magnet portion 32 to the S-pole central magnet portion 33 . Electrons that have moved in the Z direction along the central magnet portion 33 at the ends of the electron moving direction in the longitudinal direction of the magnet 25 are bent in the X direction along the end peripheral magnet portion 32a. Density increase is suppressed without slowing speed.
 その結果、端部周縁磁石部32aから周縁磁石部32に沿って、電子がX方向からZ方向に曲がる位置においては、密度の減少が発生しない。この結果、X方向におけるマグネットユニットMUの両端に位置する2本のマグネット25において、ターゲット23の表面23aにおける非エロージョン領域E2の形成が、図22に示すように抑制される。つまり、X方向におけるマグネットユニットMUの両端に位置する2本のマグネット25において補助マグネット27が隣接していることで、対角となる2箇所の非エロージョン領域E2の形成が抑制できる。これにより、電圧変動が抑制されて非エロージョン領域E1、E2の形成が抑制されると、対角となる2箇所以外に非エロージョン領域E3が形成されやすくなることを抑制できる。 As a result, the density does not decrease at positions where electrons bend from the X direction to the Z direction along the peripheral magnet portion 32a from the end peripheral magnet portion 32a. As a result, in the two magnets 25 positioned at both ends of the magnet unit MU in the X direction, formation of the non-erosion region E2 on the surface 23a of the target 23 is suppressed as shown in FIG. That is, since the auxiliary magnets 27 are adjacent to each other in the two magnets 25 positioned at both ends of the magnet unit MU in the X direction, it is possible to suppress the formation of the non-erosion regions E2 at two diagonal locations. As a result, when the voltage fluctuation is suppressed and the formation of the non-erosion regions E1 and E2 is suppressed, it is possible to suppress the tendency of the non-erosion region E3 to be formed in places other than the two diagonal locations.
 本実施形態に係るスパッタリング装置1によれば、補助マグネット27によってマグネット25の揺動端においてマグネット25から発生する磁力線を、アノード28に向かわないようにする。これにより、アノード28に吸収される電子の量を減少することが可能である。つまり、マグネット25から発生する磁力線をY方向とするか、Y方向よりも図10の右向きに傾斜させる、すなわち、ターゲットの厚さ方向よりもターゲットの輪郭内向きに傾斜させることができる。これにより、非エロージョン領域E1、E2、E3の低減を図ることができる。 According to the sputtering apparatus 1 according to the present embodiment, the auxiliary magnet 27 prevents the lines of magnetic force generated from the magnet 25 at the oscillation end of the magnet 25 from going to the anode 28 . This makes it possible to reduce the amount of electrons absorbed by the anode 28 . That is, the lines of magnetic force generated by the magnet 25 can be directed in the Y direction, or they can be tilted more rightward in FIG. Thereby, the non-erosion areas E1, E2, and E3 can be reduced.
 つまり、非エロージョン領域E1、E2、E3の発生低減により、パーティクルの発生を抑制することが可能となる。つまり、非エロージョン領域とエロージョン領域との境界が不明瞭になってパーティクル発生の原因となるエロージョン-非エロージョン境界領域の形成が低減されている。 In other words, it is possible to suppress the generation of particles by reducing the generation of the non-erosion areas E1, E2, and E3. In other words, formation of an erosion-non-erosion boundary region, which is a cause of particle generation due to unclear boundaries between non-erosion regions and erosion regions, is reduced.
 さらに、非エロージョン領域E1~E3発生を抑制することで、供給パワーが再分配されないようにして、電圧変動等によるプラズマ発生条件の部分的変動を抑制し、パーティクル発生、及び、膜厚分布、膜質特性分布のばらつき等を抑制することができる。 Furthermore, by suppressing the occurrence of the non-erosion regions E1 to E3, the supply power is prevented from being redistributed, suppressing partial fluctuations in plasma generation conditions due to voltage fluctuations, etc., and suppressing particle generation, film thickness distribution, and film quality. Variation in characteristic distribution and the like can be suppressed.
 図12は、本実施形態におけるマグネット25の揺動位置と、プラズマ発生電源からの供給電圧(放電電圧)との関係を示すグラフである。
 ここでは、複数のマグネット25を有するマグネットユニットMUを2往復(2スキャン)させている。つまり、マグネットユニットMUは、図12に示す揺動端Forwardから出発して揺動端Reverseまで移動する。次いで、マグネットユニットMUは、反対向きに移動して揺動端Forwardまで戻る。さらに、マグネットユニットMUは、揺動端Forwardから出発して揺動端Reverseまで移動する。次いで、マグネットユニットMUは、反対向きに移動して揺動端Forwardまで戻ってくる。なお、図12では、補助マグネット27を設けた場合を実線で、補助マグネット27を設けない場合を破線で示している。
FIG. 12 is a graph showing the relationship between the oscillating position of the magnet 25 and the voltage (discharge voltage) supplied from the plasma generating power source in this embodiment.
Here, the magnet unit MU having a plurality of magnets 25 is caused to make two reciprocations (two scans). That is, the magnet unit MU starts from the swing end Forward shown in FIG. 12 and moves to the swing end Reverse. The magnet unit MU then moves in the opposite direction and returns to the swing end Forward. Furthermore, the magnet unit MU starts from the swing end Forward and moves to the swing end Reverse. Then, the magnet unit MU moves in the opposite direction and returns to the swing end Forward. In FIG. 12, the case where the auxiliary magnet 27 is provided is indicated by a solid line, and the case where the auxiliary magnet 27 is not provided is indicated by a broken line.
 図12に示すように、補助マグネット27のない場合に比べて、補助マグネット27を設けることで、揺動位置による放電電圧の上下動の変動幅が小さくなっていることがわかる。
 また、図12に示すように、補助マグネット27のない場合に比べて、補助マグネット27を設けることで、放電電圧のスパイク変動が抑制されていることがわかる。
As shown in FIG. 12, it can be seen that the provision of the auxiliary magnet 27 reduces the fluctuation range of the vertical movement of the discharge voltage due to the swing position, compared to the case without the auxiliary magnet 27 .
Also, as shown in FIG. 12, it can be seen that the provision of the auxiliary magnet 27 suppresses the spike fluctuation of the discharge voltage compared to the case where the auxiliary magnet 27 is not provided.
 図13には、本実施形態に係るスパッタリング装置1において、補助マグネット27を用いて条件0としたスパッタリングによって成膜した膜の膜厚分布を示す。図14には、本実施形態に係るスパッタリング装置1において、補助マグネット27を用いて条件0としたスパッタリングによって成膜した膜の膜抵抗値(シート抵抗値)Rs分布を示す。 FIG. 13 shows the film thickness distribution of a film formed by sputtering with condition 0 using the auxiliary magnet 27 in the sputtering apparatus 1 according to this embodiment. FIG. 14 shows the film resistance value (sheet resistance value) Rs distribution of a film formed by sputtering with condition 0 using the auxiliary magnet 27 in the sputtering apparatus 1 according to this embodiment.
 図13に示すように、補助マグネット27のない場合に比べて、補助マグネット27を設けることで、膜厚分布を±4.2%の範囲内に納めることができた。
 図14に示すように、補助マグネット27のない場合に比べて、補助マグネット27を設けることで、膜抵抗値Rs分布を±12.5%の範囲内に納めることができた。
As shown in FIG. 13, by providing the auxiliary magnet 27, the film thickness distribution could be kept within a range of ±4.2% compared to the case without the auxiliary magnet 27. FIG.
As shown in FIG. 14, by providing the auxiliary magnet 27, the film resistance value Rs distribution could be kept within a range of ±12.5% compared to the case without the auxiliary magnet 27. FIG.
 これに対して、補助マグネット27のない場合において、スパッタ成膜条件を3つの条件で変えた場合を図15~図20に示す。図15は、条件1の膜厚分布を示す。図16は、条件1の膜抵抗値分布を示す。図17は、条件2の膜厚分布を示す。図18は、条件2の膜抵抗値分布を示す。図19は、条件3の膜厚分布を示す。図20は、条件3の膜抵抗値分布を示す。 On the other hand, FIGS. 15 to 20 show cases where the sputtering film formation conditions are changed under three conditions in the case where the auxiliary magnet 27 is not provided. 15 shows the film thickness distribution under condition 1. FIG. FIG. 16 shows the film resistance value distribution under condition 1. FIG. 17 shows the film thickness distribution under Condition 2. FIG. FIG. 18 shows the film resistance value distribution under condition 2. FIG. 19 shows the film thickness distribution under condition 3. FIG. FIG. 20 shows the film resistance value distribution of condition 3. FIG.
 条件1~3の結果から、膜厚分布と膜抵抗値分布とはトレードオフの関係にあり、図21に示すように、従来は、3つの条件を結ぶ反比例の線よりも下側となる分布は実現できていなかったことがわかる。これに対して、補助マグネット27を用いた図13及び図14に対応する条件0では、補助マグネット27のない場合に比べて、膜厚分布と膜抵抗値分布とを同時に低下させることができた。 From the results of conditions 1 to 3, the film thickness distribution and the film resistance value distribution have a trade-off relationship, and as shown in FIG. was not realized. On the other hand, under condition 0 corresponding to FIGS. 13 and 14 using the auxiliary magnet 27, both the film thickness distribution and the film resistance value distribution could be reduced at the same time as compared to the case without the auxiliary magnet 27. .
 以下、補助マグネット27とマグネット25との配置及び寸法について説明する。 The arrangement and dimensions of the auxiliary magnet 27 and the magnet 25 will be described below.
 図6に示すように、補助マグネット27と、補助マグネット27に最近接する周縁磁石部32との配置を設定する。ここで、Y方向とマグネット傾斜線27Dとの傾き角度をθとする。X方向における補助マグネット27と、補助マグネット27に最近接する周縁磁石部32との距離をWxとする。Y方向における補助マグネット27と磁極平面30との距離をWyとする。 As shown in FIG. 6, the arrangement of the auxiliary magnets 27 and the peripheral edge magnet portion 32 closest to the auxiliary magnets 27 is set. Here, let θ be the inclination angle between the Y direction and the magnet inclination line 27D. Let Wx be the distance between the auxiliary magnet 27 and the peripheral edge magnet portion 32 closest to the auxiliary magnet 27 in the X direction. Let Wy be the distance between the auxiliary magnet 27 and the magnetic pole plane 30 in the Y direction.
 ここで、角度θは、Y方向に対する補助マグネット27のN極S極の軸方向との傾き角度である。N極から形成される磁力線が最近接する周縁磁石部32に近接する向きを正の向きとする。言い換えると、第2磁極面27Sから第1磁極面27Fに向けて延在するマグネット傾斜線27Dは、マグネット25の揺動領域SWに向いている。角度θの値を0degから90degまで変化させる。 Here, the angle θ is the inclination angle between the axial direction of the north and south poles of the auxiliary magnet 27 with respect to the Y direction. The direction in which the magnetic line of force formed from the N pole approaches the peripheral edge magnet portion 32 is defined as the positive direction. In other words, the magnet inclined line 27D extending from the second magnetic pole surface 27S toward the first magnetic pole surface 27F faces the swing region SW of the magnet 25. As shown in FIG. The value of the angle θ is changed from 0deg to 90deg.
 また、距離Wxは、補助マグネット27と最近接する周縁磁石部32とがX方向で最近接する距離である。補助マグネット27が角度θで傾斜した場合は、補助マグネット27がX方向に突出した突条27bから周縁磁石部32までの距離となる。距離Wxは、0mmから30mmまで変化させる。 Further, the distance Wx is the closest distance between the auxiliary magnet 27 and the closest peripheral magnet portion 32 in the X direction. When the auxiliary magnet 27 is inclined at an angle θ, the distance is the distance from the projection 27b projecting in the X direction to the peripheral edge magnet portion 32 . The distance Wx is varied from 0 mm to 30 mm.
 距離Wyは、補助マグネット27のN極の磁極面がターゲット23に向けて最も突出した突条27aと、磁極平面30に対するY方向における距離である。距離Wyが負の値のときは、突条27aが磁極平面30よりもターゲット23から離間していることを示している。距離Wyは、0mmから50mmまで変化させる。 The distance Wy is the distance in the Y direction between the magnetic pole plane 30 and the ridge 27a where the magnetic pole surface of the N pole of the auxiliary magnet 27 protrudes most toward the target 23 . When the distance Wy has a negative value, it indicates that the ridge 27a is farther from the target 23 than the magnetic pole plane 30 is. The distance Wy is varied from 0 mm to 50 mm.
 図23~図26は、本実施形態におけるマグネット25と補助マグネット27との配置を変化させた際において、アノード28に近接するターゲット23周縁における表面23aでのプラズマ密度を示す。ここで、図23~図26においては、符号『×』、符号『△』、符号『〇』、及び符号『◎』が示されている。この符号は、この順に、プラズマ密度が大きいことを表す。すなわち、符号『×』は、プラズマ密度が最も低いことを示す。符号『◎』は、プラズマ密度が最も高いことを示すとともに、アノード28から離間した位置でのプラズマ密度と同等であることを示す。符号『〇』は、符号『◎』のプラズマ密度の約80%であることを示す。符号『△』は符号『◎』のプラズマ密度の50%以下であることを示す。 23 to 26 show the plasma density on the surface 23a at the periphery of the target 23 close to the anode 28 when the arrangement of the magnet 25 and the auxiliary magnet 27 in this embodiment is changed. Here, in FIGS. 23 to 26, the sign “×”, the sign “Δ”, the sign “◯”, and the sign “◎” are shown. This code indicates that the plasma density is higher in this order. That is, the symbol "x" indicates the lowest plasma density. The symbol "⊚" indicates that the plasma density is the highest and that it is equal to the plasma density at a position distant from the anode 28 . The symbol "O" indicates that the plasma density is about 80% of the plasma density of the symbol "⊚". The symbol "Δ" indicates that the plasma density is 50% or less of the plasma density of the symbol "⊚".
 図23~図26に示す結果から、角度θが90degではプラズマ密度が変化しないことがわかる。また、角度θと距離Wxと距離Wyとは、互いに独立したパラメータではないことがわかる。角度θと距離Wxと距離Wyにおいては、最近接する周縁磁石部32の磁力線を揺動領域の内側に押し付けるような傾きが得られれば、例えば、距離Wxのみでその好適な範囲が設定される値ではないことがわかる。 From the results shown in FIGS. 23 to 26, it can be seen that the plasma density does not change when the angle θ is 90 degrees. Also, it can be seen that the angle θ, the distance Wx, and the distance Wy are not mutually independent parameters. With respect to the angle θ, the distance Wx, and the distance Wy, if an inclination is obtained that presses the magnetic lines of force of the peripheral magnet portion 32 closest to the inside of the oscillation region, for example, the suitable range is set only by the distance Wx. I know it's not.
 具体的には、
θ=0deg、-10mm≦Wy≦10mm、0mm≦Wx≦20mm、
θ=30deg、-10mm≦Wy≦10mm、0mm≦Wx≦30mm、
θ=60deg、0mm≦Wy≦10mm、20mm≦Wx≦30mm、
を好適な範囲とすることができる。
in particular,
θ=0 deg, −10 mm≦Wy≦10 mm, 0 mm≦Wx≦20 mm,
θ=30 deg, −10 mm≦Wy≦10 mm, 0 mm≦Wx≦30 mm,
θ=60 degrees, 0 mm≦Wy≦10 mm, 20 mm≦Wx≦30 mm,
can be a suitable range.
 さらに、(θ[deg]、Wx[mm]、Wy[mm])が、
(0、0、-10)(0、0、0)(0、0、10)(0、10、0)(30、0、-10)(30、0、0)(30、0、10)(30、10、0)(30、10、10)(30、20、0)(30、20、10)(30、30、10)(60、30、0)
の各点を結んだ範囲とすることもできる。
Furthermore, (θ [deg], Wx [mm], Wy [mm]) is
(0, 0, -10) (0, 0, 0) (0, 0, 10) (0, 10, 0) (30, 0, -10) (30, 0, 0) (30, 0, 10 ) (30, 10, 0) (30, 10, 10) (30, 20, 0) (30, 20, 10) (30, 30, 10) (60, 30, 0)
It can also be a range connecting each point of .
<磁場生成領域MG1、MG2、MG3の変形例>
 上述した実施形態においては、9本のマグネット25の各々を構成する複数の磁場生成領域MG1、MG2、MG3がZ方向において連続的に繋がっている構造について説明した。本変形例では、複数の磁場生成領域MG1、MG2、MG3がZ方向において分割されている分割構造を説明する。分割構造においては、例えば、複数の磁場生成領域MG1、MG2、MG3が一つずつに分割されてもよい。また、2個、3個、又は4個の磁場生成領域によって1つの単位領域を形成し、複数の単位領域が互いに分割されていてもよい。
<Modified Examples of Magnetic Field Generation Regions MG1, MG2, and MG3>
In the above-described embodiment, the structure in which the plurality of magnetic field generation regions MG1, MG2, and MG3 forming each of the nine magnets 25 are continuously connected in the Z direction has been described. In this modified example, a divided structure in which a plurality of magnetic field generation regions MG1, MG2, and MG3 are divided in the Z direction will be described. In the divided structure, for example, the plurality of magnetic field generation regions MG1, MG2, and MG3 may be divided one by one. Also, two, three, or four magnetic field generation regions may form one unit region, and a plurality of unit regions may be divided from each other.
 第2マグネット25S~第8マグネット25Eの各々において、複数の磁場生成領域MG1、MG2、MG3の各々は、分割ヨークと、分割周縁磁石部と、分割中央磁石部とを有する。
 さらに、第1マグネット25F及び第9マグネット25Nの各々において、複数の磁場生成領域MG1、MG2、MG3の各々は、分割ヨークと、分割周縁磁石部と、分割中央磁石部と、分割補助マグネットとを有する。
 ここで、分割ヨークは、上述したヨーク31に対応する。分割周縁磁石部は、上述した周縁磁石部32に対応する。分割中央磁石部は、上述した中央磁石部33に対応する。分割補助マグネットは、上述した補助マグネット27に対応する。
In each of the second magnet 25S to eighth magnet 25E, each of the plurality of magnetic field generation regions MG1, MG2, MG3 has a divided yoke, a divided peripheral magnet portion, and a divided central magnet portion.
Furthermore, in each of the first magnet 25F and the ninth magnet 25N, each of the plurality of magnetic field generation regions MG1, MG2, and MG3 includes a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet. have.
Here, the split yoke corresponds to the yoke 31 described above. The divided peripheral magnet portion corresponds to the peripheral magnet portion 32 described above. The split central magnet portion corresponds to the central magnet portion 33 described above. The split auxiliary magnet corresponds to the auxiliary magnet 27 described above.
 9本のマグネット25の各々に関し、複数の磁場生成領域MG1、MG2、MG3の各々の位置は、Z方向及びY方向において調整可能である。位置が調整された複数の磁場生成領域MG1、MG2、MG3を有するマグネット25は、マグネット走査部29によって揺動可能である。 For each of the nine magnets 25, the position of each of the multiple magnetic field generation regions MG1, MG2, MG3 can be adjusted in the Z direction and the Y direction. A magnet 25 having a plurality of magnetic field generation regions MG 1 , MG 2 , and MG 3 whose positions are adjusted can be swung by a magnet scanner 29 .
 成膜領域全体に対する成膜状態の制御のため、例えば、Z方向及びY方向において、プラズマ発生に関する磁束密度の条件を調整する場合である。本変形例によれば、複数の磁場生成領域MG1、MG2、MG3が分割されているため、複数の磁場生成領域MG1、MG2、MG3のZ方向及びY方向における位置が調整することができる。このため、複数の磁場生成領域MG1、MG2、MG3の各々において磁束密度の条件を調整することが可能である。
 複数の磁場生成領域MG1、MG2、MG3の各々をZ方向及びY方向において調整することで、複数の磁場生成領域の各々では、第1揺動端に位置するマグネット25における周縁磁極の磁力線を分割補助マグネットによって必要な方向に傾斜させることができる。複数の磁場生成領域MG1、MG2、MG3の各々において、磁力線が必要な方向に傾斜させた状態を維持することができる。
This is the case, for example, in the case of adjusting magnetic flux density conditions for plasma generation in the Z direction and the Y direction in order to control the film formation state over the entire film formation region. According to this modification, since the plurality of magnetic field generation regions MG1, MG2, and MG3 are divided, the positions of the plurality of magnetic field generation regions MG1, MG2, and MG3 in the Z direction and the Y direction can be adjusted. Therefore, it is possible to adjust the magnetic flux density conditions in each of the plurality of magnetic field generation regions MG1, MG2, and MG3.
By adjusting each of the plurality of magnetic field generation regions MG1, MG2, and MG3 in the Z direction and the Y direction, each of the plurality of magnetic field generation regions divides the magnetic lines of force of the peripheral magnetic poles of the magnet 25 positioned at the first oscillation end. It can be tilted in the required direction by an auxiliary magnet. In each of the plurality of magnetic field generation regions MG1, MG2, and MG3, it is possible to maintain the state in which the lines of magnetic force are inclined in the necessary directions.
 以下、本発明にかかる実施例を説明する。 Examples according to the present invention will be described below.
 ここで、本発明におけるスパッタリングによる成膜の具体例としておこなう確認試験について説明する。ここでは、ターゲット23における非エロージョン領域の確認、膜厚分布測定、シート抵抗値分布測定をおこなった。 Here, a confirmation test performed as a specific example of film formation by sputtering in the present invention will be described. Here, confirmation of the non-erosion region in the target 23, measurement of film thickness distribution, and measurement of sheet resistance value distribution were performed.
<実験例1>
 実施形態で示した補助マグネット27を有するスパッタリング装置1を用いて、揺動幅がセンターから82.5mmとした。つまり、揺動端Reversから揺動端ForwardまでのX方向における揺動距離の半分が82.5mmである。
<Experimental example 1>
Using the sputtering apparatus 1 having the auxiliary magnet 27 shown in the embodiment, the oscillation width was set to 82.5 mm from the center. That is, half the swing distance in the X direction from the swing end Revers to the swing end Forward is 82.5 mm.
 ここでは、成膜における諸元を示す。
・条件0
 ターゲット組成:ITO(Indium Tin Oxide:酸化インジウムスズ)
 基板寸法(X方向×Z方向):1500mm×1800mm
 膜組成:ITO
 成膜厚さ:80nm
 供給電力(プラズマ形成電力):15kW
 バイアス電力:未使用
 供給ガス及びガス流量:Ar 120sccm
 雰囲気圧:0.2Pa
 成膜時間:53sec
Here, specifications for film formation are shown.
・Condition 0
Target composition: ITO (Indium Tin Oxide)
Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
Film composition: ITO
Film thickness: 80 nm
Supply power (plasma formation power): 15 kW
Bias power: unused Supply gas and gas flow rate: Ar 120 sccm
Atmospheric pressure: 0.2 Pa
Film formation time: 53 sec
 補助マグネット27のX方向における幅寸法(磁極面の幅):185mm
 角度θ:30°
 Wx:17mm
 Wy:20mm
 補助ヨーク31d:SUS430
 この結果、図13、図14、図21に示すように、膜厚分布4.2%以内、シート抵抗分布12.5%以内の成膜特性を得ることができた。
X-direction width of auxiliary magnet 27 (width of magnetic pole surface): 185 mm
Angle θ: 30°
Wx: 17mm
Wy: 20mm
Auxiliary yoke 31d: SUS430
As a result, as shown in FIGS. 13, 14, and 21, film formation characteristics with a film thickness distribution within 4.2% and a sheet resistance distribution within 12.5% could be obtained.
<実験例2~4>
 補助マグネット27を用いずに、同様にITO膜を成膜した。
・条件1
 ターゲット組成:ITO
 基板寸法(X方向×Z方向):1500mm×1800mm
 膜組成:ITO
 成膜厚さ:80nm
 供給電力(プラズマ形成電力):30kW
 バイアス電力:未使用
 供給ガス及びガス流量:Ar 120sccm
 雰囲気圧:0.2Pa
 成膜時間:65sec
<Experimental Examples 2 to 4>
An ITO film was formed in the same manner without using the auxiliary magnet 27 .
Condition 1
Target composition: ITO
Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
Film composition: ITO
Film thickness: 80 nm
Supply power (plasma formation power): 30 kW
Bias power: unused Supply gas and gas flow rate: Ar 120 sccm
Atmospheric pressure: 0.2 Pa
Film formation time: 65 sec
 この結果、条件1として、図15、図16、図21に示すように、膜厚分布7.9%、シート抵抗分布11.5%の成膜特性を得ることができた。 As a result, as shown in FIGS. 15, 16, and 21, film formation characteristics with a film thickness distribution of 7.9% and a sheet resistance distribution of 11.5% were obtained under Condition 1.
・条件2
 ターゲット組成:ITO
 基板寸法(X方向×Z方向):1500mm×1800mm
 膜組成:ITO
 成膜厚さ:80nm
 供給電力(プラズマ形成電力):30kW
 バイアス電力:未使用
 供給ガス及びガス流量:HO 0.5sccm、Ar 120sccm
 雰囲気圧:0.5Pa
 成膜時間:74sec
Condition 2
Target composition: ITO
Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
Film composition: ITO
Film thickness: 80 nm
Supply power (plasma formation power): 30 kW
Bias power: unused Supply gases and gas flow rates: H2O 0.5 sccm, Ar 120 sccm
Atmospheric pressure: 0.5 Pa
Film formation time: 74 sec
 この結果、条件2として、図17、図18、図21に示すように、膜厚分布5.5%、シート抵抗分布21.3%の成膜特性を得ることができた。 As a result, as condition 2, as shown in FIGS. 17, 18 and 21, it was possible to obtain film formation characteristics with a film thickness distribution of 5.5% and a sheet resistance distribution of 21.3%.
・条件3
 ターゲット組成:ITO
 基板寸法(X方向×Z方向):1500mm×1800mm
 膜組成:ITO
 成膜厚さ:80nm
 供給電力(プラズマ形成電力):60kW
 バイアス電力:未使用
 供給ガス及びガス流量:HO 0.5sccm、Ar 360sccm
 雰囲気圧:0.3Pa
 成膜時間:86sec
Condition 3
Target composition: ITO
Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
Film composition: ITO
Film thickness: 80 nm
Supply power (plasma formation power): 60 kW
Bias power: unused Supply gases and gas flows: H2O 0.5 sccm, Ar 360 sccm
Atmospheric pressure: 0.3 Pa
Film formation time: 86 sec
 この結果、条件3として、図19、図20、図21に示すように、膜厚分布4.2%、シート抵抗分布26.6%の成膜特性を得ることができた。 As a result, as condition 3, as shown in FIGS. 19, 20 and 21, film formation characteristics of a film thickness distribution of 4.2% and a sheet resistance distribution of 26.6% could be obtained.
<実験例5>
 補助マグネット27を設けることなくスパッタリングをおこない、ターゲット表面を目視で観察した。
 ターゲット組成:アルミニウム
 基板寸法(X方向×Z方向):1500mm×1800mm
<Experimental example 5>
Sputtering was performed without providing the auxiliary magnet 27, and the target surface was visually observed.
Target composition: Aluminum Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
 その結果、図7に示す非エロージョン領域E1の寸法として、11mm、17mm、8mm、11mm等を測定した。図7に示す非エロージョン領域E2の寸法として、19mm、20mmを測定した。図7に示す非エロージョン領域E3の寸法として、10mm、5mm、8mm、10mm等を測定した。
 同時に、境界領域は観測され、その寸法は15mm等を測定した。
As a result, 11 mm, 17 mm, 8 mm, 11 mm, etc. were measured as the dimensions of the non-erosion region E1 shown in FIG. 19 mm and 20 mm were measured as the dimensions of the non-erosion region E2 shown in FIG. 10 mm, 5 mm, 8 mm, 10 mm, etc. were measured as the dimensions of the non-erosion region E3 shown in FIG.
At the same time, the boundary area was observed and its dimension measured eg 15 mm.
<実験例6>
 補助マグネット27を用いてスパッタリングをおこない、ターゲット表面を目視で観察した。
 ターゲット組成:アルミニウム
 基板寸法(X方向×Z方向):1500mm×1800mm
<Experimental example 6>
Sputtering was performed using the auxiliary magnet 27, and the target surface was visually observed.
Target composition: Aluminum Substrate dimensions (X direction x Z direction): 1500 mm x 1800 mm
 補助マグネット27のX方向における幅寸法(磁極面の幅)185mm
 角度θ:30°
 Wx:17mm
 Wy:20mm
 補助ヨーク31d:SUS430
 その結果、図22に示す非エロージョン領域E1の寸法として、22mmを得た。しかしながら、境界領域は観測されなかった。
The width of the auxiliary magnet 27 in the X direction (the width of the magnetic pole surface) is 185 mm.
Angle θ: 30°
Wx: 17mm
Wy: 20mm
Auxiliary yoke 31d: SUS430
As a result, 22 mm was obtained as the dimension of the non-erosion region E1 shown in FIG. However, no border region was observed.
<実験例7>
 補助マグネット27を用い、(θ[deg]、Wx[mm]、Wy[mm])を図23~図26に示すように変化させて、プラズマ密度を測定した。その結果を図23~図26に示す。これにより、上述したように角度θ、距離Wx、距離Wyにおいて、所定の関係を満たす必要があることがわかった。
<Experimental example 7>
The plasma density was measured by using the auxiliary magnet 27 and changing (θ [deg], Wx [mm], Wy [mm]) as shown in FIGS. The results are shown in FIGS. 23 to 26. FIG. As a result, it has been found that the angle θ, the distance Wx, and the distance Wy must satisfy a predetermined relationship as described above.
 さらに、補助マグネット27を用いた実験例6において、スパッタ処理終了後でのターゲット23の表面を確認した。このときの隅部の画像を図28に示す。この結果から、非エロージョン領域の境界が鮮明でぼやけておらず、処理中にプラズマが非エロージョン領域上で消失しておらず、境界領域が観測されていないことがわかる。 Furthermore, in Experimental Example 6 using the auxiliary magnet 27, the surface of the target 23 was confirmed after the sputtering process was completed. An image of the corner at this time is shown in FIG. From this result, it can be seen that the boundary of the non-erosion region is sharp and not blurred, plasma is not extinguished on the non-erosion region during processing, and no boundary region is observed.
 同様に、補助マグネット27を用いない実験例5において、スパッタ処理終了後でのターゲット23の表面を確認した。このときの隅部の画像を図29に示す。この結果から、非エロージョン領域の境界がぼやけており、処理中にプラズマが非エロージョン領域上で消失しており、境界領域が観測されたことがわかる。 Similarly, in Experimental Example 5 in which the auxiliary magnet 27 was not used, the surface of the target 23 was confirmed after the sputtering process was completed. An image of the corner at this time is shown in FIG. From this result, it can be seen that the boundary of the non-erosion region is blurred, the plasma is extinguished on the non-erosion region during processing, and the boundary region is observed.
 これらの結果から、補助マグネット27によって、磁力線をアノード28から離間するように押し込むことで、エロージョン領域-非エロージョン領域の境界領域が減少してパーティクル削減が可能になるとともに、膜厚分布とシート抵抗分布を向上することが可能であることがわかる。 From these results, by pushing the magnetic lines of force away from the anode 28 by the auxiliary magnet 27, the boundary area between the erosion area and the non-erosion area can be reduced, and particles can be reduced. It turns out that it is possible to improve the distribution.
1…スパッタリング装置
4…成膜室(真空チャンバ)
10…カソード装置
10A…カソードボックス
11…ガラス基板(被成膜基板、透明基板)
13…基板保持部
22…カソードユニット
23…ターゲット
24…バッキングプレート
25…マグネット(磁気回路)
26…制御部
27…補助マグネット
27a…突条
28…アノード
29…マグネット走査部
31…ヨーク
31d…補助ヨーク
32…周縁磁石部
33…中央磁石部
33a…端部磁石部
33b…第1コイル部
41…前側空間
42…裏側空間
MU…マグネットユニット(磁気回路)
1... Sputtering device 4... Film formation chamber (vacuum chamber)
DESCRIPTION OF SYMBOLS 10... Cathode apparatus 10A... Cathode box 11... Glass substrate (film-forming substrate, transparent substrate)
DESCRIPTION OF SYMBOLS 13... Substrate holding|maintenance part 22... Cathode unit 23... Target 24... Backing plate 25... Magnet (magnetic circuit)
Reference numeral 26: control section 27: auxiliary magnet 27a: ridge 28: anode 29: magnet scanning section 31: yoke 31d: auxiliary yoke 32: peripheral edge magnet section 33: central magnet section 33a: end magnet section 33b: first coil section 41 ... Front space 42 ... Back side space MU ... Magnet unit (magnetic circuit)

Claims (9)

  1.  被成膜基板の被処理面に向けてスパッタ粒子を放出するカソードユニットを備えるスパッタリング装置であって、
     前記カソードユニットは、
      エロージョン領域が形成されるターゲットと、
      前記ターゲットに対して前記被成膜基板とは反対側に配置されて前記ターゲットに前記エロージョン領域を形成する複数のマグネットを有するマグネットユニットと、
      前記マグネットユニットと前記被成膜基板とを、前記被成膜基板の前記被処理面に沿った揺動方向における第1揺動端と第2揺動端との間で、相対的に往復動作可能なマグネット走査部と、
      前記被成膜基板の前記被処理面に沿って前記揺動方向に交差する交差方向に延在する前記複数のマグネットのうち、前記第1揺動端に位置するマグネットに沿って、前記第1揺動端に位置する前記マグネットが形成する磁力線を前記第2揺動端に向けて傾ける補助マグネットと、
     を有する、
     スパッタリング装置。
    A sputtering apparatus comprising a cathode unit that emits sputtered particles toward a surface of a substrate to be processed,
    The cathode unit is
    a target on which an erosion region is formed;
    a magnet unit having a plurality of magnets disposed on the opposite side of the target from the film formation substrate and forming the erosion region in the target;
    The magnet unit and the film formation substrate are relatively reciprocated between a first swing end and a second swing end in a swing direction along the surface to be processed of the film formation substrate. a magnetic scanning unit capable of
    Among the plurality of magnets extending in the cross direction intersecting the swing direction along the surface to be processed of the film formation substrate, along the magnet positioned at the first swing end, the first an auxiliary magnet that inclines magnetic lines of force formed by the magnet located at the swing end toward the second swing end;
    having
    Sputtering equipment.
  2.  前記補助マグネットは、前記第1揺動端に位置する前記マグネットに沿って前記第1揺動端に対して前記第2揺動端と逆側に配置されており、
     前記補助マグネットは、前記マグネットと一体に揺動可能である、
     請求項1に記載のスパッタリング装置。
    The auxiliary magnet is arranged along the magnet positioned at the first swing end on the side opposite to the second swing end with respect to the first swing end,
    The auxiliary magnet can swing integrally with the magnet,
    A sputtering apparatus according to claim 1 .
  3.  前記補助マグネットは、前記第1揺動端に位置する前記マグネットと同じ極性を有する、
     請求項2に記載のスパッタリング装置。
    the auxiliary magnet has the same polarity as the magnet positioned at the first swing end;
    A sputtering apparatus according to claim 2 .
  4.  前記補助マグネットの磁気強度は、前記第1揺動端に位置する前記マグネットの磁気強度と同等かまたは小さい、
     請求項3に記載のスパッタリング装置。
    the magnetic intensity of the auxiliary magnet is equal to or smaller than the magnetic intensity of the magnet positioned at the first swing end;
    A sputtering apparatus according to claim 3 .
  5.  前記補助マグネットは、前記マグネットに沿って前記ターゲットに向けて突出する突条を有する、
     請求項4に記載のスパッタリング装置。
    The auxiliary magnet has a ridge that protrudes toward the target along the magnet,
    A sputtering apparatus according to claim 4 .
  6.  前記補助マグネットは、前記ターゲットに対して前記被処理基板の反対側に配置され、かつ、磁気回路を形成するヨークに取り付け固定される、
     請求項5に記載のスパッタリング装置。
    The auxiliary magnet is arranged on the opposite side of the substrate to be processed with respect to the target, and is attached and fixed to a yoke that forms a magnetic circuit.
    A sputtering apparatus according to claim 5 .
  7.  前記カソードユニットは、
     表面に磁性体からなる中央領域を有する平板状のヨークと、
     前記ヨークに隣接した補助ヨークと、
     前記ヨークの前記中央領域に直線状に配置された中央磁石部と、
     前記中央磁石部を囲むように周設された周縁磁石部と、
     前記中央磁石部及び前記周縁磁石部が互いに平行である平行領域と、
     前記ヨークの前記表面に設けられた磁気回路と、
     前記磁気回路に重ねて配置されたバッキングプレートと、
     を有し、
     前記マグネットユニットを構成する前記複数のマグネットの各々は、前記ヨークに配置され、
     前記補助マグネットは、前記周縁磁石部に平行に配置され、
     前記補助マグネットは、前記補助ヨークを介して前記ヨークに固定され、
     前記補助ヨークは、磁性体または誘電体からなる、
     請求項1から請求項6のいずれか一項に記載のスパッタリング装置。
    The cathode unit is
    a flat plate-shaped yoke having a central region made of a magnetic material on its surface;
    an auxiliary yoke adjacent to the yoke;
    a central magnet portion linearly arranged in the central region of the yoke;
    a peripheral magnet portion that surrounds the central magnet portion;
    a parallel region where the central magnet portion and the peripheral magnet portion are parallel to each other;
    a magnetic circuit provided on the surface of the yoke;
    a backing plate disposed over the magnetic circuit;
    has
    each of the plurality of magnets constituting the magnet unit is arranged on the yoke,
    The auxiliary magnet is arranged parallel to the peripheral magnet portion,
    The auxiliary magnet is fixed to the yoke via the auxiliary yoke,
    the auxiliary yoke is made of a magnetic material or a dielectric material,
    The sputtering apparatus according to any one of claims 1 to 6.
  8.  前記補助ヨーク及び前記補助マグネットが、前記ヨークから取り外し可能である、
     請求項7に記載のスパッタリング装置。
    wherein the auxiliary yoke and the auxiliary magnet are removable from the yoke;
    A sputtering apparatus according to claim 7 .
  9.  前記複数のマグネットのうちの前記第1揺動端に位置する前記マグネットは、前記交差方向に分割された複数の磁場生成領域を有し、
     前記磁場生成領域の各々は、分割ヨークと、分割周縁磁石部と、分割中央磁石部と、分割補助マグネットとを有し、
     前記交差方向及び前記ヨークの厚さ方向において、前記磁場生成領域の各々の位置は、調整可能であり、
     位置が調整された前記複数の磁場生成領域を有する前記マグネットは、前記マグネット走査部によって揺動可能である、
     請求項8に記載のスパッタリング装置。
    the magnet positioned at the first oscillation end among the plurality of magnets has a plurality of magnetic field generation regions divided in the cross direction;
    each of the magnetic field generation regions has a divided yoke, a divided peripheral magnet portion, a divided central magnet portion, and a divided auxiliary magnet;
    a position of each of the magnetic field generating regions is adjustable in the cross direction and the thickness direction of the yoke;
    The magnet having the plurality of magnetic field generation regions whose positions are adjusted can be oscillated by the magnet scanning unit.
    A sputtering apparatus according to claim 8 .
PCT/JP2022/043542 2021-11-26 2022-11-25 Sputtering device WO2023095872A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237040873A KR20240004669A (en) 2021-11-26 2022-11-25 sputtering device
JP2023563752A JPWO2023095872A1 (en) 2021-11-26 2022-11-25
CN202280039644.4A CN117413085A (en) 2021-11-26 2022-11-25 Sputtering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-192171 2021-11-26
JP2021192171 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095872A1 true WO2023095872A1 (en) 2023-06-01

Family

ID=86539623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043542 WO2023095872A1 (en) 2021-11-26 2022-11-25 Sputtering device

Country Status (5)

Country Link
JP (1) JPWO2023095872A1 (en)
KR (1) KR20240004669A (en)
CN (1) CN117413085A (en)
TW (1) TW202336254A (en)
WO (1) WO2023095872A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346662A (en) * 1991-05-22 1992-12-02 Ube Ind Ltd Sputtering method and its apparatus
JP2001140069A (en) * 1999-11-12 2001-05-22 Anelva Corp Magnetron cathode of sputtering system
JP2013508565A (en) * 2009-10-26 2013-03-07 ジェネラル・プラズマ・インコーポレーテッド Rotary magnetron magnet bar and equipment for high target use including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004931B2 (en) 2008-11-25 2012-08-22 株式会社アルバック Sputtering source, sputtering apparatus, and sputtering method
JP2012158835A (en) 2012-05-15 2012-08-23 Ulvac Japan Ltd Sputtering film deposition apparatus
WO2019004351A1 (en) 2017-06-28 2019-01-03 株式会社アルバック Sputtering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346662A (en) * 1991-05-22 1992-12-02 Ube Ind Ltd Sputtering method and its apparatus
JP2001140069A (en) * 1999-11-12 2001-05-22 Anelva Corp Magnetron cathode of sputtering system
JP2013508565A (en) * 2009-10-26 2013-03-07 ジェネラル・プラズマ・インコーポレーテッド Rotary magnetron magnet bar and equipment for high target use including the same

Also Published As

Publication number Publication date
CN117413085A (en) 2024-01-16
KR20240004669A (en) 2024-01-11
TW202336254A (en) 2023-09-16
JPWO2023095872A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US7785449B2 (en) Magnetron unit, magnetron sputtering apparatus, and method of manufacturing electronic device
KR101135389B1 (en) Sputtering method and sputtering apparatus
US20070051616A1 (en) Multizone magnetron assembly
KR102140210B1 (en) Method of depositing a layer, method of manufacturing a transistor, layer stack for an electronic device, and an electronic device
JP6579726B2 (en) Sputtering equipment
US11479848B2 (en) Film forming apparatus and method
JP4213777B2 (en) Sputtering apparatus and method
WO2023095872A1 (en) Sputtering device
JP2000248360A (en) Magnetron sputtering device
TWI724435B (en) Sputtering method and sputtering apparatus
JPH11323546A (en) Sputtering apparatus for large-sized substrate
JP2019044216A (en) Film deposition apparatus and film deposition method
CN110965031B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
CN118147589A (en) Sputtering apparatus
KR102182674B1 (en) Sputtering apparatus
JPH05117851A (en) Sputtering device
KR20240068562A (en) Sputtering apparatus
JP2020200520A (en) Film deposition apparatus, sputtering target mechanism and film deposition method
JP7495387B2 (en) Sputtering Equipment
JP2024070140A (en) Sputtering Equipment
KR20230094149A (en) Sputtering apparatus
TW202000962A (en) Method of forming film and film formation apparatus
JP2019218604A (en) Film deposition apparatus and sputtering target mechanism
US20100096254A1 (en) Deposition systems and methods
JP2022117719A (en) Sputtering device and sputtering method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237040873

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023563752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039644.4

Country of ref document: CN