WO2023095632A1 - シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法 - Google Patents

シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法 Download PDF

Info

Publication number
WO2023095632A1
WO2023095632A1 PCT/JP2022/041932 JP2022041932W WO2023095632A1 WO 2023095632 A1 WO2023095632 A1 WO 2023095632A1 JP 2022041932 W JP2022041932 W JP 2022041932W WO 2023095632 A1 WO2023095632 A1 WO 2023095632A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
scintillator plate
columnar crystals
value
columnar
Prior art date
Application number
PCT/JP2022/041932
Other languages
English (en)
French (fr)
Inventor
智之 大池
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023095632A1 publication Critical patent/WO2023095632A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a scintillator plate, a radiation detector, and a method for manufacturing a scintillator plate.
  • FPDs flat panel detectors
  • X-rays passing through a subject are received by a phosphor (scintillator plate), which is a radiation detection material formed on a substrate, and the fluorescence is A light-receiving element detects the light emitted by the body.
  • a group of columnar crystals or needle crystals of an alkali metal halide such as cesium iodide prepared by a vapor deposition method is used in order to efficiently transmit emitted light to a light receiving element. groups have been used.
  • the columnar crystal group has a high aspect ratio and a very large specific surface area compared to ordinary planar films.
  • a group of deliquescent alkali metal halide columnar crystals they are easily deliquesced when exposed to water vapor contained in the atmosphere, causing the columnar crystals to fuse together or the flatness of the side walls to be impaired.
  • the emitted light propagates between the columnar crystals or scatters at the interface before reaching the light receiving element, which may reduce the spatial resolution of the radiation detector.
  • Patent Literature 1 discloses a technique of chemically bonding a first protective layer made of a metal alkoxide to the interface of the columnar crystals with respect to a phosphor composed of a group of columnar crystals, and then sealing the phosphor with a second protective layer. There is The two protective layers prevent contact between the phosphor and water vapor to prevent deliquescence, thereby preventing a decrease in moisture resistance of the phosphor and suppressing a decrease in spatial resolution.
  • the first protective layer made of metal alkoxide is formed by chemical bonding, the thickness is as thin as a monomolecular layer, and unreacted raw materials are also present. It is difficult to have a moisture-proof function. Therefore, in order to achieve the desired moisture resistance, it is necessary to reliably cover the uneven surfaces of the columnar crystals with a second protective layer, such as polyparaxylylene, which is thicker than the first protective layer. Therefore, there is a possibility that the optical distance or the optical interface will increase, or the adhesion between the first protective layer and the second protective layer will be insufficient, and as a result, the image quality of the radiographic image will be degraded.
  • a second protective layer such as polyparaxylylene
  • An object of the present invention is to provide a scintillator plate capable of achieving both high resolution and moisture resistance.
  • the above problem is to solve the problems of a columnar crystal formed on a substrate and having a predetermined columnar diameter that emits light according to the irradiated radiation, and a predetermined columnar crystal provided to cover the columnar crystal and protect the columnar crystal from water vapor. and a scintillator plate having a protective film having a thickness of the above It is solved by a scintillator plate characterized by being no more than four times the value of a given column diameter.
  • the scintillator plate can achieve both high resolution and moisture resistance.
  • FIG. 4 is a cross-sectional view showing how the columnar crystal group according to the embodiment of the present invention is covered with a protective film.
  • FIG. 4 is a cross-sectional view showing how the columnar crystal group according to the embodiment of the present invention is covered with a protective film.
  • FIG. 4 is a cross-sectional view showing how the columnar crystal group according to the embodiment of the present invention is covered with a protective film. It is a cross-sectional SEM photograph of the surface side of the columnar crystal group according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a tip portion of a columnar crystal according to an embodiment of the present invention; FIG.
  • FIG. 4 is a cross-sectional view schematically showing a tip portion of a columnar crystal according to an embodiment of the present invention; It is a sectional view showing composition of a radiation detector concerning an embodiment of the present invention. It is a sectional view showing composition of a radiation detector concerning an embodiment of the present invention.
  • FIG. 4 is a diagram showing temporal changes in spatial resolution of the radiation detector according to the embodiment of the present invention; It is a figure explaining the example of the usage condition of the radiography apparatus which concerns on embodiment of this invention. It is an example of a cross-sectional SEM photograph showing how the tip of the columnar crystal group according to the embodiment of the present invention is covered with a protective film.
  • FIG. 1A shows a phosphor composed of an aggregate of columnar crystals 101 formed on a substrate, and FIG. 1B shows its cross section.
  • the surface of the phosphor has irregularities as shown in FIGS. 1A and 1B.
  • the tip angles of the columnar crystals are measured from the cross-sectional SEM photograph in FIG. degree. 2 indicates the direction in which the columnar crystal 101 grows.
  • Ra arithmetic mean roughness
  • the surface roughness of the phosphor surface is reduced and smoothed. Stability is improved in the process of the next step. More preferably, the surface roughness of the protective film should be 10% or less of the column diameter.
  • the general adhesive layer 401 has a thickness of several ⁇ m or more, the surface roughness of the protective film 102 can be sufficiently absorbed. can.
  • a hot-melt resin, an adhesive material, or the like may be used as appropriate for the adhesive layer 401 .
  • the angle of refraction of light at the interface between the columnar crystal 101 and the protective film 102 becomes smaller, particularly in the convex portion on the tip side of the columnar crystal, and the light is guided.
  • the waved light gently changes its direction to the growth direction of the columnar crystals. As a result, diffusion of light incident on the optical sensor 402 can be prevented.
  • Surface roughness can be measured with a contact stylus surface roughness tester or a non-contact confocal laser microscope. It is more preferable to use the latter, which is non-destructive and measurable by light irradiation.
  • the thickness of protective film For example, when the diameter of the phosphor columnar crystal 101 is 10 ⁇ m and the tip angle is 89 degrees, the height of the protrusion is 5.09 ⁇ m, which is about 0.5 times the diameter of the column. This value is a guideline for the lower limit when the protective film 102 covers the range from the tip portion to the side wall portion of the columnar crystal 101 . If the protective film 102 is thinner than the lower limit, the tip of the columnar crystal 101 may be insufficiently covered, and the moisture resistance of the columnar crystal 101 may deteriorate.
  • the height of the convex portion is 10.3 ⁇ m. This is about the same as the diameter of the column, and serves as a guideline for the upper limit when the protective film 102 covers the range from the tip portion to the side wall portion of the columnar crystal 101 . If the protective film 102 is thicker than the upper limit and filled in the gaps between the columnar crystals 101, the emitted light will be guided or scattered between the plurality of columnar crystals 101, and the spatial resolution will decrease, which is preferable. do not have.
  • the columnar diameters of the columnar crystals 101 are mixed with various sizes and have a distribution of several ⁇ m to several tens of ⁇ m, so the upper limit is preferably four times or less the columnar diameter.
  • the value of the thickness of the protective film 102 is preferably 0.5 times or more and 4 times or less the value of the column diameter.
  • the coverage range of the protective film of the present invention in the film thickness direction of the phosphor will be described below.
  • the columnar crystals growing from crystal nuclei with fine diameters gradually undergo selection and fusion to form a group of columnar crystals. It increases as the film thickness increases.
  • the distance between the pillars of the columnar crystals is extremely small between the fine crystal nuclei, but as the film thickness increases, the distance between the pillars progresses, and above a certain film thickness, the distance between the pillars is maintained at approximately constant intervals.
  • the protective layer 102 of the present invention is formed in the region in the initial stage of vapor deposition consisting of crystal nuclei with a fine diameter, the gaps between the columnar crystals 101 are filled with the protective layer 102 to eliminate the gaps, thereby scattering the guided light. , the spatial resolution is reduced. Therefore, as shown in FIG. 1C, in the area covered by the protective film 102, the separation between the columnar crystals 101 is sufficiently advanced and the gaps are clear. It is desirable that the area be such that a gap between them can be maintained.
  • the side wall of the tip side of the columnar crystal is covered with 50% or less of the thickness of the phosphor.
  • the raw material of the protective film 102 used in the present invention includes, for example, a polysilazane-based inorganic polymer composed of silicon, nitrogen, and hydrogen such as perhydropolysilazane, the concentration is adjusted with an organic solvent, and various catalysts are added as appropriate. can be formed by using a liquid. Depending on the type of raw material to be selected, heating may be applied as appropriate during the hydrolysis reaction or the conversion reaction to silica glass, but it is preferable to select a raw material that causes the reaction at room temperature more simply.
  • Method for forming protective film As a forming means, by appropriately selecting a method using a liquid such as spin coating, spray coating, dip coating, flow coating, and bar coating, the desired thickness of the columnar crystal 101 can be obtained as compared with, for example, the vapor phase growth method. coating can be easily obtained. In addition, by using a liquid raw material, it becomes easy to supply a large amount of the raw material to the surface of the group of columnar crystals 101, especially to the concave portions, so that the surface roughness due to the unevenness of the surface of the columnar crystals 101 can be reduced. becomes.
  • a liquid raw material it becomes easy to supply a large amount of the raw material to the surface of the group of columnar crystals 101, especially to the concave portions, so that the surface roughness due to the unevenness of the surface of the columnar crystals 101 can be reduced. becomes.
  • the raw material solution to be applied stays at the tips of the columnar crystals 101 for a longer period of time due to the centrifugal force of the rotation, so it is easy to form the protective film 102 on the tips of the columnar crystals 101 . become desirable. Moreover, it is possible to suppress the formation of the protective film 102 between the plurality of columnar crystals 101 to the necessary minimum.
  • the temperature may be raised, heated, or humidified to the extent that the columnar crystals 101 are not deliquesced when the raw materials are supplied or applied, or after the protective film 102 is formed.
  • the columnar crystals may be subjected to flattening treatment.
  • a method of flattening treatment it is preferable to use a method of uniformly pressing the surface of the phosphor with a flat plate or a roller, or a method of removing the abnormal crystal growth part, but the surface roughness of the phosphor is reduced. If possible, the means are not limited.
  • the phosphor is coated with a metal alkoxide such as ethyl silicate after the phosphor is formed. may be performed.
  • the host material of the phosphor can be selected from alkali metal halide compounds capable of forming groups of columnar crystals 101, such as cesium iodide and cesium bromide.
  • the base material may contain an activator such as thallium iodide or thallium bromide.
  • the phosphor of the present invention can be produced by general vacuum film forming means such as vapor deposition.
  • evaluation It is preferable to evaluate the shape of the columnar diameter 301 of the produced phosphor columnar crystal 101 using a scanning electron microscope (SEM) or the like. Further, the evaluation of the resolution characteristic can be quantitatively compared by measuring the modulation transfer function (MTF). In addition, detection quantum efficiency (DQE) can be evaluated using various photodetectors such as charge-coupled devices (CCD) and complementary metal oxide semiconductors (CMOS) and photodetectors such as cameras. Also, the chemical composition of the deposited film can be evaluated by, for example, fluorescent X-ray analysis or inductively coupled plasma analysis, and the crystallinity can be evaluated by, for example, X-ray diffraction analysis.
  • SEM scanning electron microscope
  • MTF modulation transfer function
  • DQE detection quantum efficiency
  • CCD charge-coupled devices
  • CMOS complementary metal oxide semiconductors
  • the chemical composition of the deposited film can be evaluated by, for example, fluorescent X-ray analysis or inductively coupled plasma analysis, and the crystallinity can be evaluated
  • a radiation detector using the scintillator plate of the present invention for example, as shown in FIG.
  • an indirect type radiation detector configured to be combined with 402 .
  • a direct radiation detector may be formed by forming a phosphor on a substrate 405 with a photosensor and combining it with a reflective layer 403 via an adhesive layer 401 .
  • the radiation detector described above can be applied to a radiation imaging apparatus that captures radiation-based images.
  • X-rays are typically used as radiation, but alpha rays, beta rays, and the like may also be used.
  • FIG. 6 shows an example of how the radiation imaging apparatus is used.
  • Radiation 611 generated by the radiation source 610 passes through the chest 621 of the patient 620 and enters the radiation imaging device 630 .
  • Radiation 611 incident on the device 630 contains information inside the body of the patient 620 , and the device 630 acquires electrical information corresponding to the radiation 611 .
  • the image processor 640 After the electrical information is converted into a digital signal, the image processor 640, for example, performs predetermined signal processing.
  • a user such as a doctor can observe the radiation image corresponding to this electrical information, for example, on the display 650 in the control room.
  • the user can transfer the radiographic image or its data to a remote location by a predetermined communication means 660, and can also observe this radiographic image on the display 651 in the doctor's room at another location.
  • the user can also record this radiographic image or its data on a predetermined recording medium, for example, record it on a film 671 by the film processor 670 .
  • Comparative example 1 In this comparative example, a phosphor having a columnar crystal structure was formed using cesium iodide as a base material and thallium iodide as an activator using a vacuum deposition apparatus, and then a protective film was formed using ethyl silicate. .
  • a material supply source filled with cesium iodide as a vapor deposition base material, a material supply source filled with thallium iodide as a vapor deposition activator material, and a substrate were placed in a vacuum vapor deposition apparatus.
  • the substrate used was a glass substrate on which an aluminum reflective layer with a thickness of 100 nm and a silicon dioxide layer with a thickness of 50 nm were laminated.
  • each material supply source After evacuating the interior of the vapor deposition apparatus to 0.01 Pa or less, each material supply source is heated by gradually passing an electric current. Film formation was started by opening a shutter provided between them. The substrate temperature was gradually raised from 80.degree. C. to 160.degree. While confirming the state of the film formation, the shutter was closed when the desired film thickness was formed, and the film formation was completed. After the substrate and the material supply source were cooled to room temperature, ethyl silicate was quickly brought into contact with the deposited film by the vapor phase growth method to cover it with a protective film.
  • Comparative example 2 In this comparative example, a phosphor having a columnar crystal structure was formed using cesium iodide as a base material and thallium iodide as an activator using a vacuum deposition apparatus, and then a protective film was formed using ethyl silicate. Polyparaxylylene is formed as a protective film thereon.
  • the change over time of MTF (2) was measured in the same manner as in Comparative Example 1. Assuming that the value of MTF (2) after 5 days in Comparative Example 1 is 1, the graph of Comparative Example 2 in FIG. A time course curve was obtained. Since the polyparaxylylene protective film was thick, the MTF(2) relative value of this comparative example after 5 days was as low as 0.79. However, almost no deterioration in resolution was observed until 30 days after that, indicating that the film had moisture resistance.
  • Example 1 is an example of a method for manufacturing a scintillator plate according to the present invention.
  • a vacuum deposition apparatus Using a vacuum deposition apparatus, a phosphor composed of aggregates of columnar crystals 101 is formed using cesium iodide as a base material and thallium iodide as an activator, and then a protective film 102 is formed using perhydropolysilazane.
  • a deposition film of phosphor is formed on a substrate with a reflective film.
  • the deposition film is formed in the same manner as in Comparative Example 1.
  • a protective film 102 was formed by a spin coating method using a solution raw material containing a small amount of perhydropolysilazane in a dibutyl ether solvent, and dried for 24 hours in an environment of 25° C. and 50% humidity.
  • Example 2 is an example of a method for manufacturing a scintillator plate according to the present invention.
  • a vacuum vapor deposition apparatus Using a vacuum vapor deposition apparatus, a phosphor composed of aggregates of columnar crystals 101 is formed using cesium iodide as a base material and thallium iodide as an activator, and ethyl silicate is used to form a protective film. After that, the abnormal crystal growth portion was flattened, and then a protective film 102 was formed from perhydropolysilazane.
  • a vapor-deposited film of phosphor is formed on a substrate with a reflective film, and then a protective film is formed with ethyl silicate, which is the same as in Comparative Example 1.
  • the substrate is sandwiched between glass plates with a thickness of 2 mm and set in a vacuum pressure device, and pressurized at 0.1 MPa. bottom.
  • a protective layer was formed by a spray coating method using a solution raw material containing a small amount of perhydropolysilazane in a dibutyl ether solvent, and dried at 50°C for 3 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

基板上に形成され照射された放射線に応じた光を発する所定の柱径を有する柱状結晶と、柱状結晶を覆うように設けられ柱状結晶を水蒸気から保護するための所定の厚さを有する保護膜と、を有するシンチレータプレートである。保護膜の算術平均粗さの値が柱径の値以下であり、かつ、保護膜の厚さの値が柱径の値の4倍以下であることを特徴とする。

Description

シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法
 本発明は、シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法に関するものである。
 医療現場等でX線撮影に用いられているフラットパネルディテクタ(FPD)などでは、被写体を通過したX線を、基板上に形成した放射線検出材料である蛍光体(シンチレータプレート)で受け、その蛍光体が発した光を受光素子で検出している。その蛍光体の結晶部分には、発光した光を受光素子に効率よく伝達させるために、蒸着法にて作製された、例えばヨウ化セシウムなどのハロゲン化アルカリ金属の柱状結晶群、あるいは針状結晶群が用いられてきた。
 一般的にヨウ化セシウム柱状結晶の蒸着工程では、成膜初期に微細な結晶核が基板上に形成される。基板温度や圧力、成膜レートを選択することで、結晶核は<100>方位で優先的に成長して柱状結晶となり、成膜後期には径のサイズがより大きな柱状結晶となる。柱状結晶群は各々の柱状結晶間に空隙が形成されており、例えばヨウ化セシウムの屈折率(約1.8)と空気の屈折率(1.0)の比により、高屈折率なヨウ化セシウム柱状結晶中で光が全反射を繰り返し、効果的に受光素子に導波する。
 柱状結晶群はアスペクト比が高く、通常の平面膜と比べて比表面積が非常に大きい。特に潮解性を有するハロゲン化アルカリ金属の柱状結晶群の場合、大気に含まれる水蒸気に暴露されると容易に潮解し、柱状結晶同士が融着したり、側壁の平面性が損なわれたりする。潮解したハロゲン化アルカリ金属では、発光した光が受光素子に届く前に柱状結晶間を伝搬したり、界面で散乱したりする為、放射線検出器の空間分解能が低下する可能性がある。
 特許文献1には、柱状結晶群からなる蛍光体に対し、金属アルコキシドを原料とする第1保護層を柱状結晶の界面と化学結合させ、さらに第2保護層で封止する技術が開示されている。2つの保護層により、蛍光体と水蒸気の接触を防いで潮解を防ぎ、蛍光体の防湿性の低下防止と、空間分解能の低下抑制とを両立している。
特開2020-041820号公報
 特許文献1のように、金属アルコキシドを原料とする第1保護層は化学結合により形成される為、厚さは単分子層相当と薄く、さらに未反応の原料も存在することから、恒久的な防湿機能を有することは難しい。そのため、所望の防湿性を実現する為には、第1保護層よりも厚い、ポリパラキシリレンなどの第2保護層で凹凸のある柱状結晶の表面を確実に被覆することが必要となる。そのため、光学距離や光学界面が増加したり、第1保護層と第2保護層の密着性が不足したりして、結果として放射線画像の画質が低下する可能性がある。
 本発明は、高い分解能と防湿性を両立することが可能となるシンチレータプレートを提供することを目的とする。
 上記の課題は、基板上に形成され照射された放射線に応じた光を発する所定の柱径を有する柱状結晶と、前記柱状結晶を覆うように設けられ前記柱状結晶を水蒸気から保護するための所定の厚さを有する保護膜と、を有するシンチレータプレートであって、前記保護膜の算術平均粗さの値が前記所定の柱径の値以下であり、かつ、前記所定の厚さの値が前記所定の柱径の値の4倍以下であることを特徴とするシンチレータプレートにより解決される。
 上記の特徴により、シンチレータプレートが高い分解能と防湿性を両立することが可能となる。
本発明の実施形態に係る柱状結晶群が保護膜で覆われる様子を示す断面図である。 本発明の実施形態に係る柱状結晶群が保護膜で覆われる様子を示す断面図である。 本発明の実施形態に係る柱状結晶群が保護膜で覆われる様子を示す断面図である。 本発明の実施形態に係る柱状結晶群の表面側の断面SEM写真である。 本発明の実施形態に係る柱状結晶の先端部を模式的に表した断面図である。 本発明の実施形態に係る柱状結晶の先端部を模式的に表した断面図である。 本発明の実施形態に係る放射線検出器の構成を示す断面図である。 本発明の実施形態に係る放射線検出器の構成を示す断面図である。 本発明の実施形態に係る放射線検出器の空間分解能の経時変化を示す図である。 本発明の実施形態に係る放射線撮影装置の使用様態の例を説明する図である。 本発明の実施形態に係る柱状結晶群の先端部が保護膜で覆われる様子を示す断面SEM写真の一例である。
 以下、本発明の実施例および比較例の形態について記す。
 (蛍光体の表面粗さ)
 図1Aは、基板上に形成される柱状結晶101の集合体からなる蛍光体を示したものであり、また、図1Bはその断面を示したものである。本発明の一態様によれば、蛍光体の表面には、図1A、図1Bに示すように凹凸がある。一例として、図2の断面SEM写真から柱状結晶の先端角を測定すると、52度から89度まで広く分布しているが、多くは70度から79度の範囲であり、平均値を求めると75度である。なお、図2の図中の矢印は柱状結晶101の成長方向を示すものである。
 一般的に、表面の凹凸の平均値を基準線として、抜き取り区間の基準線からの距離の平均値を算術平均粗さ(Ra)と呼ぶ。Raは抜き取り区間Lの平均線の方向にx軸、縦倍率の方向にy軸を取り、粗さ曲線をy=f(x)で表したときに以下の式(数1)で求められ、小さな値ほど表面が平らで滑らかであることを表す。
Figure JPOXMLDOC01-appb-M000001
 例えば、図3Aのように蛍光体の柱径301が10μm、凸部高さ302が7μm、先端角が71度で柱状結晶101が隙間無く並んでいる場合、Raは1.75μmである。この表面が仮に図3Bのように、先端角104度、凸部高さ3.9μmと図3Aより滑らかな形状となった場合、Raは約0.98μmと図3Aに示す蛍光体より小さな値となる。
 本発明の保護膜102を蛍光体表面上に形成し、保護膜の表面粗さの値を柱径の値以下とすることで、蛍光体表面の表面粗さが低減されてより滑らかになり、次工程のプロセスにおける安定性が向上する。より好ましくは、保護膜の表面粗さの値は、柱径の値の10%以下とするとよい。
 例えば、図4Aの間接型のフラットパネルディテクタを作製する場合、接着層401などを介して光センサ402との貼り付けにおいて、蛍光体表面の表面粗さが低減されている場合は密着性が向上する。同様に、図4Bの直接型のフラットパネルディテクタを作製する場合、接着層401などを介する反射層403の形成において、密着性が向上する。
 本発明のように、蛍光体表面が完全に平滑化されていなくても、一般的な接着層401の厚さは数μm以上ある為、保護膜102の表面粗さを十分に吸収することができる。なお、接着層401としては適宜、ホットメルト樹脂や粘着材等を用いても良い。
 また、使用する接着層や構成部材の厚さの低減が可能となり、柱状結晶101の先端側から光センサ402側の面までの長さ(光路長)をより短くすることができるので、フラットパネルディテクタの空間分解能が向上する効果もある。
 本発明の保護膜102で蛍光体の表面粗さを低減できると、特に柱状結晶の先端側の凸部において、柱状結晶101と保護膜102との界面で光の屈折角がより小さくなり、導波する光が緩やかに柱状結晶成長方向へ向きを変える成分が多くなる。これにより、光センサ402へ入射する光の拡散を防止できる。
 表面粗さの計測は、接触式の触針式表面粗さ測定器や、非接触式の共焦点レーザー顕微鏡などで行うことが可能であるが、柱状結晶のように柔らかく脆い表面の計測には、非破壊で光照射で計測可能な後者を用いることがより好ましい。
 (保護膜の厚さ)
 例えば、蛍光体の柱状結晶101の柱径が10μm、先端角が89度である場合、凸部の高さは5.09μmであり、これは柱径の約0.5倍である。この値は、保護膜102が柱状結晶101の先端部分から側壁部分に至る範囲を覆う際の下限の目安となる。保護膜102が下限の目安よりも薄いと、柱状結晶101の先端部の被覆が不十分となり、柱状結晶101の防湿性が低下する可能性があり好ましくない。
 また、蛍光体の柱状結晶101の柱径が10μm、先端角が52度である場合、凸部の高さは10.3μmである。これは柱径と同程度であり、保護膜102が柱状結晶101の先端部分から側壁部分に至る範囲を覆う際の上限の目安となる。保護膜102が上限の目安より厚く、柱状結晶101の隙間に充填されると、複数の柱状結晶101の間で発光が導波したり散乱されたりすることになり、空間分解能が低下して好ましくない。
 実際には、柱状結晶101の柱径は様々なサイズが混在しており、数μmから数十μmの分布を有することから、上限は柱径の4倍以下が好ましい。以上のことから、保護膜102の厚さの値は、柱径の値の0.5倍以上かつ4倍以下であるのが好適である。
 (保護膜の被覆範囲)
 本発明の保護膜の、蛍光体の膜厚方向への被覆範囲について以下に説明する。例えば蒸着法などの手段で基板上に柱状結晶を形成する場合、微細径の結晶核から成長する柱状結晶同士が徐々に淘汰と融合を経て柱状結晶群を形成するため、柱状結晶の柱径は膜厚が増えるに連れて増加する。一方、柱状結晶同士の柱間は、微細な結晶核同士では極めて小さいが、膜厚が増す毎に柱間の分離が進み、ある程度の膜厚からは凡そ一定の間隔で維持される。
 微細径の結晶核から成る蒸着初期の領域に本発明の保護層102を形成すると、柱状結晶101同士の隙間に保護膜102が充填されて隙間が無くなることになり、導波する光が散乱し、空間分解能が低下する。したがって、図1Cのように、保護膜102の被覆範囲は、柱状結晶101同士の分離が十分に進んで隙間が明瞭で、保護膜102で柱状結晶101の側壁を被覆しても、柱状結晶101同士の隙間を維持できる領域であることが望ましい。好ましくは、柱状結晶の先端側の側壁に、蛍光体の厚さの50%以下を被覆する。
 (保護膜の原料)
 本発明で用いる保護膜102の原料は、例えば、パーヒドロポリシラザンをはじめとするケイ素、窒素、水素から成るポリシラザン系の無機ポリマーを含み、有機溶媒で濃度調整され、適宜、種々の触媒が添加された液体を用いることで形成可能である。選択する原料の種類によっては、加水分解反応やシリカガラスへの転化反応時に適宜加熱を施しても良いが、より簡便には前記反応が室温で生じる原料を選択することが好ましい。
 (保護膜の形成方法)
 形成手段としては、スピンコート、スプレーコート、ディップコート、フローコート、バーコートなど液体を用いた手法を適宜選択することで、例えば気相成長の手法と比べ、柱状結晶101への所望の厚さのコーティングを容易に得ることが可能となる。また、液体原料を用いることで、柱状結晶101の群の表面の、特に凹部へ原料を多く供給することが容易となるため、柱状結晶101の表面の凹凸による表面粗さを低減することが可能となる。
 例えばスピンコート法を用いれば、塗布される原料溶液が回転による遠心力で柱状結晶101の先端部分に留まる時間が長くなることから、柱状結晶101の先端部への保護膜102の形成が容易となって好ましい。また、複数の柱状結晶101の間への保護膜102の形成を必要最低限に抑制することも可能である。
 また、スプレーコート法を用いれば、大面積基板への原料溶液の塗布量を均一化できたり、ディップコート法を用いれば、一度に基板の両面へ原料溶液を厚く塗布したりすることが可能となる。
 さらに、原料の塗布時や乾燥時に柱状結晶101の先端部を鉛直下向きに保持することで、複数の柱状結晶101の間への保護膜102の形成を抑制することも可能である。必要に応じて化学反応を促進するために、適宜、原料供給や塗布時、さらには保護膜102の形成後に昇温や加熱、柱状結晶101が潮解しない程度の加湿を行ってもよい。
 さらに、柱状結晶に対し、平坦化処理を行ってもよい。平坦化処理の方法としては、平板やローラーで蛍光体の表面を一様に加圧する方法や、異常結晶成長部分を除去する方法を用いるのが好適であるが、蛍光体の表面粗さが低減できれば、手段を限定するものではない。
 本発明の保護膜を形成する前には、次工程の処理完了までの時間や保管期間の特性低下の低減措置として、蛍光体成膜後にケイ酸エチルなどの金属アルコキシドなどで蛍光体の被覆処理を行ってもよい。
 (蛍光体の原料)
 蛍光体の母材は、例えばヨウ化セシウムや臭化セシウムなど、柱状結晶101の群が形成可能なハロゲン化アルカリ金属化合物から選択可能である。母材に十分な発光機能を付与するには、賦活材として、例えばヨウ化タリウムや臭化タリウムなどを母材に含んでも良い。本発明の蛍光体の作製は、例えば蒸着法などの一般的な真空成膜の手段で形成可能である。
 (評価)
 作製した蛍光体の柱状結晶101の柱径301の形状の評価は、走査型電子顕微鏡(SEM)などで行うのが好適である。また、分解能特性の評価は、変調伝達関数(MTF)を測定すれば定量的に比較することができる。また、検出量子効率(DQE)の評価は、電荷結合素子(CCD)や相補型金属酸化膜半導体(CMOS)など、様々な受光素子やカメラなどの光検出器を用いて評価可能である。また、蒸着膜の化学組成は例えば蛍光X線分析や誘導結合プラズマ分析、結晶性は例えばX線回折分析などで評価が可能である。
 (放射線検出器、放射線撮影装置への利用)
 本発明のシンチレータプレートを用いた放射線検出器としては、例えば図4Aのように、反射層付き基板404の上に蛍光体を形成し、接着層401を介して光を電荷へと変換する光センサ402と組み合わせる構成の間接型の放射線検出器がある。それ以外にも、例えば図4Bのように、光センサ付き基板405上へ蛍光体を形成し、接着層401を介して反射層403と組み合わせる構成の直接型の放射線検出器としても良い。
 上述の放射線検出器は、放射線に基づく画像を撮影する放射線撮影装置に適用されうる。放射線には、典型的にはX線が用いられるが、アルファ線やベータ線等が用いられてもよい。
 図6は、放射線撮影装置の使用態様の一例を示す。放射線源610が発生した放射線611は、患者620の胸部621を透過し、放射線撮影装置630に入射する。装置630に入射した放射線611には患者620の体内の情報が含まれており、装置630は、放射線611に応じた電気的情報を取得する。この電気的情報は、ディジタル信号に変換された後、例えばイメージプロセッサ640によって所定の信号処理が為される。
 医師等のユーザは、この電気的情報に応じた放射線画像を、例えばコントロールルームのディスプレイ650で観察することができる。ユーザは、放射線画像又はそのデータを、所定の通信手段660により遠隔地へ転送することができ、この放射線画像を、他の場所であるドクタールームのディスプレイ651で観察することもできる。また、ユーザは、この放射線画像又はそのデータを所定の記録媒体に記録することもでき、例えば、フィルムプロセッサ670によってフィルム671に記録することもできる。
 以下、本発明の比較例および実施例について説明する。
 (比較例1)
 本比較例は、真空蒸着装置を用いて、ヨウ化セシウムを母材、ヨウ化タリウムを賦活材とする柱状結晶構造の蛍光体を形成した後、ケイ酸エチルで保護膜を形成したものである。
 まず、蒸着母体原料として、ヨウ化セシウムを充填した材料供給源、蒸着賦活剤原料としてヨウ化タリウムを充填した材料供給源、基板を真空蒸着装置内に配置した。基板はガラス基板上にアルミニウム反射層を厚さ100nm、二酸化ケイ素を厚さ50nm積層したものを用いた。
 蒸着装置内を0.01Pa以下になるまで真空排気した後、各々の材料供給源に電流を徐々に流して加熱し、設定温度に達したところで、基板回転を行いつつ、基板と材料供給源の間に設けられたシャッターを開けることで成膜を開始した。なお、基板温度は80℃から160℃まで徐々に昇温した。成膜の様子を確認しつつ、所望の膜厚が形成されたところでにシャッターを閉じて成膜を終了した。基板と材料供給源を室温まで冷却後、速やかに蒸着膜に気相成長法でケイ酸エチルを接触させ、保護膜で被覆した。
 蒸着膜を走査型電子顕微鏡で観察すると、図2のような柱状結晶群の形成が確認できた。蒸着膜の成膜表面をCMOS光検出器にFOP(Fiber Optic Plate)を介して密着させて、基板側から国際規格の線質RQA5に準じたX線を照射して画像を取得した。また、放射線検出材料の分解能の指標である、空間周波数が2Lp/mmでのMTF(2)をタングステン製のナイフエッジを用いたエッジ法により求めた。
 25℃湿度50%の環境下で保管し、経過日数毎にMTF測定を行った。5日経過後のMTF(2)の値を1とすると、図5のグラフの比較例1に示すような経時変化曲線が得られた。MTF(2)相対値は、徐々に低下し、30日後では0.76となり、空間分解能の低下が見られた。
 (比較例2)
 本比較例は、真空蒸着装置を用いて、ヨウ化セシウムを母材、ヨウ化タリウムを賦活材とする柱状結晶構造の蛍光体を形成した後、ケイ酸エチルで保護膜を形成し、さらにその上にポリパラキシリレンを保護膜として形成したものである。
 反射膜付きの基板上に蒸着膜、ケイ酸エチルで保護膜を形成するところまでは比較例1と同様に行い、基板取り出し後、ポリパラキシリレン成膜装置にセットした。真空排気後、原料のジパラキシリレンを熱活性化したラジカルパラキシリレンを成膜室へ導入し、表面に厚さ15μmのポリパラキシリレンの保護膜を形成した。
 比較例1と同様にして、MTF(2)の経時変化を測定したところ、比較例1の5日後のMTF(2)の値を1とすると、図5のグラフの比較例2に示すような経時変化曲線が得られた。ポリパラキシリレンの保護膜が厚い為、5日後の本比較例のMTF(2)相対値は0.79と低かった。しかし、その後30日後まで分解能の低下はほとんど見られず、防湿性を有することが分かった。
 (実施例1)
 本実施例1は、本発明におけるシンチレータプレートの製造方法の一例である。真空蒸着装置を用いて、ヨウ化セシウムを母材、ヨウ化タリウムを賦活材とする柱状結晶101の集合体からなる蛍光体を形成した後、パーヒドロポリシラザンで保護膜102を形成する。
 まず、準備工程として、反射膜付きの基板上に蛍光体の蒸着膜を形成する。蒸着膜の形成は比較例1と同様に行う。
 次に、保護膜の形成工程として、基板取り出し後、速やかにスピンコーターにセットした。ジブチルエーテル溶媒にパーヒドロポリシラザンが微量に含まれる溶液原料を用いてスピンコート法で保護膜102を形成し、25℃湿度50%環境下にて24時間乾燥した。
 蒸着膜を走査型電子顕微鏡で観察した一例として、図7のように、柱状結晶101の集合体からなる蛍光体の表面が一体となった保護膜102で覆われている様子を確認できた。比較例1と同様にして、MTF(2)の経時変化を測定したところ、比較例1の5日後のMTF(2)の値を1とすると、図5のグラフの実施例1に示すような経時変化曲線が得られた。これにより、比較例1よりも高分解能かつ、30日後まで分解能の劣化はほとんど見られず、高い分解能と防湿性が両立できることが分かった。
 (実施例2)
 本実施例2は、本発明におけるシンチレータプレートの製造方法の一例である。真空蒸着装置を用いて、ヨウ化セシウムを母材、ヨウ化タリウムを賦活材とする柱状結晶101の集合体からなる蛍光体を形成し、ケイ酸エチルで保護膜を形成する。その後、異常結晶成長部分に平坦化処理を施した後、さらにパーヒドロポリシラザンで保護膜102を形成した。
 まず、準備工程として、反射膜付きの基板上に蛍光体の蒸着膜を形成し、さらにケイ酸エチルで保護膜を形成するところまでは比較例1と同様である。
 その後、平坦化工程として、蛍光体の異常結晶成長部分を平坦化するために、基板取り出し後、基板を厚さ2mmのガラス板の間に挟んで真空加圧装置にセットし、0.1MPaで加圧した。
 次に、保護膜の形成工程として、ジブチルエーテル溶媒にパーヒドロポリシラザンが微量に含まれる溶液原料を用いてスプレーコート法で保護層を形成し、50℃で3時間乾燥した。
 比較例1と同様にして、MTF(2)の経時変化を測定したところ、比較例1の5日後のMTF(2)の値を1とすると、図5のグラフの実施例2に示すような経時変化曲線が得られた。これにより、分解能を維持しつつ、30日後まで分解能の劣化はほとんど見られず、高い分解能と防湿性が両立できることが分かった。
 以上では幾つかの好適な例を示したが、本発明はこれらに限られるものではなく、本発明の趣旨を逸脱しない範囲でその一部が変更されてもよい。また、本明細書に記載された個々の用語は、本発明を説明する目的で用いられたものに過ぎず、本発明は、その用語の厳密な意味に限定されるものでないことは言うまでもなく、その均等物をも含みうる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2021年11月24日提出の日本国特許出願特願2021-190617を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (10)

  1.  基板上に形成され照射された放射線に応じた光を発する所定の柱径を有する柱状結晶と、
     前記柱状結晶を覆うように設けられ前記柱状結晶を水蒸気から保護するための保護膜と、を有するシンチレータプレートであって、
     前記保護膜の算術平均粗さの値が前記所定の柱径の値以下であり、かつ、前記保護膜の厚さの値が前記所定の柱径の値の4倍以下であることを特徴とするシンチレータプレート。
  2.  前記保護膜は算術平均粗さの値が前記所定の柱径の値の10%以下であり、かつ、前記保護膜の厚さの値が前記所定の柱径の値の0.5倍以上かつ4倍以下であることを特徴とする請求項1に記載のシンチレータプレート。
  3.  前記保護膜は、前記柱状結晶の側壁を、前記柱状結晶の先端から前記柱状結晶の高さの50%以下の領域で被覆していることを特徴とする請求項1または2に記載のシンチレータプレート。
  4.  前記保護膜は、シリカからなることを特徴とする請求項1乃至3のいずれか一項に記載のシンチレータプレート。
  5.  前記柱状結晶は、ハロゲン化アルカリ金属化合物からなることを特徴とする請求項1乃至4のいずれか一項に記載のシンチレータプレート。
  6.  請求項1乃至5のいずれか一項に記載のシンチレータプレートと、
     前記シンチレータプレートからの光を電荷へと変換する光センサと、を有すること
     を特徴とする放射線検出器。
  7.  基板上に形成される柱状結晶の集合体からなる蛍光体を準備する準備工程と、
     保護膜の原料を塗布および乾燥して前記蛍光体を覆うように前記保護膜を形成する形成工程と、を行うシンチレータプレートの製造方法であって、
     前記形成工程の前に、平坦化処理により前記柱状結晶の表面粗さを低減する平坦化工程を行うことを特徴とする製造方法。
  8.  前記形成工程は、スピンコート法により前記保護膜を形成することを特徴とする請求項7に記載の製造方法。
  9.  前記形成工程は、スプレーコート法により前記保護膜を形成することを特徴とする請求項7に記載の製造方法。
  10.  前記形成工程は、前記保護膜の原料としてポリシラザンを含むことを特徴とする請求項7乃至9のいずれか一項に記載の製造方法。
PCT/JP2022/041932 2021-11-24 2022-11-10 シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法 WO2023095632A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190617 2021-11-24
JP2021190617A JP2023077337A (ja) 2021-11-24 2021-11-24 シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法

Publications (1)

Publication Number Publication Date
WO2023095632A1 true WO2023095632A1 (ja) 2023-06-01

Family

ID=86539487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041932 WO2023095632A1 (ja) 2021-11-24 2022-11-10 シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法

Country Status (2)

Country Link
JP (1) JP2023077337A (ja)
WO (1) WO2023095632A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008741A (ja) * 2006-06-29 2008-01-17 Konica Minolta Medical & Graphic Inc 放射線用シンチレータプレートとその製造方法
JP2009034428A (ja) * 2007-08-03 2009-02-19 Konica Minolta Medical & Graphic Inc X線撮影システム
JP2014009991A (ja) * 2012-06-28 2014-01-20 Fujifilm Corp 放射線画像検出装置及びその製造方法
JP2017036922A (ja) * 2015-08-06 2017-02-16 キヤノン株式会社 シンチレータ、その製造方法、放射線撮像装置および放射線撮像システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008741A (ja) * 2006-06-29 2008-01-17 Konica Minolta Medical & Graphic Inc 放射線用シンチレータプレートとその製造方法
JP2009034428A (ja) * 2007-08-03 2009-02-19 Konica Minolta Medical & Graphic Inc X線撮影システム
JP2014009991A (ja) * 2012-06-28 2014-01-20 Fujifilm Corp 放射線画像検出装置及びその製造方法
JP2017036922A (ja) * 2015-08-06 2017-02-16 キヤノン株式会社 シンチレータ、その製造方法、放射線撮像装置および放射線撮像システム

Also Published As

Publication number Publication date
JP2023077337A (ja) 2023-06-05

Similar Documents

Publication Publication Date Title
US8049177B2 (en) Radiation image detection apparatus and manufacturing method of the same
JP5597354B2 (ja) シンチレータパネル及び放射線検出器
JP3691392B2 (ja) シンチレータパネル
US8895932B2 (en) Scintillator plate and radiation detection panel
US8841621B2 (en) Radiographic imaging apparatus
CN1207575C (zh) 放射线检测装置和系统及其闪烁体面板
JP6528387B2 (ja) シンチレータパネルおよび放射線検出器
TWI518352B (zh) Radiation detector and manufacturing method thereof
JP2016033515A (ja) 接着された蛍光体層を有するデジタルx線撮影用検出器
JP2008051793A (ja) 放射線検出装置及びシンチレータパネル
KR101726464B1 (ko) 방사선상 변환 패널
JP5661426B2 (ja) 放射線検出器及びその製造方法
US7491949B2 (en) Radiation image conversion panel and process for producing the same
JP2002501207A (ja) 感光性マトリックス型電子センサ
JP6522848B2 (ja) シンチレータ
WO2023095632A1 (ja) シンチレータプレート、放射線検出器、およびシンチレータプレートの製造方法
US11181650B2 (en) Scintillator plate, radiation imaging apparatus, and method of manufacturing scintillator plate
US10094938B2 (en) Scintillator plate and radiation detector including the same
JP2011232197A (ja) シンチレータパネル及び放射線画像検出装置
JP2004325442A (ja) 放射線検出装置、及びその製造方法
JP2019060821A (ja) X線タルボ撮影用パネル
JP2017508969A (ja) 強磁性層をもつ放射線透過撮影用フラットパネル検出器およびその製法
US11643596B2 (en) Scintillator plate, method for manufacturing scintillator plate, and radiation detection apparatus
US20240072085A1 (en) Radiation imaging apparatus, radiation imaging system, and method of manufacturing radiation imaging apparatus
KR101069370B1 (ko) 신틸레이터 패널 및 상기 패널을 구비하는 방사선 이미지 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898416

Country of ref document: EP

Kind code of ref document: A1