WO2023095572A1 - Hypochlorous acid water treatment device and space disinfection system using same - Google Patents

Hypochlorous acid water treatment device and space disinfection system using same Download PDF

Info

Publication number
WO2023095572A1
WO2023095572A1 PCT/JP2022/040881 JP2022040881W WO2023095572A1 WO 2023095572 A1 WO2023095572 A1 WO 2023095572A1 JP 2022040881 W JP2022040881 W JP 2022040881W WO 2023095572 A1 WO2023095572 A1 WO 2023095572A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypochlorous acid
acid water
positive electrode
channel
cathode
Prior art date
Application number
PCT/JP2022/040881
Other languages
French (fr)
Japanese (ja)
Inventor
充彦 植田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021191690A external-priority patent/JP2023078532A/en
Priority claimed from JP2021204699A external-priority patent/JP2023089991A/en
Priority claimed from JP2022009806A external-priority patent/JP2023108654A/en
Priority claimed from JP2022020913A external-priority patent/JP2023118144A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023095572A1 publication Critical patent/WO2023095572A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/126Installations for disinfecting or deodorising waste-water plumbing installations

Definitions

  • This disclosure relates to a hypochlorous acid water treatment device and a space sterilization system using the same.
  • hypochlorous acid water containing NaClO as the main component and containing HClO and NaOH is generated.
  • Hypochlorous acid water is known to improve its sterilization power by making it weakly acidic. Techniques for side control are known. (See Patent Document 1, for example).
  • NaClO and NaOH which are residual components
  • NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing a large amount of NaClO and NaOH components is mist-sprayed, fine residual components are accumulated, and there is a problem of corrosion during long-term use.
  • tap water when tap water is used as raw water to generate salt water, there is concern that anions contained in the tap water may cause variations in concentration and characteristics of hypochlorous acid water generated by electrolysis.
  • cations contained in tap water are components that remain as solids on the surface after volatilization, and these residual components also promote corrosion of metals, so there is also concern about corrosion during long-term use.
  • the purpose of the present disclosure is to provide a hypochlorous acid water treatment device capable of producing hypochlorous acid water with reduced residual components generated by electrolysis of salt water and a space sterilization system using the same.
  • the hypochlorous acid water supply device includes a first flow channel in which the positive electrode is exposed along the flow channel, and a first flow channel arranged in parallel to face the first flow channel, and a negative electrode in the flow channel. a second flow path extending along and exposed along, a diaphragm separating the first flow path and the second flow path and allowing cations contained in the solution flowing through the flow path to permeate, a positive electrode and a negative electrode. and a power source for applying a voltage between the electrodes.
  • the first flow channel and the second flow channel are configured so that the first solution flowing through the first flow channel and the second solution flowing through the second flow channel both flow in the same direction, and at least the first solution has a structure of hypochlorous acid water generated by electrolyzing salt water.
  • hypochlorous acid water supply device continuously supplies hypochlorous acid water by energizing between the pair of first cathode and cathode electrodes from salt water supplied in the meandering membrane-free electrolytic flow path.
  • the hypochlorous acid water generating unit to be electrolytically generated and the hypochlorous acid water supplied from the hypochlorous acid water generating unit to each of the meandering membrane electrolysis flow paths are supplied between the pair of second negative and positive electrodes.
  • a hypochlorous acid water treatment unit that continuously treats by energization may be provided.
  • a structure may be adopted in which the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
  • hypochlorous acid water supply apparatus includes a meandering electrolysis flow path configured to be able to supply salt water, and a diaphragm-free electrolysis flow path forming the front stage of the electrolysis flow path.
  • Hypochlorous acid water generation unit that continuously electrolytically generates hypochlorous acid water by energizing between a pair of negative and positive electrodes
  • hypochlorous acid A hypochlorous acid water treatment unit for continuously treating the hypochlorous acid water supplied from the chlorate water generation unit by energizing between the pair of negative and positive electrodes may be provided.
  • a structure may be adopted in which the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
  • the spatial sterilization system is connected to the above-described hypochlorous acid water supply device and the first flow path, and uses hypochlorous acid water delivered from the first flow path.
  • a sterilization device that emits water mist into a predetermined space may be provided.
  • the negative electrode contained in the tap water is supplied from the tap water supplied into the meandering first diaphragm electrolysis flow path to the pair of first negative and positive electrodes by energizing the tap water.
  • a tap water treatment unit that continuously separates ion components
  • a salt water generation unit that generates salt water by adding a salt component to the tap water solution sent from the tap water electrolysis channel on the negative electrode side of the tap water treatment unit, and the salt water.
  • a meandering electrolysis flow path configured to be able to supply salt water generated in the generation unit, and a flow path from the salt water supplied in the non-diaphragm electrolysis flow path forming the front stage of the electrolysis flow path to between the pair of second cathode and cathode electrodes.
  • the spatial sterilization system includes the above-described hypochlorous acid water supply device and, as an external device, hypochlorous acid water sent from the electrolytic flow path on the positive electrode side of the hypochlorous acid water treatment unit. and a sterilization device that emits hypochlorous acid water mist into a predetermined space using.
  • hypochlorous acid water treatment apparatus capable of producing hypochlorous acid water with reduced residual components generated by electrolysis of salt water, and a space sterilization system using the same. can.
  • FIG. 1 is a schematic diagram of a hypochlorous acid water treatment apparatus according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is an exploded perspective view of a hypochlorous acid water treatment apparatus according to Embodiment 1-1.
  • FIG. 3 is a vertical cross-sectional image diagram of the hypochlorous acid water treatment apparatus according to Embodiment 1-1.
  • FIG. 4 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment apparatus according to Embodiment 1-1.
  • FIG. 5A is a diagram showing the relationship between the characteristics of hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus according to Embodiment 1-1 and the electrodialysis time.
  • FIG. 1 is a schematic diagram of a hypochlorous acid water treatment apparatus according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is an exploded perspective view of a hypochlorous acid water treatment apparatus according to Embodiment 1-1.
  • FIG. 3 is
  • FIG. 5B is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus according to Embodiment 1-1 and the electrodialysis time.
  • FIG. 5C is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus according to Embodiment 1-1 and the electrodialysis time.
  • FIG. 6 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water treatment apparatus according to Embodiment 1-2 of the present disclosure.
  • FIG. 7 is a cross-sectional image diagram of a hypochlorous acid water supply device according to Embodiment 2-1 of the present disclosure.
  • FIG. 8 is a schematic diagram of a hypochlorous acid water generating unit according to Embodiment 2-1.
  • FIG. 9 is an exploded perspective view of a hypochlorous acid water generating unit according to Embodiment 2-1.
  • FIG. 10 is a vertical cross-sectional image diagram of the hypochlorous acid water generating unit according to Embodiment 2-1.
  • FIG. 11 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating unit according to Embodiment 2-1.
  • FIG. 12 is a schematic diagram of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1.
  • FIG. 13 is an exploded perspective view of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1.
  • FIG. FIG. 14 is a vertical sectional image view of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1.
  • FIG. 15 is a horizontal cross-sectional image diagram of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1.
  • FIG. 16A is a diagram showing the relationship between the characteristics of hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 2-1 and the electrodialysis time.
  • FIG. 16B is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 2-1 and the electrodialysis time.
  • FIG. 16C is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 2-1 and the electrodialysis time.
  • FIG. 17 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water supply device according to Embodiment 2-2 of the present disclosure.
  • FIG. 18 is a schematic diagram of a hypochlorous acid water supply device according to Embodiment 3-1 of the present disclosure.
  • FIG. 19 is an exploded perspective view of a hypochlorous acid water supply device according to Embodiment 3-1.
  • FIG. 20 is a vertical cross-sectional image diagram of the hypochlorous acid water supply apparatus according to Embodiment 3-1.
  • FIG. 21 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating unit of the hypochlorous acid water supply apparatus according to Embodiment 3-1.
  • FIG. 22 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment unit of the hypochlorous acid water supply apparatus according to Embodiment 3-1.
  • FIG. 23A is a diagram showing the relationship between the characteristics of hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 3-1 and the electrodialysis time.
  • FIG. 23B is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 3-1 and the electrodialysis time.
  • FIG. 23C is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 3-1 and the electrodialysis time.
  • FIG. 24 is an exploded perspective view of a hypochlorous acid water supply device according to Embodiment 3-2 of the present disclosure.
  • FIG. 24 is an exploded perspective view of a hypochlorous acid water supply device according to Embodiment 3-2 of the present disclosure.
  • FIG. 25 is a perspective view showing the manufacturing process of the interdigitated electrode constituting the hypochlorous acid water supply apparatus according to Embodiment 3-2.
  • FIG. 26 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water supply device according to Embodiment 3-3 of the present disclosure.
  • FIG. 27 is a cross-sectional image diagram of a hypochlorous acid water supply device according to Embodiment 4-1 of the present disclosure.
  • FIG. 28 is a schematic diagram of a tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • 29 is an exploded perspective view of a tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 30 is a vertical cross-sectional image diagram of the tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 31 is a horizontal cross-sectional image diagram of the tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 32 is a schematic diagram of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • 33 is an exploded perspective view of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 34 is a vertical cross-sectional image diagram of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 35 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating part of the hypochlorous acid water generating unit of the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 36 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment part of the hypochlorous acid water generation unit of the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 37 is an experimental image diagram for evaluating characteristics of hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 35 is a vertical cross-sectional image diagram of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 35 is a horizontal cross-
  • FIG. 38 is a diagram showing characteristics of hypochlorous acid water that flows through the hypochlorous acid water supply apparatus according to Embodiment 4-1.
  • FIG. 39 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water supply device according to Embodiment 4-2 of the present disclosure.
  • the hypochlorous acid water treatment apparatus is provided with a first flow path in which the positive electrode is exposed and extended along the flow path, and the first flow path and the second flow path are separated from each other, and the flow path and a power supply for applying a voltage between the positive electrode and the negative electrode.
  • the first flow channel and the second flow channel are configured so that the first solution flowing through the first flow channel and the second solution flowing through the second flow channel both flow in the same direction. has a structure of hypochlorous acid water generated by electrolyzing salt water.
  • the first solution and the second solution are circulated while applying a voltage in the same direction across the diaphragm, the first solution, which is hypochlorous acid water generated by electrolyzing salt water, Cations that cause residual components can be separated. Therefore, it is possible to provide a hypochlorous acid water treatment apparatus capable of producing hypochlorous acid water in which residual components generated by electrolysis of salt water are reduced.
  • hypochlorous acid water treatment apparatus includes a planar positive electrode, a planar diaphragm facing the positive electrode, and a planar diaphragm facing the positive electrode, provided between the positive electrode and the diaphragm.
  • a first spacer member exposing the positive electrode and the diaphragm is provided in one channel, and the first channel is composed of the positive electrode and the diaphragm exposed along the channel, and the first spacer member.
  • a planar cathode, a planar diaphragm facing the cathode, and a second electrode provided between the cathode and the diaphragm exposing the cathode and the diaphragm into the second flow path along the flow path.
  • the second channel is composed of the cathode and the diaphragm exposed along the channel, and the second spacer member.
  • both the first channel and the second channel are preferably formed in a meandering shape.
  • the route through which the first solution contacts the positive electrode and the diaphragm and the route through which the second solution contacts the negative electrode and the diaphragm are lengthened, and the process of separating cations that cause residual components from the first solution becomes difficult. Distance and time can be increased. In other words, cations that cause residual components can be efficiently separated from the first solution with respect to the sizes of the positive electrode and the negative electrode.
  • both the first solution and the second solution may be hypochlorous acid water produced by electrolyzing salt water.
  • the first solution circulating in the first flow channel becomes hypochlorous acid water in which the cations that cause residual components are separated and diluted
  • the second solution circulating in the second flow channel becomes a factor of residual components.
  • hypochlorous acid water with high detergency containing an alkaline solution in which cations that are factors are concentrated can be obtained.
  • the hypochlorous acid water treatment apparatus includes a supply pump that supplies the first solution to the first flow path and the second solution to the second flow path, and the supply pump supplies the first solution and the second solution are preferably supplied at a constant flow rate.
  • the time during which the voltage is applied to the first solution in the first channel can be kept constant, and the time during which the voltage is applied to the second solution in the second channel can be kept constant. can do.
  • the concentration at which the cations that cause residual components in the first solution in the first flow channel are separated and diluted, and the concentration at which the cations that cause residual components in the second solution in the second flow channel concentrate. can be stabilized.
  • both the positive electrode and the negative electrode are preferably made of an electrode material containing platinum.
  • the electrode material containing platinum can electrolyze salt water to generate hypochlorous acid water, so the salt water component remaining in the first solution is electrolyzed into hypochlorous acid water. be able to. Therefore, the salt water component remaining in the first solution can be electrolyzed to obtain hypochlorous acid water with a higher concentration.
  • the space sterilization system is connected to the above-described hypochlorous acid water treatment device and the first flow path, and uses the first solution to sterilize by releasing hypochlorous acid water mist into a predetermined space. and a device. According to such a configuration, even if the hypochlorous acid water mist is discharged into the predetermined space using the first solution, residual components remaining in the predetermined space are suppressed. In other words, since the first solution is hypochlorous acid water with reduced residual components generated by electrolysis of salt water, when sterilizing a predetermined space, it is possible to prevent metal corrosion caused by residual components while maintaining sterilization performance. can be suppressed.
  • a predetermined space is provided with a drain pipe for discharging water generated in the predetermined space
  • the second flow path is connected to the drain pipe
  • the second flow path is connected to the drain pipe.
  • the structure is configured so that the two solutions can be introduced into the drain pipe.
  • Embodiment 1 includes at least Embodiment 1-1 and Embodiment 1-2 below.
  • FIG. 1 is a schematic diagram of a hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is an exploded perspective view of the hypochlorous acid water treatment apparatus 1.
  • FIG. 3 is a vertical cross-sectional image diagram of the hypochlorous acid water treatment apparatus 1.
  • FIG. 4 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment apparatus 1 .
  • the hypochlorous acid water treatment apparatus 1 includes residual components (components having cations such as Na + ions) contained in hypochlorous acid water generated by electrolysis of salt water (aqueous sodium chloride solution): for example, NaClO, NaOH ) is a device for separating and reducing hypochlorous acid water flowing inside.
  • salt water aqueous sodium chloride solution
  • the hypochlorous acid water treatment apparatus 1 includes a positive electrode 2, a negative electrode 3, a diaphragm 4, an anode-side spacer 5, and a cathode-side spacer 6.
  • the positive electrode 2 is a planar electrode plate. The surface of the electrode plate of the anode 2 is exposed along the channel of the anode channel 13 by the anode-side spacer 5 .
  • the positive electrode 2 is an electrode that functions as an anode when current is passed by the electrodialysis power supply 15 .
  • the positive electrode 2 is arranged substantially parallel to and facing the negative electrode 3 .
  • the positive electrode 2 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis.
  • a platinum-containing catalyst is formed at least on the surface of the anode 2 exposed along the flow path of the anode flow path 13 .
  • the main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH as residual components, but NaCl and salt water generated by decomposition of NaClO are electrolyzed. NaCl remaining without being dissolved can also be changed to hypochlorous acid by the platinum electrode.
  • the cathode 3 is a planar electrode plate. The surface of the electrode plate of the cathode 3 is exposed along the channel of the cathode channel 14 by the cathode-side spacer 6 .
  • Cathode 3 is an electrode that functions as a cathode when current is passed by electrodialysis power supply 15 .
  • the negative electrode 3 is arranged substantially parallel to and facing the positive electrode 2 .
  • the positive electrode 2 and the negative electrode 3 in the areas exposed along the anode channel 13 and the cathode channel 14 for electrodialysis have the same shape, and the shorter the opposing distance, the easier it is for ions to move. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
  • the diaphragm 4 is a planar thin film.
  • the diaphragm 4 is arranged substantially parallel to the positive electrode 2 and the negative electrode 3 .
  • the diaphragm 4 is provided so as to separate the anode channel 13 and the cathode channel 14 .
  • the diaphragm 4 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water.
  • the diaphragm 4 can move cations to the negative electrode 3 by applying a voltage to the positive electrode 2 and the negative electrode 3 .
  • Examples of the cation exchange membrane include Nafion manufactured by DuPont.
  • the anode-side spacer 5 is an insulating member.
  • the anode-side spacer 5 controls the distance between the anode 2 and the diaphragm 4 to a predetermined distance.
  • the anode-side spacer 5 has, inside the anode-side spacer 5, an anode channel hole 13a that forms an anode channel 13, which will be described later.
  • the anode channel hole 13 a is a hole that forms the anode channel 13 formed in the anode spacer 5 .
  • the anode flow path hole 13a is formed through the front and back surfaces of the anode-side spacer 5, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up step by step.
  • a meandering packing member (not shown), which is the same as that of the anode spacer 5, is attached to the surface of the anode spacer 5 in order to improve adhesion between the anode 2 and the diaphragm 4.
  • FIG. The anode-side spacer 5 corresponds to the "first spacer member" in the claims.
  • the cathode-side spacer 6 is an insulating member.
  • a cathode-side spacer 6 controls the distance between the cathode 3 and the diaphragm 4 .
  • the cathode-side spacer 6 has, inside the cathode-side spacer 6, a cathode channel hole 14a that forms a cathode channel 14, which will be described later.
  • the cathode channel hole 14 a is a hole that forms the cathode channel 14 formed in the cathode-side spacer 6 .
  • the cathode passage hole 14a is formed through the front and back surfaces of the cathode-side spacer 6, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up step by step.
  • the cathode channel hole 14a and the anode channel hole 13a are arranged so as to face each other. Also, on the surface of the cathode-side spacer 6, a meandering packing member (not shown), which is the same as that of the cathode-side spacer 6, is attached in order to increase the adhesion between the cathode 3 and the diaphragm 4.
  • FIG. The cathode-side spacer 6 corresponds to the "second spacer member" in the claims.
  • the anode-side electrode packing 7a has a shape in which the outer circumference of the anode 2 is hollowed out to the size of the electrode. It is mounted with clamping pressure so that the solution 9a) does not leak out. Insulating silicon rubber can be used as the member of the anode-side electrode packing 7a.
  • the anode-side electrode packing 7a is thicker than the positive electrode 2, and is crushed by being pressed by the tightening pressure, and the anode-side electrode 2 is compressed while the anode-side spacer 5 and the anode-side tank housing side surface 8a are in close contact with each other. It is desirable that the thickness of the
  • the cathode-side electrode packing 7b has a shape in which the outer periphery of the cathode 3 is hollowed to the size of the electrode. 11a) is mounted with clamping pressure so that it does not leak. Insulating silicon rubber can be used as the member of the cathode-side electrode packing 7b.
  • the cathode-side electrode packing 7b is thicker than the cathode 3, and is crushed by being pressed by the tightening pressure to adhere to the cathode-side spacer 6 and the cathode-side tank housing side surface 8b. It is desirable to keep it thick.
  • the side surface 8a of the anode-side tank housing is arranged so as to be in direct contact with the outside of the anode 2.
  • the anode-side tank housing side surface 8a has a packing (not shown) for increasing the adhesion on the inner surface of the anode-side tank housing side surface 8a. It is desirable to apply clamping pressure to prevent the solution from flowing out of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the positive electrode 2, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the side surface 8b of the cathode-side tank housing is arranged so as to be in direct contact with the outside of the cathode 3.
  • a packing (not shown) is provided on the inner surface of the cathode-side tank housing side surface 8b to increase adhesion in order to prevent the solution from permeating to the outside of the cathode 3. It is desirable to apply clamping pressure to prevent the solution from flowing out of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the negative electrode 3, the efficiency of electrode dialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the anode-side solution supply port 9 is a connection port for flowing the anode-side supply solution 9a to be electrodialyzed into the channel, and is equipped with a connector (not shown) for connecting a tube.
  • the anode-side solution supply port 9 is processed at a position outside the positive electrode 2 .
  • the anode-side supply solution 9a is hypochlorous acid water electrolyzed from salt water.
  • the anode-side supply solution 9 a is introduced into the anode channel 13 from the anode-side solution supply port 9 .
  • the anode-side supply solution 9a corresponds to the "first solution" in the claims.
  • the anode-side supply solution 9a contains NaClO and HClO, which are components of hypochlorous acid water, generated by electrolyzing salt water.
  • Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
  • the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase.
  • HClO and NaOH react to form NaClO
  • hypochlorous acid water containing NaClO as a main component is produced when salt water is sufficiently electrolyzed, and the pH indicates alkaline.
  • Components containing Na + ions, which are cations become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
  • the anode-side solution extraction port 10 is a connection port for taking out the electrodialyzed anode-side extraction solution 10a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the anode-side extraction solution 10 a outside the positive electrode 2 , the anode-side solution extraction port 10 is processed at a position on the outer periphery of the positive electrode 2 .
  • the anode-side extraction solution 10a is hypochlorous acid water containing HClO as its main component.
  • the anode-side extraction solution 10 a is introduced from the anode flow path 13 into the anode-side solution extraction port 10 .
  • the anode-side extraction solution 10a also corresponds to the "first solution" in the claims.
  • the anode-side extraction solution 10a is a solution obtained by circulating the anode-side supply solution 9a through the anode flow path 13 to separate and dilute cations, which are factors of residual components, from the anode-side supply solution 9a.
  • hypochlorous acid water produced by electrolyzing salt water is used as the anode-side supply solution 9a
  • the anode-side extraction solution 10a has Na + ions, which are cations, separated and diluted, and the HClO component is removed. It becomes the hypochlorous acid water of the main component. pH indicates acidity.
  • the cathode-side solution supply port 11 is a connection port for flowing the cathode-side supply solution 11a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the cathode-side supply solution 11 a from the outside of the cathode 3 , the cathode-side solution supply port 11 is processed at a position outside the cathode 3 .
  • the cathode-side supply solution 11a is hypochlorous acid water electrolyzed from salt water, pure water, or tap water.
  • the cathode-side supply solution 11 a is introduced from the cathode-side solution supply port 11 into the cathode channel 14 .
  • the cathode-side supply solution 11a corresponds to the "second solution" in the claims.
  • the cathode-side supply solution 11a contains NaClO and HClO, which are components of the hypochlorous acid water.
  • Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
  • the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase.
  • hypochlorous acid water containing NaClO as a main component is produced when salt water is sufficiently electrolyzed, and the pH indicates alkaline.
  • pure water is used as the cathode-side supply solution 11a
  • the solution does not contain ionic components and exhibits a neutral pH.
  • tap water is used as the cathode-side supply solution 11a, it becomes a solution containing ionic components in tap water in the region of use.
  • the cathode-side supply solution 11a If pure water containing no ionic components is used as the cathode-side supply solution 11a, no current will flow between the positive electrode 2 and the negative electrode 3, so a high voltage must be applied in order to pass a constant current.
  • hypochlorous acid water produced by electrolyzing salt water is used as the cathode-side supply solution 11a, since ions are contained in the solution, it is possible to reduce the application of voltage for causing a constant current to flow. .
  • tap water is used as the cathode-side supply solution 11a, since it contains ions, it is possible to reduce the application of voltage for causing a constant current to flow. condition setting is required.
  • the cathode-side solution extraction port 12 is a connection port for extracting the electrodialyzed cathode-side extraction solution 12a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the cathode-side extraction solution 12 a outside the cathode 3 , the cathode-side solution extraction port 12 is processed at a position outside the cathode 3 .
  • the cathode-side extraction solution 12a is hypochlorous acid water containing NaClO and NaOH as main components, and the cathode-side supply solution 11a is pure water or Tap water is an alkaline solution with NaOH as the main component.
  • the cathode-side extraction solution 12 a is introduced from the cathode flow path 14 into the cathode-side solution extraction port 12 .
  • the cathode side extraction solution 12a also corresponds to the "second solution" in the claims.
  • the cathode-side extraction solution 12a is a solution in which cations that cause residual components are concentrated.
  • hypochlorous acid water produced by electrolyzing salt water is used as the cathode-side supply solution 11a
  • the cathode-side extraction solution 12a has Na + ions, which are cations, separated and concentrated as NaOH.
  • NaOH and NaClO become hypochlorous acid water as main components.
  • pH indicates alkaline.
  • the cathode-side extraction solution 12a contains Na + ions, which are cations, separated and concentrated, and contains NaOH as a main component and has an alkaline pH. It becomes a solution.
  • the anode-side solution supply port 9 and the cathode-side solution supply port 11 are desirably arranged on the lower side in the vertical direction, and the anode-side solution extraction port 10 and the cathode-side solution extraction port 12 are arranged on the upper side in the vertical direction. It is desirable that When oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
  • the anode channel 13 is a channel formed by a region surrounded by the positive electrode 2 , the anode-side spacer 5 and the diaphragm 4 .
  • the anode channel 13 is formed in a meandering manner by the anode channel hole 13 a of the anode-side spacer 5 . More specifically, the anode flow path 13 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top. Furthermore, by reducing the channel width of the anode channel 13, the distance becomes longer, and the electrodialysis time can be lengthened.
  • anode channel 13 In order to reduce the backflow of the liquid in the anode channel 13, it is desirable to have a structure in which the anode channel 13 is unidirectionally directed from bottom to top except for reciprocation in the horizontal direction.
  • the anode flow path 13 is provided with the anode-side solution supply port 9 on one side and the anode-side solution extraction port 10 on the other side, and the anode-side supply solution 9a, which is the anode-side solution, flows inside. .
  • the anode channel 13 corresponds to the "first channel" in the claims.
  • the cathode channel 14 is a channel formed by a region surrounded by the cathode 3 , the cathode-side spacer 6 and the diaphragm 4 .
  • the cathode channel 14 is formed in a meandering manner by the cathode channel holes 14 a of the cathode-side spacer 6 . More specifically, the cathode flow path 14 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top. Further, by reducing the channel width of the cathode channel 14, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the cathode channel 14 In order to reduce backflow of the liquid in the cathode channel 14, it is desirable to have a structure in which the cathode channel 14 flows in one direction, from bottom to top, except for reciprocation in the horizontal direction.
  • the cathode flow path 14 is provided with the cathode side solution supply port 11 on one side and the cathode side solution extraction port 12 on the other side, and the cathode side supply solution 11a, which is the cathode side solution, flows inside. .
  • the cathode channel 14 corresponds to the "second channel" in the claims.
  • the anode channel 13 and the cathode channel 14 are symmetrically opposed to each other with the diaphragm 4 interposed therebetween. That is, the anode flow channel 13 and the cathode flow channel 14 are formed in meandering shapes facing each other with the diaphragm 4 interposed therebetween. Then, the Na + ions contained in the hypochlorous acid water flowing through the anode channel 13 move to the cathode channel 14 side. The amount of ion movement is controlled by the applied voltage and current and the flow velocity in the channel.
  • the flow rate was adjusted by installing a pump (not shown) either before the anode-side solution supply port 9 and the cathode-side solution supply port 11 or after the anode-side solution extraction port 10 and the cathode-side solution extraction port 12.
  • the pump is desirably a system that can be controlled at a constant flow rate, and for example, a tube pump can be used.
  • the electrodialysis power supply 15 is a DC power supply that is connected to the positive electrode 2 and the negative electrode 3 and that can apply current to the positive electrode 2 and the negative electrode 3 .
  • the electrodialysis power supply 15 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage.
  • the electrodialysis power supply 15 switches the potentials of the positive electrode 2 and the negative electrode 3 each time the hypochlorous acid water is passed through the hypochlorous acid water treatment device 1, for example. It may be controlled to reverse polarity and dissolve adhering scale.
  • hypochlorous acid water treatment apparatus 1 is composed of each member.
  • the anode-side supply solution 9a is supplied to the anode channel 13 through the anode-side solution supply port 9, and the cathode-side solution supply port 11 is supplied.
  • the cathode side supply solution 11a is supplied to the cathode channel 14 through the channel. Then, the anode-side supply solution 9a supplied from the anode-side solution supply port 9 flows through the meandering anode flow path 13, and the cathode-side supply solution 11a supplied from the cathode-side solution supply port 11 flows. flows through the cathode flow path 14 which is also meandering.
  • the anode-side supply solution 9a and the cathode-side supply solution 11a face each other with the diaphragm 4 interposed therebetween and flow in the same direction to flow through the anode channel 13 and the cathode channel 14, respectively.
  • a voltage is applied to the positive electrode 2 and the negative electrode 3 .
  • negative ions are attracted to the positive electrode 2 side and positive ions (Na + ions) to the negative electrode 3 side.
  • the diaphragm 4 is composed of a membrane that is permeable only to cations, the cations (Na + ions) contained in the anode-side supply solution 9a flowing through the anode channel 13 permeate the diaphragm 4, It is drawn to the cathode 3 side through the cathode side supply solution 11 a of the cathode flow path 14 . On the contrary, since the anions flowing through the cathode channel 14 cannot pass through the diaphragm 4, only the anions contained in the anode channel 13 are attracted to the positive electrode 2.
  • cations (Na + ions) contained in the anode-side supply solution 9a flowing through the anode flow channel 13 move to the cathode-side supply solution 11a flowing through the cathode flow channel 14, and electrodialysis proceeds.
  • the anode-side supply solution 9a flowing through the anode channel 13 has cations (Na + ions) separated and diluted, and the cathode-side supply solution 11a flowing through the cathode channel 14 contains cations (Na + ions). is concentrated and extracted.
  • hypochlorous acid water in which the residual components NaClO and NaOH are separated and diluted and the HClO component is the main component is extracted from the anode-side solution extraction port 10 as the anode-side extraction solution 10a.
  • a solution hyperochlorous acid water or water
  • a component in which the Na + ions constituting the residual components are concentrated and generated as NaOH is discharged as the cathode side extraction solution 12a. extracted.
  • the amount of movement of cations is increased by lengthening the electrodialysis time in the anode channel 13 and the cathode channel 14.
  • the residual components of NaClO and NaOH in the anode-side extraction solution 10a can be further reduced.
  • it is necessary to move upward step by step while reciprocating in the horizontal direction. is formed in a meandering manner, and the distance for electrodialysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top.
  • the distance becomes longer, and the electrodialysis time can be lengthened.
  • the flow rate of each solution passing through the anode channel 13 and the cathode channel may be the same or different. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity of the anode flow channel 13 is relatively fast and the flow velocity of the cathode flow channel 14 is relatively low, compared to the case where the flow speeds of the anode flow channel 13 and the cathode flow channel 14 are the same, As a result, the cathode-side extraction solution 12a extracted from the cathode flow path 14 becomes a solution with a small amount and high concentration. Therefore, when the cathode-side extraction solution 12a is drained, it is desirable to slow down the flow velocity of the cathode flow path 14 .
  • FIGS. 5A to 5C an anode-side extraction solution 10a and a cathode which are actually circulated through the hypochlorous acid water treatment apparatus 1 and extracted from the anode-side solution extraction port 10 and the cathode-side solution extraction port 12
  • the characteristics (conductivity, pH, and effective chlorine concentration) of the hypochlorous acid water of the side extraction solution 12a will be described.
  • 5A to 5C are diagrams showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus 1 and the electrodialysis time. More specifically, FIG. 5A is a diagram showing the relationship between electrodialysis time and electrical conductivity by the hypochlorous acid water treatment apparatus 1.
  • FIG. 5B is a diagram showing the relationship between electrodialysis time and pH by the hypochlorous acid water treatment apparatus 1.
  • FIG. 5C is a diagram showing the relationship between electrodialysis time and effective chlorine concentration by the hypochlorous acid water treatment apparatus 1.
  • the hypochlorous acid water treatment apparatus 1 was formed with the anode channel 13 and the cathode channel 14 having a channel cross-sectional area of 8 mm 2 and a channel length of 675 mm. board.
  • each solution both hypochlorous acid water
  • each solution is passed through the anode channel 13 and the cathode channel 14 at four flow rates of 51 mL/h, 153 mL/h, 250 mL/h, and 360 mL/h.
  • the electrodialysis time was adjusted, and the electrical conductivity, pH, and available chlorine concentration of the anode-side extraction solution 10a and the cathode-side extraction solution 12a were measured.
  • hypochlorous acid water hypochlorous acid water electrolyzed from salt water
  • the hypochlorous acid water (hypochlorous acid water electrolyzed from salt water) of the anode side supply solution 9a and the cathode side supply solution 11a supplied to the anode side solution supply port 9 and the cathode side solution supply port 11
  • Conductivity: 264 ⁇ S/cm, pH: 8.5, effective chlorine concentration: 142 ppm, and chloride ion concentration: 10 ppm or less were used.
  • electrodialysis and electrolysis were performed using a power supply capable of applying a constant current of 0.2 A as the electrodialysis power supply 15 .
  • the electrodialysis time refers to the time during which the solution is in direct contact with the positive electrode 2 and the negative electrode 3 in the channel, and the longer the electrodialysis time, the slower the flow rate. This time, electrodialysis and electrolysis are performed by setting the flow rate on the anode side and the cathode side to be the same.
  • the longer the electrodialysis time in other words, the slower the flow rate, the more the conductivity of the anode-side extraction solution 10a extracted from the anode-side solution extraction port 10 (the anode-side conductivity). decreases, and the conductivity of the cathode-side extraction solution 12a extracted from the cathode-side solution extraction port 12 (cathode-side conductivity) increases.
  • Na + ions which are cations contained in the anode-side solution flowing through the anode flow path 13, move through the diaphragm 4 to the cathode side, and the anode side changes from NaClO to HClO, resulting in a decrease in conductivity. It is conceivable that. NaClO ionizes into Na + ions and ClO 2 ⁇ ions, but since HClO mainly exists as a molecule, the conductivity decreases when NaClO changes to HClO.
  • the pH of the anode-side extraction solution 10a (the pH on the anode side) changes to the slightly acidic side
  • the pH of the cathode-side extraction solution 12a (the pH on the cathode side) changes to the more alkaline side. is changing.
  • NaOH is formed by movement of Na + ions, and the cathode side becomes more alkaline.
  • the effective chlorine concentration of the anode-side extraction solution 10a (the effective chlorine concentration on the anode side) does not change significantly because it is a change from NaClO to HClO.
  • An increase in the effective chlorine concentration can be seen due to the chloride ions remaining in the water being electrolyzed into hypochlorous acid.
  • the effective chlorine concentration of the cathode-side extraction solution 12a (the effective chlorine concentration on the cathode side) decreases as the electrodialysis time increases due to the decomposition of NaClO. Therefore, the electrodialysis time is set under the condition that the conductivity on the anode side is sufficiently reduced as shown in FIG.
  • hypochlorous acid water mainly composed of HClO with high sterilization power
  • hypochlorous acid water mainly composed of NaClO and NaOH with high detergency from the cathode side.
  • Hypochlorous acid water containing mainly HClO is a solution in which residual components are suppressed, and it is possible to suppress metal corrosion caused by residual components even during space spraying while maintaining sterilization power.
  • hypochlorous acid water containing NaClO and NaOH as a main component cannot be sprayed in space because it is a solution that leaves residual components, but it is a solution with high detergency and is effective in washing areas with acidic dirt such as drains.
  • hypochlorous acid water treatment device 1 hypochlorous acid water mainly composed of HClO generated on the anode side is used for space sterilization, while hypochlorous acid mainly composed of NaClO and NaOH is generated on the cathode side on the opposite side. Water can also be used for cleaning.
  • the hypochlorous acid water treatment apparatus 1 is provided with an anode channel 13 in which the positive electrode 2 is exposed and extended along the channel, and the anode channel 13 and the cathode channel 14 are separated from each other. , a diaphragm 4 that allows the passage of cations contained in the anode-side solution (anode-side supply solution 9 a ) flowing through the channel, and an electrodialysis power source 15 that applies a voltage between the positive electrode 2 and the negative electrode 3 .
  • anode-side solution (anode-side supply solution 9a) flowing through the anode flow channel 13 and a cathode-side solution (cathode-side supply solution 11a) flowing through the cathode flow channel 14 are mixed. Both are configured to flow in the same direction, and at least the anode-side supply solution 9a is hypochlorous acid water produced by electrolyzing salt water.
  • the anode-side solution (anode-side supply solution 9a) and the cathode-side solution (cathode-side supply solution 11a) are circulated while applying a voltage in the same direction with the diaphragm 4 interposed therebetween, so that salt water is electrolyzed. It is possible to separate cations that cause residual components from the anode-side solution (anode-side supply solution 9a), which is hypochlorous acid water generated by the above process. Therefore, it is possible to provide the hypochlorous acid water treatment apparatus 1 capable of producing hypochlorous acid water with reduced residual components generated by the electrolysis of salt water.
  • the hypochlorous acid water treatment device 1 includes a planar positive electrode 2, a planar diaphragm 4 facing the positive electrode 2, and provided between the positive electrode 2 and the diaphragm 4, and an anode-side spacer 5 exposing the positive electrode 2 and the diaphragm 4 in the anode channel 13 along the anode channel 13.
  • the anode-side spacer 5 exposes the positive electrode 2 and the diaphragm 4 along the channel. 5.
  • a planar cathode 3, a planar diaphragm 4 facing the cathode 3, and a cathode 3 are provided between the cathode 3 and the diaphragm 4, and placed in the cathode flow path 14 along the flow path.
  • the cathode flow path 14 is composed of the cathode-side spacer 6 and the cathode 3 and the diaphragm 4 exposed along the flow path.
  • both the anode flow path 13 and the cathode flow path 14 are formed in a meandering structure.
  • the path along which the anode-side solution (anode-side supply solution 9a) contacts the positive electrode 2 and the diaphragm 4 and the path along which the cathode-side solution (cathode-side supply solution 11a) contacts the cathode 3 and the diaphragm 4 become longer, It is possible to lengthen the processing time and time for separating cations that cause residual components from the anode-side solution (anode-side supply solution 9a). That is, cations that cause residual components can be efficiently separated from the anode-side solution (anode-side supply solution 9a) for the sizes of the positive electrode 2 and the negative electrode 3 .
  • both the anode-side supply solution 9a and the cathode-side supply solution 11a may be hypochlorous acid water produced by electrolyzing salt water.
  • the anode-side solution (anode-side supply solution 9a) flowing through the anode flow channel 13 becomes hypochlorous acid water separated and diluted by permeation of cations that cause residual components, and the cathode flow channel.
  • the cathode-side solution (cathode-side supply solution 11a) flowing through 14 is hypochlorous acid water in which cations that cause residual components are concentrated.
  • hypochlorous acid water in which the cations that are the cause of residual components are separated and diluted is obtained, and the hypochlorous acid water flows through the cathode flow channel 14.
  • hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated can be obtained at the same time.
  • the hypochlorous acid water treatment apparatus 1 supplies an anode-side solution (anode-side supply solution 9a) to the anode channel 13, and supplies a cathode-side solution (cathode-side supply solution 11a) to the cathode channel 14.
  • a supply pump (not shown) is provided, and the supply pump is configured to supply the anode side solution (anode side supply solution 9a) and the cathode side solution (cathode side supply solution 11a) at a constant flow rate.
  • the time during which the voltage is applied to the anode-side solution (anode-side supply solution 9a) in the anode channel 13 can be made constant, and the cathode-side solution ( The time during which the voltage is applied to the cathode-side supply solution 11a) can be made constant.
  • the concentration at which cations that cause residual components in the anode-side solution (anode-side supply solution 9a) in the anode flow channel 13 are separated and diluted, and the cathode-side solution (cathode-side supply solution 11a) in the cathode flow channel 14 It is possible to stabilize the concentration of cations that contribute to residual components in .
  • both the positive electrode 2 and the negative electrode 3 are made of an electrode material containing platinum.
  • the electrode material containing platinum can electrolyze salt water to generate hypochlorous acid water. It can be made into hypochlorous acid water. Therefore, the salt water component remaining in the anode-side solution (anode-side supply solution 9a) can be electrolyzed to obtain hypochlorous acid water with a higher concentration.
  • FIG. 6 is a schematic diagram of a space sterilization system 20 using the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-2 of the present disclosure.
  • the space sterilization system according to Embodiment 1-2 described below is a system incorporating the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1.
  • the substantially same configurations as the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1 are denoted by the same reference numerals, and the description is partially simplified. or may be omitted.
  • the space sterilization system 20 according to the present embodiment 1-2 sprays hypochlorous acid water generated from the hypochlorous acid water treatment device 1 from the mist spray device 27 in the bathroom space and at the drain port 29. It is a system that sterilizes and cleans the bathroom space by flushing.
  • the space sterilization system 20 includes a hypochlorous acid water treatment device 1, a hypochlorous acid water generation device 21, an anode side supply pump 22, and a cathode side supply pump. 23, an anode-side extraction solution tank 24, a cathode-side extraction solution tank 25, an anode-side extraction solution bath pipe 26, a mist spray device 27, a cathode-side extraction solution bath pipe 28, and a drain port 29. .
  • the hypochlorous acid water treatment apparatus 1 extracts the anode side extraction solution 10a, which is hypochlorous acid water mainly composed of HClO with high sterilization power, from the anode flow path 13, and NaClO and NaClO with high detergency from the cathode flow path 14. It is an apparatus for extracting the cathode side extraction solution 12a, which is hypochlorous acid water mainly containing NaOH.
  • the anode-side extraction solution 10 a is sent to the mist spraying device 27 through the anode-side extraction solution bathroom piping 26 . Then, the anode-side extraction solution 10a is sprayed from the mist spray device 27 into the bathroom space.
  • the cathode-side extraction solution 12 a is stored in the cathode-side extraction solution tank 25 and then sent to the drain port 29 through the cathode-side extraction solution bathroom pipe 28 .
  • the cathode-side extraction solution 12a flows through the drain port 29 and flows through the drain port 29 to the drain pipe.
  • the hypochlorous acid water generator 21 is a device that supplies salt water (aqueous sodium chloride solution) and generates hypochlorous acid water by electrolysis. Two electrodes, an anode and a cathode, are placed in an electrolytic cell containing salt water, and a voltage is applied to electrolyze the salt water. Hypochlorous acid water produced by electrolysis contains NaClO and HClO, which are components of hypochlorous acid water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. As the electrolysis of brine proceeds, the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase.
  • hypochlorous acid water containing NaClO as a main component is produced when salt water is sufficiently electrolyzed, and the pH indicates alkaline.
  • Components containing Na + ions, which are cations, become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
  • the anode-side supply pump 22 extracts hypochlorous acid water produced by electrolysis of salt water from the electrolytic cell of the hypochlorous acid water generator 21, and extracts hypochlorous acid water as an anode-side solution (anode-side supply solution 9a). It is a pump for supplying to the anode channel 13 of the chloric acid water treatment apparatus 1 .
  • the anode-side supply pump 22 can send liquid from the electrolytic cell of the hypochlorous acid water generator 21 to the anode flow path 13 of the hypochlorous acid water treatment apparatus 1 at a constant flow rate. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the cathode-side supply pump 23 extracts the hypochlorous acid water produced by the electrolysis of salt water from the electrolytic cell of the hypochlorous acid water generator 21, and extracts hypochlorous acid water as a cathode-side solution (cathode-side supply solution 11a). It is a pump for supplying to the cathode channel 14 of the chloric acid water treatment apparatus 1 .
  • the cathode-side supply pump 23 can feed liquid from the electrolytic cell of the hypochlorous acid water generator 21 to the cathode flow path 14 of the hypochlorous acid water treatment apparatus 1 at a constant flow rate. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the anode-side extraction solution tank 24 temporarily holds the anode-side extraction solution 10 a , which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the anode flow path 13 , until it is sent to the mist spray device 27 . It is a tank that stores The anode-side extraction solution tank 24 is connected to a mist spraying device 27 via an anode-side extraction solution bathroom piping 26 .
  • the cathode-side extraction solution tank 25 temporarily holds the cathode-side extraction solution 12a, which is hypochlorous acid water containing NaClO and NaOH with high detergency extracted from the cathode flow path 14, until it is sent to the drain port 29. It is a tank that stores The cathode-side extraction solution tank 25 is connected to a drain port 29 via a cathode-side extraction solution bathroom pipe 28 .
  • the anode-side extraction solution bathroom pipe 26 is a pipe for sending liquid from the anode-side extraction solution tank 24 to the mist spray device 27 .
  • the anode-side extraction solution bathroom pipe 26 is installed behind the wall and on the ceiling of the bathroom, and is connected to a mist spraying device 27 installed on the ceiling.
  • the cathode-side extraction solution bathroom pipe 28 is a pipe for sending liquid from the cathode-side extraction solution tank 25 to the drain port 29 .
  • the cathode-side extraction solution bathroom pipe 28 is installed behind the wall and floor of the bathroom and connected to a drain port 29 .
  • the mist spraying device 27 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 27 turns the anode-side extraction solution 10a, which is hypochlorous acid water, transported from the anode-side extraction solution tank 24 through the anode-side extraction solution bathroom piping 26 into fine mist. It is a device that emits.
  • the mist spraying device 27 is installed so that the spraying part protrudes from the ceiling toward the bathroom so that the mist can be sprayed from the ceiling of the bathroom to the entire bathroom.
  • the mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 ⁇ m or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 ⁇ m or less is sprayed.
  • the drain port 29 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space.
  • the cathode-side extraction solution 12a is conveyed from the cathode-side extraction solution tank 25 to the drain port 29 through the cathode-side extraction solution bathroom pipe 28, and the cathode-side extraction solution 12a, which is hypochlorous acid water mainly composed of NaClO and NaOH with high detergency, is delivered to the drain port 29.
  • the extraction solution 12a can wash dirt on the drain port 29 and the drain pipe connected to the drain port 29 .
  • hypochlorous acid water generated in advance by electrolysis of salt water in the hypochlorous acid water generator 21 is added. Generate.
  • the anode side extraction solution 10a which is hypochlorous acid water mainly composed of HClO with high sterilization power
  • the cathode side extraction solution 12a which is hypochlorous acid water containing mainly NaClO and NaOH with high detergency, is stored in the cathode side extraction solution tank 25 .
  • the liquid is automatically sent from the anode side extraction solution tank 24 to the mist spray device 27, and the amount necessary for daily sterilization (for example, 400 mL) is sprayed.
  • the liquid is automatically sent to the drain port 29, and the amount (for example, 400 mL) required for washing is passed.
  • hypochlorous acid water containing mainly HClO with high sterilizing power is mist-sprayed from the mist spraying device 27, so that mold and bacteria in the bathroom space can be sterilized by the oxidizing power of HClO. .
  • HClO oxidizing power
  • by regularly spraying after each bath it is possible to maintain a bathroom space where mold and fungi do not grow in the bathroom.
  • residual ionic components such as NaClO and NaOH are suppressed, even if they adhere to the metal surface during spraying, they will not remain as residual components, and the occurrence of long-term corrosion due to residual components can be suppressed. can.
  • hypochlorous acid water containing mainly NaClO and NaOH with high detergency is passed through the drain port 29, it is possible to reduce the sliminess of the drain port 29 and the drain pipe.
  • Dirt related to people is on the acid side, and since the dirt on the acid side is gathering at the drain port 29, alkaline NaClO and hypochlorous acid water containing mainly NaOH is used to neutralize the dirt while removing it. Become.
  • a more comfortable bathroom space can be achieved by combining HClO-based hypochlorous acid water mist spraying and NaClO and NaOH-based hypochlorous acid water through the drain port 29 .
  • the space sterilization system 20 is connected to the hypochlorous acid water treatment device 1 and the anode flow path 13, and uses the anode side extraction solution 10a to emit hypochlorous acid water mist into the bathroom space.
  • a structure including a spray device 27 was adopted. According to such a configuration, even if the hypochlorous acid water mist is discharged into the bathroom space using the anode-side extraction solution 10a, residual components remaining in the bathroom space are suppressed.
  • the anode-side extraction solution 10a is hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced, when sterilizing the bathroom space, the sterilization performance is maintained while metals caused by the residual components are removed. It is possible to suppress the occurrence of corrosion.
  • the bathroom space is provided with a drain port 29 for discharging water generated in the bathroom space, and the cathode flow path 14 is connected to the drain port 29 for communication with the cathode side extraction.
  • the structure is such that the solution 12 a can be introduced into the drain port 29 .
  • hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is connected to the drain port 29 (and the drain port 29). Therefore, the drainage port 29 and the drainage pipe connected to the drainage port 29 can be washed with the alkaline solution.
  • Embodiment 2 Conventionally, by electrolyzing salt water, hypochlorous acid water containing NaClO as a main component and containing HClO and NaOH is produced. Hypochlorous acid water is known to improve its sterilization power by making it weakly acidic, and a technology is known to control the pH generated using a diaphragm with ion permeability to the weakly acidic side. It is (See Patent Document 1, for example).
  • NaClO and NaOH which are residual components
  • NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing a large amount of NaClO and NaOH components is mist-sprayed, fine residual components are accumulated, which may cause corrosion during long-term use.
  • an object of the present disclosure is to provide a hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water.
  • hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water.
  • the hypochlorous acid water supply device continuously electrolytically generates hypochlorous acid water by energizing between a pair of first cathode and cathode electrodes from salt water supplied in a meandering membrane-free electrolytic flow path. and the hypochlorous acid water supplied from the hypochlorous acid water generation unit to each of the meandering diaphragm electrolysis flow paths between the pair of second negative and positive electrodes.
  • a hypochlorous acid water treatment unit that continuously treats by energization.
  • the structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
  • hypochlorous acid water generation unit salt water is electrolyzed in the non-diaphragm electrolysis channel to generate hypochlorous acid water
  • the hypochlorous acid water treatment unit the diaphragm electrolysis channel is provided.
  • the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated inside, and the cations that cause residual components can be separated and reduced from the positive electrode side, and can be extracted as hypochlorous acid water.
  • a one-pass type hypochlorous acid water supply device capable of externally supplying hypochlorous acid water from which residual components generated by electrolysis of salt water are separated.
  • the non-diaphragm electrolysis channel includes a planar first positive electrode, a planar first negative electrode facing the first positive electrode, and a first positive electrode. and a spacer member provided between the electrode and the first negative electrode. By exposing it, it is configured in a meandering shape. By doing so, the ability to electrolyze salt water can be changed according to the channel shape formed in the spacer member, so that the area and time for electrolyzing salt water can be freely designed.
  • the diaphragm-equipped electrolytic flow path includes a meandering first flow path in which the second positive electrode is exposed and extended along the flow path, and the first flow path and a meandering second flow path in which the second cathode extends along the flow path, and the first flow path and the second flow path are separated from each other, and a diaphragm permeable to cations contained in the solution flowing through the channel.
  • the pair of second negative and positive electrodes are formed in a meandering shape by exposing the second positive electrode to the first channel by the first spacer member and exposing the second negative electrode to the second channel by the second spacer member.
  • the hypochlorous acid water supplied from the hypochlorous acid water generating unit is configured to flow in the same direction through the first flow path and the second flow path.
  • the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm, so that the hypochlorous acid water causes residual components. Ions can be separated and reduced. Therefore, it is possible to provide a hypochlorous acid water treatment unit capable of producing hypochlorous acid water in which residual components generated by electrolysis of salt water are reduced.
  • hypochlorous acid water supply device includes a planar second positive electrode, a planar diaphragm facing the second positive electrode, and provided between the second positive electrode and the diaphragm, a first spacer member exposing the second positive electrode and the diaphragm within the first flow channel along the flow channel, the first flow channel exposing the second positive electrode and the diaphragm and the first spacer along the flow channel; It is composed of members. Further, a planar second cathode, a planar diaphragm facing the second cathode, and a second electrode provided between the second cathode and the diaphragm to extend along the flow path into the second flow path.
  • the second spacer member that exposes the cathode and the diaphragm
  • the second flow path is composed of the second cathode and the diaphragm that are exposed along the flow path, and the second spacer member.
  • hypochlorous acid water supply device is provided in a flow path that communicates and connects the hypochlorous acid water generation unit and the hypochlorous acid water treatment unit, and the hypochlorous acid water supply device is provided in the diaphragm electrolysis flow path.
  • a supply pump for supplying hypochlorous acid water from the acid water generation unit is provided, and the supply pump supplies hypochlorous acid water from the hypochlorous acid water generation unit to the first flow path and the second flow path at a constant flow rate. preferably supplied.
  • the time during which the voltage is applied in the first channel can be made constant, and the time during which the voltage is applied in the second channel can be made constant. For this reason, the concentration at which the cations that cause residual components in the hypochlorous acid water in the first flow channel are separated and diluted, and the cations that cause residual components in the hypochlorous acid water in the second flow channel concentration can be stabilized.
  • the spatial sterilization system is connected to the above-described hypochlorous acid water supply device and the first flow path, and uses the hypochlorous acid water sent from the first flow path to create a hypochlorous acid water mist. and a sterilization device that releases to a predetermined space.
  • a hypochlorous acid water mist and a sterilization device that releases to a predetermined space.
  • the hypochlorous acid water sent from the first flow path is hypochlorous acid water with reduced residual components generated by the electrolysis of salt water, sterilization performance is maintained when sterilizing a predetermined space.
  • the occurrence of metal corrosion due to residual components can be suppressed.
  • a predetermined space is provided with a drain pipe for discharging water generated in the predetermined space, and the second flow path is connected to the drain pipe,
  • the structure is such that the hypochlorous acid water sent out from the second channel can be introduced into the drain pipe.
  • hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is removed from the hypochlorous acid water sent from the second flow path. Since the alkaline solution is circulated, the drain pipe can be washed with the alkaline solution.
  • Embodiment 2 includes at least Embodiments 2-1 and 2-2 below.
  • FIG. 7 is a cross-sectional image diagram of hypochlorous acid water supply device 101 according to Embodiment 2-1 of the present disclosure.
  • the hypochlorous acid water supply device 101 supplies salt water (aqueous sodium chloride solution), generates hypochlorous acid water by electrolysis, and further contains residual components (Na + ions, etc.) contained in the generated hypochlorous acid water.
  • salt water aqueous sodium chloride solution
  • residual components Na + ions, etc.
  • a component having a cation of for example, NaClO, NaOH
  • NaClO, NaOH can be separated and reduced from the hypochlorous acid water flowing inside and can be taken out and supplied in a single pass.
  • the hypochlorous acid water supply device 101 includes a hypochlorous acid water generation unit 102 that electrolyzes salt water to generate hypochlorous acid water in one pass,
  • the hypochlorous acid water treatment unit 103 that separates and reduces the residual components contained in the chlorous acid water in a single pass, and the hypochlorous acid water generation unit 102.
  • a positive electrode side supply pump 129 and a negative electrode side supply pump 131 for circulating hypochlorous acid water in the flow path of the processing unit 103 are provided.
  • FIG. 8 is a schematic diagram of the hypochlorous acid water generation unit 102.
  • FIG. 9 is an exploded perspective view of the hypochlorous acid water generating unit 102.
  • FIG. 10 is a vertical cross-sectional image diagram of the hypochlorous acid water generating unit 102 .
  • FIG. 11 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating unit 102 .
  • the hypochlorous acid water generating unit 102 includes a first positive electrode 104, a first negative electrode 105, a first negative electrode spacer 106, and a first positive electrode packing 107a. , a first negative electrode packing 107b, a first positive electrode side tank housing side surface 108a, a first negative electrode side tank housing side surface 108b, a first negative electrode electrode solution supply port 109, and a first positive electrode solution. It has an extraction port 110 , a first cathode solution extraction port 111 , a first channel 112 between negative and positive electrodes, and an electrolysis power source 113 .
  • the first positive electrode 104 is a planar electrode plate. The surface of the electrode plate of the first positive electrode 104 is exposed along the channel 112 between the first positive and negative electrodes by the spacer 106 between the negative and positive electrodes.
  • the first positive electrode 104 is an electrode that functions as an anode when current is passed by the electrolysis power source 113 .
  • the first positive electrode 104 is arranged substantially parallel to and facing the first negative electrode 105 .
  • the first positive electrode 104 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. A platinum-containing catalyst is formed on at least the surface of the first positive electrode 104 exposed along the channel 112 between the first negative and positive electrodes. NaCl in salt water can be electrolyzed to produce hypochlorous acid water containing NaClO and HClO and NaOH.
  • the first cathode 105 is a planar electrode plate. The surface of the electrode plate of the first negative electrode 105 is exposed along the channel 112 between the first negative and positive electrodes by the spacer 106 between the first positive and negative electrodes.
  • the first cathode electrode 105 is an electrode that functions as a cathode when current is passed by the electrolysis power source 113 .
  • the first negative electrode 105 is arranged substantially parallel to and facing the first positive electrode 104 .
  • the first negative electrode 105 forms a platinum-containing catalyst on its surface, similar to the first positive electrode 104 .
  • a catalyst containing platinum is formed at least on the surface of the first negative electrode 105 exposed along the channel 112 between the first negative and positive electrodes.
  • first positive electrode 104 and the first negative electrode 105 in the region exposed along the channel 112 between the first negative and positive electrodes and subjected to electrolysis have the same shape, and the shorter the facing distance, the easier it is for the ions to move. It is also susceptible to electrolysis. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
  • the first positive electrode 104 and the first negative electrode 105 constitute a first negative electrode as a pair of opposing electrodes.
  • the first cathode-positive electrode spacer 106 is an insulating member.
  • the spacer 106 between the first negative and positive electrodes controls the distance between the first positive electrode 104 and the first negative electrode 105 to a predetermined distance.
  • the first spacer between negative and positive electrodes 106 has a first channel hole 112a between negative and positive electrodes that forms a first channel between negative and positive electrodes 112 described later.
  • the first cathode-positive electrode passage hole 112a is formed through the front and back surfaces of the first cathode-positive electrode spacer 106, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing.
  • a meandering packing member (Fig. not shown) is installed on the surface of the first spacer between negative and positive electrodes 106.
  • the first cathode-positive electrode spacer 106 corresponds to the "spacer member" in the claims.
  • the first positive electrode packing 107a has a shape in which the outer periphery of the first positive electrode 104 is hollowed out to the size of the electrode, and is in close contact with the first negative electrode spacer 106 to form a flow path between the first positive electrode and the outer peripheral direction. A clamping pressure is applied so that the solution in 112 (the first positive and negative electrode supply solution 109a to be described later) does not leak.
  • As the member of the first positive electrode packing 107a insulating silicon rubber can be used.
  • the first positive electrode packing 107a is thicker than the first positive electrode 104, and is crushed by being pressed by the tightening pressure to form the first positive electrode spacer 106 and the first positive electrode side tank housing side surface 108a. It is desirable that the thickness of the first positive electrode 104 is retained while the electrodes are in close contact with each other.
  • the packing 107b for the first negative electrode has a shape in which the outer periphery of the first negative electrode 105 is hollowed out to the size of the electrode. A clamping pressure is applied so that the solution in 112 (the first positive and negative electrode supply solution 109a to be described later) does not leak.
  • the first negative electrode packing 107b is thicker than the first negative electrode 105, and is crushed by being pressed by the tightening pressure, thereby connecting the first negative electrode spacer 106 and the first negative electrode side tank housing side surface 108b. It is desirable that the thickness of the first cathode 105 be maintained while adhering to the .
  • the side surface 108 a of the first positive electrode side tank housing is arranged so as to be in direct contact with the outside of the first positive electrode 104 .
  • the first positive electrode-side tank housing side surface 108a is provided on the inner surface of the first positive electrode-side tank housing side surface 108a in order to suppress penetration of the solution to the outside of the first positive electrode 104, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur outside. Since the platinum-containing catalyst is formed only on the inner surface of the first positive electrode 104, the efficiency of electrolysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the side surface 108b of the first cathode-side tank housing is arranged so as to be in direct contact with the outside of the first cathode 105.
  • the side surface 108b of the first cathode-side tank housing is provided with an inner surface of the first cathode-side tank housing side 108b in order to suppress penetration of the solution into the outside of the first cathode 105, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the first cathode 105, the efficiency of electrolysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the first negative electrode solution supply port 109 is a connection port for flowing salt water to be electrolyzed into the first positive electrode inter-electrode channel 112, and is attached with a connector (not shown) to which a tube can be connected.
  • the first negative electrode solution supply port 109 is processed at a position outside the first positive electrode 104 .
  • the first negative electrode solution supply port 109 may be processed at a position on the outer circumference of the first negative electrode 105, or may be processed at a position outside both the first positive electrode 104 and the first negative electrode 105. good too.
  • the first positive and negative electrode supply solution 109a is salt water.
  • the first negative electrode supply solution 109 a is introduced from the first negative electrode solution supply port 109 into the first channel 112 between the positive and negative electrodes.
  • the first positive electrode solution extraction port 110 is a connection port for extracting the electrolyzed first positive electrode extraction solution 110a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. It is connected to a side connection tube 128 and a positive electrode side supply pump 129 . In order to extract the first positive electrode extracting solution 110 a outside the first positive electrode 104 , the first positive electrode solution extracting port 110 is processed at a position outside the first positive electrode 104 .
  • the first positive electrode extraction solution 110a is hypochlorous acid water electrolyzed from salt water.
  • the first positive electrode extraction solution 110a is introduced into the first positive electrode solution extraction port 110 from the first channel 112 between the positive and negative electrodes.
  • the first positive electrode extraction solution 110a contains NaClO and HClO, which are components of hypochlorous acid water, generated by electrolyzing salt water.
  • Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
  • NaOH produced by electrolysis NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
  • the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase.
  • hypochlorous acid water containing NaClO is produced when salt water is sufficiently electrolyzed.
  • Components containing Na + ions, which are cations become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
  • the first cathode solution extraction port 111 is a connection port for extracting the electrolyzed first cathode extraction solution 111a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. It is connected to the side connection tube 130 and the cathode side supply pump 131 . In order to extract the first cathode extraction solution 111 a outside the first cathode 105 , the first cathode solution extraction port 111 is processed at a position outside the first cathode 105 .
  • the first cathode extraction solution 111a is hypochlorous acid water electrolyzed from salt water.
  • the first negative electrode extraction solution 111 a is introduced into the first negative electrode solution extraction port 111 from the first channel 112 between the negative and positive electrodes.
  • the first cathode extraction solution 111a contains NaClO and HClO, which are components of hypochlorous acid water, generated by electrolyzing salt water.
  • Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
  • the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase.
  • HClO and NaOH react to form NaClO
  • hypochlorous acid water containing NaClO is produced when salt water is sufficiently electrolyzed.
  • Components containing Na + ions, which are cations become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
  • the electrolyzed hypochlorous acid water is mixed during the flow process, but a large amount of Cl ⁇ ions, which are the negative ion components of the salt water, are distributed near the first positive electrode 104 .
  • the salt water flows with a concentration gradient such that a large amount of Na + ions, which are cationic components of salt water, are distributed. Therefore, when electrolysis is performed between the first positive and negative electrodes, an acidic solution flows in the vicinity of the first positive electrode 104, and an alkaline solution flows in the vicinity of the first negative electrode.
  • the first positive electrode solution extraction port 110 and the first negative electrode solution extraction port 111 correspond to the outer periphery of the first positive electrode 104 and the first negative electrode 105, so that they correspond to places where no voltage is applied. Since the first positive electrode solution extraction port 110 and the first negative electrode solution extraction port 111 are designed in the vicinity of one negative electrode 105, acid and alkaline hypochlorous acid water are extracted respectively.
  • acidic hypochlorous acid water containing a large amount of HCl and HClO is extracted as the first positive electrode extraction solution 110a from the first positive electrode solution extraction port 110 provided on the first positive electrode 104 side
  • first Alkaline hypochlorous acid water containing a large amount of NaOH is extracted from the first cathode solution extraction port 111 provided on the cathode 105 side as the first cathode extraction solution 111a.
  • the first cathode electrode solution supply port 109 is preferably arranged on the lower side in the vertical direction
  • the first positive electrode solution extraction port 110 and the first cathode electrode solution extraction port 111 are preferably arranged on the upper side in the vertical direction.
  • the first cathode-positive electrode flow path 112 is a flow path formed in a region surrounded by the first positive electrode 104, the first cathode-positive electrode spacer 106, and the first cathode electrode 105, and is a so-called non-diaphragm electrolytic flow path. is.
  • the first channel 112 between the negative and positive electrodes is formed by the first channel hole 112 a between the negative and positive electrodes of the spacer 106 between the first negative and positive electrodes in a meandering manner. More specifically, the first channel between positive and negative electrodes 112 reciprocates in the horizontal direction, and the number of reciprocations in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top.
  • the first channel 112 between the positive and negative electrodes has a structure in which the first channel 112 between the negative and positive electrodes goes upward in one direction, except for reciprocating in the horizontal direction.
  • the first channel 112 between the negative and positive electrodes has a first negative electrode solution supply port 109 on one side and a first positive electrode solution extraction port 110 and a first negative electrode solution extraction port 111 on the other side, A first negative electrode supply solution 109a is circulated inside.
  • the amount of electrolysis is controlled by the applied voltage current and flow velocity in the channel.
  • the flow rate can be controlled by installing a positive electrode side supply pump 129 after the first positive electrode solution extraction port 110 and installing a negative electrode side supply pump 131 after the first negative electrode solution extraction port 111 .
  • Each supply pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used.
  • the electrolysis power supply 113 is a DC power supply that is connected to the first positive electrode 104 and the first negative electrode 105 and can apply current and voltage to the first positive electrode 104 and the first negative electrode 105 .
  • the electrolysis power supply 113 may be used as a constant current controlled power supply so as to provide a constant current, or may be used as a constant voltage controlled power supply so as to provide a constant voltage.
  • the electrolysis power source 113 switches the potentials of the first positive electrode 104 and the first negative electrode 105 each time salt water is passed through the hypochlorous acid water generating unit 102, for example. It may be controlled to reverse polarity and dissolve adhering scale.
  • hypochlorous acid water generation unit 102 is composed of each member.
  • FIG. 12 is a schematic diagram of the hypochlorous acid water treatment unit 103.
  • FIG. 13 is an exploded perspective view of the hypochlorous acid water treatment unit 103.
  • FIG. 14 is a vertical cross-sectional image diagram of the hypochlorous acid water treatment unit 103 .
  • FIG. 15 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment unit 103 .
  • the hypochlorous acid water treatment unit 103 as shown in FIGS.
  • a side channel 126 and an electrodialysis power supply 127 are provided.
  • the second positive electrode 114 is a planar electrode plate. The surface of the electrode plate of the second positive electrode 114 is exposed along the channel of the second positive electrode-side channel 125 by the second positive electrode-side spacer 117 . Second positive electrode 114 is an electrode that functions as an anode when current is passed by electrodialysis power supply 127 . The second positive electrode 114 is arranged substantially parallel to and facing the second negative electrode 115 .
  • the second positive electrode 114 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. The platinum-containing catalyst is formed at least on the surface of the second positive electrode 114 exposed along the channel of the second positive electrode side channel 125 .
  • the main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH as residual components, but NaCl and salt water generated by decomposition of NaClO are electrolyzed. NaCl remaining without being dissolved can also be changed to hypochlorous acid by the platinum electrode.
  • the second cathode 115 is a planar electrode plate. The surface of the electrode plate of the second cathode 115 is exposed along the channel of the second cathode side channel 126 by the second cathode side spacer 118 .
  • the second cathode electrode 115 is the electrode that functions as a cathode when current is passed by the electrodialysis power supply 127 .
  • the second negative electrode 115 is arranged substantially parallel to and facing the second positive electrode 114 .
  • the second negative electrode 115 forms a platinum-containing catalyst on its surface, similar to the second positive electrode 114 .
  • the platinum-containing catalyst is formed at least on the surface of the second cathode 115 exposed along the channel 126 on the second cathode side.
  • the second positive electrode 114 and the second negative electrode 115 in the region where electrodialysis is performed by exposing them along the second positive electrode side channel 125 and the second negative electrode side channel 126 have the same shape.
  • the shorter the length the easier it is for ions to move. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
  • the second positive electrode 114 and the second negative electrode 115 constitute a second negative electrode as a pair of opposing electrodes.
  • the diaphragm 116 is a planar thin film.
  • the diaphragm 116 is arranged substantially parallel to and facing the second positive electrode 114 and the second negative electrode 115 .
  • the diaphragm 116 is provided so as to separate the second positive electrode side channel 125 and the second negative electrode side channel 126 .
  • the diaphragm 116 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water.
  • the diaphragm 116 can move positive ions to the second negative electrode 115 by applying a voltage to the second positive electrode 114 and the second negative electrode 115 .
  • Examples of the cation exchange membrane include Nafion manufactured by DuPont. Since the cations are concentrated on the second negative electrode 115 side, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use. In order to reduce scale accumulation, for example, each time hypochlorous acid water is passed through the hypochlorous acid water treatment unit 103, the potentials of the second positive electrode 114 and the second negative electrode 115 are switched to reverse polarity, Dissolve attached scale. When it is assumed that the electrodes will be used with their polarities reversed, it is desirable that the second positive electrode 114 and the second negative electrode 115 be similarly treated with a catalyst containing platinum.
  • the second positive electrode side spacer 117 is an insulating member.
  • the second positive electrode side spacer 117 controls the distance between the second positive electrode 114 and the diaphragm 116 to a predetermined distance.
  • the second positive electrode side spacer 117 has, inside the second positive electrode side spacer 117, a second positive electrode side channel hole 125a that forms a second positive electrode side channel 125, which will be described later.
  • the second positive electrode side channel hole 125 a is a hole that forms the second positive electrode side channel 125 formed in the second positive electrode side spacer 117 .
  • the second positive electrode side channel hole 125a is formed through the front and back of the second positive electrode side spacer 117, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing.
  • a meandering packing member (not shown), which is the same as the second positive electrode side spacer 117, is provided on the surface of the second positive electrode side spacer 117 in order to improve adhesion between the second positive electrode side 114 and the diaphragm 116. is installed.
  • the second positive electrode side spacer 117 corresponds to the "first spacer member" in the claims.
  • the second cathode side spacer 118 is an insulating member.
  • the second cathode side spacer 118 controls the distance between the second cathode 115 and the diaphragm 116 .
  • the second cathode side spacer 118 has a second cathode side channel hole 126a inside the second cathode side spacer 118 that forms a second cathode side channel 126, which will be described later.
  • the second cathode side channel hole 126 a is a hole that forms the second cathode side channel 126 formed in the second cathode side spacer 118 .
  • the second cathode-side channel hole 126a is formed through the front and back of the second cathode-side spacer 118, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing.
  • the second negative electrode side channel hole 126a and the second positive electrode side channel hole 125a are arranged so as to face each other.
  • a meandering packing member (not shown), which is the same as the second cathode-side spacer 118, is provided in order to increase the adhesion between the second cathode 115 and the diaphragm 116. is installed.
  • the second cathode-side spacer 118 corresponds to the "second spacer member" in the claims.
  • the second positive electrode packing 119a has a shape in which the outer periphery of the second positive electrode 114 is hollowed out to the size of the electrode. It is attached with tightening pressure so that the solution in 125 (the second positive electrode supply solution 121a to be described later) does not leak.
  • insulating silicon rubber can be used as a member of the second positive electrode packing 119a.
  • the second positive electrode packing 119a is thicker than the second positive electrode 114, and is crushed by being pressed by the tightening pressure to form the second positive electrode side spacer 117 and the second positive electrode side tank housing side surface 120a. It is desirable that the thickness of the second positive electrode 114 is retained while the electrodes are in close contact with each other.
  • the second cathode packing 119b has a shape in which the outer circumference of the second cathode 115 is hollowed out to the size of the electrode. It is attached with tightening pressure so that the solution inside (the second cathode supply solution 123a to be described later) does not leak.
  • As the member of the second cathode packing 119b insulating silicone rubber can be used.
  • the second cathode packing 119b is thicker than the second cathode 115, and is crushed by the tightening pressure so that the second cathode side spacer 118 and the second cathode side tank housing side face 120b are crushed. It is desirable that the thickness of the second cathode 115 be maintained while adhering to the second cathode 115 .
  • the second positive electrode side tank housing side surface 120a is arranged so as to be in direct contact with the outside of the second positive electrode 114 .
  • the second positive electrode-side tank housing side surface 120a is provided on the inner surface of the second positive electrode-side tank housing side surface 120a in order to suppress penetration of the solution to the outside of the second positive electrode 114, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second positive electrode 114, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the second cathode side tank housing side surface 120b is arranged so as to be in direct contact with the outside of the second cathode 115 .
  • the second cathode-side tank housing side surface 120b is provided with an inner surface of the second cathode-side tank housing side surface 120b in order to prevent the solution from permeating to the outside of the second cathode 115, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second cathode 115, the efficiency of electrode dialysis can be improved if the solution can be prevented from flowing out of the electrode.
  • the second positive electrode solution supply port 121 is a connection port for flowing the second positive electrode supply solution 121a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the second positive electrode supply solution 121 a from the outside of the second positive electrode 114 , the second positive electrode solution supply port 121 is processed at a position outside the second positive electrode 114 .
  • the second positive electrode supply solution 121 a is hypochlorous acid water electrolyzed from salt water in the hypochlorous acid water generation unit 102 . More specifically, the second positive electrode supply solution 121a is the first positive electrode extraction solution 110a supplied from the first positive electrode solution extraction port 110, and is acidic hypochlorous acid water containing a large amount of HCl and HClO. be. The second positive electrode supply solution 121 a is introduced from the second positive electrode solution supply port 121 into the second positive electrode side channel 125 .
  • the second positive electrode solution extraction port 122 is a connection port for extracting the electrodialyzed second positive electrode extraction solution 122a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second positive electrode extracting solution 122 a outside the second positive electrode 114 , the second positive electrode solution extracting port 122 is processed at a position outside the second positive electrode 114 .
  • the second positive electrode extraction solution 122a is hypochlorous acid water containing HClO as a main component.
  • the second positive electrode extraction solution 122 a is introduced into the second positive electrode solution extraction port 122 from the second positive electrode side channel 125 .
  • the second positive electrode extracting solution 122a causes the second positive electrode supply solution 121a to flow through the second positive electrode-side channel 125, and the second positive electrode supply solution 121a is extracted from the second positive electrode supply solution 121a. It is a solution in which ions are separated and diluted. Since hypochlorous acid water (first positive electrode extraction solution 110a) generated by electrolyzing salt water in the hypochlorous acid water generating unit is used as the second positive electrode supply solution 121a, the second positive electrode In the extraction solution 122a, Na + ions, which are cations, are separated and diluted to form hypochlorous acid water containing HClO as a main component. pH indicates acidity.
  • the second cathode solution supply port 123 is a connection port for flowing the second cathode supply solution 123a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the second cathode supply solution 123 a from the outside of the second cathode 115 , the second cathode solution supply port 123 is processed at a position outside the second cathode 115 .
  • the second cathode supply solution 123 a is hypochlorous acid water electrolyzed from salt water in the hypochlorous acid water generation unit 102 . More specifically, the second cathode supply solution 123a is the first cathode extraction solution 111a supplied from the first cathode solution extraction port 111, and is alkaline hypochlorous acid water containing a large amount of NaOH. The second cathode supply solution 123 a is introduced from the second cathode solution supply port 123 into the second cathode side channel 126 .
  • the second cathode solution extraction port 124 is a connection port for extracting the electrodialyzed second cathode extraction solution 124a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second cathode extraction solution 124 a outside the second cathode 115 , the second cathode solution extraction port 124 is processed at a position outside the second cathode 115 .
  • the second cathode extraction solution 124a is hypochlorous acid water containing NaClO and NaOH as main components.
  • the second cathode extraction solution 124 a is led out from the second cathode side channel 126 to the second cathode solution extraction port 124 .
  • the second cathode extraction solution 124a is a solution in which the second cathode supply solution 123a is circulated through the second cathode-side channel 126 to concentrate the cations that cause residual components. be. Since the hypochlorous acid water (first cathode extraction solution 111a) generated by electrolyzing salt water in the hypochlorous acid water generation unit 102 is used as the second cathode supply solution 123a, the second cathode In the electrode extracting solution 124a, Na + ions, which are cations, are separated and concentrated to generate NaOH, resulting in hypochlorous acid water containing NaOH and NaClO as main components. pH indicates alkaline.
  • the second positive electrode solution supply port 121 and the second negative electrode solution supply port 123 are preferably arranged on the lower side in the vertical direction, and the second positive electrode solution extraction port 122 and the second negative electrode solution extraction
  • the port 124 is desirably positioned vertically upward.
  • the second positive electrode side channel 125 is a channel formed by the area surrounded by the second positive electrode 114 , the second positive electrode side spacer 117 and the diaphragm 116 .
  • the second positive electrode side channel 125 is formed in a meandering manner by the second positive electrode side channel hole 125 a of the second positive electrode side spacer 117 . More specifically, the second positive electrode-side channel 125 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the second positive electrode side channel 125, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the second positive electrode-side channel 125 has a structure in which the second positive electrode-side channel 125 goes from bottom to top in one direction, except for reciprocating in the horizontal direction.
  • the second positive electrode-side channel 125 is provided with the second positive electrode solution supply port 121 on one side and the second positive electrode solution extraction port 122 on the other side.
  • a positive electrode supply solution 121a is circulated.
  • the second positive electrode side flow path 125 corresponds to the "first flow path" in the claims.
  • the second cathode-side channel 126 is a channel formed by a region surrounded by the second cathode 115 , the second cathode-side spacer 118 and the diaphragm 116 .
  • the second cathode-side channel 126 is formed by meandering second cathode-side channel holes 126 a of the second cathode-side spacer 118 . More specifically, the second cathode-side channel 126 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top.
  • the second cathode-side channel 126 has a structure in which liquid flows in one direction from bottom to top except for reciprocation in the horizontal direction.
  • the second cathode-side channel 126 has a second cathode solution supply port 123 on one side and a second cathode solution extraction port 124 on the other side.
  • a cathode supply solution 123a is circulating.
  • the second cathode-side channel 126 corresponds to the "second channel" in the claims.
  • the second positive electrode side channel 125 and the second negative electrode side channel 126 face each other in a symmetrical shape with the diaphragm 116 interposed therebetween. That is, the second positive electrode side channel 125 and the second negative electrode side channel 126 are formed in meandering shapes facing each other with the diaphragm 116 interposed therebetween. In this manner, the second positive electrode side channel 125 and the second negative electrode side channel 126 constitute a so-called membrane electrolysis channel. Then, the Na + ions contained in the hypochlorous acid water flowing through the second positive electrode side channel 125 move to the second negative electrode side channel 126 side. The amount of ion movement is controlled by the applied voltage and current and the flow velocity in the channel.
  • the flow rate can be controlled by installing a positive electrode side supply pump 129 in front of the second positive electrode solution supply port 121 and installing a negative electrode side supply pump 131 in front of the second negative electrode solution supply port 123 .
  • Each pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, it is possible to control the electrodialysis and electrolysis time in the flow channel constantly, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
  • the electrodialysis power supply 127 is a DC power supply that is connected to the second positive electrode 114 and the second negative electrode 115 and can apply current and voltage to the second positive electrode 114 and the second negative electrode 115 .
  • the electrodialysis power supply 127 may be used as a constant current controlled power supply so as to provide a constant current, or may be used as a constant voltage controlled power supply so as to provide a constant voltage.
  • the electrodialysis power supply 127 is connected to the second positive electrode 114 and the second negative electrode 115 each time the hypochlorous acid water is supplied to the hypochlorous acid water treatment unit 103, for example. It may be controlled to switch the potential to reverse the polarity and dissolve the adhering scale.
  • the positive electrode side connection tube 128 is connected to the hypochlorous acid water treatment unit via the first positive electrode solution extraction port 110 of the hypochlorous acid water generation unit 102 and the positive electrode side supply pump 129. It is a tube that connects 103 with the second positive electrode solution supply port 121 .
  • the positive electrode side connection tube 128 converts the hypochlorous acid water (first positive electrode extraction solution 110a) generated in the hypochlorous acid water generation unit 102 by the operation of the positive electrode side supply pump 129 into hypochlorous acid.
  • the solution is sent to the second positive electrode solution supply port 121 of the acid water treatment unit 103 .
  • a silicon tube or the like, for example, can be used for the positive electrode side connection tube 128 .
  • the negative electrode side connection tube 130 connects the first negative electrode solution extraction port 111 of the hypochlorous acid water generation unit 102 and the second negative electrode solution of the hypochlorous acid water treatment unit 103 via the negative electrode side supply pump 131 . It is a tube that connects with the supply port 123 .
  • the cathode-side connection tube 130 connects the hypochlorous acid water ((first cathode extraction solution 111a) generated in the hypochlorous acid water generation unit 102 to the second cathode of the hypochlorous acid water treatment unit 103. The liquid is sent to the solution supply port 123.
  • the negative electrode side connection tube 130 can use, for example, a silicon tube.
  • tubes having the same inner diameter and the same length are used so that there is no difference in the flow rate and flow velocity of the solution flowing inside.
  • the positive electrode side supply pump 129 is a pump that generates a flow that supplies the first positive electrode extraction solution 110a generated in the hypochlorous acid water generation unit 102 as the second positive electrode supply solution 121a. More specifically, the positive electrode side supply pump 129 has a first negative electrode solution supply port 109, a first positive electrode inter-electrode channel 112, a first positive electrode solution extraction port 110, a second positive electrode solution supply port 121, a Each solution (salt water, first negative electrode supply solution 109a, first positive electrode extraction solution 110a, second positive electrode supply solution 121a, A second positive electrode extraction solution 122a) is caused to flow.
  • the positive electrode side supply pump 129 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generation unit 102, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment unit 103 to be constant.
  • Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the cathode side supply pump 131 is a pump that generates a flow that supplies the first cathode extraction solution 111a generated in the hypochlorous acid water generation unit 102 as the second cathode supply solution 123a. More specifically, the cathode-side supply pump 131 has a first anode-positive electrode solution supply port 109, a first cathode-positive electrode channel 112, a first cathode solution extraction port 111, a second cathode solution supply port 123, a second Each solution (salt water, first negative electrode supply solution 109a, first negative electrode extraction solution 111a, second positive electrode extraction solution 122a, A second cathodic extraction solution 124a) is caused to flow.
  • the cathode-side supply pump 131 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating unit 102, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment unit 103 to be constant.
  • Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the flow rate of the first cathode-positive electrode channel 112 is controlled as the total amount of the positive electrode-side supply pump 129 and the negative electrode-side supply pump 131 . Also, the positive electrode side supply pump 129 and the negative electrode side supply pump 131 correspond to the "supply pump" in the claims.
  • hypochlorous acid water treatment unit 103 is composed of each member.
  • the hypochlorous acid water supply device 101 has a flow path on the positive electrode side of each unit between the hypochlorous acid water generation unit 102 and the hypochlorous acid water treatment unit 103 described above. , and connected via a negative electrode side connection tube 130 provided in the channel on the negative electrode side of each unit.
  • the hypochlorous acid water supply device 101 continuously introduces salt water into the hypochlorous acid water generation unit 102, and continuously supplies the hypochlorous acid water from the hypochlorous acid water treatment unit 103 to the outside. do.
  • the hypochlorous acid water supply device 101 electrolyzes the salt water that is continuously introduced into the hypochlorous acid water generation unit 102 to produce a second
  • the second positive electrode extraction solution 122a delivered from the two positive electrode side channel 125 is supplied to the outside as acidic hypochlorous acid water.
  • the hypochlorous acid water supply device 101 converts the second cathode extraction solution 124a delivered from the second cathode side channel 126 on the cathode side of the hypochlorous acid water treatment unit 103 into alkaline hypochlorous acid. Supplied to the outside as acid water.
  • a first negative electrode supply solution 109a which is salt water, passes through a first negative electrode solution supply port 109 and flows into a first negative electrode flow path 112. continuously supplied to Then, the first negative electrode supply solution 109a supplied from the first negative electrode solution supply port 109 flows through the first channel 112 between the positive and negative electrodes which is formed meandering. At this time, the supply solution 109a for the first negative and positive electrodes flows through the channel 112 between the first positive and negative electrodes, and at the same time, a voltage is applied to the first positive electrode 104 and the first negative electrode 105 at both ends.
  • the electrolysis time is lengthened in the channel 112 between the first positive and negative electrodes, thereby increasing the amount of electrolysis of NaCl and extracting the first positive electrode. Residual NaCl (brine) in solution 110a and first cathode extraction solution 111a can be reduced.
  • it is necessary to increase the distance of the first channel 112 between the negative and positive electrodes. It is formed in a meandering manner, and the distance for electrolysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional area of the first cathode-positive electrode channel 112, the distance can be lengthened, and the electrolysis time can be lengthened.
  • FIG. 14 the treatment operation in the hypochlorous acid water treatment unit 103 will be described with reference to FIGS. 14 and 15.
  • FIG. 14 the treatment operation in the hypochlorous acid water treatment unit 103 will be described with reference to FIGS. 14 and 15.
  • the second positive electrode supply solution 121a which is hypochlorous acid water, passes through the second positive electrode solution supply port 121 to the second positive electrode.
  • the second cathode supply solution 123a which is hypochlorous acid water, is continuously supplied to the side channel 125 and is continuously supplied to the second cathode side channel 126 through the second cathode solution supply port 123. be done.
  • the second positive electrode supply solution 121a supplied from the second positive electrode solution supply port 121 flows through the meandering second positive electrode side channel 125, and flows through the second negative electrode solution supply port.
  • a second cathode supply solution 123a supplied from 123 flows through a second cathode side channel 126 which is also formed in a meandering manner.
  • the second positive electrode supply solution 121a and the second negative electrode supply solution 123a face each other across the diaphragm 116 and flow in the same direction to form the second positive electrode side channel 125 and the second negative electrode side channel 125, respectively.
  • a voltage is applied to the second positive electrode 114 and the second negative electrode 115 at both ends. When a voltage is applied, negative ions are attracted to the second positive electrode 114 side and positive ions (Na + ions) are attracted to the second negative electrode 115 side.
  • the diaphragm 116 is composed of a membrane that is permeable only to cations, the cations (Na + ions) contained in the second positive electrode supply solution 121a flowing through the second positive electrode-side channel 125 are 116, and passes through the second cathode supply solution 123a in the second cathode side channel 126 and is attracted to the second cathode 115 side.
  • the anions flowing through the second negative electrode side channel 126 cannot pass through the diaphragm 116, only the anions contained in the second positive electrode side channel 125 are attracted to the second positive electrode 114.
  • the cations (Na 2 + ions) contained in the second positive electrode supply solution 121a flowing through the second positive electrode-side channel 125 are converted to the second negative electrode flowing through the second negative electrode-side channel 126.
  • Electrodialysis progresses by moving to the electrode supply solution 123a, and the second positive electrode supply solution 121a flowing through the second positive electrode-side channel 125 has cations (Na 2 + ions) separated and diluted to form a second negative electrode supply solution 121a.
  • the second cathode supply solution 23a that flows through the electrode-side channel 126 is extracted with concentrated cations (Na + ions).
  • the second positive electrode solution extraction port 122 As the second positive electrode solution extraction port 122, as the second positive electrode extraction solution 122a, the residual components NaClO and NaOH are separated and diluted, and the hypochlorous acid water containing the HClO component as the main component is extracted. be. Conversely, from the second cathode solution extraction port 124, the Na + ions constituting the residual components are concentrated and NaOH is generated as the second cathode extraction solution 124a from the second cathode solution extraction port 124. ) is extracted.
  • the pumps are controlled so that the flow rates of the solutions passing through the second positive electrode side channel 125 and the second negative electrode side channel 126 are the same, but they may be different. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity in the second positive electrode side channel 125 is relatively increased and the flow velocity in the second negative electrode side channel 126 is relatively decreased, the second positive electrode side channel 125 and the second The second cathode extraction solution 124a extracted from the second cathode-side channel 126 is smaller and has a higher concentration than when the two-cathode-side channel 126 has the same flow rate. Therefore, when the second cathode extraction solution 124a is drained, it is desirable to slow down the flow velocity of the second cathode side channel 126.
  • the hypochlorous acid water supply device 101 (the hypochlorous acid water generation unit 102 and the hypochlorous acid water treatment unit 103) is actually circulated to supply the second positive electrode.
  • the properties of the hypochlorous acid water (conductivity, pH, and effective chlorine concentration) of the second positive electrode extraction solution 122a and the second negative electrode extraction solution 124a extracted from the solution extraction port 122 and the second negative electrode solution extraction port 124, respectively ) will be explained.
  • 16A to 16C are diagrams showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply device 101 and the electrodialysis time. More specifically, FIG.
  • FIG. 16A is a diagram showing the relationship between electrodialysis time and electrical conductivity by the hypochlorous acid water supply device 101.
  • FIG. 16B is a diagram showing the relationship between electrodialysis time and pH by the hypochlorous acid water supply device 101.
  • FIG. 16C is a diagram showing the relationship between the electrodialysis time and available chlorine concentration by the hypochlorous acid water supply device 101.
  • the hypochlorous acid water generating unit 102 was formed with the first cathode-positive electrode channel 112 having a channel cross-sectional area of 26 mm 2 and a channel length of 675 mm.
  • a hypochlorous acid water treatment unit 103 in which a second positive electrode side channel 125 and a second negative electrode side channel 126 having a channel cross-sectional area of 8 mm 2 and a channel length of 675 mm were formed was used.
  • both are circulated at flow rates of 153 mL / h and 250 mL / h, and the electrolysis time of the hypochlorous acid water generation unit 102 is And the electrodialysis time of the hypochlorous acid water treatment unit 103 was adjusted, and the conductivity, pH, and effective chlorine concentration of the second positive electrode extraction solution 122a and the second negative electrode extraction solution 124a were measured.
  • the salt water of the first negative and positive electrode supply solution 109a supplied to the first negative and positive electrode solution supply port 109 has a conductivity of 405 ⁇ S/cm, a pH of 6.7, an available chlorine concentration of 0 ppm, and a chloride ion concentration of 138 ppm.
  • Electrolysis and electrodialysis were performed using a power source capable of applying a constant current of 0.2 A as the electrolysis power source 113 and the electrodialysis power source 127 .
  • the electrolysis time refers to the time during which the solution is in direct contact with the first positive electrode 104 and the first negative electrode 105 in the channel, and the longer the electrolysis time, the slower the flow rate. .
  • the electrodialysis time refers to the time during which the solution is in direct contact with the second positive electrode 114 and the second negative electrode 115 in the channel, and the longer the electrodialysis time, the slower the flow rate. This time, electrodialysis was performed by setting the flow rate on the anode side and the cathode side to be the same.
  • the longer the electrodialysis time in other words, the slower the flow rate, the more the conductivity of the second positive electrode extraction solution 122a extracted from the second positive electrode solution extraction port 122 (the anode side ) decreases, and the conductivity of the cathode-side extraction solution 12a extracted from the cathode-side solution extraction port 12 (cathode-side conductivity) increases.
  • the effective chlorine concentration of the second positive electrode extraction solution 122a increases with the electrodialysis time.
  • the rate of increase in available chlorine concentration is reduced, and it is considered that the conversion to HClO has been completed.
  • the available chlorine concentration increases with the electrodialysis time.
  • hypochlorous acid water generation unit 102 increases and the amount of hypochlorous acid water generated increases.
  • the reason for this is thought to be that the amount of hypochlorous acid water extracted from the second cathode solution extraction port 124 of the hypochlorous acid water treatment unit 103 also increases.
  • the hypochlorous acid water supply device 101 simultaneously extracts hypochlorous acid water mainly composed of HClO with high sterilizing power from the anode side and hypochlorous acid water mainly composed of NaClO and NaOH with high detergency from the cathode side. can do.
  • Hypochlorous acid water containing mainly HClO is a solution in which residual components are suppressed, and it is possible to suppress metal corrosion caused by residual components even during space spraying while maintaining sterilization power.
  • hypochlorous acid water containing NaClO and NaOH as a main component cannot be sprayed in space because it is a solution that leaves residual components, but it is a solution with high detergency and is effective in washing areas with acidic dirt such as drains.
  • hypochlorous acid water treatment device 1 hypochlorous acid water mainly composed of HClO generated on the anode side is used for space sterilization, while hypochlorous acid mainly composed of NaClO and NaOH is generated on the cathode side on the opposite side. Water can also be used for cleaning.
  • the hypochlorous acid water supply device 101 supplies salt water to the meandering diaphragmless electrolysis flow path (first anode-positive electrode flow path 112) between the pair of first cathode and cathode electrodes (first positive electrode). 104 and the first negative electrode 105), a hypochlorous acid water generating unit 102 for continuously electrolytically generating hypochlorous acid water by energizing the current, and a meandering diaphragm electrolysis flow path (second positive electrode Hypochlorous acid water supplied from the hypochlorous acid water generation unit 102 is supplied to each of the side flow path 125 and the second negative electrode side flow path 126 between the pair of second negative and positive electrodes (second positive electrode 114 and and a hypochlorous acid water treatment unit 103 that continuously treats by energizing (between the second cathode 115).
  • the structure is such that the hypochlorous acid water sent out from the electrolysis channel (second positive electrode side channel 125) on the positive electrode side of the hypoch
  • hypochlorous acid water generation unit 102 salt water is electrolyzed in the non-diaphragm electrolysis channel (the first channel between the negative and positive electrodes 112) to generate hypochlorous acid water, and the diaphragm Hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the electrolysis flow path (the second positive electrode side flow path 125 and the second negative electrode side flow path 126), and the factor of the residual component is removed from the positive electrode side. It can be extracted as hypochlorous acid water in which the cations that become are separated and reduced. Therefore, the hypochlorous acid water supply device 101 of the one-pass type can be provided, which can supply the hypochlorous acid water from which the residual components generated by the electrolysis of the salt water are separated to the outside.
  • each flow path non-diaphragm electrolysis flow path and diaphragm electrolysis flow path
  • each flow path has a meandering shape, so that the salt water and the hypochlorous acid water come into contact with the electrodes and the diaphragm, respectively.
  • the distance and time for electrolysis of salt water and separation of cations that cause residual components from hypochlorous acid water can be lengthened.
  • the electrolysis of salt water and the separation of cations that cause residual components from hypochlorous acid water can be efficiently performed with respect to the size of the electrode.
  • the non-diaphragm electrolysis flow path (the first cathode-positive electrode flow path 112) of the hypochlorous acid water generation unit 102 includes a planar first positive electrode 104 and a second It is composed of a planar first negative electrode 105 facing one positive electrode 104 and a first positive electrode spacer 106 provided between the first positive electrode 104 and the first negative electrode 105 . .
  • a pair of first negative and negative electrodes (first positive electrode 104 and first negative electrode 105) are exposed to the non-diaphragm electrolytic flow path by a spacer 106 between first negative and positive electrodes. It was configured in a meandering shape. In this way, the ability to electrolyze salt water can be changed by changing the shape of the channel formed in the first spacer between negative and positive electrodes 106, so that the area and time for electrolyzing salt water can be freely designed. be able to.
  • the diaphragm electrolysis flow path (the second positive electrode side flow path 125 and the second negative electrode side flow path 126) of the hypochlorous acid water treatment unit 103 is connected to the second A meandering second positive electrode-side channel 125 in which the positive electrode 114 is exposed and extended along the channel, and a second positive electrode-side channel 125 are arranged in parallel to face the second negative electrode 115 .
  • a meandering second negative electrode-side channel 126 exposed and extending along the channel, and the second positive electrode-side channel 125 and the second negative electrode-side channel 126 are separated from each other, and a diaphragm 116 that allows cations contained in the solution flowing through the channel to permeate.
  • a pair of second negative and positive electrodes (the second positive electrode 114 and the second negative electrode 115) exposes the second positive electrode 114 to the second positive electrode side channel 125 by the second positive electrode side spacer 117, By exposing the second negative electrode 115 to the second negative electrode side channel 126 by the negative electrode side spacer 118, the second positive electrode side channel 125 and the second negative electrode side channel 126 are configured in a meandering manner. , the hypochlorous acid water supplied from the hypochlorous acid water generating unit 102 are configured to flow in the same direction.
  • the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm 116, which causes residual components from the hypochlorous acid water. Cations can be separated and reduced. Therefore, the hypochlorous acid water treatment unit 103 can produce hypochlorous acid water with reduced residual components generated by the electrolysis of salt water. More specifically, the hypochlorous acid water extracted from the anode side becomes hypochlorous acid water in which cations that cause residual components are separated and diluted, and the hypochlorous acid water extracted from the cathode side is , it becomes hypochlorous acid water in which cations, which are factors of residual components, are concentrated.
  • hypochlorous acid water in which the cations that cause the residual components are separated and diluted is obtained, and from the cathode side of the hypochlorous acid water supply device 101, At the same time, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated can be obtained.
  • the hypochlorous acid water supply device 101 includes a planar second positive electrode 114, a planar diaphragm 116 facing the second positive electrode 114, and between the second positive electrode 114 and the diaphragm 116 and a second positive electrode-side spacer 117 that exposes the second positive electrode 114 and the diaphragm 116 in the second positive electrode-side channel 125 along the channel, and the second positive electrode-side channel is It is composed of the second positive electrode 114 and the diaphragm 116 exposed along the flow path, and the second positive electrode side spacer 117 .
  • the hypochlorous acid water supply device 101 further includes a planar second cathode 115, a planar diaphragm 116 facing the second cathode 115, and a gap between the second cathode 115 and the diaphragm 116. and a second cathode side spacer 118 for exposing the second cathode 115 and the diaphragm 116 in the second cathode side channel 126 along the channel, and the second cathode side channel 126 is composed of a second cathode 115 and a diaphragm 116 exposed along the channel, and a spacer 118 on the side of the second cathode.
  • hypochlorous acid generated by electrolyzing salt water is generated by the flow path shape formed in the second positive electrode side spacer 117 and the flow path shape formed in the second cathode side spacer 18. Since the ability to separate cations that cause residual components from water can be changed, the area and time for separating cations that cause residual components from hypochlorous acid water can be freely designed. .
  • the hypochlorous acid water supply device 101 is provided in a flow path that communicates and connects the hypochlorous acid water generation unit 102 and the hypochlorous acid water treatment unit 103, and has a diaphragm electrolysis flow path (second positive electrode).
  • Supply pumps (a positive electrode side supply pump 129 and a negative electrode side supply pump 131) that supply hypochlorous acid water from the hypochlorous acid water generation unit 102 to the electrode side channel 125 and the second negative electrode side channel 126) ).
  • the supply pump was adapted to supply the hypochlorous acid water from the hypochlorous acid water generation unit 102 to the second positive electrode side channel 125 and the second negative electrode side channel 126 at a constant flow rate.
  • the time during which the voltage is applied in the second positive electrode side channel 125 can be made constant, and the time during which the voltage is applied in the second negative electrode side channel 126 can be made constant.
  • the concentration at which the cations that cause residual components in the hypochlorous acid water in the second positive electrode side channel 125 are separated and diluted, and the hypochlorous acid water in the second negative electrode side channel 126 It is possible to stabilize the concentration of cations that contribute to the residual components of .
  • FIG. 17 is a schematic diagram of a space sterilization system 140 using the hypochlorous acid water supply device 101 according to Embodiment 2-2 of the present disclosure.
  • a space sterilization system 140 according to Embodiment 2-2 described below is a system incorporating the hypochlorous acid water supply device 101 according to Embodiment 2-1.
  • the substantially same configurations as those of the hypochlorous acid water supply apparatus 101 according to Embodiment 2-1 are denoted by the same reference numerals, and the description is partially simplified. or may be omitted.
  • the space sterilization system 140 according to the present embodiment 2-2 sprays hypochlorous acid water generated from the hypochlorous acid water supply device 101 from the mist spray device 144 in the bathroom space and at the drain port 146. It is a system that sterilizes and cleans the bathroom space by flushing.
  • the bathroom space corresponds to the "predetermined space" in the claims.
  • the space sterilization system 140 includes a hypochlorous acid water supply device 101 (hypochlorous acid water generation unit 102, hypochlorous acid water treatment unit 103, positive electrode side supply Pump 129, negative electrode side supply pump 131), positive electrode side extraction solution tank 141, negative electrode side extraction solution tank 142, positive electrode side extraction solution bathroom pipe 143, mist spray device 144, negative electrode side An extraction solution bath plumbing 145 and a drain 146 are provided.
  • a hypochlorous acid water supply device 101 hypochlorous acid water generation unit 102, hypochlorous acid water treatment unit 103, positive electrode side supply Pump 129, negative electrode side supply pump 131
  • positive electrode side extraction solution tank 141 positive electrode side extraction solution tank 142
  • positive electrode side extraction solution bathroom pipe 143 positive electrode side extraction solution bathroom pipe 143
  • mist spray device 144 negative electrode side
  • An extraction solution bath plumbing 145 and a drain 146 are provided.
  • the hypochlorous acid water generation unit 102 that constitutes the hypochlorous acid water supply device 101 is a unit that supplies salt water (aqueous sodium chloride solution) and generates hypochlorous acid water through electrolysis.
  • the hypochlorous acid water generated by the hypochlorous acid water generation unit 102 contains NaClO and HClO, which are components of the hypochlorous acid water.
  • Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. More specifically, in the hypochlorous acid water generation unit 102, the positive electrode side supply pump 129 and the negative electrode side supply pump 131 operate to operate the first positive electrode solution extraction port provided on the first positive electrode 104 side.
  • Acidic hypochlorous acid water containing a large amount of HCl and HClO is extracted from 110 as a first positive electrode extraction solution 110a.
  • Alkaline hypochlorous acid water containing a large amount of NaOH is extracted as the first cathode extraction solution 111a from the first cathode solution extraction port 111 provided on the first cathode 105 side.
  • the hypochlorous acid water treatment unit 103 circulates the hypochlorous acid water supplied from the hypochlorous acid water generation unit 102, and from the second positive electrode side channel 125, the next The second positive electrode extraction solution 122a, which is chlorous acid water, is extracted, and the second negative electrode extraction solution 124a, which is hypochlorous acid water mainly composed of NaClO and NaOH with high detergency, is extracted from the second negative electrode side channel 126. This is the unit to extract.
  • the second positive electrode extracting solution 122 a is stored in the positive electrode side extracting solution tank 141 and then sent to the mist spraying device 144 through the positive electrode side extracting solution bathroom pipe 143 .
  • the mist spray device 144 sprays the second positive electrode extraction solution 122a into the bathroom space.
  • the second cathode extraction solution 124 a is stored in the cathode side extraction solution tank 142 and then sent to the drain port 146 through the cathode side extraction solution bathroom piping 145 .
  • the second cathode extraction solution 124a flows through the drain port 146 and flows through the drain port 146 into the drain pipe.
  • the positive electrode side extraction solution tank 141 sends the second positive electrode extraction solution 122a, which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the second positive electrode side channel 125, to the mist spray device 144. It is a temporary storage tank until it is liquefied.
  • the positive electrode side extraction solution tank 141 is connected to a mist spraying device 144 via a positive electrode side extraction solution bathroom piping 143 .
  • the cathode-side extraction solution tank 142 sends the second cathode-side extraction solution 124 a, which is hypochlorous acid water containing NaClO and NaOH with high detergency extracted from the second cathode-side channel 126 , to the drain port 146 . It is a temporary storage tank until it is liquefied.
  • the cathode-side extraction solution tank 142 is connected to a drain port 146 via a cathode-side extraction solution bathroom pipe 145 .
  • the positive electrode side extraction solution bathroom pipe 143 is a pipe for sending liquid from the positive electrode side extraction solution tank 141 to the mist spray device 144 .
  • the positive electrode-side extraction solution bathroom pipe 143 is installed behind the wall and ceiling of the bathroom, and is connected to a mist spraying device 144 installed on the ceiling.
  • the cathode-side extraction solution bathroom pipe 145 is a pipe for sending liquid from the cathode-side extraction solution tank 142 to the drain port 146 .
  • the cathode-side extraction solution bathroom pipe 145 is installed behind the wall and floor of the bathroom and connected to a drain port 146 .
  • the mist spraying device 144 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 144 finely sprays the second positive electrode extraction solution 122a, which is hypochlorous acid water, transported from the positive electrode side extraction solution tank 141 through the positive electrode side extraction solution bathroom piping 143. It is a device that emits a fine mist.
  • the mist spraying device 144 is installed so that a spraying part protrudes from the ceiling toward the bathroom so that the mist can be sprayed from the ceiling of the bathroom to the entire bathroom.
  • the mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 ⁇ m or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 ⁇ m or less is sprayed.
  • the drain port 146 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space.
  • the second cathode extraction solution 124a is conveyed from the cathode side extraction solution tank 142 through the cathode side extraction solution bathroom piping 145, and the hypochlorous acid water containing NaClO and NaOH with high detergency.
  • the drain port 146 and the drain pipe connected to the drain port 146 can be cleaned of dirt by the second cathode extraction solution 124a.
  • the space sterilization system 140 is connected to the hypochlorous acid water supply device 101 and the second positive electrode side channel 125, and the hypochlorous acid water sent out from the second positive electrode side channel 125. and a mist spraying device 144 that emits hypochlorous acid water mist into a predetermined space. According to such a configuration, even if the hypochlorous acid water mist delivered from the second positive electrode-side channel 125 is discharged into the predetermined space, residual components remaining in the predetermined space are suppressed.
  • hypochlorous acid water delivered from the second positive electrode side channel 125 is hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced, when sterilizing a predetermined space, It is possible to suppress the occurrence of metal corrosion due to residual components while maintaining the sterilization performance.
  • the bathroom space is provided with a drain port 146 for discharging water generated in the bathroom space, and the second cathode-side channel 126 is connected to the drain port 146 in communication.
  • the hypochlorous acid water sent from the second cathode side channel 126 can be introduced into the drain port 146 .
  • hypochlorous acid with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is extracted from the hypochlorous acid water delivered from the second negative electrode side channel 126. Since water is passed through the drain port 146 (and the drain pipe connected to the drain port 146), the drain pipe can be cleaned with the alkaline solution.
  • NaClO and NaOH which are residual components
  • NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing a large amount of NaClO and NaOH components is mist-sprayed, fine residual components are accumulated, which may cause corrosion during long-term use.
  • the purpose of the present disclosure is to provide a hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water and a space sterilization system using the same.
  • hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water, and a space sterilization system using the same. can.
  • the hypochlorous acid water supply apparatus includes a meandering electrolysis flow path configured to be able to supply salt water, and a pair of salt water supplied into a non-membrane electrolysis flow path constituting the front stage of the electrolysis flow path.
  • a hypochlorous acid water generator that continuously electrolytically generates hypochlorous acid water by energizing between the positive and negative electrodes of the hypochlorous acid water generator, and a hypochlorous acid a hypochlorous acid water treatment unit for continuously treating the hypochlorous acid water supplied from the water generation unit by energizing between the pair of positive and negative electrodes.
  • the structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
  • hypochlorous acid water is electrolyzed in the non-diaphragm electrolysis channel in the hypochlorous acid water generation unit to generate hypochlorous acid water.
  • the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the diaphragm electrolysis flow path to separate and reduce the cations that cause residual components from the positive electrode side. It can be extracted as acid water. For this reason, it is possible to provide a one-pass type hypochlorous acid water supply device capable of externally supplying hypochlorous acid water from which residual components generated by electrolysis of salt water are separated.
  • a common positive electrode and negative electrode (a pair of negative and positive electrodes) are used in the hypochlorous acid water generation part and the hypochlorous acid treatment part, and the non-diaphragm electrolytic flow path and the diaphragm electrolytic flow path are between the negative and positive electrodes. Directly connected with voltage applied.
  • the non-diaphragm electrolysis flow path the anions flow into the electrolysis flow path with the diaphragm in such a state that there are many anions in the vicinity of the positive electrode and many cations exist in the vicinity of the negative electrode.
  • the electrodialysis treatment can be started in a state in which cations that cause residual components have been reduced in advance.
  • the non-diaphragm electrolytic flow path includes a planar positive electrode, a planar negative electrode facing the positive electrode, and between the positive electrode and the negative electrode. and a spacer member provided.
  • a pair of first negative and positive electrodes are formed in a meandering shape by exposing the positive electrode and the negative electrode to the non-diaphragm electrolytic flow path by the spacer member.
  • the diaphragm-equipped electrolysis flow path includes a meandering first flow path in which the positive electrode is exposed and extends along the flow path, and the first flow path faces the first flow path. and a meandering second channel in which the negative electrode is exposed and extended along the channel; and a diaphragm permeable to cations contained in the solution.
  • the pair of negative and positive electrodes are configured in a meandering manner by exposing the positive electrode to the first channel by the first spacer member and exposing the negative electrode to the second channel by the second spacer member.
  • hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm, which causes residual components from the hypochlorous acid water. Cations can be separated and reduced. Therefore, the hypochlorous acid water treatment unit can produce hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced.
  • the diaphragm-containing electrolytic flow path is provided between the planar positive electrode, the planar diaphragm facing the positive electrode, and the positive electrode and the diaphragm. and a first spacer member exposing the positive electrode and the diaphragm within the first channel along the channel.
  • the first channel is composed of the positive electrode and the diaphragm exposed along the channel, and the first spacer member.
  • a planar cathode, a planar diaphragm facing the cathode, and a second electrode provided between the cathode and the diaphragm exposing the cathode and the diaphragm into the second flow path along the flow path. and two spacer members.
  • the second channel is composed of a negative electrode and a diaphragm exposed along the channel, and a second spacer member.
  • the spacer member is configured by overlapping the first spacer member and the second spacer member. According to such a configuration, the structure can be simplified, and the liquid can be circulated while suppressing the leakage of the liquid due to the boundary between the non-diaphragm electrolysis flow path and the diaphragm electrolysis flow path and the disturbance of the ion distribution in the flow path. can.
  • hypochlorous acid water supply device is provided at each outlet on the positive electrode side and the negative electrode side of the hypochlorous acid water treatment unit, and generates a flow that supplies salt water to the electrolytic flow path. Equipped with a feed pump. It is preferable that the supply pump supplies the hypochlorous acid water from the hypochlorous acid water generator to the first channel and the second channel at a constant flow rate. As a result, the time during which the voltage is applied in the first channel can be made constant, and the time during which the voltage is applied in the second channel can be made constant. For this reason, the concentration at which the cations that cause residual components in the hypochlorous acid water in the first flow channel are separated and diluted, and the cations that cause residual components in the hypochlorous acid water in the second flow channel concentration can be stabilized.
  • the spatial sterilization system is connected to the above-described hypochlorous acid water supply device and the first flow path, and uses the hypochlorous acid water sent from the first flow path to create a hypochlorous acid water mist. and a sterilization device that releases to a predetermined space.
  • a hypochlorous acid water mist and a sterilization device that releases to a predetermined space.
  • the hypochlorous acid water sent from the first flow path is hypochlorous acid water with reduced residual components generated by the electrolysis of salt water, sterilization performance is maintained when sterilizing a predetermined space.
  • the occurrence of metal corrosion due to residual components can be suppressed.
  • a predetermined space is provided with a drain pipe for discharging water generated within the predetermined space.
  • the second channel is connected to the drain pipe, and has a structure configured so that the hypochlorous acid water sent out from the second channel can be introduced into the drain pipe.
  • hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is removed from the hypochlorous acid water sent from the second flow path. Since the alkaline solution is circulated, the drain pipe can be washed with the alkaline solution.
  • Embodiment 3 includes at least Embodiment 3-1, Embodiment 3-2 and Embodiment 3-3 below.
  • FIG. 3-1 is a schematic diagram of a hypochlorous acid water supply device 201 according to Embodiment 3-1 of the present disclosure.
  • 19 is an exploded perspective view of the hypochlorous acid water supply device 201.
  • FIG. FIG. 20 is a vertical cross-sectional image diagram of the hypochlorous acid water supply device 201 .
  • the hypochlorous acid water supply device 201 supplies salt water (aqueous sodium chloride solution), generates hypochlorous acid water by electrolysis, and further contains residual components (Na + ions, etc.) contained in the generated hypochlorous acid water.
  • salt water aqueous sodium chloride solution
  • residual components Na + ions, etc.
  • a component having a cation of for example, NaClO, NaOH
  • NaClO, NaOH can be separated and reduced from the hypochlorous acid water flowing inside and can be taken out and supplied in a single pass.
  • the hypochlorous acid water supply device 201 includes a hypochlorous acid water generation unit 201a that electrolyzes salt water to generate hypochlorous acid water in one pass, The hypochlorous acid water treatment unit 201b that separates and reduces the residual components contained in the chlorous acid water in a single pass, and electrolysis and The electrolysis/electrodialysis power supply 215 that applies a current and voltage for electrodialysis, and the flow path of the hypochlorous acid water generation unit 201a.
  • a positive electrode side supply pump 231 (see FIG. 26) and a negative electrode side supply pump 232 (see FIG. 26) for circulating hypochlorous acid water are provided.
  • the hypochlorous acid water generator 201a includes a positive electrode 202, a negative electrode 203, a positive electrode side spacer 205, a negative electrode side spacer 206, and a positive electrode packing 207a. , the negative electrode packing 207b, the positive electrode side tank housing side surface 208a, the negative electrode side tank housing side surface 208b, the negative electrode solution supply port 209, the positive electrode solution extraction port 210, and the negative electrode solution extraction port 211. and a channel 212 between positive and negative electrodes.
  • the hypochlorous acid water treatment unit 201b includes a positive electrode 202, a negative electrode 203, a diaphragm 204, a positive electrode-side spacer 205, a negative electrode-side spacer 206, a positive electrode packing 207a, and a negative electrode packing 207b.
  • a channel 213 and a cathode side channel 214 are provided.
  • the positive electrode 202 is a planar electrode plate. The surface of the electrode plate of the positive electrode 202 is exposed along the channel 212 between the negative and positive electrodes and the channel 213 on the positive electrode side by the positive electrode side spacer 205 .
  • the positive electrode 202 is an electrode that functions as an anode when current is passed by the electrolysis/electrodialysis power source 215 .
  • the positive electrode 202 is arranged substantially parallel to and facing the negative electrode 203 .
  • the positive electrode 202 has a platinum-containing catalyst formed on the surface of a titanium base material, and uses a material that is highly efficient in generating hypochlorous acid by electrolysis.
  • the platinum-containing catalyst is formed at least on the surface of the positive electrode 202 exposed along the channel 212 between the negative and positive electrodes and the channel 213 on the positive electrode side.
  • the main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH, which are the residual components, but it is made by decomposing from NaClO. NaCl remaining after the electrolysis of NaCl and salt water has not been completely electrolyzed can be converted to hypochlorous acid by means of platinum electrodes.
  • the cathode 203 is a planar electrode plate.
  • the surface of the electrode plate of the negative electrode 203 is exposed along the channel 212 between the positive and negative electrodes and the channel 214 on the negative electrode side by the negative electrode side spacer 206 .
  • the negative electrode 203 is an electrode that functions as a cathode when current is passed by the electrolysis/electrodialysis power source 215 .
  • the negative electrode 203 is arranged substantially parallel to and facing the positive electrode 202 .
  • the negative electrode 203 forms a platinum-containing catalyst on its surface similarly to the positive electrode 202 .
  • the platinum-containing catalyst is formed at least on the surface of the negative electrode 203 exposed along the channels of the negative electrode side channel 214 and the positive electrode side channel 213 .
  • the positive electrode 202 and the negative electrode 203 in the regions exposed along the positive electrode side flow path 213 and the negative electrode side flow path 214 and subjected to electrodialysis have the same shape, and the shorter the opposing distance, the more the ions move. Cheap. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
  • the positive electrode 202 and the negative electrode 203 form a negative electrode as a pair of opposing electrodes.
  • the diaphragm 204 is a planar thin film.
  • the diaphragm 204 is arranged substantially parallel to and facing the positive electrode 202 and the negative electrode 203 .
  • the diaphragm 204 is provided so as to separate the positive electrode side channel 213 and the negative electrode side channel 214 .
  • the diaphragm 204 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water.
  • the diaphragm 204 can move cations to the negative electrode 203 by applying a voltage to the positive electrode 202 and the negative electrode 203 .
  • Examples of the cation exchange membrane include Nafion manufactured by DuPont.
  • the diaphragm 204 is arranged in the rear stage (the latter part) of the channel, and the part having the diaphragm 204 becomes the hypochlorous acid water treatment part 201b. On the contrary, the part without the diaphragm 204 in the front stage (first half part) of the flow path becomes the hypochlorous acid water generating part 201a.
  • the size of the diaphragm 204 determines the area of the hypochlorous acid water generating section 201a and the area of the hypochlorous acid water processing section 201b.
  • the size of diaphragm 204 is reduced, and if you want to increase the ratio of electrodialysis time of hypochlorous acid water, the size of diaphragm 204 is increased. Enlarge. Since the negative electrode 203 concentrates cations, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use. In order to reduce scale accumulation, for example, each time water is passed through the hypochlorous acid water supply device 201, the potentials of the positive electrode 202 and the negative electrode 203 are reversed to dissolve adhered scale. When it is assumed that the electrodes will be used with the polarity reversed, it is desirable that the positive electrode 202 and the negative electrode 203 be similarly treated with a catalyst containing platinum.
  • the positive electrode side spacer 205 is an insulating member.
  • the positive electrode side spacer 205 controls the distance between the positive electrode 202 and the diaphragm 204 to a predetermined distance.
  • the positive electrode-side spacer 205 has, inside the positive electrode-side spacer 205, a positive electrode-side channel hole 213a that forms a positive electrode-side channel 213, which will be described later.
  • the positive electrode side channel hole 213 a is a hole that forms the positive electrode side channel 213 formed in the positive electrode side spacer 205 .
  • the positive electrode-side channel hole 213a is formed through the front and back of the positive electrode-side spacer 205, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step.
  • a meandering packing member (not shown), which is the same as the positive electrode spacer 205, is attached to the surface of the positive electrode spacer 205 in order to increase the adhesion between the positive electrode 202 and the diaphragm 204.
  • FIG. The positive electrode side spacer 205 corresponds to the "first spacer member" in the claims.
  • the cathode-side spacer 206 is an insulating member.
  • the cathode-side spacer 206 controls the distance between the cathode 203 and the diaphragm 204 to a predetermined distance.
  • the cathode-side spacer 206 has, inside the cathode-side spacer 206, a cathode-side channel hole 214a that forms a cathode-side channel 214, which will be described later.
  • the cathode-side channel hole 214 a is a hole that forms the cathode-side channel 214 formed in the cathode-side spacer 206 .
  • the cathode-side channel hole 214a is formed through the front and back surfaces of the cathode-side spacer 206, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step.
  • the negative electrode side channel hole 214a and the positive electrode side channel hole 213a are arranged so as to face each other.
  • a meandering packing member (not shown), which is the same as that of the cathode-side spacer 206 , is attached to the surface of the cathode-side spacer 206 in order to increase the adhesion between the cathode 203 and the diaphragm 204 .
  • the cathode-side spacer 206 corresponds to the "second spacer member" in the claims.
  • the positive electrode side spacer 205 and the negative electrode side spacer 206 are in direct contact with each other, and function as a positive electrode spacer between the positive electrode 202 and the negative electrode 203.
  • the spacer between the positive and negative electrodes corresponds to the "spacer member" in the claims.
  • the positive electrode side spacer 205 and the negative electrode side spacer 206 are interposed between the positive electrode 202 and the negative electrode 203.
  • a positive electrode side spacer 205, a diaphragm 204, and a negative electrode side spacer 206 are interposed between the positive electrode 202 and the negative electrode 203. As shown in FIG.
  • the positive electrode 202 and the negative electrode 203 are arranged substantially parallel, and in order to absorb the thickness of the diaphragm 204, the thickness of the positive electrode side spacer 205 and the negative electrode side spacer 206 of the hypochlorous acid water treatment portion 201b is , is thinned by the thickness of the diaphragm 204 .
  • the packing members arranged on the surfaces of the positive electrode side spacer 205 and the negative electrode side spacer 206 are made thicker than the thickness of the diaphragm 204.
  • the packing member is made of a material such as silicone resin that is deformed and absorbs the shape. It is possible to prevent liquid leakage, which is the original purpose of the packing member, while absorbing it with the member.
  • the positive electrode packing 207a has a shape in which the outer circumference of the positive electrode 202 is hollowed out to the size of the electrode. It is mounted with clamping pressure so that the electrode supply solution 209a) does not leak.
  • insulating silicone rubber can be used as a member of the positive electrode packing 207a.
  • the positive electrode packing 207a is thicker than the positive electrode 202, and is crushed by being pressed by the tightening pressure to bring the positive electrode side spacer 205 into close contact with the positive electrode side tank housing side face 208a. A thickness of 202 is desirable.
  • the negative electrode packing 207b has a shape in which the electrode size is hollowed out around the outer periphery of the negative electrode 203.
  • the negative electrode packing 207b is in close contact with the negative electrode side spacer 206, and flows in the outer peripheral direction. It is mounted with clamping pressure so that the electrode supply solution 209a) does not leak. Insulating silicon rubber can be used as the member of the cathode packing 207b.
  • the negative electrode packing 207b is thicker than the negative electrode 203, and is crushed by being pressed by the tightening pressure. It is desirable that the thickness of the
  • the side surface 208a of the positive electrode tank housing is arranged so as to be in direct contact with the outside of the positive electrode 202.
  • the positive electrode side tank housing side surface 208a is provided with a packing (not shown) for increasing adhesion on the inner surface of the positive electrode side tank housing side surface 208a. ) is attached, and it is desirable to apply clamping pressure to suppress the solution from flowing into the outside of the electrode.
  • a packing not shown
  • clamping pressure to suppress the solution from flowing into the outside of the electrode.
  • the platinum-containing catalyst is formed only on the inner surface of the positive electrode 202, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the side surface 208b of the cathode-side tank housing is arranged so as to be in direct contact with the outside of the cathode 203.
  • the cathode side tank housing side surface 208b is provided with a packing (not shown) for increasing adhesion on the inner surface of the cathode side tank housing side surface 208b. ) is attached, and it is desirable to apply clamping pressure to suppress the solution from flowing into the outside of the electrode.
  • the platinum-containing catalyst is formed only on the inner surface of the negative electrode 203, the efficiency of electrode dialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the positive and negative electrode solution supply port 209 is a connection port for flowing salt water to be electrolyzed into the channel 212 between negative and positive electrodes, and is equipped with a connector (not shown) to which a tube can be connected.
  • the negative electrode solution supply port 209 is processed at a position outside the positive electrode 202 .
  • the positive and negative electrode solution supply ports 209 are processed at positions outside both the positive electrode 202 and the negative electrode 203, respectively. good.
  • the positive and negative electrode supply solution 209a is salt water.
  • the negative and positive electrode supply solution 209 a is introduced from the negative and positive electrode solution supply port 209 into the channel 212 between the negative and positive electrodes.
  • the positive electrode solution extraction port 210 is a connection port for extracting the electrodialyzed positive electrode extraction solution 210a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the positive electrode extracting solution 210 a outside the positive electrode 202 , the positive electrode solution extracting port 210 is processed at a position outside the positive electrode 202 .
  • the positive electrode extraction solution 210a is hypochlorous acid water containing HClO as the main component.
  • the positive electrode extraction solution 210 a is introduced into the positive electrode solution extraction port 210 from the positive electrode side channel 213 .
  • the positive electrode extraction solution 210a electrolyzes the negative electrode supply solution 209a in the channel 212 between the negative and positive electrodes, and then flows through the positive electrode side channel 213 to remove cations that cause residual components. is a diluted solution. Since the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is used, the positive electrode extraction solution 210a contains Na + ions, which are cations, separated and diluted. The component of HClO becomes hypochlorous acid water as the main component. pH indicates acidity.
  • the negative electrode solution extraction port 211 is a connection port for extracting the electrodialyzed negative electrode extraction solution 211a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the negative electrode extracting solution 211 a outside the negative electrode 203 , the negative electrode solution extracting port 211 is processed at a position outside the negative electrode 203 .
  • the negative electrode extraction solution 211a is hypochlorous acid water containing NaClO and NaOH as main components.
  • the negative electrode extraction solution 211 a is led out to the negative electrode solution extraction port 211 from the negative electrode side channel 214 .
  • the negative electrode extracting solution 211a electrolyzes the negative electrode supply solution 209a in the channel 212 between the negative and positive electrodes, and then flows through the channel 214 on the negative electrode side to remove cations that cause residual components. is a concentrated solution. Since the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is used, the negative electrode extraction solution 211a has Na + ions, which are cations, separated and concentrated, By being generated as NaOH, it becomes hypochlorous acid water containing NaOH and NaClO as main components. pH indicates alkaline.
  • the positive and negative electrode solution supply ports 209 are preferably arranged on the lower side in the vertical direction, and the positive electrode solution extraction port 210 and the negative electrode solution extraction port 211 are preferably arranged on the upper side in the vertical direction. desirable.
  • oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
  • the channel 212 between negative and positive electrodes is a channel formed in a region surrounded by the positive electrode 202, the positive electrode side spacer 205, the negative electrode side spacer 206, and the negative electrode 203, and is a so-called non-diaphragm electrolytic channel. .
  • the channel 212 between the negative and negative electrodes is formed in a meandering manner by a structure in which the positive electrode side channel hole 213a of the positive electrode side spacer 205 and the negative electrode side channel hole 214a of the negative electrode side spacer 206 are overlapped. More specifically, the channel 212 between positive and negative electrodes reciprocates in the horizontal direction, and the number of reciprocations in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top.
  • the channel width of the channel 212 between the negative and positive electrodes By reducing the channel width of the channel 212 between the negative and positive electrodes, the distance becomes longer, and the electrolysis time can be lengthened.
  • the channel 212 between the positive and negative electrodes has a structure that goes upward in one direction, except that the channel 212 reciprocates in the horizontal direction.
  • the channel 212 between the negative and positive electrodes is connected to the channel 213 on the positive electrode side and the channel 214 on the negative electrode side, and the negative electrode supply solution 209a flows therein.
  • the amount of electrolysis is controlled by the applied voltage current and flow velocity in the channel.
  • the flow rate can be controlled by installing a positive electrode side supply pump 231 after the positive electrode solution extraction port 210 and installing a negative electrode side supply pump 232 after the negative electrode solution extraction port 211 .
  • Each supply pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used.
  • acidic hypochlorous acid water containing a large amount of HCl and HClO is circulated in the positive electrode side channel 213, and alkaline hypochlorous acid water containing a large amount of NaOH is circulated in the negative electrode side channel 214. extracted.
  • the positive electrode-side channel 213 is a channel formed by a region surrounded by the positive electrode 202 , the positive electrode-side spacer 205 and the diaphragm 204 .
  • the positive electrode-side channel 213 is formed by meandering positive electrode-side channel holes 213 a of the positive electrode-side spacer 205 . More specifically, the anode-side channel 213 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the positive electrode side channel 213, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the positive electrode side channel 213 has a structure in which the positive electrode side channel 213 goes from bottom to top in one direction other than reciprocating in the horizontal direction.
  • One of the positive electrode side channels 213 is connected to the channel 212 between the negative and positive electrodes, and the other is provided with a positive electrode solution extraction port 210, and the hypochlorous acid water generating unit 201a internally converts salt water into electricity. Hypochlorous acid water generated by decomposition is distributed.
  • the positive electrode-side channel 213 corresponds to the "first channel" in the claims.
  • the cathode-side channel 214 is a channel formed by a region surrounded by the cathode 203 , the cathode-side spacer 206 and the diaphragm 204 .
  • the cathode-side channel 214 is formed by meandering cathode-side channel holes 214 a of the cathode-side spacer 206 . More specifically, the cathode-side channel 214 reciprocates in the horizontal direction until the cathode-side solution reaches from the bottom to the top, and the number of horizontal reciprocations increases the distance for electrodialysis. Further, by reducing the channel width of the negative electrode side channel 214, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the negative electrode side channel 214 has a structure in which the liquid flows in one direction from bottom to top, except for reciprocating in the horizontal direction.
  • One of the negative electrode side channels 214 is connected to the channel 212 between the negative and positive electrodes, and the other is provided with the negative electrode solution extraction port 211, and the salt water is electrically generated in the hypochlorous acid water generation part 201a inside. Hypochlorous acid water generated by decomposition is distributed.
  • the cathode-side channel 214 corresponds to the "second channel" in the claims.
  • the positive electrode side channel 213 and the negative electrode side channel 214 face each other in a symmetrical shape with the diaphragm 204 interposed therebetween. That is, the positive electrode side channel 213 and the negative electrode side channel 214 are formed in meandering shapes facing each other with the diaphragm 204 interposed therebetween. In this way, the positive electrode side channel 213 and the negative electrode side channel 214 constitute a so-called membrane electrolysis channel. Then, the Na + ions contained in the hypochlorous acid water flowing through the positive electrode side channel 213 move to the negative electrode side channel 214 side. The amount of ion movement is controlled by the applied voltage and current and the flow velocity in the channel.
  • the flow rate can be controlled by installing a positive electrode side supply pump 231 after the positive electrode solution extraction port 210 and installing a negative electrode side supply pump 232 after the negative electrode solution extraction port 211 .
  • Each pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, it is possible to control the electrodialysis and electrolysis time in the flow channel constantly, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
  • a positive electrode side channel 213 and a negative electrode side channel 214 which constitute a diaphragmless electrolysis channel 212 which constitutes a non-diaphragm electrolysis channel, followed by a positive electrode side channel 213 and a negative electrode side channel 214 which constitute a diaphragm electrolysis channel.
  • the meandering electrolysis flow path as the hypochlorous acid water supply device 201 is configured as a one-pass type.
  • the anode-positive electrode flow path 212 constitutes the front stage of the electrolytic flow path
  • the positive electrode side flow path 213 and the negative electrode side flow path 214 constitute the rear stage of the electrolytic flow path.
  • the electrolysis/electrodialysis power supply 215 is a DC power supply that is connected to the positive electrode 202 and the negative electrode 203 and can apply current and voltage to the positive electrode 202 and the negative electrode 203 .
  • the electrolysis/electrodialysis power supply 215 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage.
  • the electrolysis/electrodialysis power supply 215 applies current and voltage to the common positive electrode 202 and negative electrode 203 in the hypochlorous acid water generating unit 201a and the hypochlorous acid processing unit 1b.
  • the electrolysis/electrodialysis power supply 215 functions as a power supply for the electrodes that cause electrolysis in the hypochlorous acid water generating unit 201a, and as a power supply for the electrodes that cause electrodialysis in the hypochlorous acid treatment unit 1b. Function.
  • the electrolysis/electrodialysis power supply 215 changes the potential of the positive electrode 202 and the negative electrode 203 each time the hypochlorous acid water is supplied to the hypochlorous acid water supply device 201, for example. may be controlled so as to reverse polarity by replacing and dissolving adhered scale.
  • hypochlorous acid water supply device 201 is composed of each member.
  • the hypochlorous acid water supply device 201 is composed of the above-described hypochlorous acid water generation unit 201a and hypochlorous acid water treatment unit 201b. Then, the hypochlorous acid water supply device 201 continuously introduces salt water into the hypochlorous acid water generation unit 201a, and the hypochlorous acid water is treated with the hypochlorous acid water from the hypochlorous acid water treatment unit 201b. It is continuously supplied to the section 201b. More specifically, the hypochlorous acid water supply device 201 electrolyzes the salt water that is continuously introduced into the hypochlorous acid water generating unit 201a, and the positive electrode on the positive electrode side of the hypochlorous acid water processing unit 201b.
  • the positive electrode extraction solution 210a delivered from the electrode-side channel 213 is supplied to the outside as acidic hypochlorous acid water.
  • the hypochlorous acid water supply device 201 externally extracts the cathode extraction solution 211a sent from the cathode side channel 214 on the cathode side of the hypochlorous acid water treatment unit 201b as alkaline hypochlorous acid water. supply to
  • FIG. 21 is a horizontal sectional image diagram of the hypochlorous acid water generating unit 201a of the hypochlorous acid water supply device 201. As shown in FIG.
  • a positive and negative electrode supply solution 209a which is salt water, is continuously supplied to the channel 212 between positive and negative electrodes through a positive and negative electrode solution supply port 209. be.
  • the negative and positive electrode supply solution 209a supplied from the negative and positive electrode solution supply port 209 flows through the channel 212 between the positive and negative electrodes which is formed meandering.
  • the negative electrode supply solution 209a flows through the channel 212 between negative and positive electrodes, and at the same time, a voltage is applied to the positive electrode 202 and the negative electrode 203 at both ends.
  • the amount of electrolysis of NaCl is increased by increasing the electrolysis time in the channel 212 between the negative and positive electrodes, and the generated hypochlorous acid water NaCl (brine) remaining in the can be reduced.
  • the number of times of reciprocation in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top.
  • the distance can be lengthened, and the electrolysis time can be lengthened.
  • FIG. FIG. 22 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment unit 201b of the hypochlorous acid water supply device 201. As shown in FIG.
  • the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is supplied to the positive electrode side channel 213.
  • the hypochlorous acid water is continuously supplied, and the hypochlorous acid water generated by electrolyzing the salt water in the hypochlorous acid water generation unit 201 a is continuously supplied to the negative electrode side channel 214 .
  • the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a flows through the meandering positive electrode side flow path 213, and is also formed meanderingly. It flows through the negative electrode side channel 214 .
  • hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is circulated in the same direction through the positive electrode side channel 213 and the negative electrode side channel 214, respectively.
  • a voltage is applied to the positive electrode 202 and the negative electrode 203 at both ends.
  • negative ions are attracted to the positive electrode 202 side and positive ions (Na + ions) are attracted to the negative electrode 203 side.
  • the diaphragm 204 is composed of a membrane that is permeable only to cations, the cations (Na + ions) contained in the hypochlorous acid water flowing through the positive electrode-side channel 213 do not permeate the diaphragm 204. As a result, it passes through the hypochlorous acid water in the cathode-side channel 214 and is attracted to the cathode 203 side. On the contrary, since the anions flowing through the negative electrode side channel 214 cannot permeate the diaphragm 204, only the anions contained in the positive electrode side channel 213 are attracted to the positive electrode 202.
  • the cations (Na + ions) contained in the hypochlorous acid water flowing through the positive electrode-side channel 213 move to the hypochlorous acid water flowing through the negative electrode-side channel 214.
  • the hypochlorous acid water flowing through the positive electrode-side channel 213 is separated and diluted with cations (Na + ions), and the hypochlorous acid water flowing through the negative electrode-side channel 214 is , cations (Na + ions) are concentrated and extracted.
  • the positive electrode solution extraction port 210 As the positive electrode solution extraction port 210, as the positive electrode extraction solution 210a, the residual components NaClO and NaOH are separated and diluted, and hypochlorous acid water containing the HClO component as the main component is extracted. Conversely, from the cathode solution extraction port 211, a solution (hypochlorous acid water) containing a component in which Na + ions constituting residual components are concentrated and generated as NaOH is extracted as a cathode extraction solution 211a. be.
  • the electrodialysis time in the positive electrode side channel 213 and the negative electrode side channel 214 is lengthened, so that the movement amount can be increased to further reduce residual components of NaClO and NaOH in the positive electrode extraction solution 210a.
  • the electrode moves up one step at a time while reciprocating in the horizontal direction.
  • the solution is reciprocated in the horizontal direction, and the distance for electrodialysis is earned by the number of reciprocations in the horizontal direction until the solution reaches from the bottom to the top.
  • the distance becomes longer, and the electrodialysis time can be lengthened.
  • the pumps are controlled so that the flow rates of the solutions passing through the positive electrode side channel 213 and the negative electrode side channel 214 are the same, they may be different from each other. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity of the positive electrode side channel 213 is relatively increased and the flow velocity of the negative electrode side channel 214 is relatively decreased, the flow rate of the positive electrode side channel 213 and the negative electrode side channel 214 Compared to when the flow rate is the same, the negative electrode extraction solution 211a extracted from the negative electrode side flow channel 214 is a small amount and has a high concentration. Therefore, it is desirable to reduce the flow velocity of the cathode-side channel 214 when draining the cathode extraction solution 211a.
  • the hypochlorous acid water supply device 201 (the hypochlorous acid water generating unit 201a and the hypochlorous acid water processing unit 201b) is actually circulated to extract the positive electrode solution.
  • the characteristics (conductivity, pH, and effective chlorine concentration) of the hypochlorous acid water of the positive electrode extraction solution 210a and the negative electrode extraction solution 211a extracted from the port 210 and the negative electrode solution extraction port 211, respectively, will be described.
  • 23A to 23C are diagrams showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply device 201 and the electrodialysis time. More specifically, FIG.
  • FIG. 23A is a diagram showing the relationship between electrodialysis time and electrical conductivity by the hypochlorous acid water supply device 201.
  • FIG. 23B is a diagram showing the relationship between electrodialysis time and pH by the hypochlorous acid water supply device 201.
  • FIG. 23C is a diagram showing the relationship between the electrodialysis time and available chlorine concentration by the hypochlorous acid water supply device 201.
  • the hypochlorous acid water generating unit 201a was formed with a channel 212 between the negative and positive electrodes having a channel cross-sectional area of 24 mm 2 and a channel length of 360 mm.
  • a chloric acid water treatment unit 201b in which a positive electrode side channel 213 and a negative electrode side channel 214 having a channel cross-sectional area of 24 mm 2 and a channel length of 320 mm were formed was used.
  • the flow rate conditions of the positive electrode side supply pump 231 and the negative electrode side demand pump 32 are both 103 mL/h, 153 mL/h, and 250 mL/h.
  • the electrolysis time and the electrodialysis time of the hypochlorous acid water treatment unit 201b were adjusted, and the electrical conductivity, pH, and effective chlorine concentration of the positive electrode extraction solution 210a and the negative electrode extraction solution 211a were measured.
  • the salt water of the negative and positive electrode supply solution 209a supplied to the negative and positive electrode solution supply port 209 has a conductivity of 429 ⁇ S/cm, a pH of 6.6, an effective chlorine concentration of 0 ppm, and a chloride ion concentration of 156 ppm. used.
  • Electrolysis and electrodialysis were performed using a power source capable of applying a constant current of 0.2 A as the electrolysis/electrodialysis power source 215 .
  • the electrolysis time refers to the time during which the solution is in direct contact with the positive electrode 202 and the negative electrode 203 in the channel 212 between the positive and negative electrodes, and the longer the electrolysis time, the slower the flow rate. .
  • the electrodialysis time refers to the time during which the solution is in direct contact with the positive electrode 202 and the negative electrode 203 in the positive electrode side channel 213 and the negative electrode side channel 214. The longer the electrodialysis time, the more The current will be slow. This time, electrodialysis is performed by setting the flow rate on the anode side and the cathode side to be the same.
  • the longer the electrodialysis time in other words, the slower the flow rate, the greater the conductivity of the positive electrode extraction solution 210a extracted from the positive electrode solution extraction port 210 (the conductivity on the anode side). decreases, and the conductivity (conductivity on the cathode side) of the cathode extraction solution 211a extracted from the cathode solution extraction port 211 increases.
  • the pH of the positive electrode extraction solution 210a (pH on the anode side) changes to the slightly acidic side
  • the pH of the negative electrode extraction solution 211a changes to the alkaline side. are doing.
  • the reason why the pH on the anode side becomes closer to neutral as the electrodialysis time increases is thought to be that the slight amount of chloride ions remaining in the solution are converted to hypochlorous acid by electrolysis.
  • NaOH is formed by movement of Na + ions, and the cathode side becomes alkaline.
  • the effective chlorine concentration of the positive electrode extraction solution 210a increases with the electrodialysis time.
  • the available chlorine concentration increases with the electrodialysis time. This is because when the flow velocities of the positive electrode side supply pump 231 and the negative electrode side supply pump 232 are slowed down, the electrolysis time in the hypochlorous acid water generating unit 201a increases, and the amount of hypochlorous acid water generated increases. This is probably because the amount of hypochlorous acid water extracted from the cathode solution extraction port 211 of the hypochlorous acid water treatment unit 201b also increases.
  • the hypochlorous acid water supply device 201 simultaneously extracts hypochlorous acid water mainly composed of HClO with high sterilizing power from the anode side and hypochlorous acid water mainly composed of NaClO and NaOH with high detergency from the cathode side. can do.
  • Hypochlorous acid water containing mainly HClO is a solution in which residual components are suppressed, and it is possible to suppress metal corrosion caused by residual components even during space spraying while maintaining sterilization power.
  • hypochlorous acid water containing NaClO and NaOH as a main component cannot be sprayed in space because it is a solution that leaves residual components, but it is a solution with high detergency and is effective in washing areas with acidic dirt such as drains.
  • hypochlorous acid water treatment device 1 hypochlorous acid water mainly composed of HClO generated on the anode side is used for space sterilization, while hypochlorous acid mainly composed of NaClO and NaOH is generated on the cathode side on the opposite side. Water can also be used for cleaning.
  • the hypochlorous acid water supply device 201 includes a meandering electrolysis flow channel configured to be able to supply salt water, and a non-diaphragm electrolysis flow channel (positive and positive electrode inter-electrode flow channel 212) that constitutes the preceding stage of the electrolysis flow channel.
  • a hypochlorous acid water generating unit 201a for continuously electrolytically generating hypochlorous acid water by energizing between a pair of negative and positive electrodes (between the positive electrode 202 and the negative electrode 203) from salt water supplied inside;
  • the hypochlorous acid water supplied from the hypochlorous acid water generating unit 201a is supplied to each of the diaphragm electrolysis flow paths (the positive electrode side flow path 213 and the negative electrode side flow path 214) that constitute the subsequent stage of the electrolysis flow path.
  • a hypochlorous acid water treatment unit 201b that continuously treats by energizing between a pair of negative and positive electrodes (between the positive electrode 202 and the negative electrode 203).
  • the structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode 202 side of the hypochlorous acid water treatment unit 201b is supplied to the outside.
  • the hypochlorous acid water generating unit 201a electrolyzes the salt water in the non-diaphragm electrolytic flow path (channel 212 between the negative and positive electrodes) to produce hypochlorous acid.
  • the hypochlorous acid water supply device 201 of the one-pass type can be provided, which can supply the hypochlorous acid water from which the residual components generated by the electrolysis of the salt water are separated to the outside.
  • the positive electrode 202 and the negative electrode 203 that are common to the hypochlorous acid water generation unit 201a and the hypochlorous acid treatment unit 1b are used, and the non-diaphragm electrolysis flow channel and the diaphragm electrolysis flow channel generate a voltage between the positive and negative electrodes. Directly connected in the energized state.
  • the particles flow into the diaphragm electrolysis flow path with a distribution in which anions are present in the vicinity of the positive electrode 202 and cations are present in the vicinity of the negative electrode 203 in a large amount. Therefore, the electrodialysis treatment can be started in a state in which the cations that cause residual components are reduced in advance on the positive electrode 202 side.
  • the non-diaphragm electrolytic flow path (the flow path 212 between the positive and negative electrodes) includes a planar positive electrode 202, a planar negative electrode 203 facing the positive electrode 202, It is composed of a spacer member (positive electrode side spacer 205 and negative electrode side spacer 206 ) provided between the positive electrode 202 and the negative electrode 203 .
  • a pair of negative and negative electrodes (a positive electrode 202 and a negative electrode 203) were formed in a meandering shape by exposing the positive electrode 202 and the negative electrode 203 to the non-diaphragm electrolytic flow path by means of a spacer member. By doing so, the ability to electrolyze salt water can be changed according to the channel shape formed in the spacer member, so that the area and time for electrolyzing salt water can be freely designed.
  • the diaphragm electrolysis flow path (the positive electrode side flow path 213 and the negative electrode side flow path 214) extends along the flow path with the positive electrode 202 exposed.
  • a meandering positive electrode-side flow channel 213 and a meandering negative electrode-side flow channel provided in parallel to face the positive electrode-side flow channel 213, with the negative electrode 203 exposed and extending along the flow channel.
  • a diaphragm 204 provided to separate the positive electrode side channel 213 and the negative electrode side channel 214 and permeate cations contained in the solution flowing through the channels.
  • the pair of negative and negative electrodes are formed in a meandering shape by exposing the positive electrode 202 to the positive electrode side channel 213 by the positive electrode side spacer 205 and exposing the negative electrode 203 to the negative electrode side channel 214 by the negative electrode side spacer 206 . configured to By doing so, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm 204, so that the residual components from the hypochlorous acid water cations can be separated and reduced. Therefore, the hypochlorous acid water treatment unit 201b can produce hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced.
  • the diaphragm electrolysis flow path (positive electrode-side flow path 213 and negative electrode-side flow path 214) includes a planar positive electrode 202 and a flat surface facing the positive electrode 202. and a positive electrode side spacer 205 that is provided between the positive electrode 202 and the positive electrode side channel 213 and exposes the positive electrode 202 and the negative electrode side channel 213 along the channel.
  • the positive electrode-side channel 213 is composed of the positive electrode 202 and the diaphragm 204 exposed along the channel, and the positive electrode-side spacer 205 .
  • a flat cathode 203, a flat diaphragm 204 facing the cathode 203, and a cathode 214 provided between the cathode 203 and the diaphragm 204 along the flow path to the cathode side flow path 214.
  • 203 and a cathode-side spacer 206 exposing the diaphragm 204 .
  • the cathode-side channel 214 was composed of the cathode 203 and the diaphragm 204 exposed along the channel, and the cathode-side spacer 206 .
  • hypochlorous acid water generated by electrolyzing salt water can be controlled by the channel shape formed in the positive electrode side spacer 205 and the channel shape formed in the negative electrode side spacer 206. Since the ability to separate cations that cause components can be changed, the area and time for separating cations that cause residual components from hypochlorous acid water can be freely designed.
  • the spacer member is configured by overlapping the positive electrode side spacer 205 and the negative electrode side spacer 206 together. According to such a configuration, the structure can be simplified, and liquid leakage due to the boundary between the non-diaphragm electrolysis flow path and the diaphragm electrolysis flow path and disturbance of the ion distribution in the flow path can be suppressed to allow circulation.
  • the hypochlorous acid water supply device 201 is provided at each outlet on the positive electrode 202 side and the negative electrode 203 side of the hypochlorous acid water treatment unit 201b. 212) with salt water, and the supply pump (positive electrode A side supply pump 231 and a cathode side supply pump 232) are provided.
  • the supply pump was adapted to supply the salt water and the hypochlorous acid water from the hypochlorous acid water generator 201a to the positive electrode side channel 213 and the negative electrode side channel 214 at a constant flow rate.
  • the concentration at which the cations that cause residual components in the hypochlorous acid water in the positive electrode-side channel 213 are separated and diluted, and the concentration of residual components in the hypochlorous acid water in the negative electrode-side channel 214 It is possible to stabilize the concentration at which the cations that are the factors are concentrated.
  • FIG. 24 is an exploded perspective view of a hypochlorous acid water supply device 220 according to Embodiment 3-2 of the present disclosure.
  • the hypochlorous acid water supply device 220 according to Embodiment 3-2 described below has the positive electrode 202 and the negative electrode 203 of the hypochlorous acid water supply device 201 according to Embodiment 3-1. It has a tooth-shaped structure.
  • substantially the same configurations as those of the hypochlorous acid water supply device 201 according to Embodiment 3-1 are given the same reference numerals, and the description is partially simplified. or omitted.
  • the hypochlorous acid water supply device 220 includes a hypochlorous acid water generation unit 220a that electrolyzes salt water to generate hypochlorous acid water in one pass, and a hypochlorous acid water and a hypochlorous acid water treatment unit 220b that separates and reduces contained residual components in a single pass.
  • a pair of positive and negative electrodes (comb-tooth positive electrode 222 and comb-tooth negative electrode 223) are formed into a comb-shaped electrode.
  • the hypochlorous acid water supply device 220 uses a comb-shaped positive electrode 222 and a comb-shaped negative electrode 223 arranged so that the comb-shaped positive electrode 222 is opposed to the comb-shaped positive electrode 222, and electrolyzes them in a meandering manner. It has a configuration in which regions of the comb teeth facing each other are arranged in the channels (the channel 212 between the negative and positive electrodes, and the channel 213 on the positive electrode side and the channel 214 on the negative electrode side).
  • the hypochlorous acid water supply device 220 has a non-diaphragm electrolysis flow path (positive/positive electrode inter-electrode flow path 212) in the facing portion between the comb tooth positive electrode 222 and the comb tooth negative electrode 223, and a diaphragm following this.
  • Electrolytic flow paths (positive electrode-side flow path 213 and negative electrode-side flow path 214) are formed, respectively, and constitute a hypochlorous acid water generating section 220a and a hypochlorous acid water processing section 220b, respectively.
  • the hypochlorous acid water generating unit 201a electrolyzes salt water in the non-diaphragm electrolysis channel to generate hypochlorous acid water
  • the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the diaphragm electrolysis flow path to separate and reduce the cations that cause residual components from the positive electrode side. can be extracted as
  • FIG. 25 is a perspective view showing the manufacturing process of the interdigital electrode (positive interdigital electrode 222 and negative interdigital electrode 223) constituting the hypochlorous acid water supply device 220.
  • FIG. 25 is a perspective view showing the manufacturing process of the interdigital electrode (positive interdigital electrode 222 and negative interdigital electrode 223) constituting the hypochlorous acid water supply device 220.
  • the comb positive electrode 222 and the comb negative electrode 223 can be taken out by cutting and separating one electrode plate 221 .
  • the first step is the step of preparing the electrode plate 221 .
  • the electrode plate 221 is a thin flat plate having an area dimension capable of forming two interdigitated electrodes. One surface of the electrode plate 221 is processed with a catalyst.
  • the second step is the step of cutting the electrode plate 221 .
  • the blade is run in a meandering manner from the lower end to the upper end of the electrode plate 221 to cut the electrode plate 221 . Thereby, the electrode plate 221 is cut corresponding to the comb teeth of the positive comb electrode 222 and the negative comb electrode 223 .
  • the third step is a step of separating the cut electrode plate 221 into two comb-teeth electrodes (a comb-teeth positive electrode 222 and a comb-teeth negative electrode 223).
  • the fourth step is a step of inverting one of the cut and separated electrode plates 221 (comb-teeth positive electrode 222 or comb-teeth negative electrode 223) and arranging them to face each other. More specifically, in the fourth step, the catalyst-processed surfaces of the cut and separated electrode plates 221 are placed facing each other to form a pair of positive and negative electrodes.
  • the two comb-shaped electrodes (comb-shaped positive electrode 222 and comb-shaped negative electrode 223) arranged opposite to each other are connected vertically at the left end or right end, and a plurality of comb teeth are arranged toward the opposite side. It has an elongated structure.
  • the comb teeth of the positive comb electrode 222 and the negative comb electrode 223 extending toward the opposite sides are arranged so as to face each other vertically.
  • the lower end is flat and the upper end is arranged so that the convex portion is located. This facilitates electrical connection to the upper end convex portion.
  • the convex portion comes to the upper end.
  • the same catalyst-treated surface of the electrode plate 221 becomes the facing surface of the positive comb electrode 222 and the negative comb electrode 223.
  • the electrode plate 221 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis.
  • the positive electrode packing 207a and the negative electrode packing 207b have a shape in which the comb-teeth positive electrode 222 and the comb-teeth negative electrode 223 are hollowed out.
  • the hypochlorous acid water supply device 220 cuts one electrode plate 221 with a catalyst processed on one surface in a meandering manner from the lower end to the upper end to form two comb-tooth electrodes (comb-tooth positive electrode 222 and a comb-shaped negative electrode 223), and one of the comb-shaped positive electrode 222 or the comb-shaped negative electrode 223 is reversed and arranged so that the comb-shaped positive electrode 222 and the comb-shaped negative electrode 223 form a pair. It was designed to form cathode and cathode electrodes. By doing so, it is possible to realize a single electrode plate 221 without using two electrode plates 221 to form a pair of positive and negative electrodes, thereby reducing the number of necessary members.
  • FIG. 3 is a schematic diagram of a space sterilization system 230 using a hypochlorous acid water supply device 201 according to Embodiment 3-3 of the present disclosure.
  • a space sterilization system 230 according to Embodiment 3-3 described below is a system incorporating the hypochlorous acid water supply device 201 according to Embodiment 3-1.
  • the components substantially similar to those of the hypochlorous acid water supply device 201 according to Embodiment 3-1 are denoted by the same reference numerals, and the description is partially simplified. or may be omitted.
  • the space sterilization system 230 according to Embodiment 3-3 sprays hypochlorous acid water generated from the hypochlorous acid water supply device 201 from the mist spray device 236 in the bathroom space and to the drain port 238. It is a system that sterilizes and cleans the bathroom space by flushing.
  • the bathroom space corresponds to the "predetermined space" in the claims.
  • the space sterilization system 230 includes a hypochlorous acid water supply device 201 (a hypochlorous acid water generation unit 201a and a hypochlorous acid water treatment unit 201b), a positive electrode A side supply pump 231, a negative electrode side supply pump 232, a positive electrode side extraction solution tank 233, a negative electrode side extraction solution tank 234, a positive electrode side extraction solution bathroom pipe 235, a mist spray device 236, and a negative electrode.
  • a side extraction solution bath tubing 237 and a drain 238 are provided.
  • the hypochlorous acid water generating unit 201a that constitutes the hypochlorous acid water supply device 201 is a part that supplies salt water (aqueous sodium chloride solution) and generates hypochlorous acid water by electrolysis.
  • the hypochlorous acid water generated by the hypochlorous acid water generating unit 201a contains NaClO and HClO, which are components of the hypochlorous acid water.
  • Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
  • the hypochlorous acid water treatment unit 201b circulates the hypochlorous acid water supplied from the hypochlorous acid water generation unit 201a, and from the positive electrode side channel 213, the hypochlorous acid water containing mainly HClO with high sterilization power is supplied. This is a portion for extracting the positive electrode extracting solution 210a, which is acid water, and for extracting the negative electrode extracting solution 211a, which is hypochlorous acid water mainly containing NaClO and NaOH, from the negative electrode side channel 214 with high detergency.
  • the positive electrode extraction solution 210 a is stored in the positive electrode side extraction solution tank 233 and then sent to the mist spray device 236 through the positive electrode side extraction solution bathroom pipe 235 .
  • the positive electrode extraction solution 210a is sprayed from the mist spray device 236 into the bathroom space. Further, the negative electrode extraction solution 211 a is stored in the negative electrode side extraction solution tank 234 and then sent to the drain port 238 through the negative electrode side extraction solution bathroom piping 237 . The cathode extraction solution 211a is circulated through the drain port 238 and flows through the drain port 238 to the drain pipe.
  • the positive electrode side supply pump 231 supplies solutions (positive and negative electrode supply solution 209a, positive electrode supply solution 209a, positive electrode supply solution 209a, positive A pump that causes the flow of the electrode extraction solution 210a). At this time, the positive electrode side supply pump 231 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 201a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 201b to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the cathode-side supply pump 232 supplies each solution (the anode-and-positive electrode supply solution 209a, the cathode-side supply solution 209a, the cathode-side supply solution 209a, A pump that causes the flow of the electrode extraction solution 211a).
  • the cathode-side supply pump 232 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 201a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 201b to be constant.
  • Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the flow rate of the channel 212 between the negative and positive electrodes is controlled as the total amount of the positive electrode side supply pump 231 and the negative electrode side supply pump 232 . Also, the positive electrode side supply pump 231 and the negative electrode side supply pump 232 correspond to the "supply pump" in the claims.
  • the positive electrode-side extraction solution tank 233 feeds the positive electrode-side extraction solution 210a, which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the positive electrode-side channel 213, to the mist spray device 236. , is a temporary storage tank.
  • the positive electrode side extraction solution tank 233 is connected to a mist spraying device 236 via a positive electrode side extraction solution bathroom piping 235 .
  • the cathode-side extraction solution tank 234 feeds the cathode-side extraction solution 211a, which is hypochlorous acid water containing NaClO and NaOH with high detergency extracted from the cathode-side channel 214, to the drain port 238. , is a temporary storage tank.
  • the cathode-side extraction solution tank 234 is connected to a drain port 238 via a cathode-side extraction solution bathroom pipe 237 .
  • the positive electrode side extraction solution bathroom pipe 235 is a pipe for sending liquid from the positive electrode side extraction solution tank 233 to the mist spray device 236 .
  • the positive electrode-side extraction solution bathroom pipe 235 is installed behind the wall and ceiling of the bathroom, and is connected to a mist spraying device 236 installed on the ceiling.
  • the cathode-side extraction solution bathroom pipe 237 is a pipe for sending liquid from the cathode-side extraction solution tank 234 to the drain port 238 .
  • the cathode-side extraction solution bathroom pipe 237 is installed behind the wall and floor of the bathroom and connected to a drain port 238 .
  • the mist spraying device 236 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 236 sprays the positive electrode extraction solution 210a, which is hypochlorous acid water, conveyed from the positive electrode side extraction solution tank 233 through the positive electrode side extraction solution bathroom piping 235 into a fine mist. It is a device that releases as The mist spraying device 236 is installed so that the spraying part protrudes from the ceiling toward the bathroom so that mist can be sprayed from the ceiling of the bathroom to the entire bathroom.
  • the positive electrode extraction solution 210a which is hypochlorous acid water
  • the mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 ⁇ m or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 ⁇ m or less is sprayed.
  • the drain port 238 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space.
  • the negative electrode extracting solution 211a is conveyed from the negative electrode side extracting solution tank 234 to the drain port 238 through the negative electrode side extracting solution bathroom pipe 237.
  • the drain port 238 and the drain pipe connected to the drain port 238 can be cleaned with the negative electrode extraction solution 211a.
  • the space sterilization system 230 is connected to the hypochlorous acid water supply device 201 and the positive electrode side channel 213, and uses the hypochlorous acid water delivered from the positive electrode side channel 213 to perform the following: and a mist spraying device 236 for discharging chlorous acid water mist into a predetermined space. According to such a configuration, even if the mist of hypochlorous acid water delivered from the positive electrode side channel 213 is discharged into the predetermined space, residual components remaining in the predetermined space are suppressed.
  • hypochlorous acid water delivered from the positive electrode side channel 213 is hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced, when sterilizing a predetermined space, sterilization It is possible to suppress the occurrence of metal corrosion due to residual components while maintaining performance.
  • the bathroom space is provided with a drain port 238 for discharging water generated in the bathroom space, and the negative electrode side channel 214 is connected to the drain port 238,
  • the structure is such that the hypochlorous acid water sent out from the negative electrode side channel 214 can be introduced into the drain port 238 .
  • hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is extracted from the hypochlorous acid water delivered from the cathode-side channel 214. Since it is circulated through the drain port 238 (and the drain pipe connected to the drain port 238), the drain pipe can be cleaned with the alkaline solution.
  • NaClO and NaOH which are residual components
  • NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing many components such as NaClO and NaOH is mist-sprayed, fine residual components are accumulated, which may cause corrosion during long-term use.
  • tap water when tap water is used as raw water to generate salt water, there is concern that anions contained in the tap water may cause variations in concentration and characteristics of hypochlorous acid water generated by electrolysis.
  • cations contained in tap water are components that remain as solids on the surface after volatilization, and these residual components also promote corrosion of metals, so there is also concern about corrosion during long-term use. be.
  • the present disclosure can supply hypochlorous acid water with reduced residual components generated by electrolysis of salt water generated from tap water with reduced anionic components while reducing the anionic components contained in tap water.
  • An object of the present invention is to provide a possible hypochlorous acid water supply device and a space sterilization system using the same.
  • hypochlorous acid water while reducing the anion component contained in tap water, supply hypochlorous acid water with reduced residual component generated by electrolysis of salt water generated from tap water with reduced anion component. It is possible to provide a hypochlorous acid water supply device and a space sterilization system using the same.
  • the anion component contained in the tap water supplied to the meandering first diaphragm electrolysis flow path is energized between the pair of first cathode and cathode electrodes.
  • a tap water treatment unit for continuously separating the tap water treatment unit a salt water generation unit for generating salt water by adding a salt component to the tap water solution sent from the tap water electrolysis channel on the negative electrode side of the tap water treatment unit, and a salt water generation unit
  • a tap water treatment unit for continuously separating the tap water treatment unit
  • a salt water generation unit for generating salt water by adding a salt component to the tap water solution sent from the tap water electrolysis channel on the negative electrode side of the tap water treatment unit
  • a salt water generation unit By energizing between the pair of second negative and positive electrodes from the meandering electrolysis flow channel configured to be able to supply the salt water generated in and the salt water supplied in the non-diaphragm electrolysis flow channel constituting the front stage of the electrolysis flow channel Supplied from the hypoch
  • hypochlorous acid water generating unit having a hypochlorous acid water treatment section for continuously treating the hypochlorous acid water by energizing between the pair of second negative and positive electrodes.
  • the structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
  • hypochlorous acid water in which residual components generated by electrolysis of salt water generated from tap water with reduced anion components are reduced while reducing the anion components contained in the tap water.
  • hypochlorous acid water generation unit by supplying salt water from which the anion component has been separated and reduced to the electrolysis channel, the salt water is electrolyzed in the non-diaphragm electrolysis channel in the hypochlorous acid water generation part.
  • the hypochlorous acid water treatment unit the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the second diaphragm electrolysis flow path, and from the positive electrode side It is possible to extract as hypochlorous acid water in which cationic components that cause residual components are separated and reduced.
  • hypochlorous acid soft water extracted from the positive electrode side is supplied to the outside, it is possible to suppress the occurrence of metal corrosion caused by residual components contained in the hypochlorous acid soft water.
  • the second positive and negative electrodes are used in common for the hypochlorous acid water generation unit and the hypochlorous acid water treatment unit, and the non-diaphragm electrolysis flow path and the second diaphragm electrolysis flow path increase the voltage between the second negative and positive electrodes. Directly connected in the energized state.
  • a second positive ion component is generated in a state in which a large amount of anionic components are present near the positive electrode side and a large amount of positive ion components are present near the negative electrode. Since it flows into the diaphragm electrolysis channel, the electrodialysis treatment can be started in a state in which the positive ion component, which is a factor of the residual component, is reduced in advance on the positive electrode side.
  • the first diaphragm electrolysis channel has a meandering first cathode side flow in which the first cathode is exposed and extended along the channel.
  • a serpentine first positive electrode-side channel arranged in parallel to face the first negative electrode-side channel, with the first positive electrode extending and exposed along the channel; and a first diaphragm that is provided to separate the electrode-side channel and the first positive electrode-side channel and allows anion components contained in the solution flowing through the channel to permeate.
  • the pair of first negative and positive electrodes exposes the first negative electrode to the first negative electrode side channel by the first negative electrode side spacer, and exposes the first positive electrode to the first positive electrode side channel by the first positive electrode side spacer.
  • Tap water is configured to flow in the same direction in both the first negative electrode side channel and the first positive electrode side channel.
  • the tap water treatment unit circulates the tap water while applying voltage in the same direction across the first diaphragm, so that the anion component contained in the tap water can be continuously separated and reduced. can be done. Therefore, the tap water solution from which the anionic component has been separated and reduced, which is sent from the tap water electrolysis flow path on the negative electrode side of the tap water treatment unit, can be stably supplied to the salt water generation unit.
  • a first positive electrode-side spacer exposing the first positive electrode and the first diaphragm in the channel, the first positive electrode-side channel having the first positive electrode and the first diaphragm exposed along the channel and a spacer on the side of the first positive electrode.
  • the non-diaphragm electrolysis channel includes a planar second positive electrode, a planar second negative electrode facing the second positive electrode, and a second positive electrode. It comprises a positive electrode spacer provided between the electrode and the second negative electrode.
  • the pair of second negative and positive electrodes are formed in a meandering shape by exposing the second positive and negative electrodes to the non-diaphragm electrolytic flow path by means of spacers between negative and positive electrodes. According to this configuration, the ability to electrolyze salt water can be changed by the shape of the channel formed in the spacer between the positive and negative electrodes, so that the area and time for electrolyzing the salt water can be freely designed.
  • the second diaphragm electrolysis flow channel has a meandering second positive electrode side flow in which the second positive electrode is exposed and extended along the flow channel.
  • a meandering second negative electrode-side channel arranged in parallel to face the second positive electrode-side channel, the second negative electrode extending and being exposed along the channel; and a second diaphragm that is provided to separate the electrode-side channel and the second cathode-side channel and allows the passage of cations contained in the solution flowing through the channel.
  • the pair of second negative and positive electrodes exposes the second positive electrode to the second positive electrode side channel by the second positive electrode side spacer, and exposes the second negative electrode to the second negative electrode side channel by the second negative electrode side spacer.
  • the hypochlorous acid water supplied from the hypochlorous acid water generating section is configured to flow in the same direction in both the second positive electrode side channel and the second negative electrode side channel.
  • the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the second diaphragm, so that the residual components from the hypochlorous acid water cation components can be continuously separated and reduced. Therefore, as hypochlorous acid water with reduced residual components, it is possible to stably supply the hypochlorous acid water sent from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit to the outside. can.
  • hypochlorous acid water produced by electrolyzing salt water is converted into Since it is possible to change the ability to separate and reduce the cation components that cause residual components, it is possible to freely design the area and time for separating and reducing the cation components that cause residual components from hypochlorous acid water. can be done.
  • the cathode-positive electrode spacer is configured by overlapping the second anode-side spacer and the second cathode-side spacer. According to such a configuration, the structure can be simplified, and the leakage of the liquid due to the boundary between the non-diaphragm electrolysis channel and the second membrane electrolysis channel and the disturbance of the ion distribution in the channel can be suppressed to allow circulation. be able to.
  • the first Provided at the negative electrode side supply pump and the first positive electrode side supply pump, and the respective outlets of the positive electrode side and the negative electrode side of the hypochlorous acid water generation unit, supplying salt water to the non-diaphragm electrolysis flow path
  • a second positive electrode side supply pump and a second negative electrode side supply pump are provided for supplying the hypochlorous acid water electrolytically generated in the hypochlorous acid water generating section to the second diaphragm electrolysis flow path.
  • the first negative electrode side supply pump and the first positive electrode side supply pump supply tap water to the first negative electrode side channel and the first positive electrode side channel, respectively, at a constant flow rate.
  • the second positive electrode side supply pump and the second negative electrode side supply pump supply the hypochlorous acid water electrolytically generated in the hypochlorous acid water generation unit to the second positive electrode side channel and the second negative electrode side channel. It is preferable to supply each at a constant flow rate. By doing so, in the first diaphragm electrolysis channel, the time during which the voltage is applied in the first negative electrode side channel can be made constant, and the voltage in the first positive electrode side channel can be kept constant. The time during which the voltage is applied can be made constant. Therefore, the concentration at which the anion component contained in the tap water in the channel on the first negative electrode side is separated and diluted, and the concentration at which the anion component contained in the tap water in the channel on the first positive electrode side is concentrated are stabilized.
  • the time during which the voltage is applied in the second positive electrode side channel can be made constant, and the voltage is applied in the second negative electrode side channel. You can set the amount of time you spend For this reason, the concentration at which the cation component that causes the residual component in the hypochlorous acid water in the second positive electrode side channel is separated and diluted, and the concentration in the hypochlorous acid water in the second negative electrode side channel It is possible to stabilize the concentration of cationic components that cause residual components.
  • the hypochlorous acid water supply apparatus includes a drain-side tank that stores the tap water aqueous solution sent from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit.
  • the drain-side tank is connected so that the solution sent from the electrolytic flow path on the cathode side of the hypochlorous acid water generating unit is mixed.
  • the tap water aqueous solution with an acidic pH delivered from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit and the electrolysis channel on the negative electrode side of the hypochlorous acid water generation unit are delivered. It is neutralized by mixing with hypochlorous acid water with an alkaline pH, and the mixed solution has an alkaline pH. It is possible to drain the alkaline solution in a state closer to the neutral side than the pH of the alkaline solution.
  • the space sterilization system uses the above-described hypochlorous acid water supply device and, as an external device, hypochlorous acid water sent from the electrolytic flow path on the positive electrode side of the hypochlorous acid water treatment unit. and a sterilization device that emits hypochlorous acid water mist to a predetermined space. According to such a configuration, even if the hypochlorous acid water mist sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is discharged into the predetermined space, the residual components remaining in the predetermined space are Suppressed.
  • hypochlorous acid water delivered from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit contains residual components generated by electrolysis of salt water and residual components due to cationic components contained in tap water. Since the hypochlorous acid water is reduced, it is possible to suppress the occurrence of metal corrosion caused by residual components while maintaining the sterilization performance when sterilizing a predetermined space.
  • a predetermined space is provided with a drain pipe for discharging water generated in the predetermined space.
  • the tap water solution sent from the tap water electrolysis channel and the hypochlorous acid water sent from the electrolysis channel on the negative electrode side of the hypochlorous acid water treatment unit are mixed and introduced.
  • the hypochlorous acid water delivered from the electrolysis channel on the negative electrode side of the hypochlorous acid water treatment unit is delivered from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit.
  • the pH is neutralized to some extent by an acidic tap water solution, it can be introduced into the drainpipe as highly detergency hypochlorous acid water containing an alkaline solution in which cationic components that cause residual components are concentrated. . Therefore, the inside of the drain pipe can be washed with the hypochlorous acid water introduced into the drain pipe.
  • Embodiment 4 is an example that embodies the present disclosure, and does not limit the technical scope of the present disclosure.
  • Each drawing described in the embodiment is a schematic drawing, and the ratio of the size and thickness of each component in each drawing does not necessarily reflect the actual dimensional ratio. .
  • Embodiment 4 includes at least Embodiment 4-1 and Embodiment 4-2 below.
  • FIG. 27 is a cross-sectional image diagram of a hypochlorous acid water supply device 301 according to Embodiment 4-1 of the present disclosure.
  • the hypochlorous acid water supply device 301 supplies tap water and salt components to perform electrolysis and electrodialysis, and residual components contained in the generated hypochlorous acid water (salt components and Na + Components containing cations such as ions, Ca 2+ ions, and Mg 2+ ions (hereinafter also referred to as cationic components), and components containing anions such as SO 4 2 ⁇ ions and NO 3 ⁇ ions contained in tap water (hereinafter also referred to as anion component)) can be separated and reduced and supplied.
  • salt components and Na + Components containing cations such as ions, Ca 2+ ions, and Mg 2+ ions (hereinafter also referred to as cationic components)
  • anion component components containing anions such as SO 4 2 ⁇ ions and NO 3 ⁇ ions contained in tap water
  • the hypochlorous acid water supply device 301 includes a tap water treatment unit 302, a hypochlorous acid water generation unit 303, a first cathode side supply pump 318, and a second cathode side supply pump 318. It comprises a first positive electrode side supply pump 319 , a salt water generation unit 320 , a waste water side tank 323 , a second positive electrode side supply pump 338 and a second negative electrode side supply pump 339 .
  • FIG. FIG. 28 is a schematic diagram of tap water treatment unit 302 .
  • 29 is an exploded perspective view of the tap water treatment unit 302.
  • FIG. FIG. 30 is a vertical sectional image diagram of the tap water treatment unit 302. As shown in FIG.
  • the tap water treatment unit 302 is a unit that supplies tap water from the outside and separates and reduces anion components contained in the tap water.
  • the tap water treatment unit 302 includes a first negative electrode 304, a first positive electrode 305, a first diaphragm 306, a first negative electrode side spacer 307, a first positive electrode side spacer 308, and a first negative electrode A packing 309a, a first positive electrode packing 309b, a first negative electrode side tank housing side surface 310a, a first positive electrode side tank housing side surface 310b, a first negative electrode solution supply port 311, a first negative electrode Electrode solution extraction port 312, first positive electrode solution supply port 313, first positive electrode solution extraction port 314, first negative electrode side channel 315, first positive electrode side channel 316, electrodialysis power supply 317;
  • the first cathode 304 is a planar electrode plate. The surface of the electrode plate of the first cathode 304 is exposed along the channel of the first cathode-side channel 315 by the first-cathode-side spacer 307 .
  • the first cathode electrode 304 is the electrode that functions as the cathode when current is passed by the electrodialysis power supply 317 .
  • the first negative electrode 304 is arranged substantially parallel to and facing the first positive electrode 305 .
  • the first cathode electrode 304 forms a platinum-containing catalyst on the surface of the titanium substrate. The platinum-containing catalyst is formed at least on the surface of the first cathode 304 that is exposed along the channel 315 on the first cathode side.
  • the first positive electrode 305 is a planar electrode plate. The surface of the electrode plate of the first positive electrode 305 is exposed along the channel of the first positive electrode side channel 316 by the first positive electrode side spacer 308 .
  • First positive electrode 305 is an electrode that functions as an anode when current is passed by electrodialysis power supply 317 .
  • the first positive electrode 305 is arranged substantially parallel to and facing the first negative electrode 304 .
  • the first positive electrode 305 forms a platinum-containing catalyst on the surface of the titanium substrate. The platinum-containing catalyst is formed at least on the surface of the first positive electrode 305 exposed along the channel of the first positive electrode side channel 316 .
  • first negative electrode 304 and the first positive electrode 305 in the region where electrodialysis is performed by exposing them along the first negative electrode side channel 315 and the first positive electrode side channel 316 have the same shape, and the facing distance is is easier to move ions. If the facing distance is short, the amount of flow through the flow path will be small, so it is desirable to shorten the facing distance to about 10 mm or less while ensuring the required amount of tap water to be treated.
  • the first negative electrode 304 and the first positive electrode 305 constitute negative and positive electrodes (hereinafter also referred to as first negative and positive electrodes) as a pair of opposing electrodes.
  • the first diaphragm 306 is a planar thin film.
  • the first diaphragm 306 is arranged substantially parallel to the first negative electrode 304 and the first positive electrode 305 .
  • the first diaphragm 306 is provided so as to separate the first negative electrode side channel 315 and the first positive electrode side channel 316 .
  • the first diaphragm 306 is an ion exchange membrane (anion exchange membrane) capable of transferring anions such as Cl ⁇ ions, SO 4 2 ⁇ ions, and NO 3 ⁇ ions contained in tap water.
  • the first diaphragm 306 can move anions to the first positive electrode 305 side by applying a voltage to the first negative electrode 304 and the first positive electrode 305 .
  • this anion exchange membrane for example, Neocepta manufactured by Astom Co., Ltd. can be used.
  • the first cathode side spacer 307 is an insulating member.
  • the first cathode side spacer 307 controls the distance between the first cathode 304 and the first diaphragm 306 to a predetermined distance.
  • the first cathode side spacer 307 has a first cathode side channel hole 315 a forming a first cathode side channel 315 inside the first cathode side spacer 307 .
  • the first cathode side channel hole 315 a is a hole that forms the first cathode side channel 315 formed in the first cathode side spacer 307 .
  • the first cathode-side channel hole 315a is formed through the front and back of the first cathode-side spacer 307, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up one step at a time. ing.
  • a meandering packing member (not shown), which is the same as the first cathode side spacer 307, is provided on the surface of the first cathode side spacer 307 in order to increase the adhesion between the first cathode side 304 and the first diaphragm 306. ) is installed.
  • the first positive electrode side spacer 308 is an insulating member.
  • the first positive electrode side spacer 308 controls the distance between the first positive electrode 305 and the first diaphragm 306 to a predetermined distance.
  • the first positive electrode side spacer 308 has, inside the first positive electrode side spacer 308 , a first positive electrode side channel hole 316 a forming a first positive electrode side channel 316 .
  • the first positive electrode side channel hole 316 a is a hole that forms the first positive electrode side channel 316 formed in the first positive electrode side spacer 308 .
  • the first positive electrode-side channel hole 316a is formed through the front and back of the first positive electrode-side spacer 308, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step.
  • first negative electrode side channel hole 315a and the first positive electrode side channel hole 316a are arranged so as to face each other.
  • a meandering packing member (not shown), which is the same as the first positive electrode side spacer 308, is provided on the surface of the first positive electrode side spacer 308 in order to improve adhesion with the first positive electrode 305 and the first diaphragm 306. ) is installed.
  • the first cathode packing 309a has a shape in which the outer circumference of the first cathode 304 is hollowed out to the size of the electrode, and is in close contact with the first cathode side spacer 307 to form the first cathode side flow path in the outer circumferential direction. A clamping pressure is applied so that the solution in 315 (the first cathode supply solution 311a, which will be described later) does not leak.
  • insulating silicon rubber can be used as the member of the first cathode packing 309a.
  • the first cathode packing 309a is thicker than the first cathode 304, and is crushed by the tightening pressure so that the first cathode side spacer 307 and the first cathode side tank housing side surface 310a are crushed. It is desirable that the thickness of the first cathode 304 is maintained while the electrodes are in close contact with each other.
  • the first positive electrode packing 309b has a shape in which the outer periphery of the first positive electrode 305 is hollowed out to the size of the electrode, and is in close contact with the first positive electrode side spacer 308 to form the first positive electrode side flow channel in the outer peripheral direction. It is attached with a tightening pressure so that the solution in 316 (the first positive electrode supply solution 313a to be described later) does not leak.
  • insulating silicone rubber can be used as a member of the first positive electrode packing 309b.
  • the first positive electrode packing 309b is thicker than the first positive electrode 305, and is crushed by being pressed by the tightening pressure to form the first positive electrode side spacer 308 and the first positive electrode side tank housing side surface 310b. It is desirable that the thickness of the first positive electrode 305 is retained while the electrodes are in close contact with each other.
  • the side surface 310a of the first cathode-side tank housing is arranged so as to be in direct contact with the outside of the first cathode 304.
  • the first cathode-side tank housing side surface 310a is provided to suppress the penetration of the solution to the outside of the first cathode 304, and to improve adhesion to the inner surface of the first cathode-side tank housing side surface 310a. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the first negative electrode 304, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the first positive electrode side tank housing side surface 310b is arranged so as to be in direct contact with the outside of the first positive electrode 305 .
  • the first positive electrode-side tank housing side surface 310b is provided with an inner surface of the first positive electrode-side tank housing side surface 310b in order to suppress penetration of the solution to the outside of the first positive electrode 305, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the first positive electrode 305, the efficiency of electrode dialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
  • the first cathode solution supply port 311 is a connection port for flowing the first cathode supply solution 311a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the first cathode supply solution 311 a from the outside of the first cathode 304 , the first cathode solution supply port 311 is processed at a position outside the first cathode 304 .
  • the first cathode supply solution 311a is tap water. Tap water contains anionic components such as Cl ⁇ ions, SO 4 2 ⁇ ions, and NO 3 ⁇ ions, as well as cationic components such as Na + ions, Ca 2+ ions, and Mg 2+ ions. The content of each ion component differs depending on the region.
  • the first cathode supply solution 311 a is introduced from the first cathode solution supply port 311 into the first cathode side channel 315 .
  • the first cathode solution extraction port 312 is a connection port for extracting the electrodialyzed first cathode extraction solution 312a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the first cathode extraction solution 312 a outside the first cathode 304 , the first cathode solution extraction port 312 is processed at a position outside the first cathode 304 .
  • the first negative electrode extraction solution 312a is a tap water solution in which the anion components contained in the tap water are separated and reduced from the tap water, and the cation components contained in the tap water remain in the tap water solution without being separated and reduced.
  • the first cathode extraction solution 312 a is introduced into the first cathode solution extraction port 312 from the first cathode side channel 315 .
  • the first cathode extracting solution 312a is obtained by circulating the first cathode supply solution 311a through the first cathode-side channel 315 to obtain the concentration of hypochlorous acid water from the first cathode supply solution 311a.
  • It is a tap water solution obtained by separating and diluting the anion component contained in tap water, which causes variation and characteristic variation.
  • the pH of this tap water solution is alkaline.
  • the first positive electrode solution supply port 313 is a connection port for flowing the first positive electrode supply solution 313a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the first positive electrode supply solution 313 a from the outside of the first positive electrode 305 , the first positive electrode solution supply port 313 is processed at a position outside the first positive electrode 305 .
  • the first positive electrode supply solution 313a is tap water similar to the first negative electrode supply solution 311a.
  • First positive electrode supply solution 313 a is introduced from first positive electrode solution supply port 313 into first positive electrode side channel 316 .
  • the first positive electrode solution extraction port 314 is a connection port for extracting the electrodialyzed first positive electrode extraction solution 314a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the first positive electrode extracting solution 314 a outside the first positive electrode 305 , the first positive electrode solution extracting port 314 is processed at a position outside the first positive electrode 305 .
  • the first positive electrode extraction solution 314a is a tap water solution obtained by separating and concentrating anion components contained in tap water from tap water.
  • the first positive electrode extraction solution 314 a is led out from the first positive electrode side channel 316 to the first positive electrode solution extraction port 314 .
  • the first positive electrode extraction solution 314a is obtained by circulating the first positive electrode supply solution 313a through the first positive electrode side channel 316 so that the concentration of hypochlorous acid water from the first positive electrode supply solution 313a is reduced.
  • It is a tap water solution obtained by separating and condensing the anion component contained in tap water, which causes variation and characteristic variation.
  • hypochlorous acid water is produced by electrolysis of chloride ions ( Cl.sup.- ions) contained in tap water, so the pH of this tap water solution is acidic.
  • the first negative electrode solution supply port 311 and the first positive electrode solution supply port 313 are preferably arranged on the lower side in the vertical direction, and the first negative electrode solution extraction port 312 and the first positive electrode solution extraction
  • the port 314 is desirably positioned vertically upward.
  • the first cathode-side channel 315 is a channel formed by a region surrounded by the first cathode 304 , the first cathode-side spacer 307 and the first diaphragm 306 .
  • the first cathode-side channel 315 is formed meandering by the first cathode-side channel hole 315 a of the first cathode-side spacer 307 . More specifically, the first cathode-side channel 315 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis.
  • the first cathode-side flow path 315 has a structure in which the first cathode-side flow path 315 goes from bottom to top in one direction other than reciprocation in the horizontal direction.
  • the first cathode-side channel 315 is provided with the first cathode solution supply port 311 on one side and the first cathode solution extraction port 312 on the other side. A cathode supply solution 311a is circulated.
  • the first positive electrode side channel 316 is a channel formed by the area surrounded by the first positive electrode 305 , the first positive electrode side spacer 308 and the first diaphragm 306 .
  • the first positive electrode side channel 316 is formed by meandering through the first positive electrode side channel hole 316 a of the first positive electrode side spacer 308 . More specifically, the first positive electrode-side channel 316 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the first positive electrode side channel 316, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the first positive electrode-side channel 316 has a structure in which the liquid flows in one direction from bottom to top except for reciprocation in the horizontal direction.
  • the first positive electrode side channel 316 is provided with a first positive electrode solution supply port 313 on one side and a first positive electrode solution extraction port 314 on the other side.
  • a positive electrode supply solution 313a is circulating.
  • the first negative electrode side channel 315 and the first positive electrode side channel 316 face each other in a symmetrical shape with the first diaphragm 306 interposed therebetween.
  • the first negative electrode side channel 315 and the first positive electrode side channel 316 are configured in a meandering shape facing each other with the first diaphragm 306 interposed therebetween.
  • the first cathode-side flow channel 315 and the first positive electrode-side flow channel 316 constitute a so-called diaphragm-containing electrolysis flow channel (hereinafter also referred to as a first diaphragm-containing electrolysis flow channel). Then, the anion component contained in the tap water flowing through the first negative electrode side channel 315 moves to the first positive electrode side channel 316 side.
  • the amount of ionic component movement is controlled by the applied voltage and current and the flow velocity in the channel.
  • the flow rate is controlled by installing a first negative electrode side supply pump 318 in front of the first negative electrode solution supply port 311 and installing a first positive electrode side supply pump 319 in front of the first positive electrode solution supply port 313. are doing.
  • Each pump is desirably a system that can be controlled at a constant flow rate, and for example, a tube pump can be used.
  • the electrodialysis and electrolysis time in the channel can be controlled to be constant.
  • the concentrated concentration of the anion component contained in the tap water in the first positive electrode-side channel 316 can be stabilized.
  • the electrodialysis power supply 317 is a DC power supply that energizes between the pair of first positive and negative electrodes. More specifically, the electrodialysis power supply 317 is a DC power supply connected to the first negative electrode 304 and the first positive electrode 305 and capable of applying current and voltage to the first negative electrode 304 and the first positive electrode 305. be.
  • the electrodialysis power supply 317 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage.
  • the first cathode side supply pump 318 is a pump that generates a flow that supplies the first cathode supply solution 311a. More specifically, the first cathode side supply pump 318 is installed upstream of the first cathode solution supply port 311 .
  • the first cathode-side supply pump 318 causes each solution to flow through the first cathode solution supply port 311, the first cathode-side channel 315, the first cathode solution extraction port 312, and the salt water generation tank 321 in this order.
  • a flow of (tap water, first cathode supply solution 311a, first cathode extraction solution 312a) is initiated.
  • the first cathode side supply pump 318 controls the flow rate of the solution flowing through the tap water treatment unit 302 to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the first positive electrode side supply pump 319 is a pump that generates a flow that supplies the first positive electrode supply solution 313a. More specifically, the first positive electrode side supply pump 319 is installed upstream of the first positive electrode solution supply port 313 . The first positive electrode side supply pump 319 supplies each solution through the first positive electrode solution supply port 313, the first positive electrode side channel 316, the first positive electrode solution extraction port 314, and the drain side tank 323 in this order. A flow of (tap water, first positive electrode supply solution 313a, first positive electrode extraction solution 314a) is initiated. At this time, the first positive electrode side supply pump 319 controls the flow rate of the solution flowing through the tap water treatment unit 302 to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the salt water generation unit 320 is a unit that generates salt water by adding a salt component to the tap water solution delivered from the tap water electrolysis channel (first cathode side channel 315) on the negative electrode side of the tap water treatment unit 302. .
  • the salt water generation unit 320 includes a salt water generation tank 321 that stores the solution sent from the first negative electrode side channel 315 of the tap water treatment unit 302, and a salt supply section 322 that supplies salt components to the salt water generation tank 321. configured with
  • the salt water generation tank 321 temporarily stores the first cathode extraction solution 312 a extracted from the first cathode solution extraction port 312 of the tap water treatment unit 302 , and mixes it with the salt component supplied from the salt supply section 322 . It is a container that mixes and produces salt water to be supplied to the hypochlorous acid water production unit 303 .
  • the tap water solution (first cathode extraction solution 312a) delivered from the first negative electrode-side channel 315 has anion components contained in the tap water separated and reduced. Therefore, the chloride ions (Cl ⁇ ions) contained in the tap water solution stored in the salt water generation tank 321 are less affected by the tap water, and the chloride ion concentration resulting from the salt component added by the salt supply unit 322 is reduced. controlled.
  • the hypochlorous acid water generation unit 303 electrolyzes chloride ions from the salt water generation unit 320 to generate hypochlorous acid water. It becomes possible to control the concentration of acid water by the supply amount of the salt supply unit 3
  • the salt supply unit 322 is a member that supplies the salt water generation tank 321 with a salt component (for example, sodium chloride) required for a target concentration generated by the hypochlorous acid water generation unit 303 .
  • a salt component for example, sodium chloride
  • a predetermined amount of salt tablets may be supplied, or a predetermined amount of high-concentration (eg, 3%) salt water may be supplied.
  • the drain-side tank 323 temporarily stores the first positive electrode extraction solution 314a extracted from the first positive electrode solution extraction port 314 of the tap water treatment unit 302, and the second It is a container for temporarily storing the second cathode extraction solution 333 a extracted from the cathode solution extraction port 333 .
  • the drain-side tank 323 mixes the first positive electrode extraction solution 314a (tap water solution) and the second negative electrode extraction solution 333a (hypochlorous acid water), and stores the mixed solution (mixed hypochlorous acid water). It is constructed such that it can be discharged to the outside from a drain port provided on the side surface of the drain-side tank 323 .
  • the first positive electrode extraction solution 314a (tap water solution) with an acidic pH and the second negative electrode extraction solution 333a (hypochlorous acid water) with an alkaline pH are neutralized.
  • the mixed solution has an alkaline pH. That is, the drain-side tank 323 can drain the mixed solution in a state where the pH of the second cathode extraction solution 333a (hypochlorous acid water) is closer to the neutral side than the pH.
  • FIG. 32 is a schematic diagram of the hypochlorous acid water generation unit 303.
  • FIG. 33 is an exploded perspective view of the hypochlorous acid water generating unit 303.
  • FIG. 34 is a vertical cross-sectional image diagram of the hypochlorous acid water generating unit 303 .
  • the hypochlorous acid water generation unit 303 is a one-pass type that generates hypochlorous acid water by electrolyzing the salt water supplied from the salt water generation unit 320, and further separates and reduces the residual components contained in the hypochlorous acid water. is a unit of
  • the hypochlorous acid water generation unit 303 includes a hypochlorous acid water generation unit 303a, a hypochlorous acid water treatment unit 303b, an electrolysis/electrodialysis power source 337, a second positive electrode side supply pump 338, a and a two-cathode-side supply pump 339 .
  • the hypochlorous acid water generation unit 303a is a member that electrolyzes the salt water supplied from the salt water generation unit 320 to generate hypochlorous acid water in one pass.
  • the hypochlorous acid water generator 303a includes a second positive electrode 324, a second negative electrode 325, a second positive electrode-side spacer 327, a second negative electrode-side spacer 328, and a second positive electrode packing 329a. , a second negative electrode packing 329b, a second positive electrode side tank housing side surface 330a, a second negative electrode side tank housing side surface 330b, a second negative electrode side electrode solution supply port 331, and a second positive electrode solution extraction.
  • a port 332 , a second cathode solution extraction port 333 , and a second channel 334 between the negative and positive electrodes are provided.
  • the hypochlorous acid water treatment unit 303b is a member that separates and reduces residual components contained in the hypochlorous acid water supplied from the hypochlorous acid water generation unit 303a in a single pass.
  • the hypochlorous acid water treatment unit 303b includes a second positive electrode 324, a second negative electrode 325, a second diaphragm 326, a second positive electrode-side spacer 327, a second negative electrode-side spacer 328, a second A positive electrode packing 329a, a second negative electrode packing 329b, a second positive electrode side tank housing side surface 330a, a second negative electrode side tank housing side surface 330b, a second negative electrode solution supply port 331, A second positive electrode solution extraction port 332 , a second negative electrode solution extraction port 333 , a second positive electrode side channel 335 , and a second negative electrode side channel 336 are provided.
  • the second positive electrode 324 is a planar electrode plate. The surface of the electrode plate of the second positive electrode 324 is exposed along the channel 334 between the negative and positive electrodes and the channel 335 on the second positive electrode side by means of the spacer 327 on the side of the second positive electrode.
  • the second positive electrode 324 is an electrode that functions as an anode when current is passed by the electrolysis/electrodialysis power source 337 .
  • the second positive electrode 324 is arranged substantially parallel to and facing the second negative electrode 325 .
  • the second positive electrode 324 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis.
  • the platinum-containing catalyst is formed at least on the surface of the second positive electrode 324 exposed along the second channel 334 between the negative and positive electrodes and the channel 335 on the side of the positive electrode.
  • the main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH, which are the residual components, but it is made by decomposing from NaClO. NaCl remaining after the electrolysis of NaCl and salt water has not been completely electrolyzed can be converted to hypochlorous acid by means of platinum electrodes.
  • the second cathode 325 is a planar electrode plate.
  • the surface of the electrode plate of the second negative electrode 325 is exposed along the channel 334 between the negative and positive electrodes and the channel 336 on the second negative electrode side by means of the spacer 328 on the side of the second negative electrode.
  • the second cathode electrode 325 is an electrode that functions as a cathode when current is passed by the electrolysis/electrodialysis power source 337 .
  • the second negative electrode 325 is arranged substantially parallel to and facing the second positive electrode 324 .
  • the second negative electrode 325 forms a platinum-containing catalyst on its surface, similar to the second positive electrode 324 .
  • the platinum-containing catalyst is formed on the surface of the second negative electrode 325 exposed along at least the second channel 334 between the negative and positive electrodes and the channel 335 on the side of the positive electrode.
  • the second positive electrode 324 and the second negative electrode 325 in the region exposed along the second positive electrode side flow path 335 and the second negative electrode side flow path 336 and subjected to electrodialysis have the same shape, and the facing distance is is easier to move ionic components. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
  • the second positive electrode 324 and the second negative electrode 325 constitute negative and positive electrodes (hereinafter also referred to as second negative and positive electrodes) as a pair of opposing electrodes.
  • the second diaphragm 326 is a planar thin film.
  • the second diaphragm 326 is arranged substantially parallel to and facing the second positive electrode 324 and the second negative electrode 325 .
  • the second diaphragm 326 is provided so as to separate the second positive electrode side channel 335 and the second negative electrode side channel 336 .
  • the second diaphragm 326 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water.
  • cations such as Ca 2+ ions and Mg 2+ ions contained in tap water can also be moved in the same manner to separate and reduce them.
  • the second diaphragm 326 can move the cationic component to the second negative electrode 325 by applying a voltage to the second positive electrode 324 and the second negative electrode 325 .
  • Examples of the cation exchange membrane include Nafion manufactured by DuPont.
  • the second diaphragm 326 is arranged in the rear stage (the latter part) of the channel, and the part having the second diaphragm 326 becomes the hypochlorous acid water treatment part 303b. On the contrary, the part without the second diaphragm 326 in the front stage (first half part) of the flow path becomes the hypochlorous acid water generating part 303a.
  • the size of the second diaphragm 326 determines the area of the hypochlorous acid water generating section 303a and the area of the hypochlorous acid water processing section 303b. Specifically, if you want to increase the ratio of electrolysis time of salt water, the size of the second diaphragm 326 is reduced, and if you want to increase the ratio of electrodialysis time of hypochlorous acid water, the second diaphragm 326 size is increased. Since the cationic component is concentrated on the second negative electrode 325 side, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use.
  • the potentials of the second positive electrode 324 and the second negative electrode 325 are reversed to dissolve adhered scale.
  • the electrodes will be used with their polarities reversed, it is desirable that the second positive electrode 324 and the second negative electrode 325 be similarly treated with a catalyst containing platinum.
  • the second positive electrode side spacer 327 is an insulating member.
  • the second positive electrode side spacer 327 controls the distance between the second positive electrode 324 and the second diaphragm 326 to a predetermined distance.
  • the second positive electrode side spacer 327 has, inside the second positive electrode side spacer 327, a second positive electrode side channel hole 335a that forms a second positive electrode side channel 335, which will be described later.
  • the second positive electrode side channel hole 335 a is a hole that forms the second positive electrode side channel 335 formed in the second positive electrode side spacer 327 .
  • the second positive electrode side channel hole 335a is formed through the front and back of the second positive electrode side spacer 327, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing.
  • a meandering packing member (not shown), which is the same as the second positive electrode side spacer 327, is provided on the surface of the second positive electrode side spacer 327 in order to increase the adhesion to the second positive electrode 324 and the second diaphragm 326. ) is installed.
  • the second cathode side spacer 328 is an insulating member.
  • the second cathode-side spacer 328 controls the distance between the second cathode 325 and the second diaphragm 326 to a predetermined distance.
  • the second cathode-side spacer 328 has a second cathode-side channel hole 336a inside the second cathode-side spacer 328, which forms a second cathode-side channel 336, which will be described later.
  • the second cathode side channel hole 336 a is a hole that forms the second cathode side channel 336 formed in the second cathode side spacer 328 .
  • the second cathode-side channel hole 336a is formed through the front and back of the second cathode-side spacer 328, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up one step at a time. ing.
  • the second negative electrode side channel hole 336a and the second positive electrode side channel hole 335a are arranged so as to face each other.
  • a meandering packing member (not shown), which is the same as the second cathode side spacer 328, is provided in order to improve adhesion with the second cathode 325 and the second diaphragm 326. ) is installed.
  • the second positive electrode side spacer 327 and the second negative electrode side spacer 328 are in direct contact to act as a negative electrode spacer between the second positive electrode 324 and the second negative electrode 325. Function.
  • a second positive electrode side spacer 327 and a second negative electrode side spacer 328 are interposed between the second positive electrode 324 and the second negative electrode 325 in the hypochlorous acid water generating part 303a.
  • a second positive electrode side spacer 327, a second diaphragm 326 and a second negative electrode side spacer 328 are interposed between the second positive electrode 324 and the second negative electrode 325.
  • the second positive electrode 324 and the second negative electrode 325 are arranged substantially parallel to each other.
  • the thickness of the second cathode-side spacer 328 is reduced by the thickness of the second diaphragm 326 .
  • the second positive electrode side spacer 327 and the second negative electrode side spacer 328 Arranged on the surfaces of the second positive electrode side spacer 327 and the second negative electrode side spacer 328 as a means for absorbing the thickness of the second diaphragm 326 with the thickness of the second positive electrode side spacer 327 and the second negative electrode side spacer 328
  • the second positive electrode side spacer 327 and the second negative electrode side spacer 327 and the second negative electrode are formed by designing the packing member to have a thickness greater than that of the second diaphragm 326, and deforming the packing member with a material such as silicon resin that absorbs the shape.
  • the second positive electrode packing 329a has a shape in which the outer periphery of the second positive electrode 324 is hollowed out to the size of the electrode, and is in close contact with the second positive electrode side spacer 327 to form a second positive electrode side flow channel in the outer peripheral direction. It is attached with tightening pressure so that the solution in 335 (the second negative electrode supply solution 331a to be described later) does not leak.
  • insulating silicon rubber can be used as a member of the second positive electrode packing 329a.
  • the second positive electrode packing 329a is thicker than the second positive electrode 324, and is crushed by being pressed by the tightening pressure, thereby connecting the second positive electrode side spacer 327 and the second positive electrode side tank housing side surface 330a. It is desirable that the thickness of the second positive electrode 324 is retained while the electrodes are in close contact with each other.
  • the second cathode packing 329b has a shape in which the outer circumference of the second cathode 325 is hollowed out to the size of the electrode. It is attached with tightening pressure so that the solution in 336 (the second negative electrode supply solution 331a to be described later) does not leak.
  • the member of the second cathode packing 329b insulating silicone rubber can be used.
  • the second cathode packing 329b is thicker than the second cathode 325, and is crushed by the tightening pressure so that the second cathode side spacer 328 and the second cathode side tank housing side surface 330b are crushed. It is desirable that the thickness of the second cathode 325 be maintained while adhering to the .
  • the second positive electrode side tank housing side surface 330a is arranged so as to be in direct contact with the outside of the second positive electrode 324 .
  • the second positive electrode-side tank housing side surface 330a is provided with an inner surface of the second positive electrode-side tank housing side surface 330a to increase adhesion in order to prevent the solution from permeating to the outside of the second positive electrode 324.
  • packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second positive electrode 324, the efficiency of electrodialysis can be improved if the solution can be prevented from flowing out of the electrode.
  • the second cathode side tank housing side surface 330b is arranged so as to be in direct contact with the outside of the second cathode 325 .
  • the second cathode-side tank housing side surface 330b is provided with an inner surface of the second cathode-side tank housing side surface 330b in order to prevent the solution from permeating to the outside of the second cathode 325, and to improve adhesion.
  • packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second negative electrode 325, the efficiency of electrode dialysis can be improved if the solution can be prevented from flowing to the outside of the electrode.
  • the second negative electrode solution supply port 331 is a connection port for flowing salt water to be electrolyzed into the second negative electrode inter-electrode channel 334, and is attached with a connector (not shown) to which a tube can be connected.
  • the second negative electrode solution supply port 331 is processed at a position on the outer circumference of the second positive electrode 324 .
  • the second positive electrode solution supply port 331 is processed at a position outside both the second positive electrode 324 and the second negative electrode 325. Only one of the positions of may be processed.
  • the second negative electrode supply solution 331 a is salt water supplied from the salt water generation unit 320 . More specifically, it is salt water produced by adding and mixing salt components in the salt supply unit 322 to the tap water solution from which the anion components have been separated and reduced in the tap water treatment unit 302 .
  • a second negative electrode supply solution 331a is introduced from a second negative electrode solution supply port 331 into a second channel 334 between negative and positive electrodes.
  • the second positive electrode solution extraction port 332 is a connection port for taking out the electrodialyzed second positive electrode extraction solution 332a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second positive electrode extracting solution 332 a outside the second positive electrode 324 , the second positive electrode solution extracting port 332 is processed at a position outer than the second positive electrode 324 .
  • the second positive electrode extraction solution 332a is hypochlorous acid water containing HClO as the main component.
  • the second positive electrode extracting solution 332 a is introduced into the second positive electrode solution extracting port 332 from the second positive electrode side channel 335 .
  • the second positive electrode extraction solution 332a is obtained by electrolyzing the second negative electrode supply solution 331a in the second positive electrode channel 334, and then circulating it in the second positive electrode side channel 335. It is a solution that separates and dilutes the cationic components that cause residual components. Since hypochlorous acid water produced by electrolyzing salt water generated from tap water from which anion components have been removed in the hypochlorous acid water production unit 303a is used, the second positive electrode extraction solution 332a contains , Na + ions mainly due to salt components, and Ca 2+ ions and Mg 2+ ions contained in the tap water solution are separated and diluted to form hypochlorous acid water containing HClO as the main component. Therefore, the pH of this hypochlorous acid water is acidic.
  • the second cathode solution extraction port 333 is a connection port for taking out the electrodialyzed second cathode extraction solution 333a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second cathode extraction solution 333 a outside the second cathode 325 , the second cathode solution extraction port 333 is processed at a position outside the second cathode 325 .
  • the second cathode extraction solution 333a is hypochlorous acid water containing NaClO and NaOH, and Ca(OH) 2 and Mg(OH) 2 depending on the components of tap water used as raw water.
  • the second cathode extraction solution 333 a is led out from the second cathode side channel 336 to the second cathode solution extraction port 333 .
  • the second negative electrode extraction solution 333a is obtained by electrolyzing the second negative electrode supply solution 331a in the second negative electrode channel 334, and then circulating it in the second negative electrode side channel 336. It is a concentrated solution of cationic components that cause residual components. Since the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 303a is used, the Na + ions, which are cations, are separated and concentrated in the second negative electrode extraction solution 333a. By being generated as NaOH, it becomes hypochlorous acid water containing NaOH and NaClO as main components. Furthermore, when tap water containing Ca 2+ ions and Mg 2+ ions is used as raw water, Ca(OH) 2 and Mg(OH) 2 are produced together. Therefore, the pH of this hypochlorous acid water is alkaline.
  • the second negative electrode solution supply port 331 is preferably arranged on the lower side in the vertical direction
  • the second positive electrode solution extraction port 332 and the second negative electrode solution extraction port 333 are preferably arranged on the upper side in the vertical direction.
  • the second cathode-positive electrode channel 334 is a channel formed in a region surrounded by the second positive electrode 324 , the second positive electrode-side spacer 327 , the second negative electrode-side spacer 328 , and the second negative electrode 325 . It is a so-called non-diaphragm electrolysis flow path.
  • the second anode-positive electrode channel 334 has a structure in which the second positive electrode-side channel hole 335a of the second positive electrode-side spacer 327 and the second negative electrode-side channel hole 336a of the second negative electrode-side spacer 328 are overlapped. It is composed by meandering.
  • the second channel between positive and negative electrodes 334 reciprocates in the horizontal direction, and the number of reciprocations in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top. Furthermore, by reducing the channel width of the second cathode-positive electrode channel 334, the distance becomes longer, and the electrolysis time can be lengthened. In order to reduce backflow of the liquid in the second channel 334 between the negative and positive electrodes, it is desirable that the second channel 334 between the negative and positive electrodes has a structure from bottom to top in one direction other than reciprocating in the horizontal direction.
  • the second cathode-positive electrode channel 334 is connected to a second positive electrode-side channel 335 and a second negative electrode-side channel 336, and a second cathode-positive electrode supply solution 331a flows therein.
  • the amount of electrolysis is controlled by the applied voltage current and flow velocity in the channel.
  • the flow rate is controlled by installing a second positive electrode side supply pump 338 after the second positive electrode solution extraction port 332 and installing a second negative electrode side supply pump 339 after the second negative electrode solution extraction port 333 . are doing.
  • Each supply pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing each solution at a constant flow rate, it is possible to control the time for electrolysis in the channel to be constant, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
  • the electrolyzed hypochlorous acid water is mixed in the flow process in the second anode-positive electrode passage 334, a large amount of Cl ⁇ ions, which are the anionic component of the salt water, are distributed near the second anode 324.
  • the salt water flows with a concentration gradient such that Na + ions, which are cationic components of salt water, are distributed in large numbers. Therefore, when electrolysis is performed between a pair of second negative and positive electrodes, an acidic solution flows in the vicinity of the second positive electrode 324 and an alkaline solution flows in the vicinity of the second negative electrode 325.
  • hypochlorous acid water which is more acidic and more alkaline, flows through the second positive electrode-side channel 335 and the second negative electrode-side channel 336, respectively. Specifically, acidic hypochlorous acid water containing a large amount of HCl and HClO is circulated in the second positive electrode side channel 335, and alkaline hypochlorous acid water containing a large amount of NaOH is circulated in the second negative electrode side channel 336. Chlorate water is extracted.
  • the second positive electrode side channel 335 is a channel formed by the area surrounded by the second positive electrode 324 , the second positive electrode side spacer 327 and the second diaphragm 326 .
  • the second positive electrode side channel 335 is formed by meandering second positive electrode side channel holes 335 a of the second positive electrode side spacer 327 . More specifically, the second positive electrode-side channel 335 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the second positive electrode side channel 335, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the second positive electrode-side channel 335 has a structure in which the second positive electrode-side channel 335 goes from bottom to top in one direction other than reciprocating in the horizontal direction.
  • One of the second positive electrode-side channels 335 is connected to the second channel 334 between negative and positive electrodes, and the other is provided with a second positive electrode solution extraction port 332, and hypochlorous acid water is generated inside. Hypochlorous acid water generated by electrolyzing salt water is distributed in the section 303a.
  • the second cathode-side channel 336 is a channel formed by the area surrounded by the second cathode 325 , the second cathode-side spacer 328 and the second diaphragm 326 .
  • the second cathode-side channel 336 is formed by meandering second cathode-side channel holes 336 a of the second cathode-side spacer 328 . More specifically, the second cathode-side channel 336 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top.
  • the second cathode-side channel 336 has a structure in which liquid flows in one direction from bottom to top except for reciprocation in the horizontal direction.
  • One side of the second negative electrode side channel 336 is connected to the second channel 334 between negative and positive electrodes, and the other side is provided with a second negative electrode solution extraction port 333, and hypochlorous acid water is generated inside. Hypochlorous acid water generated by electrolyzing salt water is distributed in the section 303a.
  • the second positive electrode side channel 335 and the second negative electrode side channel 336 face each other in a symmetrical shape with the second diaphragm 326 interposed therebetween.
  • the second positive electrode-side channel 335 and the second negative electrode-side channel 336 are formed in meandering shapes facing each other with the second diaphragm 326 interposed therebetween.
  • the second positive electrode-side flow channel 335 and the second negative electrode-side flow channel 336 constitute a so-called diaphragm-containing electrolysis flow channel (hereinafter also referred to as a second diaphragm-containing electrolysis flow channel).
  • the amount of ionic component movement is controlled by the applied voltage and current and the flow velocity in the channel.
  • the flow rate is controlled by installing a second positive electrode side supply pump 338 after the second positive electrode solution extraction port 332 and installing a second negative electrode side supply pump 339 after the second negative electrode solution extraction port 333 . are doing.
  • Each pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, the time for electrodialysis and electrolysis in the flow path can be controlled constantly, so the concentration of the hypochlorous acid water to be extracted can be stably controlled.
  • a second cathode-positive electrode channel 334 constituting a non-diaphragm electrolysis channel, followed by a second positive electrode side channel 335 constituting a diaphragm electrolysis channel and a second Together with the cathode-side channel 336, the meandering electrolysis channel as the hypochlorous acid water generating unit 303 is configured in a one-pass manner. That is, in the meandering electrolytic flow path, the second cathode-positive electrode flow path 334 constitutes the front stage of the electrolytic flow path, and the second positive electrode-side flow path 335 and the second negative electrode-side flow path 336 constitute the electrolytic flow path. It constitutes the rear stage.
  • the electrolysis/electrodialysis power supply 337 is a DC power supply that energizes between the pair of second positive and negative electrodes. More specifically, the electrolysis/electrodialysis power supply 337 is connected with the second positive electrode 324 and the second negative electrode 325, and can apply current and voltage to the second positive electrode 324 and the second negative electrode 325. DC power supply.
  • the electrolysis/electrodialysis power supply 337 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage.
  • the electrolysis/electrodialysis power supply 337 applies current and voltage to the second positive electrode 324 and the second negative electrode 325 common to the hypochlorous acid water generating section 303a and the hypochlorous acid water processing section 303b.
  • the electrolysis/electrodialysis power supply 337 functions as a power supply for the electrodes that cause electrolysis in the hypochlorous acid water generating unit 303a, and a power supply for the electrodes that causes electrodialysis in the hypochlorous acid water processing unit 303b.
  • the electrolysis/electrodialysis power supply 337 for example, each time the hypochlorous acid water is supplied to the hypochlorous acid water generation unit 303, the second positive electrode 324 and the second negative electrode The potential of the electrode 325 may be switched to reverse the polarity and control may be performed to dissolve the adhering scale.
  • the second positive electrode side supply pump 338 is a pump that generates a flow for extracting the second positive electrode extraction solution 332a. More specifically, the second positive electrode side supply pump 338 is installed after the second positive electrode solution extraction port 332 . Then, the second positive electrode side supply pump 338 supplies the second negative electrode solution supply port 331, the second positive electrode channel 334, the second positive electrode side channel 335, and the second positive electrode solution extraction port 332 in this order. A flow of each solution (second cathode electrode supply solution 331a, second anode extraction solution 332a) is caused to flow.
  • the second positive electrode side supply pump 338 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 303a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 303b to be constant. do.
  • Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the second cathode side supply pump 339 is a pump that generates a flow for extracting the second cathode extraction solution 333a. More specifically, the second cathode side supply pump 339 is installed after the second cathode solution extraction port 333 . Then, the second negative electrode side supply pump 339 supplies the second negative electrode solution supply port 331, the second negative electrode channel 334, the second negative electrode side channel 336, and the second negative electrode solution extraction port 333 in this order. A flow of each solution (second cathodic electrode supply solution 331a, second cathodic electrode extraction solution 333a) is caused to flow.
  • the second cathode side supply pump 339 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 303a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 303b to be constant. do.
  • Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
  • the flow rate of the second cathode-positive electrode flow path 334 is controlled as the total amount of the second anode-side supply pump 338 and the second cathode-side supply pump 339 .
  • hypochlorous acid water supply device 301 is composed of each member.
  • FIG. FIG. 31 is a horizontal sectional image diagram of the tap water treatment unit.
  • a first cathode supply solution 311a which is tap water, passes through a first cathode solution supply port 311 and continues to the first cathode side channel 315.
  • a first positive electrode supply solution 313 a which is tap water, is continuously supplied to the first positive electrode side channel 316 through the first positive electrode solution supply port 313 .
  • the first cathode supply solution 311a supplied from the first cathode solution supply port 311 flows through the meandering first cathode side channel 315, and flows through the first cathode solution supply port.
  • a first positive electrode supply solution 313a supplied from 313 flows through a first positive electrode side channel 316 which is also formed in a meandering manner.
  • the first negative electrode supply solution 311a and the first positive electrode supply solution 313a face each other with the first diaphragm 306 interposed therebetween and flow in the same direction to Voltages are applied to the first negative electrode 304 and the first positive electrode 305 at both ends at the same time as they flow through the channel 316 .
  • the positive ion components are attracted to the first negative electrode 304 side, and the negative ion components (Cl ⁇ ions, SO 4 2 ⁇ ions, and NO 3 -ions, etc.) are attracted.
  • the anion component (Cl ⁇ ion , SO 4 2 ⁇ ions, NO 3 ⁇ ions, etc.) permeate the first diaphragm 306, pass through the first positive electrode supply solution 313a in the first positive electrode side channel 316, and pass through the first positive electrode 305 side. will attract the anionic component.
  • the cationic component flowing through the first positive electrode side channel 316 cannot permeate the first diaphragm 306, only the cationic component contained in the first negative electrode side channel 315 is transferred to the first negative electrode 304. Attracted.
  • the anion component contained in the first negative electrode supply solution 311a flowing through the first negative electrode side channel 315 is converted into the first positive electrode supply solution 313a flowing through the first positive electrode side channel 316.
  • electrodialysis progresses, and the first negative electrode supply solution 311a flowing through the first negative electrode-side channel 315 has anion components separated and diluted, and flows through the first positive electrode-side channel 316.
  • the first positive electrode supply solution 313a is extracted by concentrating anion components.
  • anion components (Cl ⁇ ions, SO 4 2 ⁇ ions, NO 3 ⁇ ions, etc.) contained in the tap water are separated from the first cathode solution extraction port 312 as the first cathode extraction solution 312a.
  • a diluted tap water solution is extracted.
  • the tap water solution in which the anion component contained in the tap water is separated and concentrated is extracted as the first positive electrode extraction solution 314a.
  • hypochlorous acid water is generated and contained by electrolysis of Cl.sup.- ions contained in tap water.
  • the amount of movement of anion components is increased by lengthening the electrodialysis time in the first negative electrode side channel 315 and the first positive electrode side channel 316.
  • the anion component contained in the tap water of the first cathode extraction solution 312a can be further reduced.
  • the distance becomes longer, and the electrodialysis time can be lengthened.
  • Each pump (first negative electrode side supply pump 318 and first positive electrode side supply pump 319 ), but may be different from each other. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity in the first cathode-side channel 315 is relatively increased and the flow velocity in the first positive electrode-side channel 316 is relatively decreased, the first cathode-side channel 315 and the second
  • the first positive electrode extraction solution 314a extracted from the first positive electrode side channel 316 is a tap water solution with a small amount and high concentration compared to the case where the flow rate of the one positive electrode side channel 316 is the same. Therefore, when draining the first positive electrode extraction solution 314a, it is desirable to reduce the flow velocity of the first positive electrode side channel 316.
  • FIG. 35 is a horizontal sectional image diagram of the hypochlorous acid water generating part 303a of the hypochlorous acid water generating unit 303.
  • a second negative electrode supply solution 331a which is salt water, is passed through a second negative electrode solution supply port 331 to supply a second negative electrode supply solution 331a. is continuously supplied to the second cathode-positive electrode channel 334 . Then, the second negative electrode supply solution 331a supplied from the second negative electrode solution supply port 331 flows through the meandering second channel 334 between the positive and negative electrodes.
  • the supply solution 331a for the second negative and positive electrodes flows through the channel 334 between the second negative and positive electrodes, and at the same time, a voltage is applied to the second positive electrode 324 and the second negative electrode 325 at both ends.
  • anion components (Cl ⁇ ions) are attracted to the second positive electrode 324 side
  • positive ion components (Na + ions) are attracted to the second negative electrode 325 side, as well as Ca 2+ ions and Mg 2+ ions, etc.) are attracted, and electrolysis produces HCl and HClO on the second positive electrode 324 side and NaOH on the second negative electrode 325 side. Further, HClO and NaOH react to generate NaClO.
  • hypochlorous acid water containing NaClO as the main component and containing HClO, NaOH, and residual NaCl is produced.
  • the supplied tap water solution contains Ca 2+ ions and Mg 2+ ions, Ca(OH) 2 and Mg(OH) 2 are also produced in addition to NaOH.
  • the amount of electrolysis of NaCl is increased by increasing the time of electrolysis in the second channel 334 between the negative and positive electrodes, and the generated hypochlorous acid NaCl (salt water) remaining in acid water can be reduced.
  • the distance can be lengthened, and the electrolysis time can be lengthened.
  • FIG. 36 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment section 303b of the hypochlorous acid water generation unit 303. As shown in FIG.
  • hypochlorous acid produced by electrolyzing salt water in the hypochlorous acid water generation unit 303a is Water is continuously supplied to the second positive electrode side channel 335, and hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generating unit 303a is supplied to the second negative electrode side channel 336. continuously supplied to Then, the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 303a flows through the meandering second positive electrode-side channel 335, and similarly meanders. It flows through the formed second cathode side channel 336 .
  • the hypochlorous acid water generated by electrolyzing the salt water in the hypochlorous acid water generation unit 303a is circulated in the same direction to form the second positive electrode side channel 335 and the second negative electrode side channel 336.
  • a voltage is applied to the second positive electrode 324 and the second negative electrode 325 at both ends.
  • anion components are attracted to the second positive electrode 324 side, and positive ion components (Na + ions, Ca 2+ ions and Mg 2+ ions, etc.) are attracted.
  • the second diaphragm 326 is composed of a membrane that is permeable only to cationic components, the cationic components (Na + ions and , Ca 2+ ions and Mg 2+ ions contained in the tap water solution) permeate the second diaphragm 326, pass through the hypochlorous acid water in the second negative electrode side channel 336, and reach the second negative electrode 325 side. Cationic components are attracted. On the contrary, since the anion component flowing through the second negative electrode side channel 336 cannot permeate the second diaphragm 326, only the anion component contained in the second positive electrode side channel 335 reaches the second positive electrode 324. Attracted.
  • the cation components contained in the hypochlorous acid water flowing through the second positive electrode-side channel 335 move to the hypochlorous acid water flowing through the second negative electrode-side channel 336.
  • the hypochlorous acid water flowing through the second positive electrode-side channel 335 is separated and diluted with cation components, and the hypochlorous acid water flowing through the second negative electrode-side channel 336 is , the cationic components are concentrated and extracted.
  • the second positive electrode solution extraction port 332 as the second positive electrode extraction solution 332a, the components containing cations, which are the residual components, are separated and diluted, and hypochlorous acid water in which the HClO component is the main component is produced.
  • the amount of movement of the cation components is can be increased to further reduce residual components consisting of Na + ions in the second positive electrode extraction solution 332a and cations such as Ca 2+ ions and Mg 2+ ions contained in the tap water solution.
  • it is necessary to lengthen the distances of the second positive electrode side channel 335 and the second negative electrode side channel 336. It is formed in a meandering manner so that it rises one by one, and the distance for electrodialysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional areas of the second positive electrode side channel 335 and the second negative electrode side channel 336, the distance becomes longer, and the electrodialysis time can be lengthened.
  • the pumps are controlled so that the flow rates of the solutions passing through the second positive electrode side channel 335 and the second negative electrode side channel 336 are the same, but they may be different from each other. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity in the second positive electrode side channel 335 is relatively increased and the flow velocity in the second negative electrode side channel 336 is relatively decreased, the second positive electrode side channel 335 and the second The second cathode extraction solution 333a extracted from the second cathode-side channel 336 is smaller and has a higher concentration than when the two-cathode-side channel 336 has the same flow rate. Therefore, when the second cathode extraction solution 333a is drained, it is desirable to slow down the flow velocity of the second cathode-side channel 336. As shown in FIG.
  • FIG. 37 is an experimental image diagram for evaluating characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply device 301.
  • FIG. 37 It should be noted that the characteristic evaluation was carried out in the solutions (tap water, salt water, and each hypochlorous acid water).
  • the tap water stored in the tap water tank 340 was supplied to the tap water treatment unit 302 and circulated, the first negative electrode extraction solution 312a was collected in the salt water generation tank 321, and the first positive electrode extraction was performed.
  • the solution 314a was collected in the drain side tank 323 .
  • salt water obtained by adding a salt component to the first negative electrode extraction solution 312a recovered in the salt water generation tank 321 is supplied to the hypochlorous acid water generation unit 303 and circulated, and the second positive electrode extraction solution 332a is generated as follows. While recovering in the chlorous acid water tank 341, the second cathode extraction solution 333a was recovered in the drain side tank 323.
  • the second negative electrode extraction solution 333a is mixed with the first positive electrode extraction solution 314a collected in the drain side tank 323.
  • the first positive electrode extraction solution 314a before mixing and the second cathode extraction solution 333a are also sampled.
  • the tap water treatment unit 302 was formed with a first negative electrode side channel 315 and a first positive electrode side channel 316 having a channel cross-sectional area of 8 mm 2 and a channel length of 675 mm.
  • the hypochlorous acid water generating part 303a of the hypochlorous acid water generating unit 303 is formed with a second cathode-positive electrode channel 334 having a channel cross-sectional area of 24 mm 2 and a channel length of 360 mm.
  • the chlorous acid water treatment part 303b one having a second positive electrode side channel 335 and a second negative electrode side channel 336 with a channel cross-sectional area of 24 mm 2 and a channel length of 320 mm was used.
  • the flow rate conditions of the first negative electrode side supply pump 318, the first positive electrode side supply pump 319, the second positive electrode side supply pump 338, and the second negative electrode side supply pump 339 are 11 mL/min and 0.5 mL/min, respectively. Flow rates of 0.9 mL/min, 4.4 mL/min, and 0.9 mL/min were applied. Then, the electrical conductivity, pH , and available chlorine concentration was measured. DC24V was applied to both the electrodialysis power supply 317 and the electrolysis/electrodialysis power supply 337 .
  • the tap water (the first negative electrode supply solution 311a and the first positive electrode supply solution 313a) supplied to the tap water treatment unit 302 had a water volume of 1.1 L and a conductivity of 103 ⁇ S/cm in the experimental evaluation. , pH "7.0", and effective chlorine concentration "below detection limit”.
  • 5 mL of concentrated salt water (salt water with a concentration of 0.5%) is supplied from the salt supply unit 322 and mixed with the first cathode extraction solution 312a recovered in the salt water generation tank 321 to produce hypochlorous acid. Salt water to be supplied to the acid water generation unit 303 was generated.
  • FIG. 38 is a diagram showing characteristics of the hypochlorous acid water that flows through the hypochlorous acid water supply device 301.
  • FIG. 38 is a diagram showing characteristics of the hypochlorous acid water that flows through the hypochlorous acid water supply device 301.
  • the salt water obtained by adding the salt component to the first cathode extraction solution 312a collected in the salt water generation tank 321 has a water volume of "1.02 L”, an electrical conductivity of "137 ⁇ S/cm”, and a pH of "10. 2”, and the available chlorine concentration is “below the detection limit”, and the pH of the solution is alkaline. Moreover, since the salt component is supplied, the electrical conductivity is higher than that of the tap water supplied from the tap water tank 340 .
  • the first positive electrode extraction solution 314a (before mixing) collected in the drain side tank 323 has a water volume of “0.08 L”, an electrical conductivity of “1041 ⁇ S/cm”, a pH of “2.5”, and an available chlorine concentration of "137 ppm", indicating that the pH of the solution is acidic.
  • the reason why the pH is acidic is that hypochlorous acid water is generated in the first positive electrode extraction solution 314a, and Cl 2 ⁇ ions contained in the tap water are electrolyzed to become hypochlorous acid.
  • the second positive electrode extraction solution 332a collected in the hypochlorous acid water tank 341 has a water volume of “0.85 L”, an electrical conductivity of “13 ⁇ S/cm”, a pH of “4.5”, and an effective chlorine concentration of “ 29 ppm”, and the conductivity is low, that is, the hypochlorous acid water mainly composed of HClO with few residual ions. That is, in the hypochlorous acid water generation unit 303, acidic hypochlorous acid water is generated as the second positive electrode extraction solution 332a.
  • the second cathode extraction solution 333a (before mixing) collected in the drain side tank 323 has a water volume of “0.17 L”, an electrical conductivity of “1507 ⁇ S/cm”, a pH of “11.6”, and an available chlorine concentration of It is "8 ppm". That is, in the hypochlorous acid water generation unit 303, alkaline hypochlorous acid water is generated as the second cathode extraction solution 333a.
  • the first positive electrode extracting solution 314a is acidic and the second negative electrode extracting solution 333a is alkaline, a neutralization reaction occurs, and the state approaches the neutral side. That is, the extraction solution (alkaline hypochlorous acid water) in such a state is discharged from the drain side tank 323 .
  • the hypochlorous acid water supply device 301 supplies tap water to the meandering first diaphragm electrolysis flow path (first negative electrode side flow path 315 and first positive electrode side flow path 316).
  • a tap water treatment unit 302 that continuously separates and reduces anion components contained in tap water by energizing between a pair of first negative and positive electrodes (between the first negative electrode 304 and the first positive electrode 305); Salt water produced by adding a salt component to the tap water solution (first cathode extraction solution 312a) delivered from the tap water electrolysis channel (first cathode side channel 315) on the cathode side of the water treatment unit 302 to generate salt water.
  • a generation unit 320 a meandering electrolysis flow channel configured to be able to supply the salt water (second positive electrode supply solution 331a) generated by the salt water generation unit 320, and a non-diaphragm electrolysis flow channel forming the front stage of the electrolysis flow channel.
  • Hypochlorous acid water is generated by energizing between the pair of second negative and positive electrodes (between the second positive electrode 324 and the second negative electrode 325) from the salt water supplied inside (the channel 334 between the second negative and positive electrodes).
  • a hypochlorous acid water generating part 303a that is continuously electrolytically generated, and a second membrane electrolysis flow path (second positive electrode side flow path 335 and second negative electrode side flow path 336) that constitutes the latter stage of the electrolysis flow path.
  • Hypochlorous acid water supplied from the hypochlorous acid water generating unit 303a to each of the inside is continuously supplied between the pair of second negative and positive electrodes (between the second positive electrode 324 and the second negative electrode 325). and a hypochlorous acid water generation unit 303 having a hypochlorous acid water treatment unit 303b that effectively treats the hypochlorous acid water.
  • salt water generated from tap water solution (first negative electrode extraction solution 312a) in which the anion component is reduced while reducing the anion component contained in tap water.
  • the hypochlorous acid water supply device 301 can supply hypochlorous acid water (second positive electrode extraction solution 332a) in which residual components generated by electrolysis are reduced.
  • tap water is supplied to the tap water treatment unit 302, and the tap water electrolysis flow path (first cathode side flow path) on the negative electrode side of the tap water treatment unit 302 315) sent out from the tap water solution (first negative electrode extraction solution 312a) to which a salt component is added salt water (second negative electrode supply solution 331a) is supplied to the hypochlorous acid water generation unit 303.
  • the chloric acid water generation unit 303 can generate hypochlorous acid water by electrolyzing salt water from which anion components have been separated and reduced. As a result, the generated hypochlorous acid water is suppressed in concentration variations and characteristic variations due to the anion component contained in the tap water.
  • the hypochlorous acid water generation unit 303 by supplying the salt water in which the anion component is separated and reduced to the electrolysis flow path, the non-diaphragm electrolysis flow path (second negative and positive electrode Hypochlorous acid water is generated by electrolyzing salt water in the intermediate flow path 334), and further, in the hypochlorous acid water treatment unit 303b, the second diaphragm electrolysis flow path (the second positive electrode side flow path 335 and the second Hypochlorous acid water generated in the non-diaphragm electrolysis flow channel is circulated in each of the two negative electrode side flow channels 336), and the cation component that causes the residual component from the positive electrode side is separated and reduced.
  • second positive electrode extraction solution 332a It can be extracted as acid water (second positive electrode extraction solution 332a).
  • hypochlorous acid soft water extracted from the positive electrode side is supplied to the outside, it is possible to suppress the occurrence of metal corrosion caused by residual components contained in the hypochlorous acid soft water.
  • the anion component of tap water is hypochlorous acid. It is mixed with the hypochlorous acid water and extracted from the electrolytic channel (second positive electrode side channel 335) on the positive electrode side of the acid water treatment unit 303b.
  • chloride ions ( Cl- ions) in tap water are electrolyzed to produce hypochlorous acid water, which greatly affects the variation in concentration of hypochlorous acid water that is finally extracted, resulting in a stable concentration. of hypochlorous acid water is not generated. Therefore, the tap water treatment unit 302 needs to reduce the amount in advance.
  • Anions other than chloride ions (Cl ⁇ ions) in tap water include ions such as SO 4 2 ⁇ and NO 3 ⁇ , but when these are also circulated through the hypochlorous acid water generation unit 303, H It produces acids such as 2 SO 4 or HNO 3 and causes property variations such as increased conductivity and decreased pH. For this reason, similarly, it is desirable to reduce the amount in the tap water treatment unit 302 in advance.
  • the second positive and negative electrodes (the second positive electrode 324 and the second negative electrode 325) are used in common for the hypochlorous acid water generation unit 303a and the hypochlorous acid water treatment unit 303b,
  • the two diaphragm electrolysis channels are directly connected with a voltage applied between the second negative and positive electrodes.
  • a large number of anions are present in the vicinity of the second positive electrode 324, and a large number of cations are present in the vicinity of the second negative electrode 325. Since it flows into the second diaphragm electrolysis flow path, the electrodialysis treatment can be started in a state in which the cations that cause residual components are reduced in advance on the second positive electrode 324 side.
  • hypochlorous acid water generation unit 303 is supplied with salt water obtained by adding a salt component to tap water, so that the hypochlorous acid water generation unit 303a generates a non-diaphragm electrolytic flow.
  • Hypochlorous acid water is generated by electrolyzing salt water in the passage, and hypochlorous acid water generated in the non-diaphragm electrolysis passage in the second diaphragm electrolysis passage in the hypochlorous acid water processing unit 303b. can be circulated and extracted as hypochlorous acid water in which cations that cause residual components are separated and reduced.
  • the hypochlorous acid water supply device 301 can be configured to be capable of supplying the hypochlorous acid water from which residual components generated by the electrolysis of salt water are separated to the outside.
  • the first diaphragm electrolysis flow channel (the first negative electrode side flow channel 315 and the second positive electrode side flow channel 16) has the first negative electrode 304 in the flow channel.
  • a meandering first cathode-side flow path 315 exposed and extending along the flow path is provided in parallel to face the first cathode-side flow path 315, and the first positive electrode 305 is exposed along the flow path.
  • a pair of first negative and positive electrodes (first negative electrode 304 and first positive electrode 305) exposes the first negative electrode 304 to the first negative electrode side channel 315 by the first negative electrode side spacer 307, and The first positive electrode 305 is exposed to the first positive electrode-side channel 316 by the positive electrode-side spacer 308 to form a meandering shape.
  • Tap water is configured to flow in the same direction through the first negative electrode side channel 315 and the first positive electrode side channel 316 . According to such a configuration, the tap water treatment unit 302 circulates the tap water while applying a voltage in the same direction across the first diaphragm 306, so that the anion component contained in the tap water is continuously separated and reduced. can do.
  • the tap water solution (first negative electrode side flow channel 315) sent out from the tap water electrolysis channel (first negative electrode side channel 315) on the negative electrode side of the tap water treatment unit 302 is used as the tap water solution in which the anion component is separated and reduced.
  • the electrode extraction solution 312 a ) can be stably supplied to the brine generation unit 320 .
  • the electrode-side channel 315 is composed of a first cathode 304 and a first diaphragm 306 exposed along the channel, and a first cathode-side spacer 307 .
  • the hypochlorous acid water supply device 301 further includes a planar first positive electrode 305, a planar first diaphragm 306 facing the first positive electrode 305, and the first positive electrode 305 and the first diaphragm 306. a first positive electrode side spacer 308 provided between and exposing the first positive electrode 305 and the first diaphragm 306 in the first positive electrode side channel 316 along the channel;
  • the electrode-side channel 316 is composed of a first positive electrode 305 and a first diaphragm 306 exposed along the channel, and a first positive electrode-side spacer 308 .
  • the channel shape formed in the first cathode side spacer 307 and the channel shape formed in the first positive electrode side spacer 308 separate and reduce the anion component contained in the tap water. Since the capacity can be changed, it is possible to freely design the area and time for separating and reducing anionic components from tap water.
  • the non-diaphragm electrolytic flow path (the flow path 334 between the second negative and positive electrodes) includes a planar second positive electrode 324 and a planar and a spacer between negative and negative electrodes provided between the second positive electrode 324 and the second negative electrode 325 .
  • a pair of second negative and negative electrodes (a second positive electrode 324 and a second negative electrode 325) are formed in a meandering shape by exposing the second positive electrode 324 and the second negative electrode 325 to the non-diaphragm electrolytic flow path by a spacer between negative and positive electrodes. is configured to According to this configuration, the ability to electrolyze salt water can be changed by the shape of the channel formed in the spacer between the positive and negative electrodes, so that the area and time for electrolyzing the salt water can be freely designed.
  • the second diaphragm electrolysis channel (the second positive electrode side channel 335 and the second negative electrode side channel 336) has the second positive electrode 324 in the channel.
  • a meandering second positive electrode-side flow path 335 exposed and extending along the flow path is provided in parallel to face the second positive electrode-side flow path 335, and the second negative electrode 325 is exposed along the flow path.
  • a meandering second negative electrode side channel 336 extending in the direction of a serpentine path is provided separating the second positive electrode side channel 335 and the second negative electrode side channel 336, and the solution flowing through the channel and a second diaphragm 326 that is permeable to contained cations.
  • a pair of second negative and positive electrodes (a second positive electrode 324 and a second negative electrode 325) exposes the second positive electrode 324 to the second positive electrode side channel 335 by a second positive electrode side spacer 327, By exposing the second negative electrode 325 to the second negative electrode side channel 336 by the negative electrode side spacer 328, the second positive electrode side channel 335 and the second negative electrode side channel 336 are configured in a meandering manner. , the hypochlorous acid water supplied from the hypochlorous acid water generating unit 303a flow in the same direction.
  • hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the second diaphragm 326, so the residual components from the hypochlorous acid water can be continuously separated and reduced. Therefore, as hypochlorous acid water with reduced residual components, hypochlorous acid is delivered from the electrolysis channel (second positive electrode side channel 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b. Water (second positive electrode extraction solution 332a) can be stably supplied to the outside.
  • the electrode-side channel 335 is composed of a second positive electrode 324 and a second diaphragm 326 exposed along the channel, and a second positive electrode-side spacer 327 .
  • hypochlorous acid produced by electrolyzing salt water is generated by the flow channel shape formed in the second positive electrode side spacer 327 and the flow channel shape formed in the second negative electrode side spacer 328. Since the ability to separate cations that cause residual components from water can be changed, it is possible to freely design the area and time for separating and reducing the cation components that cause residual components from hypochlorous acid water. can be done.
  • the cathode-positive electrode spacer is configured by stacking a second anode-side spacer 327 and a second cathode-side spacer 328 on top of each other.
  • the structure can be simplified, and the non-diaphragm electrolytic flow path (second anode-positive electrode inter-electrode flow path 334) and the second diaphragm electrolysis flow path (second positive electrode side flow path 335 and second negative electrode flow path 335) It is possible to suppress liquid leakage and disturbance of the ion distribution in the flow channel due to the boundary between the side flow channel 336) and flow.
  • hypochlorous acid water supply device 301 it is provided at each inlet on the positive electrode side and the negative electrode side of the tap water treatment unit 302, and the first diaphragm electrolysis channel (first negative electrode side channel 315 and a first negative electrode side supply pump 318 and a first positive electrode side supply pump 319 that supply tap water to the first positive electrode side flow path 316), and the positive electrode side and negative electrode of the hypochlorous acid water generation unit 303 provided at each outlet on the side, and supplies salt water to the non-diaphragm electrolysis flow path (second cathode-positive electrode flow path 334) and the second diaphragm electrolysis flow path (second positive electrode-side flow path 335 and second A second positive electrode side supply pump 338 and a second negative electrode side supply pump 339 for supplying the hypochlorous acid water electrolytically generated in the negative electrode side channel 336) are provided.
  • first diaphragm electrolysis channel first negative electrode side channel 315 and a first negative electrode side supply pump 318 and a first positive electrode
  • the first negative electrode side supply pump 318 and the first positive electrode side supply pump 319 supply tap water to the first negative electrode side channel 315 and the first positive electrode side channel 316 at a constant flow rate, respectively.
  • a second positive electrode-side supply pump 338 and a second negative electrode-side supply pump 339 supply the hypochlorous acid water electrolytically generated in the hypochlorous acid water generation unit 303a to the second positive electrode-side channel 335 and the second negative electrode. They were supplied to the side channels 336 at a constant flow rate.
  • the time during which the voltage is applied in the first negative electrode side flow path 315 can be made constant, and in the first positive electrode side flow path 316, The time during which the voltage is applied can be made constant. Therefore, the concentration at which the anion component contained in the tap water in the first negative electrode side channel 315 is separated and diluted, and the concentration at which the anion component contained in the tap water in the first positive electrode side channel 316 is concentrated. can be stabilized.
  • the time during which the voltage is applied in the second positive electrode side flow path 335 can be made constant, and the voltage is applied in the second negative electrode side flow path 336. can be made constant.
  • the concentration at which the cation component that causes the residual component in the hypochlorous acid water in the second positive electrode side channel 335 is separated and diluted, and the hypochlorous acid water in the second negative electrode side channel 336 It is possible to stabilize the concentration of the cationic component, which is a factor of the residual component in the.
  • tap water solution first positive electrode extraction A drain side tank 323 for storing the solution 314a
  • the drain-side tank 323 is mixed with the solution (second cathode extraction solution 333a) delivered from the electrolysis channel (second cathode-side channel 336) on the cathode side of the hypochlorous acid water generation unit 303. connected as follows.
  • FIG. 4-2 is a schematic diagram of a space sterilization system 350 using a hypochlorous acid water supply device 301 according to Embodiment 4-2 of the present disclosure.
  • a spatial sterilization system 350 according to Embodiment 4-2 described below is a system incorporating the hypochlorous acid water supply device 301 according to Embodiment 4-1.
  • substantially the same configurations as those of the hypochlorous acid water supply device 301 according to Embodiment 4-1 are given the same reference numerals, and the description is partially simplified. or may be omitted.
  • the space sterilization system 350 sprays hypochlorous acid water generated from the hypochlorous acid water supply device 301 from the mist spray device 354 in the bathroom space and at the drain port 356. It is a system that sterilizes and cleans the bathroom space by flushing.
  • the bathroom space corresponds to the "predetermined space" in the claims.
  • the spatial sterilization system 350 includes a hypochlorous acid water supply device 301 (tap water treatment unit 302, hypochlorous acid water generation unit 303, first cathode side supply pump 318, first positive electrode side supply pump 319, brine generation tank 321, salt supply part 322, drainage side tank 323, second positive electrode side supply pump 338, second negative electrode side supply pump 339), and positive electrode side extraction
  • a solution tank 351 a negative electrode side extraction solution tank 352 , a positive electrode side extraction solution bathroom piping 353 , a mist spray device 354 , a negative electrode side extraction solution bathroom piping 355 , and a drain port 356 are provided.
  • a tap water treatment unit 302 constituting the hypochlorous acid water supply device 301 supplies tap water and electrodialyzes the anion components (Cl ⁇ ions, SO 4 2 ⁇ ions, and NO 3 ) contained in the tap water. - ions) are separated and diluted and extracted to the brine generation tank 321 .
  • salt components are added from the salt supply unit 322, mixed, and supplied to the hypochlorous acid water generation unit 303 as salt water.
  • Tap water is supplied to the tap water treatment unit 302 by a first negative electrode side supply pump 318 and a first positive electrode side supply pump 319 .
  • a solution (first positive electrode extraction solution 314 a ) obtained by separating and condensing anion components contained in tap water by electrodialysis is extracted to the drain side tank 323 .
  • the hypochlorous acid water generation unit 303 supplies the salt water generated in the salt water generation tank 321, performs electrolysis in the former stage to generate hypochlorous acid water, and further electrodialyzes in the latter stage to generate residual Hypochlorous acid water in which the cationic components are separated and diluted is extracted from the second positive electrode solution extraction port 332 .
  • the extracted second positive electrode extraction solution 332 a is hypochlorous acid water containing mainly HClO with high sterilizing power, and is sent to the positive electrode side extraction solution tank 351 . Further, the extracted solution is sent to the mist spraying device 354 through the positive electrode side extraction solution bathroom pipe 353 and sprayed into the bathroom space.
  • hypochlorous acid water in which the cation component, which is the residual component, is separated and concentrated is extracted from the second negative electrode solution extraction port 333, supplied to the drain side tank 323, and extracted by the tap water treatment unit 302. It is mixed with the first positive electrode extraction solution 314a and discharged.
  • This discharged liquid is hypochlorous acid water containing mainly NaClO and alkaline components, which has high detergency, and is sent to the negative electrode side extraction solution tank 352 via the drainage side tank 323 . Further, it is sent to the drain port 356 through the cathode-side extraction solution bathroom pipe 355 and flows into the drain pipe via the drain port 356 .
  • the positive electrode side extraction solution tank 351 sends the second positive electrode extraction solution 332a, which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the second positive electrode side channel 335, to the mist spray device 354. It is a temporary storage tank until it is liquefied.
  • the positive electrode side extraction solution tank 351 is connected to a mist spraying device 354 via a positive electrode side extraction solution bathroom piping 353 .
  • the cathode-side extraction solution tank 352 contains NaClO with high detergency extracted from the drain-side tank 323 in which the first positive electrode-side channel 316 and the second negative electrode-side channel 336 are mixed, and hypochlorous acid containing mainly alkaline components. It is a tank that temporarily stores water until it is sent to the drain port 356 .
  • the cathode-side extraction solution tank 352 is connected to a drain port 356 via a cathode-side extraction solution bathroom pipe 355 .
  • the positive electrode side extraction solution bathroom pipe 353 is a pipe for sending liquid from the positive electrode side extraction solution tank 351 to the mist spray device 354 .
  • the positive electrode-side extraction solution bathroom pipe 353 is installed behind the wall and ceiling of the bathroom, and is connected to a mist spraying device 354 installed on the ceiling.
  • the cathode-side extraction solution bathroom pipe 355 is a pipe for sending liquid from the cathode-side extraction solution tank 352 to the drain port 356 .
  • the cathode-side extraction solution bathroom pipe 355 is installed behind the wall and floor of the bathroom and connected to a drain port 356 .
  • the mist spraying device 354 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 354 finely sprays the second positive electrode extraction solution 332a, which is hypochlorous acid water, conveyed from the positive electrode side extraction solution tank 351 through the positive electrode side extraction solution bathroom piping 353. It is a device that emits a fine mist.
  • the mist spraying device 354 is installed so that the spraying part protrudes from the ceiling to the bathroom side so that the mist can be sprayed from the ceiling of the bathroom space to the entire bathroom space.
  • the mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 ⁇ m or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 ⁇ m or less is sprayed.
  • the mist spraying device 354 corresponds to the "sterilization device" in the claims.
  • the drain port 356 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space.
  • a mixture of the first positive electrode extraction solution 314a and the second negative electrode extraction solution 333a is conveyed from the negative electrode side extraction solution tank 352 through the negative electrode side extraction solution bathroom piping 355 to the drain port 356, and the cleaning power is improved.
  • the drain port 356 and the drain pipe connected to the drain port 356 can be cleaned of contamination by the high NaClO and the hypochlorous acid water containing mainly alkaline components.
  • the drain port 356 can be read as a "drain pipe" in the claims.
  • the spatial sterilization system 350 includes the above-described hypochlorous acid water supply device 301 and, as the outside, an electrolysis flow path (second positive electrode side flow path 335 ), and a mist spraying device 354 that discharges hypochlorous acid water mist to a predetermined space using hypochlorous acid water sent from.
  • the hypochlorous acid water mist sent from the electrolysis flow path (second positive electrode side flow path 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b is dispensed into a predetermined space (bathroom space). ), the residual components remaining in the predetermined space are suppressed.
  • hypochlorous acid water sent from the electrolysis channel (second positive electrode side channel 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b contains the residual components generated by the electrolysis of salt water and the water supply. Since it is hypochlorous acid water with reduced residual components due to cationic components contained in water, when sterilizing a predetermined space, the occurrence of metal corrosion caused by residual components is prevented while maintaining sterilization performance. can be suppressed.
  • Spatial sterilization system 350 is provided with a drain port 356 in a predetermined space for discharging water generated in the predetermined space.
  • the tap water solution sent from the tap water electrolysis channel in the hypochlorous acid water treatment unit 303b and the hypochlorous acid water sent from the electrolysis channel (second cathode side channel 336) on the cathode side of the hypochlorous acid water treatment unit 303b ( It is configured to be mixed with the second cathode extraction solution 333a) and introduced. According to this configuration, the hypochlorous acid water (second cathode extraction solution 333a) delivered from the electrolysis flow path (second cathode side flow path 336) on the cathode side of the hypochlorous acid water treatment unit 303b.
  • the acidic tap water solution (first positive electrode extraction solution 314a) delivered from the tap water electrolysis channel (first positive electrode side channel 316) on the positive electrode side of the tap water treatment unit 302.
  • it can be introduced into the drain port 356 as highly cleansing hypochlorous acid water containing an alkaline solution in which cationic components that cause residual components are concentrated. Therefore, the inside of the drain pipe can be washed with the hypochlorous acid water introduced into the drain port 356 .
  • the hypochlorous acid water treatment apparatus is used in the bathroom while sterilizing mold and bacteria in the bathroom space by spraying the generated HClO-based hypochlorous acid water. It is a useful means that makes it possible to suppress corrosion of metals and the like.

Abstract

A hypochlorous acid water treatment device (1) according to the present disclosure comprises: a first flow path (13) along which positive electrode (2) extends and is exposed; a second flow path (14) which is provided in parallel to the first flow path (13) oppositely therefrom, and along which a negative electrode (3) extends and is exposed; a barrier film (4) which is provided so as to separate the first flow path (13) and the second flow path (14), and through which positive ions that are contained in a solution flowing through the flow paths can pass; and a power source (15) which applies a voltage between the positive electrode (2) and the negative electrode (3). The first flow path (13) and the second flow path (14) are configured such that a first solution that flows through the first flow path (13) and a second solution that flows through the second flow path (14) flow in the same direction. At least the first solution is hypochlorous acid water produced by electrolysis of salt water.

Description

次亜塩素酸水処理装置及びこれを用いた空間除菌システムHypochlorous acid water treatment equipment and space sterilization system using the same
 本開示は、次亜塩素酸水処理装置及びこれを用いた空間除菌システムに関するものである。 This disclosure relates to a hypochlorous acid water treatment device and a space sterilization system using the same.
 従来、塩水の電気分解をすることで、NaClOを主成分としHClO及びNaOHを含む次亜塩素酸水が生成される。次亜塩素酸水は弱酸性側にすることで、除菌力が向上することが知られており、イオン透過能を有する隔膜を使用して生成される次亜塩素酸水のpHを弱酸性側に制御する技術が知られている。(例えば、特許文献1参照)。 Conventionally, by electrolyzing salt water, hypochlorous acid water containing NaClO as the main component and containing HClO and NaOH is generated. Hypochlorous acid water is known to improve its sterilization power by making it weakly acidic. Techniques for side control are known. (See Patent Document 1, for example).
特開平8-164392号公報JP-A-8-164392
 しかしながら、pHを弱酸性に調整するだけでは、残留成分となるNaClO及びNaOHの抑制が十分にできているとはいえない。NaClO及びNaOHは、次亜塩素酸水が揮発後も固形分として表面に残留する成分で、この残留成分が潮解及び水に再溶解することで金属の腐食を促進する要因となる。そのため、NaClO及びNaOH成分を多く含む次亜塩素酸水をミスト噴霧すると、微小な残留成分が蓄積されるため、長期間使用時の腐食が懸念されるという課題があった。 However, it cannot be said that NaClO and NaOH, which are residual components, are sufficiently suppressed only by adjusting the pH to be weakly acidic. NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing a large amount of NaClO and NaOH components is mist-sprayed, fine residual components are accumulated, and there is a problem of corrosion during long-term use.
 また、塩水を生成する原水に水道水を使用した場合、水道水に含まれる陰イオンにより、電気分解によって生成される次亜塩素酸水の濃度ばらつき及び特性ばらつきが生じることが懸念される。さらに、水道水に含まれる陽イオンも揮発後に固形分として表面に残留する成分であり、この残留成分もまた金属の腐食を促進する要因となるため、同様に長時間使用時の腐食が懸念されるという課題があった。 In addition, when tap water is used as raw water to generate salt water, there is concern that anions contained in the tap water may cause variations in concentration and characteristics of hypochlorous acid water generated by electrolysis. In addition, cations contained in tap water are components that remain as solids on the surface after volatilization, and these residual components also promote corrosion of metals, so there is also concern about corrosion during long-term use. There was a problem that
 そこで本開示は、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理装置及びこれを用いた空間除菌システムを提供することを目的とする。 Therefore, the purpose of the present disclosure is to provide a hypochlorous acid water treatment device capable of producing hypochlorous acid water with reduced residual components generated by electrolysis of salt water and a space sterilization system using the same. and
 本開示に係る次亜塩素酸水供給装置は、陽電極が流路に沿って露出するように延設した第一流路と、第一流路と対向して並設し、陰電極が流路に沿って露出するように延設した第二流路と、第一流路と第二流路とを隔てて設け、流路を流通する溶液に含まれる陽イオンを透過させる隔膜と、陽電極と陰電極との間に電圧を印加する電源とを備える。そして、第一流路及び第二流路は、第一流路を流通する第一溶液と第二流路を流通する第二溶液とがいずれも同じ方向に流通するように構成し、少なくとも第一溶液は、塩水を電気分解して生成した次亜塩素酸水である構造とする。 The hypochlorous acid water supply device according to the present disclosure includes a first flow channel in which the positive electrode is exposed along the flow channel, and a first flow channel arranged in parallel to face the first flow channel, and a negative electrode in the flow channel. a second flow path extending along and exposed along, a diaphragm separating the first flow path and the second flow path and allowing cations contained in the solution flowing through the flow path to permeate, a positive electrode and a negative electrode. and a power source for applying a voltage between the electrodes. The first flow channel and the second flow channel are configured so that the first solution flowing through the first flow channel and the second solution flowing through the second flow channel both flow in the same direction, and at least the first solution has a structure of hypochlorous acid water generated by electrolyzing salt water.
 また、本開示に係る次亜塩素酸水供給装置は、蛇行状の無隔膜電解流路内に供給される塩水から一対の第一陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成ユニットと、蛇行状の有隔膜電解流路内のそれぞれに次亜塩素酸水生成ユニットから供給される次亜塩素酸水を一対の第二陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理ユニットとを備えてもよい。次亜塩素酸水処理ユニットの陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する構造としてもよい。 In addition, the hypochlorous acid water supply device according to the present disclosure continuously supplies hypochlorous acid water by energizing between the pair of first cathode and cathode electrodes from salt water supplied in the meandering membrane-free electrolytic flow path. The hypochlorous acid water generating unit to be electrolytically generated and the hypochlorous acid water supplied from the hypochlorous acid water generating unit to each of the meandering membrane electrolysis flow paths are supplied between the pair of second negative and positive electrodes. A hypochlorous acid water treatment unit that continuously treats by energization may be provided. A structure may be adopted in which the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
 また、本開示に係る次亜塩素酸水供給装置は、塩水を供給可能に構成された蛇行状の電解流路と、電解流路の前段を構成する無隔膜電解流路内に供給される塩水から一対の陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部と、電解流路の後段を構成する有隔膜電解流路内のそれぞれに次亜塩素酸水生成部から供給される次亜塩素酸水を一対の陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理部と、を備えてもよい。次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する構造としてもよい。 In addition, the hypochlorous acid water supply apparatus according to the present disclosure includes a meandering electrolysis flow path configured to be able to supply salt water, and a diaphragm-free electrolysis flow path forming the front stage of the electrolysis flow path. Hypochlorous acid water generation unit that continuously electrolytically generates hypochlorous acid water by energizing between a pair of negative and positive electrodes, and hypochlorous acid A hypochlorous acid water treatment unit for continuously treating the hypochlorous acid water supplied from the chlorate water generation unit by energizing between the pair of negative and positive electrodes may be provided. A structure may be adopted in which the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
 また、本開示に係る空間除菌システムは、上述の次亜塩素酸水供給装置と、第一流路と連通接続され、第一流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置とを備えるようにしてもよい。 In addition, the spatial sterilization system according to the present disclosure is connected to the above-described hypochlorous acid water supply device and the first flow path, and uses hypochlorous acid water delivered from the first flow path. A sterilization device that emits water mist into a predetermined space may be provided.
 また、本開示に係る次亜塩素酸水供給装置は、蛇行状の第一有隔膜電解流路内に供給される水道水から一対の第一陰陽電極間への通電によって水道水に含まれる陰イオン成分を連続的に分離する水道水処理ユニットと、水道水処理ユニットの陰電極側における水道水電解流路から送出される水道水溶液に塩成分を加えて塩水を生成する塩水生成ユニットと、塩水生成ユニットで生成した塩水を供給可能に構成された蛇行状の電解流路と、電解流路の前段を構成する無隔膜電解流路内に供給される塩水から一対の第二陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部と、電解流路の後段を構成する第二有隔膜電解流路内のそれぞれに次亜塩素酸水生成部から供給される次亜塩素酸水を一対の第二陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理部と、を備えてもよい。次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する構造とする。 Further, in the hypochlorous acid water supply apparatus according to the present disclosure, the negative electrode contained in the tap water is supplied from the tap water supplied into the meandering first diaphragm electrolysis flow path to the pair of first negative and positive electrodes by energizing the tap water. A tap water treatment unit that continuously separates ion components, a salt water generation unit that generates salt water by adding a salt component to the tap water solution sent from the tap water electrolysis channel on the negative electrode side of the tap water treatment unit, and the salt water. A meandering electrolysis flow path configured to be able to supply salt water generated in the generation unit, and a flow path from the salt water supplied in the non-diaphragm electrolysis flow path forming the front stage of the electrolysis flow path to between the pair of second cathode and cathode electrodes. From the hypochlorous acid water generation unit to each of the hypochlorous acid water generation unit that electrolytically generates hypochlorous acid water continuously by energization and the second membrane electrolysis flow path that constitutes the latter stage of the electrolysis flow path. a hypochlorous acid water treatment unit for continuously treating the supplied hypochlorous acid water by energizing between the pair of second cathode and cathode electrodes. The structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
 また、本開示に係る空間除菌システムは、上述の次亜塩素酸水供給装置と、外部として、次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置と、を備えるようにしてもよい。 In addition, the spatial sterilization system according to the present disclosure includes the above-described hypochlorous acid water supply device and, as an external device, hypochlorous acid water sent from the electrolytic flow path on the positive electrode side of the hypochlorous acid water treatment unit. and a sterilization device that emits hypochlorous acid water mist into a predetermined space using.
 本開示によれば、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理装置及びこれを用いた空間除菌システムを提供することができる。 According to the present disclosure, it is possible to provide a hypochlorous acid water treatment apparatus capable of producing hypochlorous acid water with reduced residual components generated by electrolysis of salt water, and a space sterilization system using the same. can.
図1は、本開示の実施の形態1-1に係る次亜塩素酸水処理装置の概略図である。FIG. 1 is a schematic diagram of a hypochlorous acid water treatment apparatus according to Embodiment 1-1 of the present disclosure. 図2は、実施の形態1-1に係る次亜塩素酸水処理装置の分解斜視図である。FIG. 2 is an exploded perspective view of a hypochlorous acid water treatment apparatus according to Embodiment 1-1. 図3は、実施の形態1-1に係る次亜塩素酸水処理装置の垂直方向の断面イメージ図である。FIG. 3 is a vertical cross-sectional image diagram of the hypochlorous acid water treatment apparatus according to Embodiment 1-1. 図4は、実施の形態1-1に係る次亜塩素酸水処理装置の水平方向の断面イメージ図である。FIG. 4 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment apparatus according to Embodiment 1-1. 図5Aは、実施の形態1-1に係る次亜塩素酸水処理装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 5A is a diagram showing the relationship between the characteristics of hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus according to Embodiment 1-1 and the electrodialysis time. 図5Bは、実施の形態1-1に係る次亜塩素酸水処理装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 5B is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus according to Embodiment 1-1 and the electrodialysis time. 図5Cは、実施の形態1-1に係る次亜塩素酸水処理装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 5C is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus according to Embodiment 1-1 and the electrodialysis time. 図6は、本開示の実施の形態1-2に係る、次亜塩素酸水処理装置を用いた空間除菌システムの概略図である。FIG. 6 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water treatment apparatus according to Embodiment 1-2 of the present disclosure. 図7は、本開示の実施の形態2-1に係る次亜塩素酸水供給装置の断面イメージ図である。FIG. 7 is a cross-sectional image diagram of a hypochlorous acid water supply device according to Embodiment 2-1 of the present disclosure. 図8は、実施の形態2-1に係る次亜塩素酸水生成ユニットの概略図である。FIG. 8 is a schematic diagram of a hypochlorous acid water generating unit according to Embodiment 2-1. 図9は、実施の形態2-1に係る次亜塩素酸水生成ユニットの分解斜視図である。FIG. 9 is an exploded perspective view of a hypochlorous acid water generating unit according to Embodiment 2-1. 図10は、実施の形態2-1に係る次亜塩素酸水生成ユニットの垂直方向の断面イメージ図である。FIG. 10 is a vertical cross-sectional image diagram of the hypochlorous acid water generating unit according to Embodiment 2-1. 図11は、実施の形態2-1に係る次亜塩素酸水生成ユニットの水平方向の断面イメージ図である。FIG. 11 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating unit according to Embodiment 2-1. 図12は、実施の形態2-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水処理ユニットの概略図である。FIG. 12 is a schematic diagram of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1. 図13は、実施の形態2-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水処理ユニットの分解斜視図である。13 is an exploded perspective view of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1. FIG. 図14は、実施の形態2-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水処理ユニットの垂直方向の断面イメージ図である。FIG. 14 is a vertical sectional image view of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1. 図15は、実施の形態2-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水処理ユニットの水平方向の断面イメージ図である。FIG. 15 is a horizontal cross-sectional image diagram of a hypochlorous acid water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 2-1. 図16Aは、実施の形態2-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 16A is a diagram showing the relationship between the characteristics of hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 2-1 and the electrodialysis time. 図16Bは、実施の形態2-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 16B is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 2-1 and the electrodialysis time. 図16Cは、実施の形態2-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 16C is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 2-1 and the electrodialysis time. 図17は、本開示の実施の形態2-2に係る、次亜塩素酸水供給装置を用いた空間除菌システムの概略図である。FIG. 17 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water supply device according to Embodiment 2-2 of the present disclosure. 図18は、本開示の実施の形態3-1に係る次亜塩素酸水供給装置の概略図である。FIG. 18 is a schematic diagram of a hypochlorous acid water supply device according to Embodiment 3-1 of the present disclosure. 図19は、実施の形態3-1に係る次亜塩素酸水供給装置の分解斜視図である。FIG. 19 is an exploded perspective view of a hypochlorous acid water supply device according to Embodiment 3-1. 図20は、実施の形態3-1に係る次亜塩素酸水供給装置の垂直方向の断面イメージ図である。FIG. 20 is a vertical cross-sectional image diagram of the hypochlorous acid water supply apparatus according to Embodiment 3-1. 図21は、実施の形態3-1に係る次亜塩素酸水供給装置の次亜塩素酸水生成部の水平方向の断面イメージ図である。FIG. 21 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating unit of the hypochlorous acid water supply apparatus according to Embodiment 3-1. 図22は、実施の形態3-1に係る次亜塩素酸水供給装置の次亜塩素酸水処理部の水平方向の断面イメージ図である。FIG. 22 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment unit of the hypochlorous acid water supply apparatus according to Embodiment 3-1. 図23Aは、実施の形態3-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 23A is a diagram showing the relationship between the characteristics of hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 3-1 and the electrodialysis time. 図23Bは、実施の形態3-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 23B is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 3-1 and the electrodialysis time. 図23Cは、実施の形態3-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。FIG. 23C is a diagram showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 3-1 and the electrodialysis time. 図24は、本開示の実施の形態3-2に係る次亜塩素酸水供給装置の分解斜視図である。FIG. 24 is an exploded perspective view of a hypochlorous acid water supply device according to Embodiment 3-2 of the present disclosure. 図25は、実施の形態3-2に係る次亜塩素酸水供給装置を構成するくし歯電極の製造プロセスを示す斜視図である。FIG. 25 is a perspective view showing the manufacturing process of the interdigitated electrode constituting the hypochlorous acid water supply apparatus according to Embodiment 3-2. 図26は、本開示の実施の形態3-3に係る、次亜塩素酸水供給装置を用いた空間除菌システムの概略図である。FIG. 26 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water supply device according to Embodiment 3-3 of the present disclosure. 図27は、本開示の実施の形態4-1に係る次亜塩素酸水供給装置の断面イメージ図である。FIG. 27 is a cross-sectional image diagram of a hypochlorous acid water supply device according to Embodiment 4-1 of the present disclosure. 図28は、実施の形態4-1に係る次亜塩素酸水供給装置が有する水道水処理ユニットの概略図である。FIG. 28 is a schematic diagram of a tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図29は、実施の形態4-1に係る次亜塩素酸水供給装置が有する水道水処理ユニットの分解斜視図である。29 is an exploded perspective view of a tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. FIG. 図30は、実施の形態4-1に係る次亜塩素酸水供給装置が有する水道水処理ユニットの垂直方向の断面イメージ図である。FIG. 30 is a vertical cross-sectional image diagram of the tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図31は、実施の形態4-1に係る次亜塩素酸水供給装置が有する水道水処理ユニットの水平方向の断面イメージ図である。FIG. 31 is a horizontal cross-sectional image diagram of the tap water treatment unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図32は、実施の形態4-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水生成ユニットの概略図である。FIG. 32 is a schematic diagram of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図33は、実施の形態4-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水生成ユニットの分解斜視図である。33 is an exploded perspective view of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. FIG. 図34は、実施の形態4-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水生成ユニットの垂直方向の断面イメージ図である。FIG. 34 is a vertical cross-sectional image diagram of a hypochlorous acid water generating unit included in the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図35は、実施の形態4-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水生成ユニットの次亜塩素酸水生成部の水平方向の断面イメージ図である。FIG. 35 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating part of the hypochlorous acid water generating unit of the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図36は、実施の形態4-1に係る次亜塩素酸水供給装置が有する次亜塩素酸水生成ユニットの次亜塩素酸水処理部の水平方向の断面イメージ図である。FIG. 36 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment part of the hypochlorous acid water generation unit of the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図37は、実施の形態4-1に係る次亜塩素酸水供給装置を流通する次亜塩素酸水の特性評価を行う実験イメージ図である。FIG. 37 is an experimental image diagram for evaluating characteristics of hypochlorous acid water flowing through the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図38は、実施の形態4-1に係る次亜塩素酸水供給装置を流通した次亜塩素酸水の特性を示す図である。FIG. 38 is a diagram showing characteristics of hypochlorous acid water that flows through the hypochlorous acid water supply apparatus according to Embodiment 4-1. 図39は、本開示の実施の形態4-2に係る、次亜塩素酸水供給装置を用いた空間除菌システムの概略図である。FIG. 39 is a schematic diagram of a spatial sterilization system using a hypochlorous acid water supply device according to Embodiment 4-2 of the present disclosure.
 本開示に係る次亜塩素酸水処理装置は、陽電極が流路に沿って露出して延設された第一流路と、第一流路と第二流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜と、陽電極と陰電極の間に電圧を印加する電源とを備える。そして、第一流路及び第二流路は、第一流路を流通する第一溶液と第二流路を流通する第二溶液とがいずれも同じ方向に流通するように構成され、少なくとも第一溶液は、塩水を電気分解して生成した次亜塩素酸水である構造とする。 The hypochlorous acid water treatment apparatus according to the present disclosure is provided with a first flow path in which the positive electrode is exposed and extended along the flow path, and the first flow path and the second flow path are separated from each other, and the flow path and a power supply for applying a voltage between the positive electrode and the negative electrode. The first flow channel and the second flow channel are configured so that the first solution flowing through the first flow channel and the second solution flowing through the second flow channel both flow in the same direction. has a structure of hypochlorous acid water generated by electrolyzing salt water.
 こうした構成によれば、第一溶液及び第二溶液を、隔膜を挟んで同じ方向に電圧を印加しながら流通させるので、塩水を電気分解して生成した次亜塩素酸水である第一溶液から残留成分の要因となる陽イオンを分離することができる。このため、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理装置を提供することができる。 According to such a configuration, since the first solution and the second solution are circulated while applying a voltage in the same direction across the diaphragm, the first solution, which is hypochlorous acid water generated by electrolyzing salt water, Cations that cause residual components can be separated. Therefore, it is possible to provide a hypochlorous acid water treatment apparatus capable of producing hypochlorous acid water in which residual components generated by electrolysis of salt water are reduced.
 また、本開示に係る次亜塩素酸水処理装置は、平面状の陽電極と、陽電極と対向する平面状の隔膜と、陽電極と隔膜との間に設けられ、流路に沿って第一流路内に陽電極及び隔膜を露出させる第一スペーサ部材とを有し、第一流路は、流路に沿って露出する陽電極及び隔膜と、第一スペーサ部材とにより構成されている。また、平面状の陰電極と、陰電極と対向する平面状の隔膜と、陰電極と隔膜との間に設けられ、流路に沿って第二流路内に陰電極及び隔膜を露出させる第二スペーサ部材とを有し、第二流路は、流路に沿って露出する陰電極及び隔膜と、第二スペーサ部材とにより構成されている。このようにすることで、第一スペーサ部材に形成される流路形状、及び第二スペーサ部材に形成される流路形状により、第一溶液から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、第一溶液から残留成分の要因となる陽イオンを分離する面積及び時間を自由に設計することができる。 Further, the hypochlorous acid water treatment apparatus according to the present disclosure includes a planar positive electrode, a planar diaphragm facing the positive electrode, and a planar diaphragm facing the positive electrode, provided between the positive electrode and the diaphragm. A first spacer member exposing the positive electrode and the diaphragm is provided in one channel, and the first channel is composed of the positive electrode and the diaphragm exposed along the channel, and the first spacer member. A planar cathode, a planar diaphragm facing the cathode, and a second electrode provided between the cathode and the diaphragm exposing the cathode and the diaphragm into the second flow path along the flow path. a second spacer member, wherein the second channel is composed of the cathode and the diaphragm exposed along the channel, and the second spacer member. By doing so, the ability to separate cations that cause residual components from the first solution is enhanced by the channel shape formed in the first spacer member and the channel shape formed in the second spacer member. Since it can be changed, it is possible to freely design the area and time for separating cations that cause residual components from the first solution.
 また、本開示に係る次亜塩素酸水処理装置では、第一流路及び第二流路は、いずれも蛇行状に形成されていることが好ましい。これにより、第一溶液が陽電極及び隔膜に接触する経路、及び第二溶液が陰電極及び隔膜に接触する経路が長くなり、第一溶液から残留成分の要因となる陽イオンを分離する処理の距離及び時間を長くすることができる。つまり、陽電極及び陰電極のサイズに対して、第一溶液から残留成分の要因となる陽イオンを効率的に分離することができる。 Further, in the hypochlorous acid water treatment apparatus according to the present disclosure, both the first channel and the second channel are preferably formed in a meandering shape. As a result, the route through which the first solution contacts the positive electrode and the diaphragm and the route through which the second solution contacts the negative electrode and the diaphragm are lengthened, and the process of separating cations that cause residual components from the first solution becomes difficult. Distance and time can be increased. In other words, cations that cause residual components can be efficiently separated from the first solution with respect to the sizes of the positive electrode and the negative electrode.
 また、本開示に係る次亜塩素酸水処理装置では、第一溶液及び第二溶液は、いずれも塩水を電気分解して生成した次亜塩素酸水であってもよい。これにより、第一流路に流通する第一溶液は、残留成分の要因となる陽イオンが分離希薄化した次亜塩素酸水となり、第二流路に流通する第二溶液は、残留成分の要因となる陽イオンが濃縮化した次亜塩素酸水となる。つまり、第一流路に流通する第一溶液から、残留成分の要因となる陽イオンが分離希薄化した次亜塩素酸水を得るとともに、第二流路に流通する第二溶液から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄力の高い次亜塩素酸水を同時に得ることができる。 In addition, in the hypochlorous acid water treatment apparatus according to the present disclosure, both the first solution and the second solution may be hypochlorous acid water produced by electrolyzing salt water. As a result, the first solution circulating in the first flow channel becomes hypochlorous acid water in which the cations that cause residual components are separated and diluted, and the second solution circulating in the second flow channel becomes a factor of residual components. It becomes hypochlorous acid water in which the positive ions are concentrated. That is, from the first solution circulating in the first flow channel, the cations that cause residual components are separated and diluted hypochlorous acid water is obtained, and from the second solution circulating in the second flow channel, residual components are obtained. At the same time, hypochlorous acid water with high detergency containing an alkaline solution in which cations that are factors are concentrated can be obtained.
 また、本開示に係る次亜塩素酸水処理装置は、第一流路に第一溶液を供給するとともに、第二流路に第二溶液を供給する供給ポンプを備え、供給ポンプは、第一溶液と第二溶液とを一定流速で供給することが好ましい。これにより、第一流路内にて第一溶液に電圧を印加している時間を一定にすることができるとともに、第二流路内にて第二溶液に電圧を印加している時間を一定にすることができる。このため、第一流路における第一溶液での残留成分の要因となる陽イオンが分離希薄化する濃度、第二流路における第二溶液での残留成分の要因となる陽イオンが濃縮化する濃度を安定にすることができる。 In addition, the hypochlorous acid water treatment apparatus according to the present disclosure includes a supply pump that supplies the first solution to the first flow path and the second solution to the second flow path, and the supply pump supplies the first solution and the second solution are preferably supplied at a constant flow rate. As a result, the time during which the voltage is applied to the first solution in the first channel can be kept constant, and the time during which the voltage is applied to the second solution in the second channel can be kept constant. can do. For this reason, the concentration at which the cations that cause residual components in the first solution in the first flow channel are separated and diluted, and the concentration at which the cations that cause residual components in the second solution in the second flow channel concentrate. can be stabilized.
 また、本開示に係る次亜塩素酸水処理装置では、陽電極及び陰電極は、いずれも白金を含む電極材で構成されていることが好ましい。これにより、白金を含む電極材は、塩水を電気分解して次亜塩素酸水を生成することができるので、第一溶液に残っている塩水成分を電気分解して次亜塩素酸水にすることができる。このため、第一溶液に残っている塩水成分を電気分解して、より高濃度な次亜塩素酸水を得ることができる。 Also, in the hypochlorous acid water treatment apparatus according to the present disclosure, both the positive electrode and the negative electrode are preferably made of an electrode material containing platinum. As a result, the electrode material containing platinum can electrolyze salt water to generate hypochlorous acid water, so the salt water component remaining in the first solution is electrolyzed into hypochlorous acid water. be able to. Therefore, the salt water component remaining in the first solution can be electrolyzed to obtain hypochlorous acid water with a higher concentration.
 本開示に係る空間除菌システムは、上述した次亜塩素酸水処理装置と、第一流路と連通接続され、第一溶液を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置とを備える構造とする。こうした構成によれば、第一溶液を用いて次亜塩素酸水ミストを所定の空間に放出しても、所定の空間に残る残留成分が抑制される。つまり、第一溶液が塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 The space sterilization system according to the present disclosure is connected to the above-described hypochlorous acid water treatment device and the first flow path, and uses the first solution to sterilize by releasing hypochlorous acid water mist into a predetermined space. and a device. According to such a configuration, even if the hypochlorous acid water mist is discharged into the predetermined space using the first solution, residual components remaining in the predetermined space are suppressed. In other words, since the first solution is hypochlorous acid water with reduced residual components generated by electrolysis of salt water, when sterilizing a predetermined space, it is possible to prevent metal corrosion caused by residual components while maintaining sterilization performance. can be suppressed.
 また、本開示に係る空間除菌システムは、所定の空間には、所定の空間内で発生する水を排出する排水管が設けており、第二流路は、排水管と連通接続され、第二溶液を排水管に導入可能に構成されている構造とする。このようにすることで、第二流路に流通する第二溶液から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水を排水管に流通させるので、アルカリ性溶液によって排水管の洗浄を行うことができる。 In addition, in the spatial disinfection system according to the present disclosure, a predetermined space is provided with a drain pipe for discharging water generated in the predetermined space, the second flow path is connected to the drain pipe, and the second flow path is connected to the drain pipe. The structure is configured so that the two solutions can be introduced into the drain pipe. By doing so, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is circulated to the drain pipe from the second solution circulating in the second flow path. Therefore, cleaning of drain pipes can be carried out with an alkaline solution.
 (実施の形態1)
 実施の形態1は、少なくとも以下の実施の形態1-1及び実施の形態1-2を包含する。
(Embodiment 1)
Embodiment 1 includes at least Embodiment 1-1 and Embodiment 1-2 below.
 (実施の形態1-1)
 図1~図4を参照して、本開示の実施の形態1-1に係る次亜塩素酸水処理装置1について説明する。図1は、本開示の実施の形態1-1に係る次亜塩素酸水処理装置1の概略図である。図2は、次亜塩素酸水処理装置1の分解斜視図である。図3は、次亜塩素酸水処理装置1の垂直方向の断面イメージ図である。図4は、次亜塩素酸水処理装置1の水平方向の断面イメージ図である。
(Embodiment 1-1)
A hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1 of the present disclosure will be described with reference to FIGS. 1 to 4. FIG. FIG. 1 is a schematic diagram of a hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1 of the present disclosure. FIG. 2 is an exploded perspective view of the hypochlorous acid water treatment apparatus 1. FIG. FIG. 3 is a vertical cross-sectional image diagram of the hypochlorous acid water treatment apparatus 1. As shown in FIG. FIG. 4 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment apparatus 1 .
 次亜塩素酸水処理装置1は、塩水(塩化ナトリウム水溶液)の電気分解によって生成された次亜塩素酸水に含まれる残留成分(Naイオン等の陽イオンを有する成分:例えば、NaClO、NaOH)を、内部を流通する次亜塩素酸水から分離して低減するための装置である。 The hypochlorous acid water treatment apparatus 1 includes residual components (components having cations such as Na + ions) contained in hypochlorous acid water generated by electrolysis of salt water (aqueous sodium chloride solution): for example, NaClO, NaOH ) is a device for separating and reducing hypochlorous acid water flowing inside.
 具体的には、図1~図4に示すように、次亜塩素酸水処理装置1は、陽電極2と、陰電極3と、隔膜4と、陽極側スペーサ5と、陰極側スペーサ6と、陽極側電極用パッキン7a、陰極側電極用パッキン7b、陽極側槽筐体側面8aと、陰極側槽筐体側面8bと、陽極側溶液供給口9と、陽極側溶液抽出口10と、陰極側溶液供給口11と、陰極側溶液抽出口12と、陽極流路13と、陰極流路14と、電気透析電源15と、を備える。 Specifically, as shown in FIGS. 1 to 4, the hypochlorous acid water treatment apparatus 1 includes a positive electrode 2, a negative electrode 3, a diaphragm 4, an anode-side spacer 5, and a cathode-side spacer 6. , anode-side electrode packing 7a, cathode-side electrode packing 7b, anode-side tank housing side surface 8a, cathode-side tank housing side surface 8b, anode-side solution supply port 9, anode-side solution extraction port 10, cathode A side solution supply port 11 , a cathode side solution extraction port 12 , an anode channel 13 , a cathode channel 14 , and an electrodialysis power supply 15 are provided.
 陽電極2は、平面状の電極板である。陽電極2は、陽極側スペーサ5によって陽極流路13の流路に沿って電極板の表面が露出している。陽電極2は、電気透析電源15によって電流が流れると陽極として機能する電極である。陽電極2は、陰電極3と対向して略平行に配置されている。陽電極2は、チタン基材の表面に白金を含む触媒が形成されており、電気分解による次亜塩素酸の発生効率が高い材料を使用する。白金を含む触媒は、少なくとも陽極流路13の流路に沿って露出される陽電極2の面に形成されている。電気透析により陽イオンを移動させて、残留成分となるNaClO及びNaOHを抑制した次亜塩素酸水を生成することが主目的であるが、NaClOから分解してできたNaCl及び塩水が電気分解しきれずに残ったNaClも、白金電極により次亜塩素酸へと変化させることが可能となる。 The positive electrode 2 is a planar electrode plate. The surface of the electrode plate of the anode 2 is exposed along the channel of the anode channel 13 by the anode-side spacer 5 . The positive electrode 2 is an electrode that functions as an anode when current is passed by the electrodialysis power supply 15 . The positive electrode 2 is arranged substantially parallel to and facing the negative electrode 3 . The positive electrode 2 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. A platinum-containing catalyst is formed at least on the surface of the anode 2 exposed along the flow path of the anode flow path 13 . The main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH as residual components, but NaCl and salt water generated by decomposition of NaClO are electrolyzed. NaCl remaining without being dissolved can also be changed to hypochlorous acid by the platinum electrode.
 陰電極3は、平面状の電極板である。陰電極3は、陰極側スペーサ6によって陰極流路14の流路に沿って電極板の表面が露出している。陰電極3は、電気透析電源15によって電流が流れると陰極として機能する電極である。陰電極3は、陽電極2と対向して略平行に配置されている。陰電極3は、陽電極2と同様に表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも陰極流路14の流路に沿って露出される陰電極3の面に形成されている。また、陽極流路13及び陰極流路14に沿って露出させて電気透析を行う領域の陽電極2と陰電極3は同形状とし、対向距離の短い方がイオンの移動をさせやすい。対向距離が短いと流路を流れる流量が少なくなり、生成できる次亜塩素酸水も少なくなるため、必要な次亜塩素酸水生成量を確保したうえで、対向距離を10mm以下程度に短くすることが望ましい。 The cathode 3 is a planar electrode plate. The surface of the electrode plate of the cathode 3 is exposed along the channel of the cathode channel 14 by the cathode-side spacer 6 . Cathode 3 is an electrode that functions as a cathode when current is passed by electrodialysis power supply 15 . The negative electrode 3 is arranged substantially parallel to and facing the positive electrode 2 . The negative electrode 3, like the positive electrode 2, forms a platinum-containing catalyst on its surface. A platinum-containing catalyst is formed at least on the surface of the cathode 3 exposed along the flow path of the cathode flow path 14 . In addition, the positive electrode 2 and the negative electrode 3 in the areas exposed along the anode channel 13 and the cathode channel 14 for electrodialysis have the same shape, and the shorter the opposing distance, the easier it is for ions to move. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
 隔膜4は、平面状の薄膜である。隔膜4は、陽電極2及び陰電極3と対向して略平行に配置されている。隔膜4は、陽極流路13と陰極流路14とを隔てるように設けている。隔膜4は、次亜塩素酸水の残留成分であるNaClO及びNaOHに関係するNaイオンのような陽イオンを移動させることが可能なイオン交換膜(陽イオン交換膜)である。隔膜4は、陽電極2及び陰電極3に電圧を印加することで、陰電極3に陽イオンを移動させることができる。この陽イオン交換膜としては、デュポン社製ナフィオンなどが挙げられる。なお、陰電極3側は、陽イオンを濃縮するため、長時間使用時に水道水等に含まれるスケール成分が析出する可能性がある。スケール蓄積の低減のため、例えば、次亜塩素酸水処理装置1への次亜塩素酸水の通水ごとに、陽電極2と陰電極3の電位を入れ替えて転極し、付着したスケールを溶解させる。転極して使用することを想定する際には、陽電極2及び陰電極3は、同様の白金を含む触媒処理にしておくことが望ましい。 The diaphragm 4 is a planar thin film. The diaphragm 4 is arranged substantially parallel to the positive electrode 2 and the negative electrode 3 . The diaphragm 4 is provided so as to separate the anode channel 13 and the cathode channel 14 . The diaphragm 4 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water. The diaphragm 4 can move cations to the negative electrode 3 by applying a voltage to the positive electrode 2 and the negative electrode 3 . Examples of the cation exchange membrane include Nafion manufactured by DuPont. Since the positive ions are concentrated on the negative electrode 3 side, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use. In order to reduce scale accumulation, for example, each time the hypochlorous acid water is passed through the hypochlorous acid water treatment device 1, the potentials of the positive electrode 2 and the negative electrode 3 are switched to reverse the polarity, and the attached scale is removed. Dissolve. When it is assumed that the electrodes will be used with their polarities reversed, it is desirable that the positive electrode 2 and the negative electrode 3 be similarly treated with a catalyst containing platinum.
 陽極側スペーサ5は、絶縁性の部材である。陽極側スペーサ5は、陽電極2と隔膜4との間の距離を所定の間隔に制御する。陽極側スペーサ5は、陽極側スペーサ5の内部に、後述する陽極流路13を形作る陽極流路孔13aを有している。陽極流路孔13aは、陽極側スペーサ5に形成された陽極流路13を形成する孔のことである。陽極流路孔13aは、陽極側スペーサ5の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。また、陽極側スペーサ5の表面には、陽電極2及び隔膜4との密着性をあげるために、陽極側スペーサ5と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、陽極側スペーサ5は、請求項の「第一スペーサ部材」に相当する。 The anode-side spacer 5 is an insulating member. The anode-side spacer 5 controls the distance between the anode 2 and the diaphragm 4 to a predetermined distance. The anode-side spacer 5 has, inside the anode-side spacer 5, an anode channel hole 13a that forms an anode channel 13, which will be described later. The anode channel hole 13 a is a hole that forms the anode channel 13 formed in the anode spacer 5 . The anode flow path hole 13a is formed through the front and back surfaces of the anode-side spacer 5, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up step by step. A meandering packing member (not shown), which is the same as that of the anode spacer 5, is attached to the surface of the anode spacer 5 in order to improve adhesion between the anode 2 and the diaphragm 4. FIG. The anode-side spacer 5 corresponds to the "first spacer member" in the claims.
 陰極側スペーサ6は、絶縁性の部材である。陰極側スペーサ6は、陰電極3と隔膜4の距離を制御する。陰極側スペーサ6は、陰極側スペーサ6の内部に、後述する陰極流路14を形作る陰極流路孔14aを有している。陰極流路孔14aは、陰極側スペーサ6に形成された陰極流路14を形成する孔のことである。陰極流路孔14aは、陰極側スペーサ6の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。ここで、陰極流路孔14aと陽極流路孔13aとは、互いに対向するように配置されている。また、陰極側スペーサ6の表面には、陰電極3及び隔膜4との密着性をあげるために、陰極側スペーサ6と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、陰極側スペーサ6は、請求項の「第二スペーサ部材」に相当する。 The cathode-side spacer 6 is an insulating member. A cathode-side spacer 6 controls the distance between the cathode 3 and the diaphragm 4 . The cathode-side spacer 6 has, inside the cathode-side spacer 6, a cathode channel hole 14a that forms a cathode channel 14, which will be described later. The cathode channel hole 14 a is a hole that forms the cathode channel 14 formed in the cathode-side spacer 6 . The cathode passage hole 14a is formed through the front and back surfaces of the cathode-side spacer 6, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up step by step. Here, the cathode channel hole 14a and the anode channel hole 13a are arranged so as to face each other. Also, on the surface of the cathode-side spacer 6, a meandering packing member (not shown), which is the same as that of the cathode-side spacer 6, is attached in order to increase the adhesion between the cathode 3 and the diaphragm 4. FIG. The cathode-side spacer 6 corresponds to the "second spacer member" in the claims.
 陽極側電極用パッキン7aは、陽電極2の外周に電極サイズをくりぬいた形状をしており、陽極側スペーサ5と密着して外周方向に、陽極流路13内の溶液(後述する陽極側供給溶液9a)が漏れないように、締め付け圧を加えて取り付けられている。陽極側電極用パッキン7aの部材としては、絶縁性のシリコンゴムを使用することができる。陽極側電極用パッキン7aは、陽電極2より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて陽極側スペーサ5と陽極側槽筐体側面8aとを密着しながら、陽電極2の厚みで保持されることが望ましい。 The anode-side electrode packing 7a has a shape in which the outer circumference of the anode 2 is hollowed out to the size of the electrode. It is mounted with clamping pressure so that the solution 9a) does not leak out. Insulating silicon rubber can be used as the member of the anode-side electrode packing 7a. The anode-side electrode packing 7a is thicker than the positive electrode 2, and is crushed by being pressed by the tightening pressure, and the anode-side electrode 2 is compressed while the anode-side spacer 5 and the anode-side tank housing side surface 8a are in close contact with each other. It is desirable that the thickness of the
 陰極側電極用パッキン7bは、陰電極3の外周に電極サイズをくりぬいた形状をしており、陰極側スペーサ6と密着して外周方向に陰極流路14内の溶液(後述する陰極側供給溶液11a)が漏れないように、締め付け圧を加えて取り付けられている。陰極側電極用パッキン7bの部材としては、絶縁性のシリコンゴムを使用することができる。陰極側電極用パッキン7bは、陰電極3より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて陰極側スペーサ6と陰極側槽筐体側面8bと密着しながら、陰電極3の厚みで保持されることが望ましい。 The cathode-side electrode packing 7b has a shape in which the outer periphery of the cathode 3 is hollowed to the size of the electrode. 11a) is mounted with clamping pressure so that it does not leak. Insulating silicon rubber can be used as the member of the cathode-side electrode packing 7b. The cathode-side electrode packing 7b is thicker than the cathode 3, and is crushed by being pressed by the tightening pressure to adhere to the cathode-side spacer 6 and the cathode-side tank housing side surface 8b. It is desirable to keep it thick.
 陽極側槽筐体側面8aは、陽電極2の外側に直接接触するように配置されている。陽極側槽筐体側面8aは、陽電極2の外側への溶液の染み込みを抑制するために、陽極側槽筐体側面8aの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。陽電極2の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気透析の効率向上にもつながる。 The side surface 8a of the anode-side tank housing is arranged so as to be in direct contact with the outside of the anode 2. In order to prevent the solution from permeating to the outside of the positive electrode 2, the anode-side tank housing side surface 8a has a packing (not shown) for increasing the adhesion on the inner surface of the anode-side tank housing side surface 8a. It is desirable to apply clamping pressure to prevent the solution from flowing out of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the positive electrode 2, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 陰極側槽筐体側面8bは、陰電極3の外側に直接接触するように配置されている。陰極側槽筐体側面8bは、陰電極3の外側への溶液の染み込みを抑制するために、陰極側槽筐体側面8bの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。陰電極3の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電極透析の効率向上にもつながる。 The side surface 8b of the cathode-side tank housing is arranged so as to be in direct contact with the outside of the cathode 3. A packing (not shown) is provided on the inner surface of the cathode-side tank housing side surface 8b to increase adhesion in order to prevent the solution from permeating to the outside of the cathode 3. It is desirable to apply clamping pressure to prevent the solution from flowing out of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the negative electrode 3, the efficiency of electrode dialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 陽極側溶液供給口9は、電気透析する陽極側供給溶液9aを流路内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陽電極2の外側から陽極側供給溶液9aを供給するため、陽極側溶液供給口9は、陽電極2より外周の位置に加工されている。 The anode-side solution supply port 9 is a connection port for flowing the anode-side supply solution 9a to be electrodialyzed into the channel, and is equipped with a connector (not shown) for connecting a tube. In order to supply the anode-side supply solution 9 a from the outside of the positive electrode 2 , the anode-side solution supply port 9 is processed at a position outside the positive electrode 2 .
 陽極側供給溶液9aは、塩水から電気分解した次亜塩素酸水である。陽極側供給溶液9aは、陽極側溶液供給口9から陽極流路13に導入される。陽極側供給溶液9aは、請求項の「第一溶液」に相当する。 The anode-side supply solution 9a is hypochlorous acid water electrolyzed from salt water. The anode-side supply solution 9 a is introduced into the anode channel 13 from the anode-side solution supply port 9 . The anode-side supply solution 9a corresponds to the "first solution" in the claims.
 より詳細には、陽極側供給溶液9aには、塩水を電気分解することで、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。塩水の電気分解が進むにつれて、NaClの濃度は減少し、NaClO、HClO、及びNaOHの濃度が上昇する。HClOとNaOHの反応によりNaClOとなることから、塩水の電気分解が十分にされるとNaClOが主成分の次亜塩素酸水が生成され、pHはアルカリ性を示す。陽イオンであるNaイオンを含む成分は、揮発後に残留成分となるものであり、塩水の電気分解によって生じる残留成分としては、NaClO、NaOH、及びNaClがあてはまる。 More specifically, the anode-side supply solution 9a contains NaClO and HClO, which are components of hypochlorous acid water, generated by electrolyzing salt water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. As the electrolysis of brine proceeds, the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase. Since HClO and NaOH react to form NaClO, hypochlorous acid water containing NaClO as a main component is produced when salt water is sufficiently electrolyzed, and the pH indicates alkaline. Components containing Na + ions, which are cations, become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
 陽極側溶液抽出口10は、電気透析した陽極側抽出溶液10aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陽電極2の外側に陽極側抽出溶液10aを抽出するため、陽極側溶液抽出口10は、陽電極2より外周の位置に加工されている。 The anode-side solution extraction port 10 is a connection port for taking out the electrodialyzed anode-side extraction solution 10a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the anode-side extraction solution 10 a outside the positive electrode 2 , the anode-side solution extraction port 10 is processed at a position on the outer periphery of the positive electrode 2 .
 陽極側抽出溶液10aは、HClOが主成分の次亜塩素酸水である。陽極側抽出溶液10aは、陽極流路13から陽極側溶液抽出口10に導入される。陽極側抽出溶液10aもまた請求項の「第一溶液」に相当する。 The anode-side extraction solution 10a is hypochlorous acid water containing HClO as its main component. The anode-side extraction solution 10 a is introduced from the anode flow path 13 into the anode-side solution extraction port 10 . The anode-side extraction solution 10a also corresponds to the "first solution" in the claims.
 より詳細には、陽極側抽出溶液10aは、陽極側供給溶液9aを陽極流路13に流通させて、陽極側供給溶液9aから残留成分の要因となる陽イオンを分離希薄化した溶液である。陽極側供給溶液9aに、塩水を電気分解して生成した次亜塩素酸水を使用した場合、陽極側抽出溶液10aには、陽イオンであるNaイオンが分離希薄化され、HClOの成分が主成分の次亜塩素酸水となる。pHは酸性を示す。 More specifically, the anode-side extraction solution 10a is a solution obtained by circulating the anode-side supply solution 9a through the anode flow path 13 to separate and dilute cations, which are factors of residual components, from the anode-side supply solution 9a. When hypochlorous acid water produced by electrolyzing salt water is used as the anode-side supply solution 9a, the anode-side extraction solution 10a has Na + ions, which are cations, separated and diluted, and the HClO component is removed. It becomes the hypochlorous acid water of the main component. pH indicates acidity.
 陰極側溶液供給口11は、電気透析する陰極側供給溶液11aを流路内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陰電極3の外側から陰極側供給溶液11aを供給するため、陰極側溶液供給口11は陰電極3より外周の位置に加工されている。 The cathode-side solution supply port 11 is a connection port for flowing the cathode-side supply solution 11a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the cathode-side supply solution 11 a from the outside of the cathode 3 , the cathode-side solution supply port 11 is processed at a position outside the cathode 3 .
 陰極側供給溶液11aは、塩水から電気分解した次亜塩素酸水、純水、又は水道水である。陰極側供給溶液11aは、陰極側溶液供給口11から陰極流路14に導入される。陰極側供給溶液11aは、請求項の「第二溶液」に相当する。 The cathode-side supply solution 11a is hypochlorous acid water electrolyzed from salt water, pure water, or tap water. The cathode-side supply solution 11 a is introduced from the cathode-side solution supply port 11 into the cathode channel 14 . The cathode-side supply solution 11a corresponds to the "second solution" in the claims.
 より詳細には、陰極側供給溶液11aとして塩水から電気分解した次亜塩素酸水を用いる場合、陰極側供給溶液11aには、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。塩水の電気分解が進むにつれて、NaClの濃度は減少し、NaClO、HClO、及びNaOHの濃度が上昇する。HClOとNaOHの反応によりNaClOとなることから、塩水の電気分解が十分にされるとNaClOが主成分の次亜塩素酸水が生成され、pHはアルカリ性を示す。陰極側供給溶液11aとして純水を使用した場合は、イオン成分の含まれない溶液となり、pHは中性を示す。陰極側供給溶液11aとして水道水を使用した場合には、使用地域の水道水中のイオン成分を含む溶液となる。 More specifically, when hypochlorous acid water electrolyzed from salt water is used as the cathode-side supply solution 11a, the cathode-side supply solution 11a contains NaClO and HClO, which are components of the hypochlorous acid water. be Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. As the electrolysis of brine proceeds, the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase. Since HClO and NaOH react to form NaClO, hypochlorous acid water containing NaClO as a main component is produced when salt water is sufficiently electrolyzed, and the pH indicates alkaline. When pure water is used as the cathode-side supply solution 11a, the solution does not contain ionic components and exhibits a neutral pH. When tap water is used as the cathode-side supply solution 11a, it becomes a solution containing ionic components in tap water in the region of use.
 陰極側供給溶液11aにイオン成分を含まない純水を使用すると、陽電極2と陰電極3の間に電流が流れなくなるため、一定の電流を流すために高い電圧の印加が必要となる。陰極側供給溶液11aに塩水を電気分解して生成した次亜塩素酸水を使用した場合は、溶液内にイオンが含まれるため、一定の電流を流すための電圧の印加を低減することができる。陰極側供給溶液11aとして水道水を使用した場合には、イオンを含むため、一定の電流を流すための電圧の印加を低減することができるが、地域によってイオン含有量が異なるため、地域個別での条件設定が必要となる。 If pure water containing no ionic components is used as the cathode-side supply solution 11a, no current will flow between the positive electrode 2 and the negative electrode 3, so a high voltage must be applied in order to pass a constant current. When hypochlorous acid water produced by electrolyzing salt water is used as the cathode-side supply solution 11a, since ions are contained in the solution, it is possible to reduce the application of voltage for causing a constant current to flow. . When tap water is used as the cathode-side supply solution 11a, since it contains ions, it is possible to reduce the application of voltage for causing a constant current to flow. condition setting is required.
 陰極側溶液抽出口12は、電気透析した陰極側抽出溶液12aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陰電極3の外側に陰極側抽出溶液12aを抽出するため、陰極側溶液抽出口12は、陰電極3より外周の位置に加工されている。 The cathode-side solution extraction port 12 is a connection port for extracting the electrodialyzed cathode-side extraction solution 12a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the cathode-side extraction solution 12 a outside the cathode 3 , the cathode-side solution extraction port 12 is processed at a position outside the cathode 3 .
 陰極側抽出溶液12aは、陰極側供給溶液11aが塩水から電気分解した次亜塩素酸水の場合はNaClO及びNaOHが主成分の次亜塩素酸水であり、陰極側供給溶液11aが純水又は水道水の場合はNaOHが主成分のアルカリ性の溶液である。陰極側抽出溶液12aは、陰極流路14から陰極側溶液抽出口12に導入される。陰極側抽出溶液12aもまた請求項の「第二溶液」に相当する。 When the cathode-side supply solution 11a is hypochlorous acid water electrolyzed from salt water, the cathode-side extraction solution 12a is hypochlorous acid water containing NaClO and NaOH as main components, and the cathode-side supply solution 11a is pure water or Tap water is an alkaline solution with NaOH as the main component. The cathode-side extraction solution 12 a is introduced from the cathode flow path 14 into the cathode-side solution extraction port 12 . The cathode side extraction solution 12a also corresponds to the "second solution" in the claims.
 より詳細には、陰極側抽出溶液12aは、残留成分の要因となる陽イオンが濃縮化された溶液である。陰極側供給溶液11aとして、塩水を電気分解して生成した次亜塩素酸水を使用した場合には、陰極側抽出溶液12aには、陽イオンであるNaイオンが分離濃縮化され、NaOHとして生成されることで、NaOHとNaClOが主成分の次亜塩素酸水となる。pHはアルカリ性を示す。陰極側供給溶液11aとして純水または水道水を使用した場合には、陰極側抽出溶液12aには、陽イオンであるNaイオンが分離濃縮化され、NaOHが主成分である、pHがアルカリ性の溶液となる。 More specifically, the cathode-side extraction solution 12a is a solution in which cations that cause residual components are concentrated. When hypochlorous acid water produced by electrolyzing salt water is used as the cathode-side supply solution 11a, the cathode-side extraction solution 12a has Na + ions, which are cations, separated and concentrated as NaOH. By being generated, NaOH and NaClO become hypochlorous acid water as main components. pH indicates alkaline. When pure water or tap water is used as the cathode-side supply solution 11a, the cathode-side extraction solution 12a contains Na + ions, which are cations, separated and concentrated, and contains NaOH as a main component and has an alkaline pH. It becomes a solution.
 陽極側溶液供給口9及び陰極側溶液供給口11は、鉛直方向の下方側に配置されることが望ましく、陽極側溶液抽出口10及び陰極側溶液抽出口12は、鉛直方向の上方側に配置されることが望ましい。流路内の電気透析反応及び電気分解反応により、酸素ガス及び水素ガス等が発生する際に、抽出口が上方に配置されてある方がガスをより効率的に溶液とともに排出することができる。 The anode-side solution supply port 9 and the cathode-side solution supply port 11 are desirably arranged on the lower side in the vertical direction, and the anode-side solution extraction port 10 and the cathode-side solution extraction port 12 are arranged on the upper side in the vertical direction. It is desirable that When oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
 陽極流路13は、陽電極2と陽極側スペーサ5と隔膜4とによって囲まれた領域で形成される流路である。陽極流路13は、陽極側スペーサ5の陽極流路孔13aによって蛇行して構成されている。より詳細には、陽極流路13は、水平方向に往復し下から上に陽極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに陽極流路13の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。陽極流路13において液の逆流を低減するため、陽極流路13が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。陽極流路13は、その一方に陽極側溶液供給口9が設けられ、他方に陽極側溶液抽出口10が設けられており、内部に陽極側溶液である陽極側供給溶液9aが流通している。なお、陽極流路13は、請求項の「第一流路」に相当する。 The anode channel 13 is a channel formed by a region surrounded by the positive electrode 2 , the anode-side spacer 5 and the diaphragm 4 . The anode channel 13 is formed in a meandering manner by the anode channel hole 13 a of the anode-side spacer 5 . More specifically, the anode flow path 13 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top. Furthermore, by reducing the channel width of the anode channel 13, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce the backflow of the liquid in the anode channel 13, it is desirable to have a structure in which the anode channel 13 is unidirectionally directed from bottom to top except for reciprocation in the horizontal direction. The anode flow path 13 is provided with the anode-side solution supply port 9 on one side and the anode-side solution extraction port 10 on the other side, and the anode-side supply solution 9a, which is the anode-side solution, flows inside. . The anode channel 13 corresponds to the "first channel" in the claims.
 陰極流路14は、陰電極3と陰極側スペーサ6と隔膜4によって囲まれた領域で形成される流路である。陰極流路14は、陰極側スペーサ6の陰極流路孔14aによって蛇行して構成されている。より詳細には、陰極流路14は、水平方向に往復し下から上に陰極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに陰極流路14の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。陰極流路14において液の逆流を低減するため、陰極流路14が水平方向に往復する以外は一方向に下から上に流れる構造とすることが望ましい。陰極流路14は、その一方に陰極側溶液供給口11が設けられ、他方に陰極側溶液抽出口12が設けられており、内部に陰極側溶液である陰極側供給溶液11aが流通している。なお、陰極流路14は、請求項の「第二流路」に相当する。 The cathode channel 14 is a channel formed by a region surrounded by the cathode 3 , the cathode-side spacer 6 and the diaphragm 4 . The cathode channel 14 is formed in a meandering manner by the cathode channel holes 14 a of the cathode-side spacer 6 . More specifically, the cathode flow path 14 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top. Further, by reducing the channel width of the cathode channel 14, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the cathode channel 14, it is desirable to have a structure in which the cathode channel 14 flows in one direction, from bottom to top, except for reciprocation in the horizontal direction. The cathode flow path 14 is provided with the cathode side solution supply port 11 on one side and the cathode side solution extraction port 12 on the other side, and the cathode side supply solution 11a, which is the cathode side solution, flows inside. . The cathode channel 14 corresponds to the "second channel" in the claims.
 陽極流路13及び陰極流路14は、隔膜4を挟んで対称な形状で対向している。つまり、陽極流路13及び陰極流路14は、隔膜4を挟んで互いに対向する蛇行形状で構成されている。そして、陽極流路13内を流通する次亜塩素酸水に含まれるNaイオンが陰極流路14側に移動する。イオンの移動量は、印加される電圧電流及び流路内の流速によって制御される。流速は、陽極側溶液供給口9及び陰極側溶液供給口11の前段、または陽極側溶液抽出口10及び陰極側溶液抽出口12の後段のどちらか片方にポンプ(図示せず)を設置して制御することができる。ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。一定流量で溶液を流すことで、流路内で電気透析および電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The anode channel 13 and the cathode channel 14 are symmetrically opposed to each other with the diaphragm 4 interposed therebetween. That is, the anode flow channel 13 and the cathode flow channel 14 are formed in meandering shapes facing each other with the diaphragm 4 interposed therebetween. Then, the Na + ions contained in the hypochlorous acid water flowing through the anode channel 13 move to the cathode channel 14 side. The amount of ion movement is controlled by the applied voltage and current and the flow velocity in the channel. The flow rate was adjusted by installing a pump (not shown) either before the anode-side solution supply port 9 and the cathode-side solution supply port 11 or after the anode-side solution extraction port 10 and the cathode-side solution extraction port 12. can be controlled. The pump is desirably a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, it is possible to control the electrodialysis and electrolysis time in the flow path constant, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 電気透析電源15は、陽電極2及び陰電極3と接続され、陽電極2及び陰電極3に電流及び電流を印加することができる直流電源である。電気透析電源15は、一定の電流となるように定電流制御の電源として使用してもよいし、一定の電圧となるように定電圧制御の電源として使用してもよい。なお、電気透析電源15は、スケール蓄積の低減のため、例えば、次亜塩素酸水処理装置1への次亜塩素酸水の通水ごとに、陽電極2と陰電極3の電位を入れ替えて転極し、付着したスケールを溶解させるように制御してもよい。 The electrodialysis power supply 15 is a DC power supply that is connected to the positive electrode 2 and the negative electrode 3 and that can apply current to the positive electrode 2 and the negative electrode 3 . The electrodialysis power supply 15 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage. In order to reduce scale accumulation, the electrodialysis power supply 15 switches the potentials of the positive electrode 2 and the negative electrode 3 each time the hypochlorous acid water is passed through the hypochlorous acid water treatment device 1, for example. It may be controlled to reverse polarity and dissolve adhering scale.
 以上のように、次亜塩素酸水処理装置1は、各部材によって構成される。 As described above, the hypochlorous acid water treatment apparatus 1 is composed of each member.
 次に、図3及び図4を参照して、次亜塩素酸水処理装置1での処理動作について説明する。 Next, referring to FIGS. 3 and 4, the processing operation of the hypochlorous acid water treatment apparatus 1 will be described.
 図3及び図4に示すように、次亜塩素酸水処理装置1では、陽極側溶液供給口9を通って陽極側供給溶液9aが陽極流路13に供給され、陰極側溶液供給口11を通って陰極側供給溶液11aが陰極流路14に供給される。そして、陽極側溶液供給口9から供給された陽極側供給溶液9aは、蛇行して形成された陽極流路13を流通していき、陰極側溶液供給口11から供給された陰極側供給溶液11aは、同じく蛇行して形成された陰極流路14を流通していく。この際、陽極側供給溶液9a及び陰極側供給溶液11aは、隔膜4を挟んで対向し、同じ方向に流通されて陽極流路13及び陰極流路14をそれぞれ流通していくと同時に、両端の陽電極2及び陰電極3に電圧が印加される。電圧が印加されると、陽電極2側には陰イオン、陰電極3側には陽イオン(Naイオン)が引き付けられる。隔膜4は、陽イオンのみを透過可能な膜で構成されているため、陽極流路13を流通する陽極側供給溶液9aに含まれる陽イオン(Naイオン)は、隔膜4を透過して、陰極流路14の陰極側供給溶液11aを通って陰電極3側に引き付けられる。反対に、陰極流路14を流通する陰イオンは、隔膜4を透過できないため、陽極流路13に含まれる陰イオンのみが陽電極2に引き付けられる。これを繰り返すことにより、陽極流路13を流通する陽極側供給溶液9aに含まれる陽イオン(Naイオン)が、陰極流路14を流通する陰極側供給溶液11aに移動して電気透析が進行し、陽極流路13を流通する陽極側供給溶液9aは、陽イオン(Naイオン)が分離希薄化され、陰極流路14を流通する陰極側供給溶液11aは、陽イオン(Naイオン)が濃縮化されて抽出される。その結果、陽極側溶液抽出口10から、陽極側抽出溶液10aとして、残留成分となるNaClO及びNaOHが分離希薄化してHClO成分が主成分となった次亜塩素酸水が抽出される。反対に、陰極側溶液抽出口12から、陰極側抽出溶液12aとして、残留成分を構成するNaイオンが濃縮化され、NaOHとして生成された成分を含む溶液(次亜塩素酸水または水)が抽出される。 As shown in FIGS. 3 and 4, in the hypochlorous acid water treatment apparatus 1, the anode-side supply solution 9a is supplied to the anode channel 13 through the anode-side solution supply port 9, and the cathode-side solution supply port 11 is supplied. The cathode side supply solution 11a is supplied to the cathode channel 14 through the channel. Then, the anode-side supply solution 9a supplied from the anode-side solution supply port 9 flows through the meandering anode flow path 13, and the cathode-side supply solution 11a supplied from the cathode-side solution supply port 11 flows. flows through the cathode flow path 14 which is also meandering. At this time, the anode-side supply solution 9a and the cathode-side supply solution 11a face each other with the diaphragm 4 interposed therebetween and flow in the same direction to flow through the anode channel 13 and the cathode channel 14, respectively. A voltage is applied to the positive electrode 2 and the negative electrode 3 . When a voltage is applied, negative ions are attracted to the positive electrode 2 side and positive ions (Na + ions) to the negative electrode 3 side. Since the diaphragm 4 is composed of a membrane that is permeable only to cations, the cations (Na + ions) contained in the anode-side supply solution 9a flowing through the anode channel 13 permeate the diaphragm 4, It is drawn to the cathode 3 side through the cathode side supply solution 11 a of the cathode flow path 14 . On the contrary, since the anions flowing through the cathode channel 14 cannot pass through the diaphragm 4, only the anions contained in the anode channel 13 are attracted to the positive electrode 2. FIG. By repeating this, cations (Na + ions) contained in the anode-side supply solution 9a flowing through the anode flow channel 13 move to the cathode-side supply solution 11a flowing through the cathode flow channel 14, and electrodialysis proceeds. The anode-side supply solution 9a flowing through the anode channel 13 has cations (Na + ions) separated and diluted, and the cathode-side supply solution 11a flowing through the cathode channel 14 contains cations (Na + ions). is concentrated and extracted. As a result, hypochlorous acid water in which the residual components NaClO and NaOH are separated and diluted and the HClO component is the main component is extracted from the anode-side solution extraction port 10 as the anode-side extraction solution 10a. Conversely, from the cathode side solution extraction port 12, a solution (hypochlorous acid water or water) containing a component in which the Na + ions constituting the residual components are concentrated and generated as NaOH is discharged as the cathode side extraction solution 12a. extracted.
 次亜塩素酸水処理装置1での処理動作では、陽極流路13及び陰極流路14にて電気透析を行う時間を長くすることで、陽イオン(Naイオン)の移動量をより多くして、陽極側抽出溶液10aのNaClO及びNaOHからなる残留成分をより低減することができる。電気透析を行う時間を長くするためには、陽極流路13及び陰極流路14の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに陽極流路13及び陰極流路14の断面積を小さくすることで距離が長くなり、電気透析時間を長くすることができる。 In the treatment operation of the hypochlorous acid water treatment apparatus 1, the amount of movement of cations (Na + ions) is increased by lengthening the electrodialysis time in the anode channel 13 and the cathode channel 14. Thus, the residual components of NaClO and NaOH in the anode-side extraction solution 10a can be further reduced. In order to lengthen the electrodialysis time, it is necessary to lengthen the distance between the anode flow path 13 and the cathode flow path 14. For this purpose, it is necessary to move upward step by step while reciprocating in the horizontal direction. , is formed in a meandering manner, and the distance for electrodialysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional areas of the anode channel 13 and the cathode channel 14, the distance becomes longer, and the electrodialysis time can be lengthened.
 陽極流路13及び陰極流路を通る各溶液の流速は、同じであっても異なっていてもよい。流速が異なる場合には、抽出される各溶液の濃度に影響する。例えば、陽極流路13の流速を相対的に速くして、陰極流路14の流速を相対的に遅くした場合には、陽極流路13及び陰極流路14の流速を同じにした場合に比べて、陰極流路14から抽出した陰極側抽出溶液12aは少量かつ濃度が濃い溶液となる。これにより、陰極側抽出溶液12aを排液する場合には、陰極流路14の流速を遅くすることが望ましい。 The flow rate of each solution passing through the anode channel 13 and the cathode channel may be the same or different. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity of the anode flow channel 13 is relatively fast and the flow velocity of the cathode flow channel 14 is relatively low, compared to the case where the flow speeds of the anode flow channel 13 and the cathode flow channel 14 are the same, As a result, the cathode-side extraction solution 12a extracted from the cathode flow path 14 becomes a solution with a small amount and high concentration. Therefore, when the cathode-side extraction solution 12a is drained, it is desirable to slow down the flow velocity of the cathode flow path 14 .
 次に、図5A~図5Cを参照して、実際に次亜塩素酸水処理装置1を流通して陽極側溶液抽出口10及び陰極側溶液抽出口12から抽出した陽極側抽出溶液10a及び陰極側抽出溶液12aの次亜塩素酸水の特性(導電率、pH、及び有効塩素濃度)について説明する。図5A~図5Cは、次亜塩素酸水処理装置1を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。より詳細には、図5Aは、次亜塩素酸水処理装置1による電気透析時間と導電率の関係を示す図である。図5Bは、次亜塩素酸水処理装置1による電気透析時間とpHの関係を示す図である。図5Cは、次亜塩素酸水処理装置1による電気透析時間と有効塩素濃度の関係を示す図である。 Next, referring to FIGS. 5A to 5C, an anode-side extraction solution 10a and a cathode which are actually circulated through the hypochlorous acid water treatment apparatus 1 and extracted from the anode-side solution extraction port 10 and the cathode-side solution extraction port 12 The characteristics (conductivity, pH, and effective chlorine concentration) of the hypochlorous acid water of the side extraction solution 12a will be described. 5A to 5C are diagrams showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water treatment apparatus 1 and the electrodialysis time. More specifically, FIG. 5A is a diagram showing the relationship between electrodialysis time and electrical conductivity by the hypochlorous acid water treatment apparatus 1. FIG. FIG. 5B is a diagram showing the relationship between electrodialysis time and pH by the hypochlorous acid water treatment apparatus 1. FIG. FIG. 5C is a diagram showing the relationship between electrodialysis time and effective chlorine concentration by the hypochlorous acid water treatment apparatus 1. FIG.
 なお、図5A~図5Cでの実験評価では、次亜塩素酸水処理装置1に、流路断面積8mm、流路長675mmの陽極流路13及び陰極流路14を形成したものを用いた。また、陽極流路13及び陰極流路14には、ともに51mL/h、153mL/h、250mL/h、及び360mL/hの4条件の流速で各溶液(いずれも次亜塩素酸水)を流通させて電気透析時間を調整し、陽極側抽出溶液10a及び陰極側抽出溶液12aの導電率、pH、及び有効塩素濃度の測定を行った。 In the experimental evaluations in FIGS. 5A to 5C, the hypochlorous acid water treatment apparatus 1 was formed with the anode channel 13 and the cathode channel 14 having a channel cross-sectional area of 8 mm 2 and a channel length of 675 mm. board. In addition, each solution (both hypochlorous acid water) is passed through the anode channel 13 and the cathode channel 14 at four flow rates of 51 mL/h, 153 mL/h, 250 mL/h, and 360 mL/h. The electrodialysis time was adjusted, and the electrical conductivity, pH, and available chlorine concentration of the anode-side extraction solution 10a and the cathode-side extraction solution 12a were measured.
 また、陽極側溶液供給口9及び陰極側溶液供給口11に供給した陽極側供給溶液9a及び陰極側供給溶液11aの次亜塩素酸水(塩水から電気分解した次亜塩素酸水)は、いずれも導電率:264μS/cm、pH:8.5、有効塩素濃度:142ppm、及び塩化物イオン濃度:10ppm以下となるものを使用した。また、電気透析電源15には、0.2Aの定電流を印加可能な電源を使用して電気透析及び電気分解を行った。ここで、電気透析時間とは、溶液が陽電極2および陰電極3に流路内で直接触れている時間を指しており、電気透析時間が長いほど、流速は遅いことになる。今回、陽極側および陰極側の流速は同一に設定して電気透析及び電気分解を行っている。 In addition, the hypochlorous acid water (hypochlorous acid water electrolyzed from salt water) of the anode side supply solution 9a and the cathode side supply solution 11a supplied to the anode side solution supply port 9 and the cathode side solution supply port 11 Conductivity: 264 μS/cm, pH: 8.5, effective chlorine concentration: 142 ppm, and chloride ion concentration: 10 ppm or less were used. In addition, electrodialysis and electrolysis were performed using a power supply capable of applying a constant current of 0.2 A as the electrodialysis power supply 15 . Here, the electrodialysis time refers to the time during which the solution is in direct contact with the positive electrode 2 and the negative electrode 3 in the channel, and the longer the electrodialysis time, the slower the flow rate. This time, electrodialysis and electrolysis are performed by setting the flow rate on the anode side and the cathode side to be the same.
 図5Aに示す導電率の推移を見ると、電気透析時間が長いほど、言い換えると流速が遅くなるほど、陽極側溶液抽出口10から抽出した陽極側抽出溶液10aの導電率(陽極側の導電率)が低下し、陰極側溶液抽出口12から抽出した陰極側抽出溶液12aの導電率(陰極側の導電率)は増加している。これは、陽極流路13を流通する陽極側溶液に含まれる陽イオンであるNaイオンが隔膜4を通って陰極側に移動し、陽極側はNaClOからHClOに変化して導電率が低下したと考えられる。NaClOは、NaイオンとClOイオンに電離するが、HClOは分子として存在することが主であるため、NaClOからHClOに変化することで導電率は低下する。 Looking at the transition of the conductivity shown in FIG. 5A, the longer the electrodialysis time, in other words, the slower the flow rate, the more the conductivity of the anode-side extraction solution 10a extracted from the anode-side solution extraction port 10 (the anode-side conductivity). decreases, and the conductivity of the cathode-side extraction solution 12a extracted from the cathode-side solution extraction port 12 (cathode-side conductivity) increases. This is because Na + ions, which are cations contained in the anode-side solution flowing through the anode flow path 13, move through the diaphragm 4 to the cathode side, and the anode side changes from NaClO to HClO, resulting in a decrease in conductivity. it is conceivable that. NaClO ionizes into Na + ions and ClO 2 ions, but since HClO mainly exists as a molecule, the conductivity decreases when NaClO changes to HClO.
 図5Bに示すpHの推移を見ると、陽極側抽出溶液10aのpH(陽極側のpH)は弱酸性側に変化し、陰極側抽出溶液12aのpH(陰極側のpH)はよりアルカリ性側に変化している。このことから、陽極側でのNaClOからHClOへの変化の影響がうかがえる。陽極側において電気透析時間を長くするほどpHが中性に近づいているのは、溶液中にわずかに残っている塩化物イオンが電気分解によって次亜塩素酸に変化しているためと考えられる。一方、陰極側は、Naイオンが移動することでNaOHが形成されて、よりアルカリ性へと変化するためである。 Looking at the change in pH shown in FIG. 5B, the pH of the anode-side extraction solution 10a (the pH on the anode side) changes to the slightly acidic side, and the pH of the cathode-side extraction solution 12a (the pH on the cathode side) changes to the more alkaline side. is changing. This indicates the effect of the change from NaClO to HClO on the anode side. The reason that the longer the electrodialysis time on the anode side is, the closer the pH is to neutrality is thought to be due to electrolysis of the chloride ions remaining in the solution into hypochlorous acid. On the other hand, on the cathode side, NaOH is formed by movement of Na + ions, and the cathode side becomes more alkaline.
 図5Cに示す有効塩素濃度の推移を見ると、陽極側抽出溶液10aの有効塩素濃度(陽極側の有効塩素濃度)は、NaClOからHClOへの変化であるため大きな変化はなく、溶液中にわずかに残っている塩化物イオンが電気分解によって次亜塩素酸に変化することによる有効塩素濃度の増加がみられる。陰極側抽出溶液12aの有効塩素濃度(陰極側の有効塩素濃度)は、電気透析時間が長くなると、NaClOの分解が生じて有効塩素濃度の減少につながっていると考えられる。そのため、電気透析時間を、図5Aに示す陽極側の導電率が十分低下した条件で、かつ、図5Cに示す陰極側の有効塩素濃度が低下しきらない条件を両立させることで、陽極側からは除菌力の高いHClO主体の次亜塩素酸水を、陰極側からは洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水を同時に抽出することができる。HClO主体の次亜塩素酸水は、残留成分の抑制された溶液で、除菌力を維持しながら、空間噴霧時でも残留成分起因による金属腐食を抑制することが可能になる。一方、NaClO及びNaOH主体の次亜塩素酸水は、残留成分が残る溶液のため空間噴霧はできないが、洗浄力の高い溶液であり排水口等の酸性の汚れがある部位に流すことで洗浄効果をもたらすことができる。次亜塩素酸水処理装置1では、陽極側で生成するHClO主体の次亜塩素酸水を空間除菌に使用しつつ、反対側の陰極側で生成されるNaClO及びNaOH主体の次亜塩素酸水も洗浄として活用が可能となる。 Looking at the transition of the effective chlorine concentration shown in FIG. 5C, the effective chlorine concentration of the anode-side extraction solution 10a (the effective chlorine concentration on the anode side) does not change significantly because it is a change from NaClO to HClO. An increase in the effective chlorine concentration can be seen due to the chloride ions remaining in the water being electrolyzed into hypochlorous acid. It is considered that the effective chlorine concentration of the cathode-side extraction solution 12a (the effective chlorine concentration on the cathode side) decreases as the electrodialysis time increases due to the decomposition of NaClO. Therefore, the electrodialysis time is set under the condition that the conductivity on the anode side is sufficiently reduced as shown in FIG. It is possible to simultaneously extract hypochlorous acid water mainly composed of HClO with high sterilization power, and hypochlorous acid water mainly composed of NaClO and NaOH with high detergency from the cathode side. Hypochlorous acid water containing mainly HClO is a solution in which residual components are suppressed, and it is possible to suppress metal corrosion caused by residual components even during space spraying while maintaining sterilization power. On the other hand, hypochlorous acid water containing NaClO and NaOH as a main component cannot be sprayed in space because it is a solution that leaves residual components, but it is a solution with high detergency and is effective in washing areas with acidic dirt such as drains. can bring In the hypochlorous acid water treatment device 1, hypochlorous acid water mainly composed of HClO generated on the anode side is used for space sterilization, while hypochlorous acid mainly composed of NaClO and NaOH is generated on the cathode side on the opposite side. Water can also be used for cleaning.
 以上、本実施の形態1-1に係る次亜塩素酸水処理装置1によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1, the following effects can be enjoyed.
 (1)次亜塩素酸水処理装置1は、陽電極2が流路に沿って露出して延設された陽極流路13と、陽極流路13と陰極流路14とを隔てて設けられ、流路を流通する陽極側溶液(陽極側供給溶液9a)に含まれる陽イオンを透過させる隔膜4と、陽電極2と陰電極3の間に電圧を印加する電気透析電源15とを備える。そして、陽極流路13及び陰極流路14は、陽極流路13を流通する陽極側溶液(陽極側供給溶液9a)と陰極流路14を流通する陰極側溶液(陰極側供給溶液11a)とがいずれも同じ方向に流通するように構成され、少なくとも陽極側供給溶液9aは、塩水を電気分解して生成した次亜塩素酸水である構造とした。こうした構成によれば、陽極側溶液(陽極側供給溶液9a)及び陰極側溶液(陰極側供給溶液11a)を、隔膜4を挟んで同じ方向に電圧を印加しながら流通させるので、塩水を電気分解して生成した次亜塩素酸水である陽極側溶液(陽極側供給溶液9a)から残留成分の要因となる陽イオンを分離することができる。このため、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理装置1を提供することができる。 (1) The hypochlorous acid water treatment apparatus 1 is provided with an anode channel 13 in which the positive electrode 2 is exposed and extended along the channel, and the anode channel 13 and the cathode channel 14 are separated from each other. , a diaphragm 4 that allows the passage of cations contained in the anode-side solution (anode-side supply solution 9 a ) flowing through the channel, and an electrodialysis power source 15 that applies a voltage between the positive electrode 2 and the negative electrode 3 . In the anode flow channel 13 and the cathode flow channel 14, an anode-side solution (anode-side supply solution 9a) flowing through the anode flow channel 13 and a cathode-side solution (cathode-side supply solution 11a) flowing through the cathode flow channel 14 are mixed. Both are configured to flow in the same direction, and at least the anode-side supply solution 9a is hypochlorous acid water produced by electrolyzing salt water. According to such a configuration, the anode-side solution (anode-side supply solution 9a) and the cathode-side solution (cathode-side supply solution 11a) are circulated while applying a voltage in the same direction with the diaphragm 4 interposed therebetween, so that salt water is electrolyzed. It is possible to separate cations that cause residual components from the anode-side solution (anode-side supply solution 9a), which is hypochlorous acid water generated by the above process. Therefore, it is possible to provide the hypochlorous acid water treatment apparatus 1 capable of producing hypochlorous acid water with reduced residual components generated by the electrolysis of salt water.
 (2)次亜塩素酸水処理装置1は、平面状の陽電極2と、陽電極2と対向する平面状の隔膜4と、陽電極2と隔膜4との間に設けられ、流路に沿って陽極流路13内に陽電極2及び隔膜4を露出させる陽極側スペーサ5とを有し、陽極流路13は、流路に沿って露出する陽電極2及び隔膜4と、陽極側スペーサ5とにより構成した。また、平面状の陰電極3と、陰電極3と対向する平面状の隔膜4と、陰電極3と隔膜4との間に設けられ、流路に沿って陰極流路14内に陰電極3及び隔膜4を露出させる陰極側スペーサ6とを有し、陰極流路14は、流路に沿って露出する陰電極3及び隔膜4と、陰極側スペーサ6とにより構成した。これにより、陽極側スペーサ5に形成される流路形状、及び陰極側スペーサ6に形成される流路形状により、陽極側溶液(陽極側供給溶液9a)から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、陽極側溶液(陽極側供給溶液9a)から残留成分の要因となる陽イオンを分離する面積及び時間を自由に設計することができる。 (2) The hypochlorous acid water treatment device 1 includes a planar positive electrode 2, a planar diaphragm 4 facing the positive electrode 2, and provided between the positive electrode 2 and the diaphragm 4, and an anode-side spacer 5 exposing the positive electrode 2 and the diaphragm 4 in the anode channel 13 along the anode channel 13. The anode-side spacer 5 exposes the positive electrode 2 and the diaphragm 4 along the channel. 5. Further, a planar cathode 3, a planar diaphragm 4 facing the cathode 3, and a cathode 3 are provided between the cathode 3 and the diaphragm 4, and placed in the cathode flow path 14 along the flow path. and a cathode-side spacer 6 exposing the diaphragm 4 , and the cathode flow path 14 is composed of the cathode-side spacer 6 and the cathode 3 and the diaphragm 4 exposed along the flow path. As a result, the cations that cause residual components are separated from the anode-side solution (anode-side supply solution 9a) by the channel shape formed in the anode-side spacer 5 and the channel shape formed in the cathode-side spacer 6. Therefore, the area and time for separating cations that cause residual components from the anode-side solution (anode-side supply solution 9a) can be freely designed.
 (3)次亜塩素酸水処理装置1では、陽極流路13及び陰極流路14は、いずれも蛇行状に形成されている構造とした。これにより、陽極側溶液(陽極側供給溶液9a)が陽電極2及び隔膜4に接触する経路、陰極側溶液(陰極側供給溶液11a)が陰電極3及び隔膜4に接触する経路が長くなり、陽極側溶液(陽極側供給溶液9a)から残留成分の要因となる陽イオンを分離する処理の時間及び時間を長くすることができる。つまり、陽電極2及び陰電極3のサイズに対して、陽極側溶液(陽極側供給溶液9a)から残留成分の要因となる陽イオンを効率的に分離することができる。 (3) In the hypochlorous acid water treatment apparatus 1, both the anode flow path 13 and the cathode flow path 14 are formed in a meandering structure. As a result, the path along which the anode-side solution (anode-side supply solution 9a) contacts the positive electrode 2 and the diaphragm 4 and the path along which the cathode-side solution (cathode-side supply solution 11a) contacts the cathode 3 and the diaphragm 4 become longer, It is possible to lengthen the processing time and time for separating cations that cause residual components from the anode-side solution (anode-side supply solution 9a). That is, cations that cause residual components can be efficiently separated from the anode-side solution (anode-side supply solution 9a) for the sizes of the positive electrode 2 and the negative electrode 3 .
 (4)次亜塩素酸水処理装置1では、陽極側供給溶液9a及び陰極側供給溶液11aは、いずれも塩水を電気分解して生成した次亜塩素酸水であってもよい。こうした場合には、陽極流路13に流通する陽極側溶液(陽極側供給溶液9a)は、残留成分の要因となる陽イオンが透過されて分離希薄化した次亜塩素酸水となり、陰極流路14に流通する陰極側溶液(陰極側供給溶液11a)は、残留成分の要因となる陽イオンが濃縮化された次亜塩素酸水となる。つまり、陽極流路13に流通する陽極側溶液(陽極側供給溶液9a)から、残留成分の要因となる陽イオンが分離希薄化した次亜塩素酸水を得るとともに、陰極流路14に流通する陰極側溶液(陰極側供給溶液11a)から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄力の高い次亜塩素酸水を同時に得ることができる。 (4) In the hypochlorous acid water treatment apparatus 1, both the anode-side supply solution 9a and the cathode-side supply solution 11a may be hypochlorous acid water produced by electrolyzing salt water. In such a case, the anode-side solution (anode-side supply solution 9a) flowing through the anode flow channel 13 becomes hypochlorous acid water separated and diluted by permeation of cations that cause residual components, and the cathode flow channel. The cathode-side solution (cathode-side supply solution 11a) flowing through 14 is hypochlorous acid water in which cations that cause residual components are concentrated. That is, from the anode-side solution (anode-side supply solution 9a) flowing through the anode flow channel 13, hypochlorous acid water in which the cations that are the cause of residual components are separated and diluted is obtained, and the hypochlorous acid water flows through the cathode flow channel 14. From the cathode side solution (cathode side supply solution 11a), hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated can be obtained at the same time.
 (5)次亜塩素酸水処理装置1は、陽極流路13に陽極側溶液(陽極側供給溶液9a)を供給するとともに、陰極流路14に陰極側溶液(陰極側供給溶液11a)を供給する供給ポンプ(図示せず)を備え、供給ポンプは、陽極側溶液(陽極側供給溶液9a)と陰極側溶液(陰極側供給溶液11a)とを一定流速で供給する構造とした。こうした場合には、陽極流路13内にて陽極側溶液(陽極側供給溶液9a)に電圧を印加している時間を一定にすることができるとともに、陰極流路14内にて陰極側溶液(陰極側供給溶液11a)に電圧を印加している時間を一定にすることができる。このため、陽極流路13における陽極側溶液(陽極側供給溶液9a)での残留成分の要因となる陽イオンが分離希薄化する濃度、陰極流路14における陰極側溶液(陰極側供給溶液11a)での残留成分の要因となる陽イオンが濃縮化する濃度を安定にすることができる。 (5) The hypochlorous acid water treatment apparatus 1 supplies an anode-side solution (anode-side supply solution 9a) to the anode channel 13, and supplies a cathode-side solution (cathode-side supply solution 11a) to the cathode channel 14. A supply pump (not shown) is provided, and the supply pump is configured to supply the anode side solution (anode side supply solution 9a) and the cathode side solution (cathode side supply solution 11a) at a constant flow rate. In such a case, the time during which the voltage is applied to the anode-side solution (anode-side supply solution 9a) in the anode channel 13 can be made constant, and the cathode-side solution ( The time during which the voltage is applied to the cathode-side supply solution 11a) can be made constant. For this reason, the concentration at which cations that cause residual components in the anode-side solution (anode-side supply solution 9a) in the anode flow channel 13 are separated and diluted, and the cathode-side solution (cathode-side supply solution 11a) in the cathode flow channel 14 It is possible to stabilize the concentration of cations that contribute to residual components in .
 (6)次亜塩素酸水処理装置1では、陽電極2及び陰電極3は、いずれも白金を含む電極材で構成されている構造とした。これにより、白金を含む電極材は、塩水を電気分解して次亜塩素酸水を生成することができるので、陽極側溶液(陽極側供給溶液9a)に残っている塩水成分を電気分解して次亜塩素酸水にすることができる。このため、陽極側溶液(陽極側供給溶液9a)に残っている塩水成分を電気分解して、より高濃度な次亜塩素酸水を得ることができる。 (6) In the hypochlorous acid water treatment device 1, both the positive electrode 2 and the negative electrode 3 are made of an electrode material containing platinum. As a result, the electrode material containing platinum can electrolyze salt water to generate hypochlorous acid water. It can be made into hypochlorous acid water. Therefore, the salt water component remaining in the anode-side solution (anode-side supply solution 9a) can be electrolyzed to obtain hypochlorous acid water with a higher concentration.
 (実施の形態1-2)
 図6を参照して、本開示の実施の形態1-2に係る、次亜塩素酸水処理装置1を用いた空間除菌システム20について説明する。図6は、本開示の実施の形態1-2に係る、次亜塩素酸水処理装置1を用いた空間除菌システム20の概略図である。なお、以下で説明する実施の形態1-2に係る空間除菌システムは、実施の形態1-1に係る次亜塩素酸水処理装置1を組み込んだシステムである。実施の形態1-2の説明においては、実施の形態1-1に係る次亜塩素酸水処理装置1と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化または省略する場合がある。
(Embodiment 1-2)
A spatial sterilization system 20 using a hypochlorous acid water treatment apparatus 1 according to Embodiment 1-2 of the present disclosure will be described with reference to FIG. FIG. 6 is a schematic diagram of a space sterilization system 20 using the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-2 of the present disclosure. The space sterilization system according to Embodiment 1-2 described below is a system incorporating the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1. In the description of Embodiment 1-2, the substantially same configurations as the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-1 are denoted by the same reference numerals, and the description is partially simplified. or may be omitted.
 本実施の形態1-2に係る空間除菌システム20は、浴室空間において、次亜塩素酸水処理装置1から生成された次亜塩素酸水をミスト噴霧装置27から噴霧するとともに排水口29に流すことで、浴室空間に対する除菌と洗浄とを行うシステムである。 The space sterilization system 20 according to the present embodiment 1-2 sprays hypochlorous acid water generated from the hypochlorous acid water treatment device 1 from the mist spray device 27 in the bathroom space and at the drain port 29. It is a system that sterilizes and cleans the bathroom space by flushing.
 具体的には、図6に示すように、空間除菌システム20は、次亜塩素酸水処理装置1と、次亜塩素酸水生成装置21と、陽極側供給ポンプ22と、陰極側供給ポンプ23と、陽極側抽出溶液タンク24と、陰極側抽出溶液タンク25と、陽極側抽出溶液浴室配管26と、ミスト噴霧装置27と、陰極側抽出溶液浴室配管28と、排水口29と、を備える。 Specifically, as shown in FIG. 6, the space sterilization system 20 includes a hypochlorous acid water treatment device 1, a hypochlorous acid water generation device 21, an anode side supply pump 22, and a cathode side supply pump. 23, an anode-side extraction solution tank 24, a cathode-side extraction solution tank 25, an anode-side extraction solution bath pipe 26, a mist spray device 27, a cathode-side extraction solution bath pipe 28, and a drain port 29. .
 次亜塩素酸水処理装置1は、陽極流路13から除菌力の高いHClO主体の次亜塩素酸水である陽極側抽出溶液10aを抽出し、陰極流路14から洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰極側抽出溶液12aを抽出する装置である。陽極側抽出溶液10aは、陽極側抽出溶液タンク24で貯められた後、陽極側抽出溶液浴室配管26にてミスト噴霧装置27に送液される。そして、ミスト噴霧装置27から陽極側抽出溶液10aが浴室空間に噴霧される。また、陰極側抽出溶液12aは、陰極側抽出溶液タンク25で貯められた後、陰極側抽出溶液浴室配管28にて排水口29に送液される。排水口29に陰極側抽出溶液12aが流通され、排水口29を経由して排水管に流れる。 The hypochlorous acid water treatment apparatus 1 extracts the anode side extraction solution 10a, which is hypochlorous acid water mainly composed of HClO with high sterilization power, from the anode flow path 13, and NaClO and NaClO with high detergency from the cathode flow path 14. It is an apparatus for extracting the cathode side extraction solution 12a, which is hypochlorous acid water mainly containing NaOH. After being stored in the anode-side extraction solution tank 24 , the anode-side extraction solution 10 a is sent to the mist spraying device 27 through the anode-side extraction solution bathroom piping 26 . Then, the anode-side extraction solution 10a is sprayed from the mist spray device 27 into the bathroom space. Further, the cathode-side extraction solution 12 a is stored in the cathode-side extraction solution tank 25 and then sent to the drain port 29 through the cathode-side extraction solution bathroom pipe 28 . The cathode-side extraction solution 12a flows through the drain port 29 and flows through the drain port 29 to the drain pipe.
 次亜塩素酸水生成装置21は、塩水(塩化ナトリウム水溶液)を供給して、電気分解により次亜塩素酸水を生成する装置である。陽極及び陰極の2つの電極を、塩水の入った電解槽の中に入れ、電圧を印加して塩水の電気分解を行う。電気分解によって生成される次亜塩素酸水には、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。塩水の電気分解が進むにつれて、NaClの濃度は減少し、NaClO、HClO、及びNaOHの濃度が上昇する。HClOとNaOHの反応によりNaClOとなることから、塩水の電気分解が十分にされるとNaClOが主成分の次亜塩素酸水が生成され、pHはアルカリ性を示す。陽イオンであるNa+イオンを含む成分は、揮発後に残留成分となるものであり、塩水の電気分解によって生じる残留成分としては、NaClO、NaOH、及びNaClがあてはまる。 The hypochlorous acid water generator 21 is a device that supplies salt water (aqueous sodium chloride solution) and generates hypochlorous acid water by electrolysis. Two electrodes, an anode and a cathode, are placed in an electrolytic cell containing salt water, and a voltage is applied to electrolyze the salt water. Hypochlorous acid water produced by electrolysis contains NaClO and HClO, which are components of hypochlorous acid water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. As the electrolysis of brine proceeds, the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase. Since HClO and NaOH react to form NaClO, hypochlorous acid water containing NaClO as a main component is produced when salt water is sufficiently electrolyzed, and the pH indicates alkaline. Components containing Na + ions, which are cations, become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
 陽極側供給ポンプ22は、次亜塩素酸水生成装置21の電解槽から、塩水の電気分解によって生成された次亜塩素酸水を抽出し、陽極側溶液(陽極側供給溶液9a)として次亜塩素酸水処理装置1の陽極流路13に供給するためのポンプである。陽極側供給ポンプ22は、一定の流速で次亜塩素酸水生成装置21の電解槽から、次亜塩素酸水処理装置1の陽極流路13に送液することができる。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The anode-side supply pump 22 extracts hypochlorous acid water produced by electrolysis of salt water from the electrolytic cell of the hypochlorous acid water generator 21, and extracts hypochlorous acid water as an anode-side solution (anode-side supply solution 9a). It is a pump for supplying to the anode channel 13 of the chloric acid water treatment apparatus 1 . The anode-side supply pump 22 can send liquid from the electrolytic cell of the hypochlorous acid water generator 21 to the anode flow path 13 of the hypochlorous acid water treatment apparatus 1 at a constant flow rate. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 陰極側供給ポンプ23は、次亜塩素酸水生成装置21の電解槽から、塩水の電気分解によって生成された次亜塩素酸水を抽出し、陰極側溶液(陰極側供給溶液11a)として次亜塩素酸水処理装置1の陰極流路14に供給するためのポンプである。陰極側供給ポンプ23は、一定の流速で次亜塩素酸水生成装置21の電解槽から、次亜塩素酸水処理装置1の陰極流路14に送液することができる。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The cathode-side supply pump 23 extracts the hypochlorous acid water produced by the electrolysis of salt water from the electrolytic cell of the hypochlorous acid water generator 21, and extracts hypochlorous acid water as a cathode-side solution (cathode-side supply solution 11a). It is a pump for supplying to the cathode channel 14 of the chloric acid water treatment apparatus 1 . The cathode-side supply pump 23 can feed liquid from the electrolytic cell of the hypochlorous acid water generator 21 to the cathode flow path 14 of the hypochlorous acid water treatment apparatus 1 at a constant flow rate. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 陽極側抽出溶液タンク24は、陽極流路13から抽出した除菌力の高いHClO主体の次亜塩素酸水である陽極側抽出溶液10aを、ミスト噴霧装置27に送液されるまで、一時的に貯めておくタンクである。陽極側抽出溶液タンク24は、陽極側抽出溶液浴室配管26を介してミスト噴霧装置27と接続される。 The anode-side extraction solution tank 24 temporarily holds the anode-side extraction solution 10 a , which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the anode flow path 13 , until it is sent to the mist spray device 27 . It is a tank that stores The anode-side extraction solution tank 24 is connected to a mist spraying device 27 via an anode-side extraction solution bathroom piping 26 .
 陰極側抽出溶液タンク25は、陰極流路14から抽出した洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰極側抽出溶液12aを、排水口29に送液されるまで、一時的に貯めておくタンクである。陰極側抽出溶液タンク25は、陰極側抽出溶液浴室配管28を介して排水口29と接続される。 The cathode-side extraction solution tank 25 temporarily holds the cathode-side extraction solution 12a, which is hypochlorous acid water containing NaClO and NaOH with high detergency extracted from the cathode flow path 14, until it is sent to the drain port 29. It is a tank that stores The cathode-side extraction solution tank 25 is connected to a drain port 29 via a cathode-side extraction solution bathroom pipe 28 .
 陽極側抽出溶液浴室配管26は、陽極側抽出溶液タンク24から、ミスト噴霧装置27まで送液するための配管である。陽極側抽出溶液浴室配管26は、浴室の壁裏及び天井に施工されてあり、天井に設置されたミスト噴霧装置27と接続されている。 The anode-side extraction solution bathroom pipe 26 is a pipe for sending liquid from the anode-side extraction solution tank 24 to the mist spray device 27 . The anode-side extraction solution bathroom pipe 26 is installed behind the wall and on the ceiling of the bathroom, and is connected to a mist spraying device 27 installed on the ceiling.
 陰極側抽出溶液浴室配管28は、陰極側抽出溶液タンク25から、排水口29まで送液するための配管である。陰極側抽出溶液浴室配管28は、浴室の壁裏及び床面に施工されてあり、排水口29に接続されている。 The cathode-side extraction solution bathroom pipe 28 is a pipe for sending liquid from the cathode-side extraction solution tank 25 to the drain port 29 . The cathode-side extraction solution bathroom pipe 28 is installed behind the wall and floor of the bathroom and connected to a drain port 29 .
 ミスト噴霧装置27は、次亜塩素酸水を浴室空間にミスト状にして噴霧する装置である。より詳細には、ミスト噴霧装置27は、陽極側抽出溶液タンク24から陽極側抽出溶液浴室配管26を通って搬送されてくる次亜塩素酸水である陽極側抽出溶液10aを微細なミストにして放出する装置である。ミスト噴霧装置27は、浴室空間の天井から浴室空間全体にミストが噴霧できるように噴霧部が天井から浴室側に突出して設置されている。ミストの噴霧方式としては、圧縮空気を使用して微細化する二流体噴霧方式、超音波素子を使用して10μm以下の微細ミストを噴霧する超音波方式、又は回転体から溶液を放出して破砕し1μm以下の微細ミストを噴霧する破砕噴霧方式などが挙げられる。 The mist spraying device 27 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 27 turns the anode-side extraction solution 10a, which is hypochlorous acid water, transported from the anode-side extraction solution tank 24 through the anode-side extraction solution bathroom piping 26 into fine mist. It is a device that emits. The mist spraying device 27 is installed so that the spraying part protrudes from the ceiling toward the bathroom so that the mist can be sprayed from the ceiling of the bathroom to the entire bathroom. The mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 μm or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 μm or less is sprayed.
 排水口29は、浴室空間内で発生した水あるいは汚れを浴室空間外に排出するための排水管と接続するための接続口である。排水口29には、陰極側抽出溶液タンク25から陰極側抽出溶液浴室配管28を通って陰極側抽出溶液12aを搬送し、洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰極側抽出溶液12aにより、排水口29及び排水口29に接続される排水管の汚れを洗浄することができる。 The drain port 29 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space. The cathode-side extraction solution 12a is conveyed from the cathode-side extraction solution tank 25 to the drain port 29 through the cathode-side extraction solution bathroom pipe 28, and the cathode-side extraction solution 12a, which is hypochlorous acid water mainly composed of NaClO and NaOH with high detergency, is delivered to the drain port 29. The extraction solution 12a can wash dirt on the drain port 29 and the drain pipe connected to the drain port 29 .
 次に、空間除菌システム20の動作について説明する。 Next, the operation of the space disinfection system 20 will be explained.
 空間除菌システム20では、浴室使用終了時に空間除菌システム20を使用可能な状態とするため、事前に次亜塩素酸水生成装置21で塩水の電気分解によって生成された次亜塩素酸水を生成する。また、次亜塩素酸水処理装置1を使用して、除菌力の高いHClO主体の次亜塩素酸水である陽極側抽出溶液10aを陽極側抽出溶液タンク24に必要量を貯めておくとともに、洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰極側抽出溶液12aを陰極側抽出溶液タンク25に必要量を貯めておく。そして、浴室使用終了後に、ユーザーが空間除菌システム20の開始スイッチを押すことで、陽極側抽出溶液タンク24からミスト噴霧装置27に自動的に送液され、毎日の除菌に必要な量(例えば400mL)が噴霧される。また、陰極側抽出溶液タンク25から、排水口29に自動的に送液され、洗浄に必要な量(例えば400mL)が通水される。 In the space sterilization system 20, in order to make the space sterilization system 20 usable when the use of the bathroom is finished, hypochlorous acid water generated in advance by electrolysis of salt water in the hypochlorous acid water generator 21 is added. Generate. In addition, using the hypochlorous acid water treatment apparatus 1, the anode side extraction solution 10a, which is hypochlorous acid water mainly composed of HClO with high sterilization power, is stored in the anode side extraction solution tank 24 in a necessary amount. A necessary amount of the cathode side extraction solution 12a, which is hypochlorous acid water containing mainly NaClO and NaOH with high detergency, is stored in the cathode side extraction solution tank 25 . When the user presses the start switch of the space sterilization system 20 after using the bathroom, the liquid is automatically sent from the anode side extraction solution tank 24 to the mist spray device 27, and the amount necessary for daily sterilization ( For example, 400 mL) is sprayed. In addition, from the cathode side extraction solution tank 25, the liquid is automatically sent to the drain port 29, and the amount (for example, 400 mL) required for washing is passed.
 この結果、ミスト噴霧装置27から除菌力の高いHClO主体の次亜塩素酸水がミスト噴霧されるので、浴室空間内のカビ及び菌に対してHClOの酸化力により除菌をすることができる。また、毎入浴後に定期的に噴霧することで、浴室にカビ及び菌が成長しない浴室空間を維持することができる。特に、NaClO及びNaOHのような残留するイオン成分を抑制しているため、噴霧時に金属表面に付着したとしても残留成分として残ることはなく、残留成分による長期的な腐食の発生を抑制することができる。 As a result, hypochlorous acid water containing mainly HClO with high sterilizing power is mist-sprayed from the mist spraying device 27, so that mold and bacteria in the bathroom space can be sterilized by the oxidizing power of HClO. . In addition, by regularly spraying after each bath, it is possible to maintain a bathroom space where mold and fungi do not grow in the bathroom. In particular, since residual ionic components such as NaClO and NaOH are suppressed, even if they adhere to the metal surface during spraying, they will not remain as residual components, and the occurrence of long-term corrosion due to residual components can be suppressed. can.
 一方、洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水が排水口29に通水されるので、排水口29及び排水管のヌメリ低減につなげることができる。人に関する汚れは、酸性側であり、排水口29には酸性側の汚れが集まってきていることから、アルカリ性のNaClO及びNaOH主体の次亜塩素酸水は中和させながら汚れを除去することになる。 On the other hand, since hypochlorous acid water containing mainly NaClO and NaOH with high detergency is passed through the drain port 29, it is possible to reduce the sliminess of the drain port 29 and the drain pipe. Dirt related to people is on the acid side, and since the dirt on the acid side is gathering at the drain port 29, alkaline NaClO and hypochlorous acid water containing mainly NaOH is used to neutralize the dirt while removing it. Become.
 HClO主体の次亜塩素酸水ミスト噴霧、並びに、NaClO及びNaOH主体の次亜塩素酸水の排水口29への通水の組み合わせにより、より快適な浴室空間に近づけることができる。 A more comfortable bathroom space can be achieved by combining HClO-based hypochlorous acid water mist spraying and NaClO and NaOH-based hypochlorous acid water through the drain port 29 .
 以上、本実施の形態1-2に係る、次亜塩素酸水処理装置1を用いた空間除菌システム20によれば、以下の効果を享受することができる。 As described above, according to the spatial sterilization system 20 using the hypochlorous acid water treatment apparatus 1 according to Embodiment 1-2, the following effects can be enjoyed.
 (7)空間除菌システム20は、次亜塩素酸水処理装置1と、陽極流路13と連通接続され、陽極側抽出溶液10aを用いて次亜塩素酸水ミストを浴室空間に放出するミスト噴霧装置27とを備える構造とした。こうした構成によれば、陽極側抽出溶液10aを用いて次亜塩素酸水ミストを浴室空間に放出しても、浴室空間に残る残留成分が抑制される。つまり、陽極側抽出溶液10aが塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水であるため、浴室空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 (7) The space sterilization system 20 is connected to the hypochlorous acid water treatment device 1 and the anode flow path 13, and uses the anode side extraction solution 10a to emit hypochlorous acid water mist into the bathroom space. A structure including a spray device 27 was adopted. According to such a configuration, even if the hypochlorous acid water mist is discharged into the bathroom space using the anode-side extraction solution 10a, residual components remaining in the bathroom space are suppressed. In other words, since the anode-side extraction solution 10a is hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced, when sterilizing the bathroom space, the sterilization performance is maintained while metals caused by the residual components are removed. It is possible to suppress the occurrence of corrosion.
 (8)空間除菌システム20は、浴室空間には、浴室空間内で発生する水を排出する排水口29が設けており、陰極流路14は、排水口29と連通接続され、陰極側抽出溶液12aを排水口29に導入可能に構成されている構造とした。陰極流路14に流通する陰極側抽出溶液12aから、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水を排水口29(及び排水口29に接続された排水管)に流通させるので、アルカリ性溶液により、排水口29及び排水口29に接続された排水管)の洗浄を行うことができる。 (8) In the space sterilization system 20, the bathroom space is provided with a drain port 29 for discharging water generated in the bathroom space, and the cathode flow path 14 is connected to the drain port 29 for communication with the cathode side extraction. The structure is such that the solution 12 a can be introduced into the drain port 29 . From the cathode-side extraction solution 12a flowing through the cathode channel 14, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is connected to the drain port 29 (and the drain port 29). Therefore, the drainage port 29 and the drainage pipe connected to the drainage port 29 can be washed with the alkaline solution.
 以上、実施の形態1に基づき本開示を説明したが、本開示は上記の実施の形態1に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 As described above, the present disclosure has been described based on the first embodiment, but the present disclosure is not limited to the first embodiment described above, and various modifications and improvements are possible within the scope of the present disclosure. One thing is easy to guess.
 (実施の形態2)
 従来、塩水の電気分解をすることで、NaClOを主成分としHClO及びNaOHを含む次亜塩素酸水が生成される。次亜塩素酸水は弱酸性側にすることで、除菌力が向上することが知られており、イオン透過能を有する隔膜を使用して生成されるpH弱酸性側に制御する技術が知られている。(例えば、特許文献1参照)。
(Embodiment 2)
Conventionally, by electrolyzing salt water, hypochlorous acid water containing NaClO as a main component and containing HClO and NaOH is produced. Hypochlorous acid water is known to improve its sterilization power by making it weakly acidic, and a technology is known to control the pH generated using a diaphragm with ion permeability to the weakly acidic side. It is (See Patent Document 1, for example).
 しかしながら、pHが弱酸性に調整するだけでは、残留成分となるNaClO及びNaOHの抑制が十分にできているとはいえない。NaClO及びNaOHは、次亜塩素酸水が揮発後も固形分として表面に残留する成分で、この残留成分が潮解及び水に再溶解することで金属の腐食を促進する要因となる。そのため、NaClO及びNaOH成分を多く含む次亜塩素酸水をミスト噴霧すると、微小な残留成分が蓄積されるため、長期間使用時の腐食が懸念される。 However, it cannot be said that NaClO and NaOH, which are residual components, are sufficiently suppressed only by adjusting the pH to be weakly acidic. NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing a large amount of NaClO and NaOH components is mist-sprayed, fine residual components are accumulated, which may cause corrosion during long-term use.
 そこで本開示は、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water.
 本開示によれば、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置を提供することができる。 According to the present disclosure, it is possible to provide a hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water.
 本開示に係る次亜塩素酸水供給装置は、蛇行状の無隔膜電解流路内に供給される塩水から一対の第一陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成ユニットと、蛇行状の有隔膜電解流路内のそれぞれに前記次亜塩素酸水生成ユニットから供給される前記次亜塩素酸水を一対の第二陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理ユニットと、を備える。次亜塩素酸水処理ユニットの陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する構造とする。 The hypochlorous acid water supply device according to the present disclosure continuously electrolytically generates hypochlorous acid water by energizing between a pair of first cathode and cathode electrodes from salt water supplied in a meandering membrane-free electrolytic flow path. and the hypochlorous acid water supplied from the hypochlorous acid water generation unit to each of the meandering diaphragm electrolysis flow paths between the pair of second negative and positive electrodes. a hypochlorous acid water treatment unit that continuously treats by energization. The structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
 こうした構成によれば、次亜塩素酸水生成ユニットにおいて無隔膜電解流路内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理ユニットにおいて有隔膜電解流路内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオンを分離低減した次亜塩素酸水として抽出することができる。このため、塩水の電気分解によって生じる残留成分を分離した次亜塩素酸水を外部に供給することが可能な、ワンパス式の次亜塩素酸水供給装置とすることができる。 According to this configuration, in the hypochlorous acid water generation unit, salt water is electrolyzed in the non-diaphragm electrolysis channel to generate hypochlorous acid water, and in the hypochlorous acid water treatment unit, the diaphragm electrolysis channel is provided. The hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated inside, and the cations that cause residual components can be separated and reduced from the positive electrode side, and can be extracted as hypochlorous acid water. For this reason, it is possible to provide a one-pass type hypochlorous acid water supply device capable of externally supplying hypochlorous acid water from which residual components generated by electrolysis of salt water are separated.
 また、本開示に係る次亜塩素酸水供給装置では、無隔膜電解流路は、平面状の第一陽電極と、第一陽電極と対向する平面状の第一陰電極と、第一陽電極と第一陰電極との間に設けられたスペーサ部材とを有して構成され、一対の第一陰陽電極は、スペーサ部材によって無隔膜電解流路に第一陽電極及び第一陰電極を露出させることで蛇行状に構成されている。このようにすることで、スペーサ部材に形成される流路形状により、塩水を電気分解する能力を変化させることができるので、塩水を電気分解する面積及び時間を自由に設計することができる。 In addition, in the hypochlorous acid water supply device according to the present disclosure, the non-diaphragm electrolysis channel includes a planar first positive electrode, a planar first negative electrode facing the first positive electrode, and a first positive electrode. and a spacer member provided between the electrode and the first negative electrode. By exposing it, it is configured in a meandering shape. By doing so, the ability to electrolyze salt water can be changed according to the channel shape formed in the spacer member, so that the area and time for electrolyzing salt water can be freely designed.
 また、本開示に係る次亜塩素酸水供給装置では、有隔膜電解流路は、第二陽電極が流路に沿って露出して延設された蛇行状の第一流路と、第一流路と対向して並設され、第二陰電極が流路に沿って露出して延設された蛇行状の第二流路と、第一流路と第二流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜とを有して構成される。一対の第二陰陽電極は、第一スペーサ部材によって第一流路に第二陽電極を露出させるとともに、第二スペーサ部材によって第二流路に第二陰電極を露出させることで蛇行状に構成され、第一流路及び第二流路には、次亜塩素酸水生成ユニットから供給される次亜塩素酸水がいずれも同じ方向に流通するように構成されている。こうした構成によれば、塩水を電気分解して生成した次亜塩素酸水を、隔膜を挟んで同じ方向に電圧を印加しながら流通させるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離低減することができる。このため、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理ユニットとすることができる。 In addition, in the hypochlorous acid water supply apparatus according to the present disclosure, the diaphragm-equipped electrolytic flow path includes a meandering first flow path in which the second positive electrode is exposed and extended along the flow path, and the first flow path and a meandering second flow path in which the second cathode extends along the flow path, and the first flow path and the second flow path are separated from each other, and a diaphragm permeable to cations contained in the solution flowing through the channel. The pair of second negative and positive electrodes are formed in a meandering shape by exposing the second positive electrode to the first channel by the first spacer member and exposing the second negative electrode to the second channel by the second spacer member. , the hypochlorous acid water supplied from the hypochlorous acid water generating unit is configured to flow in the same direction through the first flow path and the second flow path. According to such a configuration, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm, so that the hypochlorous acid water causes residual components. Ions can be separated and reduced. Therefore, it is possible to provide a hypochlorous acid water treatment unit capable of producing hypochlorous acid water in which residual components generated by electrolysis of salt water are reduced.
 また、本開示に係る次亜塩素酸水供給装置は、平面状の第二陽電極と、第二陽電極と対向する平面状の隔膜と、第二陽電極と隔膜との間に設けられ、流路に沿って第一流路内に第二陽電極及び隔膜を露出させる第一スペーサ部材とを有し、第一流路は、流路に沿って露出する第二陽電極及び隔膜と第一スペーサ部材とにより構成されている。また、平面状の第二陰電極と、第二陰電極と対向する平面状の隔膜と、第二陰電極と隔膜との間に設けられ、流路に沿って第二流路内に第二陰電極及び隔膜を露出させる第二スペーサ部材とを有し、第二流路は、流路に沿って露出する第二陰電極及び隔膜と、第二スペーサ部材とにより構成されている。このようにすることで、第一スペーサ部材に形成される流路形状、及び第二スペーサ部材に形成される流路形状により、塩水を電気分解して生成した次亜塩素酸水から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離する面積及び時間を自由に設計することができる。 Further, the hypochlorous acid water supply device according to the present disclosure includes a planar second positive electrode, a planar diaphragm facing the second positive electrode, and provided between the second positive electrode and the diaphragm, a first spacer member exposing the second positive electrode and the diaphragm within the first flow channel along the flow channel, the first flow channel exposing the second positive electrode and the diaphragm and the first spacer along the flow channel; It is composed of members. Further, a planar second cathode, a planar diaphragm facing the second cathode, and a second electrode provided between the second cathode and the diaphragm to extend along the flow path into the second flow path. It has a second spacer member that exposes the cathode and the diaphragm, and the second flow path is composed of the second cathode and the diaphragm that are exposed along the flow path, and the second spacer member. By doing so, residual components can be removed from the hypochlorous acid water generated by electrolyzing salt water by the channel shape formed in the first spacer member and the channel shape formed in the second spacer member. Since the ability to separate cations that cause residual components can be changed, the area and time for separating cations that cause residual components from hypochlorous acid water can be freely designed.
 また、本開示に係る次亜塩素酸水供給装置は、次亜塩素酸水生成ユニットと次亜塩素酸水処理ユニットとを連通接続する流路に設けられ、有隔膜電解流路に次亜塩素酸水生成ユニットからの次亜塩素酸水を供給する供給ポンプを備え、供給ポンプは、次亜塩素酸水生成ユニットからの次亜塩素酸水を第一流路及び第二流路に一定流速で供給することが好ましい。これにより、第一流路内にて電圧を印加している時間を一定にすることができるとともに、第二流路内にて電圧を印加している時間を一定にすることができる。このため、第一流路における次亜塩素酸水での残留成分の要因となる陽イオンが分離希薄化する濃度、及び第二流路における次亜塩素酸水での残留成分の要因となる陽イオンが濃縮化する濃度を安定にすることができる。 Further, the hypochlorous acid water supply device according to the present disclosure is provided in a flow path that communicates and connects the hypochlorous acid water generation unit and the hypochlorous acid water treatment unit, and the hypochlorous acid water supply device is provided in the diaphragm electrolysis flow path. A supply pump for supplying hypochlorous acid water from the acid water generation unit is provided, and the supply pump supplies hypochlorous acid water from the hypochlorous acid water generation unit to the first flow path and the second flow path at a constant flow rate. preferably supplied. As a result, the time during which the voltage is applied in the first channel can be made constant, and the time during which the voltage is applied in the second channel can be made constant. For this reason, the concentration at which the cations that cause residual components in the hypochlorous acid water in the first flow channel are separated and diluted, and the cations that cause residual components in the hypochlorous acid water in the second flow channel concentration can be stabilized.
 本開示に係る空間除菌システムは、上述した次亜塩素酸水供給装置と、第一流路と連通接続され、第一流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置とを備える構造とする。こうした構成によれば、第一流路から送出される次亜塩素酸水のミストを所定の空間に放出しても、所定の空間に残る残留成分が抑制される。つまり、第一流路から送出される次亜塩素酸水が塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 The spatial sterilization system according to the present disclosure is connected to the above-described hypochlorous acid water supply device and the first flow path, and uses the hypochlorous acid water sent from the first flow path to create a hypochlorous acid water mist. and a sterilization device that releases to a predetermined space. According to such a configuration, even if the mist of hypochlorous acid water delivered from the first flow path is discharged into the predetermined space, residual components remaining in the predetermined space are suppressed. In other words, since the hypochlorous acid water sent from the first flow path is hypochlorous acid water with reduced residual components generated by the electrolysis of salt water, sterilization performance is maintained when sterilizing a predetermined space. However, the occurrence of metal corrosion due to residual components can be suppressed.
 また、本開示に係る空間除菌システムは、所定の空間には、所定の空間内で発生する水を排出する排水管が設けられており、第二流路は、排水管と連通接続され、第二流路から送出される次亜塩素酸水を排水管に導入可能に構成されている構造とする。このようにすることで、第二流路から送出される次亜塩素酸水から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水を排水管に流通させるので、アルカリ性溶液によって排水管の洗浄を行うことができる。 Further, in the spatial disinfection system according to the present disclosure, a predetermined space is provided with a drain pipe for discharging water generated in the predetermined space, and the second flow path is connected to the drain pipe, The structure is such that the hypochlorous acid water sent out from the second channel can be introduced into the drain pipe. By doing so, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is removed from the hypochlorous acid water sent from the second flow path. Since the alkaline solution is circulated, the drain pipe can be washed with the alkaline solution.
 実施の形態2は、少なくとも以下の実施の形態2-1及び実施の形態2-2を包含する。 Embodiment 2 includes at least Embodiments 2-1 and 2-2 below.
 (実施の形態2-1)
 図7を参照して、本開示の実施の形態2-1に係る次亜塩素酸水供給装置101について説明する。図7は、本開示の実施の形態2-1に係る次亜塩素酸水供給装置101の断面イメージ図である。
(Embodiment 2-1)
A hypochlorous acid water supply device 101 according to Embodiment 2-1 of the present disclosure will be described with reference to FIG. FIG. 7 is a cross-sectional image diagram of hypochlorous acid water supply device 101 according to Embodiment 2-1 of the present disclosure.
 次亜塩素酸水供給装置101は、塩水(塩化ナトリウム水溶液)を供給して電気分解により次亜塩素酸水を生成し、さらに生成した次亜塩素酸水に含まれる残留成分(Naイオン等の陽イオンを有する成分:例えば、NaClO、NaOH)を、内部を流通する次亜塩素酸水から分離低減して、かつワンパス式で取り出して供給することができる装置である。 The hypochlorous acid water supply device 101 supplies salt water (aqueous sodium chloride solution), generates hypochlorous acid water by electrolysis, and further contains residual components (Na + ions, etc.) contained in the generated hypochlorous acid water. A component having a cation of (for example, NaClO, NaOH) can be separated and reduced from the hypochlorous acid water flowing inside and can be taken out and supplied in a single pass.
 具体的には、図7に示すように、次亜塩素酸水供給装置101は、塩水を電気分解して次亜塩素酸水をワンパス式で生成する次亜塩素酸水生成ユニット102と、次亜塩素酸水に含まれる残留成分の分離低減をワンパス式で行う次亜塩素酸水処理ユニット103と、次亜塩素酸水生成ユニット102の流路に塩水を流通させるとともに、次亜塩素酸水処理ユニット103の流路に次亜塩素酸水を流通させるための陽電極側供給ポンプ129及び陰電極側供給ポンプ131と、を備える。 Specifically, as shown in FIG. 7, the hypochlorous acid water supply device 101 includes a hypochlorous acid water generation unit 102 that electrolyzes salt water to generate hypochlorous acid water in one pass, The hypochlorous acid water treatment unit 103 that separates and reduces the residual components contained in the chlorous acid water in a single pass, and the hypochlorous acid water generation unit 102. A positive electrode side supply pump 129 and a negative electrode side supply pump 131 for circulating hypochlorous acid water in the flow path of the processing unit 103 are provided.
 <次亜塩素酸水生成ユニット>
 図7~図11を参照して、次亜塩素酸水供給装置101を構成する次亜塩素酸水生成ユニット102について説明する。図8は、次亜塩素酸水生成ユニット102の概略図である。図9は、次亜塩素酸水生成ユニット102の分解斜視図である。図10は、次亜塩素酸水生成ユニット102の垂直方向の断面イメージ図である。図11は、次亜塩素酸水生成ユニット102の水平方向の断面イメージ図である。
<Hypochlorous acid water generation unit>
The hypochlorous acid water generating unit 102 constituting the hypochlorous acid water supply apparatus 101 will be described with reference to FIGS. 7 to 11. FIG. FIG. 8 is a schematic diagram of the hypochlorous acid water generation unit 102. As shown in FIG. FIG. 9 is an exploded perspective view of the hypochlorous acid water generating unit 102. FIG. FIG. 10 is a vertical cross-sectional image diagram of the hypochlorous acid water generating unit 102 . FIG. 11 is a horizontal cross-sectional image diagram of the hypochlorous acid water generating unit 102 .
 次亜塩素酸水生成ユニット102は、図8~図11に示すように、第一陽電極104と、第一陰電極105と、第一陰陽電極間スペーサ106と、第一陽電極用パッキン107aと、第一陰電極用パッキン107bと、第一陽電極側槽筐体側面108aと、第一陰電極側槽筐体側面108bと、第一陰陽電極溶液供給口109と、第一陽電極溶液抽出口110と、第一陰電極溶液抽出口111と、第一陰陽電極間流路112と、電気分解電源113と、を備える。 As shown in FIGS. 8 to 11, the hypochlorous acid water generating unit 102 includes a first positive electrode 104, a first negative electrode 105, a first negative electrode spacer 106, and a first positive electrode packing 107a. , a first negative electrode packing 107b, a first positive electrode side tank housing side surface 108a, a first negative electrode side tank housing side surface 108b, a first negative electrode electrode solution supply port 109, and a first positive electrode solution. It has an extraction port 110 , a first cathode solution extraction port 111 , a first channel 112 between negative and positive electrodes, and an electrolysis power source 113 .
 第一陽電極104は、平面状の電極板である。第一陽電極104は、第一陰陽電極間スペーサ106によって第一陰陽電極間流路112に沿って電極板の表面が露出している。第一陽電極104は、電気分解電源113によって電流が流れると陽極として機能する電極である。第一陽電極104は、第一陰電極105と対向して略平行に配置されている。第一陽電極104は、チタン基材の表面に白金を含む触媒が形成されており、電気分解による次亜塩素酸の発生効率が高い材料を使用する。白金を含む触媒は、少なくとも第一陰陽電極間流路112に沿って露出される第一陽電極104の面に形成されている。塩水のNaClを電気分解して、NaClO及びHClO及びNaOHを含む次亜塩素酸水を生成することができる。 The first positive electrode 104 is a planar electrode plate. The surface of the electrode plate of the first positive electrode 104 is exposed along the channel 112 between the first positive and negative electrodes by the spacer 106 between the negative and positive electrodes. The first positive electrode 104 is an electrode that functions as an anode when current is passed by the electrolysis power source 113 . The first positive electrode 104 is arranged substantially parallel to and facing the first negative electrode 105 . The first positive electrode 104 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. A platinum-containing catalyst is formed on at least the surface of the first positive electrode 104 exposed along the channel 112 between the first negative and positive electrodes. NaCl in salt water can be electrolyzed to produce hypochlorous acid water containing NaClO and HClO and NaOH.
 第一陰電極105は、平面状の電極板である。第一陰電極105は、第一陰陽電極間スペーサ106によって第一陰陽電極間流路112に沿って電極板の表面が露出している。第一陰電極105は、電気分解電源113によって電流が流れると陰極として機能する電極である。第一陰電極105は、第一陽電極104と対向して略平行に配置されている。第一陰電極105は、第一陽電極104と同様に表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも第一陰陽電極間流路112に沿って露出される第一陰電極105の面に形成されている。また、第一陰陽電極間流路112に沿って露出させて電気分解を行う領域の第一陽電極104と第一陰電極105は同形状とし、対向距離の短い方がイオンを移動させやすく、電気分解も起こしやすい。対向距離が短いと流路を流れる流量が少なくなり、生成できる次亜塩素酸水も少なくなるため、必要な次亜塩素酸水生成量を確保したうえで、対向距離を10mm以下程度に短くすることが望ましい。 The first cathode 105 is a planar electrode plate. The surface of the electrode plate of the first negative electrode 105 is exposed along the channel 112 between the first negative and positive electrodes by the spacer 106 between the first positive and negative electrodes. The first cathode electrode 105 is an electrode that functions as a cathode when current is passed by the electrolysis power source 113 . The first negative electrode 105 is arranged substantially parallel to and facing the first positive electrode 104 . The first negative electrode 105 forms a platinum-containing catalyst on its surface, similar to the first positive electrode 104 . A catalyst containing platinum is formed at least on the surface of the first negative electrode 105 exposed along the channel 112 between the first negative and positive electrodes. In addition, the first positive electrode 104 and the first negative electrode 105 in the region exposed along the channel 112 between the first negative and positive electrodes and subjected to electrolysis have the same shape, and the shorter the facing distance, the easier it is for the ions to move. It is also susceptible to electrolysis. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
 そして、第一陽電極104及び第一陰電極105は、一対の対向電極として第一陰陽電極を構成する。 The first positive electrode 104 and the first negative electrode 105 constitute a first negative electrode as a pair of opposing electrodes.
 第一陰陽電極間スペーサ106は、絶縁性の部材である。第一陰陽電極間スペーサ106は、第一陽電極104と第一陰電極105との間の距離を所定の間隔に制御する。第一陰陽電極間スペーサ106は、第一陰陽電極間スペーサ106の内部に、後述する第一陰陽電極間流路112を形作る第一陰陽電極間流路孔112aを有している。第一陰陽電極間流路孔112aは、第一陰陽電極間スペーサ106の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。また、第一陰陽電極間スペーサ106の表面には、第一陽電極104及び第一陰電極105との密着性をあげるために、第一陰陽電極間スペーサ106と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、第一陰陽電極間スペーサ106は、請求項の「スペーサ部材」に相当する。 The first cathode-positive electrode spacer 106 is an insulating member. The spacer 106 between the first negative and positive electrodes controls the distance between the first positive electrode 104 and the first negative electrode 105 to a predetermined distance. The first spacer between negative and positive electrodes 106 has a first channel hole 112a between negative and positive electrodes that forms a first channel between negative and positive electrodes 112 described later. The first cathode-positive electrode passage hole 112a is formed through the front and back surfaces of the first cathode-positive electrode spacer 106, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing. On the surface of the first spacer between negative and positive electrodes 106, a meandering packing member (Fig. not shown) is installed. The first cathode-positive electrode spacer 106 corresponds to the "spacer member" in the claims.
 第一陽電極用パッキン107aは、第一陽電極104の外周に電極サイズをくりぬいた形状をしており、第一陰陽電極間スペーサ106と密着して外周方向に、第一陰陽電極間流路112内の溶液(後述する第一陰陽電極供給溶液109a)が漏れないように、締め付け圧を加えて取り付けられている。第一陽電極用パッキン107aの部材としては、絶縁性のシリコンゴムを使用することができる。第一陽電極用パッキン107aは、第一陽電極104より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第一陰陽電極間スペーサ106と第一陽電極側槽筐体側面108aとを密着しながら、第一陽電極104の厚みで保持されることが望ましい。 The first positive electrode packing 107a has a shape in which the outer periphery of the first positive electrode 104 is hollowed out to the size of the electrode, and is in close contact with the first negative electrode spacer 106 to form a flow path between the first positive electrode and the outer peripheral direction. A clamping pressure is applied so that the solution in 112 (the first positive and negative electrode supply solution 109a to be described later) does not leak. As the member of the first positive electrode packing 107a, insulating silicon rubber can be used. The first positive electrode packing 107a is thicker than the first positive electrode 104, and is crushed by being pressed by the tightening pressure to form the first positive electrode spacer 106 and the first positive electrode side tank housing side surface 108a. It is desirable that the thickness of the first positive electrode 104 is retained while the electrodes are in close contact with each other.
 第一陰電極用パッキン107bは、第一陰電極105の外周に電極サイズをくりぬいた形状をしており、第一陰陽電極間スペーサ106と密着して外周方向に、第一陰陽電極間流路112内の溶液(後述する第一陰陽電極供給溶液109a)が漏れないように、締め付け圧を加えて取り付けられている。第一陰電極用パッキン107bは、第一陰電極105より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第一陰陽電極間スペーサ106と第一陰電極側槽筐体側面108bと密着しながら、第一陰電極105の厚みで保持されることが望ましい。 The packing 107b for the first negative electrode has a shape in which the outer periphery of the first negative electrode 105 is hollowed out to the size of the electrode. A clamping pressure is applied so that the solution in 112 (the first positive and negative electrode supply solution 109a to be described later) does not leak. The first negative electrode packing 107b is thicker than the first negative electrode 105, and is crushed by being pressed by the tightening pressure, thereby connecting the first negative electrode spacer 106 and the first negative electrode side tank housing side surface 108b. It is desirable that the thickness of the first cathode 105 be maintained while adhering to the .
 第一陽電極側槽筐体側面108aは、第一陽電極104の外側に直接接触するように配置されている。第一陽電極側槽筐体側面108aは、第一陽電極104の外側への溶液の染み込みを抑制するために、第一陽電極側槽筐体側面108aの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外側に漏れが発生することはない。第一陽電極104の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気分解の効率向上にもつながる。 The side surface 108 a of the first positive electrode side tank housing is arranged so as to be in direct contact with the outside of the first positive electrode 104 . The first positive electrode-side tank housing side surface 108a is provided on the inner surface of the first positive electrode-side tank housing side surface 108a in order to suppress penetration of the solution to the outside of the first positive electrode 104, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur outside. Since the platinum-containing catalyst is formed only on the inner surface of the first positive electrode 104, the efficiency of electrolysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 第一陰電極側槽筐体側面108bは、第一陰電極105の外側に直接接触するように配置されている。第一陰電極側槽筐体側面108bは、第一陰電極105の外側への溶液の染み込みを抑制するために、第一陰電極側槽筐体側面108bの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第一陰電極105の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気分解の効率向上にもつながる。 The side surface 108b of the first cathode-side tank housing is arranged so as to be in direct contact with the outside of the first cathode 105. The side surface 108b of the first cathode-side tank housing is provided with an inner surface of the first cathode-side tank housing side 108b in order to suppress penetration of the solution into the outside of the first cathode 105, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the first cathode 105, the efficiency of electrolysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 第一陰陽電極溶液供給口109は、電気分解する塩水を第一陰陽電極間流路112内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第一陽電極104の外側から塩水を供給するため、第一陰陽電極溶液供給口109は、第一陽電極104より外周の位置に加工されている。なお、第一陰陽電極溶液供給口109は、第一陰電極105の外周の位置に加工されてもよいし、第一陽電極104及び第一陰電極105の両方の外側の位置に加工されてもよい。 The first negative electrode solution supply port 109 is a connection port for flowing salt water to be electrolyzed into the first positive electrode inter-electrode channel 112, and is attached with a connector (not shown) to which a tube can be connected. In order to supply salt water from the outside of the first positive electrode 104 , the first negative electrode solution supply port 109 is processed at a position outside the first positive electrode 104 . The first negative electrode solution supply port 109 may be processed at a position on the outer circumference of the first negative electrode 105, or may be processed at a position outside both the first positive electrode 104 and the first negative electrode 105. good too.
 第一陰陽電極供給溶液109aは、塩水である。第一陰陽電極供給溶液109aは、第一陰陽電極溶液供給口109から第一陰陽電極間流路112に導入される。 The first positive and negative electrode supply solution 109a is salt water. The first negative electrode supply solution 109 a is introduced from the first negative electrode solution supply port 109 into the first channel 112 between the positive and negative electrodes.
 第一陽電極溶液抽出口110は、電気分解した第一陽電極抽出溶液110aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられてあり、陽電極側接続チューブ128及び陽電極側供給ポンプ129へとつながっている。第一陽電極104の外側に第一陽電極抽出溶液110aを抽出するため、第一陽電極溶液抽出口110は、第一陽電極104より外周の位置に加工されている。 The first positive electrode solution extraction port 110 is a connection port for extracting the electrolyzed first positive electrode extraction solution 110a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. It is connected to a side connection tube 128 and a positive electrode side supply pump 129 . In order to extract the first positive electrode extracting solution 110 a outside the first positive electrode 104 , the first positive electrode solution extracting port 110 is processed at a position outside the first positive electrode 104 .
 第一陽電極抽出溶液110aは、塩水から電気分解した次亜塩素酸水である。第一陽電極抽出溶液110aは、第一陰陽電極間流路112から第一陽電極溶液抽出口110に導入される。 The first positive electrode extraction solution 110a is hypochlorous acid water electrolyzed from salt water. The first positive electrode extraction solution 110a is introduced into the first positive electrode solution extraction port 110 from the first channel 112 between the positive and negative electrodes.
 より詳細には、第一陽電極抽出溶液110aには、塩水を電気分解することで、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。塩水の電気分解が進むにつれて、NaClの濃度は減少し、NaClO、HClO、及びNaOHの濃度が上昇する。HClOとNaOHの反応によりNaClOとなることから、塩水の電気分解が十分にされるとNaClOを含む次亜塩素酸水が生成される。陽イオンであるNaイオンを含む成分は、揮発後に残留成分となるものであり、塩水の電気分解によって生じる残留成分としては、NaClO、NaOH、及びNaClがあてはまる。 More specifically, the first positive electrode extraction solution 110a contains NaClO and HClO, which are components of hypochlorous acid water, generated by electrolyzing salt water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. As the electrolysis of brine proceeds, the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase. Since HClO and NaOH react to form NaClO, hypochlorous acid water containing NaClO is produced when salt water is sufficiently electrolyzed. Components containing Na + ions, which are cations, become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
 第一陰電極溶液抽出口111は、電気分解した第一陰電極抽出溶液111aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられてあり、陰電極側接続チューブ130及び陰電極側供給ポンプ131へとつながっている。第一陰電極105の外側に第一陰電極抽出溶液111aを抽出するため、第一陰電極溶液抽出口111は、第一陰電極105より外周の位置に加工されている。 The first cathode solution extraction port 111 is a connection port for extracting the electrolyzed first cathode extraction solution 111a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. It is connected to the side connection tube 130 and the cathode side supply pump 131 . In order to extract the first cathode extraction solution 111 a outside the first cathode 105 , the first cathode solution extraction port 111 is processed at a position outside the first cathode 105 .
 第一陰電極抽出溶液111aは、塩水から電気分解した次亜塩素酸水である。第一陰電極抽出溶液111aは、第一陰陽電極間流路112から第一陰電極溶液抽出口111に導入される。 The first cathode extraction solution 111a is hypochlorous acid water electrolyzed from salt water. The first negative electrode extraction solution 111 a is introduced into the first negative electrode solution extraction port 111 from the first channel 112 between the negative and positive electrodes.
 より詳細には、第一陰電極抽出溶液111aには、塩水を電気分解することで、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。塩水の電気分解が進むにつれて、NaClの濃度は減少し、NaClO、HClO、及びNaOHの濃度が上昇する。HClOとNaOHの反応によりNaClOとなることから、塩水の電気分解が十分にされるとNaClOを含む次亜塩素酸水が生成される。陽イオンであるNaイオンを含む成分は、揮発後に残留成分となるものであり、塩水の電気分解によって生じる残留成分としては、NaClO、NaOH、及びNaClがあてはまる。 More specifically, the first cathode extraction solution 111a contains NaClO and HClO, which are components of hypochlorous acid water, generated by electrolyzing salt water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. As the electrolysis of brine proceeds, the concentration of NaCl decreases and the concentrations of NaClO, HClO, and NaOH increase. Since HClO and NaOH react to form NaClO, hypochlorous acid water containing NaClO is produced when salt water is sufficiently electrolyzed. Components containing Na + ions, which are cations, become residual components after volatilization, and NaClO, NaOH, and NaCl are applicable as residual components generated by electrolysis of salt water.
 第一陰陽電極間流路112内では、電気分解された次亜塩素酸水は流通過程で混合されるものの、第一陽電極104近傍には塩水の陰イオン成分であるClイオンが多く分布し、第一陰電極105近傍には塩水の陽イオン成分であるNaイオンが多く分布するような濃度勾配を持って流れている。そのため、第一陰陽電極間で電気分解を行うと、第一陽電極104近傍には酸性に寄った溶液が流れ、第一陰電極近傍にはアルカリ性に寄った溶液が流れることになる。第一陽電極溶液抽出口110及び第一陰電極溶液抽出口111は、第一陽電極104及び第一陰電極105の外周にあたるため電圧の印加がされない場所にあたるが、第一陽電極104及び第一陰電極105の近傍に第一陽電極溶液抽出口110及び第一陰電極溶液抽出口111を設計しているので、酸性及びアルカリ性に寄った次亜塩素酸水がそれぞれ抽出される。具体的には、第一陽電極104側に設けた第一陽電極溶液抽出口110から第一陽電極抽出溶液110aとしてHCl及びHClOを多く含む酸性の次亜塩素酸水が抽出され、第一陰電極105側に設けた第一陰電極溶液抽出口111から第一陰電極抽出溶液111aとしてNaOHを多く含むアルカリ性の次亜塩素酸水が抽出される。 In the channel 112 between the first negative and positive electrodes, the electrolyzed hypochlorous acid water is mixed during the flow process, but a large amount of Cl ions, which are the negative ion components of the salt water, are distributed near the first positive electrode 104 . However, in the vicinity of the first cathode 105, the salt water flows with a concentration gradient such that a large amount of Na + ions, which are cationic components of salt water, are distributed. Therefore, when electrolysis is performed between the first positive and negative electrodes, an acidic solution flows in the vicinity of the first positive electrode 104, and an alkaline solution flows in the vicinity of the first negative electrode. The first positive electrode solution extraction port 110 and the first negative electrode solution extraction port 111 correspond to the outer periphery of the first positive electrode 104 and the first negative electrode 105, so that they correspond to places where no voltage is applied. Since the first positive electrode solution extraction port 110 and the first negative electrode solution extraction port 111 are designed in the vicinity of one negative electrode 105, acid and alkaline hypochlorous acid water are extracted respectively. Specifically, acidic hypochlorous acid water containing a large amount of HCl and HClO is extracted as the first positive electrode extraction solution 110a from the first positive electrode solution extraction port 110 provided on the first positive electrode 104 side, and the first Alkaline hypochlorous acid water containing a large amount of NaOH is extracted from the first cathode solution extraction port 111 provided on the cathode 105 side as the first cathode extraction solution 111a.
 ここで、第一陰陽電極溶液供給口109は、鉛直方向の下方側に配置されることが望ましく、第一陽電極溶液抽出口110及び第一陰電極溶液抽出口111は、鉛直方向の上方側に配置されることが望ましい。流路内の電気分解反応により、酸素ガス及び水素ガス等が発生する際に、各抽出口が上方に配置されてある方がガスをより効率的に溶液とともに排出することができる。 Here, the first cathode electrode solution supply port 109 is preferably arranged on the lower side in the vertical direction, and the first positive electrode solution extraction port 110 and the first cathode electrode solution extraction port 111 are preferably arranged on the upper side in the vertical direction. should be placed in When oxygen gas, hydrogen gas, and the like are generated by the electrolysis reaction in the channel, the gas can be more efficiently discharged together with the solution if the extraction ports are arranged upward.
 第一陰陽電極間流路112は、第一陽電極104と第一陰陽電極間スペーサ106と第一陰電極105とによって囲まれた領域に形成される流路であり、いわゆる無隔膜電解流路である。第一陰陽電極間流路112は、第一陰陽電極間スペーサ106の第一陰陽電極間流路孔112aによって蛇行して構成されている。より詳細には、第一陰陽電極間流路112は、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気分解を行う距離を稼いでいる。さらに第一陰陽電極間流路112の流路幅を小さくすることで距離が長くなり、電気分解時間を長くすることができる。第一陰陽電極間流路112において液の逆流を低減するため、第一陰陽電極間流路112が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。第一陰陽電極間流路112は、その一方に第一陰陽電極溶液供給口109が設けられ、他方に第一陽電極溶液抽出口110及び第一陰電極溶液抽出口111が設けられており、内部に第一陰陽電極供給溶液109aが流通している。電気分解量は、印加される電圧電流及び流路内の流速によって制御される。流速は、第一陽電極溶液抽出口110の後段に陽電極側供給ポンプ129を設置し、第一陰電極溶液抽出口111の後段に陰電極側供給ポンプ131を設置して制御することができる。各供給ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。一定流量で溶液を流すことで、流路内で電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The first cathode-positive electrode flow path 112 is a flow path formed in a region surrounded by the first positive electrode 104, the first cathode-positive electrode spacer 106, and the first cathode electrode 105, and is a so-called non-diaphragm electrolytic flow path. is. The first channel 112 between the negative and positive electrodes is formed by the first channel hole 112 a between the negative and positive electrodes of the spacer 106 between the first negative and positive electrodes in a meandering manner. More specifically, the first channel between positive and negative electrodes 112 reciprocates in the horizontal direction, and the number of reciprocations in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top. Furthermore, by reducing the channel width of the first cathode-positive electrode channel 112, the distance becomes longer, and the electrolysis time can be lengthened. In order to reduce the backflow of the liquid in the first channel 112 between the negative and positive electrodes, it is desirable that the first channel 112 between the positive and negative electrodes has a structure in which the first channel 112 between the negative and positive electrodes goes upward in one direction, except for reciprocating in the horizontal direction. The first channel 112 between the negative and positive electrodes has a first negative electrode solution supply port 109 on one side and a first positive electrode solution extraction port 110 and a first negative electrode solution extraction port 111 on the other side, A first negative electrode supply solution 109a is circulated inside. The amount of electrolysis is controlled by the applied voltage current and flow velocity in the channel. The flow rate can be controlled by installing a positive electrode side supply pump 129 after the first positive electrode solution extraction port 110 and installing a negative electrode side supply pump 131 after the first negative electrode solution extraction port 111 . . Each supply pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By allowing the solution to flow at a constant flow rate, it is possible to control the electrolysis time in the flow channel at a constant level, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 電気分解電源113は、第一陽電極104及び第一陰電極105と接続され、第一陽電極104及び第一陰電極105に電流及び電圧を印加することができる直流電源である。電気分解電源113は、一定の電流となるように定電流制御の電源として使用してもよいし、一定の電圧となるように定電圧制御の電源として使用してもよい。なお、電気分解電源113は、スケール蓄積の低減のため、例えば、次亜塩素酸水生成ユニット102への塩水の通水ごとに、第一陽電極104と第一陰電極105の電位を入れ替えて転極し、付着したスケールを溶解させるように制御してもよい。 The electrolysis power supply 113 is a DC power supply that is connected to the first positive electrode 104 and the first negative electrode 105 and can apply current and voltage to the first positive electrode 104 and the first negative electrode 105 . The electrolysis power supply 113 may be used as a constant current controlled power supply so as to provide a constant current, or may be used as a constant voltage controlled power supply so as to provide a constant voltage. In order to reduce scale accumulation, the electrolysis power source 113 switches the potentials of the first positive electrode 104 and the first negative electrode 105 each time salt water is passed through the hypochlorous acid water generating unit 102, for example. It may be controlled to reverse polarity and dissolve adhering scale.
 以上のように、次亜塩素酸水生成ユニット102は、各部材によって構成される。 As described above, the hypochlorous acid water generation unit 102 is composed of each member.
 <次亜塩素酸水供給ユニット>
 次に、図7、図12~図15を参照して、次亜塩素酸水供給装置101を構成する次亜塩素酸水処理ユニット103について説明する。図12は、次亜塩素酸水処理ユニット103の概略図である。図13は、次亜塩素酸水処理ユニット103の分解斜視図である。図14は、次亜塩素酸水処理ユニット103の垂直方向の断面イメージ図である。図15は、次亜塩素酸水処理ユニット103の水平方向の断面イメージ図である。
<Hypochlorous acid water supply unit>
Next, the hypochlorous acid water treatment unit 103 constituting the hypochlorous acid water supply device 101 will be described with reference to FIGS. 7 and 12 to 15. FIG. FIG. 12 is a schematic diagram of the hypochlorous acid water treatment unit 103. As shown in FIG. FIG. 13 is an exploded perspective view of the hypochlorous acid water treatment unit 103. FIG. FIG. 14 is a vertical cross-sectional image diagram of the hypochlorous acid water treatment unit 103 . FIG. 15 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment unit 103 .
 次亜塩素酸水処理ユニット103は、図12~図15に示すように、第二陽電極114と、第二陰電極115と、隔膜116と、第二陽電極側スペーサ117と、第二陰電極側スペーサ118と、第二陽電極用パッキン119a、第二陰電極用パッキン119b、第二陽電極側槽筐体側面120aと、第二陰電極側槽筐体側面120bと、第二陽電極溶液供給口121と、第二陽電極溶液抽出口122と、第二陰電極溶液供給口123と、第二陰電極溶液抽出口124と、第二陽電極側流路125と、第二陰電極側流路126と、電気透析電源127と、を備える。 The hypochlorous acid water treatment unit 103, as shown in FIGS. Electrode-side spacer 118, second positive electrode packing 119a, second negative electrode packing 119b, second positive electrode-side tank housing side surface 120a, second negative electrode-side tank housing side surface 120b, and second positive electrode A solution supply port 121, a second positive electrode solution extraction port 122, a second negative electrode solution supply port 123, a second negative electrode solution extraction port 124, a second positive electrode side channel 125, and a second negative electrode. A side channel 126 and an electrodialysis power supply 127 are provided.
 第二陽電極114は、平面状の電極板である。第二陽電極114は、第二陽電極側スペーサ117によって第二陽電極側流路125の流路に沿って電極板の表面が露出している。第二陽電極114は、電気透析電源127によって電流が流れると陽極として機能する電極である。第二陽電極114は、第二陰電極115と対向して略平行に配置されている。第二陽電極114は、チタン基材の表面に白金を含む触媒が形成されており、電気分解による次亜塩素酸の発生効率が高い材料を使用する。白金を含む触媒は、少なくとも第二陽電極側流路125の流路に沿って露出される第二陽電極114の面に形成されている。電気透析により陽イオンを移動させて、残留成分となるNaClO及びNaOHを抑制した次亜塩素酸水を生成することが主目的であるが、NaClOから分解してできたNaCl及び塩水が電気分解しきれずに残ったNaClも、白金電極により次亜塩素酸へと変化させることが可能となる。 The second positive electrode 114 is a planar electrode plate. The surface of the electrode plate of the second positive electrode 114 is exposed along the channel of the second positive electrode-side channel 125 by the second positive electrode-side spacer 117 . Second positive electrode 114 is an electrode that functions as an anode when current is passed by electrodialysis power supply 127 . The second positive electrode 114 is arranged substantially parallel to and facing the second negative electrode 115 . The second positive electrode 114 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. The platinum-containing catalyst is formed at least on the surface of the second positive electrode 114 exposed along the channel of the second positive electrode side channel 125 . The main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH as residual components, but NaCl and salt water generated by decomposition of NaClO are electrolyzed. NaCl remaining without being dissolved can also be changed to hypochlorous acid by the platinum electrode.
 第二陰電極115は、平面状の電極板である。第二陰電極115は、第二陰電極側スペーサ118によって第二陰電極側流路126の流路に沿って電極板の表面が露出している。第二陰電極115は、電気透析電源127によって電流が流れると陰極として機能する電極である。第二陰電極115は、第二陽電極114と対向して略平行に配置されている。第二陰電極115は、第二陽電極114と同様に表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも第二陰電極側流路126の流路に沿って露出される第二陰電極115の面に形成されている。また、第二陽電極側流路125及び第二陰電極側流路126に沿って露出させて電気透析を行う領域の第二陽電極114と第二陰電極115は同形状とし、対向距離の短い方がイオンの移動をさせやすい。対向距離が短いと流路を流れる流量が少なくなり、生成できる次亜塩素酸水も少なくなるため、必要な次亜塩素酸水生成量を確保したうえで、対向距離を10mm以下程度に短くすることが望ましい。 The second cathode 115 is a planar electrode plate. The surface of the electrode plate of the second cathode 115 is exposed along the channel of the second cathode side channel 126 by the second cathode side spacer 118 . The second cathode electrode 115 is the electrode that functions as a cathode when current is passed by the electrodialysis power supply 127 . The second negative electrode 115 is arranged substantially parallel to and facing the second positive electrode 114 . The second negative electrode 115 forms a platinum-containing catalyst on its surface, similar to the second positive electrode 114 . The platinum-containing catalyst is formed at least on the surface of the second cathode 115 exposed along the channel 126 on the second cathode side. In addition, the second positive electrode 114 and the second negative electrode 115 in the region where electrodialysis is performed by exposing them along the second positive electrode side channel 125 and the second negative electrode side channel 126 have the same shape. The shorter the length, the easier it is for ions to move. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
 そして、第二陽電極114及び第二陰電極115は、一対の対向電極として第二陰陽電極を構成する。 The second positive electrode 114 and the second negative electrode 115 constitute a second negative electrode as a pair of opposing electrodes.
 隔膜116は、平面状の薄膜である。隔膜116は、第二陽電極114及び第二陰電極115と対向して略平行に配置されている。隔膜116は、第二陽電極側流路125と第二陰電極側流路126とを隔てるように設けている。隔膜116は、次亜塩素酸水の残留成分であるNaClO及びNaOHに関係するNaイオンのような陽イオンを移動させることが可能なイオン交換膜(陽イオン交換膜)である。隔膜116は、第二陽電極114及び第二陰電極115に電圧を印加することで、第二陰電極115に陽イオンを移動させることができる。この陽イオン交換膜としては、デュポン社製ナフィオンなどが挙げられる。なお、第二陰電極115側は、陽イオンを濃縮するため、長時間使用時に水道水等に含まれるスケール成分が析出する可能性がある。スケール蓄積の低減のため、例えば、次亜塩素酸水処理ユニット103への次亜塩素酸水の通水ごとに、第二陽電極114と第二陰電極115の電位を入れ替えて転極し、付着したスケールを溶解させる。転極して使用することを想定する際には、第二陽電極114及び第二陰電極115は、同様の白金を含む触媒処理にしておくことが望ましい。 The diaphragm 116 is a planar thin film. The diaphragm 116 is arranged substantially parallel to and facing the second positive electrode 114 and the second negative electrode 115 . The diaphragm 116 is provided so as to separate the second positive electrode side channel 125 and the second negative electrode side channel 126 . The diaphragm 116 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water. The diaphragm 116 can move positive ions to the second negative electrode 115 by applying a voltage to the second positive electrode 114 and the second negative electrode 115 . Examples of the cation exchange membrane include Nafion manufactured by DuPont. Since the cations are concentrated on the second negative electrode 115 side, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use. In order to reduce scale accumulation, for example, each time hypochlorous acid water is passed through the hypochlorous acid water treatment unit 103, the potentials of the second positive electrode 114 and the second negative electrode 115 are switched to reverse polarity, Dissolve attached scale. When it is assumed that the electrodes will be used with their polarities reversed, it is desirable that the second positive electrode 114 and the second negative electrode 115 be similarly treated with a catalyst containing platinum.
 第二陽電極側スペーサ117は、絶縁性の部材である。第二陽電極側スペーサ117は、第二陽電極114と隔膜116との間の距離を所定の間隔に制御する。第二陽電極側スペーサ117は、第二陽電極側スペーサ117の内部に、後述する第二陽電極側流路125を形作る第二陽電極側流路孔125aを有している。第二陽電極側流路孔125aは、第二陽電極側スペーサ117に形成された第二陽電極側流路125を形成する孔のことである。第二陽電極側流路孔125aは、第二陽電極側スペーサ117の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。また、第二陽電極側スペーサ117の表面には、第二陽電極114及び隔膜116との密着性をあげるために、第二陽電極側スペーサ117と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、第二陽電極側スペーサ117は、請求項の「第一スペーサ部材」に相当する。 The second positive electrode side spacer 117 is an insulating member. The second positive electrode side spacer 117 controls the distance between the second positive electrode 114 and the diaphragm 116 to a predetermined distance. The second positive electrode side spacer 117 has, inside the second positive electrode side spacer 117, a second positive electrode side channel hole 125a that forms a second positive electrode side channel 125, which will be described later. The second positive electrode side channel hole 125 a is a hole that forms the second positive electrode side channel 125 formed in the second positive electrode side spacer 117 . The second positive electrode side channel hole 125a is formed through the front and back of the second positive electrode side spacer 117, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing. In addition, on the surface of the second positive electrode side spacer 117, a meandering packing member (not shown), which is the same as the second positive electrode side spacer 117, is provided on the surface of the second positive electrode side spacer 117 in order to improve adhesion between the second positive electrode side 114 and the diaphragm 116. is installed. The second positive electrode side spacer 117 corresponds to the "first spacer member" in the claims.
 第二陰電極側スペーサ118は、絶縁性の部材である。第二陰電極側スペーサ118は、第二陰電極115と隔膜116の距離を制御する。第二陰電極側スペーサ118は、第二陰電極側スペーサ118の内部に、後述する第二陰電極側流路126を形作る第二陰電極側流路孔126aを有している。第二陰電極側流路孔126aは、第二陰電極側スペーサ118に形成された第二陰電極側流路126を形成する孔のことである。第二陰電極側流路孔126aは、第二陰電極側スペーサ118の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。ここで、第二陰電極側流路孔126aと第二陽電極側流路孔125aとは、互いに対向するように配置されている。また、第二陰電極側スペーサ118の表面には、第二陰電極115及び隔膜116との密着性をあげるために、第二陰電極側スペーサ118と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、第二陰電極側スペーサ118は、請求項の「第二スペーサ部材」に相当する。 The second cathode side spacer 118 is an insulating member. The second cathode side spacer 118 controls the distance between the second cathode 115 and the diaphragm 116 . The second cathode side spacer 118 has a second cathode side channel hole 126a inside the second cathode side spacer 118 that forms a second cathode side channel 126, which will be described later. The second cathode side channel hole 126 a is a hole that forms the second cathode side channel 126 formed in the second cathode side spacer 118 . The second cathode-side channel hole 126a is formed through the front and back of the second cathode-side spacer 118, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing. Here, the second negative electrode side channel hole 126a and the second positive electrode side channel hole 125a are arranged so as to face each other. Also, on the surface of the second cathode-side spacer 118, a meandering packing member (not shown), which is the same as the second cathode-side spacer 118, is provided in order to increase the adhesion between the second cathode 115 and the diaphragm 116. is installed. The second cathode-side spacer 118 corresponds to the "second spacer member" in the claims.
 第二陽電極用パッキン119aは、第二陽電極114の外周に電極サイズをくりぬいた形状をしており、第二陽電極側スペーサ117と密着して外周方向に、第二陽電極側流路125内の溶液(後述する第二陽電極供給溶液121a)が漏れないように、締め付け圧を加えて取り付けられている。第二陽電極用パッキン119aの部材としては、絶縁性のシリコンゴムを使用することができる。第二陽電極用パッキン119aは、第二陽電極114より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第二陽電極側スペーサ117と第二陽電極側槽筐体側面120aとを密着しながら、第二陽電極114の厚みで保持されることが望ましい。 The second positive electrode packing 119a has a shape in which the outer periphery of the second positive electrode 114 is hollowed out to the size of the electrode. It is attached with tightening pressure so that the solution in 125 (the second positive electrode supply solution 121a to be described later) does not leak. As a member of the second positive electrode packing 119a, insulating silicon rubber can be used. The second positive electrode packing 119a is thicker than the second positive electrode 114, and is crushed by being pressed by the tightening pressure to form the second positive electrode side spacer 117 and the second positive electrode side tank housing side surface 120a. It is desirable that the thickness of the second positive electrode 114 is retained while the electrodes are in close contact with each other.
 第二陰電極用パッキン119bは、第二陰電極115の外周に電極サイズをくりぬいた形状をしており、第二陰電極側スペーサ118と密着して外周方向に第二陰電極側流路126内の溶液(後述する第二陰電極供給溶液123a)が漏れないように、締め付け圧を加えて取り付けられている。第二陰電極用パッキン119bの部材としては、絶縁性のシリコンゴムを使用することができる。第二陰電極用パッキン119bは、第二陰電極115より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第二陰電極側スペーサ118と第二陰電極側槽筐体側面120bと密着しながら、第二陰電極115の厚みで保持されることが望ましい。 The second cathode packing 119b has a shape in which the outer circumference of the second cathode 115 is hollowed out to the size of the electrode. It is attached with tightening pressure so that the solution inside (the second cathode supply solution 123a to be described later) does not leak. As the member of the second cathode packing 119b, insulating silicone rubber can be used. The second cathode packing 119b is thicker than the second cathode 115, and is crushed by the tightening pressure so that the second cathode side spacer 118 and the second cathode side tank housing side face 120b are crushed. It is desirable that the thickness of the second cathode 115 be maintained while adhering to the second cathode 115 .
 第二陽電極側槽筐体側面120aは、第二陽電極114の外側に直接接触するように配置されている。第二陽電極側槽筐体側面120aは、第二陽電極114の外側への溶液の染み込みを抑制するために、第二陽電極側槽筐体側面120aの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第二陽電極114の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気透析の効率向上にもつながる。 The second positive electrode side tank housing side surface 120a is arranged so as to be in direct contact with the outside of the second positive electrode 114 . The second positive electrode-side tank housing side surface 120a is provided on the inner surface of the second positive electrode-side tank housing side surface 120a in order to suppress penetration of the solution to the outside of the second positive electrode 114, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second positive electrode 114, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 第二陰電極側槽筐体側面120bは、第二陰電極115の外側に直接接触するように配置されている。第二陰電極側槽筐体側面120bは、第二陰電極115の外側への溶液の染み込みを抑制するために、第二陰電極側槽筐体側面120bの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第二陰電極115の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電極透析の効率向上にもつながる。 The second cathode side tank housing side surface 120b is arranged so as to be in direct contact with the outside of the second cathode 115 . The second cathode-side tank housing side surface 120b is provided with an inner surface of the second cathode-side tank housing side surface 120b in order to prevent the solution from permeating to the outside of the second cathode 115, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second cathode 115, the efficiency of electrode dialysis can be improved if the solution can be prevented from flowing out of the electrode.
 第二陽電極溶液供給口121は、電気透析する第二陽電極供給溶液121aを流路内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陽電極114の外側から第二陽電極供給溶液121aを供給するため、第二陽電極溶液供給口121は、第二陽電極114より外周の位置に加工されている。 The second positive electrode solution supply port 121 is a connection port for flowing the second positive electrode supply solution 121a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the second positive electrode supply solution 121 a from the outside of the second positive electrode 114 , the second positive electrode solution supply port 121 is processed at a position outside the second positive electrode 114 .
 第二陽電極供給溶液121aは、次亜塩素酸水生成ユニット102において塩水から電気分解した次亜塩素酸水である。より詳細には、第二陽電極供給溶液121aは、第一陽電極溶液抽出口110から供給される第一陽電極抽出溶液110aであり、HCl及びHClOを多く含む酸性の次亜塩素酸水である。第二陽電極供給溶液121aは、第二陽電極溶液供給口121から第二陽電極側流路125に導入される。 The second positive electrode supply solution 121 a is hypochlorous acid water electrolyzed from salt water in the hypochlorous acid water generation unit 102 . More specifically, the second positive electrode supply solution 121a is the first positive electrode extraction solution 110a supplied from the first positive electrode solution extraction port 110, and is acidic hypochlorous acid water containing a large amount of HCl and HClO. be. The second positive electrode supply solution 121 a is introduced from the second positive electrode solution supply port 121 into the second positive electrode side channel 125 .
 第二陽電極溶液抽出口122は、電気透析した第二陽電極抽出溶液122aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陽電極114の外側に第二陽電極抽出溶液122aを抽出するため、第二陽電極溶液抽出口122は、第二陽電極114より外周の位置に加工されている。 The second positive electrode solution extraction port 122 is a connection port for extracting the electrodialyzed second positive electrode extraction solution 122a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second positive electrode extracting solution 122 a outside the second positive electrode 114 , the second positive electrode solution extracting port 122 is processed at a position outside the second positive electrode 114 .
 第二陽電極抽出溶液122aは、HClOが主成分の次亜塩素酸水である。第二陽電極抽出溶液122aは、第二陽電極側流路125から第二陽電極溶液抽出口122に導入される。 The second positive electrode extraction solution 122a is hypochlorous acid water containing HClO as a main component. The second positive electrode extraction solution 122 a is introduced into the second positive electrode solution extraction port 122 from the second positive electrode side channel 125 .
 より詳細には、第二陽電極抽出溶液122aは、第二陽電極供給溶液121aを第二陽電極側流路125に流通させて、第二陽電極供給溶液121aから残留成分の要因となる陽イオンを分離希薄化した溶液である。第二陽電極供給溶液121aに、次亜塩素酸水生成ユニットにおいて塩水を電気分解して生成した次亜塩素酸水(第一陽電極抽出溶液110a)を使用しているので、第二陽電極抽出溶液122aには、陽イオンであるNaイオンが分離希薄化され、HClOの成分が主成分の次亜塩素酸水となる。pHは酸性を示す。 More specifically, the second positive electrode extracting solution 122a causes the second positive electrode supply solution 121a to flow through the second positive electrode-side channel 125, and the second positive electrode supply solution 121a is extracted from the second positive electrode supply solution 121a. It is a solution in which ions are separated and diluted. Since hypochlorous acid water (first positive electrode extraction solution 110a) generated by electrolyzing salt water in the hypochlorous acid water generating unit is used as the second positive electrode supply solution 121a, the second positive electrode In the extraction solution 122a, Na + ions, which are cations, are separated and diluted to form hypochlorous acid water containing HClO as a main component. pH indicates acidity.
 第二陰電極溶液供給口123は、電気透析する第二陰電極供給溶液123aを流路内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陰電極115の外側から第二陰電極供給溶液123aを供給するため、第二陰電極溶液供給口123は、第二陰電極115より外周の位置に加工されている。 The second cathode solution supply port 123 is a connection port for flowing the second cathode supply solution 123a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the second cathode supply solution 123 a from the outside of the second cathode 115 , the second cathode solution supply port 123 is processed at a position outside the second cathode 115 .
 第二陰電極供給溶液123aは、次亜塩素酸水生成ユニット102において塩水から電気分解した次亜塩素酸水である。より詳細には、第二陰電極供給溶液123aは、第一陰電極溶液抽出口111から供給される第一陰電極抽出溶液111aであり、NaOHを多く含むアルカリ性の次亜塩素酸水である。第二陰電極供給溶液123aは、第二陰電極溶液供給口123から第二陰電極側流路126に導入される。 The second cathode supply solution 123 a is hypochlorous acid water electrolyzed from salt water in the hypochlorous acid water generation unit 102 . More specifically, the second cathode supply solution 123a is the first cathode extraction solution 111a supplied from the first cathode solution extraction port 111, and is alkaline hypochlorous acid water containing a large amount of NaOH. The second cathode supply solution 123 a is introduced from the second cathode solution supply port 123 into the second cathode side channel 126 .
 第二陰電極溶液抽出口124は、電気透析した第二陰電極抽出溶液124aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陰電極115の外側に第二陰電極抽出溶液124aを抽出するため、第二陰電極溶液抽出口124は、第二陰電極115より外周の位置に加工されている。 The second cathode solution extraction port 124 is a connection port for extracting the electrodialyzed second cathode extraction solution 124a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second cathode extraction solution 124 a outside the second cathode 115 , the second cathode solution extraction port 124 is processed at a position outside the second cathode 115 .
 第二陰電極抽出溶液124aは、NaClO及びNaOHが主成分の次亜塩素酸水である。第二陰電極抽出溶液124aは、第二陰電極側流路126から第二陰電極溶液抽出口124に導出される。 The second cathode extraction solution 124a is hypochlorous acid water containing NaClO and NaOH as main components. The second cathode extraction solution 124 a is led out from the second cathode side channel 126 to the second cathode solution extraction port 124 .
 より詳細には、第二陰電極抽出溶液124aは、第二陰電極供給溶液123aを第二陰電極側流路126に流通させて、残留成分の要因となる陽イオンが濃縮化された溶液である。第二陰電極供給溶液123aに、次亜塩素酸水生成ユニット102において塩水を電気分解して生成した次亜塩素酸水(第一陰電極抽出溶液111a)を使用しているので、第二陰電極抽出溶液124aには、陽イオンであるNaイオンが分離濃縮化され、NaOHとして生成されることで、NaOHとNaClOが主成分の次亜塩素酸水となる。pHはアルカリ性を示す。 More specifically, the second cathode extraction solution 124a is a solution in which the second cathode supply solution 123a is circulated through the second cathode-side channel 126 to concentrate the cations that cause residual components. be. Since the hypochlorous acid water (first cathode extraction solution 111a) generated by electrolyzing salt water in the hypochlorous acid water generation unit 102 is used as the second cathode supply solution 123a, the second cathode In the electrode extracting solution 124a, Na + ions, which are cations, are separated and concentrated to generate NaOH, resulting in hypochlorous acid water containing NaOH and NaClO as main components. pH indicates alkaline.
 ここで、第二陽電極溶液供給口121及び第二陰電極溶液供給口123は、鉛直方向の下方側に配置されることが望ましく、第二陽電極溶液抽出口122及び第二陰電極溶液抽出口124は、鉛直方向の上方側に配置されることが望ましい。流路内の電気透析反応及び電気分解反応により、酸素ガス及び水素ガス等が発生する際に、抽出口が上方に配置されてある方がガスをより効率的に溶液とともに排出することができる。 Here, the second positive electrode solution supply port 121 and the second negative electrode solution supply port 123 are preferably arranged on the lower side in the vertical direction, and the second positive electrode solution extraction port 122 and the second negative electrode solution extraction The port 124 is desirably positioned vertically upward. When oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
 第二陽電極側流路125は、第二陽電極114と第二陽電極側スペーサ117と隔膜116とによって囲まれた領域で形成される流路である。第二陽電極側流路125は、第二陽電極側スペーサ117の第二陽電極側流路孔125aによって蛇行して構成されている。より詳細には、第二陽電極側流路125は、水平方向に往復し下から上に陽極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第二陽電極側流路125の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。第二陽電極側流路125において液の逆流を低減するため、第二陽電極側流路125が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。第二陽電極側流路125は、その一方に第二陽電極溶液供給口121が設けられ、他方に第二陽電極溶液抽出口122が設けられており、内部に陽極側溶液である第二陽電極供給溶液121aが流通している。なお、第二陽電極側流路125は、請求項の「第一流路」に相当する。 The second positive electrode side channel 125 is a channel formed by the area surrounded by the second positive electrode 114 , the second positive electrode side spacer 117 and the diaphragm 116 . The second positive electrode side channel 125 is formed in a meandering manner by the second positive electrode side channel hole 125 a of the second positive electrode side spacer 117 . More specifically, the second positive electrode-side channel 125 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the second positive electrode side channel 125, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the second positive electrode-side channel 125, it is desirable that the second positive electrode-side channel 125 has a structure in which the second positive electrode-side channel 125 goes from bottom to top in one direction, except for reciprocating in the horizontal direction. The second positive electrode-side channel 125 is provided with the second positive electrode solution supply port 121 on one side and the second positive electrode solution extraction port 122 on the other side. A positive electrode supply solution 121a is circulated. The second positive electrode side flow path 125 corresponds to the "first flow path" in the claims.
 第二陰電極側流路126は、第二陰電極115と第二陰電極側スペーサ118と隔膜116によって囲まれた領域で形成される流路である。第二陰電極側流路126は、第二陰電極側スペーサ118の第二陰電極側流路孔126aによって蛇行して構成されている。より詳細には、第二陰電極側流路126は、水平方向に往復し下から上に陰極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第二陰電極側流路126の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。第二陰電極側流路126において液の逆流を低減するため、第二陰電極側流路126が水平方向に往復する以外は一方向に下から上に流れる構造とすることが望ましい。第二陰電極側流路126は、その一方に第二陰電極溶液供給口123が設けられ、他方に第二陰電極溶液抽出口124が設けられており、内部に陰極側溶液である第二陰電極供給溶液123aが流通している。なお、第二陰電極側流路126は、請求項の「第二流路」に相当する。 The second cathode-side channel 126 is a channel formed by a region surrounded by the second cathode 115 , the second cathode-side spacer 118 and the diaphragm 116 . The second cathode-side channel 126 is formed by meandering second cathode-side channel holes 126 a of the second cathode-side spacer 118 . More specifically, the second cathode-side channel 126 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top. Further, by reducing the channel width of the second cathode side channel 126, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the second cathode-side channel 126, it is desirable that the second cathode-side channel 126 has a structure in which liquid flows in one direction from bottom to top except for reciprocation in the horizontal direction. The second cathode-side channel 126 has a second cathode solution supply port 123 on one side and a second cathode solution extraction port 124 on the other side. A cathode supply solution 123a is circulating. The second cathode-side channel 126 corresponds to the "second channel" in the claims.
 第二陽電極側流路125及び第二陰電極側流路126は、隔膜116を挟んで対称な形状で対向している。つまり、第二陽電極側流路125及び第二陰電極側流路126は、隔膜116を挟んで互いに対向する蛇行形状で構成されている。このようにして、第二陽電極側流路125と第二陰電極側流路126とは、いわゆる有隔膜電解流路を構成している。そして、第二陽電極側流路125内を流通する次亜塩素酸水に含まれるNaイオンが第二陰電極側流路126側に移動する。イオンの移動量は、印加される電圧電流及び流路内の流速によって制御される。流速は、第二陽電極溶液供給口121の前段に陽電極側供給ポンプ129を設置し、第二陰電極溶液供給口123の前段に陰電極側供給ポンプ131を設置して制御することができる。各ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。一定流量で溶液を流すことで、流路内で電気透析および電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The second positive electrode side channel 125 and the second negative electrode side channel 126 face each other in a symmetrical shape with the diaphragm 116 interposed therebetween. That is, the second positive electrode side channel 125 and the second negative electrode side channel 126 are formed in meandering shapes facing each other with the diaphragm 116 interposed therebetween. In this manner, the second positive electrode side channel 125 and the second negative electrode side channel 126 constitute a so-called membrane electrolysis channel. Then, the Na + ions contained in the hypochlorous acid water flowing through the second positive electrode side channel 125 move to the second negative electrode side channel 126 side. The amount of ion movement is controlled by the applied voltage and current and the flow velocity in the channel. The flow rate can be controlled by installing a positive electrode side supply pump 129 in front of the second positive electrode solution supply port 121 and installing a negative electrode side supply pump 131 in front of the second negative electrode solution supply port 123 . . Each pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, it is possible to control the electrodialysis and electrolysis time in the flow channel constantly, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 電気透析電源127は、第二陽電極114及び第二陰電極115と接続され、第二陽電極114及び第二陰電極115に電流及び電圧を印加することができる直流電源である。電気透析電源127は、一定の電流となるように定電流制御の電源として使用してもよいし、一定の電圧となるように定電圧制御の電源として使用してもよい。なお、電気透析電源127は、スケール蓄積の低減のため、例えば、次亜塩素酸水処理ユニット103への次亜塩素酸水の通水ごとに、第二陽電極114と第二陰電極115の電位を入れ替えて転極し、付着したスケールを溶解させるように制御してもよい。 The electrodialysis power supply 127 is a DC power supply that is connected to the second positive electrode 114 and the second negative electrode 115 and can apply current and voltage to the second positive electrode 114 and the second negative electrode 115 . The electrodialysis power supply 127 may be used as a constant current controlled power supply so as to provide a constant current, or may be used as a constant voltage controlled power supply so as to provide a constant voltage. In order to reduce scale accumulation, the electrodialysis power supply 127 is connected to the second positive electrode 114 and the second negative electrode 115 each time the hypochlorous acid water is supplied to the hypochlorous acid water treatment unit 103, for example. It may be controlled to switch the potential to reverse the polarity and dissolve the adhering scale.
 陽電極側接続チューブ128は、図7に示すように、次亜塩素酸水生成ユニット102の第一陽電極溶液抽出口110と、陽電極側供給ポンプ129を介して次亜塩素酸水処理ユニット103の第二陽電極溶液供給口121とを接続するチューブである。陽電極側接続チューブ128は、陽電極側供給ポンプ129が動作することによって次亜塩素酸水生成ユニット102で生成された次亜塩素酸水(第一陽電極抽出溶液110a)を、次亜塩素酸水処理ユニット103の第二陽電極溶液供給口121に送液する。陽電極側接続チューブ128は、例えばシリコンチューブなどを使用することができる。 As shown in FIG. 7, the positive electrode side connection tube 128 is connected to the hypochlorous acid water treatment unit via the first positive electrode solution extraction port 110 of the hypochlorous acid water generation unit 102 and the positive electrode side supply pump 129. It is a tube that connects 103 with the second positive electrode solution supply port 121 . The positive electrode side connection tube 128 converts the hypochlorous acid water (first positive electrode extraction solution 110a) generated in the hypochlorous acid water generation unit 102 by the operation of the positive electrode side supply pump 129 into hypochlorous acid. The solution is sent to the second positive electrode solution supply port 121 of the acid water treatment unit 103 . A silicon tube or the like, for example, can be used for the positive electrode side connection tube 128 .
 陰電極側接続チューブ130は、次亜塩素酸水生成ユニット102の第一陰電極溶液抽出口111と、陰電極側供給ポンプ131を介して次亜塩素酸水処理ユニット103の第二陰電極溶液供給口123とを接続するチューブである。陰電極側接続チューブ130は、次亜塩素酸水生成ユニット102で生成された次亜塩素酸水((第一陰電極抽出溶液111a)を、次亜塩素酸水処理ユニット103の第二陰電極溶液供給口123に送液する。陰電極側接続チューブ130は、例えばシリコンチューブなどを使用することができる。 The negative electrode side connection tube 130 connects the first negative electrode solution extraction port 111 of the hypochlorous acid water generation unit 102 and the second negative electrode solution of the hypochlorous acid water treatment unit 103 via the negative electrode side supply pump 131 . It is a tube that connects with the supply port 123 . The cathode-side connection tube 130 connects the hypochlorous acid water ((first cathode extraction solution 111a) generated in the hypochlorous acid water generation unit 102 to the second cathode of the hypochlorous acid water treatment unit 103. The liquid is sent to the solution supply port 123. The negative electrode side connection tube 130 can use, for example, a silicon tube.
 陽電極側接続チューブ128及び陰電極側接続チューブ130には、例えば、同一内径及び同一長さのものが用いられ、内部を流通する溶液の流量及び流速に差異が生じないようにしている。 For the positive electrode side connection tube 128 and the negative electrode side connection tube 130, for example, tubes having the same inner diameter and the same length are used so that there is no difference in the flow rate and flow velocity of the solution flowing inside.
 陽電極側供給ポンプ129は、次亜塩素酸水生成ユニット102において生成した第一陽電極抽出溶液110aを第二陽電極供給溶液121aとして供給する流れを生じさせるポンプである。より詳細には、陽電極側供給ポンプ129は、第一陰陽電極溶液供給口109、第一陰陽電極間流路112、第一陽電極溶液抽出口110、第二陽電極溶液供給口121、第二陽電極側流路125、及び第二陽電極溶液抽出口122の順に流通する各溶液(塩水、第一陰陽電極供給溶液109a、第一陽電極抽出溶液110a、第二陽電極供給溶液121a、第二陽電極抽出溶液122a)の流れを生じさせる。この際、陽電極側供給ポンプ129は、次亜塩素酸水生成ユニット102を流れる溶液の流速を一体に制御すると同時に、次亜塩素酸水処理ユニット103を流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The positive electrode side supply pump 129 is a pump that generates a flow that supplies the first positive electrode extraction solution 110a generated in the hypochlorous acid water generation unit 102 as the second positive electrode supply solution 121a. More specifically, the positive electrode side supply pump 129 has a first negative electrode solution supply port 109, a first positive electrode inter-electrode channel 112, a first positive electrode solution extraction port 110, a second positive electrode solution supply port 121, a Each solution (salt water, first negative electrode supply solution 109a, first positive electrode extraction solution 110a, second positive electrode supply solution 121a, A second positive electrode extraction solution 122a) is caused to flow. At this time, the positive electrode side supply pump 129 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generation unit 102, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment unit 103 to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 陰電極側供給ポンプ131は、次亜塩素酸水生成ユニット102において生成した第一陰電極抽出溶液111aを第二陰電極供給溶液123aとして供給する流れを生じさせるポンプである。より詳細には、陰電極側供給ポンプ131は、第一陰陽電極溶液供給口109、第一陰陽電極間流路112、第一陰電極溶液抽出口111、第二陰電極溶液供給口123、第二陰電極側流路126、及び第二陰電極溶液供給口123の順に流通する各溶液(塩水、第一陰陽電極供給溶液109a、第一陰電極抽出溶液111a、第二陽電極抽出溶液122a、第二陰電極抽出溶液124a)の流れを生じさせる。この際、陰電極側供給ポンプ131は、次亜塩素酸水生成ユニット102を流れる溶液の流速を一体に制御すると同時に、次亜塩素酸水処理ユニット103を流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The cathode side supply pump 131 is a pump that generates a flow that supplies the first cathode extraction solution 111a generated in the hypochlorous acid water generation unit 102 as the second cathode supply solution 123a. More specifically, the cathode-side supply pump 131 has a first anode-positive electrode solution supply port 109, a first cathode-positive electrode channel 112, a first cathode solution extraction port 111, a second cathode solution supply port 123, a second Each solution (salt water, first negative electrode supply solution 109a, first negative electrode extraction solution 111a, second positive electrode extraction solution 122a, A second cathodic extraction solution 124a) is caused to flow. At this time, the cathode-side supply pump 131 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating unit 102, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment unit 103 to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 第一陰陽電極間流路112の流速は、陽電極側供給ポンプ129と陰電極側供給ポンプ131との合計量として制御される。また、陽電極側供給ポンプ129及び陰電極側供給ポンプ131は、請求項の「供給ポンプ」に相当する。 The flow rate of the first cathode-positive electrode channel 112 is controlled as the total amount of the positive electrode-side supply pump 129 and the negative electrode-side supply pump 131 . Also, the positive electrode side supply pump 129 and the negative electrode side supply pump 131 correspond to the "supply pump" in the claims.
 以上のように、次亜塩素酸水処理ユニット103は、各部材によって構成される。 As described above, the hypochlorous acid water treatment unit 103 is composed of each member.
 次亜塩素酸水供給装置101は、図7に示すように、上述した次亜塩素酸水生成ユニット102と次亜塩素酸水処理ユニット103との間を、各ユニットの陽電極側の流路に設けた陽電極側接続チューブ128を介して連結し、各ユニットの陰電極側の流路に設けた陰電極側接続チューブ130を介して連結して構成される。そして、次亜塩素酸水供給装置101は、次亜塩素酸水生成ユニット102に塩水を連続的に導入し、次亜塩素酸水処理ユニット103から次亜塩素酸水を外部に連続的に供給する。より詳細には、次亜塩素酸水供給装置101は、次亜塩素酸水生成ユニット102に連続的に導入される塩水を電気分解し、次亜塩素酸水処理ユニット103の陽電極側における第二陽電極側流路125から送出される第二陽電極抽出溶液122aを酸性の次亜塩素酸水として外部に供給する。また、次亜塩素酸水供給装置101は、次亜塩素酸水処理ユニット103の陰電極側における第二陰電極側流路126から送出される第二陰電極抽出溶液124aをアルカリ性の次亜塩素酸水として外部に供給する。 As shown in FIG. 7, the hypochlorous acid water supply device 101 has a flow path on the positive electrode side of each unit between the hypochlorous acid water generation unit 102 and the hypochlorous acid water treatment unit 103 described above. , and connected via a negative electrode side connection tube 130 provided in the channel on the negative electrode side of each unit. The hypochlorous acid water supply device 101 continuously introduces salt water into the hypochlorous acid water generation unit 102, and continuously supplies the hypochlorous acid water from the hypochlorous acid water treatment unit 103 to the outside. do. More specifically, the hypochlorous acid water supply device 101 electrolyzes the salt water that is continuously introduced into the hypochlorous acid water generation unit 102 to produce a second The second positive electrode extraction solution 122a delivered from the two positive electrode side channel 125 is supplied to the outside as acidic hypochlorous acid water. In addition, the hypochlorous acid water supply device 101 converts the second cathode extraction solution 124a delivered from the second cathode side channel 126 on the cathode side of the hypochlorous acid water treatment unit 103 into alkaline hypochlorous acid. Supplied to the outside as acid water.
 次に、図10及び図11を参照して、次亜塩素酸水生成ユニット102での処理動作について説明する。 Next, referring to FIGS. 10 and 11, the processing operation in the hypochlorous acid water generation unit 102 will be described.
 図10及び図11に示すように、次亜塩素酸水生成ユニット102では、第一陰陽電極溶液供給口109を通って塩水である第一陰陽電極供給溶液109aが第一陰陽電極間流路112に連続的に供給される。そして、第一陰陽電極溶液供給口109から供給された第一陰陽電極供給溶液109aは、蛇行して形成された第一陰陽電極間流路112を流通していく。この際、第一陰陽電極供給溶液109aは、第一陰陽電極間流路112を流通していくと同時に、両端の第一陽電極104及び第一陰電極105に電圧が印加される。電圧が印加されると、第一陽電極104側には陰イオン(Clイオン)、第一陰電極105側には陽イオン(Naイオン)が引き付けられ、電気分解により第一陽電極104側にはHCl及びHClO、第一陰電極105側にはNaOHが生成される。さらにHClOとNaOHが反応することで、NaClOが生成される。これを繰り返すことにより、NaClOが主成分となり、HClO及びNaOH及び残留したNaClが含まれる次亜塩素酸水が生成される。 As shown in FIGS. 10 and 11, in the hypochlorous acid water generating unit 102, a first negative electrode supply solution 109a, which is salt water, passes through a first negative electrode solution supply port 109 and flows into a first negative electrode flow path 112. continuously supplied to Then, the first negative electrode supply solution 109a supplied from the first negative electrode solution supply port 109 flows through the first channel 112 between the positive and negative electrodes which is formed meandering. At this time, the supply solution 109a for the first negative and positive electrodes flows through the channel 112 between the first positive and negative electrodes, and at the same time, a voltage is applied to the first positive electrode 104 and the first negative electrode 105 at both ends. When a voltage is applied, anions (Cl ions) are attracted to the first positive electrode 104 side, and positive ions (Na + ions) are attracted to the first negative electrode 105 side, and the first positive electrode 104 is electrolyzed. HCl and HClO are produced on the side, and NaOH is produced on the first cathode 105 side. Further, HClO and NaOH react to generate NaClO. By repeating this, hypochlorous acid water containing NaClO as the main component and containing HClO, NaOH, and residual NaCl is produced.
 次亜塩素酸水生成ユニット102での処理動作では、第一陰陽電極間流路112にて電気分解を行う時間を長くすることで、NaClの電気分解量を多くして、第一陽電極抽出溶液110a及び第一陰電極抽出溶液111aの中に残留するNaCl(塩水)を低減することができる。電気分解を行う時間を長くするためには、第一陰陽電極間流路112の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気分解を行う距離を稼いでいる。さらに第一陰陽電極間流路112の断面積を小さくすることでも距離が長くなり、電気分解時間を長くすることができる。 In the processing operation in the hypochlorous acid water generation unit 102, the electrolysis time is lengthened in the channel 112 between the first positive and negative electrodes, thereby increasing the amount of electrolysis of NaCl and extracting the first positive electrode. Residual NaCl (brine) in solution 110a and first cathode extraction solution 111a can be reduced. In order to lengthen the electrolysis time, it is necessary to increase the distance of the first channel 112 between the negative and positive electrodes. It is formed in a meandering manner, and the distance for electrolysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional area of the first cathode-positive electrode channel 112, the distance can be lengthened, and the electrolysis time can be lengthened.
 次に、図14及び図15を参照して、次亜塩素酸水処理ユニット103での処理動作について説明する。 Next, the treatment operation in the hypochlorous acid water treatment unit 103 will be described with reference to FIGS. 14 and 15. FIG.
 図14及び図15に示すように、次亜塩素酸水処理ユニット103では、第二陽電極溶液供給口121を通って次亜塩素酸水である第二陽電極供給溶液121aが第二陽電極側流路125に連続的に供給され、第二陰電極溶液供給口123を通って次亜塩素酸水である第二陰電極供給溶液123aが第二陰電極側流路126に連続的に供給される。そして、第二陽電極溶液供給口121から供給された第二陽電極供給溶液121aは、蛇行して形成された第二陽電極側流路125を流通していき、第二陰電極溶液供給口123から供給された第二陰電極供給溶液123aは、同じく蛇行して形成された第二陰電極側流路126を流通していく。この際、第二陽電極供給溶液121a及び第二陰電極供給溶液123aは、隔膜116を挟んで対向し、同じ方向に流通されて第二陽電極側流路125及び第二陰電極側流路126をそれぞれ流通していくと同時に、両端の第二陽電極114及び第二陰電極115に電圧が印加される。電圧が印加されると、第二陽電極114側には陰イオン、第二陰電極115側には陽イオン(Naイオン)が引き付けられる。隔膜116は、陽イオンのみを透過可能な膜で構成されているため、第二陽電極側流路125を流通する第二陽電極供給溶液121aに含まれる陽イオン(Naイオン)は、隔膜116を透過して、第二陰電極側流路126の第二陰電極供給溶液123aを通って第二陰電極115側に引き付けられる。反対に、第二陰電極側流路126を流通する陰イオンは、隔膜116を透過できないため、第二陽電極側流路125に含まれる陰イオンのみが第二陽電極114に引き付けられる。これを繰り返すことにより、第二陽電極側流路125を流通する第二陽電極供給溶液121aに含まれる陽イオン(Naイオン)が、第二陰電極側流路126を流通する第二陰電極供給溶液123aに移動して電気透析が進行し、第二陽電極側流路125を流通する第二陽電極供給溶液121aは、陽イオン(Naイオン)が分離希薄化され、第二陰電極側流路126を流通する第二陰極供給溶液23aは、陽イオン(Naイオン)が濃縮化されて抽出される。その結果、第二陽電極溶液抽出口122から、第二陽電極抽出溶液122aとして、残留成分となるNaClO及びNaOHが分離希薄化してHClO成分が主成分となった次亜塩素酸水が抽出される。反対に、第二陰電極溶液抽出口124から、第二陰電極抽出溶液124aとして、残留成分を構成するNaイオンが濃縮化され、NaOHとして生成された成分を含む溶液(次亜塩素酸水)が抽出される。 As shown in FIGS. 14 and 15, in the hypochlorous acid water treatment unit 103, the second positive electrode supply solution 121a, which is hypochlorous acid water, passes through the second positive electrode solution supply port 121 to the second positive electrode. The second cathode supply solution 123a, which is hypochlorous acid water, is continuously supplied to the side channel 125 and is continuously supplied to the second cathode side channel 126 through the second cathode solution supply port 123. be done. Then, the second positive electrode supply solution 121a supplied from the second positive electrode solution supply port 121 flows through the meandering second positive electrode side channel 125, and flows through the second negative electrode solution supply port. A second cathode supply solution 123a supplied from 123 flows through a second cathode side channel 126 which is also formed in a meandering manner. At this time, the second positive electrode supply solution 121a and the second negative electrode supply solution 123a face each other across the diaphragm 116 and flow in the same direction to form the second positive electrode side channel 125 and the second negative electrode side channel 125, respectively. 126, a voltage is applied to the second positive electrode 114 and the second negative electrode 115 at both ends. When a voltage is applied, negative ions are attracted to the second positive electrode 114 side and positive ions (Na + ions) are attracted to the second negative electrode 115 side. Since the diaphragm 116 is composed of a membrane that is permeable only to cations, the cations (Na + ions) contained in the second positive electrode supply solution 121a flowing through the second positive electrode-side channel 125 are 116, and passes through the second cathode supply solution 123a in the second cathode side channel 126 and is attracted to the second cathode 115 side. On the contrary, since the anions flowing through the second negative electrode side channel 126 cannot pass through the diaphragm 116, only the anions contained in the second positive electrode side channel 125 are attracted to the second positive electrode 114. By repeating this, the cations (Na 2 + ions) contained in the second positive electrode supply solution 121a flowing through the second positive electrode-side channel 125 are converted to the second negative electrode flowing through the second negative electrode-side channel 126. Electrodialysis progresses by moving to the electrode supply solution 123a, and the second positive electrode supply solution 121a flowing through the second positive electrode-side channel 125 has cations (Na 2 + ions) separated and diluted to form a second negative electrode supply solution 121a. The second cathode supply solution 23a that flows through the electrode-side channel 126 is extracted with concentrated cations (Na + ions). As a result, from the second positive electrode solution extraction port 122, as the second positive electrode extraction solution 122a, the residual components NaClO and NaOH are separated and diluted, and the hypochlorous acid water containing the HClO component as the main component is extracted. be. Conversely, from the second cathode solution extraction port 124, the Na + ions constituting the residual components are concentrated and NaOH is generated as the second cathode extraction solution 124a from the second cathode solution extraction port 124. ) is extracted.
 次亜塩素酸水処理ユニット103での処理動作では、第二陽電極側流路125及び第二陰電極側流路126にて電気透析を行う時間を長くすることで、陽イオン(Naイオン)の移動量をより多くして、第二陽電極抽出溶液122aのNaClO及びNaOHからなる残留成分をより低減することができる。電気透析を行う時間を長くするためには、第二陽電極側流路125及び第二陰電極側流路126の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第二陽電極側流路125及び第二陰電極側流路126の断面積を小さくすることで距離が長くなり、電気透析時間を長くすることができる。 In the treatment operation in the hypochlorous acid water treatment unit 103, by increasing the electrodialysis time in the second positive electrode side channel 125 and the second negative electrode side channel 126, cations (Na + ions ) can be moved more to further reduce the residual components of NaClO and NaOH in the second positive electrode extraction solution 122a. In order to lengthen the electrodialysis time, it is necessary to lengthen the distances of the second positive electrode side channel 125 and the second negative electrode side channel 126. It is formed in a meandering manner so that it rises one by one, and the distance for electrodialysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional areas of the second positive electrode side channel 125 and the second negative electrode side channel 126, the distance becomes longer, and the electrodialysis time can be lengthened.
 第二陽電極側流路125及び第二陰電極側流路126を通る各溶液の流速は、同じとなるように各ポンプを制御しているが、互いに異なるようにしてもよい。流速が異なる場合には、抽出される各溶液の濃度に影響する。例えば、第二陽電極側流路125の流速を相対的に速くして、第二陰電極側流路126の流速を相対的に遅くした場合には、第二陽電極側流路125及び第二陰電極側流路126の流速を同じにした場合に比べて、第二陰電極側流路126から抽出した第二陰電極抽出溶液124aは少量かつ濃度が濃い溶液となる。これにより、第二陰電極抽出溶液124aを排液する場合には、第二陰電極側流路126の流速を遅くすることが望ましい。 The pumps are controlled so that the flow rates of the solutions passing through the second positive electrode side channel 125 and the second negative electrode side channel 126 are the same, but they may be different. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity in the second positive electrode side channel 125 is relatively increased and the flow velocity in the second negative electrode side channel 126 is relatively decreased, the second positive electrode side channel 125 and the second The second cathode extraction solution 124a extracted from the second cathode-side channel 126 is smaller and has a higher concentration than when the two-cathode-side channel 126 has the same flow rate. Therefore, when the second cathode extraction solution 124a is drained, it is desirable to slow down the flow velocity of the second cathode side channel 126. FIG.
 次に、図16A~図16Cを参照して、実際に次亜塩素酸水供給装置101(次亜塩素酸水生成ユニット102及び次亜塩素酸水処理ユニット103)を流通して第二陽電極溶液抽出口122及び第二陰電極溶液抽出口124からそれぞれ抽出した第二陽電極抽出溶液122a及び第二陰電極抽出溶液124aの次亜塩素酸水の特性(導電率、pH、及び有効塩素濃度)について説明する。図16A~図16Cは、次亜塩素酸水供給装置101を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。より詳細には、図16Aは、次亜塩素酸水供給装置101による電気透析時間と導電率の関係を示す図である。図16Bは、次亜塩素酸水供給装置101による電気透析時間とpHの関係を示す図である。図16Cは、次亜塩素酸水供給装置101による電気透析時間と有効塩素濃度の関係を示す図である。 Next, referring to FIGS. 16A to 16C, the hypochlorous acid water supply device 101 (the hypochlorous acid water generation unit 102 and the hypochlorous acid water treatment unit 103) is actually circulated to supply the second positive electrode. The properties of the hypochlorous acid water (conductivity, pH, and effective chlorine concentration) of the second positive electrode extraction solution 122a and the second negative electrode extraction solution 124a extracted from the solution extraction port 122 and the second negative electrode solution extraction port 124, respectively ) will be explained. 16A to 16C are diagrams showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply device 101 and the electrodialysis time. More specifically, FIG. 16A is a diagram showing the relationship between electrodialysis time and electrical conductivity by the hypochlorous acid water supply device 101. FIG. FIG. 16B is a diagram showing the relationship between electrodialysis time and pH by the hypochlorous acid water supply device 101. FIG. FIG. 16C is a diagram showing the relationship between the electrodialysis time and available chlorine concentration by the hypochlorous acid water supply device 101. FIG.
 なお、図16A~図16Cでの実験評価では、次亜塩素酸水生成ユニット102に、流路断面積26mm、流路長675mmの第一陰陽電極間流路112を形成したものを用い、次亜塩素酸水処理ユニット103に、流路断面積8mm、流路長675mmの第二陽電極側流路125及び第二陰電極側流路126を形成したものを用いた。また、陽電極側供給ポンプ129及び陰電極側要求ポンプ31の流量条件としては、ともに153mL/h及び250mL/hの条件の流速で流通させて次亜塩素酸水生成ユニット102の電気分解時間、及び次亜塩素酸水処理ユニット103の電気透析時間を調整し、第二陽電極抽出溶液122a及び第二陰電極抽出溶液124aの導電率、pH、及び有効塩素濃度の測定を行った。 In the experimental evaluation in FIGS. 16A to 16C, the hypochlorous acid water generating unit 102 was formed with the first cathode-positive electrode channel 112 having a channel cross-sectional area of 26 mm 2 and a channel length of 675 mm. A hypochlorous acid water treatment unit 103 in which a second positive electrode side channel 125 and a second negative electrode side channel 126 having a channel cross-sectional area of 8 mm 2 and a channel length of 675 mm were formed was used. In addition, as the flow rate conditions of the positive electrode side supply pump 129 and the negative electrode side demand pump 31, both are circulated at flow rates of 153 mL / h and 250 mL / h, and the electrolysis time of the hypochlorous acid water generation unit 102 is And the electrodialysis time of the hypochlorous acid water treatment unit 103 was adjusted, and the conductivity, pH, and effective chlorine concentration of the second positive electrode extraction solution 122a and the second negative electrode extraction solution 124a were measured.
 また、第一陰陽電極溶液供給口109に供給した第一陰陽電極供給溶液109aの塩水は、導電率:405μS/cm、pH:6.7、有効塩素濃度:0ppm、及び塩化物イオン濃度:138ppmとなるものを使用した。また電気分解電源113及び電気透析電源127には、0.2Aの定電流を印加可能な電源を使用して電気分解及び電気透析を行った。ここで、電気分解時間とは、溶液が第一陽電極104及び第一陰電極105に流路内で直接触れている時間を指しており、電気分解時間が長いほど、流速は遅いことになる。また、電気透析時間とは、溶液が第二陽電極114および第二陰電極115に流路内で直接触れている時間を指しており、電気透析時間が長いほど、流速は遅いことになる。今回、陽極側および陰極側の流速は同一に設定して電気透析を行っている。 The salt water of the first negative and positive electrode supply solution 109a supplied to the first negative and positive electrode solution supply port 109 has a conductivity of 405 μS/cm, a pH of 6.7, an available chlorine concentration of 0 ppm, and a chloride ion concentration of 138 ppm. I used what would be Electrolysis and electrodialysis were performed using a power source capable of applying a constant current of 0.2 A as the electrolysis power source 113 and the electrodialysis power source 127 . Here, the electrolysis time refers to the time during which the solution is in direct contact with the first positive electrode 104 and the first negative electrode 105 in the channel, and the longer the electrolysis time, the slower the flow rate. . Also, the electrodialysis time refers to the time during which the solution is in direct contact with the second positive electrode 114 and the second negative electrode 115 in the channel, and the longer the electrodialysis time, the slower the flow rate. This time, electrodialysis was performed by setting the flow rate on the anode side and the cathode side to be the same.
 図16Aに示す導電率の推移を見ると、電気透析時間が長いほど、言い換えると流速が遅くなるほど、第二陽電極溶液抽出口122から抽出した第二陽電極抽出溶液122aの導電率(陽極側の導電率)が低下し、陰極側溶液抽出口12から抽出した陰極側抽出溶液12aの導電率(陰極側の導電率)は増加している。これは、次亜塩素酸水生成ユニット102で生成された次亜塩素酸水を、次亜塩素酸水処理ユニット103の第二陽電極側流路125に流通させると、陽極側溶液に含まれる陽イオンであるNaイオンが隔膜116を通って陰極側に移動し、陽極側はNaClOからHClOに変化して導電率が低下したと考えられる。NaClOは、NaイオンとClOイオンに電離するが、HClOは分子として存在することが主であるため、NaClOからHClOに変化することで導電率は低下する。 Looking at the transition of the conductivity shown in FIG. 16A, the longer the electrodialysis time, in other words, the slower the flow rate, the more the conductivity of the second positive electrode extraction solution 122a extracted from the second positive electrode solution extraction port 122 (the anode side ) decreases, and the conductivity of the cathode-side extraction solution 12a extracted from the cathode-side solution extraction port 12 (cathode-side conductivity) increases. This is contained in the anode side solution when the hypochlorous acid water generated in the hypochlorous acid water generation unit 102 is circulated through the second positive electrode side channel 125 of the hypochlorous acid water treatment unit 103 It is thought that Na + ions, which are cations, migrated through the diaphragm 116 to the cathode side, and changed from NaClO to HClO on the anode side, resulting in a decrease in electrical conductivity. NaClO ionizes into Na + ions and ClO 2 ions, but since HClO mainly exists as a molecule, the conductivity decreases when NaClO changes to HClO.
 図16Bに示すpHの推移を見ると、第二陽電極抽出溶液122aのpH(陽極側のpH)は弱酸性側に変化し、第二陰電極抽出溶液124aのpH(陰極側のpH)はアルカリ性側に変化している。このことから、陽極側でのHClOへの変化の影響がうかがえる。陽極側において電気透析時間を長くするほどpHが中性に近づいているのは、溶液中にわずかに残っている塩化物イオンが電気分解によって次亜塩素酸に変化しているためと考えられる。一方、陰極側は、Naイオンが移動することでNaOHが形成されて、アルカリ性へと変化するためである。 Looking at the transition of pH shown in FIG. It is changing to the alkaline side. This suggests the effect of conversion to HClO on the anode side. The reason why the pH on the anode side becomes closer to neutral as the electrodialysis time increases is thought to be that the slight amount of chloride ions remaining in the solution are converted to hypochlorous acid by electrolysis. On the other hand, on the cathode side, NaOH is formed by movement of Na + ions, and the cathode side becomes alkaline.
 図16Cに示す有効塩素濃度の推移を見ると、第二陽電極抽出溶液122aの有効塩素濃度(陽極側の有効塩素濃度)は、電気透析時間とともに増加する。図16Aに示す導電率が405μS/cm以下に低下している流速条件では、有効塩素濃度の上昇率は低下しており、HClOへの変化が完了してきていると考えられる。また、第二陰電極抽出溶液124aについても同様に、有効塩素濃度(陰極側の有効塩素濃度)は、電気透析時間とともに増加する。これは、陽電極側供給ポンプ129及び陰電極側供給ポンプ131の流速が遅くなると、次亜塩素酸水生成ユニット102での電気分解時間が増加して次亜塩素酸水生成量が増えるため、次亜塩素酸水処理ユニット103の第二陰電極溶液抽出口124で抽出される次亜塩素酸水量も増えることが要因と考えられる。 Looking at the transition of the effective chlorine concentration shown in FIG. 16C, the effective chlorine concentration of the second positive electrode extraction solution 122a (the effective chlorine concentration on the anode side) increases with the electrodialysis time. Under the flow velocity conditions in which the conductivity is reduced to 405 μS/cm or less shown in FIG. 16A, the rate of increase in available chlorine concentration is reduced, and it is considered that the conversion to HClO has been completed. Similarly, for the second cathode extraction solution 124a, the available chlorine concentration (available chlorine concentration on the cathode side) increases with the electrodialysis time. This is because when the flow velocities of the positive electrode side supply pump 129 and the negative electrode side supply pump 131 slow down, the electrolysis time in the hypochlorous acid water generation unit 102 increases and the amount of hypochlorous acid water generated increases. The reason for this is thought to be that the amount of hypochlorous acid water extracted from the second cathode solution extraction port 124 of the hypochlorous acid water treatment unit 103 also increases.
 次亜塩素酸水供給装置101は、陽極側からは除菌力の高いHClO主体の次亜塩素酸水を、陰極側からは洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水を同時に抽出することができる。HClO主体の次亜塩素酸水は、残留成分の抑制された溶液で、除菌力を維持しながら、空間噴霧時でも残留成分起因による金属腐食を抑制することが可能になる。一方、NaClO及びNaOH主体の次亜塩素酸水は、残留成分が残る溶液のため空間噴霧はできないが、洗浄力の高い溶液であり排水口等の酸性の汚れがある部位に流すことで洗浄効果をもたらすことができる。次亜塩素酸水処理装置1では、陽極側で生成するHClO主体の次亜塩素酸水を空間除菌に使用しつつ、反対側の陰極側で生成されるNaClO及びNaOH主体の次亜塩素酸水も洗浄として活用が可能となる。 The hypochlorous acid water supply device 101 simultaneously extracts hypochlorous acid water mainly composed of HClO with high sterilizing power from the anode side and hypochlorous acid water mainly composed of NaClO and NaOH with high detergency from the cathode side. can do. Hypochlorous acid water containing mainly HClO is a solution in which residual components are suppressed, and it is possible to suppress metal corrosion caused by residual components even during space spraying while maintaining sterilization power. On the other hand, hypochlorous acid water containing NaClO and NaOH as a main component cannot be sprayed in space because it is a solution that leaves residual components, but it is a solution with high detergency and is effective in washing areas with acidic dirt such as drains. can bring In the hypochlorous acid water treatment device 1, hypochlorous acid water mainly composed of HClO generated on the anode side is used for space sterilization, while hypochlorous acid mainly composed of NaClO and NaOH is generated on the cathode side on the opposite side. Water can also be used for cleaning.
 以上、本実施の形態2-1に係る次亜塩素酸水供給装置101によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water supply device 101 according to Embodiment 2-1, the following effects can be enjoyed.
 (1)次亜塩素酸水供給装置101は、蛇行状の無隔膜電解流路(第一陰陽電極間流路112)内に供給される塩水から一対の第一陰陽電極間(第一陽電極104と第一陰電極105との間)への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成ユニット102と、蛇行状の有隔膜電解流路(第二陽電極側流路125及び第二陰電極側流路126)内のそれぞれに次亜塩素酸水生成ユニット102から供給される次亜塩素酸水を一対の第二陰陽電極間(第二陽電極114と第二陰電極115との間)への通電によって連続的に処理する次亜塩素酸水処理ユニット103と、を備える。次亜塩素酸水処理ユニット103の陽電極側における電解流路(第二陽電極側流路125)から送出される次亜塩素酸水を外部に供給する構造とした。 (1) The hypochlorous acid water supply device 101 supplies salt water to the meandering diaphragmless electrolysis flow path (first anode-positive electrode flow path 112) between the pair of first cathode and cathode electrodes (first positive electrode). 104 and the first negative electrode 105), a hypochlorous acid water generating unit 102 for continuously electrolytically generating hypochlorous acid water by energizing the current, and a meandering diaphragm electrolysis flow path (second positive electrode Hypochlorous acid water supplied from the hypochlorous acid water generation unit 102 is supplied to each of the side flow path 125 and the second negative electrode side flow path 126 between the pair of second negative and positive electrodes (second positive electrode 114 and and a hypochlorous acid water treatment unit 103 that continuously treats by energizing (between the second cathode 115). The structure is such that the hypochlorous acid water sent out from the electrolysis channel (second positive electrode side channel 125) on the positive electrode side of the hypochlorous acid water treatment unit 103 is supplied to the outside.
 こうした構成によれば、次亜塩素酸水生成ユニット102において無隔膜電解流路(第一陰陽電極間流路112)内で塩水を電気分解して次亜塩素酸水を生成し、さらに有隔膜電解流路(第二陽電極側流路125及び第二陰電極側流路126)内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオンを分離低減した次亜塩素酸水として抽出することができる。このため、塩水の電気分解によって生じる残留成分を分離した次亜塩素酸水を外部に供給することが可能な、ワンパス式の次亜塩素酸水供給装置101とすることができる。 According to such a configuration, in the hypochlorous acid water generation unit 102, salt water is electrolyzed in the non-diaphragm electrolysis channel (the first channel between the negative and positive electrodes 112) to generate hypochlorous acid water, and the diaphragm Hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the electrolysis flow path (the second positive electrode side flow path 125 and the second negative electrode side flow path 126), and the factor of the residual component is removed from the positive electrode side. It can be extracted as hypochlorous acid water in which the cations that become are separated and reduced. Therefore, the hypochlorous acid water supply device 101 of the one-pass type can be provided, which can supply the hypochlorous acid water from which the residual components generated by the electrolysis of the salt water are separated to the outside.
 また、次亜塩素酸水供給装置101では、各流路(無隔膜電解流路及び有隔膜電解流路)を蛇行形状にすることで、塩水及び次亜塩素酸水がそれぞれ電極及び隔膜に接触する経路が長くなり、塩水の電気分解、及び次亜塩素酸水から残留成分の要因となる陽イオンの分離を行う処理の距離及び時間を長くすることができる。つまり、電極のサイズに対して、塩水の電気分解、及び次亜塩素酸水から残留成分の要因となる陽イオンの分離を効率的に行うことができる。 In addition, in the hypochlorous acid water supply device 101, each flow path (non-diaphragm electrolysis flow path and diaphragm electrolysis flow path) has a meandering shape, so that the salt water and the hypochlorous acid water come into contact with the electrodes and the diaphragm, respectively. As a result, the distance and time for electrolysis of salt water and separation of cations that cause residual components from hypochlorous acid water can be lengthened. In other words, the electrolysis of salt water and the separation of cations that cause residual components from hypochlorous acid water can be efficiently performed with respect to the size of the electrode.
 (2)次亜塩素酸水供給装置101では、次亜塩素酸水生成ユニット102の無隔膜電解流路(第一陰陽電極間流路112)は、平面状の第一陽電極104と、第一陽電極104と対向する平面状の第一陰電極105と、第一陽電極104と第一陰電極105との間に設けられた第一陰陽電極間スペーサ106とを有して構成される。一対の第一陰陽電極(第一陽電極104及び第一陰電極105)は、第一陰陽電極間スペーサ106によって無隔膜電解流路に第一陽電極104及び第一陰電極105を露出させることで蛇行状に構成した。このようにすることで、第一陰陽電極間スペーサ106に形成される流路形状により、塩水を電気分解する能力を変化させることができるので、塩水を電気分解する面積及び時間を自由に設計することができる。 (2) In the hypochlorous acid water supply device 101, the non-diaphragm electrolysis flow path (the first cathode-positive electrode flow path 112) of the hypochlorous acid water generation unit 102 includes a planar first positive electrode 104 and a second It is composed of a planar first negative electrode 105 facing one positive electrode 104 and a first positive electrode spacer 106 provided between the first positive electrode 104 and the first negative electrode 105 . . A pair of first negative and negative electrodes (first positive electrode 104 and first negative electrode 105) are exposed to the non-diaphragm electrolytic flow path by a spacer 106 between first negative and positive electrodes. It was configured in a meandering shape. In this way, the ability to electrolyze salt water can be changed by changing the shape of the channel formed in the first spacer between negative and positive electrodes 106, so that the area and time for electrolyzing salt water can be freely designed. be able to.
 (3)次亜塩素酸水供給装置101では、次亜塩素酸水処理ユニット103の有隔膜電解流路(第二陽電極側流路125及び第二陰電極側流路126)は、第二陽電極114が流路に沿って露出して延設された蛇行状の第二陽電極側流路125と、第二陽電極側流路125と対向して並設され、第二陰電極115が流路に沿って露出して延設された蛇行状の第二陰電極側流路126と、第二陽電極側流路125と第二陰電極側流路126とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜116とを有して構成される。一対の第二陰陽電極(第二陽電極114及び第二陰電極115)は、第二陽電極側スペーサ117によって第二陽電極側流路125に第二陽電極114を露出させるとともに、第二陰電極側スペーサ118によって第二陰電極側流路126に第二陰電極115を露出させることで蛇行状に構成され、第二陽電極側流路125及び第二陰電極側流路126には、次亜塩素酸水生成ユニット102から供給される次亜塩素酸水がいずれも同じ方向に流通するように構成した。 (3) In the hypochlorous acid water supply device 101, the diaphragm electrolysis flow path (the second positive electrode side flow path 125 and the second negative electrode side flow path 126) of the hypochlorous acid water treatment unit 103 is connected to the second A meandering second positive electrode-side channel 125 in which the positive electrode 114 is exposed and extended along the channel, and a second positive electrode-side channel 125 are arranged in parallel to face the second negative electrode 115 . A meandering second negative electrode-side channel 126 exposed and extending along the channel, and the second positive electrode-side channel 125 and the second negative electrode-side channel 126 are separated from each other, and a diaphragm 116 that allows cations contained in the solution flowing through the channel to permeate. A pair of second negative and positive electrodes (the second positive electrode 114 and the second negative electrode 115) exposes the second positive electrode 114 to the second positive electrode side channel 125 by the second positive electrode side spacer 117, By exposing the second negative electrode 115 to the second negative electrode side channel 126 by the negative electrode side spacer 118, the second positive electrode side channel 125 and the second negative electrode side channel 126 are configured in a meandering manner. , the hypochlorous acid water supplied from the hypochlorous acid water generating unit 102 are configured to flow in the same direction.
 こうした構成によれば、塩水を電気分解して生成した次亜塩素酸水を、隔膜116を挟んで同じ方向に電圧を印加しながら流通させるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離低減することができる。このため、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理ユニット103とすることができる。より詳細には、陽極側から抽出される次亜塩素酸水は、残留成分の要因となる陽イオンが分離希薄化した次亜塩素酸水となり、陰極側から抽出される次亜塩素酸水は、残留成分の要因となる陽イオンが濃縮化した次亜塩素酸水となる。つまり、次亜塩素酸水供給装置101の陽極側から、残留成分の要因となる陽イオンが分離希薄化した次亜塩素酸水を得るとともに、次亜塩素酸水供給装置101の陰極側から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄力の高い次亜塩素酸水を同時に得ることができる。 According to such a configuration, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm 116, which causes residual components from the hypochlorous acid water. Cations can be separated and reduced. Therefore, the hypochlorous acid water treatment unit 103 can produce hypochlorous acid water with reduced residual components generated by the electrolysis of salt water. More specifically, the hypochlorous acid water extracted from the anode side becomes hypochlorous acid water in which cations that cause residual components are separated and diluted, and the hypochlorous acid water extracted from the cathode side is , it becomes hypochlorous acid water in which cations, which are factors of residual components, are concentrated. That is, from the anode side of the hypochlorous acid water supply device 101, the hypochlorous acid water in which the cations that cause the residual components are separated and diluted is obtained, and from the cathode side of the hypochlorous acid water supply device 101, At the same time, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated can be obtained.
 (4)次亜塩素酸水供給装置101は、平面状の第二陽電極114と、第二陽電極114と対向する平面状の隔膜116と、第二陽電極114と隔膜116との間に設けられ、流路に沿って第二陽電極側流路125内に第二陽電極114及び隔膜116を露出させる第二陽電極側スペーサ117とを有し、第二陽電極側流路は、流路に沿って露出する第二陽電極114及び隔膜116と第二陽電極側スペーサ117とにより構成した。また、次亜塩素酸水供給装置101は、さらに、平面状の第二陰電極115と、第二陰電極115と対向する平面状の隔膜116と、第二陰電極115と隔膜116との間に設けられ、流路に沿って第二陰電極側流路126内に第二陰電極115及び隔膜116を露出させる第二陰電極側スペーサ118とを有し、第二陰電極側流路126は、流路に沿って露出する第二陰電極115及び隔膜116と、第二陰電極側スペーサ118とにより構成した。このようにすることで、第二陽電極側スペーサ117に形成される流路形状、及び第二陰極側スペーサ18に形成される流路形状により、塩水を電気分解して生成した次亜塩素酸水から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離する面積及び時間を自由に設計することができる。 (4) The hypochlorous acid water supply device 101 includes a planar second positive electrode 114, a planar diaphragm 116 facing the second positive electrode 114, and between the second positive electrode 114 and the diaphragm 116 and a second positive electrode-side spacer 117 that exposes the second positive electrode 114 and the diaphragm 116 in the second positive electrode-side channel 125 along the channel, and the second positive electrode-side channel is It is composed of the second positive electrode 114 and the diaphragm 116 exposed along the flow path, and the second positive electrode side spacer 117 . The hypochlorous acid water supply device 101 further includes a planar second cathode 115, a planar diaphragm 116 facing the second cathode 115, and a gap between the second cathode 115 and the diaphragm 116. and a second cathode side spacer 118 for exposing the second cathode 115 and the diaphragm 116 in the second cathode side channel 126 along the channel, and the second cathode side channel 126 is composed of a second cathode 115 and a diaphragm 116 exposed along the channel, and a spacer 118 on the side of the second cathode. By doing so, hypochlorous acid generated by electrolyzing salt water is generated by the flow path shape formed in the second positive electrode side spacer 117 and the flow path shape formed in the second cathode side spacer 18. Since the ability to separate cations that cause residual components from water can be changed, the area and time for separating cations that cause residual components from hypochlorous acid water can be freely designed. .
 (5)次亜塩素酸水供給装置101は、次亜塩素酸水生成ユニット102と次亜塩素酸水処理ユニット103とを連通接続する流路に設けられ、有隔膜電解流路(第二陽電極側流路125及び第二陰電極側流路126)に次亜塩素酸水生成ユニット102からの次亜塩素酸水を供給する供給ポンプ(陽電極側供給ポンプ129及び陰電極側供給ポンプ131)を備える。供給ポンプは、次亜塩素酸水生成ユニット102からの次亜塩素酸水を第二陽電極側流路125及び第二陰電極側流路126に一定流速で供給するようにした。これにより、第二陽電極側流路125内にて電圧を印加している時間を一定にすることができるとともに、第二陰電極側流路126内にて電圧を印加している時間を一定にすることができる。このため、第二陽電極側流路125における次亜塩素酸水での残留成分の要因となる陽イオンが分離希薄化する濃度、及び第二陰電極側流路126における次亜塩素酸水での残留成分の要因となる陽イオンが濃縮化する濃度を安定にすることができる。 (5) The hypochlorous acid water supply device 101 is provided in a flow path that communicates and connects the hypochlorous acid water generation unit 102 and the hypochlorous acid water treatment unit 103, and has a diaphragm electrolysis flow path (second positive electrode). Supply pumps (a positive electrode side supply pump 129 and a negative electrode side supply pump 131) that supply hypochlorous acid water from the hypochlorous acid water generation unit 102 to the electrode side channel 125 and the second negative electrode side channel 126) ). The supply pump was adapted to supply the hypochlorous acid water from the hypochlorous acid water generation unit 102 to the second positive electrode side channel 125 and the second negative electrode side channel 126 at a constant flow rate. As a result, the time during which the voltage is applied in the second positive electrode side channel 125 can be made constant, and the time during which the voltage is applied in the second negative electrode side channel 126 can be made constant. can be For this reason, the concentration at which the cations that cause residual components in the hypochlorous acid water in the second positive electrode side channel 125 are separated and diluted, and the hypochlorous acid water in the second negative electrode side channel 126 It is possible to stabilize the concentration of cations that contribute to the residual components of .
 (実施の形態2-2)
 図7及び図17を参照して、本開示の実施の形態2-2に係る、次亜塩素酸水供給装置101を用いた空間除菌システム140について説明する。図17は、本開示の実施の形態2-2に係る、次亜塩素酸水供給装置101を用いた空間除菌システム140の概略図である。なお、以下で説明する実施の形態2-2に係る空間除菌システム140は、実施の形態2-1に係る次亜塩素酸水供給装置101を組み込んだシステムである。実施の形態2-2の説明においては、実施の形態2-1に係る次亜塩素酸水供給装置101と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化または省略する場合がある。
(Embodiment 2-2)
A spatial sterilization system 140 using a hypochlorous acid water supply device 101 according to Embodiment 2-2 of the present disclosure will be described with reference to FIGS. 7 and 17. FIG. FIG. 17 is a schematic diagram of a space sterilization system 140 using the hypochlorous acid water supply device 101 according to Embodiment 2-2 of the present disclosure. A space sterilization system 140 according to Embodiment 2-2 described below is a system incorporating the hypochlorous acid water supply device 101 according to Embodiment 2-1. In the description of Embodiment 2-2, the substantially same configurations as those of the hypochlorous acid water supply apparatus 101 according to Embodiment 2-1 are denoted by the same reference numerals, and the description is partially simplified. or may be omitted.
 本実施の形態2-2に係る空間除菌システム140は、浴室空間において、次亜塩素酸水供給装置101から生成された次亜塩素酸水をミスト噴霧装置144から噴霧するとともに排水口146に流すことで、浴室空間に対する除菌と洗浄とを行うシステムである。なお、浴室空間は、請求項の「所定の空間」に相当する。 The space sterilization system 140 according to the present embodiment 2-2 sprays hypochlorous acid water generated from the hypochlorous acid water supply device 101 from the mist spray device 144 in the bathroom space and at the drain port 146. It is a system that sterilizes and cleans the bathroom space by flushing. The bathroom space corresponds to the "predetermined space" in the claims.
 具体的には、図17に示すように、空間除菌システム140は、次亜塩素酸水供給装置101(次亜塩素酸水生成ユニット102、次亜塩素酸水処理ユニット103、陽電極側供給ポンプ129、及び陰電極側供給ポンプ131)と、陽電極側抽出溶液タンク141と、陰電極側抽出溶液タンク142と、陽電極側抽出溶液浴室配管143と、ミスト噴霧装置144と、陰電極側抽出溶液浴室配管145と、排水口146と、を備える。 Specifically, as shown in FIG. 17, the space sterilization system 140 includes a hypochlorous acid water supply device 101 (hypochlorous acid water generation unit 102, hypochlorous acid water treatment unit 103, positive electrode side supply Pump 129, negative electrode side supply pump 131), positive electrode side extraction solution tank 141, negative electrode side extraction solution tank 142, positive electrode side extraction solution bathroom pipe 143, mist spray device 144, negative electrode side An extraction solution bath plumbing 145 and a drain 146 are provided.
 次亜塩素酸水供給装置101を構成する次亜塩素酸水生成ユニット102は、塩水(塩化ナトリウム水溶液)を供給して、電気分解により次亜塩素酸水を生成するユニットである。上述した通り、次亜塩素酸水生成ユニット102によって生成される次亜塩素酸水には、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。より詳細には、次亜塩素酸水生成ユニット102では、陽電極側供給ポンプ129及び陰電極側供給ポンプ131が動作することによって、第一陽電極104側に設けた第一陽電極溶液抽出口110から第一陽電極抽出溶液110aとしてHCl及びHClOを多く含む酸性の次亜塩素酸水が抽出される。また、第一陰電極105側に設けた第一陰電極溶液抽出口111から第一陰電極抽出溶液111aとしてNaOHを多く含むアルカリ性の次亜塩素酸水が抽出される。 The hypochlorous acid water generation unit 102 that constitutes the hypochlorous acid water supply device 101 is a unit that supplies salt water (aqueous sodium chloride solution) and generates hypochlorous acid water through electrolysis. As described above, the hypochlorous acid water generated by the hypochlorous acid water generation unit 102 contains NaClO and HClO, which are components of the hypochlorous acid water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like. More specifically, in the hypochlorous acid water generation unit 102, the positive electrode side supply pump 129 and the negative electrode side supply pump 131 operate to operate the first positive electrode solution extraction port provided on the first positive electrode 104 side. Acidic hypochlorous acid water containing a large amount of HCl and HClO is extracted from 110 as a first positive electrode extraction solution 110a. Alkaline hypochlorous acid water containing a large amount of NaOH is extracted as the first cathode extraction solution 111a from the first cathode solution extraction port 111 provided on the first cathode 105 side.
 次亜塩素酸水処理ユニット103は、次亜塩素酸水生成ユニット102から供給される次亜塩素酸水を流通させて、第二陽電極側流路125から除菌力の高いHClO主体の次亜塩素酸水である第二陽電極抽出溶液122aを抽出し、第二陰電極側流路126から洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である第二陰電極抽出溶液124aを抽出するユニットである。第二陽電極抽出溶液122aは、陽電極側抽出溶液タンク141で貯められた後、陽電極側抽出溶液浴室配管143にてミスト噴霧装置144に送液される。そして、ミスト噴霧装置144から第二陽電極抽出溶液122aが浴室空間に噴霧される。また、第二陰電極抽出溶液124aは、陰電極側抽出溶液タンク142で貯められた後、陰電極側抽出溶液浴室配管145にて排水口146に送液される。排水口146に第二陰電極抽出溶液124aが流通され、排水口146を経由して排水管に流れる。 The hypochlorous acid water treatment unit 103 circulates the hypochlorous acid water supplied from the hypochlorous acid water generation unit 102, and from the second positive electrode side channel 125, the next The second positive electrode extraction solution 122a, which is chlorous acid water, is extracted, and the second negative electrode extraction solution 124a, which is hypochlorous acid water mainly composed of NaClO and NaOH with high detergency, is extracted from the second negative electrode side channel 126. This is the unit to extract. The second positive electrode extracting solution 122 a is stored in the positive electrode side extracting solution tank 141 and then sent to the mist spraying device 144 through the positive electrode side extracting solution bathroom pipe 143 . Then, the mist spray device 144 sprays the second positive electrode extraction solution 122a into the bathroom space. Further, the second cathode extraction solution 124 a is stored in the cathode side extraction solution tank 142 and then sent to the drain port 146 through the cathode side extraction solution bathroom piping 145 . The second cathode extraction solution 124a flows through the drain port 146 and flows through the drain port 146 into the drain pipe.
 陽電極側抽出溶液タンク141は、第二陽電極側流路125から抽出した除菌力の高いHClO主体の次亜塩素酸水である第二陽電極抽出溶液122aを、ミスト噴霧装置144に送液されるまで、一時的に貯めておくタンクである。陽電極側抽出溶液タンク141は、陽電極側抽出溶液浴室配管143を介してミスト噴霧装置144と接続される。 The positive electrode side extraction solution tank 141 sends the second positive electrode extraction solution 122a, which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the second positive electrode side channel 125, to the mist spray device 144. It is a temporary storage tank until it is liquefied. The positive electrode side extraction solution tank 141 is connected to a mist spraying device 144 via a positive electrode side extraction solution bathroom piping 143 .
 陰電極側抽出溶液タンク142は、第二陰電極側流路126から抽出した洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である第二陰電極抽出溶液124aを、排水口146に送液されるまで、一時的に貯めておくタンクである。陰電極側抽出溶液タンク142は、陰電極側抽出溶液浴室配管145を介して排水口146と接続される。 The cathode-side extraction solution tank 142 sends the second cathode-side extraction solution 124 a, which is hypochlorous acid water containing NaClO and NaOH with high detergency extracted from the second cathode-side channel 126 , to the drain port 146 . It is a temporary storage tank until it is liquefied. The cathode-side extraction solution tank 142 is connected to a drain port 146 via a cathode-side extraction solution bathroom pipe 145 .
 陽電極側抽出溶液浴室配管143は、陽電極側抽出溶液タンク141から、ミスト噴霧装置144まで送液するための配管である。陽電極側抽出溶液浴室配管143は、浴室の壁裏及び天井に施工されてあり、天井に設置されたミスト噴霧装置144と接続されている。 The positive electrode side extraction solution bathroom pipe 143 is a pipe for sending liquid from the positive electrode side extraction solution tank 141 to the mist spray device 144 . The positive electrode-side extraction solution bathroom pipe 143 is installed behind the wall and ceiling of the bathroom, and is connected to a mist spraying device 144 installed on the ceiling.
 陰電極側抽出溶液浴室配管145は、陰電極側抽出溶液タンク142から、排水口146まで送液するための配管である。陰極側抽出溶液浴室配管145は、浴室の壁裏及び床面に施工されてあり、排水口146に接続されている。 The cathode-side extraction solution bathroom pipe 145 is a pipe for sending liquid from the cathode-side extraction solution tank 142 to the drain port 146 . The cathode-side extraction solution bathroom pipe 145 is installed behind the wall and floor of the bathroom and connected to a drain port 146 .
 ミスト噴霧装置144は、次亜塩素酸水を浴室空間にミスト状にして噴霧する装置である。より詳細には、ミスト噴霧装置144は、陽電極側抽出溶液タンク141から陽電極側抽出溶液浴室配管143を通って搬送されてくる次亜塩素酸水である第二陽電極抽出溶液122aを微細なミストにして放出する装置である。ミスト噴霧装置144は、浴室空間の天井から浴室空間全体にミストが噴霧できるように噴霧部が天井から浴室側に突出して設置されている。ミストの噴霧方式としては、圧縮空気を使用して微細化する二流体噴霧方式、超音波素子を使用して10μm以下の微細ミストを噴霧する超音波方式、又は回転体から溶液を放出して破砕し1μm以下の微細ミストを噴霧する破砕噴霧方式などが挙げられる。 The mist spraying device 144 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 144 finely sprays the second positive electrode extraction solution 122a, which is hypochlorous acid water, transported from the positive electrode side extraction solution tank 141 through the positive electrode side extraction solution bathroom piping 143. It is a device that emits a fine mist. The mist spraying device 144 is installed so that a spraying part protrudes from the ceiling toward the bathroom so that the mist can be sprayed from the ceiling of the bathroom to the entire bathroom. The mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 μm or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 μm or less is sprayed.
 排水口146は、浴室空間内で発生した水あるいは汚れを浴室空間外に排出するための排水管と接続するための接続口である。排水口146には、陰電極側抽出溶液タンク142から陰電極側抽出溶液浴室配管145を通って第二陰電極抽出溶液124aを搬送し、洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である第二陰電極抽出溶液124aにより、排水口146及び排水口146に接続される排水管の汚れを洗浄することができる。 The drain port 146 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space. To the drain port 146, the second cathode extraction solution 124a is conveyed from the cathode side extraction solution tank 142 through the cathode side extraction solution bathroom piping 145, and the hypochlorous acid water containing NaClO and NaOH with high detergency. The drain port 146 and the drain pipe connected to the drain port 146 can be cleaned of dirt by the second cathode extraction solution 124a.
 以上、本実施の形態2-2に係る、次亜塩素酸水供給装置101を用いた空間除菌システム140によれば、以下の効果を享受することができる。 As described above, according to the spatial sterilization system 140 using the hypochlorous acid water supply device 101 according to Embodiment 2-2, the following effects can be obtained.
 (6)空間除菌システム140は、次亜塩素酸水供給装置101と、第二陽電極側流路125と連通接続され、第二陽電極側流路125から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出するミスト噴霧装置144とを備える構造とした。こうした構成によれば、第二陽電極側流路125から送出される次亜塩素酸水のミストを所定の空間に放出しても、所定の空間に残る残留成分が抑制される。つまり、第二陽電極側流路125から送出される次亜塩素酸水が塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 (6) The space sterilization system 140 is connected to the hypochlorous acid water supply device 101 and the second positive electrode side channel 125, and the hypochlorous acid water sent out from the second positive electrode side channel 125. and a mist spraying device 144 that emits hypochlorous acid water mist into a predetermined space. According to such a configuration, even if the hypochlorous acid water mist delivered from the second positive electrode-side channel 125 is discharged into the predetermined space, residual components remaining in the predetermined space are suppressed. In other words, since the hypochlorous acid water delivered from the second positive electrode side channel 125 is hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced, when sterilizing a predetermined space, It is possible to suppress the occurrence of metal corrosion due to residual components while maintaining the sterilization performance.
 (7)空間除菌システム140では、浴室空間には、浴室空間内で発生する水を排出する排水口146が設けられており、第二陰電極側流路126は排水口146と連通接続され、第二陰電極側流路126から送出される次亜塩素酸水を排水口146に導入可能に構成されている構造とした。このようにすることで、第二陰電極側流路126から送出される次亜塩素酸水から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水を排水口146(及び排水口146に接続された排水管)に流通させるので、アルカリ性溶液によって排水管の洗浄を行うことができる。 (7) In the space sterilization system 140, the bathroom space is provided with a drain port 146 for discharging water generated in the bathroom space, and the second cathode-side channel 126 is connected to the drain port 146 in communication. , the hypochlorous acid water sent from the second cathode side channel 126 can be introduced into the drain port 146 . By doing so, hypochlorous acid with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is extracted from the hypochlorous acid water delivered from the second negative electrode side channel 126. Since water is passed through the drain port 146 (and the drain pipe connected to the drain port 146), the drain pipe can be cleaned with the alkaline solution.
 以上、実施の形態2に基づき本開示を説明したが、本開示は上記の実施の形態2に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 As described above, the present disclosure has been described based on the second embodiment, but the present disclosure is not limited to the above-described second embodiment, and various modifications and improvements are possible without departing from the scope of the present disclosure. One thing is easy to guess.
 (実施の形態3)
 従来、塩水の電気分解をすることで、NaClOを主成分としHClO及びNaOHを含む次亜塩素酸水が生成される。次亜塩素酸水は弱酸性側にすることで、除菌力が向上することが知られており、イオン透過能を有する隔膜を使用して生成されるpH弱酸性側に制御する技術が知られている(例えば、特許文献1参照)。
(Embodiment 3)
Conventionally, by electrolyzing salt water, hypochlorous acid water containing NaClO as a main component and containing HClO and NaOH is produced. Hypochlorous acid water is known to improve its sterilization power by making it weakly acidic, and a technology is known to control the pH generated using a diaphragm with ion permeability to the weakly acidic side. (See Patent Document 1, for example).
 しかしながら、pHが弱酸性に調整するだけでは、残留成分となるNaClO及びNaOHの抑制が十分にできているとはいえない。NaClO及びNaOHは、次亜塩素酸水が揮発後も固形分として表面に残留する成分で、この残留成分が潮解及び水に再溶解することで金属の腐食を促進する要因となる。そのため、NaClO及びNaOH成分を多く含む次亜塩素酸水をミスト噴霧すると、微小な残留成分が蓄積されるため、長期間使用時の腐食が懸念される。 However, it cannot be said that NaClO and NaOH, which are residual components, are sufficiently suppressed only by adjusting the pH to be weakly acidic. NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing a large amount of NaClO and NaOH components is mist-sprayed, fine residual components are accumulated, which may cause corrosion during long-term use.
 そこで本開示は、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置及びこれを用いた空間除菌システムを提供することを目的とする。 Therefore, the purpose of the present disclosure is to provide a hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water and a space sterilization system using the same. and
 本開示によれば、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置及びこれを用いた空間除菌システムを提供することができる。 According to the present disclosure, it is possible to provide a hypochlorous acid water supply device capable of supplying hypochlorous acid water with reduced residual components generated by electrolysis of salt water, and a space sterilization system using the same. can.
 本開示に係る次亜塩素酸水供給装置は、塩水を供給可能に構成された蛇行状の電解流路と、電解流路の前段を構成する無隔膜電解流路内に供給される塩水から一対の陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部と、電解流路の後段を構成する有隔膜電解流路内のそれぞれに次亜塩素酸水生成部から供給される次亜塩素酸水を一対の陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理部と、を備える。次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する構造とする。 The hypochlorous acid water supply apparatus according to the present disclosure includes a meandering electrolysis flow path configured to be able to supply salt water, and a pair of salt water supplied into a non-membrane electrolysis flow path constituting the front stage of the electrolysis flow path. A hypochlorous acid water generator that continuously electrolytically generates hypochlorous acid water by energizing between the positive and negative electrodes of the hypochlorous acid water generator, and a hypochlorous acid a hypochlorous acid water treatment unit for continuously treating the hypochlorous acid water supplied from the water generation unit by energizing between the pair of positive and negative electrodes. The structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
 こうした構成によれば、電解流路に塩水を供給することによって、次亜塩素酸水生成部において無隔膜電解流路内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理部において有隔膜電解流路内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオンを分離低減した次亜塩素酸水として抽出することができる。このため、塩水の電気分解によって生じる残留成分を分離した次亜塩素酸水を外部に供給することが可能な、ワンパス式の次亜塩素酸水供給装置とすることができる。また、次亜塩素酸水生成部と次亜塩素酸処理部に共通の陽電極及び陰電極(一対の陰陽電極)を使用し、無隔膜電解流路と有隔膜電解流路が陰陽電極間の電圧を印加された状態で直接的につながっている。これにより、無隔膜電解流路内にて、陽電極側近傍には陰イオン、陰電極近傍には陽イオンが多く存在するような分布を持った状態で、有隔膜電解流路に流入するため、陽電極側には残留成分の要因となる陽イオンをあらかじめ減少させた状態で、電気透析処理を開始することができる。 According to such a configuration, by supplying salt water to the electrolysis channel, the hypochlorous acid water is electrolyzed in the non-diaphragm electrolysis channel in the hypochlorous acid water generation unit to generate hypochlorous acid water. In the chloric acid water treatment unit, the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the diaphragm electrolysis flow path to separate and reduce the cations that cause residual components from the positive electrode side. It can be extracted as acid water. For this reason, it is possible to provide a one-pass type hypochlorous acid water supply device capable of externally supplying hypochlorous acid water from which residual components generated by electrolysis of salt water are separated. In addition, a common positive electrode and negative electrode (a pair of negative and positive electrodes) are used in the hypochlorous acid water generation part and the hypochlorous acid treatment part, and the non-diaphragm electrolytic flow path and the diaphragm electrolytic flow path are between the negative and positive electrodes. Directly connected with voltage applied. As a result, in the non-diaphragm electrolysis flow path, the anions flow into the electrolysis flow path with the diaphragm in such a state that there are many anions in the vicinity of the positive electrode and many cations exist in the vicinity of the negative electrode. On the positive electrode side, the electrodialysis treatment can be started in a state in which cations that cause residual components have been reduced in advance.
 また、本開示に係る次亜塩素酸水供給装置では、無隔膜電解流路は、平面状の陽電極と、陽電極と対向する平面状の陰電極と、陽電極と陰電極との間に設けられたスペーサ部材とを有して構成される。一対の第一陰陽電極は、スペーサ部材によって無隔膜電解流路に陽電極及び陰電極を露出させることで蛇行状に構成されている。このようにすることで、スペーサ部材に形成される流路形状により、塩水を電気分解する能力を変化させることができるので、塩水を電気分解する面積及び時間を自由に設計することができる。 In addition, in the hypochlorous acid water supply device according to the present disclosure, the non-diaphragm electrolytic flow path includes a planar positive electrode, a planar negative electrode facing the positive electrode, and between the positive electrode and the negative electrode. and a spacer member provided. A pair of first negative and positive electrodes are formed in a meandering shape by exposing the positive electrode and the negative electrode to the non-diaphragm electrolytic flow path by the spacer member. By doing so, the ability to electrolyze salt water can be changed according to the channel shape formed in the spacer member, so that the area and time for electrolyzing salt water can be freely designed.
 また、本開示に係る次亜塩素酸水供給装置では、有隔膜電解流路は、陽電極が流路に沿って露出して延設された蛇行状の第一流路と、第一流路と対向して並設され、陰電極が流路に沿って露出して延設された蛇行状の第二流路と、第一流路と第二流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜とを有して構成される。一対の陰陽電極は、第一スペーサ部材によって第一流路に陽電極を露出させるとともに、第二スペーサ部材によって第二流路に陰電極を露出させることで蛇行状に構成されている。このようにすることで、塩水を電気分解して生成した次亜塩素酸水を、隔膜を挟んで同じ方向に電圧を印加しながら流通させるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離低減することができる。このため、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理部とすることができる。 In addition, in the hypochlorous acid water supply device according to the present disclosure, the diaphragm-equipped electrolysis flow path includes a meandering first flow path in which the positive electrode is exposed and extends along the flow path, and the first flow path faces the first flow path. and a meandering second channel in which the negative electrode is exposed and extended along the channel; and a diaphragm permeable to cations contained in the solution. The pair of negative and positive electrodes are configured in a meandering manner by exposing the positive electrode to the first channel by the first spacer member and exposing the negative electrode to the second channel by the second spacer member. By doing so, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm, which causes residual components from the hypochlorous acid water. Cations can be separated and reduced. Therefore, the hypochlorous acid water treatment unit can produce hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced.
 また、本開示に係る次亜塩素酸水供給装置では、有隔膜電解流路は、平面状の陽電極と、陽電極と対向する平面状の隔膜と、陽電極と隔膜との間に設けられ、流路に沿って第一流路内に陽電極及び隔膜を露出させる第一スペーサ部材とを有する。第一流路は、流路に沿って露出する陽電極及び隔膜と第一スペーサ部材とにより構成されている。また、平面状の陰電極と、陰電極と対向する平面状の隔膜と、陰電極と隔膜との間に設けられ、流路に沿って第二流路内に陰電極及び隔膜を露出させる第二スペーサ部材とを有する。第二流路は、流路に沿って露出する陰電極及び隔膜と、第二スペーサ部材とにより構成されている。このようにすることで、第一スペーサ部材に形成される流路形状、及び第二スペーサ部材に形成される流路形状により、塩水を電気分解して生成した次亜塩素酸水から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離する面積及び時間を自由に設計することができる。 Further, in the hypochlorous acid water supply device according to the present disclosure, the diaphragm-containing electrolytic flow path is provided between the planar positive electrode, the planar diaphragm facing the positive electrode, and the positive electrode and the diaphragm. and a first spacer member exposing the positive electrode and the diaphragm within the first channel along the channel. The first channel is composed of the positive electrode and the diaphragm exposed along the channel, and the first spacer member. A planar cathode, a planar diaphragm facing the cathode, and a second electrode provided between the cathode and the diaphragm exposing the cathode and the diaphragm into the second flow path along the flow path. and two spacer members. The second channel is composed of a negative electrode and a diaphragm exposed along the channel, and a second spacer member. By doing so, residual components can be removed from the hypochlorous acid water generated by electrolyzing salt water by the channel shape formed in the first spacer member and the channel shape formed in the second spacer member. Since the ability to separate cations that cause residual components can be changed, the area and time for separating cations that cause residual components from hypochlorous acid water can be freely designed.
 また、本開示に係る次亜塩素酸水供給装置では、スペーサ部材は、第一スペーサ部材と第二スペーサ部材を重ね合わせて構成されている。こうした構成によれば、構造を簡易化できるとともに、無隔膜電解流路と有隔膜電解流路との間の境界部による液漏れ及び流路内イオン分布の乱れを抑制して、流通させることができる。 Further, in the hypochlorous acid water supply device according to the present disclosure, the spacer member is configured by overlapping the first spacer member and the second spacer member. According to such a configuration, the structure can be simplified, and the liquid can be circulated while suppressing the leakage of the liquid due to the boundary between the non-diaphragm electrolysis flow path and the diaphragm electrolysis flow path and the disturbance of the ion distribution in the flow path. can.
 また、本開示に係る次亜塩素酸水供給装置は、次亜塩素酸水処理部の陽電極側及び陰電極側のそれぞれの出口に設けられ、電解流路に塩水を供給する流れを生じさせる供給ポンプを備える。供給ポンプは、次亜塩素酸水生成部からの次亜塩素酸水を第一流路及び第二流路に一定流速で供給することが好ましい。これにより、第一流路内にて電圧を印加している時間を一定にすることができるとともに、第二流路内にて電圧を印加している時間を一定にすることができる。このため、第一流路における次亜塩素酸水での残留成分の要因となる陽イオンが分離希薄化する濃度、及び第二流路における次亜塩素酸水での残留成分の要因となる陽イオンが濃縮化する濃度を安定にすることができる。 In addition, the hypochlorous acid water supply device according to the present disclosure is provided at each outlet on the positive electrode side and the negative electrode side of the hypochlorous acid water treatment unit, and generates a flow that supplies salt water to the electrolytic flow path. Equipped with a feed pump. It is preferable that the supply pump supplies the hypochlorous acid water from the hypochlorous acid water generator to the first channel and the second channel at a constant flow rate. As a result, the time during which the voltage is applied in the first channel can be made constant, and the time during which the voltage is applied in the second channel can be made constant. For this reason, the concentration at which the cations that cause residual components in the hypochlorous acid water in the first flow channel are separated and diluted, and the cations that cause residual components in the hypochlorous acid water in the second flow channel concentration can be stabilized.
 本開示に係る空間除菌システムは、上述した次亜塩素酸水供給装置と、第一流路と連通接続され、第一流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置とを備える構造とする。こうした構成によれば、第一流路から送出される次亜塩素酸水のミストを所定の空間に放出しても、所定の空間に残る残留成分が抑制される。つまり、第一流路から送出される次亜塩素酸水が塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 The spatial sterilization system according to the present disclosure is connected to the above-described hypochlorous acid water supply device and the first flow path, and uses the hypochlorous acid water sent from the first flow path to create a hypochlorous acid water mist. and a sterilization device that releases to a predetermined space. According to such a configuration, even if the mist of hypochlorous acid water delivered from the first flow path is discharged into the predetermined space, residual components remaining in the predetermined space are suppressed. In other words, since the hypochlorous acid water sent from the first flow path is hypochlorous acid water with reduced residual components generated by the electrolysis of salt water, sterilization performance is maintained when sterilizing a predetermined space. However, the occurrence of metal corrosion due to residual components can be suppressed.
 また、本開示に係る空間除菌システムは、所定の空間には、所定の空間内で発生する水を排出する排水管が設けられている。第二流路は、排水管と連通接続され、第二流路から送出される次亜塩素酸水を排水管に導入可能に構成されている構造とする。このようにすることで、第二流路から送出される次亜塩素酸水から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水を排水管に流通させるので、アルカリ性溶液によって排水管の洗浄を行うことができる。 In addition, in the space sterilization system according to the present disclosure, a predetermined space is provided with a drain pipe for discharging water generated within the predetermined space. The second channel is connected to the drain pipe, and has a structure configured so that the hypochlorous acid water sent out from the second channel can be introduced into the drain pipe. By doing so, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is removed from the hypochlorous acid water sent from the second flow path. Since the alkaline solution is circulated, the drain pipe can be washed with the alkaline solution.
 実施の形態3は、少なくとも以下の実施の形態3-1、実施の形態3-2及び実施の形態3-3を包含する。 Embodiment 3 includes at least Embodiment 3-1, Embodiment 3-2 and Embodiment 3-3 below.
 (実施の形態3-1)
 図18~図20を参照して、本開示の実施の形態3-1に係る次亜塩素酸水供給装置201について説明する。図18は、本開示の実施の形態3-1に係る次亜塩素酸水供給装置201の概略図である。図19は、次亜塩素酸水供給装置201の分解斜視図である。図20は、次亜塩素酸水供給装置201の垂直方向の断面イメージ図である。
(Embodiment 3-1)
A hypochlorous acid water supply device 201 according to Embodiment 3-1 of the present disclosure will be described with reference to FIGS. 18 to 20. FIG. FIG. 18 is a schematic diagram of a hypochlorous acid water supply device 201 according to Embodiment 3-1 of the present disclosure. 19 is an exploded perspective view of the hypochlorous acid water supply device 201. FIG. FIG. 20 is a vertical cross-sectional image diagram of the hypochlorous acid water supply device 201 .
 次亜塩素酸水供給装置201は、塩水(塩化ナトリウム水溶液)を供給して電気分解により次亜塩素酸水を生成し、さらに生成した次亜塩素酸水に含まれる残留成分(Naイオン等の陽イオンを有する成分:例えば、NaClO、NaOH)を、内部を流通する次亜塩素酸水から分離低減して、かつワンパス式で取り出して供給することができる装置である。 The hypochlorous acid water supply device 201 supplies salt water (aqueous sodium chloride solution), generates hypochlorous acid water by electrolysis, and further contains residual components (Na + ions, etc.) contained in the generated hypochlorous acid water. A component having a cation of (for example, NaClO, NaOH) can be separated and reduced from the hypochlorous acid water flowing inside and can be taken out and supplied in a single pass.
 具体的には、図18に示すように、次亜塩素酸水供給装置201は、塩水を電気分解して次亜塩素酸水をワンパス式で生成する次亜塩素酸水生成部201aと、次亜塩素酸水に含まれる残留成分の分離低減をワンパス式で行う次亜塩素酸水処理部201bと、次亜塩素酸水生成部201a及び次亜塩素酸水処理部201bに対して電気分解及び電気透析を行うための電流電圧を印加する電気分解・電気透析電源215と、次亜塩素酸水生成部201aの流路に塩水を流通させるとともに、次亜塩素酸水処理部201bの流路に次亜塩素酸水を流通させるための陽電極側供給ポンプ231(図26参照)及び陰電極側供給ポンプ232(図26参照)と、を備える。 Specifically, as shown in FIG. 18, the hypochlorous acid water supply device 201 includes a hypochlorous acid water generation unit 201a that electrolyzes salt water to generate hypochlorous acid water in one pass, The hypochlorous acid water treatment unit 201b that separates and reduces the residual components contained in the chlorous acid water in a single pass, and electrolysis and The electrolysis/electrodialysis power supply 215 that applies a current and voltage for electrodialysis, and the flow path of the hypochlorous acid water generation unit 201a. A positive electrode side supply pump 231 (see FIG. 26) and a negative electrode side supply pump 232 (see FIG. 26) for circulating hypochlorous acid water are provided.
 次亜塩素酸水生成部201aは、図18~図20に示すように、陽電極202と、陰電極203と、陽電極側スペーサ205と、陰電極側スペーサ206と、陽電極用パッキン207aと、陰電極用パッキン207bと、陽電極側槽筐体側面208aと、陰電極側槽筐体側面208bと、陰陽電極溶液供給口209と、陽電極溶液抽出口210と、陰電極溶液抽出口211と、陰陽電極間流路212と、を備える。 As shown in FIGS. 18 to 20, the hypochlorous acid water generator 201a includes a positive electrode 202, a negative electrode 203, a positive electrode side spacer 205, a negative electrode side spacer 206, and a positive electrode packing 207a. , the negative electrode packing 207b, the positive electrode side tank housing side surface 208a, the negative electrode side tank housing side surface 208b, the negative electrode solution supply port 209, the positive electrode solution extraction port 210, and the negative electrode solution extraction port 211. and a channel 212 between positive and negative electrodes.
 次亜塩素酸水処理部201bは、陽電極202と、陰電極203と、隔膜204と、陽電極側スペーサ205と、陰電極側スペーサ206と、陽電極用パッキン207aと、陰電極用パッキン207bと、陽電極側槽筐体側面208aと、陰電極側槽筐体側面208bと、陰陽電極溶液供給口209と、陽電極溶液抽出口210と、陰電極溶液抽出口211と、陽電極側流路213と、陰電極側流路214と、を備える。 The hypochlorous acid water treatment unit 201b includes a positive electrode 202, a negative electrode 203, a diaphragm 204, a positive electrode-side spacer 205, a negative electrode-side spacer 206, a positive electrode packing 207a, and a negative electrode packing 207b. , the positive electrode side tank housing side surface 208a, the negative electrode side tank housing side surface 208b, the positive electrode solution supply port 209, the positive electrode solution extraction port 210, the negative electrode solution extraction port 211, and the positive electrode side flow A channel 213 and a cathode side channel 214 are provided.
 陽電極202は、平面状の電極板である。陽電極202は、陽電極側スペーサ205によって陰陽電極間流路212及び陽電極側流路213の流路に沿って電極板の表面が露出している。陽電極202は、電気分解・電気透析電源215によって電流が流れると陽極として機能する電極である。陽電極202は、陰電極203と対向して略平行に配置されている。陽電極202は、チタン基材の表面に白金を含む触媒が形成されており、電気分解による次亜塩素酸の発生効率が高い材料を使用する。白金を含む触媒は、少なくとも陰陽電極間流路212及び陽電極側流路213の流路に沿って露出される陽電極202の面に形成されている。塩水の電気分解の後に、電気透析により陽イオンを移動させて、残留成分となるNaClO及びNaOHを抑制した次亜塩素酸水を生成することが主目的であるが、NaClOから分解してできたNaCl及び塩水が電気分解しきれずに残ったNaClも、白金電極により次亜塩素酸へと変化させることが可能となる。 The positive electrode 202 is a planar electrode plate. The surface of the electrode plate of the positive electrode 202 is exposed along the channel 212 between the negative and positive electrodes and the channel 213 on the positive electrode side by the positive electrode side spacer 205 . The positive electrode 202 is an electrode that functions as an anode when current is passed by the electrolysis/electrodialysis power source 215 . The positive electrode 202 is arranged substantially parallel to and facing the negative electrode 203 . The positive electrode 202 has a platinum-containing catalyst formed on the surface of a titanium base material, and uses a material that is highly efficient in generating hypochlorous acid by electrolysis. The platinum-containing catalyst is formed at least on the surface of the positive electrode 202 exposed along the channel 212 between the negative and positive electrodes and the channel 213 on the positive electrode side. After the electrolysis of salt water, the main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH, which are the residual components, but it is made by decomposing from NaClO. NaCl remaining after the electrolysis of NaCl and salt water has not been completely electrolyzed can be converted to hypochlorous acid by means of platinum electrodes.
 陰電極203は、平面状の電極板である。陰電極203は、陰電極側スペーサ206によって陰陽電極間流路212及び陰電極側流路214の流路に沿って電極板の表面が露出している。陰電極203は、電気分解・電気透析電源215によって電流が流れると陰極として機能する電極である。陰電極203は、陽電極202と対向して略平行に配置されている。陰電極203は、陽電極202と同様に表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも陰電極側流路214及び陽電極側流路213の流路に沿って露出される陰電極203の面に形成されている。また、陽電極側流路213及び陰電極側流路214に沿って露出させて電気透析を行う領域の陽電極202と陰電極203は同形状とし、対向距離の短い方がイオンの移動をさせやすい。対向距離が短いと流路を流れる流量が少なくなり、生成できる次亜塩素酸水も少なくなるため、必要な次亜塩素酸水生成量を確保したうえで、対向距離を10mm以下程度に短くすることが望ましい。 The cathode 203 is a planar electrode plate. The surface of the electrode plate of the negative electrode 203 is exposed along the channel 212 between the positive and negative electrodes and the channel 214 on the negative electrode side by the negative electrode side spacer 206 . The negative electrode 203 is an electrode that functions as a cathode when current is passed by the electrolysis/electrodialysis power source 215 . The negative electrode 203 is arranged substantially parallel to and facing the positive electrode 202 . The negative electrode 203 forms a platinum-containing catalyst on its surface similarly to the positive electrode 202 . The platinum-containing catalyst is formed at least on the surface of the negative electrode 203 exposed along the channels of the negative electrode side channel 214 and the positive electrode side channel 213 . In addition, the positive electrode 202 and the negative electrode 203 in the regions exposed along the positive electrode side flow path 213 and the negative electrode side flow path 214 and subjected to electrodialysis have the same shape, and the shorter the opposing distance, the more the ions move. Cheap. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
 そして、陽電極202及び陰電極203は、一対の対向電極として陰陽電極を構成する。 The positive electrode 202 and the negative electrode 203 form a negative electrode as a pair of opposing electrodes.
 隔膜204は、平面状の薄膜である。隔膜204は、陽電極202及び陰電極203と対向して略平行に配置されている。隔膜204は、陽電極側流路213と陰電極側流路214とを隔てるように設けている。隔膜204は、次亜塩素酸水の残留成分であるNaClO及びNaOHに関係するNaイオンのような陽イオンを移動させることが可能なイオン交換膜(陽イオン交換膜)である。隔膜204は、陽電極202及び陰電極203に電圧を印加することで、陰電極203に陽イオンを移動させることができる。この陽イオン交換膜としては、デュポン社製ナフィオンなどが挙げられる。隔膜204は、流路の後段(後半部分)に配置され、隔膜204を有する部分が次亜塩素酸水処理部201bとなる。反対に流路の前段(前半部分)の隔膜204を有さない部分が次亜塩素酸水生成部201aとなる。隔膜204のサイズにより、次亜塩素酸水生成部201aの領域と、次亜塩素酸水処理部201bの領域とが決まる。具体的には、塩水の電気分解時間の比率を多くしたい場合には、隔膜204のサイズを小さくし、次亜塩素酸水の電気透析時間の比率を多くしたい場合には、隔膜204のサイズを大きくする。なお、陰電極203側は、陽イオンを濃縮するため、長時間使用時に水道水等に含まれるスケール成分が析出する可能性がある。スケール蓄積の低減のため、例えば、次亜塩素酸水供給装置201への通水ごとに、陽電極202と陰電極203の電位を入れ替えて転極し、付着したスケールを溶解させる。転極して使用することを想定する際には、陽電極202及び陰電極203は、同様の白金を含む触媒処理にしておくことが望ましい。 The diaphragm 204 is a planar thin film. The diaphragm 204 is arranged substantially parallel to and facing the positive electrode 202 and the negative electrode 203 . The diaphragm 204 is provided so as to separate the positive electrode side channel 213 and the negative electrode side channel 214 . The diaphragm 204 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water. The diaphragm 204 can move cations to the negative electrode 203 by applying a voltage to the positive electrode 202 and the negative electrode 203 . Examples of the cation exchange membrane include Nafion manufactured by DuPont. The diaphragm 204 is arranged in the rear stage (the latter part) of the channel, and the part having the diaphragm 204 becomes the hypochlorous acid water treatment part 201b. On the contrary, the part without the diaphragm 204 in the front stage (first half part) of the flow path becomes the hypochlorous acid water generating part 201a. The size of the diaphragm 204 determines the area of the hypochlorous acid water generating section 201a and the area of the hypochlorous acid water processing section 201b. Specifically, if you want to increase the ratio of electrolysis time of salt water, the size of diaphragm 204 is reduced, and if you want to increase the ratio of electrodialysis time of hypochlorous acid water, the size of diaphragm 204 is increased. Enlarge. Since the negative electrode 203 concentrates cations, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use. In order to reduce scale accumulation, for example, each time water is passed through the hypochlorous acid water supply device 201, the potentials of the positive electrode 202 and the negative electrode 203 are reversed to dissolve adhered scale. When it is assumed that the electrodes will be used with the polarity reversed, it is desirable that the positive electrode 202 and the negative electrode 203 be similarly treated with a catalyst containing platinum.
 陽電極側スペーサ205は、絶縁性の部材である。陽電極側スペーサ205は、陽電極202と隔膜204との間の距離を所定の間隔に制御する。陽電極側スペーサ205は、陽電極側スペーサ205の内部に、後述する陽電極側流路213を形作る陽電極側流路孔213aを有している。陽電極側流路孔213aは、陽電極側スペーサ205に形成された陽電極側流路213を形成する孔のことである。陽電極側流路孔213aは、陽電極側スペーサ205の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。また、陽電極側スペーサ205の表面には、陽電極202及び隔膜204との密着性をあげるために、陽電極側スペーサ205と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、陽電極側スペーサ205は、請求項の「第一スペーサ部材」に相当する。 The positive electrode side spacer 205 is an insulating member. The positive electrode side spacer 205 controls the distance between the positive electrode 202 and the diaphragm 204 to a predetermined distance. The positive electrode-side spacer 205 has, inside the positive electrode-side spacer 205, a positive electrode-side channel hole 213a that forms a positive electrode-side channel 213, which will be described later. The positive electrode side channel hole 213 a is a hole that forms the positive electrode side channel 213 formed in the positive electrode side spacer 205 . The positive electrode-side channel hole 213a is formed through the front and back of the positive electrode-side spacer 205, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. A meandering packing member (not shown), which is the same as the positive electrode spacer 205, is attached to the surface of the positive electrode spacer 205 in order to increase the adhesion between the positive electrode 202 and the diaphragm 204. FIG. The positive electrode side spacer 205 corresponds to the "first spacer member" in the claims.
 陰電極側スペーサ206は、絶縁性の部材である。陰電極側スペーサ206は、陰電極203と隔膜204との間の距離を所定の間隔に制御する。陰電極側スペーサ206は、陰電極側スペーサ206の内部に、後述する陰電極側流路214を形作る陰電極側流路孔214aを有している。陰電極側流路孔214aは、陰電極側スペーサ206に形成された陰電極側流路214を形成する孔のことである。陰電極側流路孔214aは、陰電極側スペーサ206の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。ここで、陰電極側流路孔214aと陽電極側流路孔213aとは、互いに対向するように配置されている。また、陰電極側スペーサ206の表面には、陰電極203及び隔膜204との密着性をあげるために、陰電極側スペーサ206と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。なお、陰電極側スペーサ206は、請求項の「第二スペーサ部材」に相当する。 The cathode-side spacer 206 is an insulating member. The cathode-side spacer 206 controls the distance between the cathode 203 and the diaphragm 204 to a predetermined distance. The cathode-side spacer 206 has, inside the cathode-side spacer 206, a cathode-side channel hole 214a that forms a cathode-side channel 214, which will be described later. The cathode-side channel hole 214 a is a hole that forms the cathode-side channel 214 formed in the cathode-side spacer 206 . The cathode-side channel hole 214a is formed through the front and back surfaces of the cathode-side spacer 206, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. Here, the negative electrode side channel hole 214a and the positive electrode side channel hole 213a are arranged so as to face each other. A meandering packing member (not shown), which is the same as that of the cathode-side spacer 206 , is attached to the surface of the cathode-side spacer 206 in order to increase the adhesion between the cathode 203 and the diaphragm 204 . The cathode-side spacer 206 corresponds to the "second spacer member" in the claims.
 次亜塩素酸水生成部201aでは、陽電極側スペーサ205と陰電極側スペーサ206が直接接触して、陽電極202と陰電極203の間の陰陽電極間スペーサとして機能する。この陰陽電極間のスペーサは、請求項の「スペーサ部材」に相当する。 In the hypochlorous acid water generating part 201a, the positive electrode side spacer 205 and the negative electrode side spacer 206 are in direct contact with each other, and function as a positive electrode spacer between the positive electrode 202 and the negative electrode 203. The spacer between the positive and negative electrodes corresponds to the "spacer member" in the claims.
 次亜塩素酸水生成部201aは、陽電極202と陰電極203の間に、陽電極側スペーサ205と陰電極側スペーサ206が介在する。次亜塩素酸水処理部201bは、陽電極202と陰電極203の間に、陽電極側スペーサ205と隔膜204と陰電極側スペーサ206が介在する。陽電極202と陰電極203は、略平行に配置されており、隔膜204の厚みを吸収するために、次亜塩素酸水処理部201bの陽電極側スペーサ205と陰電極側スペーサ206の厚みは、隔膜204の厚み分薄くなっている。隔膜204の厚み分を陽電極側スペーサ205及び陰電極側スペーサ206の厚みで吸収する手段として、陽電極側スペーサ205及び陰電極側スペーサ206の表面に配置されたパッキン部材を隔膜204の厚み以上にして設計し、パッキン部材をシリコン樹脂等変形して形状の吸収性のある材料にすることで、陽電極側スペーサ205及び陰電極側スペーサ206の両側から加圧して、隔膜204の厚みをパッキン部材で吸収しながら、パッキン部材の本来の目的である液漏れを防ぐことができる。 In the hypochlorous acid water generating part 201a, the positive electrode side spacer 205 and the negative electrode side spacer 206 are interposed between the positive electrode 202 and the negative electrode 203. In the hypochlorous acid water treatment part 201b, a positive electrode side spacer 205, a diaphragm 204, and a negative electrode side spacer 206 are interposed between the positive electrode 202 and the negative electrode 203. As shown in FIG. The positive electrode 202 and the negative electrode 203 are arranged substantially parallel, and in order to absorb the thickness of the diaphragm 204, the thickness of the positive electrode side spacer 205 and the negative electrode side spacer 206 of the hypochlorous acid water treatment portion 201b is , is thinned by the thickness of the diaphragm 204 . As a means for absorbing the thickness of the diaphragm 204 with the thickness of the positive electrode side spacer 205 and the negative electrode side spacer 206, the packing members arranged on the surfaces of the positive electrode side spacer 205 and the negative electrode side spacer 206 are made thicker than the thickness of the diaphragm 204. , and the packing member is made of a material such as silicone resin that is deformed and absorbs the shape. It is possible to prevent liquid leakage, which is the original purpose of the packing member, while absorbing it with the member.
 陽電極用パッキン207aは、陽電極202の外周に電極サイズをくりぬいた形状をしており、陽電極側スペーサ205と密着して外周方向に、陽電極側流路213内の溶液(後述する陰陽電極供給溶液209a)が漏れないように、締め付け圧を加えて取り付けられている。陽電極用パッキン207aの部材としては、絶縁性のシリコンゴムを使用することができる。陽電極用パッキン207aは、陽電極202より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて陽電極側スペーサ205と陽電極側槽筐体側面208aとを密着しながら、陽電極202の厚みで保持されることが望ましい。 The positive electrode packing 207a has a shape in which the outer circumference of the positive electrode 202 is hollowed out to the size of the electrode. It is mounted with clamping pressure so that the electrode supply solution 209a) does not leak. As a member of the positive electrode packing 207a, insulating silicone rubber can be used. The positive electrode packing 207a is thicker than the positive electrode 202, and is crushed by being pressed by the tightening pressure to bring the positive electrode side spacer 205 into close contact with the positive electrode side tank housing side face 208a. A thickness of 202 is desirable.
 陰電極用パッキン207bは、陰電極203の外周に電極サイズをくりぬいた形状をしており、陰電極側スペーサ206と密着して外周方向に、陰電極側流路214内の溶液(後述する陰陽電極供給溶液209a)が漏れないように、締め付け圧を加えて取り付けられている。陰電極用パッキン207bの部材としては、絶縁性のシリコンゴムを使用することができる。陰電極用パッキン207bは、陰電極203より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて陰電極側スペーサ206と陰電極側槽筐体側面208bと密着しながら、陰電極203の厚みで保持されることが望ましい。 The negative electrode packing 207b has a shape in which the electrode size is hollowed out around the outer periphery of the negative electrode 203. The negative electrode packing 207b is in close contact with the negative electrode side spacer 206, and flows in the outer peripheral direction. It is mounted with clamping pressure so that the electrode supply solution 209a) does not leak. Insulating silicon rubber can be used as the member of the cathode packing 207b. The negative electrode packing 207b is thicker than the negative electrode 203, and is crushed by being pressed by the tightening pressure. It is desirable that the thickness of the
 陽電極側槽筐体側面208aは、陽電極202の外側に直接接触するように配置されている。陽電極側槽筐体側面208aは、陽電極202の外側への溶液の染み込みを抑制するために、陽電極側槽筐体側面208aの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。陽電極202の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気透析の効率向上にもつながる。 The side surface 208a of the positive electrode tank housing is arranged so as to be in direct contact with the outside of the positive electrode 202. In order to suppress penetration of the solution to the outside of the positive electrode 202, the positive electrode side tank housing side surface 208a is provided with a packing (not shown) for increasing adhesion on the inner surface of the positive electrode side tank housing side surface 208a. ) is attached, and it is desirable to apply clamping pressure to suppress the solution from flowing into the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the positive electrode 202, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 陰電極側槽筐体側面208bは、陰電極203の外側に直接接触するように配置されている。陰電極側槽筐体側面208bは、陰電極203の外側への溶液の染み込みを抑制するために、陰電極側槽筐体側面208bの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。陰電極203の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電極透析の効率向上にもつながる。 The side surface 208b of the cathode-side tank housing is arranged so as to be in direct contact with the outside of the cathode 203. In order to suppress the penetration of the solution to the outside of the cathode 203, the cathode side tank housing side surface 208b is provided with a packing (not shown) for increasing adhesion on the inner surface of the cathode side tank housing side surface 208b. ) is attached, and it is desirable to apply clamping pressure to suppress the solution from flowing into the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the negative electrode 203, the efficiency of electrode dialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 陰陽電極溶液供給口209は、電気分解する塩水を陰陽電極間流路212内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陽電極202の外側から塩水を供給するため、陰陽電極溶液供給口209は、陽電極202より外周の位置に加工されている。なお、陰陽電極溶液供給口209は、陽電極202及び陰電極203の両方の外側の位置にそれぞれ加工されているが、陽電極202または陰電極203の外周の位置の一方のみに加工されてもよい。 The positive and negative electrode solution supply port 209 is a connection port for flowing salt water to be electrolyzed into the channel 212 between negative and positive electrodes, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply salt water from the outside of the positive electrode 202 , the negative electrode solution supply port 209 is processed at a position outside the positive electrode 202 . The positive and negative electrode solution supply ports 209 are processed at positions outside both the positive electrode 202 and the negative electrode 203, respectively. good.
 陰陽電極供給溶液209aは、塩水である。陰陽電極供給溶液209aは、陰陽電極溶液供給口209から陰陽電極間流路212に導入される。 The positive and negative electrode supply solution 209a is salt water. The negative and positive electrode supply solution 209 a is introduced from the negative and positive electrode solution supply port 209 into the channel 212 between the negative and positive electrodes.
 陽電極溶液抽出口210は、電気透析した陽電極抽出溶液210aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陽電極202の外側に陽電極抽出溶液210aを抽出するため、陽電極溶液抽出口210は、陽電極202より外周の位置に加工されている。 The positive electrode solution extraction port 210 is a connection port for extracting the electrodialyzed positive electrode extraction solution 210a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the positive electrode extracting solution 210 a outside the positive electrode 202 , the positive electrode solution extracting port 210 is processed at a position outside the positive electrode 202 .
 陽電極抽出溶液210aは、HClOが主成分の次亜塩素酸水である。陽電極抽出溶液210aは、陽電極側流路213から陽電極溶液抽出口210に導入される。 The positive electrode extraction solution 210a is hypochlorous acid water containing HClO as the main component. The positive electrode extraction solution 210 a is introduced into the positive electrode solution extraction port 210 from the positive electrode side channel 213 .
 より詳細には、陽電極抽出溶液210aは、陰陽電極供給溶液209aを陰陽電極間流路212にて電気分解した後、陽電極側流路213に流通させて、残留成分の要因となる陽イオンを分離希薄化した溶液である。次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水を使用しているので、陽電極抽出溶液210aには、陽イオンであるNaイオンが分離希薄化され、HClOの成分が主成分の次亜塩素酸水となる。pHは酸性を示す。 More specifically, the positive electrode extraction solution 210a electrolyzes the negative electrode supply solution 209a in the channel 212 between the negative and positive electrodes, and then flows through the positive electrode side channel 213 to remove cations that cause residual components. is a diluted solution. Since the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is used, the positive electrode extraction solution 210a contains Na + ions, which are cations, separated and diluted. The component of HClO becomes hypochlorous acid water as the main component. pH indicates acidity.
 陰電極溶液抽出口211は、電気透析した陰電極抽出溶液211aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。陰電極203の外側に陰電極抽出溶液211aを抽出するため、陰電極溶液抽出口211は、陰電極203より外周の位置に加工されている。 The negative electrode solution extraction port 211 is a connection port for extracting the electrodialyzed negative electrode extraction solution 211a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the negative electrode extracting solution 211 a outside the negative electrode 203 , the negative electrode solution extracting port 211 is processed at a position outside the negative electrode 203 .
 陰電極抽出溶液211aは、NaClO及びNaOHが主成分の次亜塩素酸水である。陰電極抽出溶液211aは、陰電極側流路214から陰電極溶液抽出口211に導出される。 The negative electrode extraction solution 211a is hypochlorous acid water containing NaClO and NaOH as main components. The negative electrode extraction solution 211 a is led out to the negative electrode solution extraction port 211 from the negative electrode side channel 214 .
 より詳細には、陰電極抽出溶液211aは、陰陽電極供給溶液209aを陰陽電極間流路212にて電気分解した後、陰電極側流路214に流通させて、残留成分の要因となる陽イオンが濃縮化された溶液である。次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水を使用しているので、陰電極抽出溶液211aには、陽イオンであるNaイオンが分離濃縮化され、NaOHとして生成されることで、NaOHとNaClOが主成分の次亜塩素酸水となる。pHはアルカリ性を示す。 More specifically, the negative electrode extracting solution 211a electrolyzes the negative electrode supply solution 209a in the channel 212 between the negative and positive electrodes, and then flows through the channel 214 on the negative electrode side to remove cations that cause residual components. is a concentrated solution. Since the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is used, the negative electrode extraction solution 211a has Na + ions, which are cations, separated and concentrated, By being generated as NaOH, it becomes hypochlorous acid water containing NaOH and NaClO as main components. pH indicates alkaline.
 ここで、陰陽電極溶液供給口209は、鉛直方向の下方側に配置されることが望ましく、陽電極溶液抽出口210及び陰電極溶液抽出口211は、鉛直方向の上方側に配置されることが望ましい。流路内の電気透析反応及び電気分解反応により、酸素ガス及び水素ガス等が発生する際に、抽出口が上方に配置されてある方がガスをより効率的に溶液とともに排出することができる。 Here, the positive and negative electrode solution supply ports 209 are preferably arranged on the lower side in the vertical direction, and the positive electrode solution extraction port 210 and the negative electrode solution extraction port 211 are preferably arranged on the upper side in the vertical direction. desirable. When oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
 陰陽電極間流路212は、陽電極202と陽電極側スペーサ205と陰電極側スペーサ206と陰電極203とによって囲まれた領域に形成される流路であり、いわゆる無隔膜電解流路である。陰陽電極間流路212は、陽電極側スペーサ205の陽電極側流路孔213aと陰電極側スペーサ206の陰電極側流路孔214aが重ね合わされた構造によって蛇行して構成されている。より詳細には、陰陽電極間流路212は、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気分解を行う距離を稼いでいる。さらに陰陽電極間流路212の流路幅を小さくすることで距離が長くなり、電気分解時間を長くすることができる。陰陽電極間流路212において液の逆流を低減するため、陰陽電極間流路212が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。陰陽電極間流路212は、陽電極側流路213及び陰電極側流路214に接続されており、内部に陰陽電極供給溶液209aが流通している。電気分解量は、印加される電圧電流及び流路内の流速によって制御される。流速は、陽電極溶液抽出口210の後段に陽電極側供給ポンプ231を設置し、陰電極溶液抽出口211の後段に陰電極側供給ポンプ232を設置して制御することができる。各供給ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。一定流量で溶液を流すことで、流路内で電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The channel 212 between negative and positive electrodes is a channel formed in a region surrounded by the positive electrode 202, the positive electrode side spacer 205, the negative electrode side spacer 206, and the negative electrode 203, and is a so-called non-diaphragm electrolytic channel. . The channel 212 between the negative and negative electrodes is formed in a meandering manner by a structure in which the positive electrode side channel hole 213a of the positive electrode side spacer 205 and the negative electrode side channel hole 214a of the negative electrode side spacer 206 are overlapped. More specifically, the channel 212 between positive and negative electrodes reciprocates in the horizontal direction, and the number of reciprocations in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top. Furthermore, by reducing the channel width of the channel 212 between the negative and positive electrodes, the distance becomes longer, and the electrolysis time can be lengthened. In order to reduce backflow of the liquid in the channel 212 between the negative and positive electrodes, it is desirable that the channel 212 between the positive and negative electrodes has a structure that goes upward in one direction, except that the channel 212 reciprocates in the horizontal direction. The channel 212 between the negative and positive electrodes is connected to the channel 213 on the positive electrode side and the channel 214 on the negative electrode side, and the negative electrode supply solution 209a flows therein. The amount of electrolysis is controlled by the applied voltage current and flow velocity in the channel. The flow rate can be controlled by installing a positive electrode side supply pump 231 after the positive electrode solution extraction port 210 and installing a negative electrode side supply pump 232 after the negative electrode solution extraction port 211 . Each supply pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By allowing the solution to flow at a constant flow rate, it is possible to control the electrolysis time in the flow channel at a constant level, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 陰陽電極間流路212内では、電気分解された次亜塩素酸水は流通過程で混合されるものの、陽電極202近傍には塩水の陰イオン成分であるClイオンが多く分布し、陰電極203近傍には塩水の陽イオン成分であるNaイオンが多く分布するような濃度勾配を持って流れている。そのため、陰陽電極間で電気分解を行うと、陽電極202近傍には酸性に寄った溶液が流れ、陰電極203近傍にはアルカリ性に寄った溶液が流れることになる。そのため、酸性及びアルカリ性に寄った次亜塩素酸水が、陽電極側流路213及び陰電極側流路214にそれぞれ流通される。具体的には、陽電極側流路213にはHCl及びHClOを多く含む酸性の次亜塩素酸水が流通され、陰電極側流路214にはNaOHを多く含むアルカリ性の次亜塩素酸水が抽出される。 In the channel 212 between the negative and positive electrodes, although the electrolyzed hypochlorous acid water is mixed during the flow process, many Cl ions, which are the negative ion component of the salt water, are distributed near the positive electrode 202, and the negative electrode In the vicinity of 203, there is a concentration gradient in which many Na + ions, which are cationic components of salt water, are distributed. Therefore, when electrolysis is performed between the positive and negative electrodes, an acidic solution flows in the vicinity of the positive electrode 202 and an alkaline solution flows in the vicinity of the negative electrode 203 . Therefore, the hypochlorous acid water, which is more acidic and alkaline, flows through the positive electrode-side channel 213 and the negative electrode-side channel 214, respectively. Specifically, acidic hypochlorous acid water containing a large amount of HCl and HClO is circulated in the positive electrode side channel 213, and alkaline hypochlorous acid water containing a large amount of NaOH is circulated in the negative electrode side channel 214. extracted.
 陽電極側流路213は、陽電極202と陽電極側スペーサ205と隔膜204とによって囲まれた領域で形成される流路である。陽電極側流路213は、陽電極側スペーサ205の陽電極側流路孔213aによって蛇行して構成されている。より詳細には、陽電極側流路213は、水平方向に往復し下から上に陽極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに陽電極側流路213の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。陽電極側流路213において液の逆流を低減するため、陽電極側流路213が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。陽電極側流路213は、その一方が陰陽電極間流路212に接続し、他方には陽電極溶液抽出口210が設けられており、内部に次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水が流通している。なお、陽電極側流路213は、請求項の「第一流路」に相当する。 The positive electrode-side channel 213 is a channel formed by a region surrounded by the positive electrode 202 , the positive electrode-side spacer 205 and the diaphragm 204 . The positive electrode-side channel 213 is formed by meandering positive electrode-side channel holes 213 a of the positive electrode-side spacer 205 . More specifically, the anode-side channel 213 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the positive electrode side channel 213, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the positive electrode side channel 213, it is desirable that the positive electrode side channel 213 has a structure in which the positive electrode side channel 213 goes from bottom to top in one direction other than reciprocating in the horizontal direction. One of the positive electrode side channels 213 is connected to the channel 212 between the negative and positive electrodes, and the other is provided with a positive electrode solution extraction port 210, and the hypochlorous acid water generating unit 201a internally converts salt water into electricity. Hypochlorous acid water generated by decomposition is distributed. The positive electrode-side channel 213 corresponds to the "first channel" in the claims.
 陰電極側流路214は、陰電極203と陰電極側スペーサ206と隔膜204とによって囲まれた領域で形成される流路である。陰電極側流路214は、陰電極側スペーサ206の陰電極側流路孔214aによって蛇行して構成されている。より詳細には、陰電極側流路214は、水平方向に往復し下から上に陰極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに陰電極側流路214の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。陰電極側流路214において液の逆流を低減するため、陰電極側流路214が水平方向に往復する以外は一方向に下から上に流れる構造とすることが望ましい。陰電極側流路214は、その一方が陰陽電極間流路212に接続し、他方には陰電極溶液抽出口211が設けられており、内部に次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水が流通している。なお、陰電極側流路214は、請求項の「第二流路」に相当する。 The cathode-side channel 214 is a channel formed by a region surrounded by the cathode 203 , the cathode-side spacer 206 and the diaphragm 204 . The cathode-side channel 214 is formed by meandering cathode-side channel holes 214 a of the cathode-side spacer 206 . More specifically, the cathode-side channel 214 reciprocates in the horizontal direction until the cathode-side solution reaches from the bottom to the top, and the number of horizontal reciprocations increases the distance for electrodialysis. Further, by reducing the channel width of the negative electrode side channel 214, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the negative electrode side channel 214, it is desirable that the negative electrode side channel 214 has a structure in which the liquid flows in one direction from bottom to top, except for reciprocating in the horizontal direction. One of the negative electrode side channels 214 is connected to the channel 212 between the negative and positive electrodes, and the other is provided with the negative electrode solution extraction port 211, and the salt water is electrically generated in the hypochlorous acid water generation part 201a inside. Hypochlorous acid water generated by decomposition is distributed. The cathode-side channel 214 corresponds to the "second channel" in the claims.
 陽電極側流路213及び陰電極側流路214は、隔膜204を挟んで対称な形状で対向している。つまり、陽電極側流路213及び陰電極側流路214は、隔膜204を挟んで互いに対向する蛇行形状で構成されている。このようにして、陽電極側流路213と陰電極側流路214とは、いわゆる有隔膜電解流路を構成している。そして、陽電極側流路213内を流通する次亜塩素酸水に含まれるNa+イオンが陰電極側流路214側に移動する。イオンの移動量は、印加される電圧電流及び流路内の流速によって制御される。流速は、陽電極溶液抽出口210の後段に陽電極側供給ポンプ231を設置し、陰電極溶液抽出口211の後段に陰電極側供給ポンプ232を設置して制御することができる。各ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。一定流量で溶液を流すことで、流路内で電気透析及び電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The positive electrode side channel 213 and the negative electrode side channel 214 face each other in a symmetrical shape with the diaphragm 204 interposed therebetween. That is, the positive electrode side channel 213 and the negative electrode side channel 214 are formed in meandering shapes facing each other with the diaphragm 204 interposed therebetween. In this way, the positive electrode side channel 213 and the negative electrode side channel 214 constitute a so-called membrane electrolysis channel. Then, the Na + ions contained in the hypochlorous acid water flowing through the positive electrode side channel 213 move to the negative electrode side channel 214 side. The amount of ion movement is controlled by the applied voltage and current and the flow velocity in the channel. The flow rate can be controlled by installing a positive electrode side supply pump 231 after the positive electrode solution extraction port 210 and installing a negative electrode side supply pump 232 after the negative electrode solution extraction port 211 . Each pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, it is possible to control the electrodialysis and electrolysis time in the flow channel constantly, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 次亜塩素酸水供給装置201では、無隔膜電解流路を構成する陰陽電極間流路212と、これに続く有隔膜電解流路を構成する陽電極側流路213及び陰電極側流路214とによって、次亜塩素酸水供給装置201としての蛇行状の電解流路をワンパス式に構成している。つまり、蛇行状の電解流路において、陰陽電極間流路212が電解流路の前段を構成し、陽電極側流路213及び陰電極側流路214が電解流路の後段を構成している。 In the hypochlorous acid water supply apparatus 201, a positive electrode side channel 213 and a negative electrode side channel 214 which constitute a diaphragmless electrolysis channel 212 which constitutes a non-diaphragm electrolysis channel, followed by a positive electrode side channel 213 and a negative electrode side channel 214 which constitute a diaphragm electrolysis channel. As a result, the meandering electrolysis flow path as the hypochlorous acid water supply device 201 is configured as a one-pass type. In other words, in the meandering electrolytic flow path, the anode-positive electrode flow path 212 constitutes the front stage of the electrolytic flow path, and the positive electrode side flow path 213 and the negative electrode side flow path 214 constitute the rear stage of the electrolytic flow path. .
 電気分解・電気透析電源215は、陽電極202及び陰電極203と接続され、陽電極202及び陰電極203に電流及び電圧を印加することができる直流電源である。電気分解・電気透析電源215は、一定の電流となるように定電流制御の電源として使用してもよいし、一定の電圧となるように定電圧制御の電源として使用してもよい。電気分解・電気透析電源215は、次亜塩素酸水生成部201a及び次亜塩素酸処理部1bにおける共通の陽電極202及び陰電極203に電流及び電圧を印加する。つまり、電気分解・電気透析電源215は、次亜塩素酸水生成部201aにおいて電気分解を生じされる電極の電源として機能し、次亜塩素酸処理部1bにおいて電気透析を生じさせる電極の電源として機能する。なお、電気分解・電気透析電源215は、スケール蓄積の低減のため、例えば、次亜塩素酸水供給装置201への次亜塩素酸水の通水ごとに、陽電極202と陰電極203の電位を入れ替えて転極し、付着したスケールを溶解させるように制御してもよい。 The electrolysis/electrodialysis power supply 215 is a DC power supply that is connected to the positive electrode 202 and the negative electrode 203 and can apply current and voltage to the positive electrode 202 and the negative electrode 203 . The electrolysis/electrodialysis power supply 215 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage. The electrolysis/electrodialysis power supply 215 applies current and voltage to the common positive electrode 202 and negative electrode 203 in the hypochlorous acid water generating unit 201a and the hypochlorous acid processing unit 1b. That is, the electrolysis/electrodialysis power supply 215 functions as a power supply for the electrodes that cause electrolysis in the hypochlorous acid water generating unit 201a, and as a power supply for the electrodes that cause electrodialysis in the hypochlorous acid treatment unit 1b. Function. In order to reduce scale accumulation, the electrolysis/electrodialysis power supply 215 changes the potential of the positive electrode 202 and the negative electrode 203 each time the hypochlorous acid water is supplied to the hypochlorous acid water supply device 201, for example. may be controlled so as to reverse polarity by replacing and dissolving adhered scale.
 以上のように、次亜塩素酸水供給装置201は、各部材によって構成される。 As described above, the hypochlorous acid water supply device 201 is composed of each member.
 次亜塩素酸水供給装置201は、図20に示すように、上述した次亜塩素酸水生成部201aと次亜塩素酸水処理部201bとにより構成される。そして、次亜塩素酸水供給装置201は、次亜塩素酸水生成部201aに塩水を連続的に導入し、次亜塩素酸水処理部201bから次亜塩素酸水を次亜塩素酸水処理部201bに連続的に供給する。より詳細には、次亜塩素酸水供給装置201は、次亜塩素酸水生成部201aに連続的に導入される塩水を電気分解し、次亜塩素酸水処理部201bの陽電極側における陽電極側流路213から送出される陽電極抽出溶液210aを酸性の次亜塩素酸水として外部に供給する。また、次亜塩素酸水供給装置201は、次亜塩素酸水処理部201bの陰電極側における陰電極側流路214から送出される陰電極抽出溶液211aをアルカリ性の次亜塩素酸水として外部に供給する。 As shown in FIG. 20, the hypochlorous acid water supply device 201 is composed of the above-described hypochlorous acid water generation unit 201a and hypochlorous acid water treatment unit 201b. Then, the hypochlorous acid water supply device 201 continuously introduces salt water into the hypochlorous acid water generation unit 201a, and the hypochlorous acid water is treated with the hypochlorous acid water from the hypochlorous acid water treatment unit 201b. It is continuously supplied to the section 201b. More specifically, the hypochlorous acid water supply device 201 electrolyzes the salt water that is continuously introduced into the hypochlorous acid water generating unit 201a, and the positive electrode on the positive electrode side of the hypochlorous acid water processing unit 201b. The positive electrode extraction solution 210a delivered from the electrode-side channel 213 is supplied to the outside as acidic hypochlorous acid water. In addition, the hypochlorous acid water supply device 201 externally extracts the cathode extraction solution 211a sent from the cathode side channel 214 on the cathode side of the hypochlorous acid water treatment unit 201b as alkaline hypochlorous acid water. supply to
 次に、図20及び図21を参照して、次亜塩素酸水生成部201aでの処理動作について説明する。図21は、次亜塩素酸水供給装置201の次亜塩素酸水生成部201aの水平方向の断面イメージ図である。 Next, with reference to FIGS. 20 and 21, the processing operation of the hypochlorous acid water generating unit 201a will be described. FIG. 21 is a horizontal sectional image diagram of the hypochlorous acid water generating unit 201a of the hypochlorous acid water supply device 201. As shown in FIG.
 図20及び図21に示すように、次亜塩素酸水生成部201aでは、陰陽電極溶液供給口209を通って塩水である陰陽電極供給溶液209aが陰陽電極間流路212に連続的に供給される。そして、陰陽電極溶液供給口209から供給された陰陽電極供給溶液209aは、蛇行して形成された陰陽電極間流路212を流通していく。この際、陰陽電極供給溶液209aは、陰陽電極間流路212を流通していくと同時に、両端の陽電極202及び陰電極203に電圧が印加される。電圧が印加されると、陽電極202側には陰イオン(Clイオン)、陰電極203側には陽イオン(Naイオン)が引き付けられ、電気分解により陽電極202側にはHCl及びHClO、陰電極203側にはNaOHが生成される。さらにHClOとNaOHが反応することで、NaClOが生成される。これを繰り返すことにより、NaClOが主成分となり、HClO及びNaOH及び残留したNaClが含まれる次亜塩素酸水が生成される。 As shown in FIGS. 20 and 21, in the hypochlorous acid water generator 201a, a positive and negative electrode supply solution 209a, which is salt water, is continuously supplied to the channel 212 between positive and negative electrodes through a positive and negative electrode solution supply port 209. be. The negative and positive electrode supply solution 209a supplied from the negative and positive electrode solution supply port 209 flows through the channel 212 between the positive and negative electrodes which is formed meandering. At this time, the negative electrode supply solution 209a flows through the channel 212 between negative and positive electrodes, and at the same time, a voltage is applied to the positive electrode 202 and the negative electrode 203 at both ends. When a voltage is applied, anions (Cl ions) are attracted to the positive electrode 202 side, and positive ions (Na + ions) are attracted to the negative electrode 203 side, and HCl and HClO are attracted to the positive electrode 202 side by electrolysis. , NaOH is generated on the cathode 203 side. Further, HClO and NaOH react to generate NaClO. By repeating this, hypochlorous acid water containing NaClO as the main component and containing HClO, NaOH, and residual NaCl is produced.
 次亜塩素酸水生成部201aでの処理動作では、陰陽電極間流路212にて電気分解を行う時間を長くすることで、NaClの電気分解量を多くして、生成する次亜塩素酸水の中に残留するNaCl(塩水)を低減することができる。電気分解を行う時間を長くするためには、陰陽電極間流路212の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気分解を行う距離を稼いでいる。さらに陰陽電極間流路212の断面積を小さくすることでも距離が長くなり、電気分解時間を長くすることができる。 In the processing operation in the hypochlorous acid water generating unit 201a, the amount of electrolysis of NaCl is increased by increasing the electrolysis time in the channel 212 between the negative and positive electrodes, and the generated hypochlorous acid water NaCl (brine) remaining in the can be reduced. In order to lengthen the electrolysis time, it is necessary to lengthen the distance of the channel 212 between the negative and positive electrodes. The number of times of reciprocation in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional area of the channel 212 between the negative and positive electrodes, the distance can be lengthened, and the electrolysis time can be lengthened.
 次に、図20及び図22を参照して、次亜塩素酸水処理部201bでの処理動作について説明する。図22は、次亜塩素酸水供給装置201の次亜塩素酸水処理部201bの水平方向の断面イメージ図である。 Next, the processing operation in the hypochlorous acid water processing unit 201b will be described with reference to FIGS. 20 and 22. FIG. FIG. 22 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment unit 201b of the hypochlorous acid water supply device 201. As shown in FIG.
 図20及び図22に示すように、次亜塩素酸水処理部201bでは、次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水が陽電極側流路213に連続的に供給され、同様に次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水が陰電極側流路214に連続的に供給される。そして、次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水は、蛇行して形成された陽電極側流路213を流通していき、同じく蛇行して形成された陰電極側流路214を流通していく。この際、次亜塩素酸水生成部201aにおいて塩水を電気分解して生成した次亜塩素酸水は、同じ方向に流通されて陽電極側流路213及び陰電極側流路214をそれぞれ流通していくと同時に、両端の陽電極202及び陰電極203に電圧が印加される。電圧が印加されると、陽電極202側には陰イオン、陰電極203側には陽イオン(Naイオン)が引き付けられる。隔膜204は、陽イオンのみを透過可能な膜で構成されているため、陽電極側流路213を流通する次亜塩素酸水に含まれる陽イオン(Naイオン)は、隔膜204を透過して、陰電極側流路214の次亜塩素酸水を通って陰電極203側に引き付けられる。反対に、陰電極側流路214を流通する陰イオンは、隔膜204を透過できないため、陽電極側流路213に含まれる陰イオンのみが陽電極202に引き付けられる。これを繰り返すことにより、陽電極側流路213を流通する次亜塩素酸水に含まれる陽イオン(Naイオン)が、陰電極側流路214を流通する次亜塩素酸水に移動して電気透析が進行し、陽電極側流路213を流通する次亜塩素酸水は、陽イオン(Naイオン)が分離希薄化され、陰電極側流路214を流通する次亜塩素酸水は、陽イオン(Naイオン)が濃縮化されて抽出される。その結果、陽電極溶液抽出口210から、陽電極抽出溶液210aとして、残留成分となるNaClO及びNaOHが分離希薄化してHClO成分が主成分となった次亜塩素酸水が抽出される。反対に、陰電極溶液抽出口211から、陰電極抽出溶液211aとして、残留成分を構成するNaイオンが濃縮化され、NaOHとして生成された成分を含む溶液(次亜塩素酸水)が抽出される。 As shown in FIGS. 20 and 22, in the hypochlorous acid water treatment unit 201b, the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is supplied to the positive electrode side channel 213. The hypochlorous acid water is continuously supplied, and the hypochlorous acid water generated by electrolyzing the salt water in the hypochlorous acid water generation unit 201 a is continuously supplied to the negative electrode side channel 214 . Then, the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a flows through the meandering positive electrode side flow path 213, and is also formed meanderingly. It flows through the negative electrode side channel 214 . At this time, the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 201a is circulated in the same direction through the positive electrode side channel 213 and the negative electrode side channel 214, respectively. At the same time, a voltage is applied to the positive electrode 202 and the negative electrode 203 at both ends. When a voltage is applied, negative ions are attracted to the positive electrode 202 side and positive ions (Na + ions) are attracted to the negative electrode 203 side. Since the diaphragm 204 is composed of a membrane that is permeable only to cations, the cations (Na + ions) contained in the hypochlorous acid water flowing through the positive electrode-side channel 213 do not permeate the diaphragm 204. As a result, it passes through the hypochlorous acid water in the cathode-side channel 214 and is attracted to the cathode 203 side. On the contrary, since the anions flowing through the negative electrode side channel 214 cannot permeate the diaphragm 204, only the anions contained in the positive electrode side channel 213 are attracted to the positive electrode 202. By repeating this, the cations (Na + ions) contained in the hypochlorous acid water flowing through the positive electrode-side channel 213 move to the hypochlorous acid water flowing through the negative electrode-side channel 214. As electrodialysis progresses, the hypochlorous acid water flowing through the positive electrode-side channel 213 is separated and diluted with cations (Na + ions), and the hypochlorous acid water flowing through the negative electrode-side channel 214 is , cations (Na + ions) are concentrated and extracted. As a result, from the positive electrode solution extraction port 210, as the positive electrode extraction solution 210a, the residual components NaClO and NaOH are separated and diluted, and hypochlorous acid water containing the HClO component as the main component is extracted. Conversely, from the cathode solution extraction port 211, a solution (hypochlorous acid water) containing a component in which Na + ions constituting residual components are concentrated and generated as NaOH is extracted as a cathode extraction solution 211a. be.
 次亜塩素酸水処理部201bでの処理動作では、陽電極側流路213及び陰電極側流路214にて電気透析を行う時間を長くすることで、陽イオン(Naイオン)の移動量をより多くして、陽電極抽出溶液210aのNaClO及びNaOHからなる残留成分をより低減することができる。電気透析を行う時間を長くするためには、陽電極側流路213及び陰電極側流路214の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに陽電極側流路213及び陰電極側流路214の断面積を小さくすることで距離が長くなり、電気透析時間を長くすることができる。 In the processing operation in the hypochlorous acid water treatment unit 201b, the electrodialysis time in the positive electrode side channel 213 and the negative electrode side channel 214 is lengthened, so that the movement amount can be increased to further reduce residual components of NaClO and NaOH in the positive electrode extraction solution 210a. In order to lengthen the electrodialysis time, it is necessary to lengthen the distance between the positive electrode side channel 213 and the negative electrode side channel 214. For this purpose, the electrode moves up one step at a time while reciprocating in the horizontal direction. The solution is reciprocated in the horizontal direction, and the distance for electrodialysis is earned by the number of reciprocations in the horizontal direction until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional areas of the positive electrode side channel 213 and the negative electrode side channel 214, the distance becomes longer, and the electrodialysis time can be lengthened.
 陽電極側流路213及び陰電極側流路214を通る各溶液の流速は、同じとなるように各ポンプを制御しているが、互いに異なるようにしてもよい。流速が異なる場合には、抽出される各溶液の濃度に影響する。例えば、陽電極側流路213の流速を相対的に速くして、陰電極側流路214の流速を相対的に遅くした場合には、陽電極側流路213及び陰電極側流路214の流速を同じにした場合に比べて、陰電極側流路214から抽出した陰電極抽出溶液211aは少量かつ濃度が濃い溶液となる。これにより、陰電極抽出溶液211aを排液する場合には、陰電極側流路214の流速を遅くすることが望ましい。 Although the pumps are controlled so that the flow rates of the solutions passing through the positive electrode side channel 213 and the negative electrode side channel 214 are the same, they may be different from each other. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity of the positive electrode side channel 213 is relatively increased and the flow velocity of the negative electrode side channel 214 is relatively decreased, the flow rate of the positive electrode side channel 213 and the negative electrode side channel 214 Compared to when the flow rate is the same, the negative electrode extraction solution 211a extracted from the negative electrode side flow channel 214 is a small amount and has a high concentration. Therefore, it is desirable to reduce the flow velocity of the cathode-side channel 214 when draining the cathode extraction solution 211a.
 次に、図23A~図23Cを参照して、実際に次亜塩素酸水供給装置201(次亜塩素酸水生成部201a及び次亜塩素酸水処理部201b)を流通して陽電極溶液抽出口210及び陰電極溶液抽出口211からそれぞれ抽出した陽電極抽出溶液210a及び陰電極抽出溶液211aの次亜塩素酸水の特性(導電率、pH、及び有効塩素濃度)について説明する。図23A~図23Cは、次亜塩素酸水供給装置201を流通した次亜塩素酸水の特性と電気透析時間との関係を示す図である。より詳細には、図23Aは、次亜塩素酸水供給装置201による電気透析時間と導電率の関係を示す図である。図23Bは、次亜塩素酸水供給装置201による電気透析時間とpHの関係を示す図である。図23Cは、次亜塩素酸水供給装置201による電気透析時間と有効塩素濃度の関係を示す図である。 Next, referring to FIGS. 23A to 23C, the hypochlorous acid water supply device 201 (the hypochlorous acid water generating unit 201a and the hypochlorous acid water processing unit 201b) is actually circulated to extract the positive electrode solution. The characteristics (conductivity, pH, and effective chlorine concentration) of the hypochlorous acid water of the positive electrode extraction solution 210a and the negative electrode extraction solution 211a extracted from the port 210 and the negative electrode solution extraction port 211, respectively, will be described. 23A to 23C are diagrams showing the relationship between the characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply device 201 and the electrodialysis time. More specifically, FIG. 23A is a diagram showing the relationship between electrodialysis time and electrical conductivity by the hypochlorous acid water supply device 201. FIG. FIG. 23B is a diagram showing the relationship between electrodialysis time and pH by the hypochlorous acid water supply device 201. FIG. FIG. 23C is a diagram showing the relationship between the electrodialysis time and available chlorine concentration by the hypochlorous acid water supply device 201. FIG.
 なお、図23A~図23Cでの実験評価では、次亜塩素酸水生成部201aに、流路断面積24mm、流路長360mmの陰陽電極間流路212を形成したものを用い、次亜塩素酸水処理部201bに、流路断面積24mm、流路長320mmの陽電極側流路213及び陰電極側流路214を形成したものを用いた。また、陽電極側供給ポンプ231及び陰電極側要求ポンプ32の流量条件としては、ともに103mL/h及び153mL/h及び250mL/hの条件の流速で流通させて次亜塩素酸水生成部201aの電気分解時間、及び次亜塩素酸水処理部201bの電気透析時間を調整し、陽電極抽出溶液210a及び陰電極抽出溶液211aの導電率、pH、及び有効塩素濃度の測定を行った。 In the experimental evaluation in FIGS. 23A to 23C, the hypochlorous acid water generating unit 201a was formed with a channel 212 between the negative and positive electrodes having a channel cross-sectional area of 24 mm 2 and a channel length of 360 mm. A chloric acid water treatment unit 201b in which a positive electrode side channel 213 and a negative electrode side channel 214 having a channel cross-sectional area of 24 mm 2 and a channel length of 320 mm were formed was used. The flow rate conditions of the positive electrode side supply pump 231 and the negative electrode side demand pump 32 are both 103 mL/h, 153 mL/h, and 250 mL/h. The electrolysis time and the electrodialysis time of the hypochlorous acid water treatment unit 201b were adjusted, and the electrical conductivity, pH, and effective chlorine concentration of the positive electrode extraction solution 210a and the negative electrode extraction solution 211a were measured.
 また、陰陽電極溶液供給口209に供給した陰陽電極供給溶液209aの塩水は、導電率:429μS/cm、pH:6.6、有効塩素濃度:0ppm、及び塩化物イオン濃度:156ppmとなるものを使用した。また電気分解・電気透析電源215には、0.2Aの定電流を印加可能な電源を使用して電気分解及び電気透析を行った。ここで、電気分解時間とは、溶液が陽電極202及び陰電極203に陰陽電極間流路212内で直接触れている時間を指しており、電気分解時間が長いほど、流速は遅いことになる。また、電気透析時間とは、溶液が陽電極202及び陰電極203に陽電極側流路213及び陰電極側流路214内で直接触れている時間を指しており、電気透析時間が長いほど、流速は遅いことになる。今回、陽極側及び陰極側の流速は同一に設定して電気透析を行っている。 The salt water of the negative and positive electrode supply solution 209a supplied to the negative and positive electrode solution supply port 209 has a conductivity of 429 μS/cm, a pH of 6.6, an effective chlorine concentration of 0 ppm, and a chloride ion concentration of 156 ppm. used. Electrolysis and electrodialysis were performed using a power source capable of applying a constant current of 0.2 A as the electrolysis/electrodialysis power source 215 . Here, the electrolysis time refers to the time during which the solution is in direct contact with the positive electrode 202 and the negative electrode 203 in the channel 212 between the positive and negative electrodes, and the longer the electrolysis time, the slower the flow rate. . In addition, the electrodialysis time refers to the time during which the solution is in direct contact with the positive electrode 202 and the negative electrode 203 in the positive electrode side channel 213 and the negative electrode side channel 214. The longer the electrodialysis time, the more The current will be slow. This time, electrodialysis is performed by setting the flow rate on the anode side and the cathode side to be the same.
 図23Aに示す導電率の推移を見ると、電気透析時間が長いほど、言い換えると流速が遅くなるほど、陽電極溶液抽出口210から抽出した陽電極抽出溶液210aの導電率(陽極側の導電率)が低下し、陰電極溶液抽出口211から抽出した陰電極抽出溶液211aの導電率(陰極側の導電率)は増加している。これは、次亜塩素酸水生成部201aで生成された次亜塩素酸水を、次亜塩素酸水処理部201bの陽電極側流路213に流通させると、陽極側溶液に含まれる陽イオンであるNaイオンが隔膜204を通って陰極側に移動し、陽極側はNaClOからHClOに変化して導電率が低下したと考えられる。NaClOは、NaイオンとClOイオンに電離するが、HClOは分子として存在することが主であるため、NaClOからHClOに変化することで導電率は低下する。 Looking at the change in conductivity shown in FIG. 23A, the longer the electrodialysis time, in other words, the slower the flow rate, the greater the conductivity of the positive electrode extraction solution 210a extracted from the positive electrode solution extraction port 210 (the conductivity on the anode side). decreases, and the conductivity (conductivity on the cathode side) of the cathode extraction solution 211a extracted from the cathode solution extraction port 211 increases. This is because when the hypochlorous acid water generated in the hypochlorous acid water generation unit 201a is circulated through the positive electrode-side channel 213 of the hypochlorous acid water treatment unit 201b, cations contained in the anode-side solution It is thought that the Na + ions, which are , move through the diaphragm 204 to the cathode side, and the anode side changes from NaClO to HClO, resulting in a decrease in electrical conductivity. NaClO ionizes into Na + ions and ClO 2 ions, but since HClO mainly exists as a molecule, the electrical conductivity decreases when NaClO changes to HClO.
 図23Bに示すpHの推移を見ると、陽電極抽出溶液210aのpH(陽極側のpH)は弱酸性側に変化し、陰電極抽出溶液211aのpH(陰極側のpH)はアルカリ性側に変化している。このことから、陽極側でのHClOへの変化の影響がうかがえる。陽極側において電気透析時間を長くするほどpHが中性に近づいているのは、溶液中にわずかに残っている塩化物イオンが電気分解によって次亜塩素酸に変化しているためと考えられる。一方、陰極側は、Naイオンが移動することでNaOHが形成されて、アルカリ性へと変化するためである。 Looking at the change in pH shown in FIG. 23B, the pH of the positive electrode extraction solution 210a (pH on the anode side) changes to the slightly acidic side, and the pH of the negative electrode extraction solution 211a (pH on the cathode side) changes to the alkaline side. are doing. This suggests the effect of conversion to HClO on the anode side. The reason why the pH on the anode side becomes closer to neutral as the electrodialysis time increases is thought to be that the slight amount of chloride ions remaining in the solution are converted to hypochlorous acid by electrolysis. On the other hand, on the cathode side, NaOH is formed by movement of Na + ions, and the cathode side becomes alkaline.
 図23Cに示す有効塩素濃度の推移を見ると、陽電極抽出溶液210aの有効塩素濃度(陽極側の有効塩素濃度)は、電気透析時間とともに増加する。また、陰電極抽出溶液211aについても同様に、有効塩素濃度(陰極側の有効塩素濃度)は、電気透析時間とともに増加する。これは、陽電極側供給ポンプ231及び陰電極側供給ポンプ232の流速が遅くなると、次亜塩素酸水生成部201aでの電気分解時間が増加して次亜塩素酸水生成量が増え、同様に次亜塩素酸水処理部201bの陰電極溶液抽出口211で抽出される次亜塩素酸水量も増えることが要因と考えられる。 Looking at the transition of the effective chlorine concentration shown in FIG. 23C, the effective chlorine concentration of the positive electrode extraction solution 210a (the effective chlorine concentration on the anode side) increases with the electrodialysis time. Similarly, for the cathode extraction solution 211a, the available chlorine concentration (available chlorine concentration on the cathode side) increases with the electrodialysis time. This is because when the flow velocities of the positive electrode side supply pump 231 and the negative electrode side supply pump 232 are slowed down, the electrolysis time in the hypochlorous acid water generating unit 201a increases, and the amount of hypochlorous acid water generated increases. This is probably because the amount of hypochlorous acid water extracted from the cathode solution extraction port 211 of the hypochlorous acid water treatment unit 201b also increases.
 次亜塩素酸水供給装置201は、陽極側からは除菌力の高いHClO主体の次亜塩素酸水を、陰極側からは洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水を同時に抽出することができる。HClO主体の次亜塩素酸水は、残留成分の抑制された溶液で、除菌力を維持しながら、空間噴霧時でも残留成分起因による金属腐食を抑制することが可能になる。一方、NaClO及びNaOH主体の次亜塩素酸水は、残留成分が残る溶液のため空間噴霧はできないが、洗浄力の高い溶液であり排水口等の酸性の汚れがある部位に流すことで洗浄効果をもたらすことができる。次亜塩素酸水処理装置1では、陽極側で生成するHClO主体の次亜塩素酸水を空間除菌に使用しつつ、反対側の陰極側で生成されるNaClO及びNaOH主体の次亜塩素酸水も洗浄として活用が可能となる。 The hypochlorous acid water supply device 201 simultaneously extracts hypochlorous acid water mainly composed of HClO with high sterilizing power from the anode side and hypochlorous acid water mainly composed of NaClO and NaOH with high detergency from the cathode side. can do. Hypochlorous acid water containing mainly HClO is a solution in which residual components are suppressed, and it is possible to suppress metal corrosion caused by residual components even during space spraying while maintaining sterilization power. On the other hand, hypochlorous acid water containing NaClO and NaOH as a main component cannot be sprayed in space because it is a solution that leaves residual components, but it is a solution with high detergency and is effective in washing areas with acidic dirt such as drains. can bring In the hypochlorous acid water treatment device 1, hypochlorous acid water mainly composed of HClO generated on the anode side is used for space sterilization, while hypochlorous acid mainly composed of NaClO and NaOH is generated on the cathode side on the opposite side. Water can also be used for cleaning.
 以上、本実施の形態3-1に係る次亜塩素酸水供給装置201によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water supply device 201 according to Embodiment 3-1, the following effects can be obtained.
 (1)次亜塩素酸水供給装置201は、塩水を供給可能に構成された蛇行状の電解流路と、電解流路の前段を構成する無隔膜電解流路(陰陽電極間流路212)内に供給される塩水から一対の陰陽電極間(陽電極202と陰電極203との間)への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部201aと、電解流路の後段を構成する有隔膜電解流路(陽電極側流路213及び陰電極側流路214)内のそれぞれに次亜塩素酸水生成部201aから供給される次亜塩素酸水を一対の陰陽電極間(陽電極202と陰電極203との間)への通電によって連続的に処理する次亜塩素酸水処理部201bと、を備える。次亜塩素酸水処理部201bの陽電極202側における電解流路から送出される次亜塩素酸水を外部に供給する構造とした。 (1) The hypochlorous acid water supply device 201 includes a meandering electrolysis flow channel configured to be able to supply salt water, and a non-diaphragm electrolysis flow channel (positive and positive electrode inter-electrode flow channel 212) that constitutes the preceding stage of the electrolysis flow channel. a hypochlorous acid water generating unit 201a for continuously electrolytically generating hypochlorous acid water by energizing between a pair of negative and positive electrodes (between the positive electrode 202 and the negative electrode 203) from salt water supplied inside; The hypochlorous acid water supplied from the hypochlorous acid water generating unit 201a is supplied to each of the diaphragm electrolysis flow paths (the positive electrode side flow path 213 and the negative electrode side flow path 214) that constitute the subsequent stage of the electrolysis flow path. and a hypochlorous acid water treatment unit 201b that continuously treats by energizing between a pair of negative and positive electrodes (between the positive electrode 202 and the negative electrode 203). The structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode 202 side of the hypochlorous acid water treatment unit 201b is supplied to the outside.
 こうした構成によれば、電解流路に塩水を供給することによって、次亜塩素酸水生成部201aにおいて無隔膜電解流路(陰陽電極間流路212)内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理部201bにおいて有隔膜電解流路(陽電極側流路213及び陰電極側流路214)内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオンを分離低減した次亜塩素酸水として抽出することができる。このため、塩水の電気分解によって生じる残留成分を分離した次亜塩素酸水を外部に供給することが可能な、ワンパス式の次亜塩素酸水供給装置201とすることができる。また、次亜塩素酸水生成部201aと次亜塩素酸処理部1bに共通の陽電極202及び陰電極203を使用し、無隔膜電解流路と有隔膜電解流路が陰陽電極間の電圧を印加された状態で直接的につながっている。これにより、無隔膜電解流路内にて、陽電極202側近傍には陰イオン、陰電極203近傍には陽イオンが多く存在するような分布を持った状態で、有隔膜電解流路に流入するため、陽電極202側には残留成分の要因となる陽イオンをあらかじめ減少させた状態で、電気透析処理を開始することができる。 According to such a configuration, by supplying salt water to the electrolytic flow path, the hypochlorous acid water generating unit 201a electrolyzes the salt water in the non-diaphragm electrolytic flow path (channel 212 between the negative and positive electrodes) to produce hypochlorous acid. The hypochlorous acid generated in the hypochlorous acid water treatment unit 201b and in the non-diaphragm electrolysis flow channel (the positive electrode side flow channel 213 and the negative electrode side flow channel 214) in the diaphragm electrolysis flow channel (the positive electrode side flow channel 213 and the negative electrode side flow channel 214). By circulating water, it is possible to extract hypochlorous acid water in which cations that cause residual components are separated and reduced from the positive electrode side. Therefore, the hypochlorous acid water supply device 201 of the one-pass type can be provided, which can supply the hypochlorous acid water from which the residual components generated by the electrolysis of the salt water are separated to the outside. In addition, the positive electrode 202 and the negative electrode 203 that are common to the hypochlorous acid water generation unit 201a and the hypochlorous acid treatment unit 1b are used, and the non-diaphragm electrolysis flow channel and the diaphragm electrolysis flow channel generate a voltage between the positive and negative electrodes. Directly connected in the energized state. As a result, in the non-diaphragm electrolysis flow path, the particles flow into the diaphragm electrolysis flow path with a distribution in which anions are present in the vicinity of the positive electrode 202 and cations are present in the vicinity of the negative electrode 203 in a large amount. Therefore, the electrodialysis treatment can be started in a state in which the cations that cause residual components are reduced in advance on the positive electrode 202 side.
 (2)次亜塩素酸水供給装置201では、無隔膜電解流路(陰陽電極間流路212)は、平面状の陽電極202と、陽電極202と対向する平面状の陰電極203と、陽電極202と陰電極203との間に設けられたスペーサ部材(陽電極側スペーサ205及び陰電極側スペーサ206)とを有して構成される。一対の陰陽電極(陽電極202及び陰電極203)は、スペーサ部材によって無隔膜電解流路に陽電極202及び陰電極203を露出させることで蛇行状に構成した。このようにすることで、スペーサ部材に形成される流路形状により、塩水を電気分解する能力を変化させることができるので、塩水を電気分解する面積及び時間を自由に設計することができる。 (2) In the hypochlorous acid water supply device 201, the non-diaphragm electrolytic flow path (the flow path 212 between the positive and negative electrodes) includes a planar positive electrode 202, a planar negative electrode 203 facing the positive electrode 202, It is composed of a spacer member (positive electrode side spacer 205 and negative electrode side spacer 206 ) provided between the positive electrode 202 and the negative electrode 203 . A pair of negative and negative electrodes (a positive electrode 202 and a negative electrode 203) were formed in a meandering shape by exposing the positive electrode 202 and the negative electrode 203 to the non-diaphragm electrolytic flow path by means of a spacer member. By doing so, the ability to electrolyze salt water can be changed according to the channel shape formed in the spacer member, so that the area and time for electrolyzing salt water can be freely designed.
 (3)次亜塩素酸水供給装置201では、有隔膜電解流路(陽電極側流路213及び陰電極側流路214)は、陽電極202が流路に沿って露出して延設された蛇行状の陽電極側流路213と、陽電極側流路213と対向して並設され、陰電極203が流路に沿って露出して延設された蛇行状の陰電極側流路214と、陽電極側流路213と陰電極側流路214とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜204とを有して構成される。一対の陰陽電極は、陽電極側スペーサ205によって陽電極側流路213に陽電極202を露出させるとともに、陰電極側スペーサ206によって陰電極側流路214に陰電極203を露出させることで蛇行状に構成した。このようにすることで、塩水を電気分解して生成した次亜塩素酸水を、隔膜204を挟んで同じ方向に電圧を印加しながら流通させるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離低減することができる。このため、塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を生成することが可能な次亜塩素酸水処理部201bとすることができる。 (3) In the hypochlorous acid water supply device 201, the diaphragm electrolysis flow path (the positive electrode side flow path 213 and the negative electrode side flow path 214) extends along the flow path with the positive electrode 202 exposed. A meandering positive electrode-side flow channel 213 and a meandering negative electrode-side flow channel provided in parallel to face the positive electrode-side flow channel 213, with the negative electrode 203 exposed and extending along the flow channel. 214, and a diaphragm 204 provided to separate the positive electrode side channel 213 and the negative electrode side channel 214 and permeate cations contained in the solution flowing through the channels. The pair of negative and negative electrodes are formed in a meandering shape by exposing the positive electrode 202 to the positive electrode side channel 213 by the positive electrode side spacer 205 and exposing the negative electrode 203 to the negative electrode side channel 214 by the negative electrode side spacer 206 . configured to By doing so, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the diaphragm 204, so that the residual components from the hypochlorous acid water cations can be separated and reduced. Therefore, the hypochlorous acid water treatment unit 201b can produce hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced.
 (4)次亜塩素酸水供給装置201では、有隔膜電解流路(陽電極側流路213及び陰電極側流路214)は、平面状の陽電極202と、陽電極202と対向する平面状の隔膜204と、陽電極202と隔膜204との間に設けられ、流路に沿って陽電極側流路213内に陽電極202及び隔膜204を露出させる陽電極側スペーサ205とを有する。陽電極側流路213は、流路に沿って露出する陽電極202及び隔膜204と陽電極側スペーサ205とにより構成されている。また、平面状の陰電極203と、陰電極203と対向する平面状の隔膜204と、陰電極203と隔膜204との間に設けられ、流路に沿って陰電極側流路214に陰電極203及び隔膜204を露出させる陰電極側スペーサ206とを有する。陰電極側流路214は、流路に沿って露出する陰電極203及び隔膜204と、陰電極側スペーサ206とにより構成した。このようにすることで、陽電極側スペーサ205に形成される流路形状、及び陰電極側スペーサ206に形成される流路形状により、塩水を電気分解して生成した次亜塩素酸水から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、次亜塩素酸水から残留成分の要因となる陽イオンを分離する面積及び時間を自由に設計することができる。 (4) In the hypochlorous acid water supply device 201, the diaphragm electrolysis flow path (positive electrode-side flow path 213 and negative electrode-side flow path 214) includes a planar positive electrode 202 and a flat surface facing the positive electrode 202. and a positive electrode side spacer 205 that is provided between the positive electrode 202 and the positive electrode side channel 213 and exposes the positive electrode 202 and the negative electrode side channel 213 along the channel. The positive electrode-side channel 213 is composed of the positive electrode 202 and the diaphragm 204 exposed along the channel, and the positive electrode-side spacer 205 . In addition, a flat cathode 203, a flat diaphragm 204 facing the cathode 203, and a cathode 214 provided between the cathode 203 and the diaphragm 204 along the flow path to the cathode side flow path 214. 203 and a cathode-side spacer 206 exposing the diaphragm 204 . The cathode-side channel 214 was composed of the cathode 203 and the diaphragm 204 exposed along the channel, and the cathode-side spacer 206 . By doing so, residual hypochlorous acid water generated by electrolyzing salt water can be controlled by the channel shape formed in the positive electrode side spacer 205 and the channel shape formed in the negative electrode side spacer 206. Since the ability to separate cations that cause components can be changed, the area and time for separating cations that cause residual components from hypochlorous acid water can be freely designed.
 (5)次亜塩素酸水供給装置201では、スペーサ部材は、陽電極側スペーサ205と陰電極側スペーサ206を重ね合わせて構成した。こうした構成によれば、構造を簡易化できるとともに、無隔膜電解流路と有隔膜電解流路の境界部による液漏れや流路内イオン分布の乱れを抑制して、流通させることができる。 (5) In the hypochlorous acid water supply device 201, the spacer member is configured by overlapping the positive electrode side spacer 205 and the negative electrode side spacer 206 together. According to such a configuration, the structure can be simplified, and liquid leakage due to the boundary between the non-diaphragm electrolysis flow path and the diaphragm electrolysis flow path and disturbance of the ion distribution in the flow path can be suppressed to allow circulation.
 (6)次亜塩素酸水供給装置201は、次亜塩素酸水処理部201bの陽電極202側及び陰電極203側のそれぞれの出口に設けられ、無隔膜電解流路(陰陽電極間流路212)に塩水を、有隔膜電解流路(陽電極側流路213及び陰電極側流路214)に次亜塩素酸水生成部201aからの次亜塩素酸水を供給する供給ポンプ(陽電極側供給ポンプ231及び陰電極側供給ポンプ232)を備える。供給ポンプは、塩水を、及び次亜塩素酸水生成部201aからの次亜塩素酸水を陽電極側流路213及び陰電極側流路214に一定流速で供給するようにした。これにより、陽電極側流路213内にて電圧を印加している時間を一定にすることができるとともに、陰電極側流路214内にて電圧を印加している時間を一定にすることができる。このため、陽電極側流路213における次亜塩素酸水での残留成分の要因となる陽イオンが分離希薄化する濃度、及び陰電極側流路214における次亜塩素酸水での残留成分の要因となる陽イオンが濃縮化する濃度を安定にすることができる。 (6) The hypochlorous acid water supply device 201 is provided at each outlet on the positive electrode 202 side and the negative electrode 203 side of the hypochlorous acid water treatment unit 201b. 212) with salt water, and the supply pump (positive electrode A side supply pump 231 and a cathode side supply pump 232) are provided. The supply pump was adapted to supply the salt water and the hypochlorous acid water from the hypochlorous acid water generator 201a to the positive electrode side channel 213 and the negative electrode side channel 214 at a constant flow rate. As a result, the time during which the voltage is applied in the positive electrode side channel 213 can be made constant, and the time during which the voltage is applied in the negative electrode side channel 214 can be made constant. can. For this reason, the concentration at which the cations that cause residual components in the hypochlorous acid water in the positive electrode-side channel 213 are separated and diluted, and the concentration of residual components in the hypochlorous acid water in the negative electrode-side channel 214 It is possible to stabilize the concentration at which the cations that are the factors are concentrated.
 (実施の形態3-2)
 図24を参照して、本開示の実施の形態3-2に係る次亜塩素酸水供給装置220について説明する。図24は、本開示の実施の形態3-2に係る次亜塩素酸水供給装置220の分解斜視図である。なお、以下で説明する実施の形態3-2に係る次亜塩素酸水供給装置220は、実施の形態3-1に係る次亜塩素酸水供給装置201の陽電極202及び陰電極203をくし歯形状にした構造である。実施の形態3-2の説明においては、実施の形態3-1に係る次亜塩素酸水供給装置201と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化または省略する。
(Embodiment 3-2)
A hypochlorous acid water supply device 220 according to Embodiment 3-2 of the present disclosure will be described with reference to FIG. FIG. 24 is an exploded perspective view of a hypochlorous acid water supply device 220 according to Embodiment 3-2 of the present disclosure. In addition, the hypochlorous acid water supply device 220 according to Embodiment 3-2 described below has the positive electrode 202 and the negative electrode 203 of the hypochlorous acid water supply device 201 according to Embodiment 3-1. It has a tooth-shaped structure. In the description of Embodiment 3-2, substantially the same configurations as those of the hypochlorous acid water supply device 201 according to Embodiment 3-1 are given the same reference numerals, and the description is partially simplified. or omitted.
 図24に示すように、次亜塩素酸水供給装置220は、塩水を電気分解して次亜塩素酸水をワンパス式で生成する次亜塩素酸水生成部220aと、次亜塩素酸水に含まれる残留成分の分離低減をワンパス式で行う次亜塩素酸水処理部220bと、を備える。そして、次亜塩素酸水供給装置220では、一対の陽陰電極がくし歯形状に加工した電極(くし歯陽電極222及びくし歯陰電極223)によって構成される。 As shown in FIG. 24, the hypochlorous acid water supply device 220 includes a hypochlorous acid water generation unit 220a that electrolyzes salt water to generate hypochlorous acid water in one pass, and a hypochlorous acid water and a hypochlorous acid water treatment unit 220b that separates and reduces contained residual components in a single pass. In the hypochlorous acid water supply device 220, a pair of positive and negative electrodes (comb-tooth positive electrode 222 and comb-tooth negative electrode 223) are formed into a comb-shaped electrode.
 より詳細には、次亜塩素酸水供給装置220は、くし歯陽電極222と、くし歯陽電極222のくし歯部が対向するように配置したくし歯陰電極223とを、蛇行状の電解流路(陰陽電極間流路212、並びに、陽電極側流路213及び陰電極側流路214)に、くし歯部の対向した領域を配置した構成を有する。言い換えれば、次亜塩素酸水供給装置220は、くし歯陽電極222とくし歯陰電極223との対向部において、無隔膜電解流路(陰陽電極間流路212)、並びに、これに続く有隔膜電解流路(陽電極側流路213及び陰電極側流路214)をそれぞれ形成し、次亜塩素酸水生成部220aと次亜塩素酸水処理部220bをそれぞれ構成している。これにより、次亜塩素酸水供給装置220では、次亜塩素酸水生成部201aにおいて無隔膜電解流路内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理部201bにおいて有隔膜電解流路内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオンを分離低減した次亜塩素酸水として抽出することができる。 More specifically, the hypochlorous acid water supply device 220 uses a comb-shaped positive electrode 222 and a comb-shaped negative electrode 223 arranged so that the comb-shaped positive electrode 222 is opposed to the comb-shaped positive electrode 222, and electrolyzes them in a meandering manner. It has a configuration in which regions of the comb teeth facing each other are arranged in the channels (the channel 212 between the negative and positive electrodes, and the channel 213 on the positive electrode side and the channel 214 on the negative electrode side). In other words, the hypochlorous acid water supply device 220 has a non-diaphragm electrolysis flow path (positive/positive electrode inter-electrode flow path 212) in the facing portion between the comb tooth positive electrode 222 and the comb tooth negative electrode 223, and a diaphragm following this. Electrolytic flow paths (positive electrode-side flow path 213 and negative electrode-side flow path 214) are formed, respectively, and constitute a hypochlorous acid water generating section 220a and a hypochlorous acid water processing section 220b, respectively. As a result, in the hypochlorous acid water supply device 220, the hypochlorous acid water generating unit 201a electrolyzes salt water in the non-diaphragm electrolysis channel to generate hypochlorous acid water, and further In the processing unit 201b, the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the diaphragm electrolysis flow path to separate and reduce the cations that cause residual components from the positive electrode side. can be extracted as
 次に、図25を参照して、くし歯陽電極222及びくし歯陰電極223について説明する。図25は、次亜塩素酸水供給装置220を構成するくし歯電極(くし歯陽電極222及びくし歯陰電極223)の製造プロセスを示す斜視図である。 Next, the positive comb electrode 222 and the negative comb electrode 223 will be described with reference to FIG. FIG. 25 is a perspective view showing the manufacturing process of the interdigital electrode (positive interdigital electrode 222 and negative interdigital electrode 223) constituting the hypochlorous acid water supply device 220. FIG.
 くし歯陽電極222及びくし歯陰電極223は、1枚の電極板221を切断・分離することで、それぞれを取り出すことができる。 The comb positive electrode 222 and the comb negative electrode 223 can be taken out by cutting and separating one electrode plate 221 .
 第一工程は、電極板221を準備・用意する工程である。電極板221は、2つ分のくし歯電極を作ることが可能な面積寸法を有する薄い平板である。電極板221の一方の表面は、触媒加工されている。 The first step is the step of preparing the electrode plate 221 . The electrode plate 221 is a thin flat plate having an area dimension capable of forming two interdigitated electrodes. One surface of the electrode plate 221 is processed with a catalyst.
 第二工程は、電極板221を切断する工程である。刃物を電極板221の下端から上端まで蛇行状に走らせて、電極板221を切断する。これにより、電極板221は、くし歯陽電極222及びくし歯陰電極223のくし歯に対応して切断される。 The second step is the step of cutting the electrode plate 221 . The blade is run in a meandering manner from the lower end to the upper end of the electrode plate 221 to cut the electrode plate 221 . Thereby, the electrode plate 221 is cut corresponding to the comb teeth of the positive comb electrode 222 and the negative comb electrode 223 .
 第三工程は、切断された電極板221を2つのくし歯電極(くし歯陽電極222及びくし歯陰電極223)に分離する工程である。 The third step is a step of separating the cut electrode plate 221 into two comb-teeth electrodes (a comb-teeth positive electrode 222 and a comb-teeth negative electrode 223).
 第四工程は、切断及び分離された電極板221の片方(くし歯陽電極222又はくし歯陰電極223)を反転させて、対向配置する工程である。より詳細には、第四工程では、切断及び分離された電極板221の触媒加工された面を対向配置して一対の陰陽電極を形成する。 The fourth step is a step of inverting one of the cut and separated electrode plates 221 (comb-teeth positive electrode 222 or comb-teeth negative electrode 223) and arranging them to face each other. More specifically, in the fourth step, the catalyst-processed surfaces of the cut and separated electrode plates 221 are placed facing each other to form a pair of positive and negative electrodes.
 以上のようにすることで、一対の陰陽電極とすることができる。第四工程の反転及び対向配置した2つのくし歯電極(くし歯陽電極222及びくし歯陰電極223)は、左端又は右端で上下に接続されており、反対側に向かってくし歯が複数本伸びている構造をしている。反対側に向かって伸びたくし歯陽電極222及びくし歯陰電極223のくし歯は、お互い上下で対向するように配置されている。くし歯電極を反転する際、下端は平坦になり、上端には凸部がくるような配置にすることで、上端の凸部に電気接続を取りやすくなるため、反転する向きを図25のように上端に凸部がくるようにすることが好ましい。片方のくし歯電極(くし歯陽電極222又はくし歯陰電極223)を反転させるため、電極板221の同じ触媒処理面が、くし歯陽電極222及びくし歯陰電極223の対向面となることができる。電極板221は、チタン基材の表面に白金を含む触媒が形成されており、電気分解による次亜塩素酸の発生効率が高い材料を使用する。上下反転した際に、くし歯陽電極222及びくし歯陰電極223の対向性を良くするために、等しいピッチでくし歯加工しておくことが好ましい。電極板221を切断する際に、切断する刃物が通るため、刃物の通る幅分が加工で除去され、くし歯の幅が細ることを考慮してくし歯形状の設計をしておくことが好ましい。 By doing so, a pair of positive and negative electrodes can be formed. In the fourth step, the two comb-shaped electrodes (comb-shaped positive electrode 222 and comb-shaped negative electrode 223) arranged opposite to each other are connected vertically at the left end or right end, and a plurality of comb teeth are arranged toward the opposite side. It has an elongated structure. The comb teeth of the positive comb electrode 222 and the negative comb electrode 223 extending toward the opposite sides are arranged so as to face each other vertically. When reversing the comb-shaped electrodes, the lower end is flat and the upper end is arranged so that the convex portion is located. This facilitates electrical connection to the upper end convex portion. It is preferable that the convex portion comes to the upper end. In order to reverse one of the comb electrodes (positive comb electrode 222 or negative comb electrode 223), the same catalyst-treated surface of the electrode plate 221 becomes the facing surface of the positive comb electrode 222 and the negative comb electrode 223. can be done. The electrode plate 221 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. In order to improve the facing property of the comb-shaped positive electrode 222 and the comb-shaped negative electrode 223 when turned upside down, it is preferable to process the comb teeth at an equal pitch. When the electrode plate 221 is cut, the cutting tool passes through, so it is preferable to design the comb tooth shape in consideration of the width of the comb teeth being narrowed because the width of the cutting tool is removed by machining. .
 また、電極形状がくし歯形状であるため、陽電極用パッキン207a及び陰電極用パッキン207bについては、くし歯陽電極222及びくし歯陰電極223をくり抜いた形状となっている。 In addition, since the electrode has a comb-teeth shape, the positive electrode packing 207a and the negative electrode packing 207b have a shape in which the comb-teeth positive electrode 222 and the comb-teeth negative electrode 223 are hollowed out.
 以上、本実施の形態3-2に係る次亜塩素酸水供給装置220によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water supply device 220 according to Embodiment 3-2, the following effects can be obtained.
 (7)次亜塩素酸水供給装置220は、一方の表面に触媒加工された1枚の電極板221を下端から上端まで蛇行状に切断して、2つのくし歯電極(くし歯陽電極222及びくし歯陰電極223)に分離し、くし歯陽電極222又はくし歯陰電極223の片方を反転及び対向配置して、くし歯陽電極222及びくし歯陰電極223のくし歯部が一対の陰陽電極を形成するようにした。このようにすることで、一対の陰陽電極を形成するために2枚の電極板221を使用することなく、1枚の電極板221により実現することができ、必要部材の削減ができる。 (7) The hypochlorous acid water supply device 220 cuts one electrode plate 221 with a catalyst processed on one surface in a meandering manner from the lower end to the upper end to form two comb-tooth electrodes (comb-tooth positive electrode 222 and a comb-shaped negative electrode 223), and one of the comb-shaped positive electrode 222 or the comb-shaped negative electrode 223 is reversed and arranged so that the comb-shaped positive electrode 222 and the comb-shaped negative electrode 223 form a pair. It was designed to form cathode and cathode electrodes. By doing so, it is possible to realize a single electrode plate 221 without using two electrode plates 221 to form a pair of positive and negative electrodes, thereby reducing the number of necessary members.
 (実施の形態3-3)
 図18及び図26を参照して、本開示の実施の形態3-3に係る、次亜塩素酸水供給装置201を用いた空間除菌システム230について説明する。図26は、本開示の実施の形態3-3に係る、次亜塩素酸水供給装置201を用いた空間除菌システム230の概略図である。なお、以下で説明する実施の形態3-3に係る空間除菌システム230は、実施の形態3-1に係る次亜塩素酸水供給装置201を組み込んだシステムである。実施の形態3-3の説明においては、実施の形態3-1に係る次亜塩素酸水供給装置201と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化または省略する場合がある。
(Embodiment 3-3)
A spatial sterilization system 230 using a hypochlorous acid water supply device 201 according to Embodiment 3-3 of the present disclosure will be described with reference to FIGS. 18 and 26. FIG. FIG. 26 is a schematic diagram of a space sterilization system 230 using a hypochlorous acid water supply device 201 according to Embodiment 3-3 of the present disclosure. A space sterilization system 230 according to Embodiment 3-3 described below is a system incorporating the hypochlorous acid water supply device 201 according to Embodiment 3-1. In the description of Embodiment 3-3, the components substantially similar to those of the hypochlorous acid water supply device 201 according to Embodiment 3-1 are denoted by the same reference numerals, and the description is partially simplified. or may be omitted.
 本実施の形態3-3に係る空間除菌システム230は、浴室空間において、次亜塩素酸水供給装置201から生成された次亜塩素酸水をミスト噴霧装置236から噴霧するとともに排水口238に流すことで、浴室空間に対する除菌と洗浄とを行うシステムである。なお、浴室空間は、請求項の「所定の空間」に相当する。 The space sterilization system 230 according to Embodiment 3-3 sprays hypochlorous acid water generated from the hypochlorous acid water supply device 201 from the mist spray device 236 in the bathroom space and to the drain port 238. It is a system that sterilizes and cleans the bathroom space by flushing. The bathroom space corresponds to the "predetermined space" in the claims.
 具体的には、図26に示すように、空間除菌システム230は、次亜塩素酸水供給装置201(次亜塩素酸水生成部201a及び次亜塩素酸水処理部201b)と、陽電極側供給ポンプ231と、陰電極側供給ポンプ232と、陽電極側抽出溶液タンク233と、陰電極側抽出溶液タンク234と、陽電極側抽出溶液浴室配管235と、ミスト噴霧装置236と、陰電極側抽出溶液浴室配管237と、排水口238と、を備える。 Specifically, as shown in FIG. 26, the space sterilization system 230 includes a hypochlorous acid water supply device 201 (a hypochlorous acid water generation unit 201a and a hypochlorous acid water treatment unit 201b), a positive electrode A side supply pump 231, a negative electrode side supply pump 232, a positive electrode side extraction solution tank 233, a negative electrode side extraction solution tank 234, a positive electrode side extraction solution bathroom pipe 235, a mist spray device 236, and a negative electrode. A side extraction solution bath tubing 237 and a drain 238 are provided.
 次亜塩素酸水供給装置201を構成する次亜塩素酸水生成部201aは、塩水(塩化ナトリウム水溶液)を供給して、電気分解により次亜塩素酸水を生成する部位である。上述した通り、次亜塩素酸水生成部201aによって生成される次亜塩素酸水には、次亜塩素酸水の成分であるNaClO及びHClOが生成されて含まれる。また、他の成分として、電気分解で生成されるNaOH、NaClOから分解してできたNaCl、及び塩水が電気分解しきれずに残ったNaClなどが含まれる。 The hypochlorous acid water generating unit 201a that constitutes the hypochlorous acid water supply device 201 is a part that supplies salt water (aqueous sodium chloride solution) and generates hypochlorous acid water by electrolysis. As described above, the hypochlorous acid water generated by the hypochlorous acid water generating unit 201a contains NaClO and HClO, which are components of the hypochlorous acid water. Other components include NaOH produced by electrolysis, NaCl produced by decomposing NaClO, NaCl remaining after electrolysis of salt water, and the like.
 次亜塩素酸水処理部201bは、次亜塩素酸水生成部201aから供給される次亜塩素酸水を流通させて、陽電極側流路213から除菌力の高いHClO主体の次亜塩素酸水である陽電極抽出溶液210aを抽出し、陰電極側流路214から洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰電極抽出溶液211aを抽出する部位である。陽電極抽出溶液210aは、陽電極側抽出溶液タンク233で貯められた後、陽電極側抽出溶液浴室配管235にてミスト噴霧装置236に送液される。そして、ミスト噴霧装置236から陽電極抽出溶液210aが浴室空間に噴霧される。また、陰電極抽出溶液211aは、陰電極側抽出溶液タンク234で貯められた後、陰電極側抽出溶液浴室配管237にて排水口238に送液される。排水口238に陰電極抽出溶液211aが流通され、排水口238を経由して排水管に流れる。 The hypochlorous acid water treatment unit 201b circulates the hypochlorous acid water supplied from the hypochlorous acid water generation unit 201a, and from the positive electrode side channel 213, the hypochlorous acid water containing mainly HClO with high sterilization power is supplied. This is a portion for extracting the positive electrode extracting solution 210a, which is acid water, and for extracting the negative electrode extracting solution 211a, which is hypochlorous acid water mainly containing NaClO and NaOH, from the negative electrode side channel 214 with high detergency. The positive electrode extraction solution 210 a is stored in the positive electrode side extraction solution tank 233 and then sent to the mist spray device 236 through the positive electrode side extraction solution bathroom pipe 235 . Then, the positive electrode extraction solution 210a is sprayed from the mist spray device 236 into the bathroom space. Further, the negative electrode extraction solution 211 a is stored in the negative electrode side extraction solution tank 234 and then sent to the drain port 238 through the negative electrode side extraction solution bathroom piping 237 . The cathode extraction solution 211a is circulated through the drain port 238 and flows through the drain port 238 to the drain pipe.
 陽電極側供給ポンプ231は、陰陽電極溶液供給口209、陰陽電極間流路212、陽電極側流路213、及び陽電極溶液抽出口210の順に流通する各溶液(陰陽電極供給溶液209a、陽電極抽出溶液210a)の流れを生じさせるポンプである。この際、陽電極側供給ポンプ231は、次亜塩素酸水生成部201aを流れる溶液の流速を一体に制御すると同時に、次亜塩素酸水処理部201bを流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The positive electrode side supply pump 231 supplies solutions (positive and negative electrode supply solution 209a, positive electrode supply solution 209a, positive electrode supply solution 209a, positive A pump that causes the flow of the electrode extraction solution 210a). At this time, the positive electrode side supply pump 231 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 201a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 201b to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 陰電極側供給ポンプ232は、陰陽電極溶液供給口209、陰陽電極間流路212、陰電極側流路214、及び陰電極溶液抽出口211の順に流通する各溶液(陰陽電極供給溶液209a、陰電極抽出溶液211a)の流れを生じさせるポンプである。この際、陰電極側供給ポンプ232は、次亜塩素酸水生成部201aを流れる溶液の流速を一体に制御すると同時に、次亜塩素酸水処理部201bを流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The cathode-side supply pump 232 supplies each solution (the anode-and-positive electrode supply solution 209a, the cathode-side supply solution 209a, the cathode-side supply solution 209a, A pump that causes the flow of the electrode extraction solution 211a). At this time, the cathode-side supply pump 232 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 201a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 201b to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 陰陽電極間流路212の流速は、陽電極側供給ポンプ231と陰電極側供給ポンプ232との合計量として制御される。また、陽電極側供給ポンプ231及び陰電極側供給ポンプ232は、請求項の「供給ポンプ」に相当する。 The flow rate of the channel 212 between the negative and positive electrodes is controlled as the total amount of the positive electrode side supply pump 231 and the negative electrode side supply pump 232 . Also, the positive electrode side supply pump 231 and the negative electrode side supply pump 232 correspond to the "supply pump" in the claims.
 陽電極側抽出溶液タンク233は、陽電極側流路213から抽出した除菌力の高いHClO主体の次亜塩素酸水である陽電極抽出溶液210aを、ミスト噴霧装置236に送液されるまで、一時的に貯めておくタンクである。陽電極側抽出溶液タンク233は、陽電極側抽出溶液浴室配管235を介してミスト噴霧装置236と接続される。 The positive electrode-side extraction solution tank 233 feeds the positive electrode-side extraction solution 210a, which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the positive electrode-side channel 213, to the mist spray device 236. , is a temporary storage tank. The positive electrode side extraction solution tank 233 is connected to a mist spraying device 236 via a positive electrode side extraction solution bathroom piping 235 .
 陰電極側抽出溶液タンク234は、陰電極側流路214から抽出した洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰電極抽出溶液211aを、排水口238に送液されるまで、一時的に貯めておくタンクである。陰電極側抽出溶液タンク234は、陰電極側抽出溶液浴室配管237を介して排水口238と接続される。 The cathode-side extraction solution tank 234 feeds the cathode-side extraction solution 211a, which is hypochlorous acid water containing NaClO and NaOH with high detergency extracted from the cathode-side channel 214, to the drain port 238. , is a temporary storage tank. The cathode-side extraction solution tank 234 is connected to a drain port 238 via a cathode-side extraction solution bathroom pipe 237 .
 陽電極側抽出溶液浴室配管235は、陽電極側抽出溶液タンク233から、ミスト噴霧装置236まで送液するための配管である。陽電極側抽出溶液浴室配管235は、浴室の壁裏及び天井に施工されてあり、天井に設置されたミスト噴霧装置236と接続されている。 The positive electrode side extraction solution bathroom pipe 235 is a pipe for sending liquid from the positive electrode side extraction solution tank 233 to the mist spray device 236 . The positive electrode-side extraction solution bathroom pipe 235 is installed behind the wall and ceiling of the bathroom, and is connected to a mist spraying device 236 installed on the ceiling.
 陰電極側抽出溶液浴室配管237は、陰電極側抽出溶液タンク234から、排水口238まで送液するための配管である。陰極側抽出溶液浴室配管237は、浴室の壁裏及び床面に施工されてあり、排水口238に接続されている。 The cathode-side extraction solution bathroom pipe 237 is a pipe for sending liquid from the cathode-side extraction solution tank 234 to the drain port 238 . The cathode-side extraction solution bathroom pipe 237 is installed behind the wall and floor of the bathroom and connected to a drain port 238 .
 ミスト噴霧装置236は、次亜塩素酸水を浴室空間にミスト状にして噴霧する装置である。より詳細には、ミスト噴霧装置236は、陽電極側抽出溶液タンク233から陽電極側抽出溶液浴室配管235を通って搬送されてくる次亜塩素酸水である陽電極抽出溶液210aを微細なミストにして放出する装置である。ミスト噴霧装置236は、浴室空間の天井から浴室空間全体にミストが噴霧できるように噴霧部が天井から浴室側に突出して設置されている。ミストの噴霧方式としては、圧縮空気を使用して微細化する二流体噴霧方式、超音波素子を使用して10μm以下の微細ミストを噴霧する超音波方式、又は回転体から溶液を放出して破砕し1μm以下の微細ミストを噴霧する破砕噴霧方式などが挙げられる。 The mist spraying device 236 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 236 sprays the positive electrode extraction solution 210a, which is hypochlorous acid water, conveyed from the positive electrode side extraction solution tank 233 through the positive electrode side extraction solution bathroom piping 235 into a fine mist. It is a device that releases as The mist spraying device 236 is installed so that the spraying part protrudes from the ceiling toward the bathroom so that mist can be sprayed from the ceiling of the bathroom to the entire bathroom. The mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 μm or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 μm or less is sprayed.
 排水口238は、浴室空間内で発生した水あるいは汚れを浴室空間外に排出するための排水管と接続するための接続口である。排水口238には、陰電極側抽出溶液タンク234から陰電極側抽出溶液浴室配管237を通って陰電極抽出溶液211aを搬送し、洗浄力の高いNaClO及びNaOH主体の次亜塩素酸水である陰電極抽出溶液211aにより、排水口238及び排水口238に接続される排水管の汚れを洗浄することができる。 The drain port 238 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space. The negative electrode extracting solution 211a is conveyed from the negative electrode side extracting solution tank 234 to the drain port 238 through the negative electrode side extracting solution bathroom pipe 237. The drain port 238 and the drain pipe connected to the drain port 238 can be cleaned with the negative electrode extraction solution 211a.
 以上、本実施の形態3-3に係る、次亜塩素酸水供給装置201を用いた空間除菌システム230によれば、以下の効果を享受することができる。 As described above, according to the spatial sterilization system 230 using the hypochlorous acid water supply device 201 according to Embodiment 3-3, the following effects can be obtained.
 (8)空間除菌システム230は、次亜塩素酸水供給装置201と、陽電極側流路213と連通接続され、陽電極側流路213から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出するミスト噴霧装置236とを備える構造とした。こうした構成によれば、陽電極側流路213から送出される次亜塩素酸水のミストを所定の空間に放出しても、所定の空間に残る残留成分が抑制される。つまり、陽電極側流路213から送出される次亜塩素酸水が塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 (8) The space sterilization system 230 is connected to the hypochlorous acid water supply device 201 and the positive electrode side channel 213, and uses the hypochlorous acid water delivered from the positive electrode side channel 213 to perform the following: and a mist spraying device 236 for discharging chlorous acid water mist into a predetermined space. According to such a configuration, even if the mist of hypochlorous acid water delivered from the positive electrode side channel 213 is discharged into the predetermined space, residual components remaining in the predetermined space are suppressed. In other words, since the hypochlorous acid water delivered from the positive electrode side channel 213 is hypochlorous acid water in which residual components generated by the electrolysis of salt water are reduced, when sterilizing a predetermined space, sterilization It is possible to suppress the occurrence of metal corrosion due to residual components while maintaining performance.
 (9)空間除菌システム230では、浴室空間には、浴室空間内で発生する水を排出する排水口238が設けられており、陰電極側流路214は、排水口238と連通接続され、陰電極側流路214から送出される次亜塩素酸水を排水口238に導入可能に構成されている構造とした。このようにすることで、陰電極側流路214から送出される次亜塩素酸水から、残留成分の要因となる陽イオンが濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水を排水口238(及び排水口238に接続された排水管)に流通させるので、アルカリ性溶液によって排水管の洗浄を行うことができる。 (9) In the space sterilization system 230, the bathroom space is provided with a drain port 238 for discharging water generated in the bathroom space, and the negative electrode side channel 214 is connected to the drain port 238, The structure is such that the hypochlorous acid water sent out from the negative electrode side channel 214 can be introduced into the drain port 238 . In this way, hypochlorous acid water with high detergency containing an alkaline solution in which cations that cause residual components are concentrated is extracted from the hypochlorous acid water delivered from the cathode-side channel 214. Since it is circulated through the drain port 238 (and the drain pipe connected to the drain port 238), the drain pipe can be cleaned with the alkaline solution.
 以上、実施の形態3に基づき本開示を説明したが、本開示は上記の実施の形態3に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 As described above, the present disclosure has been described based on the third embodiment, but the present disclosure is not limited to the above-described third embodiment, and various modifications and improvements are possible without departing from the scope of the present disclosure. One thing is easy to guess.
 (実施の形態4)
 従来、塩水の電気分解をすることで、NaClOを主成分としHClO及びNaOHを含む次亜塩素酸水が生成される。次亜塩素酸水は弱酸性側にすることで、除菌力が向上することが知られており、イオン透過能を有する隔膜を使用して生成されるpH弱酸性側に制御する技術が知られている。(例えば、特許文献1参照)。
(Embodiment 4)
Conventionally, by electrolyzing salt water, hypochlorous acid water containing NaClO as a main component and containing HClO and NaOH is produced. Hypochlorous acid water is known to improve its sterilization power by making it weakly acidic, and a technology is known to control the pH generated using a diaphragm with ion permeability to the weakly acidic side. It is (See Patent Document 1, for example).
 しかしながら、pHが弱酸性に調整するだけでは、残留成分となるNaClO及びNaOHの抑制が十分にできているとはいえない。NaClO及びNaOHは、次亜塩素酸水が揮発後も固形分として表面に残留する成分で、この残留成分が潮解及び水に再溶解することで金属の腐食を促進する要因となる。そのため、NaClO及びNaOHなどの成分を多く含む次亜塩素酸水をミスト噴霧すると、微小な残留成分が蓄積されるため、長期間使用時の腐食が懸念される。 However, it cannot be said that NaClO and NaOH, which are residual components, are sufficiently suppressed only by adjusting the pH to be weakly acidic. NaClO and NaOH are components that remain as solids on the surface of the hypochlorous acid water after volatilization, and these residual components deliquesce and re-dissolve in water, thereby promoting metal corrosion. Therefore, when hypochlorous acid water containing many components such as NaClO and NaOH is mist-sprayed, fine residual components are accumulated, which may cause corrosion during long-term use.
 また、塩水を生成する原水に水道水を使用した場合、水道水に含まれる陰イオンにより、電気分解によって生成される次亜塩素酸水の濃度ばらつき及び特性ばらつきが生じることが懸念される。さらに、水道水に含まれる陽イオンも揮発後に固形分として表面に残留する成分であり、この残留成分もまた金属の腐食を促進する要因となるため、同様に長時間使用時の腐食が懸念される。 In addition, when tap water is used as raw water to generate salt water, there is concern that anions contained in the tap water may cause variations in concentration and characteristics of hypochlorous acid water generated by electrolysis. In addition, cations contained in tap water are components that remain as solids on the surface after volatilization, and these residual components also promote corrosion of metals, so there is also concern about corrosion during long-term use. be.
 そこで本開示は、水道水に含まれる陰イオン成分を低減しつつ、陰イオン成分を低減した水道水から生成する塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置及びこれを用いた空間除菌システムを提供することを目的とする。 Therefore, the present disclosure can supply hypochlorous acid water with reduced residual components generated by electrolysis of salt water generated from tap water with reduced anionic components while reducing the anionic components contained in tap water. An object of the present invention is to provide a possible hypochlorous acid water supply device and a space sterilization system using the same.
 本開示によれば、水道水に含まれる陰イオン成分を低減しつつ、陰イオン成分を低減した水道水から生成する塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置及びこれを用いた空間除菌システムを提供することができる。 According to the present disclosure, while reducing the anion component contained in tap water, supply hypochlorous acid water with reduced residual component generated by electrolysis of salt water generated from tap water with reduced anion component. It is possible to provide a hypochlorous acid water supply device and a space sterilization system using the same.
 本開示に係る次亜塩素酸水供給装置は、蛇行状の第一有隔膜電解流路内に供給される水道水を一対の第一陰陽電極間への通電によって水道水に含まれる陰イオン成分を連続的に分離する水道水処理ユニットと、水道水処理ユニットの陰電極側における水道水電解流路から送出される水道水溶液に塩成分を加えて塩水を生成する塩水生成ユニットと、塩水生成ユニットで生成した塩水を供給可能に構成された蛇行状の電解流路と、電解流路の前段を構成する無隔膜電解流路内に供給される塩水から一対の第二陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部と、電解流路の後段を構成する第二有隔膜電解流路内のそれぞれに次亜塩素酸水生成部から供給される次亜塩素酸水を一対の第二陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理部とを有する次亜塩素酸水生成ユニットと、を備える。次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する構造とする。 In the hypochlorous acid water supply apparatus according to the present disclosure, the anion component contained in the tap water supplied to the meandering first diaphragm electrolysis flow path is energized between the pair of first cathode and cathode electrodes. a tap water treatment unit for continuously separating the tap water treatment unit, a salt water generation unit for generating salt water by adding a salt component to the tap water solution sent from the tap water electrolysis channel on the negative electrode side of the tap water treatment unit, and a salt water generation unit By energizing between the pair of second negative and positive electrodes from the meandering electrolysis flow channel configured to be able to supply the salt water generated in and the salt water supplied in the non-diaphragm electrolysis flow channel constituting the front stage of the electrolysis flow channel Supplied from the hypochlorous acid water generation unit to each of the hypochlorous acid water generation unit that electrolytically generates hypochlorous acid water continuously and the second membrane electrolysis flow path that constitutes the latter stage of the electrolysis flow path. a hypochlorous acid water generating unit having a hypochlorous acid water treatment section for continuously treating the hypochlorous acid water by energizing between the pair of second negative and positive electrodes. The structure is such that the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is supplied to the outside.
 こうした構成によれば、水道水に含まれる陰イオン成分を低減しつつ、陰イオン成分を低減した水道水から生成する塩水の電気分解によって生じる残留成分を低減した次亜塩素酸水を供給することが可能な次亜塩素酸水供給装置とすることができる。より詳細には、次亜塩素酸水供給装置では、水道水が水道水処理ユニットに供給され、水道水処理ユニットの陰電極側における水道水電解流路から送出される水道水溶液に塩成分を加えた塩水が次亜塩素酸水生成ユニットに供給されるので、次亜塩素酸水生成ユニットは、陰イオン成分が分離低減された塩水の電気分解によって次亜塩素酸水を生成することができる。これにより、生成される次亜塩素酸水は、水道水に含まれる陰イオン成分に起因した次亜塩素酸水の濃度ばらつき及び特性ばらつきが抑制される。一方、次亜塩素酸水生成ユニットでは、電解流路に陰イオン成分が分離低減された塩水を供給することによって、次亜塩素酸水生成部において無隔膜電解流路内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理部において第二有隔膜電解流路内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオン成分を分離低減した次亜塩素酸水として抽出することができる。これにより、陽電極側から抽出した次亜塩素軟水を外部に供給した場合には、次亜塩素軟水に含まれる残留成分に起因して生じる金属腐食の発生などを抑制することができる。 According to such a configuration, it is possible to supply hypochlorous acid water in which residual components generated by electrolysis of salt water generated from tap water with reduced anion components are reduced while reducing the anion components contained in the tap water. can be a hypochlorous acid water supply device capable of More specifically, in the hypochlorous acid water supply device, tap water is supplied to the tap water treatment unit, and a salt component is added to the tap water solution delivered from the tap water electrolysis flow channel on the negative electrode side of the tap water treatment unit. Since the salt water is supplied to the hypochlorous acid water generation unit, the hypochlorous acid water generation unit can generate hypochlorous acid water by electrolyzing the salt water from which the anion component has been separated and reduced. As a result, the generated hypochlorous acid water is suppressed in concentration variations and characteristic variations due to the anion component contained in the tap water. On the other hand, in the hypochlorous acid water generation unit, by supplying salt water from which the anion component has been separated and reduced to the electrolysis channel, the salt water is electrolyzed in the non-diaphragm electrolysis channel in the hypochlorous acid water generation part. In the hypochlorous acid water treatment unit, the hypochlorous acid water generated in the non-diaphragm electrolysis flow path is circulated in the second diaphragm electrolysis flow path, and from the positive electrode side It is possible to extract as hypochlorous acid water in which cationic components that cause residual components are separated and reduced. As a result, when the hypochlorous acid soft water extracted from the positive electrode side is supplied to the outside, it is possible to suppress the occurrence of metal corrosion caused by residual components contained in the hypochlorous acid soft water.
 また、次亜塩素酸水生成部及び次亜塩素酸水処理部に共通の第二陰陽電極を使用し、無隔膜電解流路と第二有隔膜電解流路が第二陰陽電極間の電圧を印加された状態で直接的につながっている。これにより、無隔膜電解流路内にて、陽電極側近傍には陰イオン成分が多く存在し、陰電極近傍には陽イオン成分が多く存在するような分布を持った状態で、第二有隔膜電解流路に流入するため、陽電極側には残留成分の要因となる陽イオン成分をあらかじめ減少させた状態で、電気透析処理を開始することができる。 In addition, the second positive and negative electrodes are used in common for the hypochlorous acid water generation unit and the hypochlorous acid water treatment unit, and the non-diaphragm electrolysis flow path and the second diaphragm electrolysis flow path increase the voltage between the second negative and positive electrodes. Directly connected in the energized state. As a result, in the non-diaphragm electrolytic flow path, a second positive ion component is generated in a state in which a large amount of anionic components are present near the positive electrode side and a large amount of positive ion components are present near the negative electrode. Since it flows into the diaphragm electrolysis channel, the electrodialysis treatment can be started in a state in which the positive ion component, which is a factor of the residual component, is reduced in advance on the positive electrode side.
 また、本開示に係る次亜塩素酸水供給装置では、第一有隔膜電解流路は、第一陰電極が流路に沿って露出して延設された蛇行状の第一陰電極側流路と、第一陰電極側流路と対向して並設され、第一陽電極が流路に沿って露出して延設された蛇行状の第一陽電極側流路と、第一陰電極側流路と第一陽電極側流路とを隔てて設けられ、流路を流通する溶液に含まれる陰イオン成分を透過させる第一隔膜と、を有して構成される。一対の第一陰陽電極は、第一陰電極側スペーサによって第一陰電極側流路に第一陰電極を露出させるとともに、第一陽電極側スペーサによって第一陽電極側流路に第一陽電極を露出させることで蛇行状に構成される。第一陰電極側流路及び第一陽電極側流路には、水道水がいずれも同じ方向に流通するように構成されている。こうした構成によれば、水道水処理ユニットは、水道水を、第一隔膜を挟んで同じ方向に電圧を印加しながら流通させるので、水道水に含まれる陰イオン成分を連続的に分離低減することができる。このため、陰イオン成分が分離低減された水道水溶液として、水道水処理ユニットの陰電極側における水道水電解流路から送出される水道水溶液を塩水生成ユニットに安定して供給することができる。 In addition, in the hypochlorous acid water supply apparatus according to the present disclosure, the first diaphragm electrolysis channel has a meandering first cathode side flow in which the first cathode is exposed and extended along the channel. a serpentine first positive electrode-side channel arranged in parallel to face the first negative electrode-side channel, with the first positive electrode extending and exposed along the channel; and a first diaphragm that is provided to separate the electrode-side channel and the first positive electrode-side channel and allows anion components contained in the solution flowing through the channel to permeate. The pair of first negative and positive electrodes exposes the first negative electrode to the first negative electrode side channel by the first negative electrode side spacer, and exposes the first positive electrode to the first positive electrode side channel by the first positive electrode side spacer. By exposing the electrodes, it is configured in a meandering shape. Tap water is configured to flow in the same direction in both the first negative electrode side channel and the first positive electrode side channel. According to such a configuration, the tap water treatment unit circulates the tap water while applying voltage in the same direction across the first diaphragm, so that the anion component contained in the tap water can be continuously separated and reduced. can be done. Therefore, the tap water solution from which the anionic component has been separated and reduced, which is sent from the tap water electrolysis flow path on the negative electrode side of the tap water treatment unit, can be stably supplied to the salt water generation unit.
 また、本開示に係る次亜塩素酸水供給装置では、平面状の第一陰電極と、第一陰電極と対向する平面状の第一隔膜と、第一陰電極と第一隔膜との間に設けられ、流路に沿って第一陰電極側流路内に第一陰電極及び第一隔膜を露出させる第一陰電極側スペーサとを有し、第一陰電極側流路は、流路に沿って露出する第一陰電極及び第一隔膜と、第一陰電極側スペーサとにより構成されている。平面状の第一陽電極と、第一陽電極と対向する平面状の第一隔膜と、第一陽電極と第一隔膜との間に設けられ、流路に沿って第一陽電極側流路内に第一陽電極及び第一隔膜を露出させる第一陽電極側スペーサと、を有し、第一陽電極側流路は、流路に沿って露出する第一陽電極及び第一隔膜と、第一陽電極側スペーサとにより構成されている。こうした構成によれば、第一陰電極側スペーサに形成される流路形状、及び第一陽電極側スペーサに形成される流路形状により、水道水に含まれる陰イオン成分を分離低減する能力を変化させることができるので、水道水から陰イオン成分を分離低減する面積及び時間を自由に設計することができる。 Further, in the hypochlorous acid water supply device according to the present disclosure, the planar first cathode, the planar first diaphragm facing the first cathode, and the space between the first cathode and the first diaphragm and a first cathode-side spacer that exposes the first cathode and the first diaphragm in the first cathode-side channel along the channel, and the first cathode-side channel has a flow It is composed of a first cathode and a first diaphragm exposed along the path, and a spacer on the first cathode side. A planar first positive electrode, a planar first diaphragm facing the first positive electrode, and a side flow of the first positive electrode provided between the first positive electrode and the first diaphragm along the channel. a first positive electrode-side spacer exposing the first positive electrode and the first diaphragm in the channel, the first positive electrode-side channel having the first positive electrode and the first diaphragm exposed along the channel and a spacer on the side of the first positive electrode. According to such a configuration, the ability to separate and reduce the anion component contained in the tap water is enhanced by the channel shape formed in the first negative electrode side spacer and the channel shape formed in the first positive electrode side spacer. Since it can be changed, it is possible to freely design the area and time for separating and reducing anionic components from tap water.
 また、本開示に係る次亜塩素酸水供給装置では、無隔膜電解流路は、平面状の第二陽電極と、第二陽電極と対向する平面状の第二陰電極と、第二陽電極と第二陰電極との間に設けられた陰陽電極間スペーサとを有して構成される。一対の第二陰陽電極は、陰陽電極間スペーサによって無隔膜電解流路に第二陽電極及び第二陰電極を露出させることで蛇行状に構成されている。こうした構成によれば、陰陽電極間スペーサに形成される流路形状により、塩水を電気分解する能力を変化させることができるので、塩水を電気分解する面積及び時間を自由に設計することができる。 In addition, in the hypochlorous acid water supply device according to the present disclosure, the non-diaphragm electrolysis channel includes a planar second positive electrode, a planar second negative electrode facing the second positive electrode, and a second positive electrode. It comprises a positive electrode spacer provided between the electrode and the second negative electrode. The pair of second negative and positive electrodes are formed in a meandering shape by exposing the second positive and negative electrodes to the non-diaphragm electrolytic flow path by means of spacers between negative and positive electrodes. According to this configuration, the ability to electrolyze salt water can be changed by the shape of the channel formed in the spacer between the positive and negative electrodes, so that the area and time for electrolyzing the salt water can be freely designed.
 また、本開示に係る次亜塩素酸水供給装置では、第二有隔膜電解流路は、第二陽電極が流路に沿って露出して延設された蛇行状の第二陽電極側流路と、第二陽電極側流路と対向して並設され、第二陰電極が流路に沿って露出して延設された蛇行状の第二陰電極側流路と、第二陽電極側流路と第二陰電極側流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる第二隔膜と、を有して構成される。一対の第二陰陽電極は、第二陽電極側スペーサによって第二陽電極側流路に第二陽電極を露出させるとともに、第二陰電極側スペーサによって第二陰電極側流路に第二陰電極を露出させることで蛇行状に構成される。第二陽電極側流路及び第二陰電極側流路には、次亜塩素酸水生成部から供給される次亜塩素酸水がいずれも同じ方向に流通するように構成されている。こうした構成によれば、塩水を電気分解して生成した次亜塩素酸水を、第二隔膜を挟んで同じ方向に電圧を印加しながら流通させるので、次亜塩素酸水から残留成分の要因となる陽イオン成分を連続的に分離低減することができる。このため、残留成分が低減された次亜塩素酸水として、次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を外部に安定して供給することができる。 In addition, in the hypochlorous acid water supply apparatus according to the present disclosure, the second diaphragm electrolysis flow channel has a meandering second positive electrode side flow in which the second positive electrode is exposed and extended along the flow channel. a meandering second negative electrode-side channel arranged in parallel to face the second positive electrode-side channel, the second negative electrode extending and being exposed along the channel; and a second diaphragm that is provided to separate the electrode-side channel and the second cathode-side channel and allows the passage of cations contained in the solution flowing through the channel. The pair of second negative and positive electrodes exposes the second positive electrode to the second positive electrode side channel by the second positive electrode side spacer, and exposes the second negative electrode to the second negative electrode side channel by the second negative electrode side spacer. By exposing the electrodes, it is configured in a meandering shape. The hypochlorous acid water supplied from the hypochlorous acid water generating section is configured to flow in the same direction in both the second positive electrode side channel and the second negative electrode side channel. According to such a configuration, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the second diaphragm, so that the residual components from the hypochlorous acid water cation components can be continuously separated and reduced. Therefore, as hypochlorous acid water with reduced residual components, it is possible to stably supply the hypochlorous acid water sent from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit to the outside. can.
 また、本開示に係る次亜塩素酸水供給装置では、平面状の第二陽電極と、第二陽電極と対向する平面状の第二隔膜と、第二陽電極と第二隔膜との間に設けられ、流路に沿って第二陽電極側流路内に第二陽電極及び第二隔膜を露出させる第二陽電極側スペーサとを有し、第二陽電極側流路は、流路に沿って露出する第二陽電極及び第二隔膜と、第二陽電極側スペーサとにより構成されている。平面状の第二陰電極と、第二陰電極と対向する平面状の第二隔膜と、第二陰電極と第二隔膜との間に設けられ、流路に沿って第二陰電極側流路内に第二陰電極及び第二隔膜を露出させる第二陰電極側スペーサと、を有し、第二陰電極側流路は、流路に沿って露出する第二陰電極及び第二隔膜と、第二陰電極側スペーサとにより構成されている。こうした構成によれば、第二陽電極側スペーサに形成される流路形状、及び第二陰電極側スペーサに形成される流路形状により、塩水を電気分解して生成した次亜塩素酸水から残留成分の要因となる陽イオン成分を分離低減する能力を変化させることができるので、次亜塩素酸水から残留成分の要因となる陽イオン成分を分離低減する面積及び時間を自由に設計することができる。 Further, in the hypochlorous acid water supply device according to the present disclosure, the planar second positive electrode, the planar second diaphragm facing the second positive electrode, and the space between the second positive electrode and the second diaphragm and a second positive electrode-side spacer that exposes the second positive electrode and the second diaphragm in the second positive electrode-side channel along the channel, and the second positive electrode-side channel is provided with the flow channel It is composed of a second positive electrode and a second diaphragm exposed along the path, and a second positive electrode-side spacer. A planar second cathode, a planar second diaphragm facing the second cathode, and a second cathode side flow provided between the second cathode and the second diaphragm along the channel. a second cathode-side spacer that exposes the second cathode and the second diaphragm in the passage, and the second cathode-side passage includes the second cathode and the second diaphragm that are exposed along the passage. and a second cathode-side spacer. According to such a configuration, hypochlorous acid water produced by electrolyzing salt water is converted into Since it is possible to change the ability to separate and reduce the cation components that cause residual components, it is possible to freely design the area and time for separating and reducing the cation components that cause residual components from hypochlorous acid water. can be done.
 また、本開示に係る次亜塩素酸水供給装置では、陰陽電極間スペーサは、第二陽電極側スペーサと第二陰電極側スペーサを重ね合わせて構成されている。こうした構成によれば、構造を簡易化できるとともに、無隔膜電解流路と第二有隔膜電解流路との間の境界部による液漏れ及び流路内イオン分布の乱れを抑制して、流通させることができる。 In addition, in the hypochlorous acid water supply apparatus according to the present disclosure, the cathode-positive electrode spacer is configured by overlapping the second anode-side spacer and the second cathode-side spacer. According to such a configuration, the structure can be simplified, and the leakage of the liquid due to the boundary between the non-diaphragm electrolysis channel and the second membrane electrolysis channel and the disturbance of the ion distribution in the channel can be suppressed to allow circulation. be able to.
 また、本開示に係る次亜塩素酸水供給装置では、水道水処理ユニットの陽電極側及び陰電極側のそれぞれの入口に設けられ、第一有隔膜電解流路に水道水を供給する第一陰電極側供給ポンプ及び第一陽電極側供給ポンプと、次亜塩素酸水生成ユニットの陽電極側及び陰電極側のそれぞれの出口に設けられ、無隔膜電解流路に塩水を供給するとともに、第二有隔膜電解流路に次亜塩素酸水生成部において電解生成した次亜塩素酸水を供給する第二陽電極側供給ポンプ及び第二陰電極側供給ポンプと、を備える。第一陰電極側供給ポンプ及び第一陽電極側供給ポンプは、水道水を、第一陰電極側流路及び第一陽電極側流路にそれぞれ一定流速で供給する。第二陽電極側供給ポンプ及び第二陰電極側供給ポンプは、次亜塩素酸水生成部において電解生成した次亜塩素酸水を第二陽電極側流路及び第二陰電極側流路にそれぞれ一定流速で供給することが好ましい。このようにすることで、第一有隔膜電解流路では、第一陰電極側流路内にて電圧を印加している時間を一定にすることができるとともに、第一陽電極側流路内にて電圧を印加している時間を一定にすることができる。このため、第一陰電極側流路における水道水に含まれる陰イオン成分が分離希薄化する濃度、及び第一陽電極側流路における水道水に含まれる陰イオン成分が濃縮化する濃度を安定にすることができる。一方、第二有隔膜電解流路では、第二陽電極側流路内にて電圧を印加している時間を一定にすることができるとともに、第二陰電極側流路内にて電圧を印加している時間を一定にすることができる。このため、第二陽電極側流路における次亜塩素酸水での残留成分の要因となる陽イオン成分が分離希薄化する濃度、及び第二陰電極側流路における次亜塩素酸水での残留成分の要因となる陽イオン成分が濃縮化する濃度を安定にすることができる。 Further, in the hypochlorous acid water supply device according to the present disclosure, the first Provided at the negative electrode side supply pump and the first positive electrode side supply pump, and the respective outlets of the positive electrode side and the negative electrode side of the hypochlorous acid water generation unit, supplying salt water to the non-diaphragm electrolysis flow path, A second positive electrode side supply pump and a second negative electrode side supply pump are provided for supplying the hypochlorous acid water electrolytically generated in the hypochlorous acid water generating section to the second diaphragm electrolysis flow path. The first negative electrode side supply pump and the first positive electrode side supply pump supply tap water to the first negative electrode side channel and the first positive electrode side channel, respectively, at a constant flow rate. The second positive electrode side supply pump and the second negative electrode side supply pump supply the hypochlorous acid water electrolytically generated in the hypochlorous acid water generation unit to the second positive electrode side channel and the second negative electrode side channel. It is preferable to supply each at a constant flow rate. By doing so, in the first diaphragm electrolysis channel, the time during which the voltage is applied in the first negative electrode side channel can be made constant, and the voltage in the first positive electrode side channel can be kept constant. The time during which the voltage is applied can be made constant. Therefore, the concentration at which the anion component contained in the tap water in the channel on the first negative electrode side is separated and diluted, and the concentration at which the anion component contained in the tap water in the channel on the first positive electrode side is concentrated are stabilized. can be On the other hand, in the second diaphragm electrolysis channel, the time during which the voltage is applied in the second positive electrode side channel can be made constant, and the voltage is applied in the second negative electrode side channel. You can set the amount of time you spend For this reason, the concentration at which the cation component that causes the residual component in the hypochlorous acid water in the second positive electrode side channel is separated and diluted, and the concentration in the hypochlorous acid water in the second negative electrode side channel It is possible to stabilize the concentration of cationic components that cause residual components.
 また、本開示に係る次亜塩素酸水供給装置は、水道水処理ユニットの陽電極側における水道水電解流路から送出される水道水溶液を貯留する排水側タンクを備える。排水側タンクは、次亜塩素酸水生成ユニットの陰電極側における電解流路から送出される溶液が混合されるように接続されている。こうした構成によれば、水道水処理ユニットの陽電極側における水道水電解流路から送出されるpHが酸性の水道水溶液と、次亜塩素酸水生成ユニットの陰電極側における電解流路から送出されるpHがアルカリ性の次亜塩素酸水とを混合して中和することとなり、混合した溶液はpHがアルカリ性となるが、次亜塩素酸水生成ユニットの陰電極側における電解流路から送出されるアルカリ溶液のpHより中性側に近づけた状態で排液することができる。 In addition, the hypochlorous acid water supply apparatus according to the present disclosure includes a drain-side tank that stores the tap water aqueous solution sent from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit. The drain-side tank is connected so that the solution sent from the electrolytic flow path on the cathode side of the hypochlorous acid water generating unit is mixed. According to such a configuration, the tap water aqueous solution with an acidic pH delivered from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit and the electrolysis channel on the negative electrode side of the hypochlorous acid water generation unit are delivered. It is neutralized by mixing with hypochlorous acid water with an alkaline pH, and the mixed solution has an alkaline pH. It is possible to drain the alkaline solution in a state closer to the neutral side than the pH of the alkaline solution.
 本開示に係る空間除菌システムは、上述した次亜塩素酸水供給装置と、外部として、次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置と、を備える構造とする。こうした構成によれば、次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水のミストを所定の空間に放出しても、所定の空間に残る残留成分が抑制される。つまり、次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水が、塩水の電気分解によって生じる残留成分、及び水道水に含まれる陽イオン成分による残留成分が低減された次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 The space sterilization system according to the present disclosure uses the above-described hypochlorous acid water supply device and, as an external device, hypochlorous acid water sent from the electrolytic flow path on the positive electrode side of the hypochlorous acid water treatment unit. and a sterilization device that emits hypochlorous acid water mist to a predetermined space. According to such a configuration, even if the hypochlorous acid water mist sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit is discharged into the predetermined space, the residual components remaining in the predetermined space are Suppressed. In other words, the hypochlorous acid water delivered from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit contains residual components generated by electrolysis of salt water and residual components due to cationic components contained in tap water. Since the hypochlorous acid water is reduced, it is possible to suppress the occurrence of metal corrosion caused by residual components while maintaining the sterilization performance when sterilizing a predetermined space.
 また、本開示に係る空間除菌システムでは、所定の空間には、所定の空間内で発生する水を排出する排水管が設けられており、排水管は、水道水処理ユニットの陽電極側における水道水電解流路から送出される水道水溶液と、次亜塩素酸水処理部の陰電極側における電解流路から送出される次亜塩素酸水とが混合されて導入されるように構成されている。こうした構成によれば、次亜塩素酸水処理部の陰電極側における電解流路から送出される次亜塩素酸水が、水道水処理ユニットの陽電極側における水道水電解流路から送出されるpHが酸性の水道水溶液によってある程度中和されるものの、排水管に、残留成分の要因となる陽イオン成分が濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水として導入することができる。このため、排出管に導入される次亜塩素酸水によって排水管内を洗浄することができる。 Further, in the spatial sterilization system according to the present disclosure, a predetermined space is provided with a drain pipe for discharging water generated in the predetermined space. The tap water solution sent from the tap water electrolysis channel and the hypochlorous acid water sent from the electrolysis channel on the negative electrode side of the hypochlorous acid water treatment unit are mixed and introduced. there is According to this configuration, the hypochlorous acid water delivered from the electrolysis channel on the negative electrode side of the hypochlorous acid water treatment unit is delivered from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit. Although the pH is neutralized to some extent by an acidic tap water solution, it can be introduced into the drainpipe as highly detergency hypochlorous acid water containing an alkaline solution in which cationic components that cause residual components are concentrated. . Therefore, the inside of the drain pipe can be washed with the hypochlorous acid water introduced into the drain pipe.
 以下、本開示の実施の形態4について図面を参照しながら説明する。なお、以下の実施の形態4は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 The fourth embodiment of the present disclosure will be described below with reference to the drawings. In addition, the following Embodiment 4 is an example that embodies the present disclosure, and does not limit the technical scope of the present disclosure. Each drawing described in the embodiment is a schematic drawing, and the ratio of the size and thickness of each component in each drawing does not necessarily reflect the actual dimensional ratio. .
 実施の形態4は、少なくとも以下の実施の形態4-1及び実施の形態4-2を包含する。 Embodiment 4 includes at least Embodiment 4-1 and Embodiment 4-2 below.
 (実施の形態4-1)
 図27を参照して、本開示の実施の形態4-1に係る次亜塩素酸水供給装置301について説明する。図27は、本開示の実施の形態4-1に係る次亜塩素酸水供給装置301の断面イメージ図である。
(Embodiment 4-1)
A hypochlorous acid water supply device 301 according to Embodiment 4-1 of the present disclosure will be described with reference to FIG. FIG. 27 is a cross-sectional image diagram of a hypochlorous acid water supply device 301 according to Embodiment 4-1 of the present disclosure.
 次亜塩素酸水供給装置301は、水道水と塩成分を供給して電気分解及び電気透析を行い、生成した次亜塩素酸水に含まれる残留成分(塩成分及び水道水に含まれるNaイオン、Ca2+イオン、及びMg2+イオン等の陽イオンを有する成分(以下、陽イオン成分ともいう)、及び水道水に含まれるSO 2-イオン及びNO イオン等の陰イオンを有する成分(以下、陰イオン成分ともいう))を分離低減して供給することができる装置である。 The hypochlorous acid water supply device 301 supplies tap water and salt components to perform electrolysis and electrodialysis, and residual components contained in the generated hypochlorous acid water (salt components and Na + Components containing cations such as ions, Ca 2+ ions, and Mg 2+ ions (hereinafter also referred to as cationic components), and components containing anions such as SO 4 2− ions and NO 3 ions contained in tap water (hereinafter also referred to as anion component)) can be separated and reduced and supplied.
 具体的には、図27に示すように、次亜塩素酸水供給装置301は、水道水処理ユニット302と、次亜塩素酸水生成ユニット303と、第一陰電極側供給ポンプ318と、第一陽電極側供給ポンプ319と、塩水生成ユニット320と、排水側タンク323と、第二陽電極側供給ポンプ338と、第二陰電極側供給ポンプ339と、を備える。 Specifically, as shown in FIG. 27, the hypochlorous acid water supply device 301 includes a tap water treatment unit 302, a hypochlorous acid water generation unit 303, a first cathode side supply pump 318, and a second cathode side supply pump 318. It comprises a first positive electrode side supply pump 319 , a salt water generation unit 320 , a waste water side tank 323 , a second positive electrode side supply pump 338 and a second negative electrode side supply pump 339 .
 <水道水処理ユニット>
 図27~図30を参照して、水道水処理ユニット302について説明する。図28は、水道水処理ユニット302の概略図である。図29は、水道水処理ユニット302の分解斜視図である。図30は、水道水処理ユニット302の垂直方向の断面イメージ図である。
<Tap water treatment unit>
The tap water treatment unit 302 will be described with reference to FIGS. 27 to 30. FIG. FIG. 28 is a schematic diagram of tap water treatment unit 302 . 29 is an exploded perspective view of the tap water treatment unit 302. FIG. FIG. 30 is a vertical sectional image diagram of the tap water treatment unit 302. As shown in FIG.
 水道水処理ユニット302は、外部から水道水を供給して、水道水に含まれる陰イオン成分を分離低減するユニットである。 The tap water treatment unit 302 is a unit that supplies tap water from the outside and separates and reduces anion components contained in the tap water.
 水道水処理ユニット302は、第一陰電極304と、第一陽電極305と、第一隔膜306と、第一陰電極側スペーサ307と、第一陽電極側スペーサ308と、第一陰電極用パッキン309aと、第一陽電極用パッキン309bと、第一陰電極側槽筐体側面310aと、第一陽電極側槽筐体側面310bと、第一陰電極溶液供給口311と、第一陰電極溶液抽出口312と、第一陽電極溶液供給口313と、第一陽電極溶液抽出口314と、第一陰電極側流路315と、第一陽電極側流路316と、電気透析電源317と、を備える。 The tap water treatment unit 302 includes a first negative electrode 304, a first positive electrode 305, a first diaphragm 306, a first negative electrode side spacer 307, a first positive electrode side spacer 308, and a first negative electrode A packing 309a, a first positive electrode packing 309b, a first negative electrode side tank housing side surface 310a, a first positive electrode side tank housing side surface 310b, a first negative electrode solution supply port 311, a first negative electrode Electrode solution extraction port 312, first positive electrode solution supply port 313, first positive electrode solution extraction port 314, first negative electrode side channel 315, first positive electrode side channel 316, electrodialysis power supply 317;
 第一陰電極304は、平面状の電極板である。第一陰電極304は、第一陰電極側スペーサ307によって第一陰電極側流路315の流路に沿って電極板の表面が露出している。第一陰電極304は、電気透析電源317によって電流が流れると陰極として機能する電極である。第一陰電極304は、第一陽電極305と対向して略平行に配置されている。第一陰電極304は、チタン基材の表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも第一陰電極側流路315の流路に沿って露出される第一陰電極304の面に形成されている。 The first cathode 304 is a planar electrode plate. The surface of the electrode plate of the first cathode 304 is exposed along the channel of the first cathode-side channel 315 by the first-cathode-side spacer 307 . The first cathode electrode 304 is the electrode that functions as the cathode when current is passed by the electrodialysis power supply 317 . The first negative electrode 304 is arranged substantially parallel to and facing the first positive electrode 305 . The first cathode electrode 304 forms a platinum-containing catalyst on the surface of the titanium substrate. The platinum-containing catalyst is formed at least on the surface of the first cathode 304 that is exposed along the channel 315 on the first cathode side.
 第一陽電極305は、平面状の電極板である。第一陽電極305は、第一陽電極側スペーサ308によって第一陽電極側流路316の流路に沿って電極板の表面が露出している。第一陽電極305は、電気透析電源317によって電流が流れると陽極として機能する電極である。第一陽電極305は、第一陰電極304と対向して略平行に配置されている。第一陽電極305は、チタン基材の表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも第一陽電極側流路316の流路に沿って露出される第一陽電極305の面に形成されている。 The first positive electrode 305 is a planar electrode plate. The surface of the electrode plate of the first positive electrode 305 is exposed along the channel of the first positive electrode side channel 316 by the first positive electrode side spacer 308 . First positive electrode 305 is an electrode that functions as an anode when current is passed by electrodialysis power supply 317 . The first positive electrode 305 is arranged substantially parallel to and facing the first negative electrode 304 . The first positive electrode 305 forms a platinum-containing catalyst on the surface of the titanium substrate. The platinum-containing catalyst is formed at least on the surface of the first positive electrode 305 exposed along the channel of the first positive electrode side channel 316 .
 また、第一陰電極側流路315及び第一陽電極側流路316に沿って露出させて電気透析を行う領域の第一陰電極304と第一陽電極305は、同形状とし、対向距離の短い方がイオンの移動をさせやすい。対向距離が短いと流路を流れる流量が少なくなるため、必要な水道水処理量を確保した上で、対向距離を10mm以下程度に短くすることが望ましい。 In addition, the first negative electrode 304 and the first positive electrode 305 in the region where electrodialysis is performed by exposing them along the first negative electrode side channel 315 and the first positive electrode side channel 316 have the same shape, and the facing distance is is easier to move ions. If the facing distance is short, the amount of flow through the flow path will be small, so it is desirable to shorten the facing distance to about 10 mm or less while ensuring the required amount of tap water to be treated.
 そして、第一陰電極304及び第一陽電極305は、一対の対向電極として陰陽電極(以下、第一陰陽電極ともいう)を構成する。 The first negative electrode 304 and the first positive electrode 305 constitute negative and positive electrodes (hereinafter also referred to as first negative and positive electrodes) as a pair of opposing electrodes.
 第一隔膜306は、平面状の薄膜である。第一隔膜306は、第一陰電極304及び第一陽電極305と対向して略平行に配置されている。第一隔膜306は、第一陰電極側流路315と第一陽電極側流路316とを隔てるように設けている。第一隔膜306は、水道水に含まれるClイオン、SO 2-イオン、及びNO イオンのような陰イオンを移動させることが可能なイオン交換膜(陰イオン交換膜)である。第一隔膜306は、第一陰電極304及び第一陽電極305に電圧を印加することで、第一陽電極305側に陰イオンを移動させることができる。この陰イオン交換膜としては、例えば、アストム社製ネオセプタなどが挙げられる。 The first diaphragm 306 is a planar thin film. The first diaphragm 306 is arranged substantially parallel to the first negative electrode 304 and the first positive electrode 305 . The first diaphragm 306 is provided so as to separate the first negative electrode side channel 315 and the first positive electrode side channel 316 . The first diaphragm 306 is an ion exchange membrane (anion exchange membrane) capable of transferring anions such as Cl ions, SO 4 2− ions, and NO 3 ions contained in tap water. The first diaphragm 306 can move anions to the first positive electrode 305 side by applying a voltage to the first negative electrode 304 and the first positive electrode 305 . As this anion exchange membrane, for example, Neocepta manufactured by Astom Co., Ltd. can be used.
 第一陰電極側スペーサ307は、絶縁性の部材である。第一陰電極側スペーサ307は、第一陰電極304と第一隔膜306との間の距離を所定の間隔に制御する。第一陰電極側スペーサ307は、第一陰電極側スペーサ307の内部に、第一陰電極側流路315を形作る第一陰電極側流路孔315aを有している。第一陰電極側流路孔315aは、第一陰電極側スペーサ307に形成された第一陰電極側流路315を形成する孔のことである。第一陰電極側流路孔315aは、第一陰電極側スペーサ307の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。また、第一陰電極側スペーサ307の表面には、第一陰電極304及び第一隔膜306との密着性をあげるために、第一陰電極側スペーサ307と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。 The first cathode side spacer 307 is an insulating member. The first cathode side spacer 307 controls the distance between the first cathode 304 and the first diaphragm 306 to a predetermined distance. The first cathode side spacer 307 has a first cathode side channel hole 315 a forming a first cathode side channel 315 inside the first cathode side spacer 307 . The first cathode side channel hole 315 a is a hole that forms the first cathode side channel 315 formed in the first cathode side spacer 307 . The first cathode-side channel hole 315a is formed through the front and back of the first cathode-side spacer 307, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up one step at a time. ing. In addition, on the surface of the first cathode side spacer 307, a meandering packing member (not shown), which is the same as the first cathode side spacer 307, is provided on the surface of the first cathode side spacer 307 in order to increase the adhesion between the first cathode side 304 and the first diaphragm 306. ) is installed.
 第一陽電極側スペーサ308は、絶縁性の部材である。第一陽電極側スペーサ308は、第一陽電極305と第一隔膜306との間の距離を所定の間隔に制御する。第一陽電極側スペーサ308は、第一陽電極側スペーサ308の内部に、第一陽電極側流路316を形作る第一陽電極側流路孔316aを有している。第一陽電極側流路孔316aは、第一陽電極側スペーサ308に形成された第一陽電極側流路316を形成する孔のことである。第一陽電極側流路孔316aは、第一陽電極側スペーサ308の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。ここで、第一陰電極側流路孔315aと第一陽電極側流路孔316aとは、互いに対向するように配置されている。また、第一陽電極側スペーサ308の表面には、第一陽電極305及び第一隔膜306との密着性をあげるために、第一陽電極側スペーサ308と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。 The first positive electrode side spacer 308 is an insulating member. The first positive electrode side spacer 308 controls the distance between the first positive electrode 305 and the first diaphragm 306 to a predetermined distance. The first positive electrode side spacer 308 has, inside the first positive electrode side spacer 308 , a first positive electrode side channel hole 316 a forming a first positive electrode side channel 316 . The first positive electrode side channel hole 316 a is a hole that forms the first positive electrode side channel 316 formed in the first positive electrode side spacer 308 . The first positive electrode-side channel hole 316a is formed through the front and back of the first positive electrode-side spacer 308, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing. Here, the first negative electrode side channel hole 315a and the first positive electrode side channel hole 316a are arranged so as to face each other. In addition, on the surface of the first positive electrode side spacer 308, a meandering packing member (not shown), which is the same as the first positive electrode side spacer 308, is provided on the surface of the first positive electrode side spacer 308 in order to improve adhesion with the first positive electrode 305 and the first diaphragm 306. ) is installed.
 第一陰電極用パッキン309aは、第一陰電極304の外周に電極サイズをくりぬいた形状をしており、第一陰電極側スペーサ307と密着して外周方向に、第一陰電極側流路315内の溶液(後述する第一陰電極供給溶液311a)が漏れないように、締め付け圧を加えて取り付けられている。第一陰電極用パッキン309aの部材としては、絶縁性のシリコンゴムを使用することができる。第一陰電極用パッキン309aは、第一陰電極304より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第一陰電極側スペーサ307と第一陰電極側槽筐体側面310aとを密着しながら、第一陰電極304の厚みで保持されることが望ましい。 The first cathode packing 309a has a shape in which the outer circumference of the first cathode 304 is hollowed out to the size of the electrode, and is in close contact with the first cathode side spacer 307 to form the first cathode side flow path in the outer circumferential direction. A clamping pressure is applied so that the solution in 315 (the first cathode supply solution 311a, which will be described later) does not leak. As the member of the first cathode packing 309a, insulating silicon rubber can be used. The first cathode packing 309a is thicker than the first cathode 304, and is crushed by the tightening pressure so that the first cathode side spacer 307 and the first cathode side tank housing side surface 310a are crushed. It is desirable that the thickness of the first cathode 304 is maintained while the electrodes are in close contact with each other.
 第一陽電極用パッキン309bは、第一陽電極305の外周に電極サイズをくりぬいた形状をしており、第一陽電極側スペーサ308と密着して外周方向に、第一陽電極側流路316内の溶液(後述する第一陽電極供給溶液313a)が漏れないように、締め付け圧を加えて取り付けられている。第一陽電極用パッキン309bの部材としては、絶縁性のシリコンゴムを使用することができる。第一陽電極用パッキン309bは、第一陽電極305より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第一陽電極側スペーサ308と第一陽電極側槽筐体側面310bとを密着しながら、第一陽電極305の厚みで保持されることが望ましい。 The first positive electrode packing 309b has a shape in which the outer periphery of the first positive electrode 305 is hollowed out to the size of the electrode, and is in close contact with the first positive electrode side spacer 308 to form the first positive electrode side flow channel in the outer peripheral direction. It is attached with a tightening pressure so that the solution in 316 (the first positive electrode supply solution 313a to be described later) does not leak. As a member of the first positive electrode packing 309b, insulating silicone rubber can be used. The first positive electrode packing 309b is thicker than the first positive electrode 305, and is crushed by being pressed by the tightening pressure to form the first positive electrode side spacer 308 and the first positive electrode side tank housing side surface 310b. It is desirable that the thickness of the first positive electrode 305 is retained while the electrodes are in close contact with each other.
 第一陰電極側槽筐体側面310aは、第一陰電極304の外側に直接接触するように配置されている。第一陰電極側槽筐体側面310aは、第一陰電極304の外側への溶液の染み込みを抑制するために、第一陰電極側槽筐体側面310aの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第一陰電極304の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気透析の効率向上にもつながる。 The side surface 310a of the first cathode-side tank housing is arranged so as to be in direct contact with the outside of the first cathode 304. The first cathode-side tank housing side surface 310a is provided to suppress the penetration of the solution to the outside of the first cathode 304, and to improve adhesion to the inner surface of the first cathode-side tank housing side surface 310a. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the first negative electrode 304, the efficiency of electrodialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 第一陽電極側槽筐体側面310bは、第一陽電極305の外側に直接接触するように配置されている。第一陽電極側槽筐体側面310bは、第一陽電極305の外側への溶液の染み込みを抑制するために、第一陽電極側槽筐体側面310bの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第一陽電極305の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電極透析の効率向上にもつながる。 The first positive electrode side tank housing side surface 310b is arranged so as to be in direct contact with the outside of the first positive electrode 305 . The first positive electrode-side tank housing side surface 310b is provided with an inner surface of the first positive electrode-side tank housing side surface 310b in order to suppress penetration of the solution to the outside of the first positive electrode 305, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the first positive electrode 305, the efficiency of electrode dialysis can be improved if the solution can be prevented from leaking to the outside of the electrode.
 第一陰電極溶液供給口311は、電気透析する第一陰電極供給溶液311aを流路内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第一陰電極304の外側から第一陰電極供給溶液311aを供給するため、第一陰電極溶液供給口311は、第一陰電極304より外周の位置に加工されている。 The first cathode solution supply port 311 is a connection port for flowing the first cathode supply solution 311a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the first cathode supply solution 311 a from the outside of the first cathode 304 , the first cathode solution supply port 311 is processed at a position outside the first cathode 304 .
 第一陰電極供給溶液311aは、水道水である。水道水には、Clイオン、SO 2-イオン、及びNO イオン等の陰イオン成分、さらにNaイオン、Ca2+イオン、及びMg2+イオン等の陽イオン成分が含まれており、地域によって各イオン成分の含有量が異なる。第一陰電極供給溶液311aは、第一陰電極溶液供給口311から第一陰電極側流路315に導入される。 The first cathode supply solution 311a is tap water. Tap water contains anionic components such as Cl ions, SO 4 2− ions, and NO 3 ions, as well as cationic components such as Na + ions, Ca 2+ ions, and Mg 2+ ions. The content of each ion component differs depending on the region. The first cathode supply solution 311 a is introduced from the first cathode solution supply port 311 into the first cathode side channel 315 .
 第一陰電極溶液抽出口312は、電気透析した第一陰電極抽出溶液312aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第一陰電極304の外側に第一陰電極抽出溶液312aを抽出するため、第一陰電極溶液抽出口312は、第一陰電極304より外周の位置に加工されている。 The first cathode solution extraction port 312 is a connection port for extracting the electrodialyzed first cathode extraction solution 312a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the first cathode extraction solution 312 a outside the first cathode 304 , the first cathode solution extraction port 312 is processed at a position outside the first cathode 304 .
 第一陰電極抽出溶液312aは、水道水から水道水に含まれる陰イオン成分を分離低減した水道水溶液であり、水道水に含まれる陽イオン成分は分離低減されずに水道水溶液中に残る。第一陰電極抽出溶液312aは、第一陰電極側流路315から第一陰電極溶液抽出口312に導入される。 The first negative electrode extraction solution 312a is a tap water solution in which the anion components contained in the tap water are separated and reduced from the tap water, and the cation components contained in the tap water remain in the tap water solution without being separated and reduced. The first cathode extraction solution 312 a is introduced into the first cathode solution extraction port 312 from the first cathode side channel 315 .
 より詳細には、第一陰電極抽出溶液312aは、第一陰電極供給溶液311aを第一陰電極側流路315に流通させて、第一陰電極供給溶液311aから次亜塩素酸水の濃度ばらつき及び特性ばらつきの要因となる水道水に含まれる陰イオン成分を分離希薄化した水道水溶液である。この水道水溶液のpHはアルカリ性を示す。 More specifically, the first cathode extracting solution 312a is obtained by circulating the first cathode supply solution 311a through the first cathode-side channel 315 to obtain the concentration of hypochlorous acid water from the first cathode supply solution 311a. It is a tap water solution obtained by separating and diluting the anion component contained in tap water, which causes variation and characteristic variation. The pH of this tap water solution is alkaline.
 第一陽電極溶液供給口313は、電気透析する第一陽電極供給溶液313aを流路内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第一陽電極305の外側から第一陽電極供給溶液313aを供給するため、第一陽電極溶液供給口313は、第一陽電極305より外周の位置に加工されている。 The first positive electrode solution supply port 313 is a connection port for flowing the first positive electrode supply solution 313a to be electrodialyzed into the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to supply the first positive electrode supply solution 313 a from the outside of the first positive electrode 305 , the first positive electrode solution supply port 313 is processed at a position outside the first positive electrode 305 .
 第一陽電極供給溶液313aは、第一陰電極供給溶液311aと同様の水道水である。第一陽電極供給溶液313aは、第一陽電極溶液供給口313から第一陽電極側流路316に導入される。 The first positive electrode supply solution 313a is tap water similar to the first negative electrode supply solution 311a. First positive electrode supply solution 313 a is introduced from first positive electrode solution supply port 313 into first positive electrode side channel 316 .
 第一陽電極溶液抽出口314は、電気透析した第一陽電極抽出溶液314aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第一陽電極305の外側に第一陽電極抽出溶液314aを抽出するため、第一陽電極溶液抽出口314は、第一陽電極305より外周の位置に加工されている。 The first positive electrode solution extraction port 314 is a connection port for extracting the electrodialyzed first positive electrode extraction solution 314a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the first positive electrode extracting solution 314 a outside the first positive electrode 305 , the first positive electrode solution extracting port 314 is processed at a position outside the first positive electrode 305 .
 第一陽電極抽出溶液314aは、水道水から水道水に含まれる陰イオン成分を分離濃縮した水道水溶液である。第一陽電極抽出溶液314aは、第一陽電極側流路316から第一陽電極溶液抽出口314に導出される。 The first positive electrode extraction solution 314a is a tap water solution obtained by separating and concentrating anion components contained in tap water from tap water. The first positive electrode extraction solution 314 a is led out from the first positive electrode side channel 316 to the first positive electrode solution extraction port 314 .
 より詳細には、第一陽電極抽出溶液314aは、第一陽電極供給溶液313aを第一陽電極側流路316に流通させて、第一陽電極供給溶液313aから次亜塩素酸水の濃度ばらつき及び特性ばらつきの要因となる水道水に含まれる陰イオン成分を分離濃縮化した水道水溶液である。なお、分離濃縮化すると同時に、水道水に含まれていた塩化物イオン(Clイオン)の電気分解により次亜塩素酸水が生成されるので、この水道水溶液のpHは酸性を示す。 More specifically, the first positive electrode extraction solution 314a is obtained by circulating the first positive electrode supply solution 313a through the first positive electrode side channel 316 so that the concentration of hypochlorous acid water from the first positive electrode supply solution 313a is reduced. It is a tap water solution obtained by separating and condensing the anion component contained in tap water, which causes variation and characteristic variation. Simultaneously with separation and concentration, hypochlorous acid water is produced by electrolysis of chloride ions ( Cl.sup.- ions) contained in tap water, so the pH of this tap water solution is acidic.
 ここで、第一陰電極溶液供給口311及び第一陽電極溶液供給口313は、鉛直方向の下方側に配置されることが望ましく、第一陰電極溶液抽出口312及び第一陽電極溶液抽出口314は、鉛直方向の上方側に配置されることが望ましい。流路内の電気透析反応及び電気分解反応により、酸素ガス及び水素ガス等が発生する際に、抽出口が上方に配置されてある方がガスをより効率的に溶液とともに排出することができる。 Here, the first negative electrode solution supply port 311 and the first positive electrode solution supply port 313 are preferably arranged on the lower side in the vertical direction, and the first negative electrode solution extraction port 312 and the first positive electrode solution extraction The port 314 is desirably positioned vertically upward. When oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
 第一陰電極側流路315は、第一陰電極304と第一陰電極側スペーサ307と第一隔膜306とによって囲まれた領域で形成される流路である。第一陰電極側流路315は、第一陰電極側スペーサ307の第一陰電極側流路孔315aによって蛇行して構成されている。より詳細には、第一陰電極側流路315は、水平方向に往復し下から上に陽極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第一陰電極側流路315の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。第一陰電極側流路315において液の逆流を低減するため、第一陰電極側流路315が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。第一陰電極側流路315は、その一方に第一陰電極溶液供給口311が設けられ、他方に第一陰電極溶液抽出口312が設けられており、内部に陰極側溶液である第一陰電極供給溶液311aが流通している。 The first cathode-side channel 315 is a channel formed by a region surrounded by the first cathode 304 , the first cathode-side spacer 307 and the first diaphragm 306 . The first cathode-side channel 315 is formed meandering by the first cathode-side channel hole 315 a of the first cathode-side spacer 307 . More specifically, the first cathode-side channel 315 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the first cathode side channel 315, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the first cathode-side flow path 315, it is desirable that the first cathode-side flow path 315 has a structure in which the first cathode-side flow path 315 goes from bottom to top in one direction other than reciprocation in the horizontal direction. The first cathode-side channel 315 is provided with the first cathode solution supply port 311 on one side and the first cathode solution extraction port 312 on the other side. A cathode supply solution 311a is circulated.
 第一陽電極側流路316は、第一陽電極305と第一陽電極側スペーサ308と第一隔膜306によって囲まれた領域で形成される流路である。第一陽電極側流路316は、第一陽電極側スペーサ308の第一陽電極側流路孔316aによって蛇行して構成されている。より詳細には、第一陽電極側流路316は、水平方向に往復し下から上に陰極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第一陽電極側流路316の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。第一陽電極側流路316において液の逆流を低減するため、第一陽電極側流路316が水平方向に往復する以外は一方向に下から上に流れる構造とすることが望ましい。第一陽電極側流路316は、その一方に第一陽電極溶液供給口313が設けられ、他方に第一陽電極溶液抽出口314が設けられており、内部に陽極側溶液である第一陽電極供給溶液313aが流通している。 The first positive electrode side channel 316 is a channel formed by the area surrounded by the first positive electrode 305 , the first positive electrode side spacer 308 and the first diaphragm 306 . The first positive electrode side channel 316 is formed by meandering through the first positive electrode side channel hole 316 a of the first positive electrode side spacer 308 . More specifically, the first positive electrode-side channel 316 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the first positive electrode side channel 316, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the first positive electrode-side channel 316, it is desirable that the first positive electrode-side channel 316 has a structure in which the liquid flows in one direction from bottom to top except for reciprocation in the horizontal direction. The first positive electrode side channel 316 is provided with a first positive electrode solution supply port 313 on one side and a first positive electrode solution extraction port 314 on the other side. A positive electrode supply solution 313a is circulating.
 第一陰電極側流路315及び第一陽電極側流路316は、第一隔膜306を挟んで対称な形状で対向している。つまり、第一陰電極側流路315及び第一陽電極側流路316は、第一隔膜306を挟んで互いに対向する蛇行形状で構成されている。このようにして、第一陰電極側流路315と第一陽電極側流路316とは、いわゆる有隔膜電解流路(以下、第一有隔膜電解流路ともいう)を構成している。そして、第一陰電極側流路315内を流通する水道水に含まれる陰イオン成分が第一陽電極側流路316側に移動する。イオン成分の移動量は、印加される電圧電流及び流路内の流速によって制御される。流速は、第一陰電極溶液供給口311の前段に第一陰電極側供給ポンプ318を設置し、第一陽電極溶液供給口313の前段に第一陽電極側供給ポンプ319を設置して制御している。各ポンプは、それぞれ一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。一定流量で溶液を流すことで、流路内で電気透析及び電気分解する時間を一定に制御できるため、第一陰電極側流路315における水道水に含まれる陰イオン成分が分離希薄化する濃度、及び第一陽電極側流路316における水道水に含まれる陰イオン成分が濃縮化する濃度を安定にすることができる。 The first negative electrode side channel 315 and the first positive electrode side channel 316 face each other in a symmetrical shape with the first diaphragm 306 interposed therebetween. In other words, the first negative electrode side channel 315 and the first positive electrode side channel 316 are configured in a meandering shape facing each other with the first diaphragm 306 interposed therebetween. In this manner, the first cathode-side flow channel 315 and the first positive electrode-side flow channel 316 constitute a so-called diaphragm-containing electrolysis flow channel (hereinafter also referred to as a first diaphragm-containing electrolysis flow channel). Then, the anion component contained in the tap water flowing through the first negative electrode side channel 315 moves to the first positive electrode side channel 316 side. The amount of ionic component movement is controlled by the applied voltage and current and the flow velocity in the channel. The flow rate is controlled by installing a first negative electrode side supply pump 318 in front of the first negative electrode solution supply port 311 and installing a first positive electrode side supply pump 319 in front of the first positive electrode solution supply port 313. are doing. Each pump is desirably a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, the electrodialysis and electrolysis time in the channel can be controlled to be constant. , and the concentrated concentration of the anion component contained in the tap water in the first positive electrode-side channel 316 can be stabilized.
 電気透析電源317は、一対の第一陰陽電極間に通電する直流電源である。より詳細には、電気透析電源317は、第一陰電極304及び第一陽電極305と接続され、第一陰電極304及び第一陽電極305に電流及び電圧を印加することができる直流電源である。電気透析電源317は、一定の電流となるように定電流制御の電源として使用してもよいし、一定の電圧となるように定電圧制御の電源として使用してもよい。 The electrodialysis power supply 317 is a DC power supply that energizes between the pair of first positive and negative electrodes. More specifically, the electrodialysis power supply 317 is a DC power supply connected to the first negative electrode 304 and the first positive electrode 305 and capable of applying current and voltage to the first negative electrode 304 and the first positive electrode 305. be. The electrodialysis power supply 317 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage.
 第一陰電極側供給ポンプ318は、第一陰電極供給溶液311aを供給する流れを生じさせるポンプである。より詳細には、第一陰電極側供給ポンプ318は、第一陰電極溶液供給口311の前段に設置される。そして、第一陰電極側供給ポンプ318は、第一陰電極溶液供給口311、第一陰電極側流路315、第一陰電極溶液抽出口312、及び塩水生成タンク321の順に流通する各溶液(水道水、第一陰電極供給溶液311a、第一陰電極抽出溶液312a)の流れを生じさせる。この際、第一陰電極側供給ポンプ318は、水道水処理ユニット302を流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The first cathode side supply pump 318 is a pump that generates a flow that supplies the first cathode supply solution 311a. More specifically, the first cathode side supply pump 318 is installed upstream of the first cathode solution supply port 311 . The first cathode-side supply pump 318 causes each solution to flow through the first cathode solution supply port 311, the first cathode-side channel 315, the first cathode solution extraction port 312, and the salt water generation tank 321 in this order. A flow of (tap water, first cathode supply solution 311a, first cathode extraction solution 312a) is initiated. At this time, the first cathode side supply pump 318 controls the flow rate of the solution flowing through the tap water treatment unit 302 to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 第一陽電極側供給ポンプ319は、第一陽電極供給溶液313aを供給する流れを生じさせるポンプである。より詳細には、第一陽電極側供給ポンプ319は、第一陽電極溶液供給口313の前段に設置される。そして、第一陽電極側供給ポンプ319は、第一陽電極溶液供給口313、第一陽電極側流路316、第一陽電極溶液抽出口314、及び排水側タンク323の順に流通する各溶液(水道水、第一陽電極供給溶液313a、第一陽電極抽出溶液314a)の流れを生じさせる。この際、第一陽電極側供給ポンプ319は、水道水処理ユニット302を流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The first positive electrode side supply pump 319 is a pump that generates a flow that supplies the first positive electrode supply solution 313a. More specifically, the first positive electrode side supply pump 319 is installed upstream of the first positive electrode solution supply port 313 . The first positive electrode side supply pump 319 supplies each solution through the first positive electrode solution supply port 313, the first positive electrode side channel 316, the first positive electrode solution extraction port 314, and the drain side tank 323 in this order. A flow of (tap water, first positive electrode supply solution 313a, first positive electrode extraction solution 314a) is initiated. At this time, the first positive electrode side supply pump 319 controls the flow rate of the solution flowing through the tap water treatment unit 302 to be constant. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 塩水生成ユニット320は、水道水処理ユニット302の陰電極側における水道水電解流路(第一陰電極側流路315)から送出される水道水溶液に塩成分を加えて塩水を生成するユニットである。塩水生成ユニット320は、水道水処理ユニット302の第一陰電極側流路315から送出される溶液を貯留する塩水生成タンク321と、塩水生成タンク321に塩成分を供給する塩供給部322とを有して構成される。 The salt water generation unit 320 is a unit that generates salt water by adding a salt component to the tap water solution delivered from the tap water electrolysis channel (first cathode side channel 315) on the negative electrode side of the tap water treatment unit 302. . The salt water generation unit 320 includes a salt water generation tank 321 that stores the solution sent from the first negative electrode side channel 315 of the tap water treatment unit 302, and a salt supply section 322 that supplies salt components to the salt water generation tank 321. configured with
 塩水生成タンク321は、水道水処理ユニット302の第一陰電極溶液抽出口312から抽出された第一陰電極抽出溶液312aを一時的に貯めておき、塩供給部322から供給された塩成分と混合して、次亜塩素酸水生成ユニット303に供給するための塩水を生成する容器である。第一陰電極側流路315から送出される水道水溶液(第一陰電極抽出溶液312a)は、水道水に含まれる陰イオン成分が分離低減されている。このため、塩水生成タンク321が貯留する水道水溶液に含まれる塩化物イオン(Clイオン)は、水道水の影響が低減され、塩供給部322で加えた塩成分に起因する塩化物イオン濃度で制御される。次亜塩素酸水生成ユニット303では、塩水生成ユニット320からの塩化物イオンを電気分解して次亜塩素酸水を生成するため、次亜塩素酸水生成ユニット303にて生成される次亜塩素酸水の濃度を塩供給部322の供給量で制御することが可能になる。 The salt water generation tank 321 temporarily stores the first cathode extraction solution 312 a extracted from the first cathode solution extraction port 312 of the tap water treatment unit 302 , and mixes it with the salt component supplied from the salt supply section 322 . It is a container that mixes and produces salt water to be supplied to the hypochlorous acid water production unit 303 . The tap water solution (first cathode extraction solution 312a) delivered from the first negative electrode-side channel 315 has anion components contained in the tap water separated and reduced. Therefore, the chloride ions (Cl ions) contained in the tap water solution stored in the salt water generation tank 321 are less affected by the tap water, and the chloride ion concentration resulting from the salt component added by the salt supply unit 322 is reduced. controlled. The hypochlorous acid water generation unit 303 electrolyzes chloride ions from the salt water generation unit 320 to generate hypochlorous acid water. It becomes possible to control the concentration of acid water by the supply amount of the salt supply unit 322 .
 塩供給部322は、塩水生成タンク321に、次亜塩素酸水生成ユニット303にて生成する目標の濃度に必要な塩成分(例えば、塩化ナトリウム)を供給する部材である。塩成分の供給の形態としては、塩タブレットを所定量供給してもよいし、高濃度(例えば3%)の塩水を所定量供給してもよい。 The salt supply unit 322 is a member that supplies the salt water generation tank 321 with a salt component (for example, sodium chloride) required for a target concentration generated by the hypochlorous acid water generation unit 303 . As a form of supply of the salt component, a predetermined amount of salt tablets may be supplied, or a predetermined amount of high-concentration (eg, 3%) salt water may be supplied.
 排水側タンク323は、水道水処理ユニット302の第一陽電極溶液抽出口314から抽出された第一陽電極抽出溶液314aを一時的に貯留するとともに、次亜塩素酸水生成ユニット303の第二陰電極溶液抽出口333から抽出される第二陰電極抽出溶液333aを一時的に貯留する容器である。排水側タンク323は、第一陽電極抽出溶液314a(水道水溶液)と第二陰電極抽出溶液333a(次亜塩素酸水)とを混合するとともに、混合した溶液(混合次亜塩素酸水)を排水側タンク323の側面に設けられた排水口から外部に排出可能に構成されている。なお、混合する際には、pHが酸性の第一陽電極抽出溶液314a(水道水溶液)と、pHがアルカリ性の第二陰電極抽出溶液333a(次亜塩素酸水)とで中和されるものの、混合した溶液は、アルカリ性のpHを有する。つまり、排水側タンク323は、第二陰電極抽出溶液333a(次亜塩素酸水)のpHより中性側に近づけた状態で混合した溶液を排液することができる。 The drain-side tank 323 temporarily stores the first positive electrode extraction solution 314a extracted from the first positive electrode solution extraction port 314 of the tap water treatment unit 302, and the second It is a container for temporarily storing the second cathode extraction solution 333 a extracted from the cathode solution extraction port 333 . The drain-side tank 323 mixes the first positive electrode extraction solution 314a (tap water solution) and the second negative electrode extraction solution 333a (hypochlorous acid water), and stores the mixed solution (mixed hypochlorous acid water). It is constructed such that it can be discharged to the outside from a drain port provided on the side surface of the drain-side tank 323 . When mixing, the first positive electrode extraction solution 314a (tap water solution) with an acidic pH and the second negative electrode extraction solution 333a (hypochlorous acid water) with an alkaline pH are neutralized. , the mixed solution has an alkaline pH. That is, the drain-side tank 323 can drain the mixed solution in a state where the pH of the second cathode extraction solution 333a (hypochlorous acid water) is closer to the neutral side than the pH.
 <次亜塩素酸水生成ユニット>
 図27、図32~図34を参照して、次亜塩素酸水生成ユニット303について説明する。図32は、次亜塩素酸水生成ユニット303の概略図である。図33は、次亜塩素酸水生成ユニット303の分解斜視図である。図34は、次亜塩素酸水生成ユニット303の垂直方向の断面イメージ図である。
<Hypochlorous acid water generation unit>
The hypochlorous acid water generating unit 303 will be described with reference to FIGS. 27 and 32 to 34. FIG. FIG. 32 is a schematic diagram of the hypochlorous acid water generation unit 303. As shown in FIG. 33 is an exploded perspective view of the hypochlorous acid water generating unit 303. FIG. FIG. 34 is a vertical cross-sectional image diagram of the hypochlorous acid water generating unit 303 .
 次亜塩素酸水生成ユニット303は、塩水生成ユニット320から供給される塩水の電気分解により次亜塩素酸水を生成して、さらに次亜塩素酸水に含まれる残留成分を分離低減するワンパス式のユニットである。 The hypochlorous acid water generation unit 303 is a one-pass type that generates hypochlorous acid water by electrolyzing the salt water supplied from the salt water generation unit 320, and further separates and reduces the residual components contained in the hypochlorous acid water. is a unit of
 次亜塩素酸水生成ユニット303は、次亜塩素酸水生成部303aと、次亜塩素酸水処理部303bと、電気分解・電気透析電源337と、第二陽電極側供給ポンプ338と、第二陰電極側供給ポンプ339と、を備える。 The hypochlorous acid water generation unit 303 includes a hypochlorous acid water generation unit 303a, a hypochlorous acid water treatment unit 303b, an electrolysis/electrodialysis power source 337, a second positive electrode side supply pump 338, a and a two-cathode-side supply pump 339 .
 次亜塩素酸水生成部303aは、塩水生成ユニット320から供給される塩水を電気分解して次亜塩素酸水をワンパス式で生成する部材である。次亜塩素酸水生成部303aは、第二陽電極324と、第二陰電極325と、第二陽電極側スペーサ327と、第二陰電極側スペーサ328と、第二陽電極用パッキン329aと、第二陰電極用パッキン329bと、第二陽電極側槽筐体側面330aと、第二陰電極側槽筐体側面330bと、第二陰陽電極溶液供給口331と、第二陽電極溶液抽出口332と、第二陰電極溶液抽出口333と、第二陰陽電極間流路334と、を備える。 The hypochlorous acid water generation unit 303a is a member that electrolyzes the salt water supplied from the salt water generation unit 320 to generate hypochlorous acid water in one pass. The hypochlorous acid water generator 303a includes a second positive electrode 324, a second negative electrode 325, a second positive electrode-side spacer 327, a second negative electrode-side spacer 328, and a second positive electrode packing 329a. , a second negative electrode packing 329b, a second positive electrode side tank housing side surface 330a, a second negative electrode side tank housing side surface 330b, a second negative electrode side electrode solution supply port 331, and a second positive electrode solution extraction. A port 332 , a second cathode solution extraction port 333 , and a second channel 334 between the negative and positive electrodes are provided.
 次亜塩素酸水処理部303bは、次亜塩素酸水生成部303aから供給される次亜塩素酸水に含まれる残留成分の分離低減をワンパス式で行う部材である。次亜塩素酸水処理部303bは、第二陽電極324と、第二陰電極325と、第二隔膜326と、第二陽電極側スペーサ327と、第二陰電極側スペーサ328と、第二陽電極用パッキン329aと、第二陰電極用パッキン329bと、第二陽電極側槽筐体側面330aと、第二陰電極側槽筐体側面330bと、第二陰陽電極溶液供給口331と、第二陽電極溶液抽出口332と、第二陰電極溶液抽出口333と、第二陽電極側流路335と、第二陰電極側流路336と、を備える。 The hypochlorous acid water treatment unit 303b is a member that separates and reduces residual components contained in the hypochlorous acid water supplied from the hypochlorous acid water generation unit 303a in a single pass. The hypochlorous acid water treatment unit 303b includes a second positive electrode 324, a second negative electrode 325, a second diaphragm 326, a second positive electrode-side spacer 327, a second negative electrode-side spacer 328, a second A positive electrode packing 329a, a second negative electrode packing 329b, a second positive electrode side tank housing side surface 330a, a second negative electrode side tank housing side surface 330b, a second negative electrode solution supply port 331, A second positive electrode solution extraction port 332 , a second negative electrode solution extraction port 333 , a second positive electrode side channel 335 , and a second negative electrode side channel 336 are provided.
 第二陽電極324は、平面状の電極板である。第二陽電極324は、第二陽電極側スペーサ327によって第二陰陽電極間流路334及び第二陽電極側流路335の流路に沿って電極板の表面が露出している。第二陽電極324は、電気分解・電気透析電源337によって電流が流れると陽極として機能する電極である。第二陽電極324は、第二陰電極325と対向して略平行に配置されている。第二陽電極324は、チタン基材の表面に白金を含む触媒が形成されており、電気分解による次亜塩素酸の発生効率が高い材料を使用する。白金を含む触媒は、少なくとも第二陰陽電極間流路334及び第二陽電極側流路335の流路に沿って露出される第二陽電極324の面に形成されている。塩水の電気分解の後に、電気透析により陽イオンを移動させて、残留成分となるNaClO及びNaOHを抑制した次亜塩素酸水を生成することが主目的であるが、NaClOから分解してできたNaCl及び塩水が電気分解しきれずに残ったNaClも、白金電極により次亜塩素酸へと変化させることが可能となる。 The second positive electrode 324 is a planar electrode plate. The surface of the electrode plate of the second positive electrode 324 is exposed along the channel 334 between the negative and positive electrodes and the channel 335 on the second positive electrode side by means of the spacer 327 on the side of the second positive electrode. The second positive electrode 324 is an electrode that functions as an anode when current is passed by the electrolysis/electrodialysis power source 337 . The second positive electrode 324 is arranged substantially parallel to and facing the second negative electrode 325 . The second positive electrode 324 has a platinum-containing catalyst formed on the surface of a titanium base material, and is made of a material that is highly efficient in generating hypochlorous acid by electrolysis. The platinum-containing catalyst is formed at least on the surface of the second positive electrode 324 exposed along the second channel 334 between the negative and positive electrodes and the channel 335 on the side of the positive electrode. After the electrolysis of salt water, the main purpose is to move cations by electrodialysis to generate hypochlorous acid water that suppresses NaClO and NaOH, which are the residual components, but it is made by decomposing from NaClO. NaCl remaining after the electrolysis of NaCl and salt water has not been completely electrolyzed can be converted to hypochlorous acid by means of platinum electrodes.
 第二陰電極325は、平面状の電極板である。第二陰電極325は、第二陰電極側スペーサ328によって第二陰陽電極間流路334及び第二陰電極側流路336の流路に沿って電極板の表面が露出している。第二陰電極325は、電気分解・電気透析電源337によって電流が流れると陰極として機能する電極である。第二陰電極325は、第二陽電極324と対向して略平行に配置されている。第二陰電極325は、第二陽電極324と同様に表面に白金を含む触媒を形成する。白金を含む触媒は、少なくとも第二陰陽電極間流路334及び第二陽電極側流路335の流路に沿って露出される第二陰電極325の面に形成されている。また、第二陽電極側流路335及び第二陰電極側流路336に沿って露出させて電気透析を行う領域の第二陽電極324と第二陰電極325は、同形状とし、対向距離の短い方がイオン成分の移動をさせやすい。対向距離が短いと流路を流れる流量が少なくなり、生成できる次亜塩素酸水も少なくなるため、必要な次亜塩素酸水生成量を確保したうえで、対向距離を10mm以下程度に短くすることが望ましい。 The second cathode 325 is a planar electrode plate. The surface of the electrode plate of the second negative electrode 325 is exposed along the channel 334 between the negative and positive electrodes and the channel 336 on the second negative electrode side by means of the spacer 328 on the side of the second negative electrode. The second cathode electrode 325 is an electrode that functions as a cathode when current is passed by the electrolysis/electrodialysis power source 337 . The second negative electrode 325 is arranged substantially parallel to and facing the second positive electrode 324 . The second negative electrode 325 forms a platinum-containing catalyst on its surface, similar to the second positive electrode 324 . The platinum-containing catalyst is formed on the surface of the second negative electrode 325 exposed along at least the second channel 334 between the negative and positive electrodes and the channel 335 on the side of the positive electrode. In addition, the second positive electrode 324 and the second negative electrode 325 in the region exposed along the second positive electrode side flow path 335 and the second negative electrode side flow path 336 and subjected to electrodialysis have the same shape, and the facing distance is is easier to move ionic components. If the facing distance is short, the flow rate in the flow path will decrease, and the amount of hypochlorous acid water that can be generated will also decrease. is desirable.
 そして、第二陽電極324及び第二陰電極325は、一対の対向電極として陰陽電極(以下、第二陰陽電極ともいう)を構成する。 The second positive electrode 324 and the second negative electrode 325 constitute negative and positive electrodes (hereinafter also referred to as second negative and positive electrodes) as a pair of opposing electrodes.
 第二隔膜326は、平面状の薄膜である。第二隔膜326は、第二陽電極324及び第二陰電極325と対向して略平行に配置されている。第二隔膜326は、第二陽電極側流路335と第二陰電極側流路336とを隔てるように設けている。第二隔膜326は、次亜塩素酸水の残留成分であるNaClO及びNaOHに関係するNaイオンのような陽イオンを移動させることが可能なイオン交換膜(陽イオン交換膜)である。また、Naイオン以外にも、水道水に含まれるCa2+イオン及びMg2+イオン等の陽イオンについても同様に移動させて分離低減することができる。第二隔膜326は、第二陽電極324及び第二陰電極325に電圧を印加することで、第二陰電極325に陽イオン成分を移動させることができる。この陽イオン交換膜としては、例えば、デュポン社製ナフィオンなどが挙げられる。第二隔膜326は、流路の後段(後半部分)に配置され、第二隔膜326を有する部分が次亜塩素酸水処理部303bとなる。反対に流路の前段(前半部分)の第二隔膜326を有さない部分が次亜塩素酸水生成部303aとなる。第二隔膜326のサイズにより、次亜塩素酸水生成部303aの領域と、次亜塩素酸水処理部303bの領域とが決まる。具体的には、塩水の電気分解時間の比率を多くしたい場合には、第二隔膜326のサイズを小さくし、次亜塩素酸水の電気透析時間の比率を多くしたい場合には、第二隔膜326のサイズを大きくする。なお、第二陰電極325側は、陽イオン成分を濃縮するため、長時間使用時に水道水等に含まれるスケール成分が析出する可能性がある。スケール蓄積の低減のため、例えば、次亜塩素酸水生成ユニット303への通水ごとに、第二陽電極324と第二陰電極325の電位を入れ替えて転極し、付着したスケールを溶解させる。転極して使用することを想定する際には、第二陽電極324及び第二陰電極325は、同様の白金を含む触媒処理にしておくことが望ましい。 The second diaphragm 326 is a planar thin film. The second diaphragm 326 is arranged substantially parallel to and facing the second positive electrode 324 and the second negative electrode 325 . The second diaphragm 326 is provided so as to separate the second positive electrode side channel 335 and the second negative electrode side channel 336 . The second diaphragm 326 is an ion exchange membrane (cation exchange membrane) capable of transferring cations such as Na + ions related to NaClO and NaOH, which are residual components of hypochlorous acid water. In addition to Na + ions, cations such as Ca 2+ ions and Mg 2+ ions contained in tap water can also be moved in the same manner to separate and reduce them. The second diaphragm 326 can move the cationic component to the second negative electrode 325 by applying a voltage to the second positive electrode 324 and the second negative electrode 325 . Examples of the cation exchange membrane include Nafion manufactured by DuPont. The second diaphragm 326 is arranged in the rear stage (the latter part) of the channel, and the part having the second diaphragm 326 becomes the hypochlorous acid water treatment part 303b. On the contrary, the part without the second diaphragm 326 in the front stage (first half part) of the flow path becomes the hypochlorous acid water generating part 303a. The size of the second diaphragm 326 determines the area of the hypochlorous acid water generating section 303a and the area of the hypochlorous acid water processing section 303b. Specifically, if you want to increase the ratio of electrolysis time of salt water, the size of the second diaphragm 326 is reduced, and if you want to increase the ratio of electrodialysis time of hypochlorous acid water, the second diaphragm 326 size is increased. Since the cationic component is concentrated on the second negative electrode 325 side, there is a possibility that scale components contained in tap water or the like may be deposited during long-term use. In order to reduce scale accumulation, for example, each time water is passed through the hypochlorous acid water generation unit 303, the potentials of the second positive electrode 324 and the second negative electrode 325 are reversed to dissolve adhered scale. . When it is assumed that the electrodes will be used with their polarities reversed, it is desirable that the second positive electrode 324 and the second negative electrode 325 be similarly treated with a catalyst containing platinum.
 第二陽電極側スペーサ327は、絶縁性の部材である。第二陽電極側スペーサ327は、第二陽電極324と第二隔膜326との間の距離を所定の間隔に制御する。第二陽電極側スペーサ327は、第二陽電極側スペーサ327の内部に、後述する第二陽電極側流路335を形作る第二陽電極側流路孔335aを有している。第二陽電極側流路孔335aは、第二陽電極側スペーサ327に形成された第二陽電極側流路335を形成する孔のことである。第二陽電極側流路孔335aは、第二陽電極側スペーサ327の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。また、第二陽電極側スペーサ327の表面には、第二陽電極324及び第二隔膜326との密着性をあげるために、第二陽電極側スペーサ327と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。 The second positive electrode side spacer 327 is an insulating member. The second positive electrode side spacer 327 controls the distance between the second positive electrode 324 and the second diaphragm 326 to a predetermined distance. The second positive electrode side spacer 327 has, inside the second positive electrode side spacer 327, a second positive electrode side channel hole 335a that forms a second positive electrode side channel 335, which will be described later. The second positive electrode side channel hole 335 a is a hole that forms the second positive electrode side channel 335 formed in the second positive electrode side spacer 327 . The second positive electrode side channel hole 335a is formed through the front and back of the second positive electrode side spacer 327, and is formed in a meandering manner so as to reciprocate in the horizontal direction and rise step by step. ing. In addition, on the surface of the second positive electrode side spacer 327, a meandering packing member (not shown), which is the same as the second positive electrode side spacer 327, is provided on the surface of the second positive electrode side spacer 327 in order to increase the adhesion to the second positive electrode 324 and the second diaphragm 326. ) is installed.
 第二陰電極側スペーサ328は、絶縁性の部材である。第二陰電極側スペーサ328は、第二陰電極325と第二隔膜326との間の距離を所定の間隔に制御する。第二陰電極側スペーサ328は、第二陰電極側スペーサ328の内部に、後述する第二陰電極側流路336を形作る第二陰電極側流路孔336aを有している。第二陰電極側流路孔336aは、第二陰電極側スペーサ328に形成された第二陰電極側流路336を形成する孔のことである。第二陰電極側流路孔336aは、第二陰電極側スペーサ328の表裏を貫通して形成されるとともに、水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成されている。ここで、第二陰電極側流路孔336aと第二陽電極側流路孔335aとは、互いに対向するように配置されている。また、第二陰電極側スペーサ328の表面には、第二陰電極325及び第二隔膜326との密着性をあげるために、第二陰電極側スペーサ328と同じ蛇行形状のパッキン部材(図示せず)が取り付けられている。 The second cathode side spacer 328 is an insulating member. The second cathode-side spacer 328 controls the distance between the second cathode 325 and the second diaphragm 326 to a predetermined distance. The second cathode-side spacer 328 has a second cathode-side channel hole 336a inside the second cathode-side spacer 328, which forms a second cathode-side channel 336, which will be described later. The second cathode side channel hole 336 a is a hole that forms the second cathode side channel 336 formed in the second cathode side spacer 328 . The second cathode-side channel hole 336a is formed through the front and back of the second cathode-side spacer 328, and is formed in a meandering manner so as to reciprocate in the horizontal direction and go up one step at a time. ing. Here, the second negative electrode side channel hole 336a and the second positive electrode side channel hole 335a are arranged so as to face each other. In addition, on the surface of the second cathode side spacer 328, a meandering packing member (not shown), which is the same as the second cathode side spacer 328, is provided in order to improve adhesion with the second cathode 325 and the second diaphragm 326. ) is installed.
 次亜塩素酸水生成部303aでは、第二陽電極側スペーサ327と第二陰電極側スペーサ328が直接接触して、第二陽電極324と第二陰電極325の間の陰陽電極間スペーサとして機能する。 In the hypochlorous acid water generating part 303a, the second positive electrode side spacer 327 and the second negative electrode side spacer 328 are in direct contact to act as a negative electrode spacer between the second positive electrode 324 and the second negative electrode 325. Function.
 次亜塩素酸水生成部303aは、第二陽電極324と第二陰電極325の間に、第二陽電極側スペーサ327と第二陰電極側スペーサ328が介在する。次亜塩素酸水処理部303bは、第二陽電極324と第二陰電極325の間に、第二陽電極側スペーサ327と第二隔膜326と第二陰電極側スペーサ328が介在する。第二陽電極324と第二陰電極325は、略平行に配置されており、第二隔膜326の厚みを吸収するために、次亜塩素酸水処理部303bの第二陽電極側スペーサ327と第二陰電極側スペーサ328の厚みは、第二隔膜326の厚み分薄くなっている。第二隔膜326の厚み分を第二陽電極側スペーサ327及び第二陰電極側スペーサ328の厚みで吸収する手段として、第二陽電極側スペーサ327及び第二陰電極側スペーサ328の表面に配置されたパッキン部材を第二隔膜326の厚み以上にして設計し、パッキン部材をシリコン樹脂等変形して形状の吸収性のある材料にすることで、第二陽電極側スペーサ327及び第二陰電極側スペーサ328の両側から加圧して、第二隔膜326の厚みをパッキン部材で吸収しながら、パッキン部材の本来の目的である液漏れを防ぐことができる。 A second positive electrode side spacer 327 and a second negative electrode side spacer 328 are interposed between the second positive electrode 324 and the second negative electrode 325 in the hypochlorous acid water generating part 303a. In the hypochlorous acid water treatment part 303b, a second positive electrode side spacer 327, a second diaphragm 326 and a second negative electrode side spacer 328 are interposed between the second positive electrode 324 and the second negative electrode 325. As shown in FIG. The second positive electrode 324 and the second negative electrode 325 are arranged substantially parallel to each other. The thickness of the second cathode-side spacer 328 is reduced by the thickness of the second diaphragm 326 . Arranged on the surfaces of the second positive electrode side spacer 327 and the second negative electrode side spacer 328 as a means for absorbing the thickness of the second diaphragm 326 with the thickness of the second positive electrode side spacer 327 and the second negative electrode side spacer 328 The second positive electrode side spacer 327 and the second negative electrode side spacer 327 and the second negative electrode are formed by designing the packing member to have a thickness greater than that of the second diaphragm 326, and deforming the packing member with a material such as silicon resin that absorbs the shape. By applying pressure from both sides of the side spacer 328, the thickness of the second diaphragm 326 can be absorbed by the packing member, while preventing liquid leakage, which is the original purpose of the packing member.
 第二陽電極用パッキン329aは、第二陽電極324の外周に電極サイズをくりぬいた形状をしており、第二陽電極側スペーサ327と密着して外周方向に、第二陽電極側流路335内の溶液(後述する第二陰陽電極供給溶液331a)が漏れないように、締め付け圧を加えて取り付けられている。第二陽電極用パッキン329aの部材としては、絶縁性のシリコンゴムを使用することができる。第二陽電極用パッキン329aは、第二陽電極324より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第二陽電極側スペーサ327と第二陽電極側槽筐体側面330aとを密着しながら、第二陽電極324の厚みで保持されることが望ましい。 The second positive electrode packing 329a has a shape in which the outer periphery of the second positive electrode 324 is hollowed out to the size of the electrode, and is in close contact with the second positive electrode side spacer 327 to form a second positive electrode side flow channel in the outer peripheral direction. It is attached with tightening pressure so that the solution in 335 (the second negative electrode supply solution 331a to be described later) does not leak. As a member of the second positive electrode packing 329a, insulating silicon rubber can be used. The second positive electrode packing 329a is thicker than the second positive electrode 324, and is crushed by being pressed by the tightening pressure, thereby connecting the second positive electrode side spacer 327 and the second positive electrode side tank housing side surface 330a. It is desirable that the thickness of the second positive electrode 324 is retained while the electrodes are in close contact with each other.
 第二陰電極用パッキン329bは、第二陰電極325の外周に電極サイズをくりぬいた形状をしており、第二陰電極側スペーサ328と密着して外周方向に、第二陰電極側流路336内の溶液(後述する第二陰陽電極供給溶液331a)が漏れないように、締め付け圧を加えて取り付けられている。第二陰電極用パッキン329bの部材としては、絶縁性のシリコンゴムを使用することができる。第二陰電極用パッキン329bは、第二陰電極325より厚みが厚くなっており、締め付け圧で押されることで押しつぶされて第二陰電極側スペーサ328と第二陰電極側槽筐体側面330bと密着しながら、第二陰電極325の厚みで保持されることが望ましい。 The second cathode packing 329b has a shape in which the outer circumference of the second cathode 325 is hollowed out to the size of the electrode. It is attached with tightening pressure so that the solution in 336 (the second negative electrode supply solution 331a to be described later) does not leak. As the member of the second cathode packing 329b, insulating silicone rubber can be used. The second cathode packing 329b is thicker than the second cathode 325, and is crushed by the tightening pressure so that the second cathode side spacer 328 and the second cathode side tank housing side surface 330b are crushed. It is desirable that the thickness of the second cathode 325 be maintained while adhering to the .
 第二陽電極側槽筐体側面330aは、第二陽電極324の外側に直接接触するように配置されている。第二陽電極側槽筐体側面330aは、第二陽電極324の外側への溶液の染み込みを抑制するために、第二陽電極側槽筐体側面330aの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第二陽電極324の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電気透析の効率向上にもつながる。 The second positive electrode side tank housing side surface 330a is arranged so as to be in direct contact with the outside of the second positive electrode 324 . The second positive electrode-side tank housing side surface 330a is provided with an inner surface of the second positive electrode-side tank housing side surface 330a to increase adhesion in order to prevent the solution from permeating to the outside of the second positive electrode 324. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second positive electrode 324, the efficiency of electrodialysis can be improved if the solution can be prevented from flowing out of the electrode.
 第二陰電極側槽筐体側面330bは、第二陰電極325の外側に直接接触するように配置されている。第二陰電極側槽筐体側面330bは、第二陰電極325の外側への溶液の染み込みを抑制するために、第二陰電極側槽筐体側面330bの内側表面には密着性を上げるためのパッキン(図示せず)が取り付けられてあり、締め付け圧を加えて電極外側への溶液の回り込みを抑制することが望ましい。なお、電極外側に溶液が回り込んだとしても、外部に漏れが発生することはない。第二陰電極325の内側表面にのみ白金を含む触媒を形成していることから、電極外側への溶液回り込みが抑制できれば電極透析の効率向上にもつながる。 The second cathode side tank housing side surface 330b is arranged so as to be in direct contact with the outside of the second cathode 325 . The second cathode-side tank housing side surface 330b is provided with an inner surface of the second cathode-side tank housing side surface 330b in order to prevent the solution from permeating to the outside of the second cathode 325, and to improve adhesion. packing (not shown) is attached, and it is desirable to apply tightening pressure to suppress the solution from flowing to the outside of the electrode. In addition, even if the solution flows around the outside of the electrode, leakage does not occur to the outside. Since the platinum-containing catalyst is formed only on the inner surface of the second negative electrode 325, the efficiency of electrode dialysis can be improved if the solution can be prevented from flowing to the outside of the electrode.
 第二陰陽電極溶液供給口331は、電気分解する塩水を第二陰陽電極間流路334内に流すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陽電極324の外側から塩水を供給するため、第二陰陽電極溶液供給口331は、第二陽電極324より外周の位置に加工されている。なお、第二陰陽電極溶液供給口331は、第二陽電極324及び第二陰電極325の両方の外側の位置にそれぞれ加工されているが、第二陽電極324または第二陰電極325の外周の位置の一方のみに加工されてもよい。 The second negative electrode solution supply port 331 is a connection port for flowing salt water to be electrolyzed into the second negative electrode inter-electrode channel 334, and is attached with a connector (not shown) to which a tube can be connected. In order to supply salt water from the outside of the second positive electrode 324 , the second negative electrode solution supply port 331 is processed at a position on the outer circumference of the second positive electrode 324 . The second positive electrode solution supply port 331 is processed at a position outside both the second positive electrode 324 and the second negative electrode 325. Only one of the positions of may be processed.
 第二陰陽電極供給溶液331aは、塩水生成ユニット320から供給される塩水である。詳しくは、水道水処理ユニット302にて陰イオン成分が分離低減された水道水溶液に、塩供給部322にて塩成分を加えて混合して生成された塩水である。第二陰陽電極供給溶液331aは、第二陰陽電極溶液供給口331から第二陰陽電極間流路334に導入される。 The second negative electrode supply solution 331 a is salt water supplied from the salt water generation unit 320 . More specifically, it is salt water produced by adding and mixing salt components in the salt supply unit 322 to the tap water solution from which the anion components have been separated and reduced in the tap water treatment unit 302 . A second negative electrode supply solution 331a is introduced from a second negative electrode solution supply port 331 into a second channel 334 between negative and positive electrodes.
 第二陽電極溶液抽出口332は、電気透析した第二陽電極抽出溶液332aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陽電極324の外側に第二陽電極抽出溶液332aを抽出するため、第二陽電極溶液抽出口332は、第二陽電極324より外周の位置に加工されている。 The second positive electrode solution extraction port 332 is a connection port for taking out the electrodialyzed second positive electrode extraction solution 332a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second positive electrode extracting solution 332 a outside the second positive electrode 324 , the second positive electrode solution extracting port 332 is processed at a position outer than the second positive electrode 324 .
 第二陽電極抽出溶液332aは、HClOが主成分の次亜塩素酸水である。第二陽電極抽出溶液332aは、第二陽電極側流路335から第二陽電極溶液抽出口332に導入される。 The second positive electrode extraction solution 332a is hypochlorous acid water containing HClO as the main component. The second positive electrode extracting solution 332 a is introduced into the second positive electrode solution extracting port 332 from the second positive electrode side channel 335 .
 より詳細には、第二陽電極抽出溶液332aは、第二陰陽電極供給溶液331aを第二陰陽電極間流路334にて電気分解した後、第二陽電極側流路335に流通させて、残留成分の要因となる陽イオン成分を分離希薄化した溶液である。陰イオン成分を除去した水道水から生成する塩水を、次亜塩素酸水生成部303aにおいて電気分解して生成した次亜塩素酸水を使用しているので、第二陽電極抽出溶液332aには、主に塩成分に起因するNaイオン、並びに、水道水溶液に含まれているCa2+イオン及びMg2+イオンが分離希薄化され、HClOの成分が主成分の次亜塩素酸水となる。このため、この次亜塩素酸水のpHは酸性を示す。 More specifically, the second positive electrode extraction solution 332a is obtained by electrolyzing the second negative electrode supply solution 331a in the second positive electrode channel 334, and then circulating it in the second positive electrode side channel 335. It is a solution that separates and dilutes the cationic components that cause residual components. Since hypochlorous acid water produced by electrolyzing salt water generated from tap water from which anion components have been removed in the hypochlorous acid water production unit 303a is used, the second positive electrode extraction solution 332a contains , Na + ions mainly due to salt components, and Ca 2+ ions and Mg 2+ ions contained in the tap water solution are separated and diluted to form hypochlorous acid water containing HClO as the main component. Therefore, the pH of this hypochlorous acid water is acidic.
 第二陰電極溶液抽出口333は、電気透析した第二陰電極抽出溶液333aを流路から取り出すための接続口であり、チューブを接続できるコネクタ(図示せず)が取り付けられている。第二陰電極325の外側に第二陰電極抽出溶液333aを抽出するため、第二陰電極溶液抽出口333は、第二陰電極325より外周の位置に加工されている。 The second cathode solution extraction port 333 is a connection port for taking out the electrodialyzed second cathode extraction solution 333a from the channel, and is equipped with a connector (not shown) to which a tube can be connected. In order to extract the second cathode extraction solution 333 a outside the second cathode 325 , the second cathode solution extraction port 333 is processed at a position outside the second cathode 325 .
 第二陰電極抽出溶液333aは、NaClO及びNaOH、さらに原水とする水道水の成分によってCa(OH)、Mg(OH)を含む次亜塩素酸水である。第二陰電極抽出溶液333aは、第二陰電極側流路336から第二陰電極溶液抽出口333に導出される。 The second cathode extraction solution 333a is hypochlorous acid water containing NaClO and NaOH, and Ca(OH) 2 and Mg(OH) 2 depending on the components of tap water used as raw water. The second cathode extraction solution 333 a is led out from the second cathode side channel 336 to the second cathode solution extraction port 333 .
 より詳細には、第二陰電極抽出溶液333aは、第二陰陽電極供給溶液331aを第二陰陽電極間流路334にて電気分解した後、第二陰電極側流路336に流通させて、残留成分の要因となる陽イオン成分が濃縮化された溶液である。次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水を使用しているので、第二陰電極抽出溶液333aには、陽イオンであるNaイオンが分離濃縮化され、NaOHとして生成されることで、NaOHとNaClOが主成分の次亜塩素酸水となる。さらに原水にCa2+イオン及びMg2+イオンを含む水道水を使用した場合には、Ca(OH)及びMg(OH)が合わせて生成される。このため、この次亜塩素酸水のpHはアルカリ性を示す。 More specifically, the second negative electrode extraction solution 333a is obtained by electrolyzing the second negative electrode supply solution 331a in the second negative electrode channel 334, and then circulating it in the second negative electrode side channel 336. It is a concentrated solution of cationic components that cause residual components. Since the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 303a is used, the Na + ions, which are cations, are separated and concentrated in the second negative electrode extraction solution 333a. By being generated as NaOH, it becomes hypochlorous acid water containing NaOH and NaClO as main components. Furthermore, when tap water containing Ca 2+ ions and Mg 2+ ions is used as raw water, Ca(OH) 2 and Mg(OH) 2 are produced together. Therefore, the pH of this hypochlorous acid water is alkaline.
 ここで、第二陰陽電極溶液供給口331は、鉛直方向の下方側に配置されることが望ましく、第二陽電極溶液抽出口332及び第二陰電極溶液抽出口333は、鉛直方向の上方側に配置されることが望ましい。流路内の電気透析反応及び電気分解反応により、酸素ガス及び水素ガス等が発生する際に、抽出口が上方に配置されてある方がガスをより効率的に溶液とともに排出することができる。 Here, the second negative electrode solution supply port 331 is preferably arranged on the lower side in the vertical direction, and the second positive electrode solution extraction port 332 and the second negative electrode solution extraction port 333 are preferably arranged on the upper side in the vertical direction. should be placed in When oxygen gas, hydrogen gas, and the like are generated by the electrodialysis reaction and the electrolysis reaction in the flow path, the gas can be more efficiently discharged together with the solution if the extraction port is arranged above.
 第二陰陽電極間流路334は、第二陽電極324と第二陽電極側スペーサ327と第二陰電極側スペーサ328と第二陰電極325とによって囲まれた領域に形成される流路であり、いわゆる無隔膜電解流路である。第二陰陽電極間流路334は、第二陽電極側スペーサ327の第二陽電極側流路孔335aと第二陰電極側スペーサ328の第二陰電極側流路孔336aが重ね合わされた構造によって蛇行して構成されている。より詳細には、第二陰陽電極間流路334は、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気分解を行う距離を稼いでいる。さらに第二陰陽電極間流路334の流路幅を小さくすることで距離が長くなり、電気分解時間を長くすることができる。第二陰陽電極間流路334において液の逆流を低減するため、第二陰陽電極間流路334が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。第二陰陽電極間流路334は、第二陽電極側流路335及び第二陰電極側流路336に接続されており、内部に第二陰陽電極供給溶液331aが流通している。電気分解量は、印加される電圧電流及び流路内の流速によって制御される。流速は、第二陽電極溶液抽出口332の後段に第二陽電極側供給ポンプ338を設置し、第二陰電極溶液抽出口333の後段に第二陰電極側供給ポンプ339を設置して制御している。各供給ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。それぞれ一定流量で溶液を流すことで、流路内で電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The second cathode-positive electrode channel 334 is a channel formed in a region surrounded by the second positive electrode 324 , the second positive electrode-side spacer 327 , the second negative electrode-side spacer 328 , and the second negative electrode 325 . It is a so-called non-diaphragm electrolysis flow path. The second anode-positive electrode channel 334 has a structure in which the second positive electrode-side channel hole 335a of the second positive electrode-side spacer 327 and the second negative electrode-side channel hole 336a of the second negative electrode-side spacer 328 are overlapped. It is composed by meandering. More specifically, the second channel between positive and negative electrodes 334 reciprocates in the horizontal direction, and the number of reciprocations in the horizontal direction increases the distance for electrolysis until the solution reaches from the bottom to the top. Furthermore, by reducing the channel width of the second cathode-positive electrode channel 334, the distance becomes longer, and the electrolysis time can be lengthened. In order to reduce backflow of the liquid in the second channel 334 between the negative and positive electrodes, it is desirable that the second channel 334 between the negative and positive electrodes has a structure from bottom to top in one direction other than reciprocating in the horizontal direction. The second cathode-positive electrode channel 334 is connected to a second positive electrode-side channel 335 and a second negative electrode-side channel 336, and a second cathode-positive electrode supply solution 331a flows therein. The amount of electrolysis is controlled by the applied voltage current and flow velocity in the channel. The flow rate is controlled by installing a second positive electrode side supply pump 338 after the second positive electrode solution extraction port 332 and installing a second negative electrode side supply pump 339 after the second negative electrode solution extraction port 333 . are doing. Each supply pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing each solution at a constant flow rate, it is possible to control the time for electrolysis in the channel to be constant, so that the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 第二陰陽電極間流路334内では、電気分解された次亜塩素酸水は流通過程で混合されるものの、第二陽電極324近傍には塩水の陰イオン成分であるClイオンが多く分布し、第二陰電極325近傍には塩水の陽イオン成分であるNaイオンが多く分布するような濃度勾配を持って流れている。そのため、一対の第二陰陽電極間で電気分解を行うと、第二陽電極324近傍には酸性に寄った溶液が流れ、第二陰電極325近傍にはアルカリ性に寄った溶液が流れることになる。そのため、酸性及びアルカリ性に寄った次亜塩素酸水が、第二陽電極側流路335及び第二陰電極側流路336にそれぞれ流通される。具体的には、第二陽電極側流路335にはHCl及びHClOを多く含む酸性の次亜塩素酸水が流通され、第二陰電極側流路336にはNaOHを多く含むアルカリ性の次亜塩素酸水が抽出される。 Although the electrolyzed hypochlorous acid water is mixed in the flow process in the second anode-positive electrode passage 334, a large amount of Cl ions, which are the anionic component of the salt water, are distributed near the second anode 324. However, in the vicinity of the second negative electrode 325, the salt water flows with a concentration gradient such that Na + ions, which are cationic components of salt water, are distributed in large numbers. Therefore, when electrolysis is performed between a pair of second negative and positive electrodes, an acidic solution flows in the vicinity of the second positive electrode 324 and an alkaline solution flows in the vicinity of the second negative electrode 325. . Therefore, the hypochlorous acid water, which is more acidic and more alkaline, flows through the second positive electrode-side channel 335 and the second negative electrode-side channel 336, respectively. Specifically, acidic hypochlorous acid water containing a large amount of HCl and HClO is circulated in the second positive electrode side channel 335, and alkaline hypochlorous acid water containing a large amount of NaOH is circulated in the second negative electrode side channel 336. Chlorate water is extracted.
 第二陽電極側流路335は、第二陽電極324と第二陽電極側スペーサ327と第二隔膜326とによって囲まれた領域で形成される流路である。第二陽電極側流路335は、第二陽電極側スペーサ327の第二陽電極側流路孔335aによって蛇行して構成されている。より詳細には、第二陽電極側流路335は、水平方向に往復し下から上に陽極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第二陽電極側流路335の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。第二陽電極側流路335において液の逆流を低減するため、第二陽電極側流路335が水平方向に往復する以外は一方向に下から上に向かう構造とすることが望ましい。第二陽電極側流路335は、その一方が第二陰陽電極間流路334に接続し、他方には第二陽電極溶液抽出口332が設けられており、内部に次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水が流通している。 The second positive electrode side channel 335 is a channel formed by the area surrounded by the second positive electrode 324 , the second positive electrode side spacer 327 and the second diaphragm 326 . The second positive electrode side channel 335 is formed by meandering second positive electrode side channel holes 335 a of the second positive electrode side spacer 327 . More specifically, the second positive electrode-side channel 335 reciprocates in the horizontal direction, and the number of horizontal reciprocations until the anode-side solution reaches from the bottom to the top increases the distance for electrodialysis. Furthermore, by reducing the channel width of the second positive electrode side channel 335, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the second positive electrode-side channel 335, it is desirable that the second positive electrode-side channel 335 has a structure in which the second positive electrode-side channel 335 goes from bottom to top in one direction other than reciprocating in the horizontal direction. One of the second positive electrode-side channels 335 is connected to the second channel 334 between negative and positive electrodes, and the other is provided with a second positive electrode solution extraction port 332, and hypochlorous acid water is generated inside. Hypochlorous acid water generated by electrolyzing salt water is distributed in the section 303a.
 第二陰電極側流路336は、第二陰電極325と第二陰電極側スペーサ328と第二隔膜326とによって囲まれた領域で形成される流路である。第二陰電極側流路336は、第二陰電極側スペーサ328の第二陰電極側流路孔336aによって蛇行して構成されている。より詳細には、第二陰電極側流路336は、水平方向に往復し下から上に陰極側溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第二陰電極側流路336の流路幅を小さくすることで距離が長くなり、電気透析時間を長くすることができる。第二陰電極側流路336において液の逆流を低減するため、第二陰電極側流路336が水平方向に往復する以外は一方向に下から上に流れる構造とすることが望ましい。第二陰電極側流路336は、その一方が第二陰陽電極間流路334に接続し、他方には第二陰電極溶液抽出口333が設けられており、内部に次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水が流通している。 The second cathode-side channel 336 is a channel formed by the area surrounded by the second cathode 325 , the second cathode-side spacer 328 and the second diaphragm 326 . The second cathode-side channel 336 is formed by meandering second cathode-side channel holes 336 a of the second cathode-side spacer 328 . More specifically, the second cathode-side channel 336 reciprocates in the horizontal direction, and the distance for electrodialysis is obtained by the number of horizontal reciprocations until the cathode-side solution reaches from the bottom to the top. Furthermore, by reducing the flow path width of the second cathode side flow path 336, the distance becomes longer, and the electrodialysis time can be lengthened. In order to reduce backflow of the liquid in the second cathode-side channel 336, it is desirable that the second cathode-side channel 336 has a structure in which liquid flows in one direction from bottom to top except for reciprocation in the horizontal direction. One side of the second negative electrode side channel 336 is connected to the second channel 334 between negative and positive electrodes, and the other side is provided with a second negative electrode solution extraction port 333, and hypochlorous acid water is generated inside. Hypochlorous acid water generated by electrolyzing salt water is distributed in the section 303a.
 第二陽電極側流路335及び第二陰電極側流路336は、第二隔膜326を挟んで対称な形状で対向している。つまり、第二陽電極側流路335及び第二陰電極側流路336は、第二隔膜326を挟んで互いに対向する蛇行形状で構成されている。このようにして、第二陽電極側流路335と第二陰電極側流路336とは、いわゆる有隔膜電解流路(以下、第二有隔膜電解流路ともいう)を構成している。そして、第二陽電極側流路335内を流通する次亜塩素酸水に含まれるNaイオン、さらには水道水に含まれているCa2+イオン及びMg2+イオン等が第二陰電極側流路336側に移動する。イオン成分の移動量は、印加される電圧電流及び流路内の流速によって制御される。流速は、第二陽電極溶液抽出口332の後段に第二陽電極側供給ポンプ338を設置し、第二陰電極溶液抽出口333の後段に第二陰電極側供給ポンプ339を設置して制御している。各ポンプは、一定流量で制御可能な方式が望ましく、例えばチューブポンプを使用することができる。それぞれ一定流量で溶液を流すことで、流路内で電気透析及び電気分解する時間を一定に制御できるため、抽出する次亜塩素酸水の濃度を安定的に制御することができる。 The second positive electrode side channel 335 and the second negative electrode side channel 336 face each other in a symmetrical shape with the second diaphragm 326 interposed therebetween. In other words, the second positive electrode-side channel 335 and the second negative electrode-side channel 336 are formed in meandering shapes facing each other with the second diaphragm 326 interposed therebetween. In this manner, the second positive electrode-side flow channel 335 and the second negative electrode-side flow channel 336 constitute a so-called diaphragm-containing electrolysis flow channel (hereinafter also referred to as a second diaphragm-containing electrolysis flow channel). Then, the Na + ions contained in the hypochlorous acid water flowing through the second positive electrode side channel 335, and the Ca 2+ ions and Mg 2+ ions contained in the tap water flow into the second negative electrode side flow. Move to the road 336 side. The amount of ionic component movement is controlled by the applied voltage and current and the flow velocity in the channel. The flow rate is controlled by installing a second positive electrode side supply pump 338 after the second positive electrode solution extraction port 332 and installing a second negative electrode side supply pump 339 after the second negative electrode solution extraction port 333 . are doing. Each pump is desirably of a system that can be controlled at a constant flow rate, and for example, a tube pump can be used. By flowing the solution at a constant flow rate, the time for electrodialysis and electrolysis in the flow path can be controlled constantly, so the concentration of the hypochlorous acid water to be extracted can be stably controlled.
 次亜塩素酸水生成ユニット303では、無隔膜電解流路を構成する第二陰陽電極間流路334と、これに続く有隔膜電解流路を構成する第二陽電極側流路335及び第二陰電極側流路336とによって、次亜塩素酸水生成ユニット303としての蛇行状の電解流路をワンパス式に構成している。つまり、蛇行状の電解流路において、第二陰陽電極間流路334が電解流路の前段を構成し、第二陽電極側流路335及び第二陰電極側流路336が電解流路の後段を構成している。 In the hypochlorous acid water generation unit 303, a second cathode-positive electrode channel 334 constituting a non-diaphragm electrolysis channel, followed by a second positive electrode side channel 335 constituting a diaphragm electrolysis channel and a second Together with the cathode-side channel 336, the meandering electrolysis channel as the hypochlorous acid water generating unit 303 is configured in a one-pass manner. That is, in the meandering electrolytic flow path, the second cathode-positive electrode flow path 334 constitutes the front stage of the electrolytic flow path, and the second positive electrode-side flow path 335 and the second negative electrode-side flow path 336 constitute the electrolytic flow path. It constitutes the rear stage.
 電気分解・電気透析電源337は、一対の第二陰陽電極間に通電する直流電源である。より詳細には、電気分解・電気透析電源337は、第二陽電極324及び第二陰電極325と接続され、第二陽電極324及び第二陰電極325に電流及び電圧を印加することができる直流電源である。電気分解・電気透析電源337は、一定の電流となるように定電流制御の電源として使用してもよいし、一定の電圧となるように定電圧制御の電源として使用してもよい。電気分解・電気透析電源337は、次亜塩素酸水生成部303a及び次亜塩素酸水処理部303bにおける共通の第二陽電極324及び第二陰電極325に電流及び電圧を印加する。つまり、電気分解・電気透析電源337は、次亜塩素酸水生成部303aにおいて電気分解を生じされる電極の電源として機能し、次亜塩素酸水処理部303bにおいて電気透析を生じさせる電極の電源として機能する。なお、電気分解・電気透析電源337は、スケール蓄積の低減のため、例えば、次亜塩素酸水生成ユニット303への次亜塩素酸水の通水ごとに、第二陽電極324と第二陰電極325の電位を入れ替えて転極し、付着したスケールを溶解させるように制御してもよい。 The electrolysis/electrodialysis power supply 337 is a DC power supply that energizes between the pair of second positive and negative electrodes. More specifically, the electrolysis/electrodialysis power supply 337 is connected with the second positive electrode 324 and the second negative electrode 325, and can apply current and voltage to the second positive electrode 324 and the second negative electrode 325. DC power supply. The electrolysis/electrodialysis power supply 337 may be used as a constant-current controlled power supply to maintain a constant current, or may be used as a constant-voltage controlled power supply to generate a constant voltage. The electrolysis/electrodialysis power supply 337 applies current and voltage to the second positive electrode 324 and the second negative electrode 325 common to the hypochlorous acid water generating section 303a and the hypochlorous acid water processing section 303b. In other words, the electrolysis/electrodialysis power supply 337 functions as a power supply for the electrodes that cause electrolysis in the hypochlorous acid water generating unit 303a, and a power supply for the electrodes that causes electrodialysis in the hypochlorous acid water processing unit 303b. function as In order to reduce scale accumulation, the electrolysis/electrodialysis power supply 337, for example, each time the hypochlorous acid water is supplied to the hypochlorous acid water generation unit 303, the second positive electrode 324 and the second negative electrode The potential of the electrode 325 may be switched to reverse the polarity and control may be performed to dissolve the adhering scale.
 第二陽電極側供給ポンプ338は、第二陽電極抽出溶液332aを抽出する流れを生じさせるポンプである。より詳細には、第二陽電極側供給ポンプ338は、第二陽電極溶液抽出口332の後段に設置される。そして、第二陽電極側供給ポンプ338は、第二陰陽電極溶液供給口331、第二陰陽電極間流路334、第二陽電極側流路335、及び第二陽電極溶液抽出口332の順に流通する各溶液(第二陰陽電極供給溶液331a、第二陽電極抽出溶液332a)の流れを生じさせる。この際、第二陽電極側供給ポンプ338は、次亜塩素酸水生成部303aを流れる溶液の流速を一体に制御すると同時に、次亜塩素酸水処理部303bを流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The second positive electrode side supply pump 338 is a pump that generates a flow for extracting the second positive electrode extraction solution 332a. More specifically, the second positive electrode side supply pump 338 is installed after the second positive electrode solution extraction port 332 . Then, the second positive electrode side supply pump 338 supplies the second negative electrode solution supply port 331, the second positive electrode channel 334, the second positive electrode side channel 335, and the second positive electrode solution extraction port 332 in this order. A flow of each solution (second cathode electrode supply solution 331a, second anode extraction solution 332a) is caused to flow. At this time, the second positive electrode side supply pump 338 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 303a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 303b to be constant. do. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 第二陰電極側供給ポンプ339は、第二陰電極抽出溶液333aを抽出する流れを生じさせるポンプである。より詳細には、第二陰電極側供給ポンプ339は、第二陰電極溶液抽出口333の後段に設置される。そして、第二陰電極側供給ポンプ339は、第二陰陽電極溶液供給口331、第二陰陽電極間流路334、第二陰電極側流路336、及び第二陰電極溶液抽出口333の順に流通する各溶液(第二陰陽電極供給溶液331a、第二陰電極抽出溶液333a)の流れを生じさせる。この際、第二陰電極側供給ポンプ339は、次亜塩素酸水生成部303aを流れる溶液の流速を一体に制御すると同時に、次亜塩素酸水処理部303bを流れる溶液の流速を一定に制御する。一定の流速で送液が可能なポンプとして、例えばチューブポンプあるいはダイヤフラムポンプなどが挙げられる。 The second cathode side supply pump 339 is a pump that generates a flow for extracting the second cathode extraction solution 333a. More specifically, the second cathode side supply pump 339 is installed after the second cathode solution extraction port 333 . Then, the second negative electrode side supply pump 339 supplies the second negative electrode solution supply port 331, the second negative electrode channel 334, the second negative electrode side channel 336, and the second negative electrode solution extraction port 333 in this order. A flow of each solution (second cathodic electrode supply solution 331a, second cathodic electrode extraction solution 333a) is caused to flow. At this time, the second cathode side supply pump 339 integrally controls the flow rate of the solution flowing through the hypochlorous acid water generating section 303a, and at the same time, controls the flow rate of the solution flowing through the hypochlorous acid water treatment section 303b to be constant. do. Examples of pumps capable of delivering liquid at a constant flow rate include tube pumps and diaphragm pumps.
 第二陰陽電極間流路334の流速は、第二陽電極側供給ポンプ338と第二陰電極側供給ポンプ339との合計量として制御される。 The flow rate of the second cathode-positive electrode flow path 334 is controlled as the total amount of the second anode-side supply pump 338 and the second cathode-side supply pump 339 .
 以上のように、次亜塩素酸水供給装置301は、各部材によって構成される。 As described above, the hypochlorous acid water supply device 301 is composed of each member.
 次に、図30及び図31を参照して、水道水処理ユニット302での処理動作について説明する。図31は、水道水処理ユニットの水平方向の断面イメージ図である。 Next, the processing operation in the tap water processing unit 302 will be described with reference to FIGS. 30 and 31. FIG. FIG. 31 is a horizontal sectional image diagram of the tap water treatment unit.
 図30及び図31に示すように、水道水処理ユニット302では、第一陰電極溶液供給口311を通って水道水である第一陰電極供給溶液311aが第一陰電極側流路315に連続的に供給され、第一陽電極溶液供給口313を通って水道水である第一陽電極供給溶液313aが第一陽電極側流路316に連続的に供給される。そして、第一陰電極溶液供給口311から供給された第一陰電極供給溶液311aは、蛇行して形成された第一陰電極側流路315を流通していき、第一陽電極溶液供給口313から供給された第一陽電極供給溶液313aは、同じく蛇行して形成された第一陽電極側流路316を流通していく。この際、第一陰電極供給溶液311a及び第一陽電極供給溶液313aは、第一隔膜306を挟んで対向し、同じ方向に流通されて第一陰電極側流路315及び第一陽電極側流路316をそれぞれ流通していくと同時に、両端の第一陰電極304及び第一陽電極305に電圧が印加される。電圧が印加されると、第一陰電極304側には陽イオン成分が引き付けられ、第一陽電極305側には陰イオン成分(水道水に含まれるClイオン、SO 2-イオン、及びNO イオン等)が引き付けられる。第一隔膜306は、陰イオン成分のみを透過可能な膜で構成されているため、第一陰電極側流路315を流通する第一陰電極供給溶液311aに含まれる陰イオン成分(Clイオン、SO 2-イオン、及びNO イオン等)は、第一隔膜306を透過して、第一陽電極側流路316の第一陽電極供給溶液313aを通って第一陽電極305側に陰イオン成分が引き付けられる。反対に、第一陽電極側流路316を流通する陽イオン成分は、第一隔膜306を透過できないため、第一陰電極側流路315に含まれる陽イオン成分のみが第一陰電極304に引き付けられる。これを繰り返すことにより、第一陰電極側流路315を流通する第一陰電極供給溶液311aに含まれる陰イオン成分が、第一陽電極側流路316を流通する第一陽電極供給溶液313aに移動して電気透析が進行し、第一陰電極側流路315を流通する第一陰電極供給溶液311aは、陰イオン成分が分離希薄化され、第一陽電極側流路316を流通する第一陽電極供給溶液313aは、陰イオン成分が濃縮化されて抽出される。その結果、第一陰電極溶液抽出口312から、第一陰電極抽出溶液312aとして、水道水に含まれる陰イオン成分(Clイオン、SO 2-イオン、及びNO イオン等)が分離希薄化された水道水溶液が抽出される。反対に、第一陽電極溶液抽出口314から、第一陽電極抽出溶液314aとして、水道水に含まれる陰イオン成分が分離濃縮化された水道水溶液が抽出される。また、水道水中に含まれるClイオンの電気分解により、次亜塩素酸水が生成し含まれる。 As shown in FIGS. 30 and 31, in the tap water treatment unit 302, a first cathode supply solution 311a, which is tap water, passes through a first cathode solution supply port 311 and continues to the first cathode side channel 315. A first positive electrode supply solution 313 a , which is tap water, is continuously supplied to the first positive electrode side channel 316 through the first positive electrode solution supply port 313 . Then, the first cathode supply solution 311a supplied from the first cathode solution supply port 311 flows through the meandering first cathode side channel 315, and flows through the first cathode solution supply port. A first positive electrode supply solution 313a supplied from 313 flows through a first positive electrode side channel 316 which is also formed in a meandering manner. At this time, the first negative electrode supply solution 311a and the first positive electrode supply solution 313a face each other with the first diaphragm 306 interposed therebetween and flow in the same direction to Voltages are applied to the first negative electrode 304 and the first positive electrode 305 at both ends at the same time as they flow through the channel 316 . When a voltage is applied, the positive ion components are attracted to the first negative electrode 304 side, and the negative ion components (Cl ions, SO 4 2− ions, and NO 3 -ions, etc.) are attracted. Since the first diaphragm 306 is composed of a membrane that is permeable only to anion components, the anion component (Cl ion , SO 4 2− ions, NO 3 ions, etc.) permeate the first diaphragm 306, pass through the first positive electrode supply solution 313a in the first positive electrode side channel 316, and pass through the first positive electrode 305 side. will attract the anionic component. On the contrary, since the cationic component flowing through the first positive electrode side channel 316 cannot permeate the first diaphragm 306, only the cationic component contained in the first negative electrode side channel 315 is transferred to the first negative electrode 304. Attracted. By repeating this, the anion component contained in the first negative electrode supply solution 311a flowing through the first negative electrode side channel 315 is converted into the first positive electrode supply solution 313a flowing through the first positive electrode side channel 316. , electrodialysis progresses, and the first negative electrode supply solution 311a flowing through the first negative electrode-side channel 315 has anion components separated and diluted, and flows through the first positive electrode-side channel 316. The first positive electrode supply solution 313a is extracted by concentrating anion components. As a result, anion components (Cl ions, SO 4 2− ions, NO 3 ions, etc.) contained in the tap water are separated from the first cathode solution extraction port 312 as the first cathode extraction solution 312a. A diluted tap water solution is extracted. On the contrary, from the first positive electrode solution extraction port 314, the tap water solution in which the anion component contained in the tap water is separated and concentrated is extracted as the first positive electrode extraction solution 314a. In addition, hypochlorous acid water is generated and contained by electrolysis of Cl.sup.- ions contained in tap water.
 水道水処理ユニット302での処理動作では、第一陰電極側流路315及び第一陽電極側流路316にて電気透析を行う時間を長くすることで、陰イオン成分の移動量をより多くして、第一陰電極抽出溶液312aの水道水に含まれていた陰イオン成分をより低減することができる。電気透析を行う時間を長くするためには、第一陰電極側流路315及び第一陽電極側流路316の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第一陰電極側流路315及び第一陽電極側流路316の断面積を小さくすることで距離が長くなり、電気透析時間を長くすることができる。 In the treatment operation in the tap water treatment unit 302, the amount of movement of anion components is increased by lengthening the electrodialysis time in the first negative electrode side channel 315 and the first positive electrode side channel 316. As a result, the anion component contained in the tap water of the first cathode extraction solution 312a can be further reduced. In order to lengthen the electrodialysis time, it is necessary to lengthen the distance between the first negative electrode side channel 315 and the first positive electrode side channel 316. It is formed in a meandering manner so that it rises one by one, and the distance for electrodialysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional areas of the first negative electrode side channel 315 and the first positive electrode side channel 316, the distance becomes longer, and the electrodialysis time can be lengthened.
 第一陰電極側流路315及び第一陽電極側流路316を通る各溶液の流速は、同じとなるように各ポンプ(第一陰電極側供給ポンプ318及び第一陽電極側供給ポンプ319)を制御しているが、互いに異なるようにしてもよい。流速が異なる場合には、抽出される各溶液の濃度に影響する。例えば、第一陰電極側流路315の流速を相対的に速くして、第一陽電極側流路316の流速を相対的に遅くした場合には、第一陰電極側流路315及び第一陽電極側流路316の流速を同じにした場合に比べて、第一陽電極側流路316から抽出した第一陽電極抽出溶液314aは少量かつ濃度が濃い水道水溶液となる。これにより、第一陽電極抽出溶液314aを排液する場合には、第一陽電極側流路316の流速を遅くすることが望ましい。 Each pump (first negative electrode side supply pump 318 and first positive electrode side supply pump 319 ), but may be different from each other. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity in the first cathode-side channel 315 is relatively increased and the flow velocity in the first positive electrode-side channel 316 is relatively decreased, the first cathode-side channel 315 and the second The first positive electrode extraction solution 314a extracted from the first positive electrode side channel 316 is a tap water solution with a small amount and high concentration compared to the case where the flow rate of the one positive electrode side channel 316 is the same. Therefore, when draining the first positive electrode extraction solution 314a, it is desirable to reduce the flow velocity of the first positive electrode side channel 316. FIG.
 次に、図34及び図35を参照して、次亜塩素酸水生成ユニット303の次亜塩素酸水生成部303aでの処理動作について説明する。図35は、次亜塩素酸水生成ユニット303の次亜塩素酸水生成部303aの水平方向の断面イメージ図である。 Next, with reference to FIGS. 34 and 35, the processing operation of the hypochlorous acid water generation section 303a of the hypochlorous acid water generation unit 303 will be described. FIG. 35 is a horizontal sectional image diagram of the hypochlorous acid water generating part 303a of the hypochlorous acid water generating unit 303. FIG.
 図34及び図35に示すように、次亜塩素酸水生成ユニット303の次亜塩素酸水生成部303aでは、第二陰陽電極溶液供給口331を通って塩水である第二陰陽電極供給溶液331aが第二陰陽電極間流路334に連続的に供給される。そして、第二陰陽電極溶液供給口331から供給された第二陰陽電極供給溶液331aは、蛇行して形成された第二陰陽電極間流路334を流通していく。この際、第二陰陽電極供給溶液331aは、第二陰陽電極間流路334を流通していくと同時に、両端の第二陽電極324及び第二陰電極325に電圧が印加される。電圧が印加されると、第二陽電極324側には陰イオン成分(Clイオン)が引き付けられ、第二陰電極325側には陽イオン成分(Naイオン、並びに、水道水に含まれるCa2+イオン及びMg2+イオン等)が引き付けられ、電気分解により第二陽電極324側にはHCl及びHClOが生成され、第二陰電極325側にはNaOHが生成される。さらにHClOとNaOHとが反応することで、NaClOが生成される。これを繰り返すことにより、NaClOが主成分となり、HClO及びNaOH及び残留したNaClが含まれる次亜塩素酸水が生成される。また、供給される水道水溶液にCa2+イオン及びMg2+イオンが含まれるので、NaOHに加えてCa(OH)及びMg(OH)も合わせて生成されることになる。 As shown in FIGS. 34 and 35, in the hypochlorous acid water generating section 303a of the hypochlorous acid water generating unit 303, a second negative electrode supply solution 331a, which is salt water, is passed through a second negative electrode solution supply port 331 to supply a second negative electrode supply solution 331a. is continuously supplied to the second cathode-positive electrode channel 334 . Then, the second negative electrode supply solution 331a supplied from the second negative electrode solution supply port 331 flows through the meandering second channel 334 between the positive and negative electrodes. At this time, the supply solution 331a for the second negative and positive electrodes flows through the channel 334 between the second negative and positive electrodes, and at the same time, a voltage is applied to the second positive electrode 324 and the second negative electrode 325 at both ends. When a voltage is applied, anion components (Cl ions) are attracted to the second positive electrode 324 side, and positive ion components (Na + ions) are attracted to the second negative electrode 325 side, as well as Ca 2+ ions and Mg 2+ ions, etc.) are attracted, and electrolysis produces HCl and HClO on the second positive electrode 324 side and NaOH on the second negative electrode 325 side. Further, HClO and NaOH react to generate NaClO. By repeating this, hypochlorous acid water containing NaClO as the main component and containing HClO, NaOH, and residual NaCl is produced. In addition, since the supplied tap water solution contains Ca 2+ ions and Mg 2+ ions, Ca(OH) 2 and Mg(OH) 2 are also produced in addition to NaOH.
 次亜塩素酸水生成部303aでの処理動作では、第二陰陽電極間流路334にて電気分解を行う時間を長くすることで、NaClの電気分解量を多くして、生成する次亜塩素酸水の中に残留するNaCl(塩水)を低減することができる。電気分解を行う時間を長くするためには、第二陰陽電極間流路334の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気分解を行う距離を稼いでいる。さらに第二陰陽電極間流路334の断面積を小さくすることでも距離が長くなり、電気分解時間を長くすることができる。 In the processing operation in the hypochlorous acid water generating unit 303a, the amount of electrolysis of NaCl is increased by increasing the time of electrolysis in the second channel 334 between the negative and positive electrodes, and the generated hypochlorous acid NaCl (salt water) remaining in acid water can be reduced. In order to lengthen the electrolysis time, it is necessary to lengthen the distance of the second channel 334 between the negative and positive electrodes. It is formed in a meandering manner, and the distance for electrolysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional area of the second cathode-positive electrode channel 334, the distance can be lengthened, and the electrolysis time can be lengthened.
 次に、図34及び図36を参照して、次亜塩素酸水生成ユニット303の次亜塩素酸水処理部303bでの処理動作について説明する。図36は、次亜塩素酸水生成ユニット303の次亜塩素酸水処理部303bの水平方向の断面イメージ図である。 Next, with reference to FIGS. 34 and 36, the processing operation of the hypochlorous acid water processing section 303b of the hypochlorous acid water generation unit 303 will be described. FIG. 36 is a horizontal cross-sectional image diagram of the hypochlorous acid water treatment section 303b of the hypochlorous acid water generation unit 303. As shown in FIG.
 図34及び図36に示すように、次亜塩素酸水生成ユニット303の次亜塩素酸水処理部303bでは、次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水が第二陽電極側流路335に連続的に供給され、同様に次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水が第二陰電極側流路336に連続的に供給される。そして、次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水は、蛇行して形成された第二陽電極側流路335を流通していき、同じく蛇行して形成された第二陰電極側流路336を流通していく。この際、次亜塩素酸水生成部303aにおいて塩水を電気分解して生成した次亜塩素酸水は、同じ方向に流通されて第二陽電極側流路335及び第二陰電極側流路336をそれぞれ流通していくと同時に、両端の第二陽電極324及び第二陰電極325に電圧が印加される。電圧が印加されると、第二陽電極324側には陰イオン成分が引き付けられ、第二陰電極325側には陽イオン成分(Naイオン、並びに、水道水溶液に含まれるCa2+イオン及びMg2+イオン等)が引き付けられる。第二隔膜326は、陽イオン成分のみを透過可能な膜で構成されているため、第二陽電極側流路335を流通する次亜塩素酸水に含まれる陽イオン成分(Naイオン、並びに、水道水溶液に含まれるCa2+イオン及びMg2+イオン等)は、第二隔膜326を透過して、第二陰電極側流路336の次亜塩素酸水を通って第二陰電極325側に陽イオン成分が引き付けられる。反対に、第二陰電極側流路336を流通する陰イオン成分は、第二隔膜326を透過できないため、第二陽電極側流路335に含まれる陰イオン成分のみが第二陽電極324に引き付けられる。これを繰り返すことにより、第二陽電極側流路335を流通する次亜塩素酸水に含まれる陽イオン成分が、第二陰電極側流路336を流通する次亜塩素酸水に移動して電気透析が進行し、第二陽電極側流路335を流通する次亜塩素酸水は、陽イオン成分が分離希薄化され、第二陰電極側流路336を流通する次亜塩素酸水は、陽イオン成分が濃縮化されて抽出される。その結果、第二陽電極溶液抽出口332から、第二陽電極抽出溶液332aとして、残留成分となる陽イオンを含む成分が分離希薄化してHClO成分が主成分となった次亜塩素酸水が抽出される。反対に、第二陰電極溶液抽出口333から、第二陰電極抽出溶液333aとして、残留成分を構成する陽イオンが分離濃縮化された成分を含む溶液(次亜塩素酸水)が抽出される。 As shown in FIGS. 34 and 36, in the hypochlorous acid water treatment unit 303b of the hypochlorous acid water generation unit 303, hypochlorous acid produced by electrolyzing salt water in the hypochlorous acid water generation unit 303a is Water is continuously supplied to the second positive electrode side channel 335, and hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generating unit 303a is supplied to the second negative electrode side channel 336. continuously supplied to Then, the hypochlorous acid water generated by electrolyzing salt water in the hypochlorous acid water generation unit 303a flows through the meandering second positive electrode-side channel 335, and similarly meanders. It flows through the formed second cathode side channel 336 . At this time, the hypochlorous acid water generated by electrolyzing the salt water in the hypochlorous acid water generation unit 303a is circulated in the same direction to form the second positive electrode side channel 335 and the second negative electrode side channel 336. , respectively, a voltage is applied to the second positive electrode 324 and the second negative electrode 325 at both ends. When a voltage is applied, anion components are attracted to the second positive electrode 324 side, and positive ion components (Na + ions, Ca 2+ ions and Mg 2+ ions, etc.) are attracted. Since the second diaphragm 326 is composed of a membrane that is permeable only to cationic components, the cationic components (Na + ions and , Ca 2+ ions and Mg 2+ ions contained in the tap water solution) permeate the second diaphragm 326, pass through the hypochlorous acid water in the second negative electrode side channel 336, and reach the second negative electrode 325 side. Cationic components are attracted. On the contrary, since the anion component flowing through the second negative electrode side channel 336 cannot permeate the second diaphragm 326, only the anion component contained in the second positive electrode side channel 335 reaches the second positive electrode 324. Attracted. By repeating this, the cation components contained in the hypochlorous acid water flowing through the second positive electrode-side channel 335 move to the hypochlorous acid water flowing through the second negative electrode-side channel 336. As the electrodialysis progresses, the hypochlorous acid water flowing through the second positive electrode-side channel 335 is separated and diluted with cation components, and the hypochlorous acid water flowing through the second negative electrode-side channel 336 is , the cationic components are concentrated and extracted. As a result, from the second positive electrode solution extraction port 332, as the second positive electrode extraction solution 332a, the components containing cations, which are the residual components, are separated and diluted, and hypochlorous acid water in which the HClO component is the main component is produced. extracted. On the contrary, from the second cathode solution extraction port 333, a solution (hypochlorous acid water) containing a component in which cations constituting residual components are separated and concentrated is extracted as a second cathode extraction solution 333a. .
 次亜塩素酸水処理部303bでの処理動作では、第二陽電極側流路335及び第二陰電極側流路336にて電気透析を行う時間を長くすることで、陽イオン成分の移動量をより多くして、第二陽電極抽出溶液332aのNaイオン、並びに、水道水溶液に含まれるCa2+イオン及びMg2+イオン等の陽イオンからなる残留成分をより低減することができる。電気透析を行う時間を長くするためには、第二陽電極側流路335及び第二陰電極側流路336の距離を長くすることが必要であり、そのためには水平方向に往復しながら一段ずつ上に上がっていくように、蛇行して形成しており、水平方向に往復し下から上に溶液が行きつくまでに水平方向の往復回数で電気透析を行う距離を稼いでいる。さらに第二陽電極側流路335及び第二陰電極側流路336の断面積を小さくすることで距離が長くなり、電気透析時間を長くすることができる。 In the processing operation in the hypochlorous acid water treatment unit 303b, the amount of movement of the cation components is can be increased to further reduce residual components consisting of Na + ions in the second positive electrode extraction solution 332a and cations such as Ca 2+ ions and Mg 2+ ions contained in the tap water solution. In order to lengthen the electrodialysis time, it is necessary to lengthen the distances of the second positive electrode side channel 335 and the second negative electrode side channel 336. It is formed in a meandering manner so that it rises one by one, and the distance for electrodialysis is earned by the number of horizontal reciprocations until the solution reaches from the bottom to the top. Furthermore, by reducing the cross-sectional areas of the second positive electrode side channel 335 and the second negative electrode side channel 336, the distance becomes longer, and the electrodialysis time can be lengthened.
 第二陽電極側流路335及び第二陰電極側流路336を通る各溶液の流速は、同じとなるように各ポンプを制御しているが、互いに異なるようにしてもよい。流速が異なる場合には、抽出される各溶液の濃度に影響する。例えば、第二陽電極側流路335の流速を相対的に速くして、第二陰電極側流路336の流速を相対的に遅くした場合には、第二陽電極側流路335及び第二陰電極側流路336の流速を同じにした場合に比べて、第二陰電極側流路336から抽出した第二陰電極抽出溶液333aは少量かつ濃度が濃い溶液となる。これにより、第二陰電極抽出溶液333aを排液する場合には、第二陰電極側流路336の流速を遅くすることが望ましい。 The pumps are controlled so that the flow rates of the solutions passing through the second positive electrode side channel 335 and the second negative electrode side channel 336 are the same, but they may be different from each other. Different flow rates affect the concentration of each solution extracted. For example, when the flow velocity in the second positive electrode side channel 335 is relatively increased and the flow velocity in the second negative electrode side channel 336 is relatively decreased, the second positive electrode side channel 335 and the second The second cathode extraction solution 333a extracted from the second cathode-side channel 336 is smaller and has a higher concentration than when the two-cathode-side channel 336 has the same flow rate. Therefore, when the second cathode extraction solution 333a is drained, it is desirable to slow down the flow velocity of the second cathode-side channel 336. As shown in FIG.
 次に、図37を参照して、実際に次亜塩素酸水供給装置301(水道水処理ユニット302及び次亜塩素酸水生成ユニット303)を流通する各溶液(水道水、塩水、及び各次亜塩素酸水)の特性(導電率、pH、及び有効塩素濃度)について説明する。図37は、次亜塩素酸水供給装置301を流通する次亜塩素酸水の特性評価を行う実験イメージ図である。なお、特性評価は、図37に示す各段階(水道水タンク340、塩水生成タンク321、次亜塩素酸水タンク341、及び排水側タンク323)における溶液(水道水、塩水、及び各次亜塩素酸水)について行った。 Next, referring to FIG. 37, each solution (tap water, salt water, and The characteristics (conductivity, pH, and effective chlorine concentration) of chlorous acid water) will be described. FIG. 37 is an experimental image diagram for evaluating characteristics of the hypochlorous acid water flowing through the hypochlorous acid water supply device 301. FIG. It should be noted that the characteristic evaluation was carried out in the solutions (tap water, salt water, and each hypochlorous acid water).
 実験評価では、水道水タンク340に貯留された水道水を、水道水処理ユニット302に供給して流通させ、第一陰電極抽出溶液312aを塩水生成タンク321に回収するとともに、第一陽電極抽出溶液314aを排水側タンク323に回収した。続いて、塩水生成タンク321に回収した第一陰電極抽出溶液312aに塩成分を添加した塩水を、次亜塩素酸水生成ユニット303に供給して流通させ、第二陽電極抽出溶液332aを次亜塩素酸水タンク341に回収するとともに、第二陰電極抽出溶液333aを排水側タンク323に回収した。この際、第二陰電極抽出溶液333aは、排水側タンク323に回収されていた第一陽電極抽出溶液314aと混合されるが、特性評価では、混合される前の第一陽電極抽出溶液314a及び第二陰電極抽出溶液333aについてもサンプリングしている。 In the experimental evaluation, the tap water stored in the tap water tank 340 was supplied to the tap water treatment unit 302 and circulated, the first negative electrode extraction solution 312a was collected in the salt water generation tank 321, and the first positive electrode extraction was performed. The solution 314a was collected in the drain side tank 323 . Subsequently, salt water obtained by adding a salt component to the first negative electrode extraction solution 312a recovered in the salt water generation tank 321 is supplied to the hypochlorous acid water generation unit 303 and circulated, and the second positive electrode extraction solution 332a is generated as follows. While recovering in the chlorous acid water tank 341, the second cathode extraction solution 333a was recovered in the drain side tank 323. At this time, the second negative electrode extraction solution 333a is mixed with the first positive electrode extraction solution 314a collected in the drain side tank 323. In the characteristic evaluation, the first positive electrode extraction solution 314a before mixing and the second cathode extraction solution 333a are also sampled.
 また、水道水処理ユニット302には、流路断面積8mm及び流路長675mmの第一陰電極側流路315及び第一陽電極側流路316を形成したものを用いた。また、次亜塩素酸水生成ユニット303の次亜塩素酸水生成部303aには、流路断面積24mm及び流路長360mmの第二陰陽電極間流路334を形成したものを用い、次亜塩素酸水処理部303bには、流路断面積24mm及び流路長320mmの第二陽電極側流路335及び第二陰電極側流路336を形成したものを用いた。また、第一陰電極側供給ポンプ318、第一陽電極側供給ポンプ319、第二陽電極側供給ポンプ338、及び第二陰電極側供給ポンプ339の流量条件としては、それぞれ11mL/min、0.9mL/min、4.4mL/min、及び0.9mL/minの流速で流通させた。そして、水道水タンク340、塩水生成タンク321、排水側タンク323、及び次亜塩素酸水タンク341に回収された各溶液(水道水、塩水、及び次亜塩素酸水)について、導電率、pH、及び有効塩素濃度の測定を行った。電気透析電源317及び電気分解・電気透析電源337には、ともにDC24Vを印加した。また、水道水処理ユニット302に供給した水道水(第一陰電極供給溶液311a及び第一陽電極供給溶液313a)は、実験評価で供給した水量「1.1L」、導電率「103μS/cm」、pH「7.0」、及び有効塩素濃度「検出限界以下」のものを使用した。塩水生成タンク321では、塩供給部322から濃い塩水(濃度0.5%の塩水)を5mL供給して、塩水生成タンク321に回収された第一陰電極抽出溶液312aと混合して次亜塩素酸水生成ユニット303に供給する塩水を生成した。 The tap water treatment unit 302 was formed with a first negative electrode side channel 315 and a first positive electrode side channel 316 having a channel cross-sectional area of 8 mm 2 and a channel length of 675 mm. In addition, the hypochlorous acid water generating part 303a of the hypochlorous acid water generating unit 303 is formed with a second cathode-positive electrode channel 334 having a channel cross-sectional area of 24 mm 2 and a channel length of 360 mm. As the chlorous acid water treatment part 303b, one having a second positive electrode side channel 335 and a second negative electrode side channel 336 with a channel cross-sectional area of 24 mm 2 and a channel length of 320 mm was used. The flow rate conditions of the first negative electrode side supply pump 318, the first positive electrode side supply pump 319, the second positive electrode side supply pump 338, and the second negative electrode side supply pump 339 are 11 mL/min and 0.5 mL/min, respectively. Flow rates of 0.9 mL/min, 4.4 mL/min, and 0.9 mL/min were applied. Then, the electrical conductivity, pH , and available chlorine concentration was measured. DC24V was applied to both the electrodialysis power supply 317 and the electrolysis/electrodialysis power supply 337 . The tap water (the first negative electrode supply solution 311a and the first positive electrode supply solution 313a) supplied to the tap water treatment unit 302 had a water volume of 1.1 L and a conductivity of 103 μS/cm in the experimental evaluation. , pH "7.0", and effective chlorine concentration "below detection limit". In the salt water generation tank 321, 5 mL of concentrated salt water (salt water with a concentration of 0.5%) is supplied from the salt supply unit 322 and mixed with the first cathode extraction solution 312a recovered in the salt water generation tank 321 to produce hypochlorous acid. Salt water to be supplied to the acid water generation unit 303 was generated.
 図38に各溶液の特性評価の結果をまとめる。図38は、次亜塩素酸水供給装置301を流通した次亜塩素酸水の特性を示す図である。 Fig. 38 summarizes the results of characterization of each solution. FIG. 38 is a diagram showing characteristics of the hypochlorous acid water that flows through the hypochlorous acid water supply device 301. FIG.
 図38に示すように、塩水生成タンク321に回収された第一陰電極抽出溶液312aに塩成分を加えた塩水は、水量「1.02L」、導電率「137μS/cm」、pH「10.2」、及び有効塩素濃度「検出限界以下」の溶液であり、溶液のpHはアルカリ性を示す。また、塩成分を供給しているため、導電率は水道水タンク340から供給した水道水よりも高くなっている。 As shown in FIG. 38, the salt water obtained by adding the salt component to the first cathode extraction solution 312a collected in the salt water generation tank 321 has a water volume of "1.02 L", an electrical conductivity of "137 μS/cm", and a pH of "10. 2”, and the available chlorine concentration is “below the detection limit”, and the pH of the solution is alkaline. Moreover, since the salt component is supplied, the electrical conductivity is higher than that of the tap water supplied from the tap water tank 340 .
 反対に、排水側タンク323に回収された第一陽電極抽出溶液314a(混合前)は、水量「0.08L」、導電率「1041μS/cm」、pH「2.5」、及び有効塩素濃度「137ppm」であり、溶液のpHは酸性を示す。pHが酸性を示すのは、第一陽電極抽出溶液314aに次亜塩素酸水が生成され、水道水中に含まれるClイオンが電気分解されて次亜塩素酸となっているためである。 On the contrary, the first positive electrode extraction solution 314a (before mixing) collected in the drain side tank 323 has a water volume of “0.08 L”, an electrical conductivity of “1041 μS/cm”, a pH of “2.5”, and an available chlorine concentration of "137 ppm", indicating that the pH of the solution is acidic. The reason why the pH is acidic is that hypochlorous acid water is generated in the first positive electrode extraction solution 314a, and Cl 2 − ions contained in the tap water are electrolyzed to become hypochlorous acid.
 次に、次亜塩素酸水タンク341に回収された第二陽電極抽出溶液332aは、水量「0.85L」、導電率「13μS/cm」、pH「4.5」、及び有効塩素濃度「29ppm」であり、導電率の低い、すなわち残留イオンが少ないHClO主体の次亜塩素酸水となっている。つまり、次亜塩素酸水生成ユニット303において、第二陽電極抽出溶液332aとして、酸性の次亜塩素酸水が生成されている。 Next, the second positive electrode extraction solution 332a collected in the hypochlorous acid water tank 341 has a water volume of “0.85 L”, an electrical conductivity of “13 μS/cm”, a pH of “4.5”, and an effective chlorine concentration of “ 29 ppm", and the conductivity is low, that is, the hypochlorous acid water mainly composed of HClO with few residual ions. That is, in the hypochlorous acid water generation unit 303, acidic hypochlorous acid water is generated as the second positive electrode extraction solution 332a.
 反対に、排水側タンク323に回収された第二陰電極抽出溶液333a(混合前)は、水量「0.17L」、導電率「1507μS/cm」、pH「11.6」、及び有効塩素濃度「8ppm」である。つまり、次亜塩素酸水生成ユニット303において、第二陰電極抽出溶液333aとして、アルカリ性の次亜塩素酸水が生成されている。 On the contrary, the second cathode extraction solution 333a (before mixing) collected in the drain side tank 323 has a water volume of “0.17 L”, an electrical conductivity of “1507 μS/cm”, a pH of “11.6”, and an available chlorine concentration of It is "8 ppm". That is, in the hypochlorous acid water generation unit 303, alkaline hypochlorous acid water is generated as the second cathode extraction solution 333a.
 一方、排水側タンク323に回収され、第一陽電極抽出溶液314aと第二陰電極抽出溶液333aとを混合した抽出溶液(混合後)は、水量「0.25L(=0.08L+0.17L)」、導電率「538μS/cm」、pH「10.4」、及び有効塩素濃度「53ppm」であり、導電率の高い、すなわち残留成分を含む次亜塩素酸水となっている。このとき、第一陽電極抽出溶液314aは酸性で、第二陰電極抽出溶液333aはアルカリ性であることから、中和反応が起こり、中性側に近づいた状態となっている。つまり、排水側タンク323からはこうした状態の抽出溶液(アルカリ性の次亜塩素酸水)が排出される。 On the other hand, the extraction solution (after mixing) collected in the drainage side tank 323 and obtained by mixing the first positive electrode extraction solution 314a and the second negative electrode extraction solution 333a has a water volume of 0.25 L (=0.08 L + 0.17 L). , electrical conductivity of 538 μS/cm, pH of 10.4, and available chlorine concentration of 53 ppm. At this time, since the first positive electrode extracting solution 314a is acidic and the second negative electrode extracting solution 333a is alkaline, a neutralization reaction occurs, and the state approaches the neutral side. That is, the extraction solution (alkaline hypochlorous acid water) in such a state is discharged from the drain side tank 323 .
 また、排水側タンク323に接続される供給ポンプ(第一陽電極側供給ポンプ319及び第二陰電極側供給ポンプ339)を低流速にすることで、排出する溶液量を少なくすることができている。 In addition, by setting the flow rate of the supply pumps (the first positive electrode side supply pump 319 and the second negative electrode side supply pump 339) connected to the drainage side tank 323 to be low, the amount of solution to be discharged can be reduced. there is
 以上、本実施の形態4-1に係る次亜塩素酸水供給装置301によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water supply device 301 according to Embodiment 4-1, the following effects can be obtained.
 (1)次亜塩素酸水供給装置301は、蛇行状の第一有隔膜電解流路(第一陰電極側流路315及び第一陽電極側流路316)内に供給される水道水を一対の第一陰陽電極間(第一陰電極304と第一陽電極305との間)への通電によって水道水に含まれる陰イオン成分を連続的に分離低減する水道水処理ユニット302と、水道水処理ユニット302の陰電極側における水道水電解流路(第一陰電極側流路315)から送出される水道水溶液(第一陰電極抽出溶液312a)に塩成分を加えて塩水を生成する塩水生成ユニット320と、塩水生成ユニット320で生成した塩水(第二陰陽電極供給溶液331a)を供給可能に構成された蛇行状の電解流路と、電解流路の前段を構成する無隔膜電解流路(第二陰陽電極間流路334)内に供給される塩水から一対の第二陰陽電極間(第二陽電極324と第二陰電極325との間)への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部303aと、電解流路の後段を構成する第二有隔膜電解流路(第二陽電極側流路335及び第二陰電極側流路336)内のそれぞれに次亜塩素酸水生成部303aから供給される次亜塩素酸水を一対の第二陰陽電極間(第二陽電極324と第二陰電極325との間)への通電によって連続的に処理する次亜塩素酸水処理部303bと、を有する次亜塩素酸水生成ユニット303と、を備える。次亜塩素酸水処理部303bの陽電極側における電解流路(第二陽電極側流路335)から送出される次亜塩素酸水(第二陽電極抽出溶液332a)を外部に供給する構造とした。 (1) The hypochlorous acid water supply device 301 supplies tap water to the meandering first diaphragm electrolysis flow path (first negative electrode side flow path 315 and first positive electrode side flow path 316). a tap water treatment unit 302 that continuously separates and reduces anion components contained in tap water by energizing between a pair of first negative and positive electrodes (between the first negative electrode 304 and the first positive electrode 305); Salt water produced by adding a salt component to the tap water solution (first cathode extraction solution 312a) delivered from the tap water electrolysis channel (first cathode side channel 315) on the cathode side of the water treatment unit 302 to generate salt water. A generation unit 320, a meandering electrolysis flow channel configured to be able to supply the salt water (second positive electrode supply solution 331a) generated by the salt water generation unit 320, and a non-diaphragm electrolysis flow channel forming the front stage of the electrolysis flow channel. Hypochlorous acid water is generated by energizing between the pair of second negative and positive electrodes (between the second positive electrode 324 and the second negative electrode 325) from the salt water supplied inside (the channel 334 between the second negative and positive electrodes). A hypochlorous acid water generating part 303a that is continuously electrolytically generated, and a second membrane electrolysis flow path (second positive electrode side flow path 335 and second negative electrode side flow path 336) that constitutes the latter stage of the electrolysis flow path. Hypochlorous acid water supplied from the hypochlorous acid water generating unit 303a to each of the inside is continuously supplied between the pair of second negative and positive electrodes (between the second positive electrode 324 and the second negative electrode 325). and a hypochlorous acid water generation unit 303 having a hypochlorous acid water treatment unit 303b that effectively treats the hypochlorous acid water. A structure for supplying the hypochlorous acid water (second positive electrode extraction solution 332a) delivered from the electrolytic flow channel (second positive electrode side flow channel 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b to the outside. and
 こうした構成によれば、水道水に含まれる陰イオン成分を低減しつつ、陰イオン成分を低減した水道水溶液(第一陰電極抽出溶液312a)から生成する塩水(第二陰陽電極供給溶液331a)の電気分解によって生じる残留成分を低減した次亜塩素酸水(第二陽電極抽出溶液332a)を供給することが可能な次亜塩素酸水供給装置301とすることができる。より詳細には、次亜塩素酸水供給装置301では、水道水が水道水処理ユニット302に供給され、水道水処理ユニット302の陰電極側における水道水電解流路(第一陰電極側流路315)から送出された水道水溶液(第一陰電極抽出溶液312a)に塩成分を加えた塩水(第二陰陽電極供給溶液331a)が次亜塩素酸水生成ユニット303に供給されるので、次亜塩素酸水生成ユニット303は、陰イオン成分が分離低減された塩水の電気分解によって次亜塩素酸水を生成することができる。これにより、生成される次亜塩素酸水は、水道水に含まれる陰イオン成分に起因した次亜塩素酸水の濃度ばらつき及び特性ばらつきが抑制される。一方、次亜塩素酸水生成ユニット303では、電解流路に陰イオン成分が分離低減された塩水を供給することによって、次亜塩素酸水生成部303aにおいて無隔膜電解流路(第二陰陽電極間流路334)内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理部303bにおいて第二有隔膜電解流路(第二陽電極側流路335及び第二陰電極側流路336)内のそれぞれに無隔膜電解流路で生成した次亜塩素酸水を流通させて、陽電極側から残留成分の要因となる陽イオン成分を分離低減した次亜塩素酸水(第二陽電極抽出溶液332a)として抽出することができる。これにより、陽電極側から抽出した次亜塩素軟水を外部に供給した場合には、次亜塩素軟水に含まれる残留成分に起因して生じる金属腐食の発生などを抑制することができる。 According to such a configuration, salt water (second negative electrode supply solution 331a) generated from tap water solution (first negative electrode extraction solution 312a) in which the anion component is reduced while reducing the anion component contained in tap water. The hypochlorous acid water supply device 301 can supply hypochlorous acid water (second positive electrode extraction solution 332a) in which residual components generated by electrolysis are reduced. More specifically, in the hypochlorous acid water supply device 301, tap water is supplied to the tap water treatment unit 302, and the tap water electrolysis flow path (first cathode side flow path) on the negative electrode side of the tap water treatment unit 302 315) sent out from the tap water solution (first negative electrode extraction solution 312a) to which a salt component is added salt water (second negative electrode supply solution 331a) is supplied to the hypochlorous acid water generation unit 303. The chloric acid water generation unit 303 can generate hypochlorous acid water by electrolyzing salt water from which anion components have been separated and reduced. As a result, the generated hypochlorous acid water is suppressed in concentration variations and characteristic variations due to the anion component contained in the tap water. On the other hand, in the hypochlorous acid water generation unit 303, by supplying the salt water in which the anion component is separated and reduced to the electrolysis flow path, the non-diaphragm electrolysis flow path (second negative and positive electrode Hypochlorous acid water is generated by electrolyzing salt water in the intermediate flow path 334), and further, in the hypochlorous acid water treatment unit 303b, the second diaphragm electrolysis flow path (the second positive electrode side flow path 335 and the second Hypochlorous acid water generated in the non-diaphragm electrolysis flow channel is circulated in each of the two negative electrode side flow channels 336), and the cation component that causes the residual component from the positive electrode side is separated and reduced. It can be extracted as acid water (second positive electrode extraction solution 332a). As a result, when the hypochlorous acid soft water extracted from the positive electrode side is supplied to the outside, it is possible to suppress the occurrence of metal corrosion caused by residual components contained in the hypochlorous acid soft water.
 これに対して、水道水の陰イオン成分を分離低減せずに塩成分を加えて塩水を生成し、次亜塩素酸水生成ユニット303に流通させると、水道水の陰イオン成分が次亜塩素酸水処理部303bの陽電極側における電解流路(第二陽電極側流路335)から次亜塩素酸水に混じって抽出される。特に水道水の塩化物イオン(Clイオン)は電気分解によって次亜塩素酸水が生成されるため、最終的に抽出される次亜塩素酸水の濃度ばらつきに大きく影響を与え、安定した濃度の次亜塩素酸水が生成されない。このため、事前に水道水処理ユニット302で低減しておく必要がある。水道水の塩化物イオン(Clイオン)以外の他の陰イオンとして、SO 2-及びNO などのイオンがあるが、これらも次亜塩素酸水生成ユニット303に流通させると、HSOあるいはHNOなどの酸を生成し、導電率の増加及びpH減少などの特性ばらつきを生させる。このため、同様に事前に水道水処理ユニット302で低減しておくことが望ましい。 On the other hand, when salt water is generated by adding a salt component without separating and reducing the anion component of tap water and circulating it to the hypochlorous acid water generation unit 303, the anion component of tap water is hypochlorous acid. It is mixed with the hypochlorous acid water and extracted from the electrolytic channel (second positive electrode side channel 335) on the positive electrode side of the acid water treatment unit 303b. In particular, chloride ions ( Cl- ions) in tap water are electrolyzed to produce hypochlorous acid water, which greatly affects the variation in concentration of hypochlorous acid water that is finally extracted, resulting in a stable concentration. of hypochlorous acid water is not generated. Therefore, the tap water treatment unit 302 needs to reduce the amount in advance. Anions other than chloride ions (Cl ions) in tap water include ions such as SO 4 2− and NO 3 , but when these are also circulated through the hypochlorous acid water generation unit 303, H It produces acids such as 2 SO 4 or HNO 3 and causes property variations such as increased conductivity and decreased pH. For this reason, similarly, it is desirable to reduce the amount in the tap water treatment unit 302 in advance.
 また、次亜塩素酸水生成部303aと次亜塩素酸水処理部303bに共通の第二陰陽電極(第二陽電極324及び第二陰電極325)を使用し、無隔膜電解流路と第二有隔膜電解流路が第二陰陽電極間の電圧を印加された状態で直接的につながっている。これにより、無隔膜電解流路内にて、第二陽電極324近傍には陰イオンが多く存在し、第二陰電極325近傍には陽イオンが多く存在するような分布を持った状態で、第二有隔膜電解流路に流入するため、第二陽電極324側には残留成分の要因となる陽イオンをあらかじめ減少させた状態で、電気透析処理を開始することができる。 In addition, the second positive and negative electrodes (the second positive electrode 324 and the second negative electrode 325) are used in common for the hypochlorous acid water generation unit 303a and the hypochlorous acid water treatment unit 303b, The two diaphragm electrolysis channels are directly connected with a voltage applied between the second negative and positive electrodes. As a result, in the non-diaphragm electrolytic flow path, a large number of anions are present in the vicinity of the second positive electrode 324, and a large number of cations are present in the vicinity of the second negative electrode 325. Since it flows into the second diaphragm electrolysis flow path, the electrodialysis treatment can be started in a state in which the cations that cause residual components are reduced in advance on the second positive electrode 324 side.
 さらに、次亜塩素酸水供給装置301では、次亜塩素酸水生成ユニット303に、水道水に塩成分を加えた塩水を供給することによって、次亜塩素酸水生成部303aにおいて無隔膜電解流路内で塩水を電気分解して次亜塩素酸水を生成し、さらに次亜塩素酸水処理部303bにおいて第二有隔膜電解流路内に無隔膜電解流路で生成した次亜塩素酸水を流通させて、残留成分の要因となる陽イオンを分離低減した次亜塩素酸水として抽出することができる。この時、塩成分に含まれるNaイオンだけでなく、水道水に含まれる陽イオン成分であるNaイオン、Ca2+イオン、及びMg2+イオン等の陽イオンも同時に分離低減することができる。このため、塩水の電気分解によって生じる残留成分を分離した次亜塩素酸水を外部に供給することが可能な次亜塩素酸水供給装置301とすることができる。 Further, in the hypochlorous acid water supply device 301, the hypochlorous acid water generation unit 303 is supplied with salt water obtained by adding a salt component to tap water, so that the hypochlorous acid water generation unit 303a generates a non-diaphragm electrolytic flow. Hypochlorous acid water is generated by electrolyzing salt water in the passage, and hypochlorous acid water generated in the non-diaphragm electrolysis passage in the second diaphragm electrolysis passage in the hypochlorous acid water processing unit 303b. can be circulated and extracted as hypochlorous acid water in which cations that cause residual components are separated and reduced. At this time, not only Na + ions contained in salt components, but also cations such as Na + ions, Ca 2+ ions, and Mg 2+ ions, which are cationic components contained in tap water, can be separated and reduced at the same time. Therefore, the hypochlorous acid water supply device 301 can be configured to be capable of supplying the hypochlorous acid water from which residual components generated by the electrolysis of salt water are separated to the outside.
 (2)次亜塩素酸水供給装置301では、第一有隔膜電解流路(第一陰電極側流路315及び第二陽電極側流路16)は、第一陰電極304が流路に沿って露出して延設された蛇行状の第一陰電極側流路315と、第一陰電極側流路315と対向して並設され、第一陽電極305が流路に沿って露出して延設された蛇行状の第一陽電極側流路316と、第一陰電極側流路315と第一陽電極側流路316とを隔てて設けられ、流路を流通する溶液に含まれる陰イオンを透過させる第一隔膜306と、を有して構成される。一対の第一陰陽電極(第一陰電極304及び第一陽電極305)は、第一陰電極側スペーサ307によって第一陰電極側流路315に第一陰電極304を露出させるとともに、第一陽電極側スペーサ308によって第一陽電極側流路316に第一陽電極305を露出させることで蛇行状に構成される。第一陰電極側流路315及び第一陽電極側流路316には、水道水がいずれも同じ方向に流通するように構成されている。こうした構成によれば、水道水処理ユニット302は、水道水を、第一隔膜306を挟んで同じ方向に電圧を印加しながら流通させるので、水道水に含まれる陰イオン成分を連続的に分離低減することができる。このため、陰イオン成分が分離低減された水道水溶液として、水道水処理ユニット302の陰電極側における水道水電解流路(第一陰電極側流路315)から送出される水道水溶液(第一陰電極抽出溶液312a)を塩水生成ユニット320に安定して供給することができる。 (2) In the hypochlorous acid water supply device 301, the first diaphragm electrolysis flow channel (the first negative electrode side flow channel 315 and the second positive electrode side flow channel 16) has the first negative electrode 304 in the flow channel. A meandering first cathode-side flow path 315 exposed and extending along the flow path is provided in parallel to face the first cathode-side flow path 315, and the first positive electrode 305 is exposed along the flow path. A meandering first positive electrode-side flow channel 316 extending as a serpentine channel, and the first negative electrode-side flow channel 315 and the first positive electrode-side flow channel 316 are separated from each other. and a first diaphragm 306 that is permeable to contained anions. A pair of first negative and positive electrodes (first negative electrode 304 and first positive electrode 305) exposes the first negative electrode 304 to the first negative electrode side channel 315 by the first negative electrode side spacer 307, and The first positive electrode 305 is exposed to the first positive electrode-side channel 316 by the positive electrode-side spacer 308 to form a meandering shape. Tap water is configured to flow in the same direction through the first negative electrode side channel 315 and the first positive electrode side channel 316 . According to such a configuration, the tap water treatment unit 302 circulates the tap water while applying a voltage in the same direction across the first diaphragm 306, so that the anion component contained in the tap water is continuously separated and reduced. can do. Therefore, the tap water solution (first negative electrode side flow channel 315) sent out from the tap water electrolysis channel (first negative electrode side channel 315) on the negative electrode side of the tap water treatment unit 302 is used as the tap water solution in which the anion component is separated and reduced. The electrode extraction solution 312 a ) can be stably supplied to the brine generation unit 320 .
 (3)次亜塩素酸水供給装置301では、平面状の第一陰電極304と、第一陰電極304と対向する平面状の第一隔膜306と、第一陰電極304と第一隔膜306との間に設けられ、流路に沿って第一陰電極側流路315内に第一陰電極304及び第一隔膜306を露出させる第一陰電極側スペーサ307とを有し、第一陰電極側流路315は、流路に沿って露出する第一陰電極304及び第一隔膜306と、第一陰電極側スペーサ307とにより構成されている。次亜塩素酸水供給装置301は、さらに、平面状の第一陽電極305と、第一陽電極305と対向する平面状の第一隔膜306と、第一陽電極305と第一隔膜306との間に設けられ、流路に沿って第一陽電極側流路316内に第一陽電極305及び第一隔膜306を露出させる第一陽電極側スペーサ308と、を有し、第一陽電極側流路316は、流路に沿って露出する第一陽電極305及び第一隔膜306と、第一陽電極側スペーサ308とにより構成されている。こうした構成によれば、第一陰電極側スペーサ307に形成される流路形状、及び第一陽電極側スペーサ308に形成される流路形状により、水道水に含まれる陰イオン成分を分離低減する能力を変化させることができるので、水道水から陰イオン成分を分離低減する面積及び時間を自由に設計することができる。 (3) In the hypochlorous acid water supply device 301, the planar first cathode 304, the planar first diaphragm 306 facing the first cathode 304, the first cathode 304 and the first diaphragm 306 and a first cathode-side spacer 307 that exposes the first cathode 304 and the first diaphragm 306 in the first cathode-side channel 315 along the channel. The electrode-side channel 315 is composed of a first cathode 304 and a first diaphragm 306 exposed along the channel, and a first cathode-side spacer 307 . The hypochlorous acid water supply device 301 further includes a planar first positive electrode 305, a planar first diaphragm 306 facing the first positive electrode 305, and the first positive electrode 305 and the first diaphragm 306. a first positive electrode side spacer 308 provided between and exposing the first positive electrode 305 and the first diaphragm 306 in the first positive electrode side channel 316 along the channel; The electrode-side channel 316 is composed of a first positive electrode 305 and a first diaphragm 306 exposed along the channel, and a first positive electrode-side spacer 308 . According to such a configuration, the channel shape formed in the first cathode side spacer 307 and the channel shape formed in the first positive electrode side spacer 308 separate and reduce the anion component contained in the tap water. Since the capacity can be changed, it is possible to freely design the area and time for separating and reducing anionic components from tap water.
 (4)次亜塩素酸水供給装置301では、無隔膜電解流路(第二陰陽電極間流路334)は、平面状の第二陽電極324と、第二陽電極324と対向する平面状の第二陰電極325と、第二陽電極324と第二陰電極325との間に設けられた陰陽電極間スペーサとを有して構成される。一対の第二陰陽電極(第二陽電極324及び第二陰電極325)は、陰陽電極間スペーサによって無隔膜電解流路に第二陽電極324及び第二陰電極325を露出させることで蛇行状に構成されている。こうした構成によれば、陰陽電極間スペーサに形成される流路形状により、塩水を電気分解する能力を変化させることができるので、塩水を電気分解する面積及び時間を自由に設計することができる。 (4) In the hypochlorous acid water supply device 301, the non-diaphragm electrolytic flow path (the flow path 334 between the second negative and positive electrodes) includes a planar second positive electrode 324 and a planar and a spacer between negative and negative electrodes provided between the second positive electrode 324 and the second negative electrode 325 . A pair of second negative and negative electrodes (a second positive electrode 324 and a second negative electrode 325) are formed in a meandering shape by exposing the second positive electrode 324 and the second negative electrode 325 to the non-diaphragm electrolytic flow path by a spacer between negative and positive electrodes. is configured to According to this configuration, the ability to electrolyze salt water can be changed by the shape of the channel formed in the spacer between the positive and negative electrodes, so that the area and time for electrolyzing the salt water can be freely designed.
 (5)次亜塩素酸水供給装置301では、第二有隔膜電解流路(第二陽電極側流路335及び第二陰電極側流路336)は、第二陽電極324が流路に沿って露出して延設された蛇行状の第二陽電極側流路335と、第二陽電極側流路335と対向して並設され、第二陰電極325が流路に沿って露出して延設された蛇行状の第二陰電極側流路336と、第二陽電極側流路335と第二陰電極側流路336とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる第二隔膜326と、を有して構成される。一対の第二陰陽電極(第二陽電極324及び第二陰電極325)は、第二陽電極側スペーサ327によって第二陽電極側流路335に第二陽電極324を露出させるとともに、第二陰電極側スペーサ328によって第二陰電極側流路336に第二陰電極325を露出させることで蛇行状に構成され、第二陽電極側流路335及び第二陰電極側流路336には、次亜塩素酸水生成部303aから供給される次亜塩素酸水がいずれも同じ方向に流通するように構成されている。こうした構成によれば、塩水を電気分解して生成した次亜塩素酸水を、第二隔膜326を挟んで同じ方向に電圧を印加しながら流通させるので、次亜塩素酸水から残留成分の要因となる陽イオン成分を連続的に分離低減することができる。このため、残留成分が低減された次亜塩素酸水として、次亜塩素酸水処理部303bの陽電極側における電解流路(第二陽電極側流路335)から送出される次亜塩素酸水(第二陽電極抽出溶液332a)を外部に安定して供給することができる。 (5) In the hypochlorous acid water supply device 301, the second diaphragm electrolysis channel (the second positive electrode side channel 335 and the second negative electrode side channel 336) has the second positive electrode 324 in the channel. A meandering second positive electrode-side flow path 335 exposed and extending along the flow path is provided in parallel to face the second positive electrode-side flow path 335, and the second negative electrode 325 is exposed along the flow path. A meandering second negative electrode side channel 336 extending in the direction of a serpentine path is provided separating the second positive electrode side channel 335 and the second negative electrode side channel 336, and the solution flowing through the channel and a second diaphragm 326 that is permeable to contained cations. A pair of second negative and positive electrodes (a second positive electrode 324 and a second negative electrode 325) exposes the second positive electrode 324 to the second positive electrode side channel 335 by a second positive electrode side spacer 327, By exposing the second negative electrode 325 to the second negative electrode side channel 336 by the negative electrode side spacer 328, the second positive electrode side channel 335 and the second negative electrode side channel 336 are configured in a meandering manner. , the hypochlorous acid water supplied from the hypochlorous acid water generating unit 303a flow in the same direction. According to such a configuration, the hypochlorous acid water generated by electrolyzing the salt water is circulated while applying a voltage in the same direction across the second diaphragm 326, so the residual components from the hypochlorous acid water can be continuously separated and reduced. Therefore, as hypochlorous acid water with reduced residual components, hypochlorous acid is delivered from the electrolysis channel (second positive electrode side channel 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b. Water (second positive electrode extraction solution 332a) can be stably supplied to the outside.
 (6)次亜塩素酸水供給装置301では、平面状の第二陽電極324と、第二陽電極324と対向する平面状の第二隔膜326と、第二陽電極324と第二隔膜326との間に設けられ、流路に沿って第二陽電極側流路335内に第二陽電極324及び第二隔膜326を露出させる第二陽電極側スペーサ327とを有し、第二陽電極側流路335は、流路に沿って露出する第二陽電極324及び第二隔膜326と、第二陽電極側スペーサ327とにより構成されている。平面状の第二陰電極325と、第二陰電極325と対向する平面状の第二隔膜326と、第二陰電極325と第二隔膜326との間に設けられ、流路に沿って第二陰電極側流路336内に第二陰電極325及び第二隔膜326を露出させる第二陰電極側スペーサ328と、を有し、第二陰電極側流路336は、流路に沿って露出する第二陰電極325及び第二隔膜326と、第二陰電極側スペーサ328とにより構成されている。こうした構成によれば、第二陽電極側スペーサ327に形成される流路形状、及び第二陰電極側スペーサ328に形成される流路形状により、塩水を電気分解して生成した次亜塩素酸水から残留成分の要因となる陽イオンを分離する能力を変化させることができるので、次亜塩素酸水から残留成分の要因となる陽イオン成分を分離低減する面積及び時間を自由に設計することができる。 (6) In the hypochlorous acid water supply device 301, the planar second positive electrode 324, the planar second diaphragm 326 facing the second positive electrode 324, the second positive electrode 324 and the second diaphragm 326 and a second positive electrode-side spacer 327 that exposes the second positive electrode 324 and the second diaphragm 326 in the second positive electrode-side channel 335 along the channel; The electrode-side channel 335 is composed of a second positive electrode 324 and a second diaphragm 326 exposed along the channel, and a second positive electrode-side spacer 327 . A planar second cathode 325, a planar second diaphragm 326 facing the second cathode 325, and provided between the second cathode 325 and the second diaphragm 326. and a second cathode-side spacer 328 that exposes the second cathode 325 and the second diaphragm 326 in the second cathode-side channel 336, and the second cathode-side channel 336 extends along the channel. It is composed of an exposed second cathode 325 , a second diaphragm 326 , and a spacer 328 on the side of the second cathode. According to such a configuration, hypochlorous acid produced by electrolyzing salt water is generated by the flow channel shape formed in the second positive electrode side spacer 327 and the flow channel shape formed in the second negative electrode side spacer 328. Since the ability to separate cations that cause residual components from water can be changed, it is possible to freely design the area and time for separating and reducing the cation components that cause residual components from hypochlorous acid water. can be done.
 (7)次亜塩素酸水供給装置301では、陰陽電極間スペーサは、第二陽電極側スペーサ327と第二陰電極側スペーサ328を重ね合わせて構成されている。こうした構成によれば、構造を簡易化できるとともに、無隔膜電解流路(第二陰陽電極間流路334)と第二有隔膜電解流路(第二陽電極側流路335及び第二陰電極側流路336)との間の境界部による液漏れ及び流路内イオン分布の乱れを抑制して、流通させることができる。 (7) In the hypochlorous acid water supply device 301, the cathode-positive electrode spacer is configured by stacking a second anode-side spacer 327 and a second cathode-side spacer 328 on top of each other. According to such a configuration, the structure can be simplified, and the non-diaphragm electrolytic flow path (second anode-positive electrode inter-electrode flow path 334) and the second diaphragm electrolysis flow path (second positive electrode side flow path 335 and second negative electrode flow path 335) It is possible to suppress liquid leakage and disturbance of the ion distribution in the flow channel due to the boundary between the side flow channel 336) and flow.
 (8)次亜塩素酸水供給装置301では、水道水処理ユニット302の陽電極側及び陰電極側のそれぞれの入口に設けられ、第一有隔膜電解流路(第一陰電極側流路315及び第一陽電極側流路316)に水道水を供給する第一陰電極側供給ポンプ318及び第一陽電極側供給ポンプ319と、次亜塩素酸水生成ユニット303の陽電極側及び陰電極側のそれぞれの出口に設けられ、無隔膜電解流路(第二陰陽電極間流路334)に塩水を供給するとともに、第二有隔膜電解流路(第二陽電極側流路335及び第二陰電極側流路336)において電解生成した次亜塩素酸水を供給する第二陽電極側供給ポンプ338及び第二陰電極側供給ポンプ339と、を備える。第一陰電極側供給ポンプ318及び第一陽電極側供給ポンプ319は、水道水を、第一陰電極側流路315及び第一陽電極側流路316にそれぞれ一定流速で供給する。第二陽電極側供給ポンプ338及び第二陰電極側供給ポンプ339は、次亜塩素酸水生成部303aにおいて電解生成した次亜塩素酸水を第二陽電極側流路335及び第二陰電極側流路336にそれぞれ一定流速で供給するようにした。これにより、第一有隔膜電解流路では、第一陰電極側流路315内にて電圧を印加している時間を一定にすることができるとともに、第一陽電極側流路316内にて電圧を印加している時間を一定にすることができる。このため、第一陰電極側流路315における水道水に含まれる陰イオン成分が分離希薄化する濃度、及び第一陽電極側流路316における水道水に含まれる陰イオン成分が濃縮化する濃度を安定にすることができる。一方、第二有隔膜電解流路では、第二陽電極側流路335内にて電圧を印加している時間を一定にすることができるとともに、第二陰電極側流路336内にて電圧を印加している時間を一定にすることができる。このため、第二陽電極側流路335における次亜塩素酸水での残留成分の要因となる陽イオン成分が分離希薄化する濃度、及び第二陰電極側流路336における次亜塩素酸水での残留成分の要因となる陽イオン成分が濃縮化する濃度を安定にすることができる。 (8) In the hypochlorous acid water supply device 301, it is provided at each inlet on the positive electrode side and the negative electrode side of the tap water treatment unit 302, and the first diaphragm electrolysis channel (first negative electrode side channel 315 and a first negative electrode side supply pump 318 and a first positive electrode side supply pump 319 that supply tap water to the first positive electrode side flow path 316), and the positive electrode side and negative electrode of the hypochlorous acid water generation unit 303 provided at each outlet on the side, and supplies salt water to the non-diaphragm electrolysis flow path (second cathode-positive electrode flow path 334) and the second diaphragm electrolysis flow path (second positive electrode-side flow path 335 and second A second positive electrode side supply pump 338 and a second negative electrode side supply pump 339 for supplying the hypochlorous acid water electrolytically generated in the negative electrode side channel 336) are provided. The first negative electrode side supply pump 318 and the first positive electrode side supply pump 319 supply tap water to the first negative electrode side channel 315 and the first positive electrode side channel 316 at a constant flow rate, respectively. A second positive electrode-side supply pump 338 and a second negative electrode-side supply pump 339 supply the hypochlorous acid water electrolytically generated in the hypochlorous acid water generation unit 303a to the second positive electrode-side channel 335 and the second negative electrode. They were supplied to the side channels 336 at a constant flow rate. As a result, in the first diaphragm electrolysis flow path, the time during which the voltage is applied in the first negative electrode side flow path 315 can be made constant, and in the first positive electrode side flow path 316, The time during which the voltage is applied can be made constant. Therefore, the concentration at which the anion component contained in the tap water in the first negative electrode side channel 315 is separated and diluted, and the concentration at which the anion component contained in the tap water in the first positive electrode side channel 316 is concentrated. can be stabilized. On the other hand, in the second diaphragm electrolysis flow path, the time during which the voltage is applied in the second positive electrode side flow path 335 can be made constant, and the voltage is applied in the second negative electrode side flow path 336. can be made constant. For this reason, the concentration at which the cation component that causes the residual component in the hypochlorous acid water in the second positive electrode side channel 335 is separated and diluted, and the hypochlorous acid water in the second negative electrode side channel 336 It is possible to stabilize the concentration of the cationic component, which is a factor of the residual component in the.
 (9)次亜塩素酸水供給装置301では、水道水処理ユニット302の陽電極側における水道水電解流路(第一陽電極側流路316)から送出される水道水溶液(第一陽電極抽出溶液314a)を貯留する排水側タンク323を備える。排水側タンク323は、次亜塩素酸水生成ユニット303の陰電極側における電解流路(第二陰電極側流路336)から送出される溶液(第二陰電極抽出溶液333a)が混合されるように接続されている。こうした構成によれば、水道水処理ユニット302の陽電極側における水道水電解流路から送出されるpHが酸性の水道水溶液(第一陽電極抽出溶液314a)と、次亜塩素酸水生成ユニット303の陰電極側における電解流路(第二陰電極側流路336)から送出されるpHがアルカリ性の次亜塩素酸水(第二陰電極抽出溶液333a)とを混合して中和することとなり、混合した溶液はpHがアルカリ性となるが、次亜塩素酸水生成ユニット303の陰電極側における電解流路(第二陰電極側流路336)から送出されるアルカリ溶液のpHより中性側に近づけた状態で排液することができる。 (9) In the hypochlorous acid water supply device 301, tap water solution (first positive electrode extraction A drain side tank 323 for storing the solution 314a) is provided. The drain-side tank 323 is mixed with the solution (second cathode extraction solution 333a) delivered from the electrolysis channel (second cathode-side channel 336) on the cathode side of the hypochlorous acid water generation unit 303. connected as follows. According to such a configuration, the tap water aqueous solution (first positive electrode extraction solution 314a) with an acidic pH delivered from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit 302 and the hypochlorous acid water generation unit 303 Neutralization is carried out by mixing with hypochlorous acid water (second cathode extraction solution 333a) having an alkaline pH sent from the electrolytic flow path (second cathode side flow path 336) on the cathode side of the , the pH of the mixed solution is alkaline, but the pH is more neutral than the pH of the alkaline solution sent from the electrolytic channel (second negative electrode side channel 336) on the negative electrode side of the hypochlorous acid water generation unit 303. can be drained while being close to the
 (実施の形態4-2)
 図27及び図39を参照して、本開示の実施の形態4-2に係る、次亜塩素酸水供給装置301を用いた空間除菌システム350について説明する。図39は、本開示の実施の形態4-2に係る、次亜塩素酸水供給装置301を用いた空間除菌システム350の概略図である。なお、以下で説明する実施の形態4-2に係る空間除菌システム350は、実施の形態4-1に係る次亜塩素酸水供給装置301を組み込んだシステムである。実施の形態4-2の説明においては、実施の形態4-1に係る次亜塩素酸水供給装置301と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化または省略する場合がある。
(Embodiment 4-2)
A spatial sterilization system 350 using a hypochlorous acid water supply device 301 according to Embodiment 4-2 of the present disclosure will be described with reference to FIGS. 27 and 39. FIG. FIG. 39 is a schematic diagram of a space sterilization system 350 using a hypochlorous acid water supply device 301 according to Embodiment 4-2 of the present disclosure. A spatial sterilization system 350 according to Embodiment 4-2 described below is a system incorporating the hypochlorous acid water supply device 301 according to Embodiment 4-1. In the description of Embodiment 4-2, substantially the same configurations as those of the hypochlorous acid water supply device 301 according to Embodiment 4-1 are given the same reference numerals, and the description is partially simplified. or may be omitted.
 本実施の形態4-2に係る空間除菌システム350は、浴室空間において、次亜塩素酸水供給装置301から生成された次亜塩素酸水をミスト噴霧装置354から噴霧するとともに排水口356に流すことで、浴室空間に対する除菌と洗浄とを行うシステムである。なお、浴室空間は、請求項の「所定の空間」に相当する。 The space sterilization system 350 according to Embodiment 4-2 sprays hypochlorous acid water generated from the hypochlorous acid water supply device 301 from the mist spray device 354 in the bathroom space and at the drain port 356. It is a system that sterilizes and cleans the bathroom space by flushing. The bathroom space corresponds to the "predetermined space" in the claims.
 具体的には、図39に示すように、空間除菌システム350は、次亜塩素酸水供給装置301(水道水処理ユニット302、次亜塩素酸水生成ユニット303、第一陰電極側供給ポンプ318、第一陽電極側供給ポンプ319、塩水生成タンク321、塩供給部322、排水側タンク323、第二陽電極側供給ポンプ338、第二陰電極側供給ポンプ339)と、陽電極側抽出溶液タンク351と、陰電極側抽出溶液タンク352と、陽電極側抽出溶液浴室配管353と、ミスト噴霧装置354と、陰電極側抽出溶液浴室配管355と、排水口356と、を備える。 Specifically, as shown in FIG. 39, the spatial sterilization system 350 includes a hypochlorous acid water supply device 301 (tap water treatment unit 302, hypochlorous acid water generation unit 303, first cathode side supply pump 318, first positive electrode side supply pump 319, brine generation tank 321, salt supply part 322, drainage side tank 323, second positive electrode side supply pump 338, second negative electrode side supply pump 339), and positive electrode side extraction A solution tank 351 , a negative electrode side extraction solution tank 352 , a positive electrode side extraction solution bathroom piping 353 , a mist spray device 354 , a negative electrode side extraction solution bathroom piping 355 , and a drain port 356 are provided.
 次亜塩素酸水供給装置301を構成する水道水処理ユニット302は、水道水を供給して、電気透析により水道水に含まれる陰イオン成分(Clイオン、SO 2-イオン、及びNO イオン)を分離希薄化して、塩水生成タンク321に抽出する。塩水生成タンク321では、塩供給部322から塩成分を追加して混合し、塩水として次亜塩素酸水生成ユニット303に供給する。水道水処理ユニット302への水道水供給は、第一陰電極側供給ポンプ318及び第一陽電極側供給ポンプ319によって行われる。また、電気透析により水道水に含まれる陰イオン成分を分離濃縮化した溶液(第一陽電極抽出溶液314a)は、排水側タンク323に抽出される。 A tap water treatment unit 302 constituting the hypochlorous acid water supply device 301 supplies tap water and electrodialyzes the anion components (Cl ions, SO 4 2− ions, and NO 3 ) contained in the tap water. - ions) are separated and diluted and extracted to the brine generation tank 321 . In the salt water generation tank 321, salt components are added from the salt supply unit 322, mixed, and supplied to the hypochlorous acid water generation unit 303 as salt water. Tap water is supplied to the tap water treatment unit 302 by a first negative electrode side supply pump 318 and a first positive electrode side supply pump 319 . A solution (first positive electrode extraction solution 314 a ) obtained by separating and condensing anion components contained in tap water by electrodialysis is extracted to the drain side tank 323 .
 次亜塩素酸水生成ユニット303は、塩水生成タンク321で生成された塩水を供給し、前段で電気分解を行って次亜塩素酸水を生成し、さらに後段で電気透析を行うことで、残留成分となる陽イオン成分を分離希薄化した次亜塩素酸水を第二陽電極溶液抽出口332から抽出する。抽出した第二陽電極抽出溶液332aは、除菌力の高いHClO主体の次亜塩素酸水であり、陽電極側抽出溶液タンク351に送液される。さらに、陽電極側抽出溶液浴室配管353にてミスト噴霧装置354に送液され、浴室空間に噴霧される。 The hypochlorous acid water generation unit 303 supplies the salt water generated in the salt water generation tank 321, performs electrolysis in the former stage to generate hypochlorous acid water, and further electrodialyzes in the latter stage to generate residual Hypochlorous acid water in which the cationic components are separated and diluted is extracted from the second positive electrode solution extraction port 332 . The extracted second positive electrode extraction solution 332 a is hypochlorous acid water containing mainly HClO with high sterilizing power, and is sent to the positive electrode side extraction solution tank 351 . Further, the extracted solution is sent to the mist spraying device 354 through the positive electrode side extraction solution bathroom pipe 353 and sprayed into the bathroom space.
 また、残留成分となる陽イオン成分を分離濃縮化した次亜塩素酸水を第二陰電極溶液抽出口333から抽出し、排水側タンク323に供給して、水道水処理ユニット302で抽出された第一陽電極抽出溶液314aと混合して排出される。この排出液は洗浄力の高いNaClO及びアルカリ成分主体の次亜塩素酸水であり、排水側タンク323を介して陰電極側抽出溶液タンク352に送液される。さらに陰電極側抽出溶液浴室配管355にて排水口356に送液され、排水口356を経由して排水管に流れる。 In addition, the hypochlorous acid water in which the cation component, which is the residual component, is separated and concentrated is extracted from the second negative electrode solution extraction port 333, supplied to the drain side tank 323, and extracted by the tap water treatment unit 302. It is mixed with the first positive electrode extraction solution 314a and discharged. This discharged liquid is hypochlorous acid water containing mainly NaClO and alkaline components, which has high detergency, and is sent to the negative electrode side extraction solution tank 352 via the drainage side tank 323 . Further, it is sent to the drain port 356 through the cathode-side extraction solution bathroom pipe 355 and flows into the drain pipe via the drain port 356 .
 陽電極側抽出溶液タンク351は、第二陽電極側流路335から抽出した除菌力の高いHClO主体の次亜塩素酸水である第二陽電極抽出溶液332aを、ミスト噴霧装置354に送液されるまで、一時的に貯めておくタンクである。陽電極側抽出溶液タンク351は、陽電極側抽出溶液浴室配管353を介してミスト噴霧装置354と接続される。 The positive electrode side extraction solution tank 351 sends the second positive electrode extraction solution 332a, which is hypochlorous acid water containing mainly HClO with high sterilizing power extracted from the second positive electrode side channel 335, to the mist spray device 354. It is a temporary storage tank until it is liquefied. The positive electrode side extraction solution tank 351 is connected to a mist spraying device 354 via a positive electrode side extraction solution bathroom piping 353 .
 陰電極側抽出溶液タンク352は、第一陽電極側流路316及び第二陰電極側流路336を混合した排水側タンク323から抽出した洗浄力の高いNaClO及びアルカリ成分主体の次亜塩素酸水を、排水口356に送液されるまで、一時的に貯めておくタンクである。陰電極側抽出溶液タンク352は、陰電極側抽出溶液浴室配管355を介して排水口356と接続される。 The cathode-side extraction solution tank 352 contains NaClO with high detergency extracted from the drain-side tank 323 in which the first positive electrode-side channel 316 and the second negative electrode-side channel 336 are mixed, and hypochlorous acid containing mainly alkaline components. It is a tank that temporarily stores water until it is sent to the drain port 356 . The cathode-side extraction solution tank 352 is connected to a drain port 356 via a cathode-side extraction solution bathroom pipe 355 .
 陽電極側抽出溶液浴室配管353は、陽電極側抽出溶液タンク351から、ミスト噴霧装置354まで送液するための配管である。陽電極側抽出溶液浴室配管353は、浴室の壁裏及び天井に施工されてあり、天井に設置されたミスト噴霧装置354と接続されている。 The positive electrode side extraction solution bathroom pipe 353 is a pipe for sending liquid from the positive electrode side extraction solution tank 351 to the mist spray device 354 . The positive electrode-side extraction solution bathroom pipe 353 is installed behind the wall and ceiling of the bathroom, and is connected to a mist spraying device 354 installed on the ceiling.
 陰電極側抽出溶液浴室配管355は、陰電極側抽出溶液タンク352から、排水口356まで送液するための配管である。陰電極側抽出溶液浴室配管355は、浴室の壁裏及び床面に施工されてあり、排水口356に接続されている。 The cathode-side extraction solution bathroom pipe 355 is a pipe for sending liquid from the cathode-side extraction solution tank 352 to the drain port 356 . The cathode-side extraction solution bathroom pipe 355 is installed behind the wall and floor of the bathroom and connected to a drain port 356 .
 ミスト噴霧装置354は、次亜塩素酸水を浴室空間にミスト状にして噴霧する装置である。より詳細には、ミスト噴霧装置354は、陽電極側抽出溶液タンク351から陽電極側抽出溶液浴室配管353を通って搬送されてくる次亜塩素酸水である第二陽電極抽出溶液332aを微細なミストにして放出する装置である。ミスト噴霧装置354は、浴室空間の天井から浴室空間全体にミストが噴霧できるように噴霧部が天井から浴室側に突出して設置されている。ミストの噴霧方式としては、圧縮空気を使用して微細化する二流体噴霧方式、超音波素子を使用して10μm以下の微細ミストを噴霧する超音波方式、又は回転体から溶液を放出して破砕し1μm以下の微細ミストを噴霧する破砕噴霧方式などが挙げられる。なお、ミスト噴霧装置354は、請求項の「除菌装置」に相当する。 The mist spraying device 354 is a device that sprays hypochlorous acid water in the form of mist into the bathroom space. More specifically, the mist spraying device 354 finely sprays the second positive electrode extraction solution 332a, which is hypochlorous acid water, conveyed from the positive electrode side extraction solution tank 351 through the positive electrode side extraction solution bathroom piping 353. It is a device that emits a fine mist. The mist spraying device 354 is installed so that the spraying part protrudes from the ceiling to the bathroom side so that the mist can be sprayed from the ceiling of the bathroom space to the entire bathroom space. The mist spraying method includes a two-fluid spraying method that uses compressed air to atomize the mist, an ultrasonic method that uses an ultrasonic element to atomize a fine mist of 10 μm or less, or a solution that is released from a rotating body and crushed. and a crushing spray method in which a fine mist of 1 μm or less is sprayed. The mist spraying device 354 corresponds to the "sterilization device" in the claims.
 排水口356は、浴室空間内で発生した水あるいは汚れを浴室空間外に排出するための排水管と接続するための接続口である。排水口356には、陰電極側抽出溶液タンク352から陰電極側抽出溶液浴室配管355を通って第一陽電極抽出溶液314a及び第二陰電極抽出溶液333aの混合液を搬送し、洗浄力の高いNaClO及びアルカリ成分主体の次亜塩素酸水により、排水口356及び排水口356に接続される排水管の汚れを洗浄することができる。なお、排水口356は、請求項の「排水管」と読み替えることができる。 The drain port 356 is a connection port for connecting with a drain pipe for discharging water or dirt generated in the bathroom space to the outside of the bathroom space. A mixture of the first positive electrode extraction solution 314a and the second negative electrode extraction solution 333a is conveyed from the negative electrode side extraction solution tank 352 through the negative electrode side extraction solution bathroom piping 355 to the drain port 356, and the cleaning power is improved. The drain port 356 and the drain pipe connected to the drain port 356 can be cleaned of contamination by the high NaClO and the hypochlorous acid water containing mainly alkaline components. The drain port 356 can be read as a "drain pipe" in the claims.
 以上、本実施の形態4-2に係る、次亜塩素酸水供給装置301を用いた空間除菌システム350によれば、以下の効果を享受することができる。 As described above, according to the spatial sterilization system 350 using the hypochlorous acid water supply device 301 according to Embodiment 4-2, the following effects can be obtained.
 (10)空間除菌システム350は、上述した次亜塩素酸水供給装置301と、外部として、次亜塩素酸水処理部303bの陽電極側における電解流路(第二陽電極側流路335)から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出するミスト噴霧装置354と、を備える構造とした。こうした構成によれば、次亜塩素酸水処理部303bの陽電極側における電解流路(第二陽電極側流路335)から送出される次亜塩素酸水のミストを所定の空間(浴室空間)に放出しても、所定の空間に残る残留成分が抑制される。つまり、次亜塩素酸水処理部303bの陽電極側における電解流路(第二陽電極側流路335)から送出される次亜塩素酸水が、塩水の電気分解によって生じる残留成分、及び水道水に含まれる陽イオン成分による残留成分が低減された次亜塩素酸水であるため、所定の空間を除菌する際に、除菌性能を保ちながら、残留成分に起因する金属腐食の発生を抑制することができる。 (10) The spatial sterilization system 350 includes the above-described hypochlorous acid water supply device 301 and, as the outside, an electrolysis flow path (second positive electrode side flow path 335 ), and a mist spraying device 354 that discharges hypochlorous acid water mist to a predetermined space using hypochlorous acid water sent from. According to such a configuration, the hypochlorous acid water mist sent from the electrolysis flow path (second positive electrode side flow path 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b is dispensed into a predetermined space (bathroom space). ), the residual components remaining in the predetermined space are suppressed. In other words, the hypochlorous acid water sent from the electrolysis channel (second positive electrode side channel 335) on the positive electrode side of the hypochlorous acid water treatment unit 303b contains the residual components generated by the electrolysis of salt water and the water supply. Since it is hypochlorous acid water with reduced residual components due to cationic components contained in water, when sterilizing a predetermined space, the occurrence of metal corrosion caused by residual components is prevented while maintaining sterilization performance. can be suppressed.
 (11)空間除菌システム350は、所定の空間には、所定の空間内で発生する水を排出する排水口356が設けられており、排水口356は、水道水処理ユニット302の陽電極側における水道水電解流路から送出される水道水溶液と、次亜塩素酸水処理部303bの陰電極側における電解流路(第二陰電極側流路336)から送出される次亜塩素酸水(第二陰電極抽出溶液333a)とが混合されて導入されるように構成されている。こうした構成によれば、次亜塩素酸水処理部303bの陰電極側における電解流路(第二陰電極側流路336)から送出される次亜塩素酸水(第二陰電極抽出溶液333a)が、水道水処理ユニット302の陽電極側における水道水電解流路(第一陽電極側流路316)から送出されるpHが酸性の水道水溶液(第一陽電極抽出溶液314a)によってある程度中和されるものの、排水口356に、残留成分の要因となる陽イオン成分が濃縮されたアルカリ性溶液を含む洗浄性の高い次亜塩素酸水として導入することができる。このため、排水口356に導入される次亜塩素酸水によって排水管内を洗浄することができる。 (11) Spatial sterilization system 350 is provided with a drain port 356 in a predetermined space for discharging water generated in the predetermined space. The tap water solution sent from the tap water electrolysis channel in the hypochlorous acid water treatment unit 303b and the hypochlorous acid water sent from the electrolysis channel (second cathode side channel 336) on the cathode side of the hypochlorous acid water treatment unit 303b ( It is configured to be mixed with the second cathode extraction solution 333a) and introduced. According to this configuration, the hypochlorous acid water (second cathode extraction solution 333a) delivered from the electrolysis flow path (second cathode side flow path 336) on the cathode side of the hypochlorous acid water treatment unit 303b. is neutralized to some extent by the acidic tap water solution (first positive electrode extraction solution 314a) delivered from the tap water electrolysis channel (first positive electrode side channel 316) on the positive electrode side of the tap water treatment unit 302. However, it can be introduced into the drain port 356 as highly cleansing hypochlorous acid water containing an alkaline solution in which cationic components that cause residual components are concentrated. Therefore, the inside of the drain pipe can be washed with the hypochlorous acid water introduced into the drain port 356 .
 以上、実施の形態4に基づき本開示を説明したが、本開示は上記の実施の形態4に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 As described above, the present disclosure has been described based on the fourth embodiment, but the present disclosure is not limited to the above-described fourth embodiment, and various modifications and improvements are possible without departing from the scope of the present disclosure. One thing is easy to guess.
 本開示に係る次亜塩素酸水処理装置は、生成したHClO主体の次亜塩素酸水をミスト噴霧することで浴室空間のカビ及び菌に対して除菌を行いながら、浴室内で使用される金属等への腐食を抑制することを可能とする有用な手段である。 The hypochlorous acid water treatment apparatus according to the present disclosure is used in the bathroom while sterilizing mold and bacteria in the bathroom space by spraying the generated HClO-based hypochlorous acid water. It is a useful means that makes it possible to suppress corrosion of metals and the like.
 1  次亜塩素酸水処理装置
 2  陽電極
 3  陰電極
 4  隔膜
 5  陽極側スペーサ
 6  陰極側スペーサ
 7a  陽極側電極用パッキン
 7b  陰極側電極用パッキン
 8a  陽極側槽筐体側面
 8b  陰極側槽筐体側面
 9  陽極側溶液供給口
 9a  陽極側供給溶液
 10  陽極側溶液抽出口
 10a  陽極側抽出溶液
 11  陰極側溶液供給口
 11a  陰極側供給溶液
 12  陰極側溶液抽出口
 12a  陰極側抽出溶液
 13  陽極流路
 13a  陽極流路孔
 14  陰極流路
 14a  陰極流路孔
 15  電気透析電源
 20  空間除菌システム
 21  次亜塩素酸水生成装置
 22  陽極側供給ポンプ
 23  陰極側供給ポンプ
 24  陽極側抽出溶液タンク
 25  陰極側抽出溶液タンク
 26  陽極側抽出溶液浴室配管
 27  ミスト噴霧装置
 28  陰極側抽出溶液浴室配管
 29  排水口
 101  次亜塩素酸水供給装置
 102  次亜塩素酸水生成ユニット
 103  次亜塩素酸水処理ユニット
 104  第一陽電極
 105  第一陰電極
 106  第一陰陽電極間スペーサ
 107a  第一陽電極用パッキン
 107b  第一陰電極用パッキン
 108a  第一陽電極側槽筐体側面
 108b  第一陰電極側槽筐体側面
 109  第一陰陽電極溶液供給口
 109a  第一陰陽電極供給溶液
 110  第一陽電極溶液抽出口
 110a  第一陽電極抽出溶液
 111  第一陰電極溶液抽出口
 111a  第一陰電極抽出溶液
 112  第一陰陽電極間流路
 112a  第一陰陽電極間流路孔
 113  電気分解電源
 114  第二陽電極
 115  第二陰電極
 116  隔膜
 117  第二陽電極側スペーサ
 118  第二陰電極側スペーサ
 119a  第二陽電極用パッキン
 119b  第二陰電極用パッキン
 120a  第二陽電極側槽筐体側面
 120b  第二陰電極側槽筐体側面
 121  第二陽電極溶液供給口
 121a  第二陽電極供給溶液
 122  第二陽電極溶液抽出口
 122a  第二陽電極抽出溶液
 123  第二陰電極溶液供給口
 123a  第二陰電極供給溶液
 124  第二陰電極溶液抽出口
 124a  第二陰電極抽出溶液
 125  第二陽電極側流路
 125a  第二陽電極側流路孔
 126  第二陰電極側流路
 126a  第二陰電極側流路孔
 127  電気透析電源
 128  陽電極側接続チューブ
 129  陽電極側供給ポンプ
 130  陰電極側接続チューブ
 131  陰電極側供給ポンプ
 140  空間除菌システム
 141  陽電極側抽出溶液タンク
 142  陰電極側抽出溶液タンク
 143  陽電極側抽出溶液浴室配管
 144  ミスト噴霧装置
 145  陰電極側抽出溶液浴室配管
 146  排水口
 201  次亜塩素酸水供給装置
 201a  次亜塩素酸水生成部
 201b  次亜塩素酸水処理部
 202  陽電極
 203  陰電極
 204  隔膜
 205  陽電極側スペーサ
 206  陰電極側スペーサ
 207a  陽電極用パッキン
 207b  陰電極用パッキン
 208a  陽電極側槽筐体側面
 208b  陰電極側槽筐体側面
 209  陰陽電極溶液供給口
 209a  陰陽電極供給溶液
 210  陽電極溶液抽出口
 210a  陽電極抽出溶液
 211  陰電極溶液抽出口
 211a  陰電極抽出溶液
 212  陰陽電極間流路
 213  陽電極側流路
 213a  陽電極側流路孔
 214  陰電極側流路
 214a  陰電極側流路孔
 215  電気分解・電気透析電源
 220  次亜塩素酸水供給装置
 220a  次亜塩素酸水生成部
 220b  次亜塩素酸水処理部
 221  電極板
 222  くし歯陽電極
 223  くし歯陰電極
 230  空間除菌システム
 231  陽電極側供給ポンプ
 232  陰電極側供給ポンプ
 233  陽電極側抽出溶液タンク
 234  陰電極側抽出溶液タンク
 235  陽電極側抽出溶液浴室配管
 236  ミスト噴霧装置
 237  陰電極側抽出溶液浴室配管
 238  排水口
 301  次亜塩素酸水供給装置
 302  水道水処理ユニット
 303  次亜塩素酸水生成ユニット
 303a  次亜塩素酸水生成部
 303b  次亜塩素酸水処理部
 304  第一陰電極
 305  第一陽電極
 306  第一隔膜
 307  第一陰電極側スペーサ
 308  第一陽電極側スペーサ
 309a  第一陰電極用パッキン
 309b  第一陽電極用パッキン
 310a  第一陰電極側槽筐体側面
 310b  第一陽電極側槽筐体側面
 311  第一陰電極溶液供給口
 311a  第一陰電極供給溶液
 312  第一陰電極溶液抽出口
 312a  第一陰電極抽出溶液
 313  第一陽電極溶液供給口
 313a  第一陽電極供給溶液
 314  第一陽電極溶液抽出口
 314a  第一陽電極抽出溶液
 315  第一陰電極側流路
 315a  第一陰電極側流路孔
 316  第一陽電極側流路
 316a  第一陽電極側流路孔
 317  電気透析電源
 318  第一陰電極側供給ポンプ
 319  第一陽電極側供給ポンプ
 320  塩水生成ユニット
 321  塩水生成タンク
 322  塩供給部
 323  排水側タンク
 324  第二陽電極
 325  第二陰電極
 326  第二隔膜
 327  第二陽電極側スペーサ
 328  第二陰電極側スペーサ
 329a  第二陽電極用パッキン
 329b  第二陰電極用パッキン
 330a  第二陽電極側槽筐体側面
 330b  第二陰電極側槽筐体側面
 331  第二陰陽電極溶液供給口
 331a  第二陰陽電極供給溶液
 332  第二陽電極溶液抽出口
 332a  第二陽電極抽出溶液
 333  第二陰電極溶液抽出口
 333a  第二陰電極抽出溶液
 334  第二陰陽電極間流路
 335  第二陽電極側流路
 335a  第二陽電極側流路孔
 336  第二陰電極側流路
 336a  第二陰電極側流路孔
 337  電気分解・電気透析電源
 338  第二陽電極側供給ポンプ
 339  第二陰電極側供給ポンプ
 340  水道水タンク
 341  次亜塩素酸水タンク
 350  空間除菌システム
 351  陽電極側抽出溶液タンク
 352  陰電極側抽出溶液タンク
 353  陽電極側抽出溶液浴室配管
 354  ミスト噴霧装置
 355  陰電極側抽出溶液浴室配管
 356  排水口
1 Hypochlorous acid water treatment device 2 Positive electrode 3 Negative electrode 4 Diaphragm 5 Anode side spacer 6 Cathode side spacer 7a Anode side electrode packing 7b Cathode side electrode packing 8a Anode side tank housing side 8b Cathode side tank housing side 9 anode-side solution supply port 9a anode-side supply solution 10 anode-side solution extraction port 10a anode-side extraction solution 11 cathode-side solution supply port 11a cathode-side supply solution 12 cathode-side solution extraction port 12a cathode-side extraction solution 13 anode flow path 13a anode Channel hole 14 Cathode channel 14a Cathode channel hole 15 Electrodialysis power supply 20 Spatial sterilization system 21 Hypochlorous acid water generator 22 Anode side supply pump 23 Cathode side supply pump 24 Anode side extraction solution tank 25 Cathode side extraction solution Tank 26 Anode side extraction solution bathroom piping 27 Mist spray device 28 Cathode side extraction solution bathroom piping 29 Drain port 101 Hypochlorous acid water supply device 102 Hypochlorous acid water generation unit 103 Hypochlorous acid water treatment unit 104 First positive Electrode 105 First negative electrode 106 Spacer between first negative and positive electrodes 107a First positive electrode packing 107b First negative electrode packing 108a First positive electrode side tank housing side 108b First negative electrode side tank housing side 109 First Anode electrode solution supply port 109a First cathode supply solution 110 First positive electrode solution extraction port 110a First positive electrode extraction solution 111 First negative electrode solution extraction port 111a First negative electrode extraction solution 112 Channel between first negative and positive electrodes 112a channel hole between first negative and positive electrodes 113 electrolysis power supply 114 second positive electrode 115 second negative electrode 116 diaphragm 117 second positive electrode side spacer 118 second negative electrode side spacer 119a second positive electrode packing 119b second negative electrode Electrode packing 120a Second positive electrode-side tank housing side surface 120b Second negative electrode-side tank housing side surface 121 Second positive electrode solution supply port 121a Second positive electrode supply solution 122 Second positive electrode solution extraction port 122a Second positive electrode Electrode extraction solution 123 Second negative electrode solution supply port 123a Second negative electrode supply solution 124 Second negative electrode solution extraction port 124a Second negative electrode extraction solution 125 Second positive electrode side channel 125a Second positive electrode side channel hole 126 second negative electrode side channel 126a second negative electrode side channel hole 127 electrodialysis power source 128 positive electrode side connection tube 129 positive electrode side supply pump 130 negative electrode side connection tube 131 negative electrode side supply pump 140 space sterilization system 141 positive electrode side extraction solution tank 142 negative electrode side extraction solution tank 143 positive electrode side extraction solution bathroom pipe 144 mist spray device 145 negative electrode side extraction solution bathroom pipe 146 drain port 201 hypochlorous acid water supply device 201a hypochlorous acid Water generator 201b Hypochlorous acid water treatment unit 202 Positive electrode 203 Negative electrode 204 Diaphragm 205 Positive electrode side spacer 206 Negative electrode side spacer 207a Positive electrode packing 207b Negative electrode packing 208a Positive electrode side tank housing side 208b Negative electrode side tank housing side surface 209 negative electrode solution supply port 209a negative electrode supply solution 210 positive electrode solution extraction port 210a positive electrode extraction solution 211 negative electrode solution extraction port 211a negative electrode extraction solution 212 channel between negative and positive electrodes 213 positive electrode side channel 213a Positive electrode side channel hole 214 Negative electrode side channel 214a Cathode electrode side channel hole 215 Electrolysis/electrodialysis power supply 220 Hypochlorous acid water supply device 220a Hypochlorous acid water generator 220b Hypochlorous acid water treatment Part 221 Electrode plate 222 Comb tooth positive electrode 223 Comb tooth negative electrode 230 Spatial sterilization system 231 Positive electrode side supply pump 232 Negative electrode side supply pump 233 Positive electrode side extraction solution tank 234 Negative electrode side extraction solution tank 235 Positive electrode side extraction Solution bathroom piping 236 Mist spray device 237 Cathode side extraction solution bathroom piping 238 Drain port 301 Hypochlorous acid water supply device 302 Tap water treatment unit 303 Hypochlorous acid water generation unit 303a Hypochlorous acid water generation unit 303b Hypochlorous acid water Chloric acid water treatment part 304 First negative electrode 305 First positive electrode 306 First diaphragm 307 First negative electrode side spacer 308 First positive electrode side spacer 309a First negative electrode packing 309b First positive electrode packing 310a First Cathode-side chamber side surface 310b First anode-side chamber side surface 311 First cathode solution supply port 311a First cathode supply solution 312 First cathode solution extraction port 312a First cathode extraction solution 313 First Positive electrode solution supply port 313a First positive electrode supply solution 314 First positive electrode solution extraction port 314a First positive electrode extraction solution 315 First negative electrode side channel 315a First negative electrode side channel hole 316 First positive electrode side Channel 316a First positive electrode side channel hole 317 Electrodialysis power supply 318 First negative electrode side supply pump 319 First positive electrode side supply pump 320 Salt water generation unit 321 Salt water generation tank 322 Salt supply part 323 Drainage side tank 324 Second Positive electrode 325 Second negative electrode 326 Second diaphragm 327 Second positive electrode side spacer 328 Second negative electrode side spacer 329a Second positive electrode packing 329b Second negative electrode packing 330a Second positive electrode side tank casing side 330b Side of second negative electrode tank housing 331 Second negative electrode solution supply port 331a Second negative electrode supply solution 332 Second positive electrode solution extraction port 332a Second positive electrode extraction solution 333 Second negative electrode solution extraction port 333a Second Cathode extraction solution 334 Second cathode-positive electrode channel 335 Second positive electrode side channel 335a Second positive electrode side channel hole 336 Second negative electrode side channel 336a Second negative electrode side channel hole 337 Electrolysis/ Electrodialysis power supply 338 Second positive electrode side supply pump 339 Second negative electrode side supply pump 340 Tap water tank 341 Hypochlorous acid water tank 350 Spatial sterilization system 351 Positive electrode side extraction solution tank 352 Negative electrode side extraction solution tank 353 Bathroom piping for positive electrode side extraction solution 354 Mist spray device 355 Bathroom piping for negative electrode side extraction solution 356 Drain port

Claims (34)

  1.  陽電極が流路に沿って露出して延設された第一流路と、
     前記第一流路と対向して並設され、陰電極が前記流路に沿って露出して延設された第二流路と、
     前記第一流路と前記第二流路とを隔てて設けられ、前記流路を流通する溶液に含まれる陽イオンを透過させる隔膜と、
     前記陽電極と前記陰電極との間に電圧を印加する電源と、を備え、
     前記第一流路及び前記第二流路は、前記第一流路を流通する第一溶液と前記第二流路を流通する第二溶液とがいずれも同じ方向に流通するように構成され、
     少なくとも前記第一溶液は、塩水を電気分解して生成した次亜塩素酸水である、
     次亜塩素酸水処理装置。
    a first channel in which the positive electrode is exposed and extended along the channel;
    a second flow channel arranged in parallel to face the first flow channel and having a negative electrode extending and exposed along the flow channel;
    a diaphragm provided to separate the first flow channel and the second flow channel and allowing cations contained in a solution flowing through the flow channel to permeate;
    a power source that applies a voltage between the positive electrode and the negative electrode;
    The first channel and the second channel are configured so that the first solution flowing through the first channel and the second solution flowing through the second channel both flow in the same direction,
    At least the first solution is hypochlorous acid water produced by electrolyzing salt water,
    Hypochlorous acid water treatment equipment.
  2.  平面状の前記陽電極と、前記陽電極と対向する平面状の前記隔膜と、前記陽電極と前記隔膜との間に設けられ、前記流路に沿って前記第一流路内に前記陽電極及び前記隔膜を露出させる第一スペーサ部材と、
     平面状の前記陰電極と、前記陰電極と対向する平面状の前記隔膜と、前記陰電極と前記隔膜との間に設けられ、前記流路に沿って前記第二流路内に前記陰電極及び前記隔膜を露出させる第二スペーサ部材と、をさらに備え、
     前記第一流路は、前記流路に沿って露出する前記陽電極及び前記隔膜と、前記第一スペーサ部材とにより構成されており、
     前記第二流路は、前記流路に沿って露出する前記陰電極及び前記隔膜と、前記第二スペーサ部材とにより構成されている、
     請求項1に記載の次亜塩素酸水処理装置。
    The planar positive electrode, the planar diaphragm facing the positive electrode, and the positive electrode and the planar diaphragm provided between the positive electrode and the diaphragm, along the flow path and in the first flow path. a first spacer member exposing the diaphragm;
    the planar negative electrode, the planar diaphragm facing the negative electrode, and the negative electrode provided between the negative electrode and the diaphragm along the flow path and in the second flow path. and a second spacer member that exposes the diaphragm,
    The first channel is composed of the positive electrode and the diaphragm exposed along the channel, and the first spacer member,
    The second channel is composed of the cathode and the diaphragm exposed along the channel, and the second spacer member,
    The hypochlorous acid water treatment apparatus according to claim 1.
  3.  前記第一流路及び前記第二流路は、いずれも蛇行状に形成されている、
     請求項1又は2に記載の次亜塩素酸水処理装置。
    Both the first channel and the second channel are formed in a meandering shape,
    The hypochlorous acid water treatment apparatus according to claim 1 or 2.
  4.  前記第一溶液及び前記第二溶液は、いずれも塩水を電気分解して生成した次亜塩素酸水である、
     請求項1~3のいずれか一項に記載の次亜塩素酸水処理装置。
    Both the first solution and the second solution are hypochlorous acid water produced by electrolyzing salt water,
    The hypochlorous acid water treatment device according to any one of claims 1 to 3.
  5.  前記第一流路に前記第一溶液を供給するとともに、前記第二流路に前記第二溶液を供給する供給ポンプをさらに備え、
     前記供給ポンプは、前記第一溶液と前記第二溶液とを一定流速で供給する、
     請求項1~4のいずれか一項に記載の次亜塩素酸水処理装置。
    further comprising a supply pump that supplies the first solution to the first channel and supplies the second solution to the second channel;
    The supply pump supplies the first solution and the second solution at a constant flow rate,
    The hypochlorous acid water treatment device according to any one of claims 1 to 4.
  6.  前記陽電極及び前記陰電極は、いずれも白金を含む電極材で構成されている、
     請求項1~5のいずれか一項に記載の次亜塩素酸水処理装置。
    The positive electrode and the negative electrode are both made of an electrode material containing platinum,
    The hypochlorous acid water treatment apparatus according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項に記載の次亜塩素酸水処理装置と、
     前記第一流路と連通接続され、前記第一溶液を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置と、をさらに備える、
     空間除菌システム。
    The hypochlorous acid water treatment device according to any one of claims 1 to 6,
    a sterilization device that communicates with the first flow path and releases hypochlorous acid water mist into a predetermined space using the first solution;
    Spatial sterilization system.
  8.  前記所定の空間には、前記所定の空間内で発生する水を排出する排水管が設けられており、
     前記第二流路は、前記排水管と連通接続され、前記第二溶液を前記排水管に導入可能に構成されている、
     請求項7に記載の空間除菌システム。
    The predetermined space is provided with a drain pipe for discharging water generated in the predetermined space,
    The second channel is connected to the drain pipe, and is configured to be able to introduce the second solution into the drain pipe,
    The spatial sterilization system according to claim 7.
  9.  蛇行状の無隔膜電解流路内に供給される塩水から一対の第一陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成ユニットと、
     蛇行状の有隔膜電解流路内のそれぞれに前記次亜塩素酸水生成ユニットから供給される前記次亜塩素酸水を一対の第二陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理ユニットと、を備え、
     前記次亜塩素酸水処理ユニットの陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する、
     次亜塩素酸水供給装置。
    a hypochlorous acid water generating unit for continuously electrolytically generating hypochlorous acid water by energizing between the pair of first negative and positive electrodes from salt water supplied in the meandering membrane-free electrolytic flow path;
    The hypochlorous acid water supplied from the hypochlorous acid water generation unit to each of the meandering diaphragm electrolysis channels is continuously processed by energizing between the pair of second negative and positive electrodes. an acid water treatment unit;
    supplying the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit to the outside;
    Hypochlorous acid water supply device.
  10.  前記無隔膜電解流路は、平面状の第一陽電極と、前記第一陽電極と対向する平面状の第一陰電極と、前記第一陽電極と前記第一陰電極との間に設けられたスペーサ部材とを有して構成され、
     前記一対の第一陰陽電極は、前記スペーサ部材によって前記無隔膜電解流路に前記第一陽電極及び前記第一陰電極を露出させることで蛇行状に構成されている、
     請求項9に記載の次亜塩素酸水供給装置。
    The non-diaphragm electrolytic flow path is provided between a planar first positive electrode, a planar first negative electrode facing the first positive electrode, and between the first positive electrode and the first negative electrode. and a spacer member;
    The pair of first cathode and cathode electrodes are formed in a meandering shape by exposing the first anode and the first cathode to the non-diaphragm electrolytic flow path by the spacer member,
    The hypochlorous acid water supply device according to claim 9.
  11.  前記有隔膜電解流路は、第二陽電極が流路に沿って露出して延設された蛇行状の第一流路と、前記第一流路と対向して並設され、第二陰電極が流路に沿って露出して延設された蛇行状の第二流路と、前記第一流路と前記第二流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜と、を有して構成され、
     前記一対の第二陰陽電極は、前記第一スペーサ部材によって前記第一流路に前記第二陽電極を露出させるとともに、前記第二スペーサ部材によって前記第二流路に前記第二陰電極を露出させることで蛇行状に構成され、
     前記第一流路及び前記第二流路には、前記次亜塩素酸水生成ユニットから供給される前記次亜塩素酸水がいずれも同じ方向に流通するように構成されている、
     請求項10に記載の次亜塩素酸水供給装置。
    The diaphragm-equipped electrolysis channel includes a meandering first channel in which a second positive electrode is exposed and extends along the channel, and is arranged in parallel so as to face the first channel. A meandering second flow path exposed and extending along the flow path, and a cation contained in a solution flowing through the flow path separated from the first flow path and the second flow path. and a permeable diaphragm,
    The pair of second negative and positive electrodes exposes the second positive electrode to the first channel by the first spacer member, and exposes the second negative electrode to the second channel by the second spacer member. It is configured in a meandering shape by
    The hypochlorous acid water supplied from the hypochlorous acid water generation unit is configured to flow in the same direction in the first flow path and the second flow path,
    The hypochlorous acid water supply device according to claim 10.
  12.  平面状の前記第二陽電極と、前記第二陽電極と対向する平面状の前記隔膜と、前記第二陽電極と前記隔膜との間に設けられ、流路に沿って前記第一流路内に前記第二陽電極及び前記隔膜を露出させる前記第一スペーサ部材と、
     平面状の前記第二陰電極と、前記第二陰電極と対向する平面状の前記隔膜と、前記第二陰電極と前記隔膜との間に設けられ、流路に沿って前記第二流路内に前記第二陰電極及び前記隔膜を露出させる前記第二スペーサ部材と、をさらに備え、
     前記第一流路は、流路に沿って露出する前記第二陽電極及び前記隔膜と、前記第一スペーサ部材とにより構成されており、
     前記第二流路は、流路に沿って露出する前記第二陰電極及び前記隔膜と、前記第二スペーサ部材とにより構成されている、
      請求項11に記載の次亜塩素酸水供給装置。
    The planar second positive electrode, the planar diaphragm facing the second positive electrode, and the planar diaphragm provided between the second positive electrode and the diaphragm, along the flow path and in the first flow path the first spacer member exposing the second positive electrode and the diaphragm to the
    the planar second cathode, the planar diaphragm facing the second cathode, and the second cathode provided between the second cathode and the diaphragm, the second spacer member exposing the second cathode and the diaphragm inside,
    The first channel is composed of the second positive electrode and the diaphragm exposed along the channel, and the first spacer member,
    The second channel is composed of the second cathode and the diaphragm exposed along the channel, and the second spacer member,
    The hypochlorous acid water supply device according to claim 11.
  13.  前記次亜塩素酸水生成ユニットと前記次亜塩素酸水処理ユニットとを連通接続する流路に設けられ、前記有隔膜電解流路に前記次亜塩素酸水生成ユニットからの前記次亜塩素酸水を供給する供給ポンプが設けられ、
     前記供給ポンプは、前記次亜塩素酸水生成ユニットからの前記次亜塩素酸水を前記第一流路及び前記第二流路に一定流速で供給する、
     請求項9~12のいずれか一項に記載の次亜塩素酸水供給装置。
    The hypochlorous acid from the hypochlorous acid water generation unit is provided in a flow path that communicates and connects the hypochlorous acid water generation unit and the hypochlorous acid water treatment unit, and the hypochlorous acid from the hypochlorous acid water generation unit is provided in the diaphragm electrolysis flow path. A feed pump is provided to supply water,
    The supply pump supplies the hypochlorous acid water from the hypochlorous acid water generation unit to the first channel and the second channel at a constant flow rate,
    The hypochlorous acid water supply device according to any one of claims 9 to 12.
  14.  請求項9~13のいずれか一項に記載の次亜塩素酸水供給装置と、
     前記第一流路と連通接続され、前記第一流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置と、を備える、
     空間除菌システム。
    The hypochlorous acid water supply device according to any one of claims 9 to 13,
    a sterilization device that communicates with the first flow path and releases hypochlorous acid water mist into a predetermined space using the hypochlorous acid water sent from the first flow path;
    Spatial sterilization system.
  15.  前記所定の空間には、前記所定の空間内で発生する水を排出する排水管が設けられており、
     前記第二流路は、前記排水管と連通接続され、前記第二流路から送出される次亜塩素酸水を前記排水管に導入可能に構成されている、
     請求項14に記載の空間除菌システム。
    The predetermined space is provided with a drain pipe for discharging water generated in the predetermined space,
    The second channel is connected to the drain pipe, and is configured so that the hypochlorous acid water sent out from the second channel can be introduced into the drain pipe.
    The space disinfection system according to claim 14.
  16.  塩水を供給可能に構成された蛇行状の電解流路と、
     前記電解流路の前段を構成する無隔膜電解流路内に供給される前記塩水から一対の陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部と、
     前記電解流路の後段を構成する有隔膜電解流路内のそれぞれに前記次亜塩素酸水生成部から供給される前記次亜塩素酸水を前記一対の陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理部と、を備え、
     前記次亜塩素酸水処理部の陽電極側における電解流路から送出される次亜塩素酸水を外部に供給する、
     次亜塩素酸水供給装置。
    a meandering electrolytic flow path configured to supply salt water;
    A hypochlorous acid water generating unit for continuously electrolytically generating hypochlorous acid water by energizing between a pair of cathode and anode electrodes from the salt water supplied in the non-diaphragm electrolysis flow path constituting the preceding stage of the electrolysis flow path. and,
    The hypochlorous acid water supplied from the hypochlorous acid water generating unit to each of the diaphragm-equipped electrolysis flow paths constituting the subsequent stage of the electrolysis flow path is continuously supplied between the pair of cathode and anode electrodes. and a hypochlorous acid water treatment unit to treat,
    supplying the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit to the outside;
    Hypochlorous acid water supply device.
  17.  前記無隔膜電解流路は、平面状の陽電極と、前記陽電極と対向する平面状の陰電極と、前記陽電極と前記陰電極との間に設けられたスペーサ部材とを有して構成され、
     前記一対の陰陽電極は、前記スペーサ部材によって前記無隔膜電解流路に前記陽電極及び前記陰電極を露出させることで蛇行状に構成されている、
     請求項16に記載の次亜塩素酸水供給装置。
    The non-diaphragm electrolytic flow path comprises a planar positive electrode, a planar negative electrode facing the positive electrode, and a spacer member provided between the positive electrode and the negative electrode. is,
    The pair of negative and negative electrodes are formed in a meandering shape by exposing the positive electrode and the negative electrode to the non-diaphragm electrolytic flow path by the spacer member.
    The hypochlorous acid water supply device according to claim 16.
  18.  前記有隔膜電解流路は、前記陽電極が流路に沿って露出して延設された蛇行状の第一流路と、前記第一流路と対向して並設され、前記陰電極が流路に沿って露出して延設された蛇行状の第二流路と、前記第一流路と前記第二流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオンを透過させる隔膜と、を有して構成され、
     前記一対の陰陽電極は、前記第一スペーサ部材によって前記第一流路に前記陽電極を露出させるとともに、前記第二スペーサ部材によって前記第二流路に前記陰電極を露出させることで蛇行状に構成されている、
     請求項17に記載の次亜塩素酸水供給装置。
    The diaphragm-equipped electrolysis flow path includes a meandering first flow path in which the positive electrode is exposed and extends along the flow path, and the first flow path is arranged in parallel to face the first flow path. A serpentine second channel exposed and extending along the channel, and a second channel provided separating the first channel and the second channel, and allowing cations contained in the solution flowing through the channel to pass through. a diaphragm, and
    The pair of negative and positive electrodes are formed in a meandering shape by exposing the positive electrode to the first channel by the first spacer member and exposing the negative electrode to the second channel by the second spacer member. has been
    The hypochlorous acid water supply device according to claim 17.
  19.  平面状の前記陽電極と、前記陽電極と対向する平面状の前記隔膜と、前記陽電極と前記隔膜との間に設けられ、流路に沿って前記第一流路内に前記陽電極及び前記隔膜を露出させる前記第一スペーサ部材と、
     平面状の前記陰電極と、前記陰電極と対向する平面状の前記隔膜と、前記陰電極と前記隔膜との間に設けられ、流路に沿って前記第二流路内に前記陰電極及び前記隔膜を露出させる前記第二スペーサ部材と、をさらに備え、
     前記第一流路は、流路に沿って露出する前記陽電極及び前記隔膜と、前記第一スペーサ部材とにより構成されており、
     前記第二流路は、流路に沿って露出する前記陰電極及び前記隔膜と、前記第二スペーサ部材とにより構成されている、
     請求項18に記載の次亜塩素酸水供給装置。
    The planar positive electrode, the planar diaphragm facing the positive electrode, and the positive electrode and the planar diaphragm provided between the positive electrode and the diaphragm along the flow path in the first flow path. the first spacer member exposing the diaphragm;
    The planar cathode, the planar diaphragm facing the cathode, and the cathode and the diaphragm are provided between the cathode and the diaphragm, and the cathode and the diaphragm are provided in the second flow path along the flow path. Further comprising the second spacer member that exposes the diaphragm,
    The first channel is composed of the positive electrode and the diaphragm exposed along the channel, and the first spacer member,
    The second channel is composed of the negative electrode and the diaphragm exposed along the channel, and the second spacer member,
    The hypochlorous acid water supply device according to claim 18.
  20.  前記スペーサ部材は、前記第一スペーサ部材と前記第二スペーサ部材とを重ね合わせて構成されている、
     請求項19に記載の次亜塩素酸水供給装置。
    The spacer member is configured by overlapping the first spacer member and the second spacer member,
    The hypochlorous acid water supply device according to claim 19.
  21.  前記次亜塩素酸水処理部の陽電極側及び陰電極側のそれぞれの出口に設けられ、前記電解流路に前記塩水を供給する流れを生じさせる供給ポンプをさらに備え、
     前記供給ポンプは、前記次亜塩素酸水生成部からの前記次亜塩素酸水を前記第一流路及び前記第二流路に一定流速で供給する、
     請求項16~19のいずれか一項に記載の次亜塩素酸水供給装置。
    further comprising a supply pump that is provided at each outlet on the positive electrode side and the negative electrode side of the hypochlorous acid water treatment unit and generates a flow that supplies the salt water to the electrolytic flow path,
    The supply pump supplies the hypochlorous acid water from the hypochlorous acid water generating unit to the first channel and the second channel at a constant flow rate,
    The hypochlorous acid water supply device according to any one of claims 16 to 19.
  22.  請求項18~21のいずれか一項に記載の次亜塩素酸水供給装置と、
     前記第一流路と連通接続され、前記第一流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置と、を備える、
     空間除菌システム。
    The hypochlorous acid water supply device according to any one of claims 18 to 21,
    a sterilization device that communicates with the first flow path and releases hypochlorous acid water mist into a predetermined space using the hypochlorous acid water sent from the first flow path;
    Spatial sterilization system.
  23.  前記所定の空間には、前記所定の空間内で発生する水を排出する排水管が設けられており、
     前記第二流路は、前記排水管と連通接続され、前記第二流路から送出される次亜塩素酸水を前記排水管に導入可能に構成されている、
     請求項22に記載の空間除菌システム。
    The predetermined space is provided with a drain pipe for discharging water generated in the predetermined space,
    The second channel is connected to the drain pipe, and is configured so that the hypochlorous acid water sent out from the second channel can be introduced into the drain pipe.
    The space disinfection system according to claim 22.
  24.  蛇行状の第一有隔膜電解流路内に供給される水道水から一対の第一陰陽電極間への通電によって前記水道水に含まれる陰イオン成分を連続的に分離する水道水処理ユニットと、
     前記水道水処理ユニットの陰電極側における水道水電解流路から送出される水道水溶液に塩成分を加えて塩水を生成する塩水生成ユニットと、
     前記塩水生成ユニットで生成した前記塩水を供給可能に構成された蛇行状の電解流路と、前記電解流路の前段を構成する無隔膜電解流路内に供給される前記塩水から一対の第二陰陽電極間への通電によって次亜塩素酸水を連続的に電解生成する次亜塩素酸水生成部と、前記電解流路の後段を構成する第二有隔膜電解流路内のそれぞれに前記次亜塩素酸水生成部から供給される前記次亜塩素酸水を前記一対の第二陰陽電極間への通電によって連続的に処理する次亜塩素酸水処理部とを有する次亜塩素酸水生成ユニットと、を備え、
     前記次亜塩素酸水処理部の陽電極側における前記電解流路から送出される次亜塩素酸水を外部に供給する、
     次亜塩素酸水供給装置。
    a tap water treatment unit that continuously separates anion components contained in the tap water from the tap water supplied in the meandering first diaphragm electrolysis flow path by energizing between the pair of first cathode and cathode electrodes;
    a salt water generation unit for generating salt water by adding a salt component to the tap water solution sent from the tap water electrolysis channel on the negative electrode side of the tap water treatment unit;
    A meandering electrolysis flow path configured to be able to supply the salt water generated by the salt water generation unit, and a pair of second electrolysis flow paths from the salt water supplied to the non-membrane electrolysis flow path constituting the preceding stage of the electrolysis flow path. The hypochlorous acid water generating part for continuously electrolytically generating hypochlorous acid water by energization between the negative and positive electrodes, and the second electrolysis flow path with a diaphragm that constitutes the latter stage of the electrolysis flow path. a hypochlorous acid water treatment unit for continuously treating the hypochlorous acid water supplied from the chlorous acid water generation unit by energizing between the pair of second negative and positive electrodes. a unit and
    supplying the hypochlorous acid water sent out from the electrolysis channel on the positive electrode side of the hypochlorous acid water treatment unit to the outside;
    Hypochlorous acid water supply device.
  25.  前記第一有隔膜電解流路は、第一陰電極が流路に沿って露出して延設された蛇行状の第一陰電極側流路と、前記第一陰電極側流路と対向して並設され、第一陽電極が流路に沿って露出して延設された蛇行状の第一陽電極側流路と、前記第一陰電極側流路と前記第一陽電極側流路とを隔てて設けられ、流路を流通する溶液に含まれる陰イオン成分を透過させる第一隔膜と、を有して構成され、
     前記一対の第一陰陽電極は、第一陰電極側スペーサによって前記第一陰電極側流路に前記第一陰電極を露出させるとともに、第一陽電極側スペーサによって前記第一陽電極側流路に前記第一陽電極を露出させることで蛇行状に構成され、
     前記第一陰電極側流路及び前記第一陽電極側流路には、前記水道水がいずれも同じ方向に流通するように構成されている、
     請求項24に記載の次亜塩素酸水供給装置。
    The first diaphragm electrolysis flow channel has a meandering first cathode-side flow channel in which the first cathode is exposed and extends along the flow channel, and faces the first cathode-side flow channel. a meandering first positive electrode-side channel in which the first positive electrode is exposed and extended along the channel; the first negative electrode-side channel and the first positive electrode-side channel; a first diaphragm provided to separate the channel and permeating the anion component contained in the solution flowing through the channel,
    The pair of first negative and positive electrodes exposes the first negative electrode to the first negative electrode side channel by the first negative electrode side spacer, and the first positive electrode side spacer is used to expose the first positive electrode side channel to the first positive electrode side channel. is configured in a meandering shape by exposing the first positive electrode to
    The tap water is configured to flow in the same direction through the first negative electrode-side channel and the first positive electrode-side channel,
    The hypochlorous acid water supply device according to claim 24.
  26.  平面状の前記第一陰電極と、前記第一陰電極と対向する平面状の前記第一隔膜と、前記第一陰電極と前記第一隔膜との間に設けられ、流路に沿って前記第一陰電極側流路内に前記第一陰電極及び前記第一隔膜を露出させる前記第一陰電極側スペーサと、
     平面状の前記第一陽電極と、前記第一陽電極と対向する平面状の前記第一隔膜と、前記第一陽電極と前記第一隔膜との間に設けられ、流路に沿って前記第一陽電極側流路内に前記第一陽電極及び前記第一隔膜を露出させる前記第一陽電極側スペーサと、をさらに備え、
     前記第一陰電極側流路は、流路に沿って露出する前記第一陰電極及び前記第一隔膜と、前記第一陰電極側スペーサとにより構成されており、
     前記第一陽電極側流路は、流路に沿って露出する前記第一陽電極及び前記第一隔膜と、前記第一陽電極側スペーサとにより構成されている、
     請求項25に記載の次亜塩素酸水供給装置。
    The planar first cathode, the planar first diaphragm facing the first cathode, and the planar first diaphragm provided between the first cathode and the first diaphragm, the a first cathode-side spacer that exposes the first cathode and the first diaphragm in the first cathode-side channel;
    The planar first positive electrode, the planar first diaphragm facing the first positive electrode, the planar first diaphragm provided between the first positive electrode and the first diaphragm, and the a first positive electrode-side spacer that exposes the first positive electrode and the first diaphragm in the first positive electrode-side channel;
    The first cathode-side channel is composed of the first cathode and the first diaphragm exposed along the channel, and the first cathode-side spacer,
    The first positive electrode side channel is composed of the first positive electrode and the first diaphragm exposed along the channel, and the first positive electrode side spacer,
    The hypochlorous acid water supply device according to claim 25.
  27.  前記無隔膜電解流路は、平面状の第二陽電極と、前記第二陽電極と対向する平面状の第二陰電極と、前記第二陽電極と前記第二陰電極との間に設けられた陰陽電極間スペーサとを有して構成され、
     前記一対の第二陰陽電極は、前記陰陽電極間スペーサによって前記無隔膜電解流路に前記第二陽電極及び前記第二陰電極を露出させることで蛇行状に構成されている、
     請求項24~26のいずれか一項に記載の次亜塩素酸水供給装置。
    The non-diaphragm electrolytic flow path is provided between a planar second positive electrode, a planar second negative electrode facing the second positive electrode, and between the second positive electrode and the second negative electrode. and a spacer between the positive and negative electrodes,
    The pair of second negative and negative electrodes are formed in a meandering shape by exposing the second positive and negative electrodes to the non-diaphragm electrolytic flow path by the spacer between negative and positive electrodes.
    The hypochlorous acid water supply device according to any one of claims 24 to 26.
  28.  前記第二有隔膜電解流路は、前記第二陽電極が流路に沿って露出して延設された蛇行状の第二陽電極側流路と、前記第二陽電極側流路と対向して並設され、前記第二陰電極が流路に沿って露出して延設された蛇行状の第二陰電極側流路と、前記第二陽電極側流路と前記第二陰電極側流路とを隔てて設けられ、流路を流通する溶液に含まれる陽イオン成分を透過させる第二隔膜と、を有して構成され、
     前記一対の第二陰陽電極は、第二陽電極側スペーサによって前記第二陽電極側流路に前記第二陽電極を露出させるとともに、第二陰電極側スペーサによって前記第二陰電極側流路に前記第二陰電極を露出させることで蛇行状に構成され、
     前記第二陽電極側流路及び前記第二陰電極側流路には、前記次亜塩素酸水生成部から供給される前記次亜塩素酸水がいずれも同じ方向に流通するように構成されている、
     請求項27に記載の次亜塩素酸水供給装置。
    The second electrolysis flow path with a diaphragm is opposed to a meandering second positive electrode side flow path in which the second positive electrode is exposed and extended along the flow path, and the second positive electrode side flow path. a serpentine second cathode-side flow path in which the second cathode extends along the flow path; the second positive electrode-side flow path and the second cathode; a second diaphragm that is separated from the side channel and allows the passage of cationic components contained in the solution flowing through the channel,
    The pair of second negative and positive electrodes exposes the second positive electrode to the second positive electrode side channel by the second positive electrode side spacer, and the second negative electrode side spacer is used to expose the second negative electrode side channel to the second negative electrode side channel. is configured in a meandering shape by exposing the second cathode to
    The hypochlorous acid water supplied from the hypochlorous acid water generating unit is configured to flow in the same direction through the second positive electrode side channel and the second negative electrode side channel. ing,
    The hypochlorous acid water supply device according to claim 27.
  29.  平面状の前記第二陽電極と、前記第二陽電極と対向する平面状の前記第二隔膜と、前記第二陽電極と前記第二隔膜との間に設けられ、流路に沿って前記第二陽電極側流路内に前記第二陽電極及び前記第二隔膜を露出させる前記第二陽電極側スペーサと、
     平面状の前記第二陰電極と、前記第二陰電極と対向する平面状の前記第二隔膜と、前記第二陰電極と前記第二隔膜との間に設けられ、流路に沿って前記第二陰電極側流路内に前記第二陰電極及び前記第二隔膜を露出させる前記第二陰電極側スペーサと、をさらに備え、
     前記第二陽電極側流路は、流路に沿って露出する前記第二陽電極及び前記第二隔膜と、前記第二陽電極側スペーサとにより構成されており、
     前記第二陰電極側流路は、流路に沿って露出する前記第二陰電極及び前記第二隔膜と、前記第二陰電極側スペーサとにより構成されている、
     請求項28に記載の次亜塩素酸水供給装置。
    The planar second positive electrode, the planar second diaphragm facing the second positive electrode, the planar second diaphragm provided between the second positive electrode and the second diaphragm, and the a second positive electrode-side spacer that exposes the second positive electrode and the second diaphragm in the second positive electrode-side channel;
    The planar second negative electrode, the planar second diaphragm facing the second negative electrode, the planar second diaphragm provided between the second negative electrode and the second diaphragm, and the a second cathode-side spacer that exposes the second cathode and the second diaphragm in the second cathode-side channel;
    The second positive electrode side channel is composed of the second positive electrode and the second diaphragm exposed along the channel, and the second positive electrode side spacer,
    The second cathode-side channel is composed of the second cathode and the second diaphragm exposed along the channel, and the second cathode-side spacer.
    The hypochlorous acid water supply device according to claim 28.
  30.  前記陰陽電極間スペーサは、前記第二陽電極側スペーサと前記第二陰電極側スペーサとを重ね合わせて構成されている、
     請求項28または29に記載の次亜塩素酸水供給装置。
    The cathode-positive electrode spacer is configured by overlapping the second anode-side spacer and the second cathode-side spacer,
    The hypochlorous acid water supply device according to claim 28 or 29.
  31.  前記水道水処理ユニットの陽電極側及び陰電極側のそれぞれの入口に設けられ、前記第一有隔膜電解流路に前記水道水を供給する第一陰電極側供給ポンプ及び第一陽電極側供給ポンプと、
     前記次亜塩素酸水生成ユニットの陽電極側及び陰電極側のそれぞれの出口に設けられ、前記無隔膜電解流路に前記塩水を供給するとともに、前記第二有隔膜電解流路に前記次亜塩素酸水生成部において電解生成した前記次亜塩素酸水を供給する第二陽電極側供給ポンプ及び第二陰電極側供給ポンプと、を備え、
     前記第一陰電極側供給ポンプ及び前記第一陽電極側供給ポンプは、前記水道水を、前記第一陰電極側流路及び前記第一陽電極側流路にそれぞれ一定流速で供給し、
     前記第二陽電極側供給ポンプ及び前記第二陰電極側供給ポンプは、前記次亜塩素酸水生成部において電解生成した前記次亜塩素酸水を前記第二陽電極側流路及び前記第二陰電極側流路にそれぞれ一定流速で供給する、
     請求項28~30のいずれか一項に記載の次亜塩素酸水供給装置。
    A first negative electrode side supply pump and a first positive electrode side supply pump provided at respective inlets of the positive electrode side and the negative electrode side of the tap water treatment unit for supplying the tap water to the first diaphragm electrolysis flow path, and a first positive electrode side supply. a pump;
    Provided at the respective outlets on the positive electrode side and the negative electrode side of the hypochlorous acid water generation unit, the salt water is supplied to the non-diaphragm electrolysis flow channel, and the hypochlorous acid water is supplied to the second diaphragm electrolysis flow channel. a second positive electrode side supply pump and a second negative electrode side supply pump for supplying the hypochlorous acid water electrolytically generated in the chloric acid water generation unit;
    The first negative electrode side supply pump and the first positive electrode side supply pump supply the tap water to the first negative electrode side channel and the first positive electrode side channel, respectively, at a constant flow rate,
    The second positive electrode-side supply pump and the second negative electrode-side supply pump supply the hypochlorous acid water electrolytically generated in the hypochlorous acid water generation unit to the second positive electrode-side channel and the second supply at a constant flow rate to each of the cathode-side channels;
    The hypochlorous acid water supply device according to any one of claims 28-30.
  32.  前記水道水処理ユニットの陽電極側における前記水道水電解流路から送出される水道水溶液を貯留する排水側タンクをさらに備え、
     前記排水側タンクは、前記次亜塩素酸水生成ユニットの陰電極側における前記電解流路から送出される次亜塩素酸水が混合されるように接続されている、
     請求項24~31のいずれかに一項に記載の次亜塩素酸水供給装置。
    further comprising a drain-side tank for storing the tap water solution sent from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit,
    The drain-side tank is connected so that the hypochlorous acid water sent from the electrolysis flow path on the cathode side of the hypochlorous acid water generation unit is mixed,
    The hypochlorous acid water supply device according to any one of claims 24 to 31.
  33.  請求項24~32のいずれか一項に記載の次亜塩素酸水供給装置と、
     前記外部として、前記次亜塩素酸水処理部の陽電極側における前記電解流路から送出される次亜塩素酸水を用いて次亜塩素酸水ミストを所定の空間に放出する除菌装置と、を備える、
     空間除菌システム。
    The hypochlorous acid water supply device according to any one of claims 24 to 32,
    As the outside, a sterilization device that emits hypochlorous acid water mist into a predetermined space using hypochlorous acid water sent from the electrolytic flow path on the positive electrode side of the hypochlorous acid water treatment unit. have a
    Spatial sterilization system.
  34.  前記所定の空間には、前記所定の空間内で発生する水を排出する排水管が設けられており、
     前記排水管は、前記水道水処理ユニットの陽電極側における前記水道水電解流路から送出される水道水溶液と、前記次亜塩素酸水処理部の陰電極側における前記電解流路から送出される次亜塩素酸水とが混合されて導入されるように構成されている、
     請求項33に記載の空間除菌システム。
    The predetermined space is provided with a drain pipe for discharging water generated in the predetermined space,
    The drain pipe is configured to supply an aqueous tap water solution from the tap water electrolysis channel on the positive electrode side of the tap water treatment unit and from the electrolysis channel on the negative electrode side of the hypochlorous acid water treatment unit. It is configured to be mixed with hypochlorous acid water and introduced,
    34. The space disinfection system according to claim 33.
PCT/JP2022/040881 2021-11-26 2022-11-01 Hypochlorous acid water treatment device and space disinfection system using same WO2023095572A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-191690 2021-11-26
JP2021191690A JP2023078532A (en) 2021-11-26 2021-11-26 Hypochlorous acid water treatment apparatus and space sterilization system using the same
JP2021204699A JP2023089991A (en) 2021-12-17 2021-12-17 Hypocrite water supply apparatus and space sterilization system using the same
JP2021-204699 2021-12-17
JP2022-009806 2022-01-26
JP2022009806A JP2023108654A (en) 2022-01-26 2022-01-26 Hypochlorous acid water supply device and space sterilization system using the same
JP2022-020913 2022-02-15
JP2022020913A JP2023118144A (en) 2022-02-15 2022-02-15 Hypochlorous acid water supply device and space sterilization system using the same

Publications (1)

Publication Number Publication Date
WO2023095572A1 true WO2023095572A1 (en) 2023-06-01

Family

ID=86539410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040881 WO2023095572A1 (en) 2021-11-26 2022-11-01 Hypochlorous acid water treatment device and space disinfection system using same

Country Status (1)

Country Link
WO (1) WO2023095572A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284775A (en) * 1994-04-20 1995-10-31 Tokyo Kaken:Kk Operation control method for electrolytic apparatus for liquid containing hypochlorous acid
JPH07308675A (en) * 1994-05-17 1995-11-28 Mizu Kk Electrolytic water preparation device
JPH0871136A (en) * 1994-09-06 1996-03-19 Tatsuo Okazaki Sterilizing method
JPH08119605A (en) * 1994-08-25 1996-05-14 Hoshizaki Electric Co Ltd Production of hypochlorous acid-base processing solution
JPH08150325A (en) * 1994-11-29 1996-06-11 Hoshizaki Electric Co Ltd Production of hypochlorous acid-base treating solution and device therefor
JP2002104908A (en) * 2000-09-27 2002-04-10 Asahi Pretec Corp Disinfectant agricultural electrolytic water and production unit therefor
JP2016155127A (en) * 2016-03-10 2016-09-01 株式会社エピオス Washing water and production method therefor
JP2017089010A (en) * 2016-12-20 2017-05-25 株式会社東芝 Electrolytic device
JP2017170298A (en) * 2016-03-22 2017-09-28 株式会社東芝 Electrolytic water generator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284775A (en) * 1994-04-20 1995-10-31 Tokyo Kaken:Kk Operation control method for electrolytic apparatus for liquid containing hypochlorous acid
JPH07308675A (en) * 1994-05-17 1995-11-28 Mizu Kk Electrolytic water preparation device
JPH08119605A (en) * 1994-08-25 1996-05-14 Hoshizaki Electric Co Ltd Production of hypochlorous acid-base processing solution
JPH0871136A (en) * 1994-09-06 1996-03-19 Tatsuo Okazaki Sterilizing method
JPH08150325A (en) * 1994-11-29 1996-06-11 Hoshizaki Electric Co Ltd Production of hypochlorous acid-base treating solution and device therefor
JP2002104908A (en) * 2000-09-27 2002-04-10 Asahi Pretec Corp Disinfectant agricultural electrolytic water and production unit therefor
JP2016155127A (en) * 2016-03-10 2016-09-01 株式会社エピオス Washing water and production method therefor
JP2017170298A (en) * 2016-03-22 2017-09-28 株式会社東芝 Electrolytic water generator
JP2017089010A (en) * 2016-12-20 2017-05-25 株式会社東芝 Electrolytic device

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
US7048842B2 (en) Electrolysis cell for generating chlorine dioxide
JP3612569B2 (en) Low concentration hypochlorous acid-containing strongly acidic sterilizing water, low concentration hypochlorous acid-containing strongly acidic sterilizing water generating method, generating device, and low concentration hypochlorous acid-containing strongly acidic sterilizing water generating and discharging device
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
TW200517344A (en) Water treatment system and method
WO2008130016A1 (en) Apparatus for producing electrolyzed water, method for producing electrolyzed water, and electrolyzed water
JP4394942B2 (en) Electrolytic ozonizer
EP3041976A1 (en) Electrochemical production of hydrogen peroxide
WO2005105678A1 (en) Electrolysis soulution producing device
JP5282201B2 (en) Electrolyzed water generator
WO2023095572A1 (en) Hypochlorous acid water treatment device and space disinfection system using same
JP4394941B2 (en) Electrolytic ozonizer
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP2023118144A (en) Hypochlorous acid water supply device and space sterilization system using the same
JP2023108654A (en) Hypochlorous acid water supply device and space sterilization system using the same
JP2023078532A (en) Hypochlorous acid water treatment apparatus and space sterilization system using the same
KR101544377B1 (en) Sterile Water Producing Apparatus And Bidet Having The Same
KR100953180B1 (en) Device for producing pure hocl
JP2023089991A (en) Hypocrite water supply apparatus and space sterilization system using the same
JPH11319839A (en) Electrolytic cell of electrolytic neutral water forming machine
JP5366062B2 (en) Electrolysis tank and electrolysis apparatus provided with the same
JP2000093964A (en) Alkali water making method and electrolytic apparatus
JPH10201694A (en) Method and device for washing and sterilizing dishes
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP4363639B2 (en) Electrolytic ion water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898357

Country of ref document: EP

Kind code of ref document: A1