WO2023095558A1 - Adjusting device and manufacturing method for fiber collimator facing system - Google Patents

Adjusting device and manufacturing method for fiber collimator facing system Download PDF

Info

Publication number
WO2023095558A1
WO2023095558A1 PCT/JP2022/040511 JP2022040511W WO2023095558A1 WO 2023095558 A1 WO2023095558 A1 WO 2023095558A1 JP 2022040511 W JP2022040511 W JP 2022040511W WO 2023095558 A1 WO2023095558 A1 WO 2023095558A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fiber
core
fiber collimator
optical fiber
Prior art date
Application number
PCT/JP2022/040511
Other languages
French (fr)
Japanese (ja)
Inventor
武敏 高畠
哲也 小林
明日美 榧
佑太 小澤
Original Assignee
株式会社オプトクエスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトクエスト filed Critical 株式会社オプトクエスト
Publication of WO2023095558A1 publication Critical patent/WO2023095558A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an adjustment device for a fiber collimator facing system.
  • the present invention also relates to a method of manufacturing a fiber collimator facing system using this adjusting device.
  • SDM Space division multiplexing
  • MCF multi-core fiber
  • each central core has two cores.
  • the two lenses 2b and 3b may be arranged so that light enters and exits on the main axis (optical axis) of the two lenses 2b and 3b.
  • the outer core similar to the imaging of an object called a 4f system (an optical system in which the rear focal position and the front focal position of the lens are connected to transfer an image) due to the basic effects of the lenses 2b and 3b,
  • the light at the object height of height h is inverted and imaged at height -h, so that the MCFs 2a and 3a can image each other.
  • FIG. 7 shows the result of theoretical calculation of the relationship between the rotation angle and the loss in the peripheral core of the spatial optical system using the MCF. From this result, it can be seen that the loss increases as the difference between the rotation angles of the two MCFs increases.
  • the rotation angle of the MCF is adjusted by first introducing visible light into the MCF and projecting it onto a screen such as a paper surface, and performing rough adjustment while visually checking the relative deviation. After that, it was necessary to adjust the rotation angle of each MCF so as to minimize the loss while switching the light source to the communication wavelength and readjusting the optical system for coupling.
  • the main object of the present invention is to provide an adjustment device capable of efficiently adjusting the rotation angle of the MCF or the like constituting the fiber collimator facing system, and a manufacturing method of the fiber collimator facing system using the same. Make it an issue.
  • the inventors of the present invention made intensive studies on means for solving the above problems, and as a result, arranged an optical path conversion element between two fiber collimators, including MCFs, etc., arranged opposite to each other.
  • an optical path conversion element between two fiber collimators, including MCFs, etc., arranged opposite to each other.
  • a first aspect of the present invention relates to an adjusting device 1.
  • An adjusting device 1 according to the present invention is used for adjusting a fiber collimator facing system. Note that the adjustment device 1 according to the present invention does not include a fiber collimator facing system to be adjusted.
  • the fiber collimator facing system to be adjusted includes a first fiber collimator 2 and a second fiber collimator 3 that are arranged facing each other.
  • the first fiber collimator 2 includes a first optical fiber 2a and a first lens 2b.
  • the first fiber collimator 2 is arbitrarily selected from two types, a multi-core fiber (MFC) having multiple cores and a fiber bundle in which multiple single-mode fibers (SMF) having one core are bundled. That is, the first fiber collimator 2 may be either an MFC or a fiber bundle.
  • the first lens 2b is a single lens for collimating the light diverging from the end of each core of the first optical fiber 2a.
  • the second fiber collimator 3 includes a second optical fiber 3a and a second lens 3b.
  • the second optical fiber 3a is arbitrarily selected from two types of MFC and fiber bundle, and has a plurality of cores corresponding to each core of the first optical fiber 2a.
  • the second lens 3b is a single lens for collimating the light diverging from the end of each core of the second optical fiber 2b.
  • the first lens 2b also has the function of converging the collimated light that has passed through the second lens 3b onto each core of the first optical fiber 2a. It also has the function of converging the collimated light that has passed through 2b onto each core of the second optical fiber 3a.
  • the adjustment device 1 includes an imaging device 10 and an optical path conversion element 20.
  • the imaging device 10 is, for example, an infrared camera, and has an imaging device 12 that converts incident light into electrical signals.
  • the optical path rotator 20 is arranged such that the light from each core of the first optical fiber 3a and the light from each core of the second optical fiber 3b do not overlap on the imaging device 12, so that the light from the first lens 3a It may be configured to guide the light and the light from the second lens 3 b toward the imaging device 12 .
  • Examples of the optical path changing element 20 are mirrors and prisms.
  • the light from the first and second fiber collimators 2 and 3 is simultaneously and non-superimposed by the imaging device 10, thereby capturing multiple cores. It becomes possible to recognize the relative inclination (rotational angle) of core arrangement between the first and second optical fibers 3a and 3b. Therefore, it is possible to adjust the collimators in a short time by performing the adjustment while confirming the inclination of the core arrangement of the actually manufactured fiber collimator facing system. Moreover, all such adjustment work can be performed by propagating the communication light wavelength actually used through the optical fiber, and does not require time to switch the light source to visible light. Therefore, it is possible to further shorten the alignment time.
  • the adjustment device 1 further include an analysis device 30 having a display section 35 capable of displaying an image captured by the imaging device 10 .
  • a general-purpose personal computer (PC) can be used as the analysis device 30 .
  • PC personal computer
  • the analysis device 30 By using such an analysis device 30, the inclination of the core arrangement of the fiber collimator facing system can be confirmed in real time. Further, according to the analysis device 30, various analysis processes can be performed on the image captured by the imaging device 10. FIG.
  • the analysis device 30 is preferably configured to acquire coordinate information of light incident on the imaging device 12 and display it on the display unit 35 together with the captured image. By obtaining and displaying the coordinate information of the light in this way, the alignment work of the optical fiber can be performed more accurately.
  • the analysis device 30 further include a storage section 32 and a comparison section 31h.
  • the storage unit 32 stores information about the reference light incident on the image sensor 12 .
  • the comparison unit 31 h compares the information about the reference light and the information about the light that is currently incident on the image sensor 12 and outputs the comparison result to the display unit 35 .
  • light emitted from an optimally aligned fiber collimator facing system may be used as reference light, and information about the reference light may be stored in the storage unit 32 .
  • Information about the reference light includes coordinate information of the light on the imaging device 12, information about the length and inclination (angle) of the straight line connecting the two lights, and information about the angle formed by the two intersecting straight lines.
  • the comparison unit 31h compares the information on the reference light with the information on the light emitted from the fiber collimator facing system that is currently the object of adjustment, thereby performing the adjustment of the fiber collimator facing system. Able to work efficiently.
  • a second aspect of the present invention relates to a method for manufacturing a fiber collimator facing system.
  • the manufacturing method according to the second aspect basically includes the step of aligning two fiber collimators using the adjusting device 1 according to the first aspect.
  • the manufacturing method according to the present invention includes the step of capturing an image using the adjustment device 1 using the output light of the first fiber collimator facing system as reference light, and the step of capturing the output light of the second fiber collimator facing system. and a step of adjusting while comparing the image with the information on the reference light using the adjusting device 1 .
  • FIG. 1 schematically shows the structure of a fiber collimator facing system and an adjusting device used for its adjustment.
  • FIG. 2(a) schematically shows an optical element that constitutes a fiber collimator facing system and an adjustment device.
  • FIG. 2(b) schematically shows the convergence position of the emitted light from each core on the image sensor.
  • FIG. 3 is a block diagram showing an example of functional elements that mainly constitute the analyzer.
  • FIG. 4 shows an example of image processing by the analyzer.
  • FIG. 5 shows an example of image analysis processing by the analysis device.
  • FIG. 6 schematically shows an example of a method of manufacturing a fiber collimator facing system.
  • FIG. 7(a) shows a known fiber collimator facing system.
  • FIG. 7(b) is a graph showing a known relationship between fiber rotation angle and loss.
  • FIG. 1 shows an overview of an adjusting device 1 according to one embodiment of the present invention.
  • This adjustment device 1 is basically used for the alignment work of the fiber collimator facing system.
  • the fiber collimator facing system a known system including the one shown in FIG. 7(a) can be employed.
  • the fiber collimator facing system consists of two fiber collimators 2 and 3 facing each other.
  • Each fiber collimator 2, 3 includes an MCF 2a, 3a with multiple light propagating cores, respectively.
  • each of the MCFs 2a and 3a has cores corresponding in number and arrangement, and the cores of each of the MCFs 2a and 3a are optically coupled.
  • a bundle fiber formed by bundling a plurality of SMFs may be employed instead of the MCFs 2a and 3a.
  • the MCF and the bundle fiber may be coupled.
  • the optical propagation core may be a core that propagates single-mode light, or a core that propagates multi-mode light.
  • Each fiber collimator 2, 3 includes lenses 2b, 3b for collimating (converting into parallel light) the light diverged at a constant spread angle from each core of the MCF 2a, 3a. Also, these lenses 2b and 3b converge collimated light when it is incident. Cores of MCFs 2a and 3a are arranged at focal positions of the lenses 2b and 3b, respectively. Therefore, the light diverging from the core of the first MCF 2a is collimated by the first lens 2b and then converged by the second lens 3b to enter the corresponding core of the second MCF 3a. Light emitted from the core of the second MCF 3a is incident on the corresponding core of the first MCF 2a in the opposite order.
  • Each of the fiber collimators 2 and 3 has holding members 2c and 3c for holding the MCFs 2a and 3a and the lenses 2b and 3b so as to maintain a constant distance between the end faces of the MCFs 2a and 3a and the lenses 2b and 3b. have.
  • the MCFs 2a and 3a and the lenses 2b and 3b are fixed to holding members 2c and 3c. By rotating the holding members 2c and 3c during the alignment work, the MCFs 2a and 3a are separated from each other so as to minimize loss. Optical coupling takes place.
  • the adjustment device 1 basically includes an imaging device 10, an optical path changing element 20, and an analysis device 30. As shown in FIG. 1, the adjustment device 1 basically includes an imaging device 10, an optical path changing element 20, and an analysis device 30. As shown in FIG. 1, the adjustment device 1 basically includes an imaging device 10, an optical path changing element 20, and an analysis device 30. As shown in FIG. 1, the imaging device 10, an optical path changing element 20, and an analysis device 30.
  • the imaging device 10 a camera capable of imaging light with a wavelength (for example, 1000 to 2000 nm) used in general optical fiber communication is used.
  • a known infrared (IR) camera may be used.
  • the imaging device 10 basically has an imaging lens 11 and an imaging element 12 (photoelectric conversion element).
  • the imaging lens 11 converges light incident on the imaging device 10 onto the imaging device 12 .
  • the imaging device 12 is composed of, for example, a CCD image sensor unit, and converts incident light into electrical signals.
  • the imaging device 10 has electronic components such as a mechanical shutter, a shutter driver, a digital signal processor (DSP) that reads the amount of charge from the imaging device 12 and generates image data, and an IC memory. may Image data acquired by the imaging device 10 is output to the analysis device 30 .
  • DSP digital signal processor
  • the imaging device 10 converts the light emitted from each core by the imaging element 12 into an electric signal, and generates image data based on the electric charge amount.
  • image data for example, as shown in FIG. 2(b), the light emitted from each core is displayed in a dotted form.
  • This image data is output from the imaging device 10 to the analysis device 30 and is subjected to analysis processing in the analysis device 30 .
  • the image data may be a still image or a moving image with a predetermined frame rate.
  • the optical path conversion element 20 is arranged on the optical axis between the two fiber collimators 2 and 3 that constitute the fiber collimator opposing system, converts the optical path of the light emitted from each MCF 2a and 3a, and captures the light. It is an optical element for guiding to the imaging lens 11 of the device 10 .
  • This optical path changer 20 is configured to provide an optically symmetrical function to the two MCFs 2a and 3a.
  • the optical path conversion element 20 is composed of a compound prism.
  • the compound prism includes a first reflecting portion 21 that reflects light from the first fiber collimator 2 toward the imaging lens 11 and a second reflecting portion 21 that reflects light from the second fiber collimator 3 toward the imaging lens 11 .
  • the first reflecting portion 21 and the second reflecting portion 22 reflect light perpendicularly (90 degrees) to the optical axis of the MCFs 2a and 3a, depending on the core arrangement of the MCFs 2a and 3a, each core There is a risk that the lights emitted from the light beams may overlap on the image pickup element 12 of the image pickup device 10, and in that case, the coordinate positions and the like of each light beam cannot be obtained appropriately. Therefore, the first reflecting unit 21 and the second reflecting unit 22 are arranged so that the light emitted from each core of the MCFs 2a and 3a does not overlap on the imaging device 12 of the imaging device 10, so that the optical axes of the MCFs 2a and 3a are aligned.
  • each of the reflecting portions 21 and 22 reflects the light incident along the optical axis (principal axis) of the MCFs 2a and 3a at an angle (reference ⁇ in FIG. 1) of 90° with respect to the optical axis of the MCFs 2a and 3a. It is preferably adjusted to be less than 80 to 89.8 degrees, 85 to 89.8 degrees, or 87 to 89.5 degrees.
  • the optical path conversion element 20 is configured as a compound prism having two reflecting portions 21 and 22.
  • the present invention is not limited to this, and two mirrors are arranged instead of the compound prism.
  • an optical element having an optical path conversion function such as a photonic crystal can also be used as the optical path conversion element 20 .
  • FIG. 2(a) schematically shows optical paths of light emitted from each core of the two MCFs 2a and 3a.
  • FIG. 2A light emitted from each core of the two MCFs 2a and 3a passes through lenses 2b and 3b, an optical path changing element 20 (composite prism), and an imaging lens 11, respectively.
  • the light is condensed on the imaging device 12 .
  • FIG. 2B schematically shows the condensing positions on the imaging element 12 of the light emitted from each core.
  • the two MCFs 2a and 3a each consist of 4 cores, but as shown in FIG. are all observed at the same time, and all eight lights are dispersed so as not to overlap.
  • the light from the cores of the two MCFs 2a and 3a are all condensed on the imaging element 12 simultaneously and non-overlapping.
  • a lens 11 is designed.
  • the reflection angles of the first reflecting portion 21 and the second reflecting portion 22 forming the optical path changing element 20 are optimized so as to satisfy such conditions. This makes it possible to individually acquire the coordinates and the like on the imaging device 12 for the light emitted from each core.
  • the optical path conversion element 20 is arranged in a known manner so that the first arrangement of the MCFs 2a and 3a on the optical axis and the second arrangement off the optical axis can be exchanged. is preferably held by a slide mechanism (not shown) or the like.
  • the first and second fiber collimators 2, 3 are optimally adjusted with the optical path changing element 20 arranged on the optical axis of each MCF 2a, 3a. After being removed from the optical axis, these fiber collimators 2 and 3 are fixed by a fixing member or the like without being moved.
  • the analysis device 30 is a computer in which a predetermined analysis processing program is installed.
  • FIG. 3 shows an example of functional blocks of the analysis device 30.
  • the analysis device 30 includes an arithmetic processing section 31 , a storage section 32 , an input section 33 , an operation section 34 and a display section 35 .
  • the arithmetic processing unit 31 is responsible for predetermined arithmetic operations and processing for controlling other elements 32 to 35, and can use a processor such as a CPU (Central Processing Unit).
  • the arithmetic processing unit 31 basically reads a program (including an OS) stored in the storage unit 32, develops it in the main memory, and executes predetermined arithmetic processing according to this program.
  • the programs stored in the storage unit 32 include an image analysis program for causing the arithmetic processing unit 31 to execute respective arithmetic processing functions (reference numerals 31a to 31h) to be described later. Further, the arithmetic processing unit 31 can appropriately write and read the arithmetic result according to the program in the storage unit 32 .
  • the storage unit 32 is an element for storing information used for arithmetic processing in the arithmetic processing unit 31 and the result of the arithmetic operation.
  • the storage function of the storage unit 32 can be realized by non-volatile memories such as HDD and SDD, for example. Further, the storage unit 32 may have a function as a main memory for writing or reading the intermediate progress of the arithmetic processing by the arithmetic processing unit 31 .
  • a memory function of the storage unit 32 can be realized by a volatile memory such as a RAM or a DRAM.
  • the input unit 33 is an input device that mainly receives input of image data from the imaging device 10 .
  • the input unit 33 may acquire image data from the imaging device 10 through a wired connection according to a known input/output interface, or acquire image data from the imaging device 10 through a wireless connection according to a known communication standard. can be anything.
  • An example of a wired input/output interface is USB (Universal Serial Bus). Examples of wireless standards are Bluetooth® and Wi-Fi.
  • the input unit 33 may acquire image data from the imaging device 10 via the Internet or an intranet.
  • the operation unit 34 is an operation device for accepting input of operation commands by the user.
  • Examples of the operation unit 34 are pointing devices such as a mouse, a touch panel, and a trackpad, and character input devices such as a keyboard.
  • a user can input a predetermined operation command to the analysis device 30 via the operation unit 34 .
  • the display device 34 outputs and displays various information necessary for the user to use the adjusting device 1 according to the input signal from the arithmetic processing unit 31 .
  • the display device 34 displays, for example, a screen showing image data, calculation results, and the like.
  • An example of the display device 34 is an LCD (Liquid Crystal Display) or an OELD (Organic Electro Luminescence Display), but is not limited to these, and a known display device can be used.
  • FIG. 31e By executing the program stored in the storage unit 32, the arithmetic processing unit 31, as shown in FIG. 31e, a line analysis unit 31f, a reference holding unit 31g, and a comparison unit 31h.
  • the image processing unit 31a performs predetermined image processing on the image data acquired from the imaging device 10, and processes the image data so as to facilitate subsequent analysis processing. For example, as shown in FIGS. 4A and 4B, when the image data acquired from the imaging device 10 is expressed in color or grayscale, the image processing unit 31a converts this image data into a predetermined Binary processing is performed to convert to only two colors, white and black, with a threshold of . By clarifying the boundaries between the bright spots and the background contained in the image data in this way, it is possible to improve the processing speed and accuracy of the subsequent analysis processing. In addition, the image processing unit 31a can also perform image processing such as processing for sharpening the contours of bright spots and edge detection processing.
  • the spot selection unit 31b extracts only spots corresponding to the light emitted from each core of the MCF from the image data processed by the image processing unit 31a. That is, in the image data, white dots may appear in addition to the light emitted from each core. Therefore, in order to prevent erroneous detection, an appropriate size range is determined in advance for the spots corresponding to each core, and white points that are not included in the size range are excluded from the analysis targets. For example, as shown in FIGS. 4B and 4C, the spot selection unit 31b removes white spots smaller than a predetermined size range from the image data. As a result, only the spots corresponding to each core can be targeted for subsequent analysis processing.
  • the numbering unit 31c assigns a unique number to each spot extracted by the spot selection unit 31b according to a predetermined rule.
  • the analysis line is indicated by a dotted line.
  • the analysis line is inclined at an arbitrary angle, and when the analysis line is moved from the left side of the image data toward the right side, a number is assigned to each spot in the order of contact with the analysis line.
  • there are a total of 8 spots in the image data so each spot is assigned an identification number from S1 to S8.
  • the identification number designated by the numbering section 31c may be displayed on the display section 35 together with the processed image data.
  • the coordinate measurement unit 31d measures coordinate information in the image data for spots assigned identification numbers by the numbering unit 31c. Specifically, the coordinate measurement unit 31d detects the center of gravity of each spot, and obtains the x-coordinate and y-coordinate of the center of gravity of each spot, as shown in FIG. 4(e). The barycentric coordinates of each spot measured by the coordinate measuring section 31 d may be displayed on the display section 35 .
  • the line providing unit 31e provides a line (line segment) connecting the centroids of two specified spots based on the barycentric coordinates of each spot obtained by the coordinate measuring unit 31d.
  • the two spots connected by the line can be specified by the user selecting the identification number of the spots via the operation unit 34 .
  • spots S1 and S7 are connected by line L1
  • spots S2 and S8 are connected by line L2
  • spots S3 and S5 are connected by line L3
  • spots S4 and S6 are connected by line L4.
  • an identification number L1 to L4 may be assigned to each line connecting two spots.
  • the lines added by the line adding unit 31e are displayed on the display unit 35 together with the processed image data. Note that the line adding unit 31e may automatically add a line connecting the centroids of two spots according to a predetermined algorithm, instead of being manually performed by the user.
  • the line analysis unit 31f analyzes the lines added by the line addition unit 31e.
  • Examples of line analysis are absolute angle measurement, relative angle measurement, and cross line analysis.
  • FIG. 5 shows an example of analysis processing by the line analysis section 31f.
  • Absolute angle measurement is a process of obtaining the angle (absolute angle) of image data with respect to the x-coordinate axis for each line, as shown in FIG. 5(a).
  • the angle (relative angle) formed by two lines that intersect each other is determined.
  • a combination of two lines for measuring the relative angle can be designated by the user by selecting line identification numbers via the operation unit 34 .
  • two lines for measuring relative angles may be automatically selected according to a predetermined algorithm. The relative angle between the two lines may be obtained by actually measuring the angle based on the lines given on the image data, or may be calculated based on the absolute angle of each line.
  • Cross line analysis is a process of dividing a plurality of lines into two groups and comparing the lines between the groups.
  • the first group (G1) is line L1 (horizontal line) and line L3 (vertical line)
  • the second group (G2) is line L2 (horizontal line) and line L4 (vertical line).
  • the first group (G1) connects spots of light emitted from the first MCF 2a
  • the second group (G2) connects the light spots emitted from the second MCF 3a. It connects the spots of Such grouping of each line can be specified by the user selecting the line identification number via the operation unit 34 . Since lines for which relative angles are calculated in relative angle measurement basically belong to the same group, lines for which relative angle measurements are performed may be automatically included in the same group.
  • the core arrangement of both multi-cores is not an ideal square in reality, and due to manufacturing errors, it may be a rhombus or parallelogram. It is arranged.
  • the core arrangement is a diamond-shaped case with a length difference in two diagonal lines, the coupling efficiency will be higher if the length combination of the two facing fiber collimator cores is also matched.
  • cross-line analysis is used to determine whether the combination of long and short lengths of both collimators is matched. In other words, if the cross-line parallel difference is smaller than the orthogonal difference, it can be determined that the current combination is optimal, and if the reverse is the case, it can be determined that one of the fibers is rotated by 90° to be the optimal combination.
  • the reference storage unit 31g stores the values measured by the coordinate measurement unit 31d and the line analysis unit 31f in the storage unit 32 as reference values. That is, a fiber collimator facing system in which the rotation angles of the MCFs 2a and 3a are optimally adjusted is prepared in advance, and measurement is performed using the adjusting device 1 according to the present invention. Specifically, regarding this fiber collimator facing system, the coordinate information of each spot obtained by the coordinate measurement unit 31d, the absolute angle, the relative angle, the cross-line parallel difference, the cross-line orthogonal difference, etc. obtained by the line analysis unit 31f. Information may be stored in the storage unit 32 as a reference value.
  • the fiber collimator facing system that has not yet been optimally adjusted does not serve as a reference, so there is no need to store the various measurement values described above in the storage unit 32 .
  • the comparison unit 31f compares the "reference value" stored in the storage unit 32 with respect to the optimally adjusted reference fiber collimator facing system (first fiber collimator facing system) and the fiber collimator facing system currently being measured.
  • the system (the second fiber collimator facing system) is compared with values (referred to as “current values”) measured by the coordinate measuring unit 31d and the line analyzing unit 31f, and the comparison result is output to the display unit 35.
  • the reference value and the current value may be quantitatively compared with respect to information such as the coordinate information of each spot, the absolute angle, the relative angle, the cross-line parallel difference, and the cross-line orthogonal difference.
  • the user can adjust the rotation angles of the MCFs 2a and 3a so that the current value of the second fiber collimator facing system approaches the reference value. This makes it possible to efficiently adjust the rotation angles of the MCFs 2a and 3a included in the second fiber collimator facing system.
  • a method for manufacturing the fiber collimator facing system will be described.
  • a first fiber collimator facing system including first and second fiber collimators 2' and 3' whose rotation angles are optimally adjusted in advance is prepared.
  • the adjustment device 1 including the imaging device 10, the optical path changing element 20, and the analysis device 30
  • Information such as coordinate information of the spot corresponding to the emitted light, absolute angle, relative angle, cross-line parallel difference, and cross-line orthogonal difference is measured.
  • the information measured here is stored in the analyzer 30 as a reference value.
  • first and second fiber collimators 2' and 3' are fixed by a semi-fixed member 4 having a cutout at a portion corresponding to the optical path changing element 20 while maintaining the rotation angle and the like. You should keep it.
  • the first and second fiber collimators 2 and 3 to be actually adjusted are prepared in the first fiber collimator facing system.
  • the MCFs 2a and 3a of the first and second fiber collimators 2 and 3 are not yet fixed in rotation angle and the like.
  • the same adjustment device 1 that was used to measure the first fiber collimator facing system was used to measure the coordinate information of the spot corresponding to the light emitted from each core, the absolute angle, Information such as relative angle, cross-line parallel difference, and cross-line orthogonal difference are measured as current values.
  • the display unit of the analyzer 30 displays the comparison result between the current value of the second fiber collimator facing system and the reference value of the first fiber collimator facing system. Then, the rotation angles of the MCFs 2a and 3a are adjusted so that the current value of the second fiber collimator facing system approaches the reference value of the first fiber collimator facing system.
  • the first and second fiber collimators 2, 3 in which the rotation angles of the MCFs 2a, 3a are optimized are fixed by the fixing member 5.
  • the first and second fiber collimators 2 and 3 can be fixed by the fixing member 5 while the positions and orientations of the first and second fiber collimators 2 and 3 are kept optimally adjusted. is.
  • another adjustment of the fiber collimator facing system can be performed. Thereby, the adjustment work of the fiber collimator facing system can be performed continuously.

Abstract

An adjusting device (1) for a fiber collimator facing system comprises an imaging device (10) having an imaging element (12) and an optical path conversion element (20). The optical path conversion element (20) is configured to guide light from each core toward the imaging element (12) such that light emitted from a plurality of cores of a first fiber collimator (2) and light emitted from a plurality of cores of a second collimator (3) do not overlap each other on the imaging element (12).

Description

ファイバコリメータ対向系の調整装置及び製造方法Fiber collimator facing system adjustment device and manufacturing method
 本発明は、ファイバコリメータ対向系用の調整装置に関する。また、本発明は、この調整装置を利用してファイバコリメータ対向系を製造する方法に関する。 The present invention relates to an adjustment device for a fiber collimator facing system. The present invention also relates to a method of manufacturing a fiber collimator facing system using this adjusting device.
 光ファイバネットワークにおけるトラヒック量の増大に対して、その要求に応えるべく空間分割多重伝送(SDM)が提唱され、その中の1つの方式として、マルチコアファイバ(MCF)が提案されている。MCFとしては、1本の光ファイバに複数の光伝搬コアを有するものが知られている。また、1つのコアを有するシングルモードファイバ(SMF)を複数本束ねたファイババンドルを、MCFの代用品として用いることも知られている。 Space division multiplexing (SDM) has been proposed to meet the increasing traffic volume in optical fiber networks, and multi-core fiber (MCF) has been proposed as one of these methods. As an MCF, one having a plurality of light propagation cores in one optical fiber is known. It is also known to use a fiber bundle in which multiple single-mode fibers (SMF) having one core are bundled as a substitute for MCF.
 MCFの光伝搬コア同士を結合するためには、例えば図7に示すように、典型的には、結合対象となる2つのMCF2a,3aの間に光学的に等価の2つの単レンズ2b,3bを配置したファイバコリメータ対向系が採用される(特許文献1)。出射側の第1のMCF2aの各光伝搬コアから出射された光は、拡がりながら空間を進んでいくが、第1のレンズ2bを通過することによって集光され理論的には平行光となり空間をさらに進む。また、この光は、さらに第2のレンズ3bを通過することによって集光され、入射側の第2のMCF3aの各光伝搬コアに結合される。このとき、例えば1本の光ファイバの中心に中心コアが設けられ、その周囲に複数の外周コアが設けられた断面構造を持つMCF同士を空間結合する際には、各中心コアについては、2つのレンズ2b,3bの主軸(光軸)上で光を入出射するように配置すればよい。また、外周コアについては、レンズ2b,3bの基本的な効果による4f系(レンズの後側焦点位置と前側焦点位置とを連ねて像転写する光学系)と呼ばれる物体の結像と同様に、高さhの物体高の光は高さ-hに反転されて結像される効果によってMCF2a,3a同士の結像が可能となる。 In order to couple the light propagation cores of the MCFs, typically, two optically equivalent single lenses 2b, 3b are placed between the two MCFs 2a, 3a to be coupled, as shown in FIG. (Patent Document 1). The light emitted from each light propagation core of the first MCF 2a on the emission side spreads as it travels through the space. Go further. Further, this light is condensed by passing through the second lens 3b and coupled to each light propagation core of the second MCF 3a on the incident side. At this time, for example, when spatially coupling MCFs having a cross-sectional structure in which a central core is provided at the center of one optical fiber and a plurality of outer peripheral cores are provided around it, each central core has two cores. The two lenses 2b and 3b may be arranged so that light enters and exits on the main axis (optical axis) of the two lenses 2b and 3b. As for the outer core, similar to the imaging of an object called a 4f system (an optical system in which the rear focal position and the front focal position of the lens are connected to transfer an image) due to the basic effects of the lenses 2b and 3b, The light at the object height of height h is inverted and imaged at height -h, so that the MCFs 2a and 3a can image each other.
特開2016-109887号公報JP 2016-109887 A
 ところで、一般的なSMFの結合系では、空間ビームに対するファイバの位置ずれやモードフィールド径の不一致などが主な損失悪化の要因となるが、これらはMCFの結合系においても同様である。これらに加えて、MCF結合系の特有の課題として、MCFのファイバ回転角を調整する必要性が挙げられる。図7にMCFを用いた空間光学系の外周コアにおける回転角度と損失の関係についての理論計算を行った結果を示している。この結果から、2つのMCFの回転角度のずれが大きくなるほど損失も大きくなることがわかる。 By the way, in a general SMF coupling system, misalignment of the fiber with respect to the spatial beam and mismatch of the mode field diameter are the main causes of loss deterioration. In addition to these, a unique problem of the MCF coupling system is the need to adjust the fiber rotation angle of the MCF. FIG. 7 shows the result of theoretical calculation of the relationship between the rotation angle and the loss in the peripheral core of the spatial optical system using the MCF. From this result, it can be seen that the loss increases as the difference between the rotation angles of the two MCFs increases.
 ここで、従来、MCFの回転角度の調整は、一旦可視光をMCFに導入して紙面などのスクリーンに投影し、相対的なずれを目視で確認しながら粗調整を行う。その後、光源を通信波長に切り替えて光学系を再調整して結合させながら、損失が最小になるように各MCFの回転角度の調整を行う必要があった。しかしながら、このような工程によってMCFの回転角度の調整を行う場合、例えばスクリーンに投影された可視光を確認しつつ光源の切り替えを繰り返し行ってMCFの回転角度を調整することが必要となるため、ファイバコリメータ対向系の製造時間を短縮することが困難であるという課題を抱えていた。 Here, conventionally, the rotation angle of the MCF is adjusted by first introducing visible light into the MCF and projecting it onto a screen such as a paper surface, and performing rough adjustment while visually checking the relative deviation. After that, it was necessary to adjust the rotation angle of each MCF so as to minimize the loss while switching the light source to the communication wavelength and readjusting the optical system for coupling. However, when adjusting the rotation angle of the MCF by such a process, it is necessary to adjust the rotation angle of the MCF by repeatedly switching the light source while checking the visible light projected on the screen, for example. There was a problem that it was difficult to shorten the manufacturing time of the fiber collimator facing system.
 そこで、本発明は、ファイバコリメータ対向系を構成するMCF等の回転角度を効率的に調整することのできる調整装置や、それを用いたファイバコリメータ対向系の製造方法を提供することを、主な課題とする。 Therefore, the main object of the present invention is to provide an adjustment device capable of efficiently adjusting the rotation angle of the MCF or the like constituting the fiber collimator facing system, and a manufacturing method of the fiber collimator facing system using the same. Make it an issue.
 本発明の発明者らは、上記の課題を解決する手段について鋭意検討した結果、MCF等を含む対向配置された2つのファイバコリメータの間に光路変換素子を配置して、2つのファイバコリメータの各コアから出射された光を同時かつ非重畳的に撮像装置の撮像素子へと導くことにより、MCF等同士を光学的に結合する際に、それらの回転角度の調整作業を効率的に行うことができるようになるという知見を得た。そして、本発明者は、上記知見に基づけば、従来技術の課題を解決できることに想到し、本発明を完成させた。具体的に説明すると、本発明は以下の構成又は工程を有する。 The inventors of the present invention made intensive studies on means for solving the above problems, and as a result, arranged an optical path conversion element between two fiber collimators, including MCFs, etc., arranged opposite to each other. By guiding the light emitted from the cores to the imaging element of the imaging device simultaneously and non-overlapping, it is possible to efficiently adjust the rotation angles of the MCFs and the like when optically coupling them. I got the knowledge that I can do it. Based on the above findings, the inventors of the present invention have conceived that the problems of the prior art can be solved, and completed the present invention. Specifically, the present invention has the following configurations or steps.
 本発明の第1の側面は、調整装置1に関する。本発明に係る調整装置1は、ファイバコリメータ対向系の調整に用いられる。なお、本発明に係る調整装置1には、その調整対象となるファイバコリメータ対向系は含まれない。 A first aspect of the present invention relates to an adjusting device 1. An adjusting device 1 according to the present invention is used for adjusting a fiber collimator facing system. Note that the adjustment device 1 according to the present invention does not include a fiber collimator facing system to be adjusted.
 調整対象となるファイバコリメータ対向系は、互いに対向配置された第1のファイバコリメータ2と第2のファイバコリメータ3を備える。第1のファイバコリメータ2は、第1の光ファイバ2aと第1のレンズ2bとを含む。第1のファイバコリメータ2は、複数のコアを有するマルチコアファイバ(MFC)と、1つのコアを有する複数のシングルモードファイバ(SMF)を束ねたファイババンドルとの2種から任意に選択される。つまり、第1のファイバコリメータ2は、MFCとファイババンドルのどちらであってもよい。第1のレンズ2bは、第1の光ファイバ2aの各コアの端部から発散される光をコリメートするための単レンズである。同様に、第2のファイバコリメータ3は、第2の光ファイバ3aと第2のレンズ3bとを含む。第2の光ファイバ3aは、MFCとファイババンドルとの2種から任意に選択されるものであり、第1の光ファイバ2aの各コアに対応する複数のコアを持つ。第2のレンズ3bは、第2の光ファイバ2bの各コアの端部から発散される光をコリメートするための単レンズである。なお、第1のレンズ2bは、第2のレンズ3bを通過したコリメート光を第1の光ファイバ2aの各コアに集束させる機能を併せ持ち、同様に、第2のレンズ3bは、第1のレンズ2bを通過したコリメート光を第2の光ファイバ3aの各コアに集束させる機能を併せ持つ。 The fiber collimator facing system to be adjusted includes a first fiber collimator 2 and a second fiber collimator 3 that are arranged facing each other. The first fiber collimator 2 includes a first optical fiber 2a and a first lens 2b. The first fiber collimator 2 is arbitrarily selected from two types, a multi-core fiber (MFC) having multiple cores and a fiber bundle in which multiple single-mode fibers (SMF) having one core are bundled. That is, the first fiber collimator 2 may be either an MFC or a fiber bundle. The first lens 2b is a single lens for collimating the light diverging from the end of each core of the first optical fiber 2a. Similarly, the second fiber collimator 3 includes a second optical fiber 3a and a second lens 3b. The second optical fiber 3a is arbitrarily selected from two types of MFC and fiber bundle, and has a plurality of cores corresponding to each core of the first optical fiber 2a. The second lens 3b is a single lens for collimating the light diverging from the end of each core of the second optical fiber 2b. The first lens 2b also has the function of converging the collimated light that has passed through the second lens 3b onto each core of the first optical fiber 2a. It also has the function of converging the collimated light that has passed through 2b onto each core of the second optical fiber 3a.
 ここで、本発明に係る調整装置1は、撮像装置10と光路変換素子20とを備える。撮像装置10は、例えば赤外線カメラであり、入射光を電気信号に変換する撮像素子12を有する。光路変換素子20は、第1の光ファイバ3aの各コアからの光と第2の光ファイバ3bの各コアからの光とが撮像素子12上において重ならないように、第1のレンズ3aからの光と第2のレンズ3bからの光とを撮像素子12に向けて導くように構成されていうる。光路変換素子20の例は、ミラーやプリズムである。 Here, the adjustment device 1 according to the present invention includes an imaging device 10 and an optical path conversion element 20. The imaging device 10 is, for example, an infrared camera, and has an imaging device 12 that converts incident light into electrical signals. The optical path rotator 20 is arranged such that the light from each core of the first optical fiber 3a and the light from each core of the second optical fiber 3b do not overlap on the imaging device 12, so that the light from the first lens 3a It may be configured to guide the light and the light from the second lens 3 b toward the imaging device 12 . Examples of the optical path changing element 20 are mirrors and prisms.
 上記構成のように、本発明に係る調整装置1によれば、第1及び第2のファイバコリメータ2,3からの光を同時かつ非重畳的に撮像装置10で撮像することで、複数コアを持つ第1及び第2の光ファイバ3a,3b同士の相対的なコア配置の傾き(回転角度)を認識できるようになる。このため、実際に製造されたファイバコリメータ対向系のコア配置の傾きを確認しながらその調整作業を行うことで、コリメータ同士の調整を短時間で行うことが可能となる。また、このような調整作業は全て実際に使用する通信光波長を光ファイバに伝搬させて行うことが可能であり、光源を可視光に切り替える時間を必要としない。従って、更なる調心時間の短縮が実現できる。 As described above, according to the adjustment device 1 according to the present invention, the light from the first and second fiber collimators 2 and 3 is simultaneously and non-superimposed by the imaging device 10, thereby capturing multiple cores. It becomes possible to recognize the relative inclination (rotational angle) of core arrangement between the first and second optical fibers 3a and 3b. Therefore, it is possible to adjust the collimators in a short time by performing the adjustment while confirming the inclination of the core arrangement of the actually manufactured fiber collimator facing system. Moreover, all such adjustment work can be performed by propagating the communication light wavelength actually used through the optical fiber, and does not require time to switch the light source to visible light. Therefore, it is possible to further shorten the alignment time.
 本発明に係る調整装置1は、撮像装置10による撮像画像を表示可能な表示部35を有する分析装置30をさらに備えることが好ましい。分析装置30としては、汎用的なパーソナルコンピュータ(PC)を利用できる。このような分析装置30を用いることで、ファイバコリメータ対向系のコア配置の傾きをリアルタイムに確認できる。また、この分析装置30によれば撮像装置10の撮像画像に対して様々な分析処理を行うことができる。 It is preferable that the adjustment device 1 according to the present invention further include an analysis device 30 having a display section 35 capable of displaying an image captured by the imaging device 10 . A general-purpose personal computer (PC) can be used as the analysis device 30 . By using such an analysis device 30, the inclination of the core arrangement of the fiber collimator facing system can be confirmed in real time. Further, according to the analysis device 30, various analysis processes can be performed on the image captured by the imaging device 10. FIG.
 本発明に係る調整装置1において、分析装置30は、撮像素子12に入射した光の座標情報を取得し、撮像画像とともに表示部35に表示可能に構成されていることが好ましい。このように光の座標情報を取得して表示することで、光ファイバの調心作業をさらに正確に行うことができる。 In the adjustment device 1 according to the present invention, the analysis device 30 is preferably configured to acquire coordinate information of light incident on the imaging device 12 and display it on the display unit 35 together with the captured image. By obtaining and displaying the coordinate information of the light in this way, the alignment work of the optical fiber can be performed more accurately.
 本発明に係る調整装置1において、分析装置30は、記憶部32と比較部31hをさらに有することが好ましい。記憶部32は、撮像素子12に入射した参照光に関する情報を保存する。比較部31hは、参照光に関する情報と現在撮像素子12に入射している光に関する情報とを比較し、その比較結果を表示部35に出力する。例えば、最適に調心されたファイバコリメータ対向系から出射された光を参照光とし、その参照光に関する情報を記憶部32に保存しておけばよい。参照光に関する情報としては、撮像素子12上における光の座標情報や、2つの光を結ぶ直線の長さや傾き(角度)に関する情報、交差する2つの当該直線のなす角度に関する情報が含まれる。そして、比較部31hにおいて、このような参照光に関する情報と、現在実際に調整対象とされているファイバコリメータ対向系から出射された光に関する情報とを比較することで、そのファイバコリメータ対向系の調心作業を効率良く行うことができる。 In the adjustment device 1 according to the present invention, it is preferable that the analysis device 30 further include a storage section 32 and a comparison section 31h. The storage unit 32 stores information about the reference light incident on the image sensor 12 . The comparison unit 31 h compares the information about the reference light and the information about the light that is currently incident on the image sensor 12 and outputs the comparison result to the display unit 35 . For example, light emitted from an optimally aligned fiber collimator facing system may be used as reference light, and information about the reference light may be stored in the storage unit 32 . Information about the reference light includes coordinate information of the light on the imaging device 12, information about the length and inclination (angle) of the straight line connecting the two lights, and information about the angle formed by the two intersecting straight lines. Then, the comparison unit 31h compares the information on the reference light with the information on the light emitted from the fiber collimator facing system that is currently the object of adjustment, thereby performing the adjustment of the fiber collimator facing system. Able to work efficiently.
 本発明の第2の側面は、ファイバコリメータ対向系の製造方法に関する。第2の側面に係る製造方法は、基本的に前述した第1の側面に係る調整装置1を用いて2つのファイバコリメータを調心する工程を含む。具体的に説明すると、本発明に係る製造方法は、第1のファイバコリメータ対向系の出力光を参照光として調整装置1を用いて撮像する工程と、第2のファイバコリメータ対向系の出力光を調整装置1を用いて撮像し参照光に関する情報と比較しながら調整する工程とを含む。 A second aspect of the present invention relates to a method for manufacturing a fiber collimator facing system. The manufacturing method according to the second aspect basically includes the step of aligning two fiber collimators using the adjusting device 1 according to the first aspect. Specifically, the manufacturing method according to the present invention includes the step of capturing an image using the adjustment device 1 using the output light of the first fiber collimator facing system as reference light, and the step of capturing the output light of the second fiber collimator facing system. and a step of adjusting while comparing the image with the information on the reference light using the adjusting device 1 .
 本発明によれば、ファイバコリメータ対向系を構成するMCF等の回転角度を効率的に調整することができる。 According to the present invention, it is possible to efficiently adjust the rotation angles of the MCF and the like that constitute the fiber collimator facing system.
図1は、ファイバコリメータ対向系とその調整に用いられる調整装置の構成を模式的に示している。FIG. 1 schematically shows the structure of a fiber collimator facing system and an adjusting device used for its adjustment. 図2(a)は、ファイバコリメータ対向系と調整装置を構成する光学素子を模式的に示している。図2(b)は、撮像素子上における各コアからの出射光の集束位置を模式的に示している。FIG. 2(a) schematically shows an optical element that constitutes a fiber collimator facing system and an adjustment device. FIG. 2(b) schematically shows the convergence position of the emitted light from each core on the image sensor. 図3は、主に分析装置を構成する機能的要素の例を示したブロック図である。FIG. 3 is a block diagram showing an example of functional elements that mainly constitute the analyzer. 図4は、分析装置による画像処理の例を示してる。FIG. 4 shows an example of image processing by the analyzer. 図5は、分析装置による画像解析処理の例を示している。FIG. 5 shows an example of image analysis processing by the analysis device. 図6は、ファイバコリメータ対向系の製造方法の一例を模式的に示している。FIG. 6 schematically shows an example of a method of manufacturing a fiber collimator facing system. 図7(a)は、公知のファイバコリメータ対向系を示している。図7(b)は、ファイバ回転角度と損失の公知の関係性を示したグラフである。FIG. 7(a) shows a known fiber collimator facing system. FIG. 7(b) is a graph showing a known relationship between fiber rotation angle and loss.
 以下、図面を用いて本発明を実施するための形態について説明する。本発明は、以下に説明する形態に限定されるものではなく、以下の形態から当業者が自明な範囲で適宜変更したものも含む。 Embodiments for carrying out the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described below, and includes appropriate modifications within the scope obvious to those skilled in the art from the following embodiments.
 図1は、本発明の一実施形態に係る調整装置1の概要を示している。この調整装置1は、基本的にファイバコリメータ対向系の調心作業に用いられる。 FIG. 1 shows an overview of an adjusting device 1 according to one embodiment of the present invention. This adjustment device 1 is basically used for the alignment work of the fiber collimator facing system.
 本発明に係る調整装置1を説明する前に、調整対象となるファイバコリメータ対向系について説明する。ファイバコリメータ対向系としては、図7(a)に示したものを含め公知のものを採用できる。ファイバコリメータ対向系は、2つの対向配置されたファイバコリメータ2,3から構成される。各ファイバコリメータ2,3は、それぞれ、複数の光伝搬コアを持つMCF2a,3aを含む。ファイバコリメータ対向系においては、各MCF2a,3aは、互いに対応する数と配置のコアを有しており、各MCF2a,3aのコアはそれぞれ光学的に結合されることとなる。なお、このMCF2a,3aに代えて、複数のSMFを束ねてなるバンドルファイバが採用されていてもよい。また、MCFとバンドルファイバとを結合することとしてもよい。また、光伝搬コアは、シングルモード光を伝搬するコアであってもよいし、マルチモード光を伝搬するコアであってもよい。 Before explaining the adjustment device 1 according to the present invention, the fiber collimator facing system to be adjusted will be explained. As the fiber collimator facing system, a known system including the one shown in FIG. 7(a) can be employed. The fiber collimator facing system consists of two fiber collimators 2 and 3 facing each other. Each fiber collimator 2, 3 includes an MCF 2a, 3a with multiple light propagating cores, respectively. In the fiber collimator facing system, each of the MCFs 2a and 3a has cores corresponding in number and arrangement, and the cores of each of the MCFs 2a and 3a are optically coupled. A bundle fiber formed by bundling a plurality of SMFs may be employed instead of the MCFs 2a and 3a. Also, the MCF and the bundle fiber may be coupled. Further, the optical propagation core may be a core that propagates single-mode light, or a core that propagates multi-mode light.
 各ファイバコリメータ2,3は、MCF2a,3aの各コアから一定の広がり角にて発散された光をコリメートする(平行光に変換する)ためのレンズ2b,3bを含む。また、これらのレンズ2b,3bは、コリメート光が入射した場合にはそれを集束する。各レンズ2b,3bの焦点位置には、それぞれMCF2a,3aのコアが配置されている。このため、第1のMCF2aのコアから発散された光は、第1のレンズ2bによってコリメートされた後、第2のレンズ3bによって集束されて、第2のMCF3aの対応するコアに入射する。第2のMCF3aのコアから発散された光は、これとは反対の順序にて第1のMCF2aの対応するコアに入射することとなる。 Each fiber collimator 2, 3 includes lenses 2b, 3b for collimating (converting into parallel light) the light diverged at a constant spread angle from each core of the MCF 2a, 3a. Also, these lenses 2b and 3b converge collimated light when it is incident. Cores of MCFs 2a and 3a are arranged at focal positions of the lenses 2b and 3b, respectively. Therefore, the light diverging from the core of the first MCF 2a is collimated by the first lens 2b and then converged by the second lens 3b to enter the corresponding core of the second MCF 3a. Light emitted from the core of the second MCF 3a is incident on the corresponding core of the first MCF 2a in the opposite order.
 また、各ファイバコリメータ2,3は、MCF2a,3aの端面とレンズ2b,3bの間の間隔を一定に維持するように、MCF2a,3aとレンズ2b,3bとを保持する保持部材2c,3cを有している。MCF2a,3aとレンズ2b,3bとは保持部材2c,3cに固定されており、調心作業時にはこの保持部材2c,3cを回転させることで、損失が最小限になるようにMCF2a,3a同士の光学的な結合が行われる。 Each of the fiber collimators 2 and 3 has holding members 2c and 3c for holding the MCFs 2a and 3a and the lenses 2b and 3b so as to maintain a constant distance between the end faces of the MCFs 2a and 3a and the lenses 2b and 3b. have. The MCFs 2a and 3a and the lenses 2b and 3b are fixed to holding members 2c and 3c. By rotating the holding members 2c and 3c during the alignment work, the MCFs 2a and 3a are separated from each other so as to minimize loss. Optical coupling takes place.
 続いて、本発明に係る調整装置1について説明する。図1に示されるように、調整装置1は、基本的に、撮像装置10、光路変換素子20、及び分析装置30を備える。 Next, the adjustment device 1 according to the present invention will be explained. As shown in FIG. 1, the adjustment device 1 basically includes an imaging device 10, an optical path changing element 20, and an analysis device 30. As shown in FIG.
 撮像装置10としては、一般的な光ファイバ通信で用いられる波長(例えば1000~2000nm)の光を撮像できるカメラが用いられる。例えば撮像装置10としては、公知の赤外線(IR)カメラを利用すればよい。撮像装置10は、基本的には、撮像レンズ11と撮像素子12(光電変換素子)を有する。撮像レンズ11は、撮像装置10に入射した光を撮像素子12に集光する。また、撮像素子12は、例えばCCDイメージセンサユニットで構成されており、入射した光を電気信号に変換する。その他、撮像装置10は、図示は省略するが、メカシャッターや、シャッタードライバ、撮像素子12から電荷量を読み出し画像データを生成するデジタルシグナルプロセッサ(DSP)、ICメモリ等の電子部品を有していてもよい。撮影装置10によって取得された画像データは、分析装置30へと出力される。 As the imaging device 10, a camera capable of imaging light with a wavelength (for example, 1000 to 2000 nm) used in general optical fiber communication is used. For example, as the imaging device 10, a known infrared (IR) camera may be used. The imaging device 10 basically has an imaging lens 11 and an imaging element 12 (photoelectric conversion element). The imaging lens 11 converges light incident on the imaging device 10 onto the imaging device 12 . The imaging device 12 is composed of, for example, a CCD image sensor unit, and converts incident light into electrical signals. In addition, although not shown, the imaging device 10 has electronic components such as a mechanical shutter, a shutter driver, a digital signal processor (DSP) that reads the amount of charge from the imaging device 12 and generates image data, and an IC memory. may Image data acquired by the imaging device 10 is output to the analysis device 30 .
 撮像装置10は、撮像素子12により各コアから出射された光を電気信号に変換し、その電荷量に基づいて画像データを生成する。画像データは、例えば図2(b)に示したように、各コアから出射された光が点状に示されることとなる。この画像データは、撮像装置10から分析装置30へと出力され、分析装置30において分析処理の対象とされる。なお、画像データは、静止画であってもよいし、所定のフレームレートの動画であってもよい。 The imaging device 10 converts the light emitted from each core by the imaging element 12 into an electric signal, and generates image data based on the electric charge amount. In the image data, for example, as shown in FIG. 2(b), the light emitted from each core is displayed in a dotted form. This image data is output from the imaging device 10 to the analysis device 30 and is subjected to analysis processing in the analysis device 30 . Note that the image data may be a still image or a moving image with a predetermined frame rate.
 光路変換素子20は、ファイバコリメータ対向系を構成する2つのファイバコリメータ2,3の間の光軸上に配置され、各MCF2a,3aから出射された光の光路を変換して、その光を撮像装置10の撮像レンズ11へと導くための光学素子である。この光路変換素子20は、2つのMCF2a,3aに対して光学的に対称な機能を提供するように構成されたものである。図1に示した例において、光路変換素子20は、複合プリズムによって構成されている。複合プリズムは、第1のファイバコリメータ2からの光を撮像レンズ11に向けて反射する第1の反射部21と、第2のファイバコリメータ3からの光を撮像レンズ11に向けて反射する第2の反射部22とを有する。ここで、第1の反射部21と第2の反射部22とが、MCF2a,3aの光軸に対して直角(90度)に光を反射すると、MCF2a,3aのコア配置によっては、各コアから出射された光が撮像装置10の撮像素子12上において重なる恐れがあり、その場合、各光の座標位置等を適切に取得できなくなる。このため、第1の反射部21と第2の反射部22は、MCF2a,3aの各コアから出射された光が撮像装置10の撮像素子12上において重ならないように、MCF2a,3aの光軸に対して、その光の反射角度が傾斜して配置されている。例えば、各反射部21,22は、MCF2a,3aの光軸(主軸)に沿って入射してきた光を反射する角度(図1:符号θ)が、MCF2a,3aの光軸に対して、90度未満、具体的には80~89.8度、85~89.8度、又は87~89.5度となるように調整されていることが好ましい。 The optical path conversion element 20 is arranged on the optical axis between the two fiber collimators 2 and 3 that constitute the fiber collimator opposing system, converts the optical path of the light emitted from each MCF 2a and 3a, and captures the light. It is an optical element for guiding to the imaging lens 11 of the device 10 . This optical path changer 20 is configured to provide an optically symmetrical function to the two MCFs 2a and 3a. In the example shown in FIG. 1, the optical path conversion element 20 is composed of a compound prism. The compound prism includes a first reflecting portion 21 that reflects light from the first fiber collimator 2 toward the imaging lens 11 and a second reflecting portion 21 that reflects light from the second fiber collimator 3 toward the imaging lens 11 . and a reflecting portion 22 of . Here, if the first reflecting portion 21 and the second reflecting portion 22 reflect light perpendicularly (90 degrees) to the optical axis of the MCFs 2a and 3a, depending on the core arrangement of the MCFs 2a and 3a, each core There is a risk that the lights emitted from the light beams may overlap on the image pickup element 12 of the image pickup device 10, and in that case, the coordinate positions and the like of each light beam cannot be obtained appropriately. Therefore, the first reflecting unit 21 and the second reflecting unit 22 are arranged so that the light emitted from each core of the MCFs 2a and 3a does not overlap on the imaging device 12 of the imaging device 10, so that the optical axes of the MCFs 2a and 3a are aligned. The reflection angle of the light is inclined with respect to . For example, each of the reflecting portions 21 and 22 reflects the light incident along the optical axis (principal axis) of the MCFs 2a and 3a at an angle (reference θ in FIG. 1) of 90° with respect to the optical axis of the MCFs 2a and 3a. It is preferably adjusted to be less than 80 to 89.8 degrees, 85 to 89.8 degrees, or 87 to 89.5 degrees.
 なお、図1に示した例では、光路変換素子20は、2つの反射部21,22を持つ複合プリズムとして構成されているが、これに限らず、複合プリズムの代わりに2枚のミラーを配置することも可能である。その他、フォトニック結晶などの光路変換機能を持つ光学素子を、光路変換素子20として利用することもできる。 In the example shown in FIG. 1, the optical path conversion element 20 is configured as a compound prism having two reflecting portions 21 and 22. However, the present invention is not limited to this, and two mirrors are arranged instead of the compound prism. It is also possible to In addition, an optical element having an optical path conversion function such as a photonic crystal can also be used as the optical path conversion element 20 .
 図2(a)は、2つのMCF2a,3aの各コアから出射された光の光路を模式的に示している。図2(a)に示されるように、2つのMCF2a,3aの各コアから出射された光は、それぞれ、レンズ2b,3b、光路変換素子20(複合プリズム)、及び撮像レンズ11を経由して撮像素子12に集光される。また、図2(b)は、各コアから出射された光の撮像素子12上における集光位置を模式的に示したものである。図2(a)(b)に示した例では、2つのMCF2a,3aはそれぞれ4コアで構成されているが、図2(b)に示されるように、撮像素子12上では合計8つの光がすべて同時に観測されるとともに、8つの光がすべて重ならないように分散されている。このように、本発明に係る調整装置1では、2つのMCF2a,3aの各コアからの光がすべて同時かつ非重畳的に撮像素子12上に集光されるように、光路変換素子20及び撮像レンズ11が設計されている。とりわけ、このような条件を満たすように、光路変換素子20を構成する第1の反射部21及び第2の反射部22の反射角度が最適化される。これにより、各コアから出射された光について、撮像素子12上における座標等を個別に取得できるようになる。 FIG. 2(a) schematically shows optical paths of light emitted from each core of the two MCFs 2a and 3a. As shown in FIG. 2A, light emitted from each core of the two MCFs 2a and 3a passes through lenses 2b and 3b, an optical path changing element 20 (composite prism), and an imaging lens 11, respectively. The light is condensed on the imaging device 12 . FIG. 2B schematically shows the condensing positions on the imaging element 12 of the light emitted from each core. In the example shown in FIGS. 2A and 2B, the two MCFs 2a and 3a each consist of 4 cores, but as shown in FIG. are all observed at the same time, and all eight lights are dispersed so as not to overlap. As described above, in the adjusting device 1 according to the present invention, the light from the cores of the two MCFs 2a and 3a are all condensed on the imaging element 12 simultaneously and non-overlapping. A lens 11 is designed. In particular, the reflection angles of the first reflecting portion 21 and the second reflecting portion 22 forming the optical path changing element 20 are optimized so as to satisfy such conditions. This makes it possible to individually acquire the coordinates and the like on the imaging device 12 for the light emitted from each core.
 また、図2に示されるように、光路変換素子20は、各MCF2a,3aの光軸上の第1の配置と、この光軸から外れた第2の配置とを入れ替え可能なように、公知のスライド機構(図示省略)などによって保持されていることが好ましい。詳しくは後述するが、第1及び第2のファイバコリメータ2,3は、各MCF2a,3aの光軸上に光路変換素子20が配置された状態で最適調整された後、この光路変換素子20を光軸上から外し、これらのファイバコリメータ2,3はそのまま動かさずに固定部材などによって固定される。 Further, as shown in FIG. 2, the optical path conversion element 20 is arranged in a known manner so that the first arrangement of the MCFs 2a and 3a on the optical axis and the second arrangement off the optical axis can be exchanged. is preferably held by a slide mechanism (not shown) or the like. Although details will be described later, the first and second fiber collimators 2, 3 are optimally adjusted with the optical path changing element 20 arranged on the optical axis of each MCF 2a, 3a. After being removed from the optical axis, these fiber collimators 2 and 3 are fixed by a fixing member or the like without being moved.
 分析装置30は、所定の分析処理用のプログラムがインストールされたコンピュータである。図3は、分析装置30の機能ブロックの一例を示している。図3に示されるように、分析装置30は、演算処理部31、記憶部32、入力部33、操作部34、及び表示部35を含む。 The analysis device 30 is a computer in which a predetermined analysis processing program is installed. FIG. 3 shows an example of functional blocks of the analysis device 30. As shown in FIG. As shown in FIG. 3 , the analysis device 30 includes an arithmetic processing section 31 , a storage section 32 , an input section 33 , an operation section 34 and a display section 35 .
 演算処理部31は、所定の演算やその他の要素32~35を制御するための処理を担うものであり、CPU(Central Processing Unit)などのプロセッサを利用することができる。演算処理部31は、基本的に、記憶部32に記憶されているプログラム(OSを含む)を読み出してメインメモリに展開し、このプログラムに従って所定の演算処を実行する。この記憶部32に記憶されているプログラムには、演算処理部31に、後述する各演算処理機能(符号31a~31h)を実行させるための画像分析用プログラムが含まれる。また、演算処理部31は、プログラムに従った演算結果を記憶部32に適宜書き込んだり読み出したりすることができる。 The arithmetic processing unit 31 is responsible for predetermined arithmetic operations and processing for controlling other elements 32 to 35, and can use a processor such as a CPU (Central Processing Unit). The arithmetic processing unit 31 basically reads a program (including an OS) stored in the storage unit 32, develops it in the main memory, and executes predetermined arithmetic processing according to this program. The programs stored in the storage unit 32 include an image analysis program for causing the arithmetic processing unit 31 to execute respective arithmetic processing functions (reference numerals 31a to 31h) to be described later. Further, the arithmetic processing unit 31 can appropriately write and read the arithmetic result according to the program in the storage unit 32 .
 記憶部32は、演算処理部31での演算処理等に用いられる情報やその演算結果を記憶するための要素である。記憶部32のストレージ機能は、例えばHDD及びSDDといった不揮発性メモリによって実現できる。また、記憶部32は、演算処理部31による演算処理の途中経過などを書き込む又は読み出すためのメインメモリとしての機能を有していてもよい。記憶部32のメモリ機能は、RAMやDRAMといった揮発性メモリにより実現できる。 The storage unit 32 is an element for storing information used for arithmetic processing in the arithmetic processing unit 31 and the result of the arithmetic operation. The storage function of the storage unit 32 can be realized by non-volatile memories such as HDD and SDD, for example. Further, the storage unit 32 may have a function as a main memory for writing or reading the intermediate progress of the arithmetic processing by the arithmetic processing unit 31 . A memory function of the storage unit 32 can be realized by a volatile memory such as a RAM or a DRAM.
 入力部33は、主に撮像装置10から画像データの入力を受け付けるための入力機器である。入力部33は、公知の入出力インターフェースに従って有線接続にて撮像装置10から画像データを取得するものであってもよいし、公知の通信規格に従って無線接続にて撮像装置10から画像データを取得するものであってもよい。有線用の入出力インターフェースの例はUSB(Universal Serial Bus)である。無線規格の例は、Bluetooth(登録商標)やWi-Fiである。また、入力部33は、インターネット又はイントラネット経由にて撮像装置10から画像データを取得するものであってもよい。 The input unit 33 is an input device that mainly receives input of image data from the imaging device 10 . The input unit 33 may acquire image data from the imaging device 10 through a wired connection according to a known input/output interface, or acquire image data from the imaging device 10 through a wireless connection according to a known communication standard. can be anything. An example of a wired input/output interface is USB (Universal Serial Bus). Examples of wireless standards are Bluetooth® and Wi-Fi. Also, the input unit 33 may acquire image data from the imaging device 10 via the Internet or an intranet.
 操作部34は、ユーザによる操作命令の入力を受け付けるための操作機器である。操作部34の例は、マウス、タッチパネル、トラックパッド等のポインティングデバイスや、キーボード等の文字入力装置である。ユーザは、操作部34を介して分析装置30に対して所定の操作命令を入力できる。 The operation unit 34 is an operation device for accepting input of operation commands by the user. Examples of the operation unit 34 are pointing devices such as a mouse, a touch panel, and a trackpad, and character input devices such as a keyboard. A user can input a predetermined operation command to the analysis device 30 via the operation unit 34 .
 表示装置34は、演算処理部31からの入力信号に応じて、ユーザが調整装置1を使用するにあたって必要となる各種情報を出力表示する。表示装置34は、例えば画像データや演算結果などを示す画面を表示する。表示装置34の例は、LCD(Liquid Crystal Display;液晶ディスプレイ)やOELD(Organic Electro Luminescence Display;有機ELディスプレイ)であるがこれに限定されず、公知のディスプレイ装置を利用できる。 The display device 34 outputs and displays various information necessary for the user to use the adjusting device 1 according to the input signal from the arithmetic processing unit 31 . The display device 34 displays, for example, a screen showing image data, calculation results, and the like. An example of the display device 34 is an LCD (Liquid Crystal Display) or an OELD (Organic Electro Luminescence Display), but is not limited to these, and a known display device can be used.
 続いて、図3から図5を参照して、本実施形態における演算処理部31が実行可能な画像分析処理について説明する。演算処理部31は、記憶部32に記憶されたプログラムを実行することにより、図3に示されるように、画像処理部31a、スポット選択部31b、ナンバリング部31c、座標計測部31d、ライン付与部31e、ライン解析部31f、リファレンス保持部31g、及び比較部31hとして機能する。 Next, image analysis processing that can be executed by the arithmetic processing unit 31 in this embodiment will be described with reference to FIGS. 3 to 5. FIG. By executing the program stored in the storage unit 32, the arithmetic processing unit 31, as shown in FIG. 31e, a line analysis unit 31f, a reference holding unit 31g, and a comparison unit 31h.
 画像処理部31aは、撮像装置10から取得した画像データに所定の画像処理を行って、後の分析処理を行いやすいように画像データを加工する。例えば図4(a)及び(b)に示されるように、画像処理部31aは、撮像装置10から取得した画像データがカラー又はグレースケールで表されたものである場合、この画像データを、所定の閾値にて白と黒の2色のみに変換する二値化処理を行う。このように、画像データ内に含まれる輝点と背景の境界を明確化させることで、後の分析処理の処理速度と精度を向上させることができる。その他、画像処理部31aは、輝点の輪郭を鮮明化させる処理やエッジ検出処理などの画像処理を行うことも可能である。 The image processing unit 31a performs predetermined image processing on the image data acquired from the imaging device 10, and processes the image data so as to facilitate subsequent analysis processing. For example, as shown in FIGS. 4A and 4B, when the image data acquired from the imaging device 10 is expressed in color or grayscale, the image processing unit 31a converts this image data into a predetermined Binary processing is performed to convert to only two colors, white and black, with a threshold of . By clarifying the boundaries between the bright spots and the background contained in the image data in this way, it is possible to improve the processing speed and accuracy of the subsequent analysis processing. In addition, the image processing unit 31a can also perform image processing such as processing for sharpening the contours of bright spots and edge detection processing.
 スポット選択部31bは、画像処理部31aによる加工済みの画像データから、MCFの各コアから出射された光に対応するスポットのみを抽出する。すなわち、画像データの中には、各コアから出射された光以外にも、白色の点が映り込む場合がある。そこで、誤検出を防ぐために、各コアに対応するスポットについては予め適切なサイズ範囲を定めておき、そのサイズ範囲に含まれない白色の点は分析対象から除外する。例えば、図4(b)及び(c)に示されるように、スポット選択部31bは、予め定められたサイズ範囲より小さい白色の点を画像データから除去する。これにより、各コアに対応するスポットのみを後の分析処理の対象とすることができる。 The spot selection unit 31b extracts only spots corresponding to the light emitted from each core of the MCF from the image data processed by the image processing unit 31a. That is, in the image data, white dots may appear in addition to the light emitted from each core. Therefore, in order to prevent erroneous detection, an appropriate size range is determined in advance for the spots corresponding to each core, and white points that are not included in the size range are excluded from the analysis targets. For example, as shown in FIGS. 4B and 4C, the spot selection unit 31b removes white spots smaller than a predetermined size range from the image data. As a result, only the spots corresponding to each core can be targeted for subsequent analysis processing.
 ナンバリング部31cは、スポット選択部31bにより抽出されたスポットのそれぞれに対して、所定の法則に従って固有の番号を割り当てる。例えば図4(d)には、解析ラインを点線で示している。解析ラインは任意角度で傾いており、この解析ラインを画像データの左側から右側に向かって移動させたときに、この解析ラインに接する順番で各スポットに番号が割り当てられる。図4(d)の例では、画像データには合計8つのスポットが存在しているため、各スポットにはS1~S8うちののいずれかの識別番号がそれぞれ割り当てられることとなる。ナンバリング部31cにより指定された識別番号は、加工済みの画像データとともに、表示部35に表示することとしてもよい。 The numbering unit 31c assigns a unique number to each spot extracted by the spot selection unit 31b according to a predetermined rule. For example, in FIG. 4D, the analysis line is indicated by a dotted line. The analysis line is inclined at an arbitrary angle, and when the analysis line is moved from the left side of the image data toward the right side, a number is assigned to each spot in the order of contact with the analysis line. In the example of FIG. 4(d), there are a total of 8 spots in the image data, so each spot is assigned an identification number from S1 to S8. The identification number designated by the numbering section 31c may be displayed on the display section 35 together with the processed image data.
 座標計測部31dは、ナンバリング部31cにより識別番号が割り当てられたスポットに対して、画像データ内における座標情報を計測する。具体的には、座標計測部31dは、図4(e)に示されるように、各スポットについて重心を検出し、その各スポットの重心のx座標及びy座標を求める。座標計測部31dにより測定された各スポットの重心座標は、表示部35に表示することとしてもよい。 The coordinate measurement unit 31d measures coordinate information in the image data for spots assigned identification numbers by the numbering unit 31c. Specifically, the coordinate measurement unit 31d detects the center of gravity of each spot, and obtains the x-coordinate and y-coordinate of the center of gravity of each spot, as shown in FIG. 4(e). The barycentric coordinates of each spot measured by the coordinate measuring section 31 d may be displayed on the display section 35 .
 ライン付与部31eは、座標計測部31dが求めた各スポットの重心座標に基づいて、指定された2つのスポットの重心を結ぶライン(線分)を付与する。ラインによって繋ぐ2つのスポットは、ユーザが操作部34を介してスポットの識別番号を選択することによって指定することができる。具体的には、図4(f)に示した例では、スポットS1とS7がラインL1で結ばれ、スポットS2とS8がラインL2で結ばれ、スポットS3とS5がラインL3で結ばれ、スポットS4とS6がラインL4で結ばれている。また、図4(f)に示したように、2つのスポットを結ぶ各ラインに対して識別番号(L1~L4)を割り当てることとしてもよい。ライン付与部31eにより付与されたラインは、加工済みの画像データとともに、表示部35に表示される。なお、ライン付与部31eは、ユーザによる手動に限らず、所定のアルゴリズムに従って2つのスポットの重心を結ぶラインを自動的に付与することとしてもよい。 The line providing unit 31e provides a line (line segment) connecting the centroids of two specified spots based on the barycentric coordinates of each spot obtained by the coordinate measuring unit 31d. The two spots connected by the line can be specified by the user selecting the identification number of the spots via the operation unit 34 . Specifically, in the example shown in FIG. 4F, spots S1 and S7 are connected by line L1, spots S2 and S8 are connected by line L2, spots S3 and S5 are connected by line L3, and spots S4 and S6 are connected by line L4. Also, as shown in FIG. 4(f), an identification number (L1 to L4) may be assigned to each line connecting two spots. The lines added by the line adding unit 31e are displayed on the display unit 35 together with the processed image data. Note that the line adding unit 31e may automatically add a line connecting the centroids of two spots according to a predetermined algorithm, instead of being manually performed by the user.
 ライン解析部31fは、ライン付与部31eによって付与されたラインの解析を行う。ライン解析の例は、絶対角計測、相対角計測、及びクロスライン解析である。図5には、ライン解析部31fによる解析処理の一例が示されている。絶対角計測は、図5(a)に示されるように、ラインごとに、画像データのx座標軸に対する角度(絶対角)を求める処理である。また、相対角計測は、図5(b)に示されるように、互いに交差する2つのラインのなす角度(相対角)を求める。この相対角を計測する2つのラインの組み合わせは、ユーザが操作部34を介してラインの識別番号を選択することによって指定することができる。もしくは、所定のアルゴリズムに従って相対角を計測する2つのラインを自動的に選択することとしてもよい。2つのラインの相対角は、画像データ上に付与されたラインに基づいて実際に角度を測定することとしてもよいし、各ラインの絶対角に基づいて算出することとしてもよい。 The line analysis unit 31f analyzes the lines added by the line addition unit 31e. Examples of line analysis are absolute angle measurement, relative angle measurement, and cross line analysis. FIG. 5 shows an example of analysis processing by the line analysis section 31f. Absolute angle measurement is a process of obtaining the angle (absolute angle) of image data with respect to the x-coordinate axis for each line, as shown in FIG. 5(a). In the relative angle measurement, as shown in FIG. 5B, the angle (relative angle) formed by two lines that intersect each other is determined. A combination of two lines for measuring the relative angle can be designated by the user by selecting line identification numbers via the operation unit 34 . Alternatively, two lines for measuring relative angles may be automatically selected according to a predetermined algorithm. The relative angle between the two lines may be obtained by actually measuring the angle based on the lines given on the image data, or may be calculated based on the absolute angle of each line.
 クロスライン解析は、複数のラインを2つのグループ分けして、グループ同士にてラインの対比を行う処理である。具体的に説明すると、図5(c)に示されるように、ライン付与部31eにて付与されたラインをグループ分けする。第1グループ(G1)は、ラインL1(横線)とラインL3(縦線)であり、第2グループ(G2)は、ラインL2(横線)とラインL4(縦線)である。図5に示した例では、第1グループ(G1)が、第1のMCF2aから出射された光のスポットを結ぶものであり、第2グループ(G2)が、第2のMCF3aから出射された光のスポットを結ぶものとなる。このような各ラインのグループ分けは、ユーザが操作部34を介してラインの識別番号を選択することによって指定することができる。なお、基本的に、相対角計測において相対角を算出したラインは同じグループに属することとなるため、相対角計測を行ったものを自動的に同じグループに含めることとしてもよい。 Cross line analysis is a process of dividing a plurality of lines into two groups and comparing the lines between the groups. Specifically, as shown in FIG. 5C, the lines given by the line giving unit 31e are grouped. The first group (G1) is line L1 (horizontal line) and line L3 (vertical line), and the second group (G2) is line L2 (horizontal line) and line L4 (vertical line). In the example shown in FIG. 5, the first group (G1) connects spots of light emitted from the first MCF 2a, and the second group (G2) connects the light spots emitted from the second MCF 3a. It connects the spots of Such grouping of each line can be specified by the user selecting the line identification number via the operation unit 34 . Since lines for which relative angles are calculated in relative angle measurement basically belong to the same group, lines for which relative angle measurements are performed may be automatically included in the same group.
 次に、クロスライン解析では、2つのグループ(G1,G2)から平行に近い関係にあるラインの組み合わせを特定し、各組み合わせのラインの長さの差の総和(クロスライン平行差分)を算出する。具体期には、ライン解析部31fは、クロスライン平行差分(Δl)を以下の[式1]により求める。
 [式1]
  Δl==|L1-L2|+|L3-L4|
(L1~L4は、図5(c)において同じ符号が付されたラインの長さを表す。)
Next, in the cross-line analysis, a combination of lines that are in a nearly parallel relationship is specified from the two groups (G1, G2), and the sum of the differences in line lengths of each combination (cross-line parallel difference) is calculated. . Specifically, the line analysis unit 31f obtains the crossline parallel difference (Δl 1 ) by the following [Equation 1].
[Formula 1]
Δl 1 ==|L1−L2|+|L3−L4|
(L1 to L4 represent the lengths of lines denoted by the same reference numerals in FIG. 5(c).)
 同様に、クロスライン解析では、2つのグループ(G1,G2)から直交に近い関係にあるラインの組み合わせを特定し、各組み合わせのラインの長さの差の総和(クロスライン直交差分)を算出する。具体期には、ライン解析部31fは、クロスライン直交差分(Δl)を以下の[式1]により求める。
 [式1]
  Δl==|L1-L4|+|L2-L3|
Similarly, in the cross-line analysis, a combination of lines that are nearly orthogonal to each other is identified from two groups (G1, G2), and the sum of the differences in line lengths of each combination (cross-line orthogonal difference) is calculated. . Specifically, the line analysis unit 31f obtains the crossline orthogonal difference (Δl 2 ) by the following [Equation 1].
[Formula 1]
Δl 2 ==|L1−L4|+|L2−L3|
 例えば4コアを有するマルチコアファイバのファイバコリメータ対向系において、双方のマルチコアのコア配置は現実的には理想的な正方形にはなっておらず、製造上の誤差などで菱形や平行四辺形のような配置になっている。例えばコア配置が2つの対角線に長短の差がある菱形のケースであった場合、2つの対向しているファイバコリメータのコア同士も長短の組み合わせが合致しているほうが、より結合効率が高くなる。この原理に基づいて、クロスライン解析は双方のコリメータの長短の組み合わせが合致しているかどうかの判定に用いる。つまり、クロスライン平行差分が直交差分より値が小さければ、現状の組み合わせが最適であり、逆の場合はどちらか一方のファイバを90°回転させたほうが最適な組み合わせということが判定できる。 For example, in a fiber collimator-facing system of a multi-core fiber having four cores, the core arrangement of both multi-cores is not an ideal square in reality, and due to manufacturing errors, it may be a rhombus or parallelogram. It is arranged. For example, if the core arrangement is a diamond-shaped case with a length difference in two diagonal lines, the coupling efficiency will be higher if the length combination of the two facing fiber collimator cores is also matched. Based on this principle, cross-line analysis is used to determine whether the combination of long and short lengths of both collimators is matched. In other words, if the cross-line parallel difference is smaller than the orthogonal difference, it can be determined that the current combination is optimal, and if the reverse is the case, it can be determined that one of the fibers is rotated by 90° to be the optimal combination.
 リファレンス保存部31gは、座標計測部31dやライン解析部31fが測定した値を参照値として記憶部32に保存する。すなわち、MCF2a,3aの回転角が最適に調整されたファイバコリメータ対向系を予め用意し、本発明に係る調整装置1を用いて測定を行う。具体的には、このファイバコリメータ対向系について、座標計測部31dが求めた各スポットの座標情報や、ライン解析部31fが求めた絶対角、相対角、クロスライン平行差分、クロスライン直交差分などの情報を、参照値として記憶部32に保存しておけばよい。なお、未だ最適調整されていないファイバコリメータ対向系については、参考とはならないため、前述した各種の測定値を記憶部32に保存する必要はない。ただし、このような未だ最適調整されていないファイバコリメータ対向系の情報も、参考値とは別に、記憶部32に保存しておくことも可能である。 The reference storage unit 31g stores the values measured by the coordinate measurement unit 31d and the line analysis unit 31f in the storage unit 32 as reference values. That is, a fiber collimator facing system in which the rotation angles of the MCFs 2a and 3a are optimally adjusted is prepared in advance, and measurement is performed using the adjusting device 1 according to the present invention. Specifically, regarding this fiber collimator facing system, the coordinate information of each spot obtained by the coordinate measurement unit 31d, the absolute angle, the relative angle, the cross-line parallel difference, the cross-line orthogonal difference, etc. obtained by the line analysis unit 31f. Information may be stored in the storage unit 32 as a reference value. Note that the fiber collimator facing system that has not yet been optimally adjusted does not serve as a reference, so there is no need to store the various measurement values described above in the storage unit 32 . However, it is also possible to store such information on the fiber collimator facing system that has not yet been optimally adjusted in the storage unit 32 separately from the reference values.
 比較部31fは、最適調整された参照となるファイバコリメータ対向系(第1のファイバコリメータ対向系)について記憶部32に保存されている「参照値」と、現在測定対象とされているファイバコリメータ対向系(第2のファイバコリメータ対向系)について座標計測部31dやライン解析部31fが測定している値(「現在値」という)を比較して、その比較結果を表示部35に出力する。具体的には、前述した各スポットの座標情報や、絶対角、相対角、クロスライン平行差分、クロスライン直交差分などの情報について、参照値と現在値とを定量的に比較すればよい。ユーザは、表示部35に表示された比較結果を確認しながら、第2のファイバコリメータ対向系の現在値が参照値に近づくように、各MCF2a,3aの回転角度を調整すればよい。これにより、第2のファイバコリメータ対向系に含まれるMCF2a,3aの回転角度を効率的に調整することができる。 The comparison unit 31f compares the "reference value" stored in the storage unit 32 with respect to the optimally adjusted reference fiber collimator facing system (first fiber collimator facing system) and the fiber collimator facing system currently being measured. The system (the second fiber collimator facing system) is compared with values (referred to as “current values”) measured by the coordinate measuring unit 31d and the line analyzing unit 31f, and the comparison result is output to the display unit 35. Specifically, the reference value and the current value may be quantitatively compared with respect to information such as the coordinate information of each spot, the absolute angle, the relative angle, the cross-line parallel difference, and the cross-line orthogonal difference. While confirming the comparison result displayed on the display unit 35, the user can adjust the rotation angles of the MCFs 2a and 3a so that the current value of the second fiber collimator facing system approaches the reference value. This makes it possible to efficiently adjust the rotation angles of the MCFs 2a and 3a included in the second fiber collimator facing system.
 続いて、図6を参照して、ファイバコリメータ対向系の製造方法について説明する。まず、図5(a)に示されるように、予め回転角が最適調整された第1及び第2のファイバコリメータ2´,3´を含む第1のファイバコリメータ対向系を用意する。そして、この第1のファイバコリメータ対向系について、本実施形態に係る調整装置1(撮像装置10、光路変換素子20、及び分析装置30を含む)を用いて、MCF2a´,3a´の各コアから出射された光に対応するスポットの座標情報や、絶対角、相対角、クロスライン平行差分、クロスライン直交差分などの情報を測定する。ここで測定された情報は、参照値として分析装置30に保存される。 Next, with reference to FIG. 6, a method for manufacturing the fiber collimator facing system will be described. First, as shown in FIG. 5(a), a first fiber collimator facing system including first and second fiber collimators 2' and 3' whose rotation angles are optimally adjusted in advance is prepared. Then, for this first fiber collimator facing system, using the adjustment device 1 (including the imaging device 10, the optical path changing element 20, and the analysis device 30) according to the present embodiment, Information such as coordinate information of the spot corresponding to the emitted light, absolute angle, relative angle, cross-line parallel difference, and cross-line orthogonal difference is measured. The information measured here is stored in the analyzer 30 as a reference value.
 なお、第1のファイバコリメータ対向系について参照値を測定し終えた後は、調整装置1の光路変換素子20の位置を移動させずに第1のファイバコリメータ対向系を取り外すことが好ましい。このため、第1及び第2のファイバコリメータ2´,3´は、光路変換素子20に対応する部分に一部に切り欠きが設けられた半固定部材4によって、回転角度等を維持したまま固定しておけばよい。 It should be noted that it is preferable to remove the first fiber collimator facing system without moving the position of the optical path changing element 20 of the adjusting device 1 after finishing the measurement of the reference value for the first fiber collimator facing system. For this reason, the first and second fiber collimators 2' and 3' are fixed by a semi-fixed member 4 having a cutout at a portion corresponding to the optical path changing element 20 while maintaining the rotation angle and the like. You should keep it.
 次に、図6(b)に示されるように、実際に調整対象とされる第1及び第2のファイバコリメータ2,3を第1のファイバコリメータ対向系を用意する。この段階において、第1及び第2のファイバコリメータ2,3のMCF2a,3aは回転角度等が未だ固定されていない。この第2のファイバコリメータ対向系についても、第1のファイバコリメータ対向系を測定したのと同じ調整装置1を用いて、各コアから出射された光に対応するスポットの座標情報や、絶対角、相対角、クロスライン平行差分、クロスライン直交差分などの情報を現在値として測定する。このとき、分析装置30の表示部には、第2のファイバコリメータ対向系の現在値と第1のファイバコリメータ対向系の参照値との比較結果が表示される。そして、第2のファイバコリメータ対向系の現在値が第1のファイバコリメータ対向系の参照値に近づくように、MCF2a,3aの回転角度等の調整を行う。 Next, as shown in FIG. 6(b), the first and second fiber collimators 2 and 3 to be actually adjusted are prepared in the first fiber collimator facing system. At this stage, the MCFs 2a and 3a of the first and second fiber collimators 2 and 3 are not yet fixed in rotation angle and the like. For this second fiber collimator facing system as well, the same adjustment device 1 that was used to measure the first fiber collimator facing system was used to measure the coordinate information of the spot corresponding to the light emitted from each core, the absolute angle, Information such as relative angle, cross-line parallel difference, and cross-line orthogonal difference are measured as current values. At this time, the display unit of the analyzer 30 displays the comparison result between the current value of the second fiber collimator facing system and the reference value of the first fiber collimator facing system. Then, the rotation angles of the MCFs 2a and 3a are adjusted so that the current value of the second fiber collimator facing system approaches the reference value of the first fiber collimator facing system.
 最後に、図6(c)に示されるように、MCF2a,3aの回転角度が最適化された第1及び第2のファイバコリメータ2,3を固定部材5によって固定する。このとき、光路変換素子20を第1及び第2のファイバコリメータ2,3の光軸上から移動させるとよい。これにより、第1及び第2のファイバコリメータ2,3の位置や向きは最適調整された状態を維持したまま、固定部材5によって第1及び第2のファイバコリメータ2,3を固定することが可能である。このように、MCF2a,3aが最適調整されたファイバコリメータ対向系を効率良く製造することが可能となる。また、光路変換素子20の位置を元に戻した後、別のファイバコリメータ対向系の調整を行うことができる。これにより、ファイバコリメータ対向系の調整作業を連続的に行うことができる。 Finally, as shown in FIG. 6(c), the first and second fiber collimators 2, 3 in which the rotation angles of the MCFs 2a, 3a are optimized are fixed by the fixing member 5. At this time, it is preferable to move the optical path changing element 20 from the optical axis of the first and second fiber collimators 2 and 3 . As a result, the first and second fiber collimators 2 and 3 can be fixed by the fixing member 5 while the positions and orientations of the first and second fiber collimators 2 and 3 are kept optimally adjusted. is. Thus, it is possible to efficiently manufacture a fiber collimator facing system in which the MCFs 2a and 3a are optimally adjusted. Further, after returning the position of the optical path rotator 20, another adjustment of the fiber collimator facing system can be performed. Thereby, the adjustment work of the fiber collimator facing system can be performed continuously.
 以上、本願明細書では、本発明の内容を表現するために、図面を参照しながら本発明の実施形態の説明を行った。ただし、本発明は、上記実施形態に限定されるものではなく、本願明細書に記載された事項に基づいて当業者が自明な変更形態や改良形態を包含するものである。 As described above, in the specification of the present application, the embodiments of the present invention have been described with reference to the drawings in order to express the content of the present invention. However, the present invention is not limited to the above embodiments, and includes modifications and improvements that are obvious to those skilled in the art based on the matters described in this specification.
1…調整装置          2…第1のファイバコリメータ
3…第2のファイバコリメータ  4…半固定部材
5…固定部材          10…撮像装置
11…撮像レンズ        12…撮像素子
20…光路変換素子       21…第1の反射部
22…第2の反射部       30…分析装置
REFERENCE SIGNS LIST 1 adjustment device 2 first fiber collimator 3 second fiber collimator 4 semi-fixed member 5 fixed member 10 imaging device 11 imaging lens 12 imaging element 20 optical path conversion element 21 first reflection Part 22... Second reflecting part 30... Analyzer

Claims (6)

  1.  ファイバコリメータ対向系用の調整装置(1)であって、
     前記ファイバコリメータ対向系は、互いに対向配置された第1のファイバコリメータ(2)と第2のファイバコリメータ(3)を備え、
     前記第1のファイバコリメータは、複数のコアを有するマルチコアファイバと、1つのコアを有する複数のシングルモードファイバを束ねたファイババンドルとの2種から任意に選択された第1の光ファイバ(2a)と、当該第1の光ファイバの各コアの端部から発散される光をコリメートするための第1のレンズ(2b)とを含み、
     前記第2のファイバコリメータは、前記2種から任意に選択され前記第1の光ファイバの各コアに対応する複数のコアを持つ第2の光ファイバ(2a)と、当該第2の光ファイバの各コアの端部から発散される光をコリメートするための第2のレンズ(2b)とを含み、
     前記調整装置は、
      撮像素子(12)を有する撮像装置(10)と、
      前記第1の光ファイバの各コアからの光と前記第2の光ファイバの各コアからの光とが前記撮像素子上において重ならないように、前記第1のレンズからの光と前記第2のレンズからの光とを前記撮像素子に向けて導くための光路変換素子(20)と、を備える
     ファイバコリメータ対向系用の調整装置。
    An adjustment device (1) for a fiber collimator facing system,
    The fiber collimator facing system comprises a first fiber collimator (2) and a second fiber collimator (3) arranged opposite to each other,
    The first fiber collimator is a first optical fiber (2a) arbitrarily selected from two types: a multi-core fiber having a plurality of cores and a fiber bundle in which a plurality of single-mode fibers having one core are bundled and a first lens (2b) for collimating light emanating from the end of each core of said first optical fiber;
    The second fiber collimator comprises: a second optical fiber (2a) having a plurality of cores arbitrarily selected from the two types and corresponding to each core of the first optical fiber; a second lens (2b) for collimating the light emanating from the end of each core;
    The adjustment device is
    an imaging device (10) having an imaging element (12);
    The light from the first lens and the second optical fiber are arranged so that the light from each core of the first optical fiber and the light from each core of the second optical fiber do not overlap on the imaging device. an optical path conversion element (20) for guiding light from a lens toward the image pickup element (20).
  2.  前記第1の光ファイバと前記第2の光ファイバの各コアからの光が前記撮像素子によって同時に観察されるように構成されている
     請求項1に記載の調整装置。
    2. The adjusting device according to claim 1, wherein the light from each core of the first optical fiber and the second optical fiber are simultaneously observed by the imaging element.
  3.  前記撮像装置による撮像画像を表示可能な表示部(35)を有する分析装置(30)をさらに備える
     請求項1に記載の調整装置。
    The adjustment device according to claim 1, further comprising an analysis device (30) having a display section (35) capable of displaying an image captured by the imaging device.
  4.  前記分析装置は、前記撮像素子に入射した光の座標情報を取得し、前記撮像画像とともに前記表示部に表示可能に構成されている
     請求項3に記載の調整装置。
    The adjustment device according to claim 3, wherein the analysis device acquires the coordinate information of the light incident on the imaging element, and is configured to be able to be displayed on the display unit together with the captured image.
  5.  前記分析装置は、
      前記撮像素子に入射した参照光に関する情報を保存する記憶部(32)と、
      前記参照光に関する情報と現在前記撮像素子に入射している光に関する情報とを比較し、その比較結果を前記表示部に出力する比較部(31h)と、を有する
     請求項3に記載の調整装置。
    The analysis device is
    a storage unit (32) for storing information about the reference light incident on the imaging element;
    4. The adjusting device according to claim 3, further comprising a comparing section (31h) that compares the information regarding the reference light and the information regarding the light that is currently incident on the imaging device, and outputs the comparison result to the display section. .
  6.  調整装置(1)を利用したファイバコリメータ対向系の製造方法であって、
     第1のファイバコリメータ対向系の出力光を参照光として前記調整装置を用いて撮像する工程と、
     第2のファイバコリメータ対向系の出力光を前記調整装置(1)を用いて撮像し、前記参照光に関する情報と比較しながら調整する工程と、を含み、
     前記第1のファイバコリメータ対向系及び第2のファイバコリメータ対向系は、それぞれ、互いに対向配置された第1のファイバコリメータ(2,2´)と第2のファイバコリメータ(3,3´)を備え、
     前記第1のファイバコリメータは、複数のコアを有するマルチコアファイバと、1つのコアを有する複数のシングルモードファイバを束ねたファイババンドルとの2種から任意に選択された第1の光ファイバ(2a)と、当該第1の光ファイバの各コアの端部から発散される光をコリメートするための第1のレンズ(2b)とを含み、
     前記第2のファイバコリメータは、前記2種から任意に選択され前記第1の光ファイバの各コアに対応する複数のコアを持つ第2の光ファイバ(2a)と、当該第2の光ファイバの各コアの端部から発散される光をコリメートするための第2のレンズ(2b)とを含み、
     前記調整装置は、
      撮像素子(12)を有する撮像装置(10)と、
      前記第1の光ファイバの各コアからの光と前記第2の光ファイバの各コアからの光とが前記撮像素子上において重ならないように、前記第1のレンズからの光と前記第2のレンズからの光とを前記撮像素子に向けて導くための光路変換素子(20)と、を備える
     ファイバコリメータ対向系の製造方法。
    A method for manufacturing a fiber collimator facing system using an adjustment device (1),
    a step of capturing an image using the adjustment device using the output light of the first fiber collimator facing system as reference light;
    A step of capturing an image of the output light of the second fiber collimator facing system using the adjusting device (1) and adjusting it while comparing it with information about the reference light,
    The first fiber collimator facing system and the second fiber collimator facing system respectively include a first fiber collimator (2, 2') and a second fiber collimator (3, 3') arranged to face each other. ,
    The first fiber collimator is a first optical fiber (2a) arbitrarily selected from two types: a multi-core fiber having a plurality of cores and a fiber bundle in which a plurality of single-mode fibers having one core are bundled and a first lens (2b) for collimating light emanating from the end of each core of said first optical fiber;
    The second fiber collimator comprises: a second optical fiber (2a) having a plurality of cores arbitrarily selected from the two types and corresponding to each core of the first optical fiber; a second lens (2b) for collimating the light emanating from the end of each core;
    The adjustment device is
    an imaging device (10) having an imaging element (12);
    The light from the first lens and the second optical fiber are arranged so that the light from each core of the first optical fiber and the light from each core of the second optical fiber do not overlap on the imaging device. and an optical path conversion element (20) for guiding light from a lens toward the imaging element.
PCT/JP2022/040511 2021-11-26 2022-10-28 Adjusting device and manufacturing method for fiber collimator facing system WO2023095558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-192063 2021-11-26
JP2021192063A JP2023078788A (en) 2021-11-26 2021-11-26 Adjustment device and manufacturing method of fiber collimator opposing system

Publications (1)

Publication Number Publication Date
WO2023095558A1 true WO2023095558A1 (en) 2023-06-01

Family

ID=86539313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040511 WO2023095558A1 (en) 2021-11-26 2022-10-28 Adjusting device and manufacturing method for fiber collimator facing system

Country Status (2)

Country Link
JP (1) JP2023078788A (en)
WO (1) WO2023095558A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106778A (en) * 2005-11-30 2006-04-20 Totoku Electric Co Ltd Manufacturing equipment for multifiber polarization maintaining fiber assembly
JP2013050695A (en) * 2011-08-01 2013-03-14 Furukawa Electric Co Ltd:The Method of connecting multi-core fiber, multi-core fiber, and method of manufacturing multi-core fiber
JP2014052496A (en) * 2012-09-06 2014-03-20 Optoquest Co Ltd Optical connector between multi-core fibers
CN105911647A (en) * 2016-05-18 2016-08-31 华中科技大学 Multi-core fan-in and fan-out module coupling encapsulation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106778A (en) * 2005-11-30 2006-04-20 Totoku Electric Co Ltd Manufacturing equipment for multifiber polarization maintaining fiber assembly
JP2013050695A (en) * 2011-08-01 2013-03-14 Furukawa Electric Co Ltd:The Method of connecting multi-core fiber, multi-core fiber, and method of manufacturing multi-core fiber
JP2014052496A (en) * 2012-09-06 2014-03-20 Optoquest Co Ltd Optical connector between multi-core fibers
CN105911647A (en) * 2016-05-18 2016-08-31 华中科技大学 Multi-core fan-in and fan-out module coupling encapsulation system

Also Published As

Publication number Publication date
JP2023078788A (en) 2023-06-07

Similar Documents

Publication Publication Date Title
US9602810B2 (en) Image sensor positioning apparatus and method
TWI414817B (en) Linear chromatic confocal microscope system
JP2977863B2 (en) Method and apparatus for aligning two fiber ends
CN106461547B (en) For characterizing the prism-coupled system and method for big layer depth waveguide
KR20210022708A (en) Measurement technology for the non-uniformity of refractive index between the plates of the optical element of the light guide
CN110945316B (en) Multi-channel confocal sensor for inspecting a sample and related method
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
WO2023103197A1 (en) Ar geometric array optical waveguide measurement method and device
WO2023095558A1 (en) Adjusting device and manufacturing method for fiber collimator facing system
JP2509772B2 (en) Optical connector end face inspection equipment
US20200309598A1 (en) Measurement system and a method of diffracting light
CN105758333A (en) Long-trace optical surface profile detector
JP5917572B2 (en) Spectroscopic measurement apparatus and image partial extraction apparatus
TW202311706A (en) Methods and systems for validating parallelism between internal facets
CN109212775A (en) A kind of bio-measurement instrument zero point arm debugging apparatus and method
IL309531A (en) Optical-based validation of parallelism between internal facets
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device
JPS58215524A (en) Device for determining refractive-index form of optical fiber and optical-fiber mother material
CN205505988U (en) Long -range optical surface shape of face detector
KR100790706B1 (en) Device for detecting focal lenghth of lenses
JP7244954B2 (en) Position measurement method and parts
JP4268057B2 (en) Polarization plane optical principal axis determination method for polarization maintaining optical fiber
CN211013459U (en) Reflective Prolo prism detection device system
US20230168186A1 (en) Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
EP4354187A1 (en) Six-degree-of-freedom error correction method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898343

Country of ref document: EP

Kind code of ref document: A1