WO2023095501A1 - Control method, program, and airflow control system - Google Patents

Control method, program, and airflow control system Download PDF

Info

Publication number
WO2023095501A1
WO2023095501A1 PCT/JP2022/039231 JP2022039231W WO2023095501A1 WO 2023095501 A1 WO2023095501 A1 WO 2023095501A1 JP 2022039231 W JP2022039231 W JP 2022039231W WO 2023095501 A1 WO2023095501 A1 WO 2023095501A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
functional component
control method
supply
speed
Prior art date
Application number
PCT/JP2022/039231
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 高橋
伸晃 薮ノ内
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023095501A1 publication Critical patent/WO2023095501A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/008Indoor units, e.g. fan coil units with perfuming or deodorising means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/755Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for cyclical variation of air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/50Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by odorisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a control method, program, and airflow control system, and more particularly to a control method, program, and airflow control system for an airflow control system.
  • Patent Literature 1 discloses a multifunctional fan that supplies the functions possessed by the device to a predetermined local area, such as air blowing, cooling and heating, addition of fragrance, deodorization, air cleaning, and the like.
  • An object of the present disclosure is to provide a control method, program, and airflow control system that can improve comfort.
  • a control method is a control method for a system including an airflow blowing device and a supply device.
  • the airflow blowing device has an outlet for blowing out straight airflow.
  • the airflow blowing device can adjust the speed of the airflow blown out from the outlet.
  • the supply device can supply the functional component to be blown into the air to the airflow blown out from the outlet.
  • the control method controls the fluctuation of the speed of the airflow blown out from the outlet, and causes the supply device to supply the functional component to the airflow when the speed of the airflow is greater than a threshold value.
  • a program according to one aspect of the present disclosure is a program for causing a computer system to execute the control method.
  • An airflow control system includes an airflow blowing device, a supply device, and a control unit.
  • the airflow blowing device has an outlet for blowing out straight airflow.
  • the airflow blowing device can adjust the speed of the airflow blown out from the outlet.
  • the supply device can supply the functional component to be blown into the air to the airflow blown out from the outlet.
  • the controller controls the airflow blowing device and the supply device.
  • the control unit controls the fluctuation of the speed of the airflow blown out from the outlet by controlling the airflow blowing device.
  • the controller controls the supply device to supply the functional component from the supply device to the airflow when the speed of the airflow is greater than a threshold value.
  • FIG. 1 is a schematic configuration diagram of an airflow control system according to Embodiment 1.
  • FIG. FIG. 2 is an exploded perspective view of an airflow blowing device in the same airflow control system.
  • FIG. 3A is a plan view of a fan in the airflow blowing device of the airflow control system;
  • FIG. 3B is a plan view of a first straightening device in the airflow blowing device of the airflow control system;
  • FIG. 3C is a plan view of a second rectifier in the airflow blowing device of the airflow control system;
  • FIG. 4 is a perspective view of the same airflow control system.
  • FIG. 5A is a flow velocity distribution diagram of an airflow blowing device in the airflow control system;
  • FIG. 5A is a flow velocity distribution diagram of an airflow blowing device in the airflow control system;
  • FIG. 5B is a flow velocity distribution diagram of an airflow blowing device in an airflow control system according to a comparative example.
  • FIG. 6 is an explanatory diagram of the control method according to the first embodiment.
  • FIG. 7 is a schematic configuration diagram of an airflow control system according to Embodiment 2.
  • FIG. 8 is an explanatory diagram of a control method according to the second embodiment.
  • FIG. 9 is a schematic configuration diagram of an airflow control system according to Embodiment 3.
  • FIG. FIG. 10 is a schematic configuration diagram of an airflow control system according to Embodiment 4.
  • FIG. 10 is a schematic configuration diagram of an airflow control system according to Embodiment 4.
  • the airflow control system 100 is used for spatial zoning in facilities, for example.
  • Spatial zoning is air zoning, and means creating an air environment in a specific area within a target space without creating physical walls such as walls or partitions.
  • the airflow control system 100 includes an airflow blowing device 1, a supply device 7, and a control section 8, as shown in FIG.
  • the airflow blowing device 1 has an outlet port 24 for blowing out straight airflow.
  • the airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 .
  • the supply device 7 can supply the functional component to be blown into the air to the air flow blown out from the outlet 24 .
  • the control unit 8 controls the airflow blowing device 1 and the supply device 7 .
  • the airflow blown into the target space from the outlet 24 of the airflow blowing device 1 in the airflow control system 100 is a jet flow, and is a straight directional airflow.
  • Airflow is the flow of air.
  • a facility is, for example, an office building.
  • the target space is, for example, a free address office in an office building.
  • the target space is not limited to the free address office, and may be, for example, the space of a conference room.
  • facilities In addition to office buildings, examples of facilities include hotels, hospitals, educational facilities, detached houses, collective housing (dwelling units, common areas), stores, commercial facilities, art museums, and museums. In addition, facilities may include not only buildings but also buildings and sites on which the buildings are located.
  • the airflow control system 100 includes an airflow blowing device 1, a supply device 7, and a controller 8, as shown in FIG.
  • Airflow control system 100 is attached to the wiring duct 13 provided on the ceiling, as shown in FIG.
  • Airflow control system 100 includes attachment device 14 , arm 15 and coupling device 16 .
  • the mounting device 14 is slidably mounted on the wiring duct 13 .
  • Arm 15 has a first end 151 and a second end 152 .
  • a first end 151 of arm 15 is connected to attachment device 14 .
  • the connecting device 16 connects the second end 152 of the arm 15 and the tubular body 2 of the airflow blowing device 1 .
  • the airflow control system 100 is electrically connected to an AC power supply connected to the wiring duct 13 by attaching the mounting device 14 to the wiring duct 13 .
  • the airflow control system 100 further includes a first power supply circuit 91, a first drive circuit 101, a second power supply circuit 92, and a second drive circuit 102, as shown in FIG.
  • the first power supply circuit 91 for example, converts an AC voltage from an AC power supply into a first DC voltage and outputs the first DC voltage.
  • the first drive circuit 101 receives the first DC voltage output from the first power supply circuit 91 and drives the motor 36 of the fan 3 of the airflow blowing device 1 .
  • the second power supply circuit 92 for example, converts an AC voltage from an AC power supply into a second DC voltage and outputs the second DC voltage.
  • the second drive circuit 102 receives the second DC voltage output from the second power supply circuit 92 and drives the supply device 7 .
  • the first power supply circuit 91, the first drive circuit 101, the second power supply circuit 92, the second drive circuit 102, and the controller 8 are housed in the housing of the mounting device 14 (see FIG. 4).
  • the arm 15 (see FIG. 4) and the coupling device 16 (see FIG. 4) are part of the first electric wire 111 connecting the first drive circuit 101 and the motor 36, and the second drive circuit 102 and the supply device 7. has a space through which part of the second electric wire 112 connecting the .
  • the airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 .
  • the airflow blowing device 1 includes a cylinder 2, a fan 3, a first straightening device 4, and a second straightening device 5, as shown in FIGS.
  • the airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 by adjusting the rotation speed of the fan 3 .
  • the number of rotations of the fan 3 changes according to changes in the magnitude of the voltage supplied from the first drive circuit 101 to the motor 36 .
  • the first drive circuit 101 is controlled by the controller 8 to change the magnitude of the voltage supplied to the motor 36 .
  • the cylindrical body 2 is cylindrical, for example.
  • the cylinder 2 has a gas inlet 23 at the first end 21 and an outlet 24 at the second end 22 .
  • the fan 3 is arranged inside the cylinder 2 .
  • the first straightening device 4 is positioned between the fan 3 and the outlet 24 in the axial direction D3 of the fan 3 and deflects the swirling airflow F1 (see FIG. 3A).
  • the second straightening device 5 is positioned between the first straightening device 4 and the outlet 24 in the axial direction D3 of the fan 3, and aligns the direction of the airflow along the axial direction D3 of the fan 3.
  • the first straightening device 4 has a cylindrical tubular portion 41 and a plurality of fins (stator blades) 42 .
  • Each of the plurality of fins 42 has an arc shape when viewed from the axial direction D3 of the fan 3 (see FIG. 3B). As shown in FIG. 3B, the plurality of fins 42 protrude from the inner peripheral surface 413 of the tubular portion 41 toward the central axis 40 of the tubular portion 41 and are arranged in a direction along the inner periphery of the tubular portion 41. .
  • the second straightening device 5 has a plurality of flow paths 55 along the axial direction D3 of the fan 3, as shown in FIGS. 1, 2 and 3C.
  • the cylinder 2 is cylindrical.
  • the tube 2 has a first end 21 and a second end 22 , a gas inlet 23 at the first end 21 and a gas outlet 24 at the second end 22 .
  • the material of the cylindrical body 2 is, for example, metal or resin, but is not limited to this.
  • the fan 3 blows the air that has flowed in from the inlet 23 of the tubular body 2 to the outlet 24 side of the tubular body 2 .
  • the fan 3 is an electric axial flow fan rotatable around a rotation center axis 30 of a rotating body (hub) 31 of the fan 3 .
  • the fan 3 can move the air that has flowed into the fan housing 33 while spirally rotating around the rotating body 31 to flow downstream.
  • Downstream side means the downstream side when viewed in the direction of air flow.
  • the fan 3 is arranged inside the cylindrical body 2 .
  • the fan 3 is arranged near the first end 21 between the first end 21 and the second end 22 of the cylinder 2 in the axial direction of the cylinder 2 .
  • the distance between the fan 3 and the inlet 23 in the axial direction of the cylinder 2 is shorter than the distance between the fan 3 and the outlet 24 .
  • the fan 3 includes a rotor 31, a plurality of (eg, four) blades (rotary blades) 32, a fan housing 33, a motor 36, a motor mounting portion, and a plurality of (eg, three) beams. , has The rotating body 31 of the fan 3, the plurality of blades 32, and the fan housing 33 are made of resin or metal, for example.
  • the rotating body 31 is rotatable around the rotation center axis 30 .
  • the outer edge of the rotor 31 is circular.
  • the rotating body 31 is arranged coaxially with the cylindrical body 2 inside the cylindrical body 2 .
  • the rotating body 31 is arranged coaxially with the cylindrical body 2" means that the rotating body 31 is arranged so that the rotation center axis 30 of the rotating body 31 is aligned with the central axis 20 of the cylindrical body 2. means that The length of the rotating body 31 is shorter than the length of the cylindrical body 2 in the axial direction D3 of the fan 3 .
  • An axial direction D ⁇ b>3 of the fan 3 is a direction along the rotation center axis 30 .
  • the rotating body 31 has a bottomed cylindrical shape having a cylindrical portion 311 and a bottom wall 312 .
  • the rotating body 31 has a boss portion 313 that protrudes from the central portion of the bottom wall 312 to the opposite side of the inlet 23 side of the tubular body 2 .
  • a plurality of blades 32 are arranged between the rotating body 31 and the fan housing 33 and rotate together with the rotating body 31 .
  • the plurality of blades 32 are connected to the rotating body 31 and protrude from the outer peripheral surface 316 of the rotating body 31 toward the inner peripheral surface 27 of the tubular body 2 .
  • the plurality of blades 32 protrude radially from the rotor 31 when viewed from the axial direction D3 of the fan 3 .
  • Each of the plurality of blades 32 is arranged such that a gap is formed between each blade 32 and the inner peripheral surface 333 of the fan housing 33 when viewed from the axial direction D3 of the fan 3 .
  • the fan 3 has a gap between each of the plurality of blades 32 and the inner peripheral surface 333 of the fan housing 33 .
  • the plurality of blades 32 are arranged at regular intervals when viewed from the axial direction D3 of the fan 3 .
  • the term "equidistant interval" as used herein is not limited to cases where the interval is exactly the same, and for example, an interval within a predetermined error range (for example, ⁇ 10% of the specified interval) with respect to the specified interval.
  • the first end 321 (see FIG. 3A) on the inlet 23 side is closer to the rotation direction of the rotor 31 of the fan 3 than the second end 322 (see FIG. 3A) on the outlet 24 side. It is located forward at R1 (see FIG. 3A).
  • the fan housing 33 rotatably accommodates the rotating body 31 and the plurality of blades 32 .
  • Fan housing 33 is cylindrical.
  • the outer diameter of the fan housing 33 is substantially the same as the inner diameter of the tubular body 2 .
  • the fan housing 33 is fixed to the cylindrical body 2. As shown in FIG.
  • the motor 36 rotates the rotating body 31 . More specifically, the motor 36 rotates the rotating body 31 around the rotation center axis 30 of the rotating body 31 .
  • Motor 36 is, for example, a DC motor.
  • the motor 36 is driven by the first drive circuit 101 described above.
  • the motor 36 includes a motor body 361 and a rotary shaft 362 partially protruding from the motor body 361 .
  • a rotating shaft 362 is connected to the rotating body 31 .
  • a rotating shaft 362 of the motor 36 is fixed to the boss portion 313 of the rotating body 31 .
  • a motor body 361 of the motor 36 is attached to the motor attachment portion.
  • the motor mounting portion is located inside the outer edge of the rotating body 31 when viewed from the axial direction D3 of the fan 3.
  • the present invention is not limited to this. may be
  • a plurality of (for example, three) beams connect the motor mounting portion and the fan housing 33 .
  • the plurality of beams are arranged at equal intervals in the direction along the outer edge of the motor mounting portion.
  • the first rectifying device 4 is positioned between the fan 3 and the outlet 24 in the axial direction D3 of the fan 3 .
  • the first straightening device 4 diverts the swirling airflow F1 (see FIG. 3A) downstream of the fan 3 .
  • the first rectifying device 4 diverts the swirling airflow F1 on the downstream side of the fan 3 to an airflow F2 (see FIG. 3B ) directed toward the center of the fan 3 .
  • the first straightening device 4 forms a flow velocity distribution in which the airflow velocity in the first region is higher than the airflow velocity in the second region on the downstream side of the first straightening device 4 when viewed from the axial direction D3 of the fan 3. do.
  • the speed of the airflow is the speed in the direction along the axial direction D3 of the fan 3 .
  • the first region is a region (inner region) between the central axis 20 of the cylindrical body 2 and the inner peripheral surface 27 of the cylindrical body 2 and is closer to the central axis 20 (the inner region). It is a region (outer region) close to the inner peripheral surface 27 of the cylindrical body 2 .
  • the first straightening device 4 has a cylindrical tubular portion 41 and a plurality of (eg, 12) fins 42, as shown in FIGS.
  • the outer diameter of the tubular portion 41 is substantially the same as the inner diameter of the tubular body 2 .
  • the inner diameter of the tubular portion 41 is substantially the same as the inner diameter of the fan housing 33 .
  • Each of the plurality of fins 42 has an arc shape when viewed from the axial direction D3 of the fan 3 .
  • the plurality of fins 42 protrude from the inner peripheral surface 413 of the cylindrical portion 41 toward the central axis 40 of the cylindrical portion 41 and are arranged along the inner circumference of the cylindrical portion 41 .
  • Each of the plurality of fins 42 has a first end 421 on the side of the inlet 23 and a second end 422 on the side of the outlet 24 in the axial direction D3 of the fan 3 .
  • Each of the plurality of fins 42 is arranged parallel to the axial direction D3 of the fan 3 between the inner peripheral surface 413 of the tubular portion 41 and the central axis of the tubular portion 41 .
  • the first end 421 and the second end 422 overlap each other when viewed from the axial direction D ⁇ b>3 of the fan 3 .
  • the ends of the plurality of fins 42 on the cylinder part 41 side are arranged at equal intervals in the direction along the inner periphery of the cylinder part 41 .
  • the term "equidistant interval" as used herein is not limited to cases where the interval is exactly the same, and for example, an interval within a predetermined error range (for example, ⁇ 10% of the specified interval) with respect to the specified interval.
  • the first flow straightening device 4 has a plurality (for example, 12) of flow paths 45 surrounded by two adjacent fins 42 among the plurality of fins 42 and the cylindrical portion 41 .
  • the width of the flow path 45 in the direction along the inner circumference of the tubular portion 41 narrows as it approaches the central axis 40 of the tubular portion 41 from the inner peripheral surface 413 of the tubular portion 41.
  • the length of each of the plurality of fins 42 is the same as the length of the tubular portion 41 in the axial direction D3 of the fan 3 .
  • the length of each of the plurality of fins 42 is not limited to being the same as the length of the tubular portion 41 , and may be longer or shorter than the tubular portion 41 .
  • each of the plurality of fins 42 has a first surface 43 that intersects the direction along the inner circumference of the tubular body 2 and a first surface 43 that intersects the direction along the inner circumference of the tubular body 2 . and a second surface 44 opposite 43 .
  • the first surface 43 is a surface located rearward in the direction along the rotational direction R1 (see FIG. 3A) of the rotating body 31, and the second surface 44 is the surface positioned in the direction along the rotational direction R1 of the rotating body 31. , the plane located forward.
  • the first surface 43 is a concave curved surface.
  • the second surface 44 is a convex curved surface.
  • the material of the first rectifier 4 is metal, but is not limited to this, and may be resin.
  • the second straightening device 5 is positioned between the first straightening device 4 and the outflow port 24 of the cylinder 2 in the axial direction D3 of the fan 3 .
  • the second straightening device 5 adjusts the flow velocity distribution of the airflow from the first straightening device 4 on the downstream side of the first straightening device 4 .
  • the second straightening device 5 has a plurality of flow paths 55 along the axial direction D3 of the fan 3 .
  • Each of the plurality of flow paths 55 has an inlet 551 on the side of the first rectifier 4 and an outlet 552 on the side of the outflow port 24 of the tubular body 2 .
  • the inlet 551 and the outlet 552 have the same shape.
  • the second rectifier 5 includes a rectifier grid 50 and a cylindrical tubular portion 51 surrounding the rectifier grid 50 .
  • the rectifying grid 50 has a plurality of partition plate portions 56 that partition any two adjacent flow paths 55 out of the plurality of flow paths 55 .
  • Each of the plurality of partition plate portions 56 is arranged along the axial direction D3 of the fan 3 .
  • the rectifying grid 50 has a honeycomb grid shape.
  • the inlet 551 and the outlet 552 of each of the plurality of flow paths 55 have a regular hexagonal shape. From another point of view, each of the plurality of flow paths 55 has a hexagonal prism shape.
  • the outer diameter of the tubular portion 51 is substantially the same as the inner diameter of the tubular body 2 .
  • the second rectifying device 5 is arranged inside the tubular body 2 such that the central axis of the tubular portion 51 coincides with the central axis 20 of the tubular body 2 .
  • the material of the second rectifier 5 is resin, but is not limited to this, and may be metal.
  • the supply device 7 can supply the functional component to be blown into the air to the airflow blown out from the outlet 24 . More specifically, the supply device 7 has a generator 71 and a functional component transport channel 72 .
  • the generating unit 71 generates, for example, mist containing functional components.
  • the functional component transport channel 72 is connected to the space between the first straightening device 4 and the outflow port 24 in the tubular body 2 .
  • Examples of functional ingredients include deodorizing ingredients, aromatic ingredients, disinfecting ingredients, bactericidal ingredients, cosmetic ingredients, and medicinal ingredients.
  • the supply device 7 is configured to supply a functional ingredient from a functional material containing the functional ingredient.
  • a functional material containing a functional component is, for example, a solution containing a functional component.
  • the generation unit 71 includes, for example, an atomization unit that atomizes the solution containing the functional component, and an energy supply device that imparts energy to the solution to atomize the solution in the atomization unit.
  • the energy supply device is, for example, an ultrasonic transducer, but is not limited to this, and may be, for example, a SAW (Surface Acoustic Wave) device.
  • the generator 71 is driven by the second drive circuit 102 .
  • the cylinder 2 has a communication hole 25 penetrating between the first end 21 and the second end 22 in a direction crossing the axial direction of the cylinder 2 .
  • the functional component transport channel 72 is connected to the outflow port 24 of the cylindrical body 2 via the communication hole 25 .
  • the functional component transport channel 72 is formed, for example, by attaching a channel forming member 73 to the cylinder 2 .
  • the functional component transport channel 72 is formed between the channel forming member 73 and the outer peripheral surface 28 of the cylinder 2 and communicates with the space inside the cylinder 2 through the communication hole 25 of the cylinder 2 .
  • the mist containing the functional component generated by the generation unit 71 is supplied to the airflow blown out from the outlet 24 through the functional component transport channel 72 and the communication hole 25 .
  • the supply device 7 may convey the mist containing the functional component into the cylinder 2 by attracting the mist containing the functional component to the air current inside the cylinder 2 . It may be provided with a fan to send inwards.
  • the functional component transport channel 72 is not limited to the case where it is formed using the channel forming member 73.
  • the functional component transport channel 72 has a first end and a second end, and the first end is connected to the generator 71 and connected to the second end. It may be constituted by a tubular member whose end is arranged inside the cylindrical body 2 through the communication hole 25 .
  • the control unit 8 controls the airflow blowing device 1 and the supply device 7 .
  • the controller 8 controls the fan 3 by controlling the first drive circuit 101 .
  • the control unit 8 also controls the supply device 7 by controlling the second drive circuit 102 .
  • Control of the airflow blowing device 1 by the control unit 8 includes, for example, starting the operation of the fan 3, stopping the operation of the fan 3, controlling the rotation speed of the fan 3, and the like.
  • the control unit 8 can control the speed of the airflow blown out from the outlet 24 of the airflow blowing device 1 by controlling the driving voltage of (the motor 36 of) the fan 3 to control the rotational speed of the fan 3. .
  • the fan 3 changes its rotational speed and air volume in accordance with changes in drive voltage. The rotational speed and air volume of the fan 3 increase as the drive voltage increases.
  • Control of the supply device 7 by the controller 8 includes, for example, the start of atomization of the solution in the generator 71, the stop of atomization of the solution, and the control of the atomization amount of the solution.
  • the control unit 8 can supply the functional component to be blown into the air to the airflow blown out from the outlet 24 .
  • the control unit 8 can control the timing of supplying the functional component to be blown into the air to the airflow blown out from the outlet 24 .
  • the control unit 8 includes a computer system.
  • a computer system is mainly composed of a processor and a memory as hardware.
  • the function of the control unit 8 is realized by the processor executing a program recorded in the memory of the computer system.
  • the program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided.
  • a processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs).
  • Integrated circuits such as ICs or LSIs are called differently depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • a plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips.
  • a plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • a computer system includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.
  • the airflow F1 (see FIG. 3A) generated on the downstream side of the fan 3 and swirling along the inner peripheral surface 27 of the cylinder 2 near the inner peripheral surface 27 is It is turned in a direction approaching the central axis 40 of the first straightening device 4 . More specifically, in the first straightening device 4, the airflow F1 (see FIG. 3A) swirling along the inner peripheral surface 27 of the cylindrical body 2 collides with the fins 42, causing the center of the first straightening device 4 to It is turned into airflow F2 (see FIG. 3B) approaching axis 40 .
  • the first straightening device 4 gathers the airflow F1 generated by the fan 3 and swirling along the inner peripheral surface 27 of the cylindrical body 2 toward the central axis 40 of the first straightening device 4.
  • a flow velocity distribution is formed in which the velocity of the airflow in the first area is higher than the velocity of the airflow in the second area.
  • the first rectifying device 4 can form a velocity distribution in which the velocity of the inner airflow is relatively high and the velocity of the outer airflow is relatively low.
  • the speed of the airflow is the speed in the direction along the axial direction D3 of the fan 3 .
  • the first region is a region (inner region) near the central axis 20 between the central axis 20 of the cylindrical body 2 and the inner peripheral surface 27 of the cylindrical body 2, and the second region is the central axis 20 of the cylindrical body 2. and the inner peripheral surface 27 of the tubular body 2 (outer region) near the inner peripheral surface 27 .
  • the direction of the airflow from the first straightening device 4 side is straightened along the axial direction D ⁇ b>3 of the fan 3 by the second straightening device 5 downstream of the first straightening device 4 .
  • the airflow rectified by the second rectifier 5 flows out from the outlet 24 of the cylinder 2 .
  • the airflow blowing device 1 when the fan 3 is driven, the airflow flowing downstream of the fan 3 is rectified by the first rectifier 4 and the second rectifier 5, and is blown out from the outlet 24 of the cylinder 2. .
  • FIG. 5A shows the flow velocity distribution in the vicinity of the outlet 24 of the cylindrical body 2 of the airflow blowing device 1.
  • FIG. 5A shows the flow velocity distribution when the air volume of the fan 3 is 70 m 3 /h and the structural parameters are set as follows in the airflow blowing device 1 in the airflow control system 100 according to the first embodiment.
  • FIG. 5B shows the flow velocity distribution in an airflow blowing device according to a comparative example that does not include the first straightening device 4 and the second straightening device 5 .
  • FIGS. 5A and 5B shows the flow velocity distribution in one section including the central axis 20 of the tubular body 2.
  • the horizontal axis is the distance from the central axis 20 of the cylinder 2, and the vertical axis is the flow velocity.
  • the right side of the central axis 20 is "positive” and the left side is "negative (- sign)". This is a code attached to distinguish between the distance to an arbitrary position on the right side of the position and the distance to an arbitrary position on the left side of the position.
  • the flow velocity increases with increasing distance from the center of the outflow port 24 .
  • the airflow blowing device 1 in the airflow control system 100 according to the first embodiment as shown in FIG. It has been realized.
  • the airflow blowing device 1 is capable of blowing out a double jet including a first jet from the inner region of the outlet 24 and a second jet from the outer region of the outlet 24 .
  • the airflow blowing device 1 With the airflow blowing device 1, it is possible to increase the directivity of the airflow (jet flow) blown out from the outlet 24 of the cylindrical body 2, and to suppress the diffusion of the airflow. Therefore, with the airflow blowing device 1, it is possible to carry the airflow spotwise (locally) to a specific area in the target space.
  • control unit 8 controls the fluctuation of the speed of the airflow blown out from the outlet 24 (for example, the speed of the first jet flowed out from the inner region of the outlet 24) (see FIG. 6). ), causing the supply device 7 to supply the functional component to the airflow when the velocity of the airflow is greater than the threshold value V1 (see FIG. 6).
  • the expression "fluctuation control of the airflow velocity” means controlling the airflow velocity such that the time change of the airflow velocity has fluctuation characteristics.
  • the fluctuation characteristics are, for example, 1/f fluctuation characteristics. In this case, it means that the controller 8 controls the airflow velocity so that the change in the airflow velocity becomes a 1/f fluctuation waveform.
  • 1/f fluctuation means fluctuation in which the power spectral density is inversely proportional to the frequency f.
  • the fluctuation characteristic is not limited to 1/f fluctuation, and may be, for example, 1/ f2 fluctuation.
  • the fluctuation characteristics are not limited to irregular fluctuation characteristics (for example, 1/f fluctuation or 1/ f2 fluctuation), and may be regular fluctuation.
  • control unit 8 When supplying the functional component from the supply device 7 to the airflow, the control unit 8 temporarily (instantaneously) supplies the functional component to the airflow.
  • the control unit 8 permits the supplying device 7 to supply the functional component to the airflow when the speed of the airflow blowing out from the outlet 24 is equal to or lower than the second threshold V2, which is larger than the first threshold V1, which is the threshold V1.
  • FIG. 6 shows temporal changes in the speed of the airflow blowing out from the outlet 24 .
  • the horizontal axis is time and the vertical axis is airflow velocity.
  • the controller 8 changes the speed of the airflow, for example, within a range from a first speed VL to a second speed VH by controlling the fluctuation of the speed of the airflow.
  • the second speed VH is greater than the first speed VL.
  • the first speed VL is, for example, 0.05 m/sec.
  • the second speed VH is, for example, 1.5 m/sec.
  • the first threshold value V1 is determined so that the functional component reaches the target space on an air current, and is, for example, 1.0 m/sec.
  • the second threshold V2 is, for example, 1.6 m/sec.
  • Each value of the first threshold V1 and the second threshold V2 is an example and is not particularly limited.
  • the controller 8 controls the supply device 7 at time t3 when the airflow velocity becomes greater than the first threshold value V1 and equal to or less than the second threshold value V2 after time t2 when a predetermined time T1 has elapsed from time t1 when the functional component was supplied. supply functional ingredients to the air stream.
  • the control unit 8 does not supply the functional component from the supply device 7 to the airflow even if the speed of the airflow is greater than the first threshold value V1 and equal to or less than the second threshold value V2 when the predetermined time T1 has not elapsed from the time point t1.
  • the predetermined time T1 is, for example, 30 seconds, but is not limited to 30 seconds.
  • the control method according to the first embodiment is a control method for a system including the airflow blowing device 1 and the supply device 7 .
  • the control method according to the first embodiment is implemented by the operation of the control unit 8.
  • This control method fluctuates the speed of the airflow blowing out from the outlet 24 (see FIG. 6), and causes the supply device 7 to supply the functional component to the airflow when the speed of the airflow is greater than the threshold value V1 (see FIG. 6).
  • the control method for example, by controlling the number of revolutions of the fan 3 of the airflow blowing device 1, the speed of the airflow blown out from the outlet 24 is controlled to fluctuate.
  • the control method according to the first embodiment causes the supply device 7 to supply the functional component to the airflow when the speed of the airflow blown out from the outlet 24 is equal to or lower than the second threshold V2 which is larger than the first threshold V1 which is the threshold V1. Allow For example, when the driving voltage of the motor 36 is greater than the voltage value corresponding to the threshold value V1 and the driving voltage of the motor 36 is equal to or less than the voltage value corresponding to the second threshold value V2, the control method is such that from the supply device 7 to the airflow Allow to supply functional ingredients.
  • the control method according to the first embodiment can suppress the amount of functional material used in the supply device 7, for example. Therefore, in the control method according to the first embodiment, for example, it is possible to reduce the frequency of exchanging the container containing the functional material in the generating unit 71 of the supply device 7 or the frequency of replenishing the container with the functional material. .
  • the control method according to Embodiment 1 is implemented by a computer system executing a program.
  • This program is a program (computer program) for causing the computer system to execute the control method.
  • the control method according to the first embodiment is a control method for a system including the airflow blowing device 1 and the supply device 7 .
  • the airflow blowing device 1 has an outlet port 24 for blowing out straight airflow.
  • the airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 .
  • the supply device 7 can supply the functional component to be blown into the air to the air flow blown out from the outlet 24 .
  • the control method is to fluctuate the speed of the airflow blown out from the outlet 24, and supply the functional component from the supply device 7 to the airflow when the speed of the airflow is greater than the threshold value V1. According to this control method, it is possible to improve comfort.
  • this control method it is possible to improve the comfort of people in the range reached by the airflow blown out from the airflow blowing device 1 .
  • this control method since the velocity of the airflow blown out from the outlet 24 is controlled to fluctuate, it is possible to reduce the possibility that people in the reach of the airflow will feel cold and uncomfortable.
  • the supply device 7 supplies the functional component to the airflow, so that the functional component can reach a person within the reach of the airflow.
  • control method according to the first embodiment causes the supply device 7 to supply the functional component to the airflow when the speed of the airflow blown out from the outlet 24 is equal to or lower than the second threshold V2 which is larger than the first threshold V1 which is the threshold V1. Allow As a result, the control method according to the first embodiment can reduce, for example, the frequency of replacement of the container containing the functional material in the supply device 7 or the frequency of refilling the container with the functional material.
  • the program according to the first embodiment is a program (computer program) for causing a computer system to execute the control method described above. According to such a program, it is possible to improve comfort, similarly to the control method described above.
  • the airflow control system 100 includes the airflow blowing device 1, the supply device 7, and the control section 8.
  • the airflow blowing device 1 has an outlet port 24 for blowing out straight airflow.
  • the airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 .
  • the supply device 7 can supply the functional component to be blown into the air to the air flow blown out from the outlet 24 .
  • the control unit 8 controls the airflow blowing device 1 and the supply device 7 .
  • the control unit 8 controls the fluctuation of the speed of the airflow blown out from the outlet 24 by controlling the airflow blowing device 1 .
  • the control unit 8 controls the supply device 7 so as to supply the functional component to the airflow from the supply device 7 when the speed of the airflow is greater than the threshold value. Therefore, the airflow control system 100 according to Embodiment 1 can improve comfort.
  • the airflow control system 100 can suppress the diffusion of the airflow by including the airflow blowing device 1 having the outlet 24 for blowing out the straight airflow, and thus can suppress the diffusion of the airflow containing the functional component. It becomes possible.
  • the airflow control system 100 includes the supply device 7 and the control unit 8, so that the airflow blown out into the target space of the facility can contain the functional component, and the airflow containing the functional component can be diffused in the target space. can be suppressed. “Suppressing the diffusion of the airflow containing the functional component” means improving the directivity of the airflow containing the functional component by improving the straightness of the airflow. In the airflow control system 100 according to the first embodiment, it is possible to suppress the concentration of the functional component from decreasing before the functional component reaches the target space for supplying the functional component, thereby enhancing the effect of the functional component. becomes possible.
  • the airflow control system 100a according to the second embodiment differs from the airflow control system 100 according to the first embodiment in that it includes a supply device 7a instead of the supply device 7 in the airflow control system 100 according to the first embodiment.
  • the same components as those of the airflow control system 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the supply device 7a is configured to generate and supply functional components from components in the air.
  • the functional component is, for example, charged particulate water containing OH radicals.
  • the generator 71a includes, for example, an electrostatic atomizer that generates charged fine particle water containing OH radicals.
  • the charged fine particle water is nanometer-sized fine particle ions.
  • An electrostatic atomizer can generate fine particle ions having a particle size of 5 nm to 20 nm, for example, by applying a high voltage to water in the air. In charged fine particle water, OH radicals tend to act on various substances.
  • the supply device 7 a has a functional component transport channel 74 instead of the functional component transport channel 72 in the supply device 7 .
  • the functional component transport channel 74 is, for example, a tubular member having a first end and a second end, the first end being connected to the generating part 71a and the second end being arranged inside the cylindrical body 2 through the communication hole 25. .
  • the control unit 8 fluctuates the speed of the airflow blown out from the outlet 24 in the range of the first speed VL or more and the second speed VH or less, Allowing the airflow to supply the functional component from the supply device 7a when the airflow velocity is greater than the threshold value V1.
  • the threshold V1 is, for example, a speed (eg, 0.04 m/sec) smaller than 0.05 m/sec, which is the first speed VL.
  • control method As in the control method according to the first embodiment, fluctuation control is performed on the velocity of the airflow blown out from the outlet 24, and when the velocity of the airflow is greater than the threshold value V1, the airflow from the supply device 7a is controlled. Since the ingredients are supplied, comfort can be improved.
  • the control method according to the second embodiment when the fluctuation control is performed on the speed of the airflow blown out from the outlet 24, the speed of the airflow is varied within a range of a first speed VL or more and a second speed VH or less, and the speed of the airflow is changed from the threshold value V1. is large, it allows the airflow to supply the functional component from the supply device 7a.
  • the control method according to the second embodiment continuously supplies the functional component while the airflow blown out from the outlet 24 of the airflow blowing device 1 fluctuates within the range of the first speed VL to the second speed VH. It becomes possible to More specifically, in the control method, for example, the speed of the airflow blown out from the outlet 24 is controlled by controlling the rotational speed of the fan 3 of the airflow blowing device 1 .
  • the threshold value V1 is not limited to a value smaller than the first speed VL, and may be the same value as the first speed VL, for example.
  • Embodiment 3 An airflow control system 100b according to Embodiment 3 will be described below with reference to FIG. Regarding the airflow control system 100b according to the third embodiment, the same components as those of the airflow control system 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the airflow control system 100b is applied, for example, to an environment control system 200 that controls the spatial environment of facilities such as offices, as shown in FIG.
  • the environment control system 200 includes, as shown in FIG. 9, a plurality of air conditioners 201, a server 202, and a plurality of airflow control systems 100b.
  • Server 202 can communicate with multiple air conditioners 201 through communication network 500 .
  • Server 202 can also communicate with multiple airflow control systems 100b through communication network 600 .
  • Communication networks 500, 600 may include the Internet.
  • the communication networks 500 and 600 may be composed of not only a network conforming to a single communication protocol, but also a plurality of networks conforming to different communication protocols.
  • the communication protocol may be, for example, a communication protocol conforming to the Ethernet (registered trademark) standard or a communication protocol conforming to the Wi-Fi (registered trademark) standard.
  • a communication network may include data communication equipment such as repeater hubs, switching hubs, bridges, gateways, routers, and the like.
  • the communication networks 500 and 600 may be power line communication networks using power lines.
  • a plurality of air conditioners 201 are arranged, for example, on the ceiling of an office.
  • a plurality of air conditioners 201 have different identification information.
  • the identification information of the air conditioner 201 is stored in the storage unit 215 of the air conditioner 201 .
  • the storage unit 215 is, for example, a non-volatile memory such as EEPROM (Electrically Erasable Programmable Read Only Memory).
  • Each of the plurality of air conditioners 201 includes a flap 211 for changing the blowing direction of the air, a fan 212 for adjusting the velocity of the blown air flow, a communication unit 213 for communicating with the server 202, and a communication unit 213.
  • Each of the control units 214 of the plurality of air conditioners 201 controls the flow velocity and blowing direction of the air flow blown out from the air conditioner 201 based on an instruction from the server 202, for example.
  • a plurality of airflow control systems 100b are connected, for example, to a wiring duct on the ceiling of an office where a plurality of air conditioners 201 are arranged.
  • a plurality of airflow control systems 100b have identification information different from each other.
  • the identification information of the airflow control system 100b is stored, for example, in a non-volatile memory of the controller 8 or the like.
  • Each airflow control system 100b has a communication section 9 that communicates with the server 202 .
  • Each of the control units 8 of the plurality of airflow control systems 100b controls the airflow blowing device 1 based on information (for example, instruction information, operation information of the air conditioner 201, etc.) received from the server 202 via the communication unit 9, for example. and control the supply device 7 .
  • the server 202 includes a control unit 220 that controls the plurality of air conditioners 201 and the plurality of airflow control systems 100b, a first communication unit 221 that communicates with the plurality of air conditioners 201, and communication with the plurality of airflow control systems 100b. and a storage unit 223 .
  • the server 202 stores, in the storage unit 223, identification information and location information of the plurality of air conditioners 201 and identification information and location information of the plurality of airflow control systems 100b.
  • the first communication unit 221 is a communication interface.
  • the first communication unit 221 is a communication interface connectable to a communication network and has a function of performing communication through the communication network 500 .
  • the signals received by the first communication unit 221 from each of the plurality of air conditioners 201 include, for example, identification information of the air conditioner 201, information on the flow velocity of the air blown out from the air conditioner 201, and information on the air flow from the air conditioner 201. information about the blowing direction of the
  • the second communication unit 222 is a communication interface.
  • the second communication unit 222 is a communication interface connectable to the communication network 600 and has a function of performing communication through the communication network 600 .
  • the second communication unit 222 can communicate with multiple airflow control systems 100b through the communication network 600 .
  • the communication protocol of the second communication unit 222 can be selected from various well-known wired communication standards and wireless communication standards.
  • the storage unit 223 is a device for storing information.
  • the storage unit 223 is ROM (Read Only Memory), RAM (Random Access Memory), EEPROM, or the like.
  • the storage unit 223 has an area for storing determination information used to determine whether or not the airflow blowing direction of the air conditioner 201 is directed to the airflow blowing direction of the airflow control system 100b.
  • the determination information includes information on the air-conditioned area, information on each air conditioner 201, and information on each airflow control system 100b.
  • the information on the air-conditioned area is information for specifying the size, shape, etc. of the air-conditioned area.
  • the information of each air conditioner 201 includes information (identification information) for specifying the air conditioner 201 and position information of the air conditioner 201 .
  • the position information of the air conditioner 201 is, for example, coordinates indicating the position of the air conditioner 201 in a facility such as an office.
  • the information of each airflow control system 100b includes information (identification information) for specifying the airflow control system 100b and position information of the airflow control system 100b.
  • the position information of the airflow control system 100b is, for example, coordinates indicating the position of the airflow control system 100b within a facility such as an office.
  • the control unit 220 is configured to perform overall control of the server 202 . That is, the control unit 220 is configured to control the first communication unit 221 , the second communication unit 222 and the storage unit 223 .
  • the controller 220 can be implemented by a computer system including, for example, one or more processors (microprocessors) and one or more memories. That is, one or more processors function as the control unit 220 by executing one or more programs (applications) stored in one or more memories.
  • the program is pre-recorded in the memory of the control unit 220 here, it may be provided through an electric communication line such as the Internet or recorded in a non-temporary recording medium such as a memory card.
  • the control unit 8 of each airflow control system 100 b controls the supply device 7 based on the operation information of the air conditioner 201 received from the control unit 220 of the server 202 .
  • the operation information of the air conditioner 201 can include information related to the flow velocity of the air flow blown out from the air conditioner 201 and information related to the blowing direction of the air flow.
  • the control unit 8 controls the supply device Do not allow functional components to be supplied from 7 to the air stream.
  • the airflow control system 100b can suppress diffusion of the functional component due to the influence of the airflow blown out from the air conditioner 201 .
  • control method when the flow velocity of the airflow blown out from the air conditioner 201 that performs air conditioning of the space to be air-conditioned including the space to which the airflow from the airflow blowing device 1 is supplied is higher than the second threshold value V2. does not allow the supply device 7 to supply the functional component to the air stream.
  • the control method according to the third embodiment can suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner 201 .
  • the control method according to the third embodiment when it is determined that the direction of the airflow blown out from the air conditioner 201 is toward the space to which the airflow from the airflow blowing device 1 is supplied, the airflow is directed from the supply device 7 to the airflow. Do not allow functional ingredients to be supplied. As a result, the control method according to the third embodiment can suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner 201 .
  • the control method for example, based on information from the server 202, it is determined whether or not the direction of the airflow blown out from the air conditioner 201 is toward the space to which the airflow from the airflow blowing device 1 is supplied. This determination may be made by the control unit 220 of the server 202 .
  • the airflow control system 100c according to Embodiment 4 differs from the first embodiment in that the control unit 8 controls the supply device 7 based on the evaluation value output from the detection unit 11 and indicating the amount of movement corresponding to the movement of the person. It is different from the airflow control system 100 concerned.
  • the airflow control system 100 c further includes an acquisition unit 10 that acquires the evaluation value output from the detection unit 11 , and the control unit 8 controls the supply device 7 based on the evaluation value acquired by the acquisition unit 10 .
  • Acquisition unit 10 is, for example, a communication interface.
  • the same components as those of the airflow control system 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the detection unit 11 detects a person in the detection area including the space to which the airflow from the airflow blowing device 1 is supplied, and outputs an evaluation value indicating the movement amount according to the movement (moving speed) of the person.
  • the detection unit 11 has an infrared image sensor that is attached, for example, to the ceiling of the office where the airflow blowing device 1 is arranged, and detects a person within the detection area in the office.
  • the infrared image sensor includes an infrared sensor having a plurality of infrared detection units that absorb infrared rays from a person within a detection area, and a processing unit that processes output signals of the infrared sensor to continuously generate infrared image data.
  • the infrared detector includes, for example, a thermopile.
  • the processing unit detects a person based on the infrared image data and obtains an evaluation value according to the movement of the person.
  • the processing unit detects a person in a predetermined area including the reachable range of the airflow of the airflow blowing device 1 in the detection area, and obtains an evaluation value according to the movement of the person.
  • the predetermined area is not limited to being smaller than the detection area, and may be the same as the detection area.
  • the processing unit obtains an average value of movement speeds per unit time for each person in a predetermined area, and sets a value obtained by summing the average values as an evaluation value.
  • the processing unit is mainly composed of a computer such as a microcomputer, and performs appropriate processing by executing a program recorded in a memory of the computer with a processor of the computer.
  • the program may be prerecorded in a memory, may be provided through an electric communication line such as the Internet, or may be provided by being recorded in a recording medium such as a memory card.
  • the control unit 8 detects a person in the detection area including the space to which the airflow from the airflow blowing device 1 is supplied, and outputs an evaluation value according to the movement of the person. If the evaluation value from the unit 11 is greater than the specified value, the functional component is not permitted to be supplied from the supply device 7 to the airflow. As a result, the airflow control system 100c according to the fourth embodiment can prevent the functional component from being diffused due to human movement.
  • control method detects a person in the detection area including the space to which the airflow from the airflow blowing device 1 is supplied, and outputs an evaluation value according to the movement of the person. If the value is greater than the specified value, the supply device 7 is not allowed to supply the functional component to the airflow. As a result, the control method according to the fourth embodiment can prevent the functional component from being diffused by human movement.
  • Embodiments 1 to 4 above are only one of various embodiments of the present invention.
  • the above-described Embodiments 1 to 4 can be modified in various ways according to the design, etc., as long as the object of the present disclosure can be achieved, and different constituent elements of different embodiments may be appropriately combined.
  • the functional component is supplied from the supply device 7 to the airflow when the speed of the airflow is greater than the threshold value V1.
  • the control method may control the supply device 7 in either the first control mode or the second control mode according to the operation of a manipulable operation unit (for example, a remote controller, an operation switch).
  • the supply device 7 may be controlled in one of the first control mode and the second control mode according to the number of people detected by the human body detection sensor.
  • the human body detection sensor detects a person within a detection area including the space to which the airflow from the airflow blowing device 1 is supplied.
  • the control method when the feeding device 7 is controlled according to the number of people detected by the human body detection sensor, when the number of people is 1, the feeding device 7 is controlled in the first control mode, and the number of people is In the case of 2 or more, the supply device 7 is controlled in the second control mode.
  • the range in which the functional component is transported can be narrowed compared to when the number of people is 2 or more, and when the number of people is 2 or more, , the range in which the functional component is transported can be widened as compared with the case where the number of persons is one.
  • the supply device 7 may be controlled according to the output of an AI (Artificial Intelligence) speaker or the like that accepts human voice input.
  • AI Artificial Intelligence
  • control unit 8 of the airflow control system 100 may control the fan 3 and the supply device 7 based on information acquired from sensors, for example.
  • sensors include image sensors, motion sensors, ultrasonic sensors, Doppler sensors, radio wave sensors, biological information sensors, behavior sensors, environment sensors, and the like.
  • the image sensor only needs to be able to output information related to a target object (e.g., a person) present in the target space.
  • a distance image sensor that uses distance as a pixel value, and the like.
  • a biological information sensor for example, a wearable terminal that measures at least heart rate can be used.
  • Wearable terminals that measure at least heartbeats include, for example, wristband-type or watch-type wearable terminals worn on the wrists of people entering and exiting a target space.
  • a behavior sensor can be configured by, for example, a position information acquisition system.
  • the location information acquisition system is a system that acquires the location information of the transmitter by using the transmitter carried by the person and the receiver installed in the facility, and it is assumed that the person carries the transmitter. , the position of the transmitter is treated as the position of the person.
  • the transmitter has the function of transmitting radio signals.
  • a transmitter transmits a radio signal at a predetermined cycle.
  • the radio signal may contain the identity of the transmitter. Identification information may be used to distinguish between multiple transmitters.
  • the identification information is stored, for example, in a storage section of the transmitter.
  • the storage unit is, for example, nonvolatile memory such as EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the behavior sensor is a sensor that uses a position information acquisition system that uses beacons, but is not limited to this, and may be a sensor that uses a GPS (Global Positioning System), for example.
  • Environmental sensors include, for example, an odor sensor, a temperature sensor, a humidity sensor, a CO2 sensor, and the like.
  • the generation unit 71 may have a plurality of atomization units that atomize solutions containing functional components different from each other.
  • the airflow control system 100 can change the functional component supplied to the airflow blown out from the outlet 24 by controlling the generator 71 with the controller 8 .
  • each of the plurality of fins 42 in the first straightening device 4 is not limited to the case where the entire first end 421 and the entire second end 422 overlap when viewed from the axial direction D3 of the fan 3. At least part of the end 421 and at least part of the second end 422 should just overlap. Further, each of the plurality of fins 42 may have a configuration in which the first end 421 and the second end 422 do not overlap when viewed in the axial direction D3.
  • the straightening grid 50 is not limited to the honeycomb lattice shape, and may be, for example, a square lattice shape or a triangular lattice shape.
  • the second rectifying device 5 is not limited to the rectifying grid 50 described above, and may be a rectifying grid in which a plurality of (eg, 19) thin tubes are bundled, or may be a perforated plate (eg, punching metal). Each of the plurality of capillaries has a channel 55 .
  • the perforated plate has a plurality of through-holes forming a plurality of flow paths 55 .
  • the airflow blowing device 1 may further include a third straightening device positioned between the first straightening device 4 and the second straightening device 5 in the axial direction D3 of the fan 3 .
  • the third rectifier includes, for example, an inner cylindrical body arranged coaxially with the cylindrical body 2 inside the cylindrical body 2 , and a plurality of attachment portions for attaching the inner cylindrical body to the cylindrical body 2 .
  • the inner cylindrical body has smaller inner and outer diameters as it approaches the outlet 24 in the axial direction D3 of the fan 3 .
  • the third straightening device functions as a constriction that straightens the airflow so as to increase the speed of the airflow in the first region and slow down the speed of the airflow in the second region on the downstream side of the first straightening device 4 .
  • the inner cylindrical body may have a cylindrical shape with constant inner and outer diameters in the axial direction D ⁇ b>3 of the fan 3 . Further, the inner cylindrical body may include a diameter-reduced portion in which the inner diameter and the outer diameter respectively change gradually, and a cylindrical portion in which the inner diameter and the outer diameter respectively are constant.
  • the cylindrical body 2 may also serve as the fan housing 33 of the fan 3 .
  • the tubular body 2 may also serve as the tubular portion 41 in the first straightening device 4 .
  • the cylindrical body 2 may also serve as the cylindrical portion 51 of the second straightening device 5 .
  • cylindrical body 2 only needs to have the inlet 23 at the first end 21 and the outlet 24 at the second end 22, and the shape of the cylindrical body 2 is not limited to a cylindrical shape.
  • the airflow blowing device 1 may be embedded in the ceiling material so that the outflow port 24 of the cylindrical body 2 faces the target space.
  • the cylinder 2 may be attached to a wall or a stand.
  • the airflow blowing device 1 may be configured such that air from an air conditioner on the upstream side flows into the inlet 23 of the cylinder 2 .
  • the air conditioner is, for example, a blower, but is not limited to this, and may be, for example, a ventilator, an air conditioner, an air supply cabinet fan, an air conditioning system including a blower and a heat exchanger, or the like.
  • a control method is a control method for a system including an airflow blowing device (1) and a supply device (7; 7a).
  • the airflow blowing device (1) has an outlet (24) for blowing out straight airflow.
  • the airflow blowing device (1) can adjust the speed of the airflow blown out from the outlet (24).
  • the supply device (7; 7a) can supply the functional component to be blown into the air to the airflow blown out from the outlet (24).
  • the control method fluctuates the velocity of the airflow blowing out from the outlet (24) and causes the supply device (7; 7a) to supply the functional component to the airflow when the velocity of the airflow is greater than the threshold value (V1).
  • the control method according to the first aspect makes it possible to improve comfort.
  • the control method according to the second aspect is based on the first aspect.
  • the supply device (7) is configured to supply the functional ingredient from a functional material containing the functional ingredient.
  • the control method allows the supply device (7) to supply the functional component to the airflow when the velocity of the airflow is below a second threshold (V2) which is greater than the first threshold (V1) which is the threshold (V1). .
  • the control method according to the second aspect makes it possible to suppress the amount of functional material used in the supply device (7).
  • the airflow velocity becomes larger than the first threshold value (V1) before the predetermined time (T1) has passed since the functional component was supplied. also does not cause the supply device (7) to supply the functional component to the air stream.
  • the control method according to the third aspect makes it possible to reduce the frequency with which the functional component is supplied from the supply device (7) to the airflow.
  • the control method according to the fourth aspect is based on the first aspect.
  • the supply device (7a) is configured to generate and supply functional components from components in the air.
  • the control method is to fluctuate the speed of the airflow blowing out from the outlet (24) in a range from a first speed (VL) to a second speed (VH), and the speed of the airflow is set to a threshold value ( V1) to allow the airflow to supply the functional component from the supply device (7a).
  • the threshold (V1) is less than the first velocity (VL).
  • the control method according to the fourth aspect functions during a period in which the airflow blown out from the outlet (24) of the airflow blowing device (1) fluctuates within the range of the first speed (VL) to the second speed (VH). It becomes possible to feed the components continuously.
  • the control method according to the fifth aspect is based on the second or third aspect.
  • the control method is performed when the velocity of the airflow blown out from the air conditioner (201) that air-conditions the space to be air-conditioned including the space to which the airflow from the airflow blowing device (1) is supplied is greater than the second threshold value (V2). do not allow the supply device (7) to supply the functional component to the air stream.
  • the control method according to the fifth aspect makes it possible to suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner (201).
  • a control method is characterized in that, in any one of the first to fifth aspects, the direction of the airflow blown out from the air conditioner (201) is directed to the space to which the airflow from the airflow blowing device (1) is supplied. If it determines that it is headed, it does not allow the supply device (7; 7a) to supply the functional component to the airflow.
  • the control method according to the sixth aspect makes it possible to suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner (201).
  • the control method according to the seventh aspect is based on any one of the first to sixth aspects.
  • the control method detects a person in the detection area including the space to which the airflow from the airflow blowing device (1) is supplied, and outputs an evaluation value indicating the amount of movement corresponding to the movement of the person. If the evaluation value is greater than the specified value, the supply device (7; 7a) is not allowed to supply the functional component to the airflow.
  • the control method according to the seventh aspect makes it possible to suppress diffusion of functional components due to human movement.
  • the control method according to the eighth aspect is based on the first aspect.
  • the control method includes, as control modes, a first control mode in which the supply device (7) supplies the functional component to the airflow when the airflow velocity is greater than the threshold value (V1), and a first control mode in which the airflow velocity is greater than the threshold value (V1). and a second control mode that causes the airflow to deliver the functional component when below a small predetermined value.
  • the control method controls the supply device (7) in one of a first control mode and a second control mode in response to operation of a manipulatable operation unit.
  • the control method according to the eighth aspect makes it possible for a person to change the range in which the functional component is conveyed by manipulating the operation unit.
  • the control method according to the ninth aspect is based on the first aspect.
  • the control method includes, as control modes, a first control mode in which the supply device (7) supplies the functional component to the airflow when the airflow velocity is greater than the threshold value (V1), and a first control mode in which the airflow velocity is greater than the threshold value (V1). and a second control mode that causes the airflow to deliver the functional component when below a small predetermined value.
  • the control method controls the supply device (7) in one of the first control mode and the second control mode according to the number of people detected by the human body detection sensor.
  • the supply device (7) is controlled in the first control mode, and when the number of people is 2 or more, the supply device (7) is controlled in the second control mode. Control the feeding device (7).
  • the range in which the functional component is transported can be narrowed compared to when the number of people is 2 or more, and when the number of people is 2 or more, , the range in which the functional component is transported can be widened as compared with the case where the number of persons is one.
  • a program according to the tenth aspect is a program for causing a computer system to execute the control method according to any one of the first to ninth aspects.
  • the program according to the tenth aspect can improve comfort.
  • An airflow control system (100; 100a; 100b; 100c) includes an airflow blowing device (1), a supply device (7; 7a), and a control section (8).
  • the airflow blowing device (1) has an outlet (24) for blowing out straight airflow.
  • the airflow blowing device (1) can adjust the speed of the airflow blown out from the outlet (24).
  • the supply device (7; 7a) can supply the functional component to be blown into the air to the airflow blown out from the outlet (24).
  • a control unit (8) controls the airflow blowing device (1) and the supply device (7; 7a).
  • a control section (8) controls the fluctuation of the speed of the airflow blown out from the outlet (24) by controlling the airflow blowing device (1).
  • the controller (8) controls the supply device (7; 7a) to supply the functional component to the airflow from the supply device (7; 7a) when the airflow velocity is greater than the threshold value (V1).
  • the airflow control system (100; 100a; 100b; 100c) according to the eleventh aspect can improve comfort.

Abstract

The present invention addresses the problem of improving comfort. This control method is a method for controlling an airflow control system (100). The airflow control system (100) comprises an airflow blowing device (1) and a supply device (7). The airflow blowing device (1) has a flow outlet (24) for blowing out a straight-forward airflow. The airflow blowing device (1) is capable of adjusting the speed of the airflow blown out from the flow outlet (24). The supply device (7) is capable of supplying, to the airflow blown out from the flow outlet (24), a functional component for blowing into the atmosphere. The control method involves controlling the speed of the airflow blown out from the flow outlet (24) so as to fluctuate and causing the functional component to be supplied from the supply device (7) to the airflow when the speed of the airflow is greater than a threshold value.

Description

制御方法、プログラム及び気流制御システムControl method, program and airflow control system
 本開示は、制御方法、プログラム及び気流制御システムに関し、より詳細には、気流制御システムの制御方法、プログラム及び気流制御システムに関する。 The present disclosure relates to a control method, program, and airflow control system, and more particularly to a control method, program, and airflow control system for an airflow control system.
 特許文献1には、所定の局所に対して機器の有する機能、例えば、送風、冷暖房、芳香添加、脱臭、空気清浄、等を供給するようにした多機能送風機が開示されている。 Patent Literature 1 discloses a multifunctional fan that supplies the functions possessed by the device to a predetermined local area, such as air blowing, cooling and heating, addition of fragrance, deodorization, air cleaning, and the like.
 特許文献1の多機能送風機では、風量が空調・空気清浄対象の局所空間の広さに対して予め決められているので、気流によって人が寒気を感じる可能性、気流によって人が不快に感じる可能性等があった。 In the multifunctional blower of Patent Document 1, since the air volume is predetermined for the size of the local space to be air-conditioned and cleaned, the airflow may make people feel cold and the airflow may make people feel uncomfortable. There was gender.
特開2003-287000号公報Japanese Patent Application Laid-Open No. 2003-287000
 本開示の目的は、快適性を向上させることが可能な制御方法、プログラム及び気流制御システムを提供することにある。 An object of the present disclosure is to provide a control method, program, and airflow control system that can improve comfort.
 本開示の一態様に係る制御方法は、気流吹出装置と、供給装置と、を備えるシステムの制御方法である。前記気流吹出装置は、直進性を有する気流を吹き出す流出口を有する。前記気流吹出装置は、前記流出口から吹き出す気流の速度を調整可能である。前記供給装置は、空気中に吹き出させる機能成分を前記流出口から吹き出す気流に供給可能である。前記制御方法は、前記流出口から吹き出す気流の速度をゆらぎ制御し、前記気流の速度が閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させる。 A control method according to one aspect of the present disclosure is a control method for a system including an airflow blowing device and a supply device. The airflow blowing device has an outlet for blowing out straight airflow. The airflow blowing device can adjust the speed of the airflow blown out from the outlet. The supply device can supply the functional component to be blown into the air to the airflow blown out from the outlet. The control method controls the fluctuation of the speed of the airflow blown out from the outlet, and causes the supply device to supply the functional component to the airflow when the speed of the airflow is greater than a threshold value.
 本開示の一態様に係るプログラムは、コンピュータシステムに、前記制御方法を実行させるためのプログラムである。 A program according to one aspect of the present disclosure is a program for causing a computer system to execute the control method.
 本開示の一態様に係る気流制御システムは、気流吹出装置と、供給装置と、制御部と、を備える。前記気流吹出装置は、直進性を有する気流を吹き出す流出口を有する。前記気流吹出装置は、前記流出口から吹き出す気流の速度を調整可能である。前記供給装置は、空気中に吹き出させる機能成分を前記流出口から吹き出す気流に供給可能である。前記制御部は、前記気流吹出装置及び前記供給装置を制御する。前記制御部は、前記気流吹出装置を制御することによって前記流出口から吹き出す気流の速度をゆらぎ制御する。前記制御部は、前記気流の速度が閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させるように前記供給装置を制御する。 An airflow control system according to one aspect of the present disclosure includes an airflow blowing device, a supply device, and a control unit. The airflow blowing device has an outlet for blowing out straight airflow. The airflow blowing device can adjust the speed of the airflow blown out from the outlet. The supply device can supply the functional component to be blown into the air to the airflow blown out from the outlet. The controller controls the airflow blowing device and the supply device. The control unit controls the fluctuation of the speed of the airflow blown out from the outlet by controlling the airflow blowing device. The controller controls the supply device to supply the functional component from the supply device to the airflow when the speed of the airflow is greater than a threshold value.
図1は、実施形態1に係る気流制御システムの概略構成図である。FIG. 1 is a schematic configuration diagram of an airflow control system according to Embodiment 1. FIG. 図2は、同上の気流制御システムにおける気流吹出装置の分解斜視図である。FIG. 2 is an exploded perspective view of an airflow blowing device in the same airflow control system. 図3Aは、同上の気流制御システムの気流吹出装置におけるファンの平面図である。図3Bは、同上の気流制御システムの気流吹出装置における第1整流装置の平面図である。図3Cは、同上の気流制御システムの気流吹出装置における第2整流装置の平面図である。FIG. 3A is a plan view of a fan in the airflow blowing device of the airflow control system; FIG. 3B is a plan view of a first straightening device in the airflow blowing device of the airflow control system; FIG. 3C is a plan view of a second rectifier in the airflow blowing device of the airflow control system; 図4は、同上の気流制御システムの斜視図である。FIG. 4 is a perspective view of the same airflow control system. 図5Aは、同上の気流制御システムにおける気流吹出装置の流速分布図である。図5Bは、比較例に係る気流制御システムにおける気流吹出装置の流速分布図である。FIG. 5A is a flow velocity distribution diagram of an airflow blowing device in the airflow control system; FIG. 5B is a flow velocity distribution diagram of an airflow blowing device in an airflow control system according to a comparative example. 図6は、実施形態1に係る制御方法の説明図である。FIG. 6 is an explanatory diagram of the control method according to the first embodiment. 図7は、実施形態2に係る気流制御システムの概略構成図である。FIG. 7 is a schematic configuration diagram of an airflow control system according to Embodiment 2. FIG. 図8は、実施形態2に係る制御方法の説明図である。FIG. 8 is an explanatory diagram of a control method according to the second embodiment. 図9は、実施形態3に係る気流制御システムの概略構成図である。FIG. 9 is a schematic configuration diagram of an airflow control system according to Embodiment 3. FIG. 図10は、実施形態4に係る気流制御システムの概略構成図である。FIG. 10 is a schematic configuration diagram of an airflow control system according to Embodiment 4. FIG.
 下記の実施形態1~4等において説明する各図は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 Each drawing described in Embodiments 1 to 4 below is a schematic drawing, and the ratio of the size and thickness of each component in the drawing does not necessarily reflect the actual dimensional ratio. Not exclusively.
 (実施形態1)
 以下では、実施形態1に係る気流制御システム100及び制御方法について図1~6に基づいて説明する。
(Embodiment 1)
An airflow control system 100 and a control method according to the first embodiment will be described below with reference to FIGS.
 (1)概要
 気流制御システム100は、例えば、施設において空間ゾーニングに利用される。空間ゾーニングは、空気のゾーニングであり、壁又はパーテーション等の物理的な壁を作らずに対象空間内の特定のエリアの空気環境を作ることを意味する。
(1) Overview The airflow control system 100 is used for spatial zoning in facilities, for example. Spatial zoning is air zoning, and means creating an air environment in a specific area within a target space without creating physical walls such as walls or partitions.
 気流制御システム100は、図1に示すように、気流吹出装置1と、供給装置7と、制御部8と、を備える。気流吹出装置1は、直進性を有する気流を吹き出す流出口24を有する。気流吹出装置1は、流出口24から吹き出す気流の速度を調整可能である。供給装置7は、空気中に吹き出させる機能成分を流出口24から吹き出す気流に供給可能である。制御部8は、気流吹出装置1及び供給装置7を制御する。 The airflow control system 100 includes an airflow blowing device 1, a supply device 7, and a control section 8, as shown in FIG. The airflow blowing device 1 has an outlet port 24 for blowing out straight airflow. The airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 . The supply device 7 can supply the functional component to be blown into the air to the air flow blown out from the outlet 24 . The control unit 8 controls the airflow blowing device 1 and the supply device 7 .
 気流制御システム100における気流吹出装置1の流出口24から対象空間に吹き出す気流は、噴流であり、直進性を有する指向性気流である。気流は、空気の流れである。施設は、例えば、オフィスビルである。対象空間は、例えば、オフィスビル内のフリーアドレスオフィスである。対象空間は、フリーアドレスオフィスに限らず、例えば、会議室の空間等であってもよい。 The airflow blown into the target space from the outlet 24 of the airflow blowing device 1 in the airflow control system 100 is a jet flow, and is a straight directional airflow. Airflow is the flow of air. A facility is, for example, an office building. The target space is, for example, a free address office in an office building. The target space is not limited to the free address office, and may be, for example, the space of a conference room.
 施設の例としては、オフィスビルの他に、例えば、ホテル、病院、教育施設、戸建て住宅、集合住宅(住戸、共用部)、店舗、商業施設、美術館、博物館が挙げられる。また、施設は、建物だけではなく、建物とその建物が存在する敷地とを含んでいてもよく、例えば、工場、公園、遊戯施設、テーマパーク、空港、鉄道駅、ドーム球場等が挙げられる。 In addition to office buildings, examples of facilities include hotels, hospitals, educational facilities, detached houses, collective housing (dwelling units, common areas), stores, commercial facilities, art museums, and museums. In addition, facilities may include not only buildings but also buildings and sites on which the buildings are located.
 (2)詳細
 気流制御システム100は、図1に示すように、気流吹出装置1と、供給装置7と、制御部8と、を備える。
(2) Details The airflow control system 100 includes an airflow blowing device 1, a supply device 7, and a controller 8, as shown in FIG.
 気流制御システム100は、例えば、図4に示すように、天井に設けられた配線ダクト13に取り付けられる。気流制御システム100は、取付装置14と、アーム15と、連結装置16と、を備える。取付装置14は、配線ダクト13にスライド可能に取り付けられる。アーム15は、第1端151及び第2端152を有する。アーム15では、アーム15の第1端151が取付装置14に連結されている。連結装置16は、アーム15の第2端152と気流吹出装置1の筒体2とを連結している。気流制御システム100は、取付装置14が配線ダクト13に取り付けられることで、配線ダクト13に接続されている交流電源と電気的に接続される。気流制御システム100は、図1に示すように、第1電源回路91と、第1駆動回路101と、第2電源回路92と、第2駆動回路102と、を更に備える。第1電源回路91は、例えば、交流電源からの交流電圧を第1直流電圧に変換して出力する。第1駆動回路101は、第1電源回路91から出力される第1直流電圧を入力として気流吹出装置1のファン3のモータ36を駆動する。第2電源回路92は、例えば、交流電源からの交流電圧を第2直流電圧に変換して出力する。第2駆動回路102は、第2電源回路92から出力される第2直流電圧を入力として供給装置7を駆動する。第1電源回路91と第1駆動回路101と第2電源回路92と第2駆動回路102と制御部8とは、取付装置14(図4参照)の筐体内に収容されている。アーム15(図4参照)及び連結装置16(図4参照)は、第1駆動回路101とモータ36とを接続している第1電線111の一部及び第2駆動回路102と供給装置7とを接続している第2電線112の一部を通す空間を有する。 For example, the airflow control system 100 is attached to the wiring duct 13 provided on the ceiling, as shown in FIG. Airflow control system 100 includes attachment device 14 , arm 15 and coupling device 16 . The mounting device 14 is slidably mounted on the wiring duct 13 . Arm 15 has a first end 151 and a second end 152 . In arm 15 , a first end 151 of arm 15 is connected to attachment device 14 . The connecting device 16 connects the second end 152 of the arm 15 and the tubular body 2 of the airflow blowing device 1 . The airflow control system 100 is electrically connected to an AC power supply connected to the wiring duct 13 by attaching the mounting device 14 to the wiring duct 13 . The airflow control system 100 further includes a first power supply circuit 91, a first drive circuit 101, a second power supply circuit 92, and a second drive circuit 102, as shown in FIG. The first power supply circuit 91, for example, converts an AC voltage from an AC power supply into a first DC voltage and outputs the first DC voltage. The first drive circuit 101 receives the first DC voltage output from the first power supply circuit 91 and drives the motor 36 of the fan 3 of the airflow blowing device 1 . The second power supply circuit 92, for example, converts an AC voltage from an AC power supply into a second DC voltage and outputs the second DC voltage. The second drive circuit 102 receives the second DC voltage output from the second power supply circuit 92 and drives the supply device 7 . The first power supply circuit 91, the first drive circuit 101, the second power supply circuit 92, the second drive circuit 102, and the controller 8 are housed in the housing of the mounting device 14 (see FIG. 4). The arm 15 (see FIG. 4) and the coupling device 16 (see FIG. 4) are part of the first electric wire 111 connecting the first drive circuit 101 and the motor 36, and the second drive circuit 102 and the supply device 7. has a space through which part of the second electric wire 112 connecting the .
 気流吹出装置1は、流出口24から吹き出す気流の速度を調整可能である。 The airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 .
 気流吹出装置1は、図1及び2に示すように、筒体2と、ファン3と、第1整流装置4と、第2整流装置5と、を備える。気流吹出装置1は、ファン3の回転数を調整することによって、流出口24から吹き出す気流の速度を調整することが可能である。ファン3の回転数は、第1駆動回路101からモータ36へ供給される電圧の大きさの変化に応じて変化する。第1駆動回路101は、制御部8によって制御されてモータ36へ供給する電圧の大きさを変化させる。 The airflow blowing device 1 includes a cylinder 2, a fan 3, a first straightening device 4, and a second straightening device 5, as shown in FIGS. The airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 by adjusting the rotation speed of the fan 3 . The number of rotations of the fan 3 changes according to changes in the magnitude of the voltage supplied from the first drive circuit 101 to the motor 36 . The first drive circuit 101 is controlled by the controller 8 to change the magnitude of the voltage supplied to the motor 36 .
 筒体2は、例えば、円筒状である。筒体2は、第1端21に気体の流入口23を有し、第2端22に流出口24を有する。ファン3は、筒体2の内側に配置されている。第1整流装置4は、ファン3の軸方向D3においてファン3と流出口24との間に位置しており、旋回している気流F1(図3A参照)を転向する。第2整流装置5は、ファン3の軸方向D3において第1整流装置4と流出口24との間に位置しており、気流の向きをファン3の軸方向D3に沿った向きに揃える。第1整流装置4は、円筒状の筒部41と、複数のフィン(静翼)42と、を有する。ファン3の軸方向D3から見て、複数のフィン42の各々は、弧状である(図3B参照)。複数のフィン42は、図3Bに示すように、筒部41の内周面413から筒部41の中心軸40に向かって突出しており、筒部41の内周に沿った方向に並んでいる。第2整流装置5は、図1、2及び3Cに示すように、ファン3の軸方向D3に沿った複数の流路55を有する。 The cylindrical body 2 is cylindrical, for example. The cylinder 2 has a gas inlet 23 at the first end 21 and an outlet 24 at the second end 22 . The fan 3 is arranged inside the cylinder 2 . The first straightening device 4 is positioned between the fan 3 and the outlet 24 in the axial direction D3 of the fan 3 and deflects the swirling airflow F1 (see FIG. 3A). The second straightening device 5 is positioned between the first straightening device 4 and the outlet 24 in the axial direction D3 of the fan 3, and aligns the direction of the airflow along the axial direction D3 of the fan 3. The first straightening device 4 has a cylindrical tubular portion 41 and a plurality of fins (stator blades) 42 . Each of the plurality of fins 42 has an arc shape when viewed from the axial direction D3 of the fan 3 (see FIG. 3B). As shown in FIG. 3B, the plurality of fins 42 protrude from the inner peripheral surface 413 of the tubular portion 41 toward the central axis 40 of the tubular portion 41 and are arranged in a direction along the inner periphery of the tubular portion 41. . The second straightening device 5 has a plurality of flow paths 55 along the axial direction D3 of the fan 3, as shown in FIGS. 1, 2 and 3C.
 図1、2及び4に示すように、筒体2は、円筒状である。筒体2は、第1端21及び第2端22を有し、第1端21に気体の流入口23を有し、第2端22に気体の流出口24を有する。筒体2の材料は、例えば、金属又は樹脂であるが、これに限らない。  As shown in Figures 1, 2 and 4, the cylinder 2 is cylindrical. The tube 2 has a first end 21 and a second end 22 , a gas inlet 23 at the first end 21 and a gas outlet 24 at the second end 22 . The material of the cylindrical body 2 is, for example, metal or resin, but is not limited to this.
 ファン3(図1~3参照)は、筒体2の流入口23から流入した空気を筒体2の流出口24側へ送風する。ファン3は、ファン3の有する回転体(ハブ)31の回転中心軸30を中心として回転可能な電動式の軸流ファンである。ファン3は、ファンハウジング33に流入した空気を、回転体31のまわりで螺旋状に回転させながら移動させ、下流側に流すことができる。「下流側」は、空気の流れる方向でみたときの下流側を意味する。 The fan 3 (see FIGS. 1 to 3) blows the air that has flowed in from the inlet 23 of the tubular body 2 to the outlet 24 side of the tubular body 2 . The fan 3 is an electric axial flow fan rotatable around a rotation center axis 30 of a rotating body (hub) 31 of the fan 3 . The fan 3 can move the air that has flowed into the fan housing 33 while spirally rotating around the rotating body 31 to flow downstream. "Downstream side" means the downstream side when viewed in the direction of air flow.
 ファン3は、筒体2の内側に配置されている。ファン3は、筒体2の軸方向において、筒体2の第1端21と第2端22とのうち第1端21の近くに配置されている。筒体2の軸方向において、ファン3と流入口23との間の距離は、ファン3と流出口24との間の距離よりも短い。 The fan 3 is arranged inside the cylindrical body 2 . The fan 3 is arranged near the first end 21 between the first end 21 and the second end 22 of the cylinder 2 in the axial direction of the cylinder 2 . The distance between the fan 3 and the inlet 23 in the axial direction of the cylinder 2 is shorter than the distance between the fan 3 and the outlet 24 .
 ファン3は、回転体31と、複数(例えば、4つ)の羽根(回転翼)32と、ファンハウジング33と、モータ36と、モータ取付部と、複数(例えば、3つ)の梁部と、を有する。ファン3の回転体31、複数の羽根32及びファンハウジング33の材料は、例えば、樹脂又は金属である。 The fan 3 includes a rotor 31, a plurality of (eg, four) blades (rotary blades) 32, a fan housing 33, a motor 36, a motor mounting portion, and a plurality of (eg, three) beams. , has The rotating body 31 of the fan 3, the plurality of blades 32, and the fan housing 33 are made of resin or metal, for example.
 回転体31は、回転中心軸30を中心として回転可能である。ファン3の軸方向D3から見て、回転体31の外縁は円形状である。回転体31は、筒体2の内側で筒体2と同軸的に配置されている。「回転体31は、筒体2と同軸的に配置されている」とは、回転体31が、回転体31の回転中心軸30を筒体2の中心軸20に揃えるように配置されていることを意味する。ファン3の軸方向D3において、回転体31の長さは、筒体2の長さよりも短い。ファン3の軸方向D3は、回転中心軸30に沿った方向である。回転体31は、円筒部311と底壁312とを有する有底円筒状であり、底壁312が筒体2の流入口23側となるように配置されている。回転体31は、底壁312の中央部から筒体2の流入口23側とは反対側に突出したボス部313を有している。 The rotating body 31 is rotatable around the rotation center axis 30 . When viewed from the axial direction D3 of the fan 3, the outer edge of the rotor 31 is circular. The rotating body 31 is arranged coaxially with the cylindrical body 2 inside the cylindrical body 2 . "The rotating body 31 is arranged coaxially with the cylindrical body 2" means that the rotating body 31 is arranged so that the rotation center axis 30 of the rotating body 31 is aligned with the central axis 20 of the cylindrical body 2. means that The length of the rotating body 31 is shorter than the length of the cylindrical body 2 in the axial direction D3 of the fan 3 . An axial direction D<b>3 of the fan 3 is a direction along the rotation center axis 30 . The rotating body 31 has a bottomed cylindrical shape having a cylindrical portion 311 and a bottom wall 312 . The rotating body 31 has a boss portion 313 that protrudes from the central portion of the bottom wall 312 to the opposite side of the inlet 23 side of the tubular body 2 .
 複数の羽根32は、回転体31とファンハウジング33との間に配置されており、回転体31と一緒に回転する。複数の羽根32は、回転体31につながっており、回転体31の外周面316から筒体2の内周面27に向かって突出している。ファン3の軸方向D3から見て、複数の羽根32は、回転体31から放射状に突出している。複数の羽根32の各々は、ファン3の軸方向D3から見て各羽根32とファンハウジング33の内周面333との間に隙間が形成されるように配置されている。言い換えれば、ファン3では、複数の羽根32の各々とファンハウジング33の内周面333との間に隙間がある。複数の羽根32は、ファン3の軸方向D3から見て、等間隔で離れて配置されている。ここでいう「等間隔」とは、厳密に同じ間隔である場合だけに限らず、例えば、規定の間隔に対して所定の誤差範囲(例えば、規定の間隔の±10%)内の間隔であってもよい。複数の羽根32の各々では、流入口23側の第1端321(図3A参照)が、流出口24側の第2端322(図3A参照)よりも、ファン3の回転体31の回転方向R1(図3A参照)において前方に位置している。 A plurality of blades 32 are arranged between the rotating body 31 and the fan housing 33 and rotate together with the rotating body 31 . The plurality of blades 32 are connected to the rotating body 31 and protrude from the outer peripheral surface 316 of the rotating body 31 toward the inner peripheral surface 27 of the tubular body 2 . The plurality of blades 32 protrude radially from the rotor 31 when viewed from the axial direction D3 of the fan 3 . Each of the plurality of blades 32 is arranged such that a gap is formed between each blade 32 and the inner peripheral surface 333 of the fan housing 33 when viewed from the axial direction D3 of the fan 3 . In other words, the fan 3 has a gap between each of the plurality of blades 32 and the inner peripheral surface 333 of the fan housing 33 . The plurality of blades 32 are arranged at regular intervals when viewed from the axial direction D3 of the fan 3 . The term "equidistant interval" as used herein is not limited to cases where the interval is exactly the same, and for example, an interval within a predetermined error range (for example, ±10% of the specified interval) with respect to the specified interval. may In each of the plurality of blades 32, the first end 321 (see FIG. 3A) on the inlet 23 side is closer to the rotation direction of the rotor 31 of the fan 3 than the second end 322 (see FIG. 3A) on the outlet 24 side. It is located forward at R1 (see FIG. 3A).
 ファンハウジング33は、回転体31及び複数の羽根32を回転可能に収容する。ファンハウジング33は、円筒状である。ファンハウジング33の外径は、筒体2の内径と略同じである。ファン3では、例えば、ファンハウジング33が筒体2に固定される。 The fan housing 33 rotatably accommodates the rotating body 31 and the plurality of blades 32 . Fan housing 33 is cylindrical. The outer diameter of the fan housing 33 is substantially the same as the inner diameter of the tubular body 2 . In the fan 3, for example, the fan housing 33 is fixed to the cylindrical body 2. As shown in FIG.
 モータ36は、回転体31を回転駆動させる。より詳細には、モータ36は、回転体31を回転体31の回転中心軸30のまわりで回転させる。モータ36は、例えば、直流モータである。モータ36は、上述の第1駆動回路101により駆動される。モータ36は、モータ本体361と、モータ本体361から一部が突出している回転軸362と、を備える。モータ36では、回転軸362が回転体31に連結されている。モータ36の回転軸362は、回転体31のボス部313に固定されている。 The motor 36 rotates the rotating body 31 . More specifically, the motor 36 rotates the rotating body 31 around the rotation center axis 30 of the rotating body 31 . Motor 36 is, for example, a DC motor. The motor 36 is driven by the first drive circuit 101 described above. The motor 36 includes a motor body 361 and a rotary shaft 362 partially protruding from the motor body 361 . In the motor 36 , a rotating shaft 362 is connected to the rotating body 31 . A rotating shaft 362 of the motor 36 is fixed to the boss portion 313 of the rotating body 31 .
 モータ取付部は、モータ36のモータ本体361が取り付けられている。ファン3の軸方向D3から見て、モータ取付部は、回転体31の外縁よりも内側に位置しているが、これに限らず、例えば、モータ取付部の全部が回転体31の全部と重なっていてもよい。 A motor body 361 of the motor 36 is attached to the motor attachment portion. The motor mounting portion is located inside the outer edge of the rotating body 31 when viewed from the axial direction D3 of the fan 3. However, the present invention is not limited to this. may be
 複数(例えば、3つ)の梁部は、モータ取付部とファンハウジング33とをつないでいる。複数の梁部は、モータ取付部の外縁に沿った方向において等間隔で配置されている。 A plurality of (for example, three) beams connect the motor mounting portion and the fan housing 33 . The plurality of beams are arranged at equal intervals in the direction along the outer edge of the motor mounting portion.
 第1整流装置4は、ファン3の軸方向D3においてファン3と流出口24との間に位置している。第1整流装置4は、ファン3の下流側において旋回している気流F1(図3A参照)を転向する。第1整流装置4は、ファン3の下流側において旋回している気流F1をファン3の中心側に向かう気流F2(図3B参照)に転向させる。また、第1整流装置4は、ファン3の軸方向D3から見て、第1整流装置4の下流側において第1領域の気流の速度が第2領域の気流の速度よりも速い流速分布を形成する。ここにおいて、気流の速度は、ファン3の軸方向D3に沿った方向の速度である。第1領域は、筒体2の中心軸20と筒体2の内周面27とのうち中心軸20に近い領域(内側領域)であり、第2領域は、筒体2の中心軸20と筒体2の内周面27とのうち内周面27に近い領域(外側領域)である。 The first rectifying device 4 is positioned between the fan 3 and the outlet 24 in the axial direction D3 of the fan 3 . The first straightening device 4 diverts the swirling airflow F1 (see FIG. 3A) downstream of the fan 3 . The first rectifying device 4 diverts the swirling airflow F1 on the downstream side of the fan 3 to an airflow F2 (see FIG. 3B ) directed toward the center of the fan 3 . Further, the first straightening device 4 forms a flow velocity distribution in which the airflow velocity in the first region is higher than the airflow velocity in the second region on the downstream side of the first straightening device 4 when viewed from the axial direction D3 of the fan 3. do. Here, the speed of the airflow is the speed in the direction along the axial direction D3 of the fan 3 . The first region is a region (inner region) between the central axis 20 of the cylindrical body 2 and the inner peripheral surface 27 of the cylindrical body 2 and is closer to the central axis 20 (the inner region). It is a region (outer region) close to the inner peripheral surface 27 of the cylindrical body 2 .
 第1整流装置4は、図1~3に示すように、円筒状の筒部41と、複数(例えば、12)のフィン42と、を有する。 The first straightening device 4 has a cylindrical tubular portion 41 and a plurality of (eg, 12) fins 42, as shown in FIGS.
 筒部41の外径は、筒体2の内径と略同じである。筒部41の内径は、ファンハウジング33の内径と略同じである。 The outer diameter of the tubular portion 41 is substantially the same as the inner diameter of the tubular body 2 . The inner diameter of the tubular portion 41 is substantially the same as the inner diameter of the fan housing 33 .
 ファン3の軸方向D3から見て、複数のフィン42の各々は、弧状である。複数のフィン42は、筒部41の内周面413から筒部41の中心軸40に向かって突出しており、筒部41の内周に沿った方向に並んでいる。複数のフィン42の各々は、ファン3の軸方向D3において、流入口23側の第1端421と、流出口24側の第2端422と、を有する。 Each of the plurality of fins 42 has an arc shape when viewed from the axial direction D3 of the fan 3 . The plurality of fins 42 protrude from the inner peripheral surface 413 of the cylindrical portion 41 toward the central axis 40 of the cylindrical portion 41 and are arranged along the inner circumference of the cylindrical portion 41 . Each of the plurality of fins 42 has a first end 421 on the side of the inlet 23 and a second end 422 on the side of the outlet 24 in the axial direction D3 of the fan 3 .
 複数のフィン42の各々は、筒部41の内周面413と筒部41の中心軸との間においてファン3の軸方向D3と平行に配置されている。複数のフィン42の各々では、ファン3の軸方向D3から見て第1端421と第2端422とが重なっている。 Each of the plurality of fins 42 is arranged parallel to the axial direction D3 of the fan 3 between the inner peripheral surface 413 of the tubular portion 41 and the central axis of the tubular portion 41 . In each of the plurality of fins 42 , the first end 421 and the second end 422 overlap each other when viewed from the axial direction D<b>3 of the fan 3 .
 複数のフィン42の筒部41側の端は、筒部41の内周に沿った方向において等間隔で離れて配置されている。ここでいう「等間隔」とは、厳密に同じ間隔である場合だけに限らず、例えば、規定の間隔に対して所定の誤差範囲(例えば、規定の間隔の±10%)内の間隔であってもよい。第1整流装置4では、複数のフィン42のうち隣り合う2つのフィン42と筒部41とで囲まれた流路45を複数(例えば、12)有する。ファン3の軸方向D3から見て、流路45は、筒部41の内周面413から筒部41の中心軸40に近づくにつれて筒部41の内周に沿った方向の幅が狭くなっている。 The ends of the plurality of fins 42 on the cylinder part 41 side are arranged at equal intervals in the direction along the inner periphery of the cylinder part 41 . The term "equidistant interval" as used herein is not limited to cases where the interval is exactly the same, and for example, an interval within a predetermined error range (for example, ±10% of the specified interval) with respect to the specified interval. may The first flow straightening device 4 has a plurality (for example, 12) of flow paths 45 surrounded by two adjacent fins 42 among the plurality of fins 42 and the cylindrical portion 41 . When viewed from the axial direction D3 of the fan 3, the width of the flow path 45 in the direction along the inner circumference of the tubular portion 41 narrows as it approaches the central axis 40 of the tubular portion 41 from the inner peripheral surface 413 of the tubular portion 41. there is
 ファン3の軸方向D3において、複数のフィン42の各々の長さは、筒部41の長さと同じである。複数のフィン42の各々の長さは、筒部41の長さと同じである場合に限らず、筒部41よりも長くてもよいし、短くてもよい。 The length of each of the plurality of fins 42 is the same as the length of the tubular portion 41 in the axial direction D3 of the fan 3 . The length of each of the plurality of fins 42 is not limited to being the same as the length of the tubular portion 41 , and may be longer or shorter than the tubular portion 41 .
 複数のフィン42の各々は、図3Bに示すように、筒体2の内周に沿った方向に交差する第1面43と、筒体2の内周に沿った方向に交差し第1面43とは反対側の第2面44と、を有する。第1面43は、回転体31の回転方向R1(図3A参照)に沿った方向において、後方に位置する面であり、第2面44は、回転体31の回転方向R1に沿った方向において、前方に位置する面である。第1面43は、凹曲面である。第2面44は、凸曲面である。 As shown in FIG. 3B , each of the plurality of fins 42 has a first surface 43 that intersects the direction along the inner circumference of the tubular body 2 and a first surface 43 that intersects the direction along the inner circumference of the tubular body 2 . and a second surface 44 opposite 43 . The first surface 43 is a surface located rearward in the direction along the rotational direction R1 (see FIG. 3A) of the rotating body 31, and the second surface 44 is the surface positioned in the direction along the rotational direction R1 of the rotating body 31. , the plane located forward. The first surface 43 is a concave curved surface. The second surface 44 is a convex curved surface.
 第1整流装置4の材料は、金属であるが、これに限らず、樹脂であってもよい。 The material of the first rectifier 4 is metal, but is not limited to this, and may be resin.
 第2整流装置5は、ファン3の軸方向D3において第1整流装置4と筒体2の流出口24との間に位置している。第2整流装置5は、第1整流装置4の下流側において第1整流装置4からの気流の流速分布を整える。第2整流装置5は、ファン3の軸方向D3に沿った複数の流路55を有する。複数の流路55の各々は、第1整流装置4側の入口551と、筒体2の流出口24側の出口552と、を有する。複数の流路55の各々において、入口551及び出口552は、同じ形状である。複数の流路55の各々において、入口551及び出口552は、同じ大きさである。第2整流装置5は、整流格子50と、整流格子50を囲んでいる円筒状の筒部51と、を含む。整流格子50は、複数の流路55のうち任意の隣り合う2つの流路55を仕切る仕切板部56を複数有する。複数の仕切板部56の各々は、ファン3の軸方向D3に沿って配置されている。整流格子50は、ハニカム格子状である。ここで、ファン3の軸方向D3から見て、複数の流路55の各々の入口551及び出口552は、正六角形状である。見方を変えれば、複数の流路55の各々は、六角柱状である。 The second straightening device 5 is positioned between the first straightening device 4 and the outflow port 24 of the cylinder 2 in the axial direction D3 of the fan 3 . The second straightening device 5 adjusts the flow velocity distribution of the airflow from the first straightening device 4 on the downstream side of the first straightening device 4 . The second straightening device 5 has a plurality of flow paths 55 along the axial direction D3 of the fan 3 . Each of the plurality of flow paths 55 has an inlet 551 on the side of the first rectifier 4 and an outlet 552 on the side of the outflow port 24 of the tubular body 2 . In each of the plurality of channels 55, the inlet 551 and the outlet 552 have the same shape. In each of the plurality of channels 55, the inlet 551 and the outlet 552 are the same size. The second rectifier 5 includes a rectifier grid 50 and a cylindrical tubular portion 51 surrounding the rectifier grid 50 . The rectifying grid 50 has a plurality of partition plate portions 56 that partition any two adjacent flow paths 55 out of the plurality of flow paths 55 . Each of the plurality of partition plate portions 56 is arranged along the axial direction D3 of the fan 3 . The rectifying grid 50 has a honeycomb grid shape. Here, when viewed from the axial direction D3 of the fan 3, the inlet 551 and the outlet 552 of each of the plurality of flow paths 55 have a regular hexagonal shape. From another point of view, each of the plurality of flow paths 55 has a hexagonal prism shape.
 筒部51の外径は、筒体2の内径と略同じである。第2整流装置5は、筒部51の中心軸が筒体2の中心軸20と一致するように筒体2内に配置されている。 The outer diameter of the tubular portion 51 is substantially the same as the inner diameter of the tubular body 2 . The second rectifying device 5 is arranged inside the tubular body 2 such that the central axis of the tubular portion 51 coincides with the central axis 20 of the tubular body 2 .
 第2整流装置5の材料は、樹脂であるが、これに限らず、金属であってもよい。 The material of the second rectifier 5 is resin, but is not limited to this, and may be metal.
 供給装置7は、空気中に吹き出させる機能成分を流出口24から吹き出す気流に供給可能である。より詳細には、供給装置7は、生成部71と、機能成分搬送流路72と、を有する。生成部71は、例えば、機能成分を含むミストを生成する。機能成分搬送流路72は、筒体2において第1整流装置4と流出口24との間の空間につながっている。機能成分としては、例えば、消臭成分、芳香成分、除菌成分、殺菌成分、美容成分、薬用成分等が挙げられる。供給装置7は、機能成分を含む機能性材料から機能成分を供給するように構成されている。機能成分を含む機能性材料は、例えば、機能成分を含む溶液である。 The supply device 7 can supply the functional component to be blown into the air to the airflow blown out from the outlet 24 . More specifically, the supply device 7 has a generator 71 and a functional component transport channel 72 . The generating unit 71 generates, for example, mist containing functional components. The functional component transport channel 72 is connected to the space between the first straightening device 4 and the outflow port 24 in the tubular body 2 . Examples of functional ingredients include deodorizing ingredients, aromatic ingredients, disinfecting ingredients, bactericidal ingredients, cosmetic ingredients, and medicinal ingredients. The supply device 7 is configured to supply a functional ingredient from a functional material containing the functional ingredient. A functional material containing a functional component is, for example, a solution containing a functional component.
 生成部71は、例えば、機能成分を含む溶液を霧化する霧化部と、霧化部において溶液を霧化するために溶液にエネルギを与えるエネルギ供給デバイスと、を含む。エネルギ供給デバイスは、例えば、超音波振動子であるが、これに限らず、例えば、SAW(Surface Acoustic Wave)デバイスであってもよい。生成部71は、第2駆動回路102によって駆動される。 The generation unit 71 includes, for example, an atomization unit that atomizes the solution containing the functional component, and an energy supply device that imparts energy to the solution to atomize the solution in the atomization unit. The energy supply device is, for example, an ultrasonic transducer, but is not limited to this, and may be, for example, a SAW (Surface Acoustic Wave) device. The generator 71 is driven by the second drive circuit 102 .
 気流吹出装置1では、筒体2は、第1端21と第2端22との間において筒体2の軸方向に交差する方向に貫通している連通孔25を有している。機能成分搬送流路72は、連通孔25を介して筒体2の流出口24につながっている。機能成分搬送流路72は、例えば、流路形成用部材73を筒体2に取り付けることによって形成される。機能成分搬送流路72は、流路形成用部材73と筒体2の外周面28との間に形成され、筒体2の連通孔25を通して筒体2内の空間とつながっている。 In the airflow blowing device 1 , the cylinder 2 has a communication hole 25 penetrating between the first end 21 and the second end 22 in a direction crossing the axial direction of the cylinder 2 . The functional component transport channel 72 is connected to the outflow port 24 of the cylindrical body 2 via the communication hole 25 . The functional component transport channel 72 is formed, for example, by attaching a channel forming member 73 to the cylinder 2 . The functional component transport channel 72 is formed between the channel forming member 73 and the outer peripheral surface 28 of the cylinder 2 and communicates with the space inside the cylinder 2 through the communication hole 25 of the cylinder 2 .
 供給装置7では、生成部71で生成された機能成分を含むミストが機能成分搬送流路72、連通孔25を通して、流出口24から吹き出す気流に供給される。供給装置7は、機能成分を含むミストが筒体2内の気流に誘引されることで機能成分を含むミストが筒体2内に搬送されてもよいし、機能成分を含むミストを筒体2内へ送り出すファンを備えていてもよい。機能成分搬送流路72は、流路形成用部材73を用いて形成される場合に限らず、例えば、第1端及び第2端を有し、第1端が生成部71に接続され第2端が連通孔25を通して筒体2内に配置される管状部材によって構成されていてもよい。 In the supply device 7 , the mist containing the functional component generated by the generation unit 71 is supplied to the airflow blown out from the outlet 24 through the functional component transport channel 72 and the communication hole 25 . The supply device 7 may convey the mist containing the functional component into the cylinder 2 by attracting the mist containing the functional component to the air current inside the cylinder 2 . It may be provided with a fan to send inwards. The functional component transport channel 72 is not limited to the case where it is formed using the channel forming member 73. For example, the functional component transport channel 72 has a first end and a second end, and the first end is connected to the generator 71 and connected to the second end. It may be constituted by a tubular member whose end is arranged inside the cylindrical body 2 through the communication hole 25 .
 制御部8は、気流吹出装置1及び供給装置7を制御する。制御部8は、第1駆動回路101を制御することによってファン3を制御する。また、制御部8は、第2駆動回路102を制御することによって供給装置7を制御する。制御部8による気流吹出装置1の制御としては、例えば、ファン3の運転の開始、ファン3の運転の停止、ファン3の回転数の制御等が挙げられる。制御部8は、ファン3(のモータ36)の駆動電圧を制御することでファン3の回転数を制御することによって、気流吹出装置1の流出口24から吹き出す気流の速度を制御することができる。ファン3は、駆動電圧の変化に応じて回転数及び風量が変化する。ファン3の回転数及び風量は、駆動電圧が大きくなるにつれて大きくなる。気流吹出装置1では、ファン3の回転数が大きくなるにつれて、流出口24から吹き出す気流の速度が速くなる。また、制御部8による供給装置7の制御としては、例えば、生成部71での溶液の霧化の開始、溶液の霧化の停止、溶液の霧化量の制御等が挙げられる。 The control unit 8 controls the airflow blowing device 1 and the supply device 7 . The controller 8 controls the fan 3 by controlling the first drive circuit 101 . The control unit 8 also controls the supply device 7 by controlling the second drive circuit 102 . Control of the airflow blowing device 1 by the control unit 8 includes, for example, starting the operation of the fan 3, stopping the operation of the fan 3, controlling the rotation speed of the fan 3, and the like. The control unit 8 can control the speed of the airflow blown out from the outlet 24 of the airflow blowing device 1 by controlling the driving voltage of (the motor 36 of) the fan 3 to control the rotational speed of the fan 3. . The fan 3 changes its rotational speed and air volume in accordance with changes in drive voltage. The rotational speed and air volume of the fan 3 increase as the drive voltage increases. In the airflow blowing device 1, as the rotation speed of the fan 3 increases, the speed of the airflow blown out from the outlet 24 increases. Control of the supply device 7 by the controller 8 includes, for example, the start of atomization of the solution in the generator 71, the stop of atomization of the solution, and the control of the atomization amount of the solution.
 制御部8は、気流吹出装置1と供給装置7とを制御することによって、空気中に吹き出させる機能成分を、流出口24から吹き出す気流に供給させることができる。制御部8は、気流吹出装置1と供給装置7とを制御することによって、空気中に吹き出させる機能成分を、流出口24から吹き出す気流に供給させるタイミングを制御することができる。 By controlling the airflow blowing device 1 and the supply device 7 , the control unit 8 can supply the functional component to be blown into the air to the airflow blown out from the outlet 24 . By controlling the airflow blowing device 1 and the supply device 7 , the control unit 8 can control the timing of supplying the functional component to be blown into the air to the airflow blown out from the outlet 24 .
 制御部8は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、制御部8としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 The control unit 8 includes a computer system. A computer system is mainly composed of a processor and a memory as hardware. The function of the control unit 8 is realized by the processor executing a program recorded in the memory of the computer system. The program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided. A processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs). Integrated circuits such as ICs or LSIs are called differently depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). In addition, FPGAs (Field-Programmable Gate Arrays), which are programmed after the LSI is manufactured, or logic devices capable of reconfiguring the connection relationships inside the LSI or reconfiguring the circuit partitions inside the LSI, shall also be adopted as processors. can be done. A plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips. A plurality of chips may be integrated in one device, or may be distributed in a plurality of devices. A computer system, as used herein, includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.
 (3)気流制御システムの動作
 (3.1)気流吹出装置の動作
 気流吹出装置1では、ファン3の回転体31及び複数の羽根32が所定の回転方向R1(図3A参照)に回転することにより、筒体2の流入口23側からファン3に空気が吸い込まれ、筒体2内においてファン3の下流側に、筒体2内を筒体2の内周面27に沿って旋回する気流F1(図3A参照)が発生する。旋回する気流F1は、3次元の螺旋状に回転する気流である。
(3) Operation of Airflow Control System (3.1) Operation of Airflow Blowing Device In the airflow blowing device 1, the rotating body 31 and the plurality of blades 32 of the fan 3 rotate in a predetermined rotation direction R1 (see FIG. 3A). As a result, air is sucked into the fan 3 from the inlet 23 side of the cylindrical body 2, and the airflow swirls inside the cylindrical body 2 along the inner peripheral surface 27 of the cylindrical body 2 to the downstream side of the fan 3 in the cylindrical body 2. F1 (see FIG. 3A) occurs. The swirling airflow F1 is an airflow rotating in a three-dimensional spiral.
 気流吹出装置1では、ファン3の下流側に発生して筒体2の内周面27の近くを内周面27に沿って旋回する気流F1(図3A参照)は、第1整流装置4において第1整流装置4の中心軸40に近づく方向に転向される。より詳細には、第1整流装置4では、筒体2の内周面27に沿って旋回していた気流F1(図3A参照)がフィン42に衝突することにより、第1整流装置4の中心軸40に近づく気流F2(図3B参照)に転向される。言い換えれば、第1整流装置4は、ファン3により発生して筒体2の内周面27に沿って旋回している気流F1を第1整流装置4の中心軸40側に集めるので、第1整流装置4の下流側において第1領域の気流の速度が第2領域の気流の速度よりも速い流速分布を形成する。要するに、気流吹出装置1では、第1整流装置4によって、内側の気流の速度が相対的に速く外側の気流の速度が相対的に遅い速度分布を形成することができる。ここにおいて、気流の速度は、ファン3の軸方向D3に沿った方向の速度である。第1領域は、筒体2の中心軸20と筒体2の内周面27との間で中心軸20に近い領域(内側領域)であり、第2領域は、筒体2の中心軸20と筒体2の内周面27との間で内周面27に近い領域(外側領域)である。 In the airflow blowing device 1, the airflow F1 (see FIG. 3A) generated on the downstream side of the fan 3 and swirling along the inner peripheral surface 27 of the cylinder 2 near the inner peripheral surface 27 is It is turned in a direction approaching the central axis 40 of the first straightening device 4 . More specifically, in the first straightening device 4, the airflow F1 (see FIG. 3A) swirling along the inner peripheral surface 27 of the cylindrical body 2 collides with the fins 42, causing the center of the first straightening device 4 to It is turned into airflow F2 (see FIG. 3B) approaching axis 40 . In other words, the first straightening device 4 gathers the airflow F1 generated by the fan 3 and swirling along the inner peripheral surface 27 of the cylindrical body 2 toward the central axis 40 of the first straightening device 4. On the downstream side of the rectifier 4, a flow velocity distribution is formed in which the velocity of the airflow in the first area is higher than the velocity of the airflow in the second area. In short, in the airflow blowing device 1, the first rectifying device 4 can form a velocity distribution in which the velocity of the inner airflow is relatively high and the velocity of the outer airflow is relatively low. Here, the speed of the airflow is the speed in the direction along the axial direction D3 of the fan 3 . The first region is a region (inner region) near the central axis 20 between the central axis 20 of the cylindrical body 2 and the inner peripheral surface 27 of the cylindrical body 2, and the second region is the central axis 20 of the cylindrical body 2. and the inner peripheral surface 27 of the tubular body 2 (outer region) near the inner peripheral surface 27 .
 気流吹出装置1では、第1整流装置4の下流側の第2整流装置5により、第1整流装置4側からの気流の向きがファン3の軸方向D3に沿った方向に整流される。 In the airflow blowing device 1 , the direction of the airflow from the first straightening device 4 side is straightened along the axial direction D<b>3 of the fan 3 by the second straightening device 5 downstream of the first straightening device 4 .
 気流吹出装置1では、第2整流装置5により整流された気流が筒体2の流出口24から流出する。 In the airflow blowing device 1 , the airflow rectified by the second rectifier 5 flows out from the outlet 24 of the cylinder 2 .
 気流吹出装置1では、ファン3が駆動されると、ファン3の下流側に流れる気流が、第1整流装置4及び第2整流装置5により整流され、筒体2の流出口24から吹き出される。 In the airflow blowing device 1, when the fan 3 is driven, the airflow flowing downstream of the fan 3 is rectified by the first rectifier 4 and the second rectifier 5, and is blown out from the outlet 24 of the cylinder 2. .
 図5Aは、気流吹出装置1の筒体2の流出口24近傍での流速分布を示す。図5Aは、実施形態1に係る気流制御システム100における気流吹出装置1において、ファン3の風量を70m/hとし、構造パラメータを下記の通りに設定した場合の流速分布を示す。また、図5Bは、第1整流装置4及び第2整流装置5を備えていない比較例に係る気流吹出装置での流速分布を示す。
<構造パラメータ>
・筒体2の内径:144mm
・第1整流装置4のフィン42の枚数:12枚
・ファン3の軸方向D3における各フィン42の長さ:50mm
・第2整流装置5における各流路55の入口551:対辺間の距離が8mmの正六角形
・第2整流装置5における各流路55の出口552:対辺間の距離が8mmの正六角形
・第2整流装置5における各流路55の長さ:30mm
 図5A及び5Bの各々は、筒体2の中心軸20を含む一断面での流速分布を示している。図5A及び5Bの各々では、横軸が、筒体2の中心軸20からの距離であり、縦軸が流速である。なお、横軸に関して、中心軸20を中心として右側が「正」、左側が「負(-符号)」となっているが、「正」と「負(-符号)」は、中心軸20の位置に対して右側の任意の位置までの距離か、左側の任意の位置までの距離かを区別するために付した符号である。
FIG. 5A shows the flow velocity distribution in the vicinity of the outlet 24 of the cylindrical body 2 of the airflow blowing device 1. FIG. FIG. 5A shows the flow velocity distribution when the air volume of the fan 3 is 70 m 3 /h and the structural parameters are set as follows in the airflow blowing device 1 in the airflow control system 100 according to the first embodiment. Also, FIG. 5B shows the flow velocity distribution in an airflow blowing device according to a comparative example that does not include the first straightening device 4 and the second straightening device 5 .
<Structural parameters>
・Inner diameter of cylindrical body 2: 144 mm
・The number of fins 42 of the first straightening device 4: 12 ・The length of each fin 42 in the axial direction D3 of the fan 3: 50 mm
Inlet 551 of each flow path 55 in the second straightening device 5: regular hexagon with a distance between opposite sides of 8 mm ・Outlet 552 of each flow channel 55 in the second straightening device 5: regular hexagon with a distance between opposite sides of 8 mm 2 Length of each flow path 55 in rectifier 5: 30 mm
Each of FIGS. 5A and 5B shows the flow velocity distribution in one section including the central axis 20 of the tubular body 2. FIG. 5A and 5B, the horizontal axis is the distance from the central axis 20 of the cylinder 2, and the vertical axis is the flow velocity. Regarding the horizontal axis, the right side of the central axis 20 is "positive" and the left side is "negative (- sign)". This is a code attached to distinguish between the distance to an arbitrary position on the right side of the position and the distance to an arbitrary position on the left side of the position.
 比較例に係る気流吹出装置では、図5Bに示すように、流出口24の中心から離れるほど流速が速くなっている。これに対して、実施形態1に係る気流制御システム100における気流吹出装置1では、図5Aに示すように、流出口24の内側領域での流速が外側領域での流速よりも速くなる流速分布を実現できている。気流吹出装置1では、流出口24の内側領域から噴出する第1噴流と、流出口24の外側領域から噴出する第2噴流と、を含む二重の噴流を吹き出すことが可能となる。 In the airflow blowing device according to the comparative example, as shown in FIG. 5B, the flow velocity increases with increasing distance from the center of the outflow port 24 . On the other hand, in the airflow blowing device 1 in the airflow control system 100 according to the first embodiment, as shown in FIG. It has been realized. The airflow blowing device 1 is capable of blowing out a double jet including a first jet from the inner region of the outlet 24 and a second jet from the outer region of the outlet 24 .
 気流吹出装置1では、筒体2の流出口24から吹き出す気流(噴流)の指向性を高めることが可能となり、気流の拡散を抑制することが可能となる。よって、気流吹出装置1では、対象空間内の特定のエリアに、スポット的(局所的)に気流を搬送することが可能となる。 With the airflow blowing device 1, it is possible to increase the directivity of the airflow (jet flow) blown out from the outlet 24 of the cylindrical body 2, and to suppress the diffusion of the airflow. Therefore, with the airflow blowing device 1, it is possible to carry the airflow spotwise (locally) to a specific area in the target space.
 (3.2)制御部の動作
 制御部8は、例えば、流出口24から吹き出す気流の速度(例えば、流出口24の内側領域から噴出する第1噴流の速度)をゆらぎ制御し(図6参照)、気流の速度が閾値V1(図6参照)よりも大きいときに供給装置7から気流に機能成分を供給させる。「気流の速度をゆらぎ制御し」とは、気流の速度の時間変化がゆらぎ特性を有するように気流の速度を制御することを意味する。ゆらぎ特性は、例えば、1/fゆらぎ特性である。この場合、制御部8は、気流の速度の変化が1/fゆらぎの波形になるように気流の速度を制御することを意味する。「1/fゆらぎ」とは、パワースペクトル密度が周波数fに反比例するゆらぎを意味する。ゆらぎ特性は、1/fゆらぎに限らず、例えば、1/fゆらぎであってもよい。また、ゆらぎ特性は、不規則なゆらぎ特性(例えば、1/fゆらぎ又は1/fゆらぎ)に限らず、規則的なゆらぎであってもよい。
(3.2) Operation of Control Unit The control unit 8 controls the fluctuation of the speed of the airflow blown out from the outlet 24 (for example, the speed of the first jet flowed out from the inner region of the outlet 24) (see FIG. 6). ), causing the supply device 7 to supply the functional component to the airflow when the velocity of the airflow is greater than the threshold value V1 (see FIG. 6). The expression "fluctuation control of the airflow velocity" means controlling the airflow velocity such that the time change of the airflow velocity has fluctuation characteristics. The fluctuation characteristics are, for example, 1/f fluctuation characteristics. In this case, it means that the controller 8 controls the airflow velocity so that the change in the airflow velocity becomes a 1/f fluctuation waveform. "1/f fluctuation" means fluctuation in which the power spectral density is inversely proportional to the frequency f. The fluctuation characteristic is not limited to 1/f fluctuation, and may be, for example, 1/ f2 fluctuation. Moreover, the fluctuation characteristics are not limited to irregular fluctuation characteristics (for example, 1/f fluctuation or 1/ f2 fluctuation), and may be regular fluctuation.
 制御部8は、供給装置7から気流に機能成分を供給させる場合、気流に機能成分を一時的(瞬間的)に供給させる。 When supplying the functional component from the supply device 7 to the airflow, the control unit 8 temporarily (instantaneously) supplies the functional component to the airflow.
 制御部8は、流出口24から吹き出す気流の速度が閾値V1である第1閾値V1よりも大きな第2閾値V2以下のときに供給装置7から気流へ機能成分を供給させることを許可する。図6は、流出口24から吹き出す気流の速度の時間変化を示している。図6では、横軸が時間であり、縦軸が気流の速度である。制御部8は、気流の速度をゆらぎ制御することにより、例えば、気流の速度を第1速度VL以上第2速度VH以下の範囲で変化させる。第2速度VHは、第1速度VLよりも大きい。第1速度VLは、例えば、0.05m/secである。第2速度VHは、例えば、1.5m/secである。第1閾値V1は、機能成分が気流に乗って対象空間に届くように決められており、例えば、1.0m/secである。また、第2閾値V2は、例えば、1.6m/secである。第1閾値V1及び第2閾値V2それぞれの値は、一例であり、特に限定されない。 The control unit 8 permits the supplying device 7 to supply the functional component to the airflow when the speed of the airflow blowing out from the outlet 24 is equal to or lower than the second threshold V2, which is larger than the first threshold V1, which is the threshold V1. FIG. 6 shows temporal changes in the speed of the airflow blowing out from the outlet 24 . In FIG. 6, the horizontal axis is time and the vertical axis is airflow velocity. The controller 8 changes the speed of the airflow, for example, within a range from a first speed VL to a second speed VH by controlling the fluctuation of the speed of the airflow. The second speed VH is greater than the first speed VL. The first speed VL is, for example, 0.05 m/sec. The second speed VH is, for example, 1.5 m/sec. The first threshold value V1 is determined so that the functional component reaches the target space on an air current, and is, for example, 1.0 m/sec. Also, the second threshold V2 is, for example, 1.6 m/sec. Each value of the first threshold V1 and the second threshold V2 is an example and is not particularly limited.
 また、制御部8は、機能成分を供給した時点t1から所定時間T1が経過した時点t2よりも後に気流の速度が第1閾値V1よりも大きく第2閾値V2以下となる時点t3で供給装置7から気流へ機能成分を供給させる。制御部8は、時点t1から所定時間T1が経過していない時点で気流の速度が第1閾値V1よりも大きく第2閾値V2以下となっても、供給装置7から気流へ機能成分を供給させない。所定時間T1は、例えば、30秒であるが、30秒に限定されない。 Further, the controller 8 controls the supply device 7 at time t3 when the airflow velocity becomes greater than the first threshold value V1 and equal to or less than the second threshold value V2 after time t2 when a predetermined time T1 has elapsed from time t1 when the functional component was supplied. supply functional ingredients to the air stream. The control unit 8 does not supply the functional component from the supply device 7 to the airflow even if the speed of the airflow is greater than the first threshold value V1 and equal to or less than the second threshold value V2 when the predetermined time T1 has not elapsed from the time point t1. . The predetermined time T1 is, for example, 30 seconds, but is not limited to 30 seconds.
 (4)制御方法
 実施形態1に係る制御方法は、気流吹出装置1と、供給装置7と、を備えるシステムの制御方法である。
(4) Control Method The control method according to the first embodiment is a control method for a system including the airflow blowing device 1 and the supply device 7 .
 実施形態1に係る制御方法は、制御部8の動作によって実現される。この制御方法は、流出口24から吹き出す気流の速度をゆらぎ制御し(図6参照)、気流の速度が閾値V1(図6参照)よりも大きいときに供給装置7から気流に機能成分を供給させる。より詳細には、制御方法では、例えば、気流吹出装置1のファン3の回転数を制御することによって流出口24から吹き出す気流の速度をゆらぎ制御する。 The control method according to the first embodiment is implemented by the operation of the control unit 8. This control method fluctuates the speed of the airflow blowing out from the outlet 24 (see FIG. 6), and causes the supply device 7 to supply the functional component to the airflow when the speed of the airflow is greater than the threshold value V1 (see FIG. 6). . More specifically, in the control method, for example, by controlling the number of revolutions of the fan 3 of the airflow blowing device 1, the speed of the airflow blown out from the outlet 24 is controlled to fluctuate.
 また、実施形態1に係る制御方法は、流出口24から吹き出す気流の速度が閾値V1である第1閾値V1よりも大きな第2閾値V2以下のときに供給装置7から気流へ機能成分を供給させることを許可する。制御方法は、例えば、モータ36の駆動電圧が閾値V1に対応する電圧値よりも大きく、モータ36の駆動電圧が第2閾値V2に対応する電圧値以下であるときに、供給装置7から気流へ機能成分を供給させることを許可する。これにより、実施形態1に係る制御方法は、例えば、供給装置7での機能性材料の使用量を抑制することが可能となる。よって、実施形態1に係る制御方法では、例えば、供給装置7の生成部71において機能性材料を入れてある容器の交換頻度又は容器への機能性材料の補充頻度を低減することが可能となる。 Further, the control method according to the first embodiment causes the supply device 7 to supply the functional component to the airflow when the speed of the airflow blown out from the outlet 24 is equal to or lower than the second threshold V2 which is larger than the first threshold V1 which is the threshold V1. Allow For example, when the driving voltage of the motor 36 is greater than the voltage value corresponding to the threshold value V1 and the driving voltage of the motor 36 is equal to or less than the voltage value corresponding to the second threshold value V2, the control method is such that from the supply device 7 to the airflow Allow to supply functional ingredients. As a result, the control method according to the first embodiment can suppress the amount of functional material used in the supply device 7, for example. Therefore, in the control method according to the first embodiment, for example, it is possible to reduce the frequency of exchanging the container containing the functional material in the generating unit 71 of the supply device 7 or the frequency of replenishing the container with the functional material. .
 実施形態1に係る制御方法は、コンピュータシステムがプログラムを実行することにより実現される。このプログラムは、コンピュータシステムに、制御方法を実行させるためのプログラム(コンピュータプログラム)である。 The control method according to Embodiment 1 is implemented by a computer system executing a program. This program is a program (computer program) for causing the computer system to execute the control method.
 (5)効果
 実施形態1に係る制御方法は、気流吹出装置1と、供給装置7と、を備えるシステムの制御方法である。気流吹出装置1は、直進性を有する気流を吹き出す流出口24を有する。気流吹出装置1は、流出口24から吹き出す気流の速度を調整可能である。供給装置7は、空気中に吹き出させる機能成分を流出口24から吹き出す気流に供給可能である。制御方法は、流出口24から吹き出す気流の速度をゆらぎ制御し、気流の速度が閾値V1よりも大きいときに供給装置7から気流に機能成分を供給させる。この制御方法によれば、快適性を向上させることが可能となる。より詳細には、この制御方法によれば、気流吹出装置1から吹き出された気流が到達する範囲に居る人の快適性を向上させることが可能となる。この制御方法によれば、流出口24から吹き出す気流の速度をゆらぎ制御するので、気流の到達範囲に居る人が寒気を感じる可能性及び不快に感じる可能性を低減でき、しかも、気流の速度が閾値V1よりも大きいときに供給装置7から気流に機能成分を供給させるので、気流の到達範囲に居る人に機能成分を到達させることが可能となる。
(5) Effect The control method according to the first embodiment is a control method for a system including the airflow blowing device 1 and the supply device 7 . The airflow blowing device 1 has an outlet port 24 for blowing out straight airflow. The airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 . The supply device 7 can supply the functional component to be blown into the air to the air flow blown out from the outlet 24 . The control method is to fluctuate the speed of the airflow blown out from the outlet 24, and supply the functional component from the supply device 7 to the airflow when the speed of the airflow is greater than the threshold value V1. According to this control method, it is possible to improve comfort. More specifically, according to this control method, it is possible to improve the comfort of people in the range reached by the airflow blown out from the airflow blowing device 1 . According to this control method, since the velocity of the airflow blown out from the outlet 24 is controlled to fluctuate, it is possible to reduce the possibility that people in the reach of the airflow will feel cold and uncomfortable. When the threshold value V1 is exceeded, the supply device 7 supplies the functional component to the airflow, so that the functional component can reach a person within the reach of the airflow.
 また、実施形態1に係る制御方法は、流出口24から吹き出す気流の速度が閾値V1である第1閾値V1よりも大きな第2閾値V2以下のときに供給装置7から気流へ機能成分を供給させることを許可する。これにより、実施形態1に係る制御方法は、例えば、供給装置7において機能性材料を入れてある容器の交換頻度又は容器への機能性材料の補充頻度を低減することが可能となる。 Further, the control method according to the first embodiment causes the supply device 7 to supply the functional component to the airflow when the speed of the airflow blown out from the outlet 24 is equal to or lower than the second threshold V2 which is larger than the first threshold V1 which is the threshold V1. Allow As a result, the control method according to the first embodiment can reduce, for example, the frequency of replacement of the container containing the functional material in the supply device 7 or the frequency of refilling the container with the functional material.
 また、実施形態1に係るプログラムは、コンピュータシステムに、上述の制御方法を実行させるためのプログラム(コンピュータプログラム)である。このようなプログラムによれば、上述の制御方法と同様に、快適性を向上させることが可能となる。 Also, the program according to the first embodiment is a program (computer program) for causing a computer system to execute the control method described above. According to such a program, it is possible to improve comfort, similarly to the control method described above.
 また、実施形態1に係る気流制御システム100は、気流吹出装置1と、供給装置7と、制御部8と、を備える。気流吹出装置1は、直進性を有する気流を吹き出す流出口24を有する。気流吹出装置1は、流出口24から吹き出す気流の速度を調整可能である。供給装置7は、空気中に吹き出させる機能成分を流出口24から吹き出す気流に供給可能である。制御部8は、気流吹出装置1及び供給装置7を制御する。制御部8は、気流吹出装置1を制御することによって流出口24から吹き出す気流の速度をゆらぎ制御する。制御部8は、気流の速度が閾値よりも大きいときに供給装置7から気流に機能成分を供給させるように供給装置7を制御する。よって、実施形態1に係る気流制御システム100は、快適性を向上させることが可能となる。 Further, the airflow control system 100 according to the first embodiment includes the airflow blowing device 1, the supply device 7, and the control section 8. The airflow blowing device 1 has an outlet port 24 for blowing out straight airflow. The airflow blowing device 1 can adjust the speed of the airflow blown out from the outlet 24 . The supply device 7 can supply the functional component to be blown into the air to the air flow blown out from the outlet 24 . The control unit 8 controls the airflow blowing device 1 and the supply device 7 . The control unit 8 controls the fluctuation of the speed of the airflow blown out from the outlet 24 by controlling the airflow blowing device 1 . The control unit 8 controls the supply device 7 so as to supply the functional component to the airflow from the supply device 7 when the speed of the airflow is greater than the threshold value. Therefore, the airflow control system 100 according to Embodiment 1 can improve comfort.
 気流制御システム100は、直進性を有する気流を吹き出す流出口24を有する気流吹出装置1を備えることにより、気流の拡散を抑制することが可能なので、機能成分を含む気流の拡散を抑制することが可能となる。気流制御システム100は、供給装置7及び制御部8を備えることにより、施設の対象空間に吹き出す気流に機能成分を含ませることが可能であり、かつ、対象空間内において機能成分を含む気流の拡散を抑制することが可能である。「機能成分を含む気流の拡散を抑制する」とは、機能成分を含む気流の直進性を向上させ、指向性を高めることを意味する。実施形態1に係る気流制御システム100では、機能成分を供給する目的の空間に機能成分が到達するまでに機能成分の濃度が低下することを抑制することが可能となり、機能成分による効果を高めることが可能となる。 The airflow control system 100 can suppress the diffusion of the airflow by including the airflow blowing device 1 having the outlet 24 for blowing out the straight airflow, and thus can suppress the diffusion of the airflow containing the functional component. It becomes possible. The airflow control system 100 includes the supply device 7 and the control unit 8, so that the airflow blown out into the target space of the facility can contain the functional component, and the airflow containing the functional component can be diffused in the target space. can be suppressed. “Suppressing the diffusion of the airflow containing the functional component” means improving the directivity of the airflow containing the functional component by improving the straightness of the airflow. In the airflow control system 100 according to the first embodiment, it is possible to suppress the concentration of the functional component from decreasing before the functional component reaches the target space for supplying the functional component, thereby enhancing the effect of the functional component. becomes possible.
 (実施形態2)
 以下、実施形態2に係る気流制御システム100a及び制御方法について、図7及び8に基づいて説明する。実施形態2に係る気流制御システム100aは、実施形態1に係る気流制御システム100における供給装置7の代わりに、供給装置7aを備える点で実施形態1に係る気流制御システム100と相違する。実施形態2に係る気流制御システム100aに関し、実施形態1に係る気流制御システム100と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
An airflow control system 100a and a control method according to the second embodiment will be described below with reference to FIGS. The airflow control system 100a according to the second embodiment differs from the airflow control system 100 according to the first embodiment in that it includes a supply device 7a instead of the supply device 7 in the airflow control system 100 according to the first embodiment. Regarding the airflow control system 100a according to the second embodiment, the same components as those of the airflow control system 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 供給装置7aは、空気中の成分から機能成分を生成して供給するように構成されている。機能成分は、例えば、OHラジカルを含んでいる帯電微粒子水である。生成部71aは、例えば、OHラジカルを含んでいる帯電微粒子水を生成する静電霧化装置を含む。帯電微粒子水は、ナノメートルサイズの微粒子イオンである。静電霧化装置は、例えば、空気中の水に高電圧をかけることで粒子径5nm~20nmの微粒子イオンを生成することができる。帯電微粒子水では、OHラジカルが様々な物質に作用しやすい。供給装置7aは、供給装置7における機能成分搬送流路72の代わりに、機能成分搬送流路74を有する。機能成分搬送流路74は、例えば、第1端及び第2端を有する管状部材であり、第1端が生成部71aに接続され第2端が連通孔25を通して筒体2内に配置される。 The supply device 7a is configured to generate and supply functional components from components in the air. The functional component is, for example, charged particulate water containing OH radicals. The generator 71a includes, for example, an electrostatic atomizer that generates charged fine particle water containing OH radicals. The charged fine particle water is nanometer-sized fine particle ions. An electrostatic atomizer can generate fine particle ions having a particle size of 5 nm to 20 nm, for example, by applying a high voltage to water in the air. In charged fine particle water, OH radicals tend to act on various substances. The supply device 7 a has a functional component transport channel 74 instead of the functional component transport channel 72 in the supply device 7 . The functional component transport channel 74 is, for example, a tubular member having a first end and a second end, the first end being connected to the generating part 71a and the second end being arranged inside the cylindrical body 2 through the communication hole 25. .
 実施形態2に係る気流制御システム100aでは、制御部8は、流出口24から吹き出す気流の速度をゆらぎ制御する場合に気流の速度を第1速度VL以上第2速度VH以下の範囲で変動させ、気流の速度が閾値V1よりも大きいときに供給装置7aから気流に機能成分を供給させることを許可する。実施形態2に係る気流制御システム100aでは、閾値V1は、例えば、第1速度VLである0.05m/secよりも小さな速度(例えば、0.04m/sec)である。 In the airflow control system 100a according to the second embodiment, the control unit 8 fluctuates the speed of the airflow blown out from the outlet 24 in the range of the first speed VL or more and the second speed VH or less, Allowing the airflow to supply the functional component from the supply device 7a when the airflow velocity is greater than the threshold value V1. In the airflow control system 100a according to the second embodiment, the threshold V1 is, for example, a speed (eg, 0.04 m/sec) smaller than 0.05 m/sec, which is the first speed VL.
 実施形態2に係る制御方法は、実施形態1に係る制御方法と同様、流出口24から吹き出す気流の速度をゆらぎ制御し、気流の速度が閾値V1よりも大きいときに供給装置7aから気流に機能成分を供給させるので、快適性を向上させることが可能となる。 In the control method according to the second embodiment, as in the control method according to the first embodiment, fluctuation control is performed on the velocity of the airflow blown out from the outlet 24, and when the velocity of the airflow is greater than the threshold value V1, the airflow from the supply device 7a is controlled. Since the ingredients are supplied, comfort can be improved.
 実施形態2に係る制御方法は、流出口24から吹き出す気流の速度をゆらぎ制御する場合に気流の速度を第1速度VL以上第2速度VH以下の範囲で変動させ、気流の速度が閾値V1よりも大きいときに供給装置7aから気流に機能成分を供給させることを許可する。これにより、実施形態2に係る制御方法は、気流吹出装置1の流出口24から吹き出す気流が第1速度VL以上第2速度VH以下の範囲で変動している期間に機能成分を連続的に供給することが可能となる。より詳細には、制御方法では、例えば、気流吹出装置1のファン3の回転数を制御することによって流出口24から吹き出す気流の速度を制御する。 In the control method according to the second embodiment, when the fluctuation control is performed on the speed of the airflow blown out from the outlet 24, the speed of the airflow is varied within a range of a first speed VL or more and a second speed VH or less, and the speed of the airflow is changed from the threshold value V1. is large, it allows the airflow to supply the functional component from the supply device 7a. As a result, the control method according to the second embodiment continuously supplies the functional component while the airflow blown out from the outlet 24 of the airflow blowing device 1 fluctuates within the range of the first speed VL to the second speed VH. It becomes possible to More specifically, in the control method, for example, the speed of the airflow blown out from the outlet 24 is controlled by controlling the rotational speed of the fan 3 of the airflow blowing device 1 .
 実施形態2に係る制御方法では、閾値V1は、第1速度VLよりも小さな値である場合に限らず、例えば、第1速度VLと同じ値であってもよい。 In the control method according to the second embodiment, the threshold value V1 is not limited to a value smaller than the first speed VL, and may be the same value as the first speed VL, for example.
 (実施形態3)
 以下、実施形態3に係る気流制御システム100bについて、図9に基づいて説明する。実施形態3に係る気流制御システム100bに関し、実施形態1に係る気流制御システム100と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
An airflow control system 100b according to Embodiment 3 will be described below with reference to FIG. Regarding the airflow control system 100b according to the third embodiment, the same components as those of the airflow control system 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 気流制御システム100bは、例えば、図9に示すように、オフィス等の施設の空間環境を制御する環境制御システム200に適用される。 The airflow control system 100b is applied, for example, to an environment control system 200 that controls the spatial environment of facilities such as offices, as shown in FIG.
 環境制御システム200は、図9に示すように、複数の空調機器201と、サーバ202と、複数の気流制御システム100bと、を備える。サーバ202は、複数の空調機器201と通信ネットワーク500を通じて通信可能である。また、サーバ202は、複数の気流制御システム100bと通信ネットワーク600を通じて通信可能である。通信ネットワーク500、600は、インターネットを含み得る。通信ネットワーク500、600は、単一の通信プロトコルに準拠したネットワークだけではなく、異なる通信プロトコルに準拠した複数のネットワークで構成され得る。通信プロトコルは、例えば、イーサネット(登録商標)の規格に準拠した通信プロトコルでもよいし、Wi-Fi(登録商標)等の規格に準拠した通信プロトコルでもよい。通信ネットワークは、リピータハブ、スイッチングハブ、ブリッジ、ゲートウェイ、ルータ等のデータ通信機器を含み得る。また、通信ネットワーク500、600は、電力線を用いた電力線通信のネットワークであってもよい。 The environment control system 200 includes, as shown in FIG. 9, a plurality of air conditioners 201, a server 202, and a plurality of airflow control systems 100b. Server 202 can communicate with multiple air conditioners 201 through communication network 500 . Server 202 can also communicate with multiple airflow control systems 100b through communication network 600 . Communication networks 500, 600 may include the Internet. The communication networks 500 and 600 may be composed of not only a network conforming to a single communication protocol, but also a plurality of networks conforming to different communication protocols. The communication protocol may be, for example, a communication protocol conforming to the Ethernet (registered trademark) standard or a communication protocol conforming to the Wi-Fi (registered trademark) standard. A communication network may include data communication equipment such as repeater hubs, switching hubs, bridges, gateways, routers, and the like. Also, the communication networks 500 and 600 may be power line communication networks using power lines.
 複数の空調機器201は、例えば、オフィスの天井に配置される。複数の空調機器201は、互いに異なる識別情報を有する。空調機器201の識別情報は、空調機器201の有する記憶部215に記憶されている。記憶部215は、例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性メモリである。 A plurality of air conditioners 201 are arranged, for example, on the ceiling of an office. A plurality of air conditioners 201 have different identification information. The identification information of the air conditioner 201 is stored in the storage unit 215 of the air conditioner 201 . The storage unit 215 is, for example, a non-volatile memory such as EEPROM (Electrically Erasable Programmable Read Only Memory).
 複数の空調機器201の各々は、空気の吹き出し方向を変化させるためのフラップ211と、吹き出す空気流の流速を調整するファン212と、サーバ202との通信を行なう通信部213と、通信部213を介して受け取ったサーバ202からの指示情報に基づいてフラップ211及びファン212を制御する制御部214と、記憶部215と、を有する。複数の空調機器201の制御部214の各々は、例えば、サーバ202からの指示に基づいて空調機器201から吹き出す空気流の流速及び空気流の吹き出し方向を制御する。 Each of the plurality of air conditioners 201 includes a flap 211 for changing the blowing direction of the air, a fan 212 for adjusting the velocity of the blown air flow, a communication unit 213 for communicating with the server 202, and a communication unit 213. A storage unit 215 and a control unit 214 that controls the flap 211 and the fan 212 based on instruction information received from the server 202 via the server 202 . Each of the control units 214 of the plurality of air conditioners 201 controls the flow velocity and blowing direction of the air flow blown out from the air conditioner 201 based on an instruction from the server 202, for example.
 複数の気流制御システム100bは、例えば、複数の空調機器201が配置されるオフィスの天井の配線ダクトに接続される。複数の気流制御システム100bは、互いに異なる識別情報を有する。気流制御システム100bの識別情報は、例えば、制御部8の有する不揮発性メモリ等に記憶されている。各気流制御システム100bは、サーバ202との通信を行なう通信部9を有する。複数の気流制御システム100bの制御部8の各々は、例えば、通信部9を介して受け取ったサーバ202からの情報(例えば、指示情報、空調機器201の動作情報等)に基づいて気流吹出装置1及び供給装置7を制御する。 A plurality of airflow control systems 100b are connected, for example, to a wiring duct on the ceiling of an office where a plurality of air conditioners 201 are arranged. A plurality of airflow control systems 100b have identification information different from each other. The identification information of the airflow control system 100b is stored, for example, in a non-volatile memory of the controller 8 or the like. Each airflow control system 100b has a communication section 9 that communicates with the server 202 . Each of the control units 8 of the plurality of airflow control systems 100b controls the airflow blowing device 1 based on information (for example, instruction information, operation information of the air conditioner 201, etc.) received from the server 202 via the communication unit 9, for example. and control the supply device 7 .
 サーバ202は、複数の空調機器201及び複数の気流制御システム100bを制御する制御部220と、複数の空調機器201との通信を行なう第1通信部221と、複数の気流制御システム100bとの通信を行う第2通信部222と、記憶部223と、を有する。 The server 202 includes a control unit 220 that controls the plurality of air conditioners 201 and the plurality of airflow control systems 100b, a first communication unit 221 that communicates with the plurality of air conditioners 201, and communication with the plurality of airflow control systems 100b. and a storage unit 223 .
 サーバ202は、複数の空調機器201の識別情報及び位置情報と、複数の気流制御システム100bの識別情報及び位置情報と、を記憶部223に記憶している。 The server 202 stores, in the storage unit 223, identification information and location information of the plurality of air conditioners 201 and identification information and location information of the plurality of airflow control systems 100b.
 第1通信部221は、通信インターフェースである。特に、第1通信部221は、通信ネットワークに接続可能な通信インターフェースであり、通信ネットワーク500を通じた通信を行う機能を有する。これにより、サーバ202は、通信ネットワーク500を通じて複数の空調機器201と通信可能である。第1通信部221が複数の空調機器201の各々から受信する信号には、例えば、空調機器201の識別情報、空調機器201から吹き出している空気流の流速に関する情報、空調機器201からの空気流の吹き出し方向に関する情報等が含まれている。 The first communication unit 221 is a communication interface. In particular, the first communication unit 221 is a communication interface connectable to a communication network and has a function of performing communication through the communication network 500 . This allows the server 202 to communicate with the multiple air conditioners 201 through the communication network 500 . The signals received by the first communication unit 221 from each of the plurality of air conditioners 201 include, for example, identification information of the air conditioner 201, information on the flow velocity of the air blown out from the air conditioner 201, and information on the air flow from the air conditioner 201. information about the blowing direction of the
 第2通信部222は、通信インターフェースである。特に、第2通信部222は、通信ネットワーク600に接続可能な通信インターフェースであり、通信ネットワーク600を通じた通信を行う機能を有する。特に、第2通信部222は、通信ネットワーク600を通じて複数の気流制御システム100bと通信可能である。なお、第2通信部222の通信プロトコルは、周知の様々な有線通信規格及び無線通信規格から選択され得る。 The second communication unit 222 is a communication interface. In particular, the second communication unit 222 is a communication interface connectable to the communication network 600 and has a function of performing communication through the communication network 600 . In particular, the second communication unit 222 can communicate with multiple airflow control systems 100b through the communication network 600 . The communication protocol of the second communication unit 222 can be selected from various well-known wired communication standards and wireless communication standards.
 記憶部223は、情報を記憶するための装置である。記憶部223は、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM等である。記憶部223は、空調機器201の気流の吹き出し方向が気流制御システム100bの気流の吹き出し方向に向いているかどうかの判定に利用される判定用情報を記憶するための領域を有する。例えば、判定用情報は、空調対象エリアの情報、各空調機器201の情報、及び、各気流制御システム100bの情報を含む。空調対象エリアの情報は、空調対象エリアの大きさ及び形状等を特定するための情報である。各空調機器201の情報は、空調機器201を特定するための情報(識別情報)、空調機器201の位置情報を含む。空調機器201の位置情報は、例えば、オフィス等の施設内における空調機器201の位置を示す座標である。各気流制御システム100bの情報は、気流制御システム100bを特定するための情報(識別情報)、気流制御システム100bの位置情報を含む。気流制御システム100bの位置情報は、例えば、オフィス等の施設内における気流制御システム100bの位置を示す座標である。 The storage unit 223 is a device for storing information. The storage unit 223 is ROM (Read Only Memory), RAM (Random Access Memory), EEPROM, or the like. The storage unit 223 has an area for storing determination information used to determine whether or not the airflow blowing direction of the air conditioner 201 is directed to the airflow blowing direction of the airflow control system 100b. For example, the determination information includes information on the air-conditioned area, information on each air conditioner 201, and information on each airflow control system 100b. The information on the air-conditioned area is information for specifying the size, shape, etc. of the air-conditioned area. The information of each air conditioner 201 includes information (identification information) for specifying the air conditioner 201 and position information of the air conditioner 201 . The position information of the air conditioner 201 is, for example, coordinates indicating the position of the air conditioner 201 in a facility such as an office. The information of each airflow control system 100b includes information (identification information) for specifying the airflow control system 100b and position information of the airflow control system 100b. The position information of the airflow control system 100b is, for example, coordinates indicating the position of the airflow control system 100b within a facility such as an office.
 制御部220は、サーバ202の全体的な制御を行うように構成される。すなわち、制御部220は、第1通信部221、第2通信部222、及び記憶部223を制御するように構成される。制御部220は、例えば、1以上のプロセッサ(マイクロプロセッサ)と1以上のメモリとを含むコンピュータシステムにより実現され得る。つまり、1以上のプロセッサが1以上のメモリに記憶された1以上のプログラム(アプリケーション)を実行することで、制御部220として機能する。プログラムは、ここでは制御部220のメモリに予め記録されているが、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。 The control unit 220 is configured to perform overall control of the server 202 . That is, the control unit 220 is configured to control the first communication unit 221 , the second communication unit 222 and the storage unit 223 . The controller 220 can be implemented by a computer system including, for example, one or more processors (microprocessors) and one or more memories. That is, one or more processors function as the control unit 220 by executing one or more programs (applications) stored in one or more memories. Although the program is pre-recorded in the memory of the control unit 220 here, it may be provided through an electric communication line such as the Internet or recorded in a non-temporary recording medium such as a memory card.
 各気流制御システム100bの制御部8は、サーバ202の制御部220から受け取った空調機器201の動作情報に基づいて供給装置7を制御する。空調機器201の動作情報は、空調機器201から吹き出す空気流の流速に関連する情報及び空気流の吹き出し方向に関連する情報を含み得る。制御部8は、気流吹出装置1からの気流が供給される空間を含む空調対象空間の空気調和を行う空調機器201から吹き出す空気流の流速が第2閾値V2よりも大きい場合には、供給装置7から気流へ機能成分を供給させることを許可しない。これにより、気流制御システム100bは、空調機器201から吹き出す空気流の影響によって機能成分が拡散されることを抑制することが可能となる。 The control unit 8 of each airflow control system 100 b controls the supply device 7 based on the operation information of the air conditioner 201 received from the control unit 220 of the server 202 . The operation information of the air conditioner 201 can include information related to the flow velocity of the air flow blown out from the air conditioner 201 and information related to the blowing direction of the air flow. When the flow velocity of the airflow blown out from the air conditioner 201 that air-conditions the air-conditioned space including the space to which the airflow from the airflow blowing device 1 is supplied is higher than the second threshold value V2, the control unit 8 controls the supply device Do not allow functional components to be supplied from 7 to the air stream. As a result, the airflow control system 100b can suppress diffusion of the functional component due to the influence of the airflow blown out from the air conditioner 201 .
 実施形態3に係る制御方法は、気流吹出装置1からの気流が供給される空間を含む空調対象空間の空気調和を行う空調機器201から吹き出す空気流の流速が第2閾値V2よりも大きい場合には、供給装置7から気流へ機能成分を供給させることを許可しない。これにより、実施形態3に係る制御方法は、空調機器201から吹き出す空気流の影響によって機能成分が拡散されることを抑制することが可能となる。 In the control method according to the third embodiment, when the flow velocity of the airflow blown out from the air conditioner 201 that performs air conditioning of the space to be air-conditioned including the space to which the airflow from the airflow blowing device 1 is supplied is higher than the second threshold value V2. does not allow the supply device 7 to supply the functional component to the air stream. As a result, the control method according to the third embodiment can suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner 201 .
 また、実施形態3に係る制御方法は、空調機器201から吹き出す空気流の向きが気流吹出装置1からの気流が供給される空間に向かっていると判断した場合には、供給装置7から気流へ機能成分を供給させることを許可しない。これにより、実施形態3に係る制御方法は、空調機器201から吹き出す空気流の影響によって機能成分が拡散されることを抑制することが可能となる。なお、制御方法では、例えば、サーバ202からの情報に基づいて空調機器201から吹き出す空気流の向きが気流吹出装置1からの気流が供給される空間に向かっているか否か判断する。この判断は、サーバ202の制御部220が行ってもよい。 Further, in the control method according to the third embodiment, when it is determined that the direction of the airflow blown out from the air conditioner 201 is toward the space to which the airflow from the airflow blowing device 1 is supplied, the airflow is directed from the supply device 7 to the airflow. Do not allow functional ingredients to be supplied. As a result, the control method according to the third embodiment can suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner 201 . In the control method, for example, based on information from the server 202, it is determined whether or not the direction of the airflow blown out from the air conditioner 201 is toward the space to which the airflow from the airflow blowing device 1 is supplied. This determination may be made by the control unit 220 of the server 202 .
 (実施形態4)
 以下、実施形態4に係る気流制御システム100cについて、図10に基づいて説明する。実施形態4に係る気流制御システム100cは、制御部8が検知部11から出力される、人の動きに応じた動き量を示す評価値に基づいて供給装置7を制御する点で実施形態1に係る気流制御システム100と相違する。気流制御システム100cは、検知部11から出力される評価値を取得する取得部10を更に備えており、制御部8は、取得部10で取得した評価値に基づいて供給装置7を制御する。取得部10は、例えば、通信インターフェースである。実施形態4に係る気流制御システム100cに関し、実施形態1に係る気流制御システム100と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
An airflow control system 100c according to Embodiment 4 will be described below with reference to FIG. The airflow control system 100c according to the fourth embodiment differs from the first embodiment in that the control unit 8 controls the supply device 7 based on the evaluation value output from the detection unit 11 and indicating the amount of movement corresponding to the movement of the person. It is different from the airflow control system 100 concerned. The airflow control system 100 c further includes an acquisition unit 10 that acquires the evaluation value output from the detection unit 11 , and the control unit 8 controls the supply device 7 based on the evaluation value acquired by the acquisition unit 10 . Acquisition unit 10 is, for example, a communication interface. Regarding the airflow control system 100c according to the fourth embodiment, the same components as those of the airflow control system 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 検知部11は、気流吹出装置1からの気流が供給される空間を含む検知エリア内の人を検知し人の動き(移動速度)に応じた動き量を示す評価値を出力する。検知部11は、例えば、気流吹出装置1が配置されるオフィスの天井に取り付けられ、オフィスにおける検知エリア内の人を検知する赤外線画像センサを有する。赤外線画像センサは、検知エリア内の人からの赤外線を吸収する複数の赤外線検出部を有する赤外線センサと、赤外線センサの出力信号を処理して赤外線画像データを連続的に生成する処理部と、を含む。赤外線検出部は、例えば、サーモパイルを含む。処理部は、赤外線画像データに基づいて人を検知し人の動きに応じた評価値を求める。処理部は、検知エリアにおいて気流吹出装置1の気流の到達範囲を含む所定エリア内の人を検知し人の動きに応じた評価値を求める。所定エリアは、検知エリアよりも小さなエリアである場合に限らず、検知エリアと同じであってもよい。処理部は、所定エリア内の人ごとに単位時間当たりの移動速度の平均値を求め、その平均値を合計した値を評価値とする。したがって、評価値は、所定エリア内の人の移動速度の平均値が大きいほど、大きな値となり、所定エリア内を移動している人の数が多いほど、大きな値となる。処理部は、マイクロコンピュータ等のコンピュータを主構成とし、コンピュータのメモリに記録されたプログラムを、コンピュータのプロセッサで実行することにより、適宜の処理を行う。プログラムは、メモリに予め記録されていてもよいし、インターネットなどの電気通信回線を通して提供されてもよく、メモリカードなどの記録媒体に記録されて提供されてもよい。 The detection unit 11 detects a person in the detection area including the space to which the airflow from the airflow blowing device 1 is supplied, and outputs an evaluation value indicating the movement amount according to the movement (moving speed) of the person. The detection unit 11 has an infrared image sensor that is attached, for example, to the ceiling of the office where the airflow blowing device 1 is arranged, and detects a person within the detection area in the office. The infrared image sensor includes an infrared sensor having a plurality of infrared detection units that absorb infrared rays from a person within a detection area, and a processing unit that processes output signals of the infrared sensor to continuously generate infrared image data. include. The infrared detector includes, for example, a thermopile. The processing unit detects a person based on the infrared image data and obtains an evaluation value according to the movement of the person. The processing unit detects a person in a predetermined area including the reachable range of the airflow of the airflow blowing device 1 in the detection area, and obtains an evaluation value according to the movement of the person. The predetermined area is not limited to being smaller than the detection area, and may be the same as the detection area. The processing unit obtains an average value of movement speeds per unit time for each person in a predetermined area, and sets a value obtained by summing the average values as an evaluation value. Therefore, the larger the average value of the moving speeds of people within the predetermined area, the larger the evaluation value, and the larger the number of people moving within the predetermined area, the larger the evaluation value. The processing unit is mainly composed of a computer such as a microcomputer, and performs appropriate processing by executing a program recorded in a memory of the computer with a processor of the computer. The program may be prerecorded in a memory, may be provided through an electric communication line such as the Internet, or may be provided by being recorded in a recording medium such as a memory card.
 実施形態4に係る気流制御システム100cでは、制御部8は、気流吹出装置1からの気流が供給される空間を含む検知エリア内の人を検知し人の動きに応じた評価値を出力する検知部11からの評価値が規定値よりも大きい場合には、供給装置7から気流へ機能成分を供給させることを許可しない。これにより、実施形態4に係る気流制御システム100cは、機能成分が人の動きによって拡散されてしまうことを抑制することが可能となる。 In the airflow control system 100c according to the fourth embodiment, the control unit 8 detects a person in the detection area including the space to which the airflow from the airflow blowing device 1 is supplied, and outputs an evaluation value according to the movement of the person. If the evaluation value from the unit 11 is greater than the specified value, the functional component is not permitted to be supplied from the supply device 7 to the airflow. As a result, the airflow control system 100c according to the fourth embodiment can prevent the functional component from being diffused due to human movement.
 また、実施形態4に係る制御方法は、気流吹出装置1からの気流が供給される空間を含む検知エリア内の人を検知し人の動きに応じた評価値を出力する検知部11からの評価値が規定値よりも大きい場合には、供給装置7から気流へ機能成分を供給させることを許可しない。これにより、実施形態4に係る制御方法は、機能成分が人の動きによって拡散されてしまうことを抑制することが可能となる。 Further, the control method according to the fourth embodiment detects a person in the detection area including the space to which the airflow from the airflow blowing device 1 is supplied, and outputs an evaluation value according to the movement of the person. If the value is greater than the specified value, the supply device 7 is not allowed to supply the functional component to the airflow. As a result, the control method according to the fourth embodiment can prevent the functional component from being diffused by human movement.
 (変形例)
 上記の実施形態1~4は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態1~4は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能であり、互いに異なる実施形態の互いに異なる構成要素を適宜組み合わせてもよい。
(Modification)
Embodiments 1 to 4 above are only one of various embodiments of the present invention. The above-described Embodiments 1 to 4 can be modified in various ways according to the design, etc., as long as the object of the present disclosure can be achieved, and different constituent elements of different embodiments may be appropriately combined.
 例えば、実施形態1に係る制御方法は、流出口24から吹き出す気流の速度をゆらぎ制御する制御モードとして、気流の速度が閾値V1よりも大きいときに供給装置7から気流に機能成分を供給させる第1制御モードと、気流の速度が閾値V1よりも小さい所定値以下のときに気流に機能成分を供給させる第2制御モードと、があってもよい。この場合、制御方法は、人によって操作可能な操作部(例えば、リモートコントローラ、操作スイッチ)の操作に応じて、第1制御モードと第2制御モードとの一方で供給装置7を制御してもよいし、人体検知センサにより検知された人の数に応じて、第1制御モードと第2制御モードとの一方で供給装置7を制御してもよい。人体検知センサは、気流吹出装置1からの気流が供給される空間を含む検知エリア内の人を検知する。制御方法では、人体検知センサにより検知された人の数に応じて供給装置7を制御する場合、人の数が1の場合は、第1制御モードで供給装置7を制御し、人の数が2以上の場合は、第2制御モードで供給装置7を制御する。この制御方法によれば、人の数が1の場合には、人の数が2以上の場合と比べて機能成分を搬送させる範囲を狭くすることができ、人の数が2以上の場合は、人の数が1の場合と比べて機能成分を搬送させる範囲を広くすることができる。 For example, in the control method according to the first embodiment, as a control mode for fluctuating the speed of the airflow blown out from the outlet 24, the functional component is supplied from the supply device 7 to the airflow when the speed of the airflow is greater than the threshold value V1. There may be one control mode and a second control mode in which the functional component is supplied to the airflow when the speed of the airflow is equal to or less than a predetermined value less than the threshold value V1. In this case, the control method may control the supply device 7 in either the first control mode or the second control mode according to the operation of a manipulable operation unit (for example, a remote controller, an operation switch). Alternatively, the supply device 7 may be controlled in one of the first control mode and the second control mode according to the number of people detected by the human body detection sensor. The human body detection sensor detects a person within a detection area including the space to which the airflow from the airflow blowing device 1 is supplied. In the control method, when the feeding device 7 is controlled according to the number of people detected by the human body detection sensor, when the number of people is 1, the feeding device 7 is controlled in the first control mode, and the number of people is In the case of 2 or more, the supply device 7 is controlled in the second control mode. According to this control method, when the number of people is 1, the range in which the functional component is transported can be narrowed compared to when the number of people is 2 or more, and when the number of people is 2 or more, , the range in which the functional component is transported can be widened as compared with the case where the number of persons is one.
 また、制御方法は、例えば、人の音声入力を受け付けるAI(Artificial Intelligence)スピーカ等の出力に応じて、供給装置7を制御してもよい。 Also, as for the control method, for example, the supply device 7 may be controlled according to the output of an AI (Artificial Intelligence) speaker or the like that accepts human voice input.
 また、実施形態1に係る気流制御システム100の制御部8は、例えば、センサから取得した情報に基づいてファン3及び供給装置7を制御してもよい。センサとしては、例えば、画像センサ、人感センサ、超音波センサ、ドップラーセンサ、電波センサ、生体情報センサ、行動センサ、環境センサ等が挙げられる。画像センサは、対象空間に存在する対象物体(例えば、人)に関連する情報を出力することができればよく、例えば、赤外線画像センサ、CMOS(Complementary MOS)イメージセンサ、CCD(Charge Coupled Device)イメージセンサ、距離を画素値とする距離画像センサ等が挙げられる。生体情報センサとしては、例えば、少なくとも心拍を計測するウェアラブル端末を用いることができる。少なくとも心拍を計測するウェアラブル端末としては、例えば、対象空間に出入りする人の手首に装着するリストバンド型又は時計型のウェアラブル端末等がある。行動センサは、例えば、位置情報取得システムにより構成できる。位置情報取得システムは、人が携帯する発信機と施設に設置される受信機とを利用して発信機の位置情報を取得するシステムであり、人が発信機を携帯しているという前提の下で、発信機の位置を人の位置として取り扱う。発信機は、無線信号を送信する機能を有している。発信機は、無線信号を所定周期で発信する。無線信号は、発信機の識別情報を含み得る。識別情報は、複数の発信機同士を互いに区別するために利用され得る。発信機では、識別情報は、例えば、発信機の有する記憶部に記憶されている。記憶部は、例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性メモリである。行動センサは、ビーコンを利用する位置情報取得システムを利用するセンサであるが、これに限らず、例えば、GPS(Global Positioning System)を利用するセンサであってもよい。環境センサとしては、例えば、臭いセンサ、温度センサ、湿度センサ、COセンサ等が挙げられる。 Also, the control unit 8 of the airflow control system 100 according to the first embodiment may control the fan 3 and the supply device 7 based on information acquired from sensors, for example. Examples of sensors include image sensors, motion sensors, ultrasonic sensors, Doppler sensors, radio wave sensors, biological information sensors, behavior sensors, environment sensors, and the like. The image sensor only needs to be able to output information related to a target object (e.g., a person) present in the target space. , a distance image sensor that uses distance as a pixel value, and the like. As a biological information sensor, for example, a wearable terminal that measures at least heart rate can be used. Wearable terminals that measure at least heartbeats include, for example, wristband-type or watch-type wearable terminals worn on the wrists of people entering and exiting a target space. A behavior sensor can be configured by, for example, a position information acquisition system. The location information acquisition system is a system that acquires the location information of the transmitter by using the transmitter carried by the person and the receiver installed in the facility, and it is assumed that the person carries the transmitter. , the position of the transmitter is treated as the position of the person. The transmitter has the function of transmitting radio signals. A transmitter transmits a radio signal at a predetermined cycle. The radio signal may contain the identity of the transmitter. Identification information may be used to distinguish between multiple transmitters. In the transmitter, the identification information is stored, for example, in a storage section of the transmitter. The storage unit is, for example, nonvolatile memory such as EEPROM (Electrically Erasable Programmable Read Only Memory). The behavior sensor is a sensor that uses a position information acquisition system that uses beacons, but is not limited to this, and may be a sensor that uses a GPS (Global Positioning System), for example. Environmental sensors include, for example, an odor sensor, a temperature sensor, a humidity sensor, a CO2 sensor, and the like.
 また、供給装置7では、生成部71は、互いに異なる機能成分を含む溶液を霧化する複数の霧化部を有していてもよい。この場合、気流制御システム100は、制御部8によって生成部71を制御することによって、流出口24から吹き出す気流に供給する機能成分を変えることができる。 In addition, in the supply device 7, the generation unit 71 may have a plurality of atomization units that atomize solutions containing functional components different from each other. In this case, the airflow control system 100 can change the functional component supplied to the airflow blown out from the outlet 24 by controlling the generator 71 with the controller 8 .
 また、第1整流装置4における複数のフィン42の各々は、ファン3の軸方向D3から見て第1端421の全部と第2端422の全部とが重なっている場合に限らず、第1端421の少なくとも一部と第2端422の少なくとも一部が重なっていればよい。また、複数のフィン42の各々は、軸方向D3から見て第1端421と第2端422とが重なっていない構成であってもよい。 Further, each of the plurality of fins 42 in the first straightening device 4 is not limited to the case where the entire first end 421 and the entire second end 422 overlap when viewed from the axial direction D3 of the fan 3. At least part of the end 421 and at least part of the second end 422 should just overlap. Further, each of the plurality of fins 42 may have a configuration in which the first end 421 and the second end 422 do not overlap when viewed in the axial direction D3.
 また、第2整流装置5では、整流格子50は、ハニカム格子状に限らず、例えば、正方格子状又は三角格子状であってもよい。 In addition, in the second straightening device 5, the straightening grid 50 is not limited to the honeycomb lattice shape, and may be, for example, a square lattice shape or a triangular lattice shape.
 第2整流装置5は、上述の整流格子50に限らず、複数(例えば、19)の細菅を束ねた形の整流格子であってもよいし、多孔板(例えば、パンチングメタル)でもよい。複数の細管の各々は、流路55を有する。多孔板は、複数の流路55を構成する複数の貫通孔を有する。 The second rectifying device 5 is not limited to the rectifying grid 50 described above, and may be a rectifying grid in which a plurality of (eg, 19) thin tubes are bundled, or may be a perforated plate (eg, punching metal). Each of the plurality of capillaries has a channel 55 . The perforated plate has a plurality of through-holes forming a plurality of flow paths 55 .
 また、気流吹出装置1は、ファン3の軸方向D3において第1整流装置4と第2整流装置5との間に位置している第3整流装置を更に備えていてもよい。第3整流装置は、例えば、筒体2の内側で筒体2と同軸的に配置されている内筒体と、内筒体を筒体2に取り付けるための複数の取付部と、を含む。内筒体は、ファン3の軸方向D3において流出口24に近づくにつれて内径及び外径が小さくなっている。第3整流装置は、第1整流装置4の下流側において第1領域の気流の速度をより速くし、第2領域の気流の速度をより遅くするように気流を整流するしぼりとして機能する。内筒体は、ファン3の軸方向D3において内径及び外径それぞれが一定の円筒状であってもよい。また、内筒体は、内径及び外径それぞれが徐々に変化する縮径部と、内径及び外径それぞれが一定の円筒部と、を含んでいてもよい。気流吹出装置1は、第3整流装置を備えることにより、第3整流装置を備えていない場合と比べて、流出口24の内側領域での流速を速くできる一方で外側領域での流速を遅くでき、内側領域の流速と外側領域との流速差を大きく、流出口24から吹き出す気流の指向性を向上させることができる。 In addition, the airflow blowing device 1 may further include a third straightening device positioned between the first straightening device 4 and the second straightening device 5 in the axial direction D3 of the fan 3 . The third rectifier includes, for example, an inner cylindrical body arranged coaxially with the cylindrical body 2 inside the cylindrical body 2 , and a plurality of attachment portions for attaching the inner cylindrical body to the cylindrical body 2 . The inner cylindrical body has smaller inner and outer diameters as it approaches the outlet 24 in the axial direction D3 of the fan 3 . The third straightening device functions as a constriction that straightens the airflow so as to increase the speed of the airflow in the first region and slow down the speed of the airflow in the second region on the downstream side of the first straightening device 4 . The inner cylindrical body may have a cylindrical shape with constant inner and outer diameters in the axial direction D<b>3 of the fan 3 . Further, the inner cylindrical body may include a diameter-reduced portion in which the inner diameter and the outer diameter respectively change gradually, and a cylindrical portion in which the inner diameter and the outer diameter respectively are constant. By providing the third rectifier, the airflow blowing device 1 can increase the flow velocity in the inner region of the outlet 24 and reduce the flow velocity in the outer region, compared to the case where the third rectifier is not provided. , the flow velocity difference between the inner region and the outer region can be increased, and the directivity of the airflow blown out from the outlet 24 can be improved.
 また、気流吹出装置1では、筒体2がファン3におけるファンハウジング33を兼ねていてもよい。また、気流吹出装置1では、筒体2が第1整流装置4における筒部41を兼ねていてもよい。また、気流吹出装置1では、筒体2が第2整流装置5における筒部51を兼ねていてもよい。 Further, in the airflow blowing device 1 , the cylindrical body 2 may also serve as the fan housing 33 of the fan 3 . Further, in the airflow blowing device 1 , the tubular body 2 may also serve as the tubular portion 41 in the first straightening device 4 . Further, in the airflow blowing device 1 , the cylindrical body 2 may also serve as the cylindrical portion 51 of the second straightening device 5 .
 また、筒体2は、第1端21に流入口23を有し、第2端22に流出口24を有していればよく、筒体2の形状は、円筒状に限定されない。 In addition, the cylindrical body 2 only needs to have the inlet 23 at the first end 21 and the outlet 24 at the second end 22, and the shape of the cylindrical body 2 is not limited to a cylindrical shape.
 また、気流吹出装置1は、筒体2の流出口24を対象空間に臨ませるように天井材に埋込配置されてもよい。また、筒体2は、壁又はスタンドに取り付けられていてもよい。 Further, the airflow blowing device 1 may be embedded in the ceiling material so that the outflow port 24 of the cylindrical body 2 faces the target space. Also, the cylinder 2 may be attached to a wall or a stand.
 また、気流吹出装置1は、上流側の空調設備からの空気が筒体2の流入口23に流入する構成であってもよい。空調設備は、例えば、送風装置であるが、これに限らず、例えば、換気装置、エアコンディショナ、給気キャビネットファン、送風装置と熱交換器とを備える空気調和システム等でもよい。 Further, the airflow blowing device 1 may be configured such that air from an air conditioner on the upstream side flows into the inlet 23 of the cylinder 2 . The air conditioner is, for example, a blower, but is not limited to this, and may be, for example, a ventilator, an air conditioner, an air supply cabinet fan, an air conditioning system including a blower and a heat exchanger, or the like.
 (態様)
 本明細書には、以下の態様が開示されている。
(mode)
The following aspects are disclosed in this specification.
 第1の態様に係る制御方法は、気流吹出装置(1)と、供給装置(7;7a)と、を備えるシステムの制御方法である。気流吹出装置(1)は、直進性を有する気流を吹き出す流出口(24)を有する。気流吹出装置(1)は、流出口(24)から吹き出す気流の速度を調整可能である。供給装置(7;7a)は、空気中に吹き出させる機能成分を流出口(24)から吹き出す気流に供給可能である。制御方法は、流出口(24)から吹き出す気流の速度をゆらぎ制御し、気流の速度が閾値(V1)よりも大きいときに供給装置(7;7a)から気流に機能成分を供給させる。 A control method according to the first aspect is a control method for a system including an airflow blowing device (1) and a supply device (7; 7a). The airflow blowing device (1) has an outlet (24) for blowing out straight airflow. The airflow blowing device (1) can adjust the speed of the airflow blown out from the outlet (24). The supply device (7; 7a) can supply the functional component to be blown into the air to the airflow blown out from the outlet (24). The control method fluctuates the velocity of the airflow blowing out from the outlet (24) and causes the supply device (7; 7a) to supply the functional component to the airflow when the velocity of the airflow is greater than the threshold value (V1).
 第1の態様に係る制御方法は、快適性を向上させることが可能となる。 The control method according to the first aspect makes it possible to improve comfort.
 第2の態様に係る制御方法は、第1の態様に基づく。供給装置(7)は、機能成分を含む機能性材料から機能成分を供給するように構成されている。制御方法は、気流の速度が閾値(V1)である第1閾値(V1)よりも大きな第2閾値(V2)以下のときに供給装置(7)から気流へ機能成分を供給させることを許可する。 The control method according to the second aspect is based on the first aspect. The supply device (7) is configured to supply the functional ingredient from a functional material containing the functional ingredient. The control method allows the supply device (7) to supply the functional component to the airflow when the velocity of the airflow is below a second threshold (V2) which is greater than the first threshold (V1) which is the threshold (V1). .
 第2の態様に係る制御方法は、供給装置(7)での機能性材料の使用量を抑制することが可能となる。 The control method according to the second aspect makes it possible to suppress the amount of functional material used in the supply device (7).
 第3の態様に係る制御方法は、第2の態様において、機能成分を供給した時点から所定時間(T1)が経過していない時点で気流の速度が第1閾値(V1)よりも大きくなっても、供給装置(7)から気流へ機能成分を供給させない。 In the control method according to the third aspect, in the second aspect, the airflow velocity becomes larger than the first threshold value (V1) before the predetermined time (T1) has passed since the functional component was supplied. also does not cause the supply device (7) to supply the functional component to the air stream.
 第3の態様に係る制御方法は、供給装置(7)から気流へ機能成分が供給される頻度を低減することが可能となる。 The control method according to the third aspect makes it possible to reduce the frequency with which the functional component is supplied from the supply device (7) to the airflow.
 第4の態様に係る制御方法は、第1の態様に基づく。供給装置(7a)は、空気中の成分から機能成分を生成して供給するように構成されている。制御方法は、流出口(24)から吹き出す気流の速度をゆらぎ制御する場合に気流の速度を第1速度(VL)以上第2速度(VH)以下の範囲で変動させ、気流の速度が閾値(V1)よりも大きいときに供給装置(7a)から気流に機能成分を供給させることを許可する。閾値(V1)は、第1速度(VL)よりも小さい。 The control method according to the fourth aspect is based on the first aspect. The supply device (7a) is configured to generate and supply functional components from components in the air. The control method is to fluctuate the speed of the airflow blowing out from the outlet (24) in a range from a first speed (VL) to a second speed (VH), and the speed of the airflow is set to a threshold value ( V1) to allow the airflow to supply the functional component from the supply device (7a). The threshold (V1) is less than the first velocity (VL).
 第4の態様に係る制御方法は、気流吹出装置(1)の流出口(24)から吹き出す気流が第1速度(VL)以上第2速度(VH)以下の範囲で変動している期間に機能成分を連続的に供給することが可能となる。 The control method according to the fourth aspect functions during a period in which the airflow blown out from the outlet (24) of the airflow blowing device (1) fluctuates within the range of the first speed (VL) to the second speed (VH). It becomes possible to feed the components continuously.
 第5の態様に係る制御方法は、第2又は3の態様に基づく。制御方法は、気流吹出装置(1)からの気流が供給される空間を含む空調対象空間の空気調和を行う空調機器(201)から吹き出す空気流の流速が第2閾値(V2)よりも大きい場合には、供給装置(7)から気流へ機能成分を供給させることを許可しない。 The control method according to the fifth aspect is based on the second or third aspect. The control method is performed when the velocity of the airflow blown out from the air conditioner (201) that air-conditions the space to be air-conditioned including the space to which the airflow from the airflow blowing device (1) is supplied is greater than the second threshold value (V2). do not allow the supply device (7) to supply the functional component to the air stream.
 第5の態様に係る制御方法は、空調機器(201)から吹き出す空気流の影響によって機能成分が拡散されることを抑制することが可能となる。 The control method according to the fifth aspect makes it possible to suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner (201).
 第6の態様に係る制御方法は、第1~5の態様のいずれか一つにおいて、空調機器(201)から吹き出す空気流の向きが気流吹出装置(1)からの気流が供給される空間に向かっていると判断した場合には、供給装置(7;7a)から気流へ機能成分を供給させることを許可しない。 A control method according to a sixth aspect is characterized in that, in any one of the first to fifth aspects, the direction of the airflow blown out from the air conditioner (201) is directed to the space to which the airflow from the airflow blowing device (1) is supplied. If it determines that it is headed, it does not allow the supply device (7; 7a) to supply the functional component to the airflow.
 第6の態様に係る制御方法は、空調機器(201)から吹き出す空気流の影響によって機能成分が拡散されることを抑制することが可能となる。 The control method according to the sixth aspect makes it possible to suppress diffusion of the functional component due to the influence of the air flow blown out from the air conditioner (201).
 第7の態様に係る制御方法は、第1~6の態様のいずれか一つに基づく。制御方法は、気流吹出装置(1)からの気流が供給される空間を含む検知エリア内の人を検知し人の動きに応じた動き量を示す評価値を出力する検知部(11)からの評価値が規定値よりも大きい場合には、供給装置(7;7a)から気流へ機能成分を供給させることを許可しない。 The control method according to the seventh aspect is based on any one of the first to sixth aspects. The control method detects a person in the detection area including the space to which the airflow from the airflow blowing device (1) is supplied, and outputs an evaluation value indicating the amount of movement corresponding to the movement of the person. If the evaluation value is greater than the specified value, the supply device (7; 7a) is not allowed to supply the functional component to the airflow.
 第7の態様に係る制御方法は、機能成分が人の動きによって拡散されてしまうことを抑制することが可能となる。 The control method according to the seventh aspect makes it possible to suppress diffusion of functional components due to human movement.
 第8の態様に係る制御方法は、第1の態様に基づく。制御方法は、制御モードとして、気流の速度が閾値(V1)よりも大きいときに供給装置(7)から気流に機能成分を供給させる第1制御モードと、気流の速度が閾値(V1)よりも小さい所定値以下のときに気流に機能成分を供給させる第2制御モードと、がある。制御方法は、人によって操作可能な操作部の操作に応じて、第1制御モードと第2制御モードとの一方で供給装置(7)を制御する。 The control method according to the eighth aspect is based on the first aspect. The control method includes, as control modes, a first control mode in which the supply device (7) supplies the functional component to the airflow when the airflow velocity is greater than the threshold value (V1), and a first control mode in which the airflow velocity is greater than the threshold value (V1). and a second control mode that causes the airflow to deliver the functional component when below a small predetermined value. The control method controls the supply device (7) in one of a first control mode and a second control mode in response to operation of a manipulatable operation unit.
 第8の態様に係る制御方法は、人が操作部を操作することによって、機能成分が搬送される範囲を変えることが可能となる。 The control method according to the eighth aspect makes it possible for a person to change the range in which the functional component is conveyed by manipulating the operation unit.
 第9の態様に係る制御方法は、第1の態様に基づく。制御方法は、制御モードとして、気流の速度が閾値(V1)よりも大きいときに供給装置(7)から気流に機能成分を供給させる第1制御モードと、気流の速度が閾値(V1)よりも小さい所定値以下のときに気流に機能成分を供給させる第2制御モードと、がある。制御方法は、人体検知センサにより検知された人の数に応じて、第1制御モードと第2制御モードとの一方で供給装置(7)を制御する。 The control method according to the ninth aspect is based on the first aspect. The control method includes, as control modes, a first control mode in which the supply device (7) supplies the functional component to the airflow when the airflow velocity is greater than the threshold value (V1), and a first control mode in which the airflow velocity is greater than the threshold value (V1). and a second control mode that causes the airflow to deliver the functional component when below a small predetermined value. The control method controls the supply device (7) in one of the first control mode and the second control mode according to the number of people detected by the human body detection sensor.
 第9の態様に係る制御方法は、例えば、人の数が1の場合は、第1制御モードで供給装置(7)を制御し、人の数が2以上の場合は、第2制御モードで供給装置(7)を制御する。この制御方法によれば、人の数が1の場合には、人の数が2以上の場合と比べて機能成分を搬送させる範囲を狭くすることができ、人の数が2以上の場合は、人の数が1の場合と比べて機能成分を搬送させる範囲を広くすることができる。 In the control method according to the ninth aspect, for example, when the number of people is 1, the supply device (7) is controlled in the first control mode, and when the number of people is 2 or more, the supply device (7) is controlled in the second control mode. Control the feeding device (7). According to this control method, when the number of people is 1, the range in which the functional component is transported can be narrowed compared to when the number of people is 2 or more, and when the number of people is 2 or more, , the range in which the functional component is transported can be widened as compared with the case where the number of persons is one.
 第10の態様に係るプログラムは、コンピュータシステムに、第1~9の態様のいずれか一つの制御方法を実行させるためのプログラムである。 A program according to the tenth aspect is a program for causing a computer system to execute the control method according to any one of the first to ninth aspects.
 第10の態様に係るプログラムは、快適性を向上させることが可能となる。 The program according to the tenth aspect can improve comfort.
 第11の態様に係る気流制御システム(100;100a;100b;100c)は、気流吹出装置(1)と、供給装置(7;7a)と、制御部(8)と、を備える。気流吹出装置(1)は、直進性を有する気流を吹き出す流出口(24)を有する。気流吹出装置(1)は、流出口(24)から吹き出す気流の速度を調整可能である。供給装置(7;7a)は、空気中に吹き出させる機能成分を流出口(24)から吹き出す気流に供給可能である。制御部(8)は、気流吹出装置(1)及び供給装置(7;7a)を制御する。制御部(8)は、気流吹出装置(1)を制御することによって流出口(24)から吹き出す気流の速度をゆらぎ制御する。制御部(8)は、気流の速度が閾値(V1)よりも大きいときに供給装置(7;7a)から気流に機能成分を供給させるように供給装置(7;7a)を制御する。 An airflow control system (100; 100a; 100b; 100c) according to the eleventh aspect includes an airflow blowing device (1), a supply device (7; 7a), and a control section (8). The airflow blowing device (1) has an outlet (24) for blowing out straight airflow. The airflow blowing device (1) can adjust the speed of the airflow blown out from the outlet (24). The supply device (7; 7a) can supply the functional component to be blown into the air to the airflow blown out from the outlet (24). A control unit (8) controls the airflow blowing device (1) and the supply device (7; 7a). A control section (8) controls the fluctuation of the speed of the airflow blown out from the outlet (24) by controlling the airflow blowing device (1). The controller (8) controls the supply device (7; 7a) to supply the functional component to the airflow from the supply device (7; 7a) when the airflow velocity is greater than the threshold value (V1).
 第11の態様に係る気流制御システム(100;100a;100b;100c)は、快適性を向上させることが可能となる。 The airflow control system (100; 100a; 100b; 100c) according to the eleventh aspect can improve comfort.
 1 気流吹出装置
 24 流出口
 7、7a 供給装置
 8 制御部
 11 検知部
 100、100a、100b、100c 気流制御システム
 201 空調機器
 T1 所定時間
 t1 時点
 t2 時点
 t3 時点
 V1 閾値(第1閾値)
 V2 第2閾値
 VL 第1速度
 VH 第2速度
1 airflow blowing device 24 outflow port 7, 7a supply device 8 control unit 11 detection unit 100, 100a, 100b, 100c airflow control system 201 air conditioner T1 predetermined time t1 time t2 time t3 time V1 threshold (first threshold)
V2 Second threshold VL First speed VH Second speed

Claims (11)

  1.  直進性を有する気流を吹き出す流出口を有し前記流出口から吹き出す気流の速度を調整可能な気流吹出装置と、空気中に吹き出させる機能成分を前記流出口から吹き出す気流に供給可能な供給装置と、を備えるシステムの制御方法であって、
     前記流出口から吹き出す気流の速度をゆらぎ制御し、
     前記気流の速度が閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させる、
     制御方法。
    An airflow blowing device having an outlet for blowing straight airflow and capable of adjusting the speed of the airflow blown from the outlet, and a supply device capable of supplying a functional component to be blown into the air to the airflow blown from the outlet. A control method for a system comprising
    Fluctuation control of the speed of the airflow blown out from the outlet,
    causing the supply device to supply the functional component to the airflow when the velocity of the airflow is greater than a threshold;
    control method.
  2.  前記供給装置は、前記機能成分を含む機能性材料から前記機能成分を供給するように構成されており、
     前記制御方法は、
      前記気流の速度が前記閾値である第1閾値よりも大きな第2閾値以下のときに前記供給装置から前記気流へ前記機能成分を供給させることを許可する、
     請求項1に記載の制御方法。
    The supply device is configured to supply the functional component from a functional material containing the functional component,
    The control method is
    permitting the functional component to be supplied from the supply device to the airflow when the speed of the airflow is equal to or less than a second threshold that is greater than the first threshold, which is the threshold;
    The control method according to claim 1.
  3.  前記機能成分を供給した時点から所定時間が経過していない時点で前記気流の速度が前記第1閾値よりも大きくなっても、前記供給装置から前記気流へ前記機能成分を供給させない、
     請求項2に記載の制御方法。
    Even if the speed of the airflow becomes greater than the first threshold before a predetermined time has elapsed since the supply of the functional component, the supply device does not supply the functional component to the airflow;
    The control method according to claim 2.
  4.  前記供給装置は、空気中の成分から前記機能成分を生成して供給するように構成されており、
     前記制御方法は、
      前記流出口から吹き出す前記気流の速度をゆらぎ制御する場合に前記気流の速度を第1速度以上第2速度以下の範囲で変動させ、
     前記気流の速度が前記閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させることを許可するようにし、
     前記閾値は、前記第1速度よりも小さい、
     請求項1に記載の制御方法。
    The supply device is configured to generate and supply the functional component from components in the air,
    The control method is
    fluctuating the speed of the airflow in the range of a first speed or more and a second speed or less when controlling the fluctuation of the speed of the airflow blown out from the outlet;
    allowing the supply device to supply the functional component to the airflow when the airflow velocity is greater than the threshold;
    the threshold is less than the first speed;
    The control method according to claim 1.
  5.  前記気流吹出装置からの前記気流が供給される空間を含む空調対象空間の空気調和を行う空調機器から吹き出す空気流の流速が前記第2閾値よりも大きい場合には、前記供給装置から前記気流へ前記機能成分を供給させることを許可しない、
     請求項2又は3に記載の制御方法。
    When the flow velocity of the airflow blown out from the air conditioner that air-conditions the space to be air-conditioned, including the space to which the airflow from the airflow blowing device is supplied, is greater than the second threshold value, the airflow from the supply device flows into the airflow. disallowing the supply of said functional ingredient;
    The control method according to claim 2 or 3.
  6.  空調機器から吹き出す空気流の向きが前記気流吹出装置からの前記気流が供給される空間に向かっていると判断した場合には、前記供給装置から前記気流へ前記機能成分を供給させることを許可しない、
     請求項1~5のいずれか一項に記載の制御方法。
    When it is determined that the direction of the airflow blown out from the air conditioner is toward the space to which the airflow from the airflow blowing device is supplied, the supplying device is not permitted to supply the functional component to the airflow. ,
    The control method according to any one of claims 1-5.
  7.  前記気流吹出装置からの気流が供給される空間を含む検知エリア内の人を検知し人の動きに応じた動き量を示す評価値を出力する検知部からの前記評価値が規定値よりも大きい場合には、前記供給装置から前記気流へ前記機能成分を供給させることを許可しない、
     請求項1~6のいずれか一項に記載の制御方法。
    The evaluation value from the detection unit that detects a person in the detection area including the space to which the airflow from the airflow blowing device is supplied and outputs an evaluation value indicating the amount of movement corresponding to the movement of the person is larger than a specified value. disallowing the supply of the functional component from the supply device to the airflow,
    The control method according to any one of claims 1-6.
  8.  前記制御方法では、制御モードとして、
      前記気流の速度が前記閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させる第1制御モードと、 
      前記気流の速度が前記閾値よりも小さい所定値以下のときに前記気流に前記機能成分を供給させる第2制御モードと、があり、
     人によって操作可能な操作部の操作に応じて、前記第1制御モードと前記第2制御モードとの一方で前記供給装置を制御する、
     請求項1に記載の制御方法。
    In the control method, as a control mode,
    a first control mode causing the supply device to supply the functional component to the airflow when the velocity of the airflow is greater than the threshold;
    a second control mode for supplying the functional component to the airflow when the speed of the airflow is equal to or less than a predetermined value smaller than the threshold;
    controlling the supply device in one of the first control mode and the second control mode according to the operation of an operation unit that can be operated by a person;
    The control method according to claim 1.
  9.  前記制御方法では、制御モードとして、
      前記気流の速度が前記閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させる第1制御モードと、
      前記気流の速度が前記閾値よりも小さい所定値以下のときに前記気流に前記機能成分を供給させる第2制御モードと、があり、
     人体検知センサにより検知された人の数に応じて、前記第1制御モードと前記第2制御モードとの一方で前記供給装置を制御する、
     請求項1に記載の制御方法。
    In the control method, as a control mode,
    a first control mode causing the supply device to supply the functional component to the airflow when the velocity of the airflow is greater than the threshold;
    a second control mode for supplying the functional component to the airflow when the speed of the airflow is equal to or less than a predetermined value smaller than the threshold;
    controlling the feeding device in one of the first control mode and the second control mode according to the number of people detected by a human body detection sensor;
    The control method according to claim 1.
  10.  コンピュータシステムに、請求項1~9のいずれか一項に記載の制御方法を実行させるための、
     プログラム。
    For causing the computer system to execute the control method according to any one of claims 1 to 9,
    program.
  11.  直進性を有する気流を吹き出す流出口を有し前記流出口から吹き出す気流の速度を調整可能な気流吹出装置と、
     空気中に吹き出させる機能成分を前記流出口から吹き出す気流に供給可能な供給装置と、
     前記気流吹出装置及び前記供給装置を制御する制御部と、を備え、
     前記制御部は、
      前記気流吹出装置を制御することによって前記流出口から吹き出す気流の速度をゆらぎ制御し、
     前記気流の速度が閾値よりも大きいときに前記供給装置から前記気流に前記機能成分を供給させるように前記供給装置を制御する、
     気流制御システム。
    an airflow blowing device having an outlet for blowing out straight airflow and capable of adjusting the speed of the airflow blown out from the outlet;
    a supply device capable of supplying the functional component to be blown into the air to the airflow blown out from the outlet;
    A control unit that controls the airflow blowing device and the supply device,
    The control unit
    Fluctuation control of the speed of the airflow blown out from the outlet by controlling the airflow blowing device;
    controlling the delivery device to cause the airflow to deliver the functional component from the delivery device when the velocity of the airflow is greater than a threshold;
    Airflow control system.
PCT/JP2022/039231 2021-11-26 2022-10-21 Control method, program, and airflow control system WO2023095501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021192482 2021-11-26
JP2021-192482 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095501A1 true WO2023095501A1 (en) 2023-06-01

Family

ID=86539305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039231 WO2023095501A1 (en) 2021-11-26 2022-10-21 Control method, program, and airflow control system

Country Status (1)

Country Link
WO (1) WO2023095501A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165239A (en) * 1990-10-26 1992-06-11 Asanumagumi:Kk Fragrance supply method to air conditioner
JPH04236030A (en) * 1991-01-11 1992-08-25 Kajima Corp Odor generating device
JPH05215357A (en) * 1991-06-07 1993-08-24 Matsushita Refrig Co Ltd Air-conditioner with perfume generating device
JPH0634193A (en) * 1992-07-22 1994-02-08 Shimizu Corp Comfortable property producing device
WO2011024424A1 (en) * 2009-08-31 2011-03-03 パナソニック株式会社 Cooperative airflow control device
JP2018123685A (en) * 2017-01-30 2018-08-09 パナソニックIpマネジメント株式会社 Ventilator and ventilation control program
JP2019148241A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Blower device and air blowing control program
JP2020056563A (en) * 2018-09-28 2020-04-09 パナソニックIpマネジメント株式会社 Air blower

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165239A (en) * 1990-10-26 1992-06-11 Asanumagumi:Kk Fragrance supply method to air conditioner
JPH04236030A (en) * 1991-01-11 1992-08-25 Kajima Corp Odor generating device
JPH05215357A (en) * 1991-06-07 1993-08-24 Matsushita Refrig Co Ltd Air-conditioner with perfume generating device
JPH0634193A (en) * 1992-07-22 1994-02-08 Shimizu Corp Comfortable property producing device
WO2011024424A1 (en) * 2009-08-31 2011-03-03 パナソニック株式会社 Cooperative airflow control device
JP2018123685A (en) * 2017-01-30 2018-08-09 パナソニックIpマネジメント株式会社 Ventilator and ventilation control program
JP2019148241A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Blower device and air blowing control program
JP2020056563A (en) * 2018-09-28 2020-04-09 パナソニックIpマネジメント株式会社 Air blower

Similar Documents

Publication Publication Date Title
JP6876747B2 (en) Fragrance adjustment system and fragrance cartridge
WO2023029546A1 (en) Control method and apparatus for air conditioning device, and air conditioning device
WO2021237197A1 (en) Systems and apparatuses for improving air quality
CN112682367B (en) Fan assembly
WO2023095501A1 (en) Control method, program, and airflow control system
JP2012032088A (en) Air conditioning machine
WO2022244419A1 (en) Airflow control system
WO2022070514A1 (en) Airflow control system, airflow control method, and program
JP4254874B2 (en) Residential ventilation system
WO2023032457A1 (en) Airflow control system
JP2016077598A (en) Mist generator
WO2023095549A1 (en) Airflow blower
JP7112169B1 (en) Sterilization/Virus Inactivation Device, Air Conditioner Equipped with Same, and Sterilization/Virus Inactivation Method
CN110285531B (en) Air conditioner, control method and device thereof and readable storage medium
WO2023095502A1 (en) Gas flow control system, control method, and program
JP2016188723A (en) Humidification air-conditioning system
CN112902337B (en) Household equipment control method, system, control equipment and readable storage medium
JP2018183777A (en) Mist generator
JP2023125964A (en) Air flow unit, ventilation unit, air supply valve, air environment control system, and construction method for air environment control system
JP2023091113A (en) humidification system
WO2023210307A1 (en) Air blowing system
JP2018141596A (en) Air conditioner
JP7183474B1 (en) Air cleaner, air cleaner system, and air conditioner
JP7471518B1 (en) Sterilization/virus inactivation device, air conditioner equipped with same, and sterilization/virus inactivation method
WO2024101206A1 (en) Ventilation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898285

Country of ref document: EP

Kind code of ref document: A1