WO2022064965A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2022064965A1
WO2022064965A1 PCT/JP2021/031640 JP2021031640W WO2022064965A1 WO 2022064965 A1 WO2022064965 A1 WO 2022064965A1 JP 2021031640 W JP2021031640 W JP 2021031640W WO 2022064965 A1 WO2022064965 A1 WO 2022064965A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioning
pumping pipe
water
wind turbine
Prior art date
Application number
PCT/JP2021/031640
Other languages
French (fr)
Japanese (ja)
Inventor
正宏 重森
将秀 福本
如水 岸本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022064965A1 publication Critical patent/WO2022064965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements

Definitions

  • This disclosure relates to an air conditioning system that air-conditions multiple spaces.
  • the air transported from a plurality of spaces or the like to the air-conditioning room is air-conditioned to a predetermined temperature and humidity in the air-conditioning room so that the temperature and humidity of the air in the plurality of spaces (living rooms) become the target temperature and humidity.
  • a whole-building air-conditioning system that transports air to each of a plurality of spaces (for example, Patent Document 1).
  • the temperature of the air in the air conditioning room is controlled by the air conditioner (air conditioning conditioner) installed in the air conditioning room, and the humidity of the air in the air conditioning room is controlled by the humidifying device installed in the air conditioning room. is doing. Then, the space in the air-conditioning room is divided, and temperature control and humidification control are efficiently performed in each space.
  • air conditioner air conditioning conditioner
  • the air volume is generated by the humidifying device separately from the air volume for controlling the temperature with the air conditioner to humidify.
  • the air volume of an air conditioner is large, and it has more power than the air volume for air conditioning a living room.
  • the humidifier is generally equipped with a small fan. For this reason, the humidifying device in the conventional air-conditioning system in the entire building has a problem that the air volume is not sufficient and the energy efficiency is poor.
  • the present disclosure provides an air conditioning system using a humidifying device that can contribute to energy saving.
  • the air-conditioning system is installed in an air-conditioning room configured to allow air to be introduced from indoors and outdoors, an air-conditioner installed in the air-conditioning room to control the temperature of the air in the air-conditioning room, and an air-conditioning room installed in the air-conditioning room. It is equipped with a humidifying device that humidifies the temperature-controlled air and a transport fan that transports the air in the air-conditioned room to an indoor space different from the air-conditioned room.
  • the humidifier is arranged in a flow path where the air temperature controlled by the air conditioner flows into the humidifier, and is fixed to the windmill and the windmill that rotates with the rotation of the windmill.
  • FIG. 1 is a schematic connection diagram of an air conditioning system according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a humidifying device constituting the air conditioning system.
  • FIG. 3 is a cross-sectional view of a wind turbine and a pumping pipe constituting the humidifying device.
  • FIG. 4A is a top view of the wind turbine constituting the humidifying device.
  • FIG. 4B is a cross-sectional view of the fixed blade of the wind turbine.
  • the air-conditioning system is installed in an air-conditioning room configured to allow air to be introduced from indoors and outdoors, an air-conditioner installed in the air-conditioning room to control the temperature of the air in the air-conditioning room, and an air-conditioning room installed in the air-conditioning room. It is equipped with a humidifying device that humidifies the temperature-controlled air and a transport fan that transports the air in the air-conditioned room to an indoor space different from the air-conditioned room.
  • the humidifier is arranged in a flow path where the air temperature controlled by the air conditioner flows into the humidifier, and is fixed to the windmill and the windmill that rotates with the rotation of the windmill.
  • the wind turbine receives the wind pressure according to the amount of air blown from the air conditioner to rotate the rotating shaft, and the rotation of the rotating shaft causes the pumping pipe to rotate. Therefore, energy consumption by the humidifying device can be suppressed as compared with the case where the rotating shaft is rotated by the power of the rotating motor as in the conventional humidifying device. Therefore, the energy efficiency of the humidifier can be improved. That is, it is possible to make an air conditioning system using a humidifying device that can contribute to energy saving.
  • the air conditioning system may further include a rotary motor rotatably attached to the rotary shaft.
  • the rotary motor may adjust the rotation speed of the rotating shaft so that the rotation speed of the pumping pipe by the wind turbine becomes the set rotation speed.
  • the rotation speed of the rotating shaft is maintained at the set rotation speed. Therefore, the pumping pipe can be rotated at a set rotation speed. Therefore, the humidifying capacity of the humidifying device can be stabilized.
  • the rotary motor operates so as to increase the rotation speed of the rotating shaft when the rotation speed of the pumping pipe is insufficient, based on the information regarding the air volume of the air conditioner.
  • the operation may be performed so as to reduce the rotation speed of the rotation shaft.
  • the rotation speed of the rotating shaft can be maintained at the set rotation speed with higher accuracy by the minimum power of the rotating motor. can do.
  • the wind turbine may have fixed blades provided along the direction from the rotation axis toward the centrifugal direction.
  • the air introduced into the humidifier from above in the vertical direction may be configured to blow out in the centrifugal direction toward the eliminator by hitting the fixing blades.
  • the air blown out in the centrifugal direction and the water droplets discharged in the centrifugal direction can be mixed in the eliminator, and the air flowing through the eliminator can be contained with finely divided water. Therefore, the humidifying performance of the humidifying device can be improved, and the amount of humidification for the air in the air conditioning chamber can be increased.
  • the pumping pipes are arranged at predetermined intervals in the axial direction of the rotating shaft, and a plurality of rotating plates formed so as to project in the centrifugal direction from the outer peripheral surface of the pumping pipe are formed. It may have been done.
  • the pumped water can be discharged from the pumping pipe in the centrifugal direction through the rotating plate and scattered toward the eliminator as water droplets.
  • the wind turbine may be arranged so as to be superimposed on the pumping pipe above the rotating plate in the vertical direction.
  • the wind turbine and the rotating plate can be substantially integrated, so that the humidifying device can be miniaturized. Therefore, in an air conditioning system using such a humidifying device, the air conditioning chamber can be miniaturized.
  • FIG. 1 is a schematic connection diagram of the air conditioning system 20 according to the first embodiment of the present disclosure.
  • the air conditioning system 20 includes a plurality of transfer fans 3 (conveyor fans 3a, 3b), a heat exchange air fan 4, a plurality of dampers 5 (dampers 5a, 5b), and a plurality of circulation ports 6 (circulation ports 6a, 6b, 6c). , 6d), a plurality of living room exhaust ports 7 (living room exhaust ports 7a, 7b, 7c, 7d), a plurality of living room air supply ports 8 (living room air supply ports 8a, 8b, 8c, 8d), and a living room temperature sensor.
  • transfer fans 3 conveyor fans 3a, 3b
  • a heat exchange air fan 4 a plurality of dampers 5 (dampers 5a, 5b), and a plurality of circulation ports 6 (circulation ports 6a, 6b, 6c).
  • 6d a plurality of living room exhaust ports 7 (living room exhaust ports 7a, 7b, 7c, 7d), a plurality of living room air supply ports 8 (living room air supply ports 8a
  • the air conditioning system 20 is installed in a general house 1 which is an example of a building.
  • the general house 1 has at least one air-conditioning room 18 different from the living room 2 (independent) in addition to a plurality of (four in the present embodiment) living rooms 2 (living rooms 2a, 2b, 2c, 2d). ..
  • the general house 1 (house) is a house provided as a place where the resident lives a private life, and as a general structure, the living room 2 includes a living room, a dining room, a bedroom, a private room, a children's room, and the like. Is included.
  • the living room provided by the air conditioning system 20 may include a toilet, a bathroom, a washroom, a dressing room, and the like.
  • a circulation port 6a, a living room exhaust port 7a, a living room air supply port 8a, a living room temperature sensor 11a, a living room humidity sensor 12a, a system controller 14, and an input / output terminal 19 are installed in the living room 2b.
  • a circulation port 6b, a living room exhaust port 7b, a living room air supply port 8b, a living room temperature sensor 11b, and a living room humidity sensor 12b are installed in the living room 2c.
  • a circulation port 6c, a living room exhaust port 7c, a living room air supply port 8c, a living room temperature sensor 11c, and a living room humidity sensor 12c are installed.
  • a circulation port 6d, a living room exhaust port 7d, a living room air supply port 8d, a living room temperature sensor 11d, and a living room humidity sensor 12d are installed in the living room 2d.
  • the air-conditioning chamber 18 is provided with a transfer fan 3a, a transfer fan 3b, a damper 5a, a damper 5b, an air conditioner 13, a dust collection filter 17, and a humidifying device 16. More specifically, from the upstream side of the air flow path flowing through the air conditioning chamber 18, the air conditioner 13, the dust collecting filter 17, the humidifying device 16, the transport fan 3 (convey fan 3a, 3b), and the damper 5 (damper 5a). They are arranged in the order of 5b).
  • the air (indoor air) conveyed from each living room 2 through the circulation port 6 and the outside air (outdoor air) taken in from the outside by the heat exchange air fan 4 and heat-exchanged are mixed.
  • the temperature and humidity of the air in the air-conditioning chamber 18 are controlled by the air-conditioning conditioner 13 and the humidifying device 16 provided in the air-conditioning chamber 18, respectively. That is, the air in the air conditioning chamber 18 is air-conditioned by the air conditioner 13 and the humidifying device 16. As a result, air to be conveyed to the living room 2 is generated.
  • the air conditioned in the air-conditioned room 18 is transported to each living room 2 by the transport fan 3.
  • the air-conditioning chamber 18 means a space having a certain size in which an air-conditioning conditioner 13, a humidifying device 16, a dust collecting filter 17, and the like can be arranged, and the air-conditioning of each living room 2 can be controlled.
  • the air-conditioned room 18 is not limited to a living space, that is, a room in which a resident basically stays.
  • the air in each living room 2 is conveyed to the air conditioning room 18 via the circulation port 6. Further, the air in each living room 2 is heat-exchanged in the heat exchange air fan 4 through the living room exhaust port 7, and then discharged to the outside.
  • the inside air indoor air
  • the outside air outdoor air
  • the ventilation air volume of the heat exchange air fan 4 can be set in a plurality of stages, and may be set so as to satisfy the required ventilation volume specified by law.
  • the heat exchange air fan 4 is configured to have an air supply fan and an exhaust fan (not shown) inside. By operating each fan in the heat exchange air fan 4, each living room 2 can be ventilated while exchanging heat between the inside air (indoor air) and the outside air (outdoor air). At this time, the heat exchange air fan 4 conveys the heat exchanged outside air to the air conditioning chamber 18.
  • a conveyor fan 3 is provided on the wall surface (wall surface on the bottom surface side) of the air conditioning chamber 18.
  • the air in the air-conditioning chamber 18 is conveyed from the living room air supply port 8 to the living room 2 by the transport fan 3 via the transport duct. More specifically, the air in the air conditioning room 18 is conveyed to the living room 2a and the living room 2b located on the first floor of the general house 1 by the transport fan 3a, respectively, and the living room 2c and the living room 2c located on the second floor of the general house 1 are conveyed by the transport fan 3b. They are transported to the living room 2d respectively.
  • the transport ducts connected to the living room air supply ports 8 of each living room 2 are independently provided.
  • the damper 5 adjusts the amount of air blown to each living room 2 by adjusting the opening degree of the damper 5 when the air is conveyed from the transport fan 3 to each living room 2. More specifically, the damper 5a adjusts the amount of air blown to the living room 2a and the living room 2b located on the first floor. The damper 5b adjusts the amount of air blown to the living room 2c and the living room 2d located on the second floor.
  • a part of the air in each living room 2 (living rooms 2a to 2d) is conveyed to the air conditioning room 18 through the circulation duct by the corresponding circulation ports 6 (circulation ports 6a to 6d).
  • the air volume is conveyed as circulating air from the circulation port 6 to the air conditioning chamber 18.
  • the circulation ducts connecting the air conditioning chamber 18 and each living room 2 may be provided independently. Further, a plurality of tributary ducts connected to each living room 2 may be integrated into one circulation duct connected to the air conditioning room 18.
  • each circulation port 6 (circulation port 6a to 6d) is an opening for transporting indoor air from the corresponding living room 2 (living room 2a to 2d) to the air conditioning room 18.
  • each living room exhaust port 7 (living room exhaust port 7a to 7d) is an opening for transporting indoor air from the corresponding living room 2 (living room 2a to 2d) to the heat exchange air fan 4.
  • each living room air supply port 8 (living room air supply port 8a to 8d) is an opening for transporting the air in the air conditioning room 18 from the air conditioning room 18 to the corresponding living room 2 (living room 2a to 2d). ..
  • the living room temperature sensors 11 are sensors that acquire the living room temperature (room temperature) of the corresponding living room 2 (living room 2a to 2d) and transmit it to the system controller 14.
  • the living room humidity sensor 12 (living room humidity sensor 12a to 12d) is a sensor that acquires the living room humidity (room humidity) of the corresponding living room 2 (living room 2a to 2d) and transmits it to the system controller 14.
  • the air conditioner 13 corresponds to an air conditioner.
  • the air conditioner 13 controls the air conditioning of the air conditioning chamber 18. Specifically, the air conditioner 13 cools or heats the air in the air conditioning chamber 18 so that the temperature of the air in the air conditioning chamber 18 becomes the set temperature (target temperature in the air conditioning chamber).
  • the set temperature is set based on the temperature difference between the target temperature (living room target temperature) preset by the user and the living room temperature acquired by the living room temperature sensor 11.
  • the humidifying device 16 is provided on the downstream side of the air conditioner 13 in the air conditioning chamber 18.
  • the humidifying device 16 sets the humidity of the air in each room 2 to be the target humidity when the humidity of the air in each room 2 (humidity in the room) is lower than the target humidity set by the user (target humidity in the room).
  • the air in the air conditioning chamber 18 is humidified.
  • the humidity in the present embodiment is shown as a relative humidity, it may be treated as an absolute humidity in a predetermined conversion process. In this case, the humidity in the air conditioning system 20 may be treated as the absolute humidity, including the humidity in the living room 2.
  • the dust collection filter 17 is a dust collection filter that collects particles floating in the air introduced into the air conditioning chamber 18 through the circulation port 6.
  • the dust collecting filter 17 makes the air supplied indoors by the transport fan 3 clean air.
  • the system controller 14 is a controller that controls the entire air conditioning system 20.
  • the system controller 14 is communicably connected to each of the heat exchange air fan 4, the conveyor fan 3, the damper 5, the living room temperature sensor 11, the living room humidity sensor 12, the air conditioner 13 and the humidifying device 16 by wireless communication.
  • the system controller 14 has the living room temperature and the living room humidity acquired by the living room temperature sensor 11 and the living room humidity sensor 12, and the target temperature (living room target temperature) set for each of the living room 2a to 2d. ) And the target humidity (target humidity in the living room) and the like, the air conditioner 13 as an air conditioner, the humidifying device 16, the air volume of the transport fan 3, and the opening degree of the damper 5 are controlled.
  • the air volume of the transport fan 3 may be controlled individually for each fan.
  • the air conditioned in the air-conditioned room 18 is transported to each living room 2 with the air volume set by each transport fan 3 and each damper 5. Therefore, the living room temperature and the living room humidity of each living room 2 are controlled to be the target temperature (living room target temperature) and the target humidity (living room target humidity).
  • the system controller 14 is wirelessly connected to the heat exchange air fan 4, the transfer fan 3, the damper 5, the living room temperature sensor 11, the living room humidity sensor 12, the air conditioner 13, and the humidifying device 16. This makes it possible to eliminate the need for complicated wiring work in the air conditioning system 20.
  • all or part of the above-mentioned components may be configured to be communicable by wired communication.
  • the input / output terminal 19 is connected to the system controller 14 so as to be able to communicate with each other by wireless communication.
  • the input / output terminal 19 receives input of information necessary for constructing the air conditioning system 20 and stores it in the system controller 14. Further, the input / output terminal 19 acquires the state of the air conditioning system 20 from the system controller 14 and displays it. Examples of the input / output terminal 19 include a mobile information terminal such as a mobile phone, a smartphone, or a tablet.
  • the input / output terminal 19 does not necessarily have to be connected to the system controller 14 by wireless communication, and may be communicably connected to the system controller 14 by wire communication.
  • the input / output terminal 19 may be realized by, for example, a wall-mounted remote controller.
  • FIG. 2 is a schematic cross-sectional view of the humidifying device 16 constituting the air conditioning system 20.
  • the humidifying device 16 is located on the downstream side of the air conditioner 13 in the air conditioning chamber 18, and is a device for humidifying the air in the air conditioning chamber 18 by crushing centrifugal water. As shown in FIG. 2, the humidifying device 16 is between a suction port 31 for sucking air in the air conditioning chamber 18, an outlet 32 for blowing out humidified air into the air conditioning chamber 18, and a suction port 31 and an outlet 32. It is provided with an air passage provided in the air passage and a liquid miniaturization chamber 33 provided in the air passage.
  • the suction port 31 is provided on the upper surface of the housing constituting the outer frame of the humidifying device 16.
  • the air (air flow) blown from the air conditioner 13 flows into the humidifying device 16 through the suction port 31.
  • the outlet 32 is provided on the side surface of the housing.
  • the liquid miniaturization chamber 33 is the main part of the humidifying device 16 and is a space for refining water by a centrifugal water crushing method.
  • the humidifying device 16 includes a wind turbine 36, a rotary shaft 35 rotated by the wind turbine 36, a rotary motor 34 attached to the rotary shaft 35, a tubular pumping pipe 37, a water storage unit 40, a first eliminator 41, and the like. It is equipped with a second eliminator 42.
  • the wind turbine 36 is arranged so as to be superimposed on the vertical direction of the pumping pipe 37 (more accurately, the rotating plate 38) described later, and is arranged from the air conditioning chamber 18 (air conditioner 13) to the inside of the humidifying device 16 (hereinafter, also referred to as “inside the device”). It is a fan that is rotated by the air that flows into (referred to as).
  • the wind turbine 36 is fixed to the rotating shaft 35, and the rotating shaft 35 rotates in accordance with the rotation of the wind turbine 36. Further, the air flowing into the apparatus is introduced into the liquid miniaturization chamber 33. Further, the wind turbine 36 is configured to rotate integrally with the pumping pipe 37 via the rotating shaft 35.
  • the rotation shaft 35 is a shaft along the vertical direction that rotates in accordance with the rotation of the wind turbine 36.
  • the pumping pipe 37 is fixed below in the vertical direction.
  • a rotary motor 34 is fixed above the rotary shaft 35 in the vertical direction.
  • the wind turbine 36 is fixed at a position sandwiched between the pumping pipe 37 and the rotary motor 34.
  • the rotary motor 34 is a motor to which the rotary shaft 35 is rotatably attached, and the rotary shaft 35 is rotated by electric power or the rotation of the rotary shaft 35 is restricted. Then, the rotary motor 34 adjusts the rotation speed of the rotary shaft 35 so that the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes the set rotation speed. More specifically, the rotary motor 34 controls the rotation speed of the rotary shaft 35 based on the information regarding the air volume (air flow rate) of the air conditioner 13 included in the control signal from the system controller 14. For example, the rotary motor 34 operates so as to increase the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 by the wind turbine 36 is insufficient.
  • the rotary motor 34 operates so as to reduce the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes excessive. That is, the rotary motor 34 has a role of assisting the rotation of the wind turbine 36 to become an appropriate rotation speed by controlling the rotation speed of the rotation shaft 35.
  • the pumping pipe 37 is fixed to the rotating shaft 35 inside the liquid miniaturization chamber 33.
  • the pumping pipe 37 rotates in accordance with the rotation of the wind turbine 36 (rotating shaft 35) to pump water from a circular pumping port provided below the pumping pipe 37 in the vertical direction.
  • the pumping pipe 37 has an inverted conical hollow structure, and a circular pumping port is provided below the pumping pipe 37 in the vertical direction.
  • a rotating shaft 35 extending in the vertical direction is fixed to the center of the inverted conical top surface of the pumping pipe 37 above the vertical direction of the pumping pipe 37.
  • the rotating shaft 35 is connected to a wind turbine 36 provided above the liquid miniaturization chamber 33 in the vertical direction. Therefore, since the rotational movement of the wind turbine 36 is conducted to the pumping pipe 37 through the rotating shaft 35, the pumping pipe 37 rotates.
  • a plurality of rotating plates 38 formed so as to project outward from the outer surface of the pumping pipe 37 are provided.
  • a predetermined interval is provided in the axial direction of the rotating shaft 35 between the rotating plates 38 that are vertically adjacent to each other among the plurality of rotating plates 38.
  • Each of the plurality of rotating plates 38 is formed so as to project outward from the outer peripheral surface of the pumping pipe 37.
  • the rotating plate 38 rotates together with the pumping pipe 37, a horizontal disk shape coaxial with the rotating shaft 35 is preferable.
  • the number of rotating plates 38 may be appropriately set according to the target performance or the dimensions of the pumping pipe 37.
  • the wall surface of the pumping pipe 37 is provided with a plurality of openings 39 for opening the wall surface of the pumping pipe 37.
  • Each of the plurality of openings 39 is provided at a position communicating the inside of the pumping pipe 37 and the upper surface of the rotating plate 38 formed so as to project outward from the outer surface of the pumping pipe 37.
  • the water storage unit 40 stores the water pumped by the pumping pipe 37 from the pumping port below the vertical direction of the pumping pipe 37.
  • the depth of the water storage portion 40 is designed so that a part of the lower part of the pumping pipe 37, for example, about one-third to one-hundredth of the height of the cone of the pumping pipe 37 is immersed. ..
  • the depth of the water storage unit 40 may be designed according to the required pumping amount.
  • the bottom surface of the water storage unit 40 is formed in a mortar shape toward the pumping port.
  • the water supply to the water storage unit 40 is performed by the water supply unit (not shown).
  • the first eliminator 41 is a porous body through which air can flow.
  • the first eliminator 41 is provided on the side of the liquid miniaturization chamber 33 (outer peripheral portion in the centrifugal direction), and is arranged so that air can flow in the centrifugal direction.
  • the water droplets discharged from the opening 39 of the pumping pipe 37 collide with the first eliminator 41, so that the water droplets are made finer.
  • the first eliminator 41 collects finely divided water droplets among the water contained in the air passing through the liquid finening chamber 33.
  • the air flowing in the humidifying device 16 contains only vaporized water.
  • the second eliminator 42 is provided on the downstream side of the first eliminator 41.
  • the second eliminator 42 is arranged so that air can flow upward in the vertical direction.
  • the second eliminator 42 is also a porous body through which air can flow.
  • FIG. 3 is a cross-sectional view of the wind turbine 36 and the pumping pipe 37 constituting the humidifying device 16.
  • FIG. 4A is a top view of the wind turbine 36 constituting the humidifying device 16.
  • FIG. 4B is a cross-sectional view of the fixed blade 36a of the wind turbine 36. Note that FIG. 4B shows a state in which the rotation shaft 35 side is viewed from the outer peripheral side of the wind turbine 36 in the cross section along the line AA of FIG. 4A.
  • the air (air flow) from the air conditioner 13 flows into the liquid miniaturization chamber 33 from the suction port 31a communicating with the suction port 31 (see FIG. 2).
  • the air flowing into the liquid miniaturization chamber 33 collides with the fixed blades 36a of the wind turbine 36 and flows toward the outer peripheral side of the wind turbine 36 along the rotary plate 36b.
  • a propulsive force rotational force
  • the wind turbine 36 includes a plurality of fixed blades 36a and a rotary plate 36b to which the plurality of fixed blades 36a are attached.
  • the rotary plate 36b has a substantially disk-like shape, and is located on the outer peripheral side relative to the first rotary plate portion 36b1 provided at a position relatively close to the rotary shaft 35 and the first rotary plate portion 36b1. It has a second rotating plate portion 36b2 provided in.
  • the first rotating plate portion 36b1 is formed to have a horizontal disk shape.
  • the second rotating plate portion 36b2 is formed to have a gently inclined surface from the horizontal position of the first rotating plate portion 36b1 toward the outer peripheral side.
  • a plurality of fixed blades 36a are installed on the upper surface side of the first rotary plate portion 36b1.
  • the plurality of fixed blades 36a are members with which the air (air flow) from the air conditioner 13 collides. As shown in FIG. 4A, the plurality of fixed blades 36a are provided radially at equal intervals along the direction from the rotating shaft 35 toward the outer periphery of the wind turbine 36 on the upper surface side of the rotating plate 36b. In this embodiment, 10 fixed blades 36a are formed.
  • each of the plurality of fixed blades 36a in each of the plurality of fixed blades 36a, the upstream end P1 is located on the upstream side in the direction of rotation (rotational direction) with respect to the rotation axis 35. Further, in each of the plurality of fixed blades 36a, the downstream end P2 is located on the downstream side opposite to the rotation direction of the rotation shaft 35. Therefore, each of the plurality of fixed blades 36a is provided so as to be inclined with respect to the rotation direction of the rotation shaft 35.
  • the fixed blades 36a are provided so as to be inclined. Therefore, when the air from the air conditioner 13 flows toward the wind turbine 36 from above (upstream side) in the vertical direction and collides with the fixed blades 36a, the air from the air conditioner 13 generates a force in the rotational direction. As a result, the rotary plate 36b to which the fixing blades 36a are attached rotates. In this way, the wind turbine 36 is rotated in the rotation direction (counterclockwise direction) by the air from the air conditioner 13 flowing in from the upstream.
  • the wind turbine 36 is fixed to the rotating shaft 35 via a housing pipe 35a located on the outer periphery of the rotating shaft 35.
  • a pumping pipe 37 is connected below the wind turbine 36 in the vertical direction.
  • a rotary motor 34 is connected above the wind turbine 36 in the vertical direction.
  • a plurality of rotating plates 38 are connected to the pumping pipe 37 at predetermined intervals so as to project outward from the outer surface of the pumping pipe 37.
  • the wind turbine 36 is configured to have a fixed blade 36a on the upper surface of the rotary plate 36b to generate a swirling flow when the wind turbine 36 rotates. That is, the wind turbine 36 (rotating plate 36b) is arranged so as to be superimposed on the vertical direction of the rotating plate 38 connected to the pumping pipe 37.
  • the rotary plate 36b of the wind turbine 36 and the rotary plate 38 constituting the pumping pipe 37 are configured to rotate integrally in accordance with the rotation of the rotary shaft 35.
  • FIG. 2 the operating principle of humidification (miniaturization of water) in the humidifying device 16 will be described.
  • the flow of air and the flow of water in the apparatus are indicated by arrows.
  • the air of the air conditioner 13 flows into the humidifying device 16 through the suction port 31.
  • the air flowing in through the suction port 31 collides with the fixed blades 36a of the wind turbine 36, and the wind turbine 36 rotates. At this time, the rotation restriction of the rotating shaft 35 by the rotating motor 34 is released.
  • the rotary motor 34 assists the rotation of the rotary shaft 35 by the wind turbine 36 as necessary so that the rotation of the rotary shaft 35 becomes the set rotation speed by the control signal from the system controller 14. That is, as described above, the rotary motor 34 increases the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 by the wind turbine 36 is insufficient based on the information regarding the air volume (blower volume) of the air conditioner 13. When the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes excessive, the rotation speed of the rotating shaft 35 is reduced.
  • the water stored in the water storage unit 40 is pumped up by the pumping pipe 37 due to the centrifugal force generated by the rotation of the wind turbine 36 (rotating shaft 35).
  • the first rotation speed R1 which is the set rotation speed, is set between 2000 rpm and 5000 rpm, for example, depending on the amount of air blown from the humidifying device 16 and the amount of humidification to the air.
  • the pumping pipe 37 has an inverted conical hollow structure. Therefore, the water pumped up by the rotation of the wind turbine 36 is pumped to the upper part of the pumping pipe 37 along the inner wall of the pumping pipe 37.
  • the water pumped to the upper part of the pumping pipe 37 is discharged from the opening 39 of the pumping pipe 37 through the rotary plate 38 in the outer peripheral direction (centrifugal direction) of the wind turbine 36, and is scattered as water droplets.
  • the water droplets scattered from the rotating plate 38 fly in the space (liquid miniaturization chamber 33) surrounded by the first eliminator 41, collide with the first eliminator 41, and are miniaturized.
  • the air passing through the liquid miniaturization chamber 33 via the wind turbine 36 contains the water crushed (miniaturized) by the first eliminator 41 as shown by the solid arrow, and the first eliminator. Move to the outer peripheral portion of 41.
  • the process of air flowing in the air passage from the first eliminator 41 to the second eliminator 42 creates an airflow vortex, and water and air are mixed in the apparatus.
  • the water-containing air passes through the second eliminator 42.
  • the humidifying device 16 can humidify the air sucked from the suction port 31 and blow out the humidified air from the air outlet 32.
  • the liquid to be refined may be other than water, and may be, for example, a liquid such as hypochlorite water having bactericidal or deodorant properties.
  • the air conditioner system 20 is installed in an air conditioner room 18 configured to allow air to be introduced from indoors and outdoors, an air conditioner 13 installed in the air conditioner room 18 to control the temperature of the air in the air conditioner room 18, and an air conditioner room 18.
  • a humidifying device 16 for humidifying the air temperature controlled by the air conditioner 13 and a transport fan 3 for transporting the air in the air conditioner room 18 to an indoor space different from the air conditioner room 18 are provided.
  • the humidifying device 16 is arranged in a flow path through which the air temperature controlled by the air conditioner 13 flows into the device, and is fixed to the windmill 36 that is rotated by the air flowing into the device and the windmill 36, and is fixed to the windmill 36 with the rotation of the windmill 36.
  • It is configured to have a water storage unit 40 for storing water pumped from a pumping port.
  • the wind turbine 36 receives the wind pressure corresponding to the amount of air blown from the air conditioner 13 to rotate the rotating shaft 35, and the rotation of the rotating shaft 35 causes the pumping pipe 37 to rotate. Therefore, the energy consumption by the humidifying device 16 can be suppressed as compared with the case where the rotating shaft is rotated by the power of the rotating motor as in the conventional humidifying device. Therefore, the energy efficiency of the humidifying device 16 can be improved. That is, the air conditioning system 20 using the humidifying device 16 that can contribute to energy saving can be obtained.
  • the air conditioning system 20 further includes a rotary motor 34 to which a rotary shaft 35 is rotatably attached.
  • the rotary motor 34 adjusts the rotation speed of the rotary shaft 35 so that the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes the set rotation speed.
  • the rotation speed of the rotating shaft 35 is maintained at the set rotation speed. Therefore, the pumping pipe 37 can be rotated at a set rotation speed. Therefore, the humidifying capacity of the humidifying device 16 can be stabilized.
  • the rotary motor 34 operates so as to increase the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 is insufficient, based on the information regarding the air flow amount of the air conditioner 13. However, when the rotation speed of the pumping pipe 37 becomes excessive, it operates so as to reduce the rotation speed of the rotation shaft 35.
  • the wind turbine 36 has a fixed blade 36a provided along the direction toward the centrifugal direction from the rotating shaft 35.
  • the fixed blade 36a is configured so that air introduced into the apparatus from above in the vertical direction hits the fixed blade 36a and blows out toward the first eliminator 41 in the centrifugal direction.
  • the air blown out in the centrifugal direction and the water droplets discharged in the centrifugal direction are mixed in the first eliminator 41, and the air flowing through the first eliminator 41 can be contained with finely divided water. can. Therefore, the humidifying performance of the humidifying device 16 can be improved, and the amount of humidifying the air in the air conditioning chamber 18 can be increased.
  • a plurality of rotary plates are arranged on the pumping pipe 37 at predetermined intervals in the axial direction of the rotary shaft 35, and are formed so as to project in the centrifugal direction from the outer peripheral surface of the pumping pipe 37. 38 was formed.
  • the pumped water can be discharged from the pumping pipe 37 in the centrifugal direction through the rotating plate 38 and scattered toward the first eliminator 41 as water droplets.
  • the wind turbine 36 is arranged so as to be superimposed on the pumping pipe 37 above the rotating plate 38 in the vertical direction.
  • the wind turbine 36 and the rotating plate 38 can be substantially integrated, so that the humidifying device 16 can be miniaturized. Therefore, in the air conditioning system 20 using such a humidifying device 16, the air conditioning chamber 18 can be miniaturized.
  • the rotating shaft 35 of the windmill 36 driven by the air (air flow) of the air conditioner 13 is shared with the pumping pipe 37, so that the air from the air conditioner 13 flows in and the fixed blades of the windmill 36 are fixed.
  • the 36a was pushed by the inflowing air to generate a force in the rotation direction to rotate.
  • the power consumption used as the humidifying device 16 only uses the power consumption of the rotating motor 34 for stabilizing the rotation, so that the energy saving of the humidifying device 16 can be realized.
  • a wind turbine 36 is provided in the air passage for introducing the air temperature-controlled by the air conditioner 13 into the humidifying device 16, and the air passing through the wind turbine 36 is finely divided by centrifugal crushing. It was configured to contain the conditioned water and release it.
  • the humidifying amount for the air in the air conditioning chamber 18 can be adjusted independently of the amount of air conveyed from the air conditioning chamber 18 by the transport fan 3. ..
  • the rotary motor 34 is controlled so that the rotation of the wind turbine 36 becomes the target rotation speed based on the information regarding the air volume (blower volume) of the air conditioner 13. I can't.
  • the rotary motor 34 may detect the rotation speed of the wind turbine 36 and control the rotation of the wind turbine 36 to be the target rotation speed based on the information regarding the detected rotation speed. Even in this way, the same effect can be enjoyed.
  • an air conditioning room temperature sensor for detecting the temperature of the air in the air conditioning room 18 may be provided in the air conditioning room 18.
  • the humidity control in the air conditioning chamber 18 can be controlled with higher accuracy.
  • the living room in this embodiment does not necessarily have to have people, and can be regarded as one space.
  • the corridor or kitchen is also divided to some extent, it can be regarded as one space, and corresponds to one living room.
  • the air conditioning system 20 can be applied to a detached house or a complex house such as a condominium.
  • a detached house or a complex house such as a condominium.
  • the air conditioning system 20 is applied to an apartment house, one system corresponds to each household, not each household as one living room.
  • the air conditioning system according to the present disclosure is useful as a whole building air conditioning system using a humidifying device that can contribute to energy saving.

Abstract

This air conditioning system is equipped with an air conditioning chamber, an air conditioner for adjusting the temperature of the air in the air conditioning chamber, a humidifier (16) for humidifying the air which has been temperature-adjusted by the air conditioner, and a conveyance fan for conveying the air in the air conditioning chamber to a space inside a room. The humidifier (16) is configured so as to have: a turbine (36) which rotates as a result of the inflow of air into the humidifier (16), and is positioned in a channel through which air which is temperature-adjusted by the air conditioner flows into the humidifier (16); a rotating shaft (35) for rotating along with the rotations of the turbine (36); a cylindrical pumping pipe (37) which, by rotating along with the rotating shaft (35), pumps water through a water-pumping port provided therebelow in the vertical direction, and discharges the pumped water in the centrifugal direction; an eliminator (41) which collects some of the finely dispersed water which is finely dispersed as a result of colliding after being discharged by the pumping pipe (37); and a water storage section (40) which stores the water to be pumped through the water-pumping port and is provided below the pumping pipe (37) in the vertical direction.

Description

空調システムAir conditioning system
 本開示は、複数の空間を空調する空調システムに関する。 This disclosure relates to an air conditioning system that air-conditions multiple spaces.
 従来、住居に対して全館空調機での空調を行う空調システムが知られている。また、省エネルギー住宅需要の高まりと規制強化とに伴い、高断熱及び高気密の住宅が増加していくことが予想されており、その特徴に適した空調システムが要望されている。 Conventionally, an air conditioning system that air-conditions a house with an air conditioner in the entire building is known. In addition, it is expected that the number of highly insulated and airtight houses will increase with the increase in demand for energy-saving houses and the tightening of regulations, and there is a demand for air conditioning systems suitable for these characteristics.
 こうした空調システムとして、複数の空間(居室)等における空気の温湿度が目標温湿度となるように、複数の空間等から空調室に搬送されてくる空気を、空調室内において所定の温湿度に空調した上で、複数の空間等のそれぞれに搬送する全館空調システムが知られている(例えば、特許文献1)。 As such an air-conditioning system, the air transported from a plurality of spaces or the like to the air-conditioning room is air-conditioned to a predetermined temperature and humidity in the air-conditioning room so that the temperature and humidity of the air in the plurality of spaces (living rooms) become the target temperature and humidity. Then, there is known a whole-building air-conditioning system that transports air to each of a plurality of spaces (for example, Patent Document 1).
特開2020-63899号公報Japanese Unexamined Patent Publication No. 2020-6389
 従来の全館空調システムでは、空調室内に設置された空調機(エアコンディショナー)によって空調室内の空気の温度を温調制御し、空調室内に設置された加湿装置によって空調室内の空気の湿度を加湿制御している。そして、空調室内の空間を分割して、それぞれの空間で温調制御と加湿制御とを効率的に行っている。 In the conventional whole building air conditioning system, the temperature of the air in the air conditioning room is controlled by the air conditioner (air conditioning conditioner) installed in the air conditioning room, and the humidity of the air in the air conditioning room is controlled by the humidifying device installed in the air conditioning room. is doing. Then, the space in the air-conditioning room is divided, and temperature control and humidification control are efficiently performed in each space.
 しかしながら、従来の全館空調システムでは、空調機で温調するための風量とは別に、加湿装置で風量を発生させて加湿していた。一般的に空調機の風量は大きく、居室を空調するための風量以上に余力をもっている。しかし、加湿装置は、小型のファンを搭載しているだけのものが一般的である。このため、従来の全館空調システムにおける加湿装置は、風量に余裕がなく、エネルギー効率も悪いという課題があった。 However, in the conventional whole building air conditioning system, the air volume is generated by the humidifying device separately from the air volume for controlling the temperature with the air conditioner to humidify. Generally, the air volume of an air conditioner is large, and it has more power than the air volume for air conditioning a living room. However, the humidifier is generally equipped with a small fan. For this reason, the humidifying device in the conventional air-conditioning system in the entire building has a problem that the air volume is not sufficient and the energy efficiency is poor.
 本開示は、省エネルギー化に寄与することが可能な加湿装置を用いた空調システムを提供するものである。 The present disclosure provides an air conditioning system using a humidifying device that can contribute to energy saving.
 本開示に係る空調システムは、屋内外から空気を導入可能に構成された空調室と、空調室に設置され、空調室の空気を温調する空調機と、空調室に設置され、空調機によって温調された空気を加湿する加湿装置と、空調室の空気を空調室とは異なる屋内空間に搬送する搬送ファンと、を備える。加湿装置は、空調機によって温調された空気が加湿装置内に流入する流路に配置され、加湿装置内に流入する空気によって回転する風車と、風車に固定され、風車の回転とともに回転する回転軸と、回転軸に固定され、回転軸とともに回転することにより、鉛直方向の下方に設けられた揚水口から揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、揚水管より放出された水が衝突することにより、衝突した水を微細化し、微細化した水の一部を捕集するエリミネータと、揚水管の鉛直方向の下方に設けられ、揚水口より揚水される水を貯水する貯水部と、を有して構成される。 The air-conditioning system according to the present disclosure is installed in an air-conditioning room configured to allow air to be introduced from indoors and outdoors, an air-conditioner installed in the air-conditioning room to control the temperature of the air in the air-conditioning room, and an air-conditioning room installed in the air-conditioning room. It is equipped with a humidifying device that humidifies the temperature-controlled air and a transport fan that transports the air in the air-conditioned room to an indoor space different from the air-conditioned room. The humidifier is arranged in a flow path where the air temperature controlled by the air conditioner flows into the humidifier, and is fixed to the windmill and the windmill that rotates with the rotation of the windmill. From the tubular pumping pipe and the pumping pipe, which are fixed to the shaft and the rotating shaft and rotate with the rotating shaft to pump water from the pumping port provided below in the vertical direction and discharge the pumped water in the centrifugal direction. When the discharged water collides, the collided water is refined and a part of the atomized water is collected. It is configured to have a water storage unit that stores water.
 本開示によれば、省エネルギー化に寄与することが可能な加湿装置を用いた空調システムを提供することができる。 According to the present disclosure, it is possible to provide an air conditioning system using a humidifying device that can contribute to energy saving.
図1は、本開示の実施の形態1に係る空調システムの接続概略図である。FIG. 1 is a schematic connection diagram of an air conditioning system according to the first embodiment of the present disclosure. 図2は、空調システムを構成する加湿装置の概略断面図である。FIG. 2 is a schematic cross-sectional view of a humidifying device constituting the air conditioning system. 図3は、加湿装置を構成する風車及び揚水管の断面図である。FIG. 3 is a cross-sectional view of a wind turbine and a pumping pipe constituting the humidifying device. 図4Aは、加湿装置を構成する風車の上面図である。FIG. 4A is a top view of the wind turbine constituting the humidifying device. 図4Bは、風車の固定羽根の断面図である。FIG. 4B is a cross-sectional view of the fixed blade of the wind turbine.
 本開示に係る空調システムは、屋内外から空気を導入可能に構成された空調室と、空調室に設置され、空調室の空気を温調する空調機と、空調室に設置され、空調機によって温調された空気を加湿する加湿装置と、空調室の空気を空調室とは異なる屋内空間に搬送する搬送ファンと、を備える。加湿装置は、空調機によって温調された空気が加湿装置内に流入する流路に配置され、加湿装置内に流入する空気によって回転する風車と、風車に固定され、風車の回転とともに回転する回転軸と、回転軸に固定され、回転軸とともに回転することにより、鉛直方向の下方に設けられた揚水口から揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、揚水管より放出された水が衝突することにより、衝突した水を微細化し、微細化した水の一部を捕集するエリミネータと、揚水管の鉛直方向の下方に設けられ、揚水口より揚水される水を貯水する貯水部と、を有して構成される。 The air-conditioning system according to the present disclosure is installed in an air-conditioning room configured to allow air to be introduced from indoors and outdoors, an air-conditioner installed in the air-conditioning room to control the temperature of the air in the air-conditioning room, and an air-conditioning room installed in the air-conditioning room. It is equipped with a humidifying device that humidifies the temperature-controlled air and a transport fan that transports the air in the air-conditioned room to an indoor space different from the air-conditioned room. The humidifier is arranged in a flow path where the air temperature controlled by the air conditioner flows into the humidifier, and is fixed to the windmill and the windmill that rotates with the rotation of the windmill. From the tubular pumping pipe and the pumping pipe, which are fixed to the shaft and the rotating shaft and rotate with the rotating shaft to pump water from the pumping port provided below in the vertical direction and discharge the pumped water in the centrifugal direction. When the discharged water collides, the collided water is refined and a part of the atomized water is collected. It is configured to have a water storage unit that stores water.
 こうした構成によれば、風車が空調機からの空気の送風量に応じた風圧を受けて回転軸を回転させ、この回転軸の回転によって揚水管が回転する。したがって、従来の加湿装置のように回転モータの動力によって回転軸を回転させる場合と比較して、加湿装置によるエネルギー消費を抑制することができる。このため、加湿装置のエネルギー効率を向上させることができる。つまり、省エネルギー化に寄与することが可能な加湿装置を用いた空調システムとすることができる。 According to such a configuration, the wind turbine receives the wind pressure according to the amount of air blown from the air conditioner to rotate the rotating shaft, and the rotation of the rotating shaft causes the pumping pipe to rotate. Therefore, energy consumption by the humidifying device can be suppressed as compared with the case where the rotating shaft is rotated by the power of the rotating motor as in the conventional humidifying device. Therefore, the energy efficiency of the humidifier can be improved. That is, it is possible to make an air conditioning system using a humidifying device that can contribute to energy saving.
 また、本開示に係る空調システムは、回転軸を回転可能に取り付けられた回転モータをさらに備えてもよい。回転モータは、風車による揚水管の回転数が設定回転数となるように回転軸の回転数を調整してもよい。 Further, the air conditioning system according to the present disclosure may further include a rotary motor rotatably attached to the rotary shaft. The rotary motor may adjust the rotation speed of the rotating shaft so that the rotation speed of the pumping pipe by the wind turbine becomes the set rotation speed.
 これにより、空調機からの空気の送風量(風圧)にバラツキが生じたとしても、回転軸の回転数が設定回転数に維持される。したがって、揚水管を設定回転数で回転させることができる。このため、加湿装置による加湿能力を安定化させることができる。 As a result, even if the amount of air blown from the air conditioner (wind pressure) varies, the rotation speed of the rotating shaft is maintained at the set rotation speed. Therefore, the pumping pipe can be rotated at a set rotation speed. Therefore, the humidifying capacity of the humidifying device can be stabilized.
 また、本開示に係る空調システムでは、回転モータは、空調機の送風量に関する情報に基づいて、揚水管の回転数が不足する場合には、回転軸の回転数を増加させるように動作し、揚水管の回転数が過剰となる場合には、回転軸の回転数を減少させるように動作してもよい。 Further, in the air conditioning system according to the present disclosure, the rotary motor operates so as to increase the rotation speed of the rotating shaft when the rotation speed of the pumping pipe is insufficient, based on the information regarding the air volume of the air conditioner. When the rotation speed of the pumping pipe becomes excessive, the operation may be performed so as to reduce the rotation speed of the rotation shaft.
 このようにすることで、空調機からの空気の送風量(風圧)にバラツキが生じたとしても、回転モータの最小限の動力によって、回転軸の回転数をより高精度に設定回転数に維持することができる。 By doing so, even if the amount of air blown from the air conditioner (wind pressure) varies, the rotation speed of the rotating shaft can be maintained at the set rotation speed with higher accuracy by the minimum power of the rotating motor. can do.
 また、本開示に係る空調システムでは、風車は、回転軸から遠心方向に向かう方向に沿って設けられた固定羽根を有してもよい。鉛直方向の上方から加湿装置内に導入された空気は、固定羽根に当たることによってエリミネータに向かって遠心方向に吹き出すように構成されていてもよい。 Further, in the air conditioning system according to the present disclosure, the wind turbine may have fixed blades provided along the direction from the rotation axis toward the centrifugal direction. The air introduced into the humidifier from above in the vertical direction may be configured to blow out in the centrifugal direction toward the eliminator by hitting the fixing blades.
 これにより、遠心方向に吹き出された空気と、遠心方向に放出された水滴とをエリミネータにおいて混合し、エリミネータを流通する空気に対して微細化された水を含ませることができる。このため、加湿装置の加湿性能を向上させることができ、空調室の空気に対する加湿量を増加させることができる。 As a result, the air blown out in the centrifugal direction and the water droplets discharged in the centrifugal direction can be mixed in the eliminator, and the air flowing through the eliminator can be contained with finely divided water. Therefore, the humidifying performance of the humidifying device can be improved, and the amount of humidification for the air in the air conditioning chamber can be increased.
 また、本開示の空調システムでは、揚水管には、回転軸の軸方向に互いに所定間隔を有して配置され、揚水管の外周面から遠心方向に突出して形成された複数の回転板が形成されていてもよい。 Further, in the air conditioning system of the present disclosure, the pumping pipes are arranged at predetermined intervals in the axial direction of the rotating shaft, and a plurality of rotating plates formed so as to project in the centrifugal direction from the outer peripheral surface of the pumping pipe are formed. It may have been done.
 これにより、揚水管では、揚水された水を、揚水管から回転板を伝って遠心方向に放出し、水滴としてエリミネータに向かって飛散させることができる。 As a result, in the pumping pipe, the pumped water can be discharged from the pumping pipe in the centrifugal direction through the rotating plate and scattered toward the eliminator as water droplets.
 また、本開示に係る空調システムでは、風車は、回転板の鉛直方向の上方において揚水管と重畳して配置されていてもよい。 Further, in the air conditioning system according to the present disclosure, the wind turbine may be arranged so as to be superimposed on the pumping pipe above the rotating plate in the vertical direction.
 これにより、風車と回転板とが実質的に一体化して構成できるので、加湿装置を小型化することができる。このため、こうした加湿装置を用いた空調システムでは、空調室を小型化することができる。 As a result, the wind turbine and the rotating plate can be substantially integrated, so that the humidifying device can be miniaturized. Therefore, in an air conditioning system using such a humidifying device, the air conditioning chamber can be miniaturized.
 以下、本開示の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The following embodiments are examples that embody the present disclosure, and do not limit the technical scope of the present disclosure. Further, each figure described in the embodiment is a schematic view, and the ratio of the size and the thickness of each component in each figure does not necessarily reflect the actual dimensional ratio. ..
 (実施の形態1)
 まず、図1を参照して、本実施の形態1に係る空調システム20について説明する。図1は、本開示の実施の形態1に係る空調システム20の接続概略図である。
(Embodiment 1)
First, the air conditioning system 20 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic connection diagram of the air conditioning system 20 according to the first embodiment of the present disclosure.
 空調システム20は、複数の搬送ファン3(搬送ファン3a,3b)と、熱交換気扇4と、複数のダンパー5(ダンパー5a,5b)と、複数の循環口6(循環口6a,6b,6c,6d)と、複数の居室排気口7(居室排気口7a,7b,7c,7d)と、複数の居室給気口8(居室給気口8a,8b,8c,8d)と、居室温度センサ11(居室温度センサ11a,11b,11c,11d)と、居室湿度センサ12(居室湿度センサ12a,12b,12c,12d)と、エアコンディショナー(空調機)13と、加湿装置16と、集塵フィルタ17と、入出力端末19と、システムコントローラ14(空調システムコントローラに該当)と、を備えて構成される。 The air conditioning system 20 includes a plurality of transfer fans 3 ( conveyor fans 3a, 3b), a heat exchange air fan 4, a plurality of dampers 5 ( dampers 5a, 5b), and a plurality of circulation ports 6 ( circulation ports 6a, 6b, 6c). , 6d), a plurality of living room exhaust ports 7 (living room exhaust ports 7a, 7b, 7c, 7d), a plurality of living room air supply ports 8 (living room air supply ports 8a, 8b, 8c, 8d), and a living room temperature sensor. 11 (living room temperature sensors 11a, 11b, 11c, 11d), living room humidity sensor 12 (living room humidity sensors 12a, 12b, 12c, 12d), air conditioner (air conditioner) 13, humidifier 16, dust collecting filter 17, an input / output terminal 19, and a system controller 14 (corresponding to an air conditioning system controller) are provided.
 空調システム20は、建物の一例である一般住宅1内に設置される。 The air conditioning system 20 is installed in a general house 1 which is an example of a building.
 一般住宅1は、複数(本実施の形態では4つ)の居室2(居室2a,2b,2c,2d)に加え、居室2と異なる(独立した)少なくとも1つの空調室18を有している。ここで、一般住宅1(住宅)とは、居住者がプライベートな生活を営む場として提供された住居であり、一般的な構成として、居室2にはリビング、ダイニング、寝室、個室及び子供部屋等が含まれる。また、空調システム20が提供する居室には、トイレ、浴室、洗面所及び脱衣所等が含まれてもよい。 The general house 1 has at least one air-conditioning room 18 different from the living room 2 (independent) in addition to a plurality of (four in the present embodiment) living rooms 2 ( living rooms 2a, 2b, 2c, 2d). .. Here, the general house 1 (house) is a house provided as a place where the resident lives a private life, and as a general structure, the living room 2 includes a living room, a dining room, a bedroom, a private room, a children's room, and the like. Is included. Further, the living room provided by the air conditioning system 20 may include a toilet, a bathroom, a washroom, a dressing room, and the like.
 ここで、居室2aには、循環口6a、居室排気口7a、居室給気口8a、居室温度センサ11a、居室湿度センサ12a、システムコントローラ14、及び入出力端末19が設置されている。また、居室2bには、循環口6b、居室排気口7b、居室給気口8b、居室温度センサ11b、及び居室湿度センサ12bが設置されている。また、居室2cには、循環口6c、居室排気口7c、居室給気口8c、居室温度センサ11c、及び居室湿度センサ12cが設置されている。また、居室2dには、循環口6d、居室排気口7d、居室給気口8d、居室温度センサ11d、及び居室湿度センサ12dが設置されている。 Here, in the living room 2a, a circulation port 6a, a living room exhaust port 7a, a living room air supply port 8a, a living room temperature sensor 11a, a living room humidity sensor 12a, a system controller 14, and an input / output terminal 19 are installed. Further, in the living room 2b, a circulation port 6b, a living room exhaust port 7b, a living room air supply port 8b, a living room temperature sensor 11b, and a living room humidity sensor 12b are installed. Further, in the living room 2c, a circulation port 6c, a living room exhaust port 7c, a living room air supply port 8c, a living room temperature sensor 11c, and a living room humidity sensor 12c are installed. Further, in the living room 2d, a circulation port 6d, a living room exhaust port 7d, a living room air supply port 8d, a living room temperature sensor 11d, and a living room humidity sensor 12d are installed.
 一方、空調室18には、搬送ファン3a、搬送ファン3b、ダンパー5a、ダンパー5b、エアコンディショナー13、集塵フィルタ17、及び加湿装置16が設置されている。より詳細には、空調室18内を流れる空気の流通経路の上流側から、エアコンディショナー13、集塵フィルタ17、加湿装置16、搬送ファン3(搬送ファン3a、3b)、及びダンパー5(ダンパー5a、5b)の順に、それぞれ配置されている。 On the other hand, the air-conditioning chamber 18 is provided with a transfer fan 3a, a transfer fan 3b, a damper 5a, a damper 5b, an air conditioner 13, a dust collection filter 17, and a humidifying device 16. More specifically, from the upstream side of the air flow path flowing through the air conditioning chamber 18, the air conditioner 13, the dust collecting filter 17, the humidifying device 16, the transport fan 3 (convey fan 3a, 3b), and the damper 5 (damper 5a). They are arranged in the order of 5b).
 空調室18では、各居室2から循環口6を通って搬送された空気(屋内の空気)と、熱交換気扇4により屋外から取り込まれて熱交換された外気(屋外の空気)とが混合される。空調室18の空気は、空調室18内に設けられたエアコンディショナー13及び加湿装置16によって、温度及び湿度がそれぞれ制御される。すなわち、空調室18の空気は、エアコンディショナー13及び加湿装置16によって空調される。これにより、居室2に搬送すべき空気が生成される。 In the air-conditioning chamber 18, the air (indoor air) conveyed from each living room 2 through the circulation port 6 and the outside air (outdoor air) taken in from the outside by the heat exchange air fan 4 and heat-exchanged are mixed. To. The temperature and humidity of the air in the air-conditioning chamber 18 are controlled by the air-conditioning conditioner 13 and the humidifying device 16 provided in the air-conditioning chamber 18, respectively. That is, the air in the air conditioning chamber 18 is air-conditioned by the air conditioner 13 and the humidifying device 16. As a result, air to be conveyed to the living room 2 is generated.
 空調室18にて空調された空気は、搬送ファン3により、各居室2に搬送される。ここで、空調室18は、エアコンディショナー13、加湿装置16、及び集塵フィルタ17などが配置でき、各居室2の空調をコントロールできる一定の広さを備えた空間を意味する。しかし、空調室18は、居住空間、すなわち基本的に居住者が滞在する部屋には限定されない。 The air conditioned in the air-conditioned room 18 is transported to each living room 2 by the transport fan 3. Here, the air-conditioning chamber 18 means a space having a certain size in which an air-conditioning conditioner 13, a humidifying device 16, a dust collecting filter 17, and the like can be arranged, and the air-conditioning of each living room 2 can be controlled. However, the air-conditioned room 18 is not limited to a living space, that is, a room in which a resident basically stays.
 各居室2の空気は、循環口6を介して空調室18へ搬送される。また、各居室2の空気は、居室排気口7を介して熱交換気扇4において熱交換された後、屋外へ排出される。空調システム20では、熱交換気扇4によって各居室2から内気(屋内の空気)が排出され、屋内に外気(屋外の空気)が取り込まれる。これにより、第1種換気方式の換気が行われる。なお、熱交換気扇4の換気風量は、複数段階で設定可能に構成されており、法令で定められた必要換気量を満たすように設定されてもよい。 The air in each living room 2 is conveyed to the air conditioning room 18 via the circulation port 6. Further, the air in each living room 2 is heat-exchanged in the heat exchange air fan 4 through the living room exhaust port 7, and then discharged to the outside. In the air conditioning system 20, the inside air (indoor air) is discharged from each living room 2 by the heat exchange air fan 4, and the outside air (outdoor air) is taken into the room. As a result, the first-class ventilation system ventilation is performed. The ventilation air volume of the heat exchange air fan 4 can be set in a plurality of stages, and may be set so as to satisfy the required ventilation volume specified by law.
 熱交換気扇4は、内部に給気ファン及び排気ファン(図示せず)を有して構成される。熱交換気扇4において各ファンを動作させることによって、内気(屋内の空気)と外気(屋外の空気)との間で熱交換しながら各居室2を換気することができる。この際、熱交換気扇4は、熱交換した外気を空調室18に搬送する。 The heat exchange air fan 4 is configured to have an air supply fan and an exhaust fan (not shown) inside. By operating each fan in the heat exchange air fan 4, each living room 2 can be ventilated while exchanging heat between the inside air (indoor air) and the outside air (outdoor air). At this time, the heat exchange air fan 4 conveys the heat exchanged outside air to the air conditioning chamber 18.
 空調室18の壁面(底面側の壁面)には、搬送ファン3が設けられている。空調室18の空気は、搬送ファン3によって、搬送ダクトを介して居室給気口8から居室2に搬送される。より詳細には、空調室18の空気は、搬送ファン3aによって一般住宅1の一階に位置する居室2a及び居室2bにそれぞれ搬送され、搬送ファン3bによって一般住宅1の二階に位置する居室2c及び居室2dにそれぞれ搬送される。なお、各居室2の居室給気口8に接続される搬送ダクトは、それぞれ独立して設けられる。 A conveyor fan 3 is provided on the wall surface (wall surface on the bottom surface side) of the air conditioning chamber 18. The air in the air-conditioning chamber 18 is conveyed from the living room air supply port 8 to the living room 2 by the transport fan 3 via the transport duct. More specifically, the air in the air conditioning room 18 is conveyed to the living room 2a and the living room 2b located on the first floor of the general house 1 by the transport fan 3a, respectively, and the living room 2c and the living room 2c located on the second floor of the general house 1 are conveyed by the transport fan 3b. They are transported to the living room 2d respectively. The transport ducts connected to the living room air supply ports 8 of each living room 2 are independently provided.
 ダンパー5は、搬送ファン3から各居室2に空気を搬送する際、ダンパー5の開度を調整することによって、各居室2への送風量を調節する。より詳細には、ダンパー5aは、一階に位置する居室2a及び居室2bへの送風量を調整する。ダンパー5bは、二階に位置する居室2c及び居室2dへの送風量を調整する。 The damper 5 adjusts the amount of air blown to each living room 2 by adjusting the opening degree of the damper 5 when the air is conveyed from the transport fan 3 to each living room 2. More specifically, the damper 5a adjusts the amount of air blown to the living room 2a and the living room 2b located on the first floor. The damper 5b adjusts the amount of air blown to the living room 2c and the living room 2d located on the second floor.
 各居室2(居室2a~2d)の空気の一部は、それぞれ対応する循環口6(循環口6a~6d)によって、循環ダクトを介して空調室18に搬送される。ここで、搬送ファン3によって空調室18から各居室2に搬送される風量(給気風量)と、熱交換気扇4によって居室排気口7から屋外に排気される風量(排気風量)との差分の風量の空気が、循環空気として循環口6から空調室18に搬送される。なお、空調室18と各居室2とを接続する循環ダクトは、それぞれ独立して設けられてもよい。また、各居室2にそれぞれ接続された複数の支流ダクトを、空調室18に接続された1つの循環ダクトに統合するように構成してもよい。 A part of the air in each living room 2 (living rooms 2a to 2d) is conveyed to the air conditioning room 18 through the circulation duct by the corresponding circulation ports 6 (circulation ports 6a to 6d). Here, the difference between the air volume (supply air volume) conveyed from the air conditioning chamber 18 to each living room 2 by the transport fan 3 and the air volume (exhaust air volume) exhausted to the outside from the living room exhaust port 7 by the heat exchange air fan 4. The air volume is conveyed as circulating air from the circulation port 6 to the air conditioning chamber 18. The circulation ducts connecting the air conditioning chamber 18 and each living room 2 may be provided independently. Further, a plurality of tributary ducts connected to each living room 2 may be integrated into one circulation duct connected to the air conditioning room 18.
 各循環口6(循環口6a~6d)は、上述の通り、対応する居室2(居室2a~2d)から空調室18に屋内の空気を搬送するための開口である。 As described above, each circulation port 6 (circulation port 6a to 6d) is an opening for transporting indoor air from the corresponding living room 2 (living room 2a to 2d) to the air conditioning room 18.
 各居室排気口7(居室排気口7a~7d)は、上述の通り、対応する居室2(居室2a~2d)から熱交換気扇4に屋内の空気を搬送するための開口である。 As described above, each living room exhaust port 7 (living room exhaust port 7a to 7d) is an opening for transporting indoor air from the corresponding living room 2 (living room 2a to 2d) to the heat exchange air fan 4.
 各居室給気口8(居室給気口8a~8d)は、上述の通り、空調室18から対応する居室2(居室2a~2d)に空調室18内の空気を搬送するための開口である。 As described above, each living room air supply port 8 (living room air supply port 8a to 8d) is an opening for transporting the air in the air conditioning room 18 from the air conditioning room 18 to the corresponding living room 2 (living room 2a to 2d). ..
 居室温度センサ11(居室温度センサ11a~11d)は、対応する居室2(居室2a~2d)の居室温度(室内温度)を取得して、システムコントローラ14に送信するセンサである。 The living room temperature sensors 11 (living room temperature sensors 11a to 11d) are sensors that acquire the living room temperature (room temperature) of the corresponding living room 2 (living room 2a to 2d) and transmit it to the system controller 14.
 居室湿度センサ12(居室湿度センサ12a~12d)は、対応する居室2(居室2a~2d)の居室湿度(室内湿度)を取得して、システムコントローラ14に送信するセンサである。 The living room humidity sensor 12 (living room humidity sensor 12a to 12d) is a sensor that acquires the living room humidity (room humidity) of the corresponding living room 2 (living room 2a to 2d) and transmits it to the system controller 14.
 エアコンディショナー13は、空調機に該当する。エアコンディショナー13は、空調室18の空調を制御する。具体的には、エアコンディショナー13は、空調室18の空気の温度が設定温度(空調室目標温度)となるように、空調室18の空気を冷却又は加熱する。ここで、設定温度は、ユーザによって予め設定された目標温度(居室目標温度)と、居室温度センサ11により取得された居室温度との温度差に基づいて設定される。 The air conditioner 13 corresponds to an air conditioner. The air conditioner 13 controls the air conditioning of the air conditioning chamber 18. Specifically, the air conditioner 13 cools or heats the air in the air conditioning chamber 18 so that the temperature of the air in the air conditioning chamber 18 becomes the set temperature (target temperature in the air conditioning chamber). Here, the set temperature is set based on the temperature difference between the target temperature (living room target temperature) preset by the user and the living room temperature acquired by the living room temperature sensor 11.
 加湿装置16は、空調室18内のエアコンディショナー13の下流側に設けられている。加湿装置16は、各居室2の空気の湿度(居室湿度)がユーザによって設定された目標湿度(居室目標湿度)よりも低い場合に、各居室2の空気の湿度が目標湿度となるように、空調室18の空気を加湿する。なお、本実施の形態における湿度は、相対湿度で示されるが、所定の変換処理にて絶対湿度として扱ってもよい。この場合、居室2の湿度を含めて、空調システム20における湿度を絶対湿度として取り扱ってもよい。 The humidifying device 16 is provided on the downstream side of the air conditioner 13 in the air conditioning chamber 18. The humidifying device 16 sets the humidity of the air in each room 2 to be the target humidity when the humidity of the air in each room 2 (humidity in the room) is lower than the target humidity set by the user (target humidity in the room). The air in the air conditioning chamber 18 is humidified. Although the humidity in the present embodiment is shown as a relative humidity, it may be treated as an absolute humidity in a predetermined conversion process. In this case, the humidity in the air conditioning system 20 may be treated as the absolute humidity, including the humidity in the living room 2.
 集塵フィルタ17は、循環口6を通して空調室18内に導入される空気中に浮遊する粒子を捕集する集塵フィルタである。集塵フィルタ17により、搬送ファン3によって屋内に供給される空気は清浄な空気にされる。 The dust collection filter 17 is a dust collection filter that collects particles floating in the air introduced into the air conditioning chamber 18 through the circulation port 6. The dust collecting filter 17 makes the air supplied indoors by the transport fan 3 clean air.
 システムコントローラ14は、空調システム20全体を制御するコントローラである。システムコントローラ14は、熱交換気扇4、搬送ファン3、ダンパー5、居室温度センサ11、居室湿度センサ12、エアコンディショナー13、及び加湿装置16のそれぞれと、無線通信により通信可能に接続されている。 The system controller 14 is a controller that controls the entire air conditioning system 20. The system controller 14 is communicably connected to each of the heat exchange air fan 4, the conveyor fan 3, the damper 5, the living room temperature sensor 11, the living room humidity sensor 12, the air conditioner 13 and the humidifying device 16 by wireless communication.
 また、システムコントローラ14は、居室温度センサ11及び居室湿度センサ12により取得された居室2a~2dのそれぞれの居室温度及び居室湿度と、居室2a~2dのそれぞれに設定された目標温度(居室目標温度)及び目標湿度(居室目標湿度)等とに応じて、空調機としてのエアコンディショナー13、加湿装置16、搬送ファン3の風量、及びダンパー5の開度を制御する。なお、搬送ファン3の風量は、ファンごとに個別に制御してもよい。 Further, the system controller 14 has the living room temperature and the living room humidity acquired by the living room temperature sensor 11 and the living room humidity sensor 12, and the target temperature (living room target temperature) set for each of the living room 2a to 2d. ) And the target humidity (target humidity in the living room) and the like, the air conditioner 13 as an air conditioner, the humidifying device 16, the air volume of the transport fan 3, and the opening degree of the damper 5 are controlled. The air volume of the transport fan 3 may be controlled individually for each fan.
 これにより、空調室18にて空調された空気が、各搬送ファン3及び各ダンパー5により設定された風量で各居室2に搬送される。よって、各居室2の居室温度及び居室湿度が、目標温度(居室目標温度)及び目標湿度(居室目標湿度)となるように制御される。 As a result, the air conditioned in the air-conditioned room 18 is transported to each living room 2 with the air volume set by each transport fan 3 and each damper 5. Therefore, the living room temperature and the living room humidity of each living room 2 are controlled to be the target temperature (living room target temperature) and the target humidity (living room target humidity).
 ここで、システムコントローラ14は、熱交換気扇4、搬送ファン3、ダンパー5、居室温度センサ11、居室湿度センサ12、エアコンディショナー13、及び加湿装置16と無線通信で接続される。これにより、空調システム20における複雑な配線工事を不要とすることができる。ただし、上述した構成要素の全て又は一部は、有線通信により通信可能に構成してもよい。 Here, the system controller 14 is wirelessly connected to the heat exchange air fan 4, the transfer fan 3, the damper 5, the living room temperature sensor 11, the living room humidity sensor 12, the air conditioner 13, and the humidifying device 16. This makes it possible to eliminate the need for complicated wiring work in the air conditioning system 20. However, all or part of the above-mentioned components may be configured to be communicable by wired communication.
 入出力端末19は、システムコントローラ14と無線通信により通信可能に接続されている。入出力端末19は、空調システム20を構築する上で必要な情報の入力を受け付けてシステムコントローラ14に記憶させる。また、入出力端末19は、空調システム20の状態をシステムコントローラ14から取得して表示する。入出力端末19は、携帯電話、スマートフォン、又はタブレットといった携帯情報端末が例として挙げられる。 The input / output terminal 19 is connected to the system controller 14 so as to be able to communicate with each other by wireless communication. The input / output terminal 19 receives input of information necessary for constructing the air conditioning system 20 and stores it in the system controller 14. Further, the input / output terminal 19 acquires the state of the air conditioning system 20 from the system controller 14 and displays it. Examples of the input / output terminal 19 include a mobile information terminal such as a mobile phone, a smartphone, or a tablet.
 なお、入出力端末19は、必ずしも無線通信によりシステムコントローラ14と接続される必要はなく、システムコントローラ14と有線通信により通信可能に接続されてもよい。この場合、入出力端末19は、例えば、壁掛のリモートコントローラにより実現されるものであってもよい。 The input / output terminal 19 does not necessarily have to be connected to the system controller 14 by wireless communication, and may be communicably connected to the system controller 14 by wire communication. In this case, the input / output terminal 19 may be realized by, for example, a wall-mounted remote controller.
 次に、図2を参照して、加湿装置16の構成について説明する。図2は、空調システム20を構成する加湿装置16の概略断面図である。 Next, the configuration of the humidifying device 16 will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of the humidifying device 16 constituting the air conditioning system 20.
 加湿装置16は、空調室18内のエアコンディショナー13の下流側に位置しており、空調室18内の空気を遠心水破砕によって加湿するための装置である。加湿装置16は、図2に示すように、空調室18内の空気を吸い込む吸込口31と、加湿した空気を空調室18内に吹き出す吹出口32と、吸込口31と吹出口32との間に設けられた風路と、風路に設けられた液体微細化室33と、を備えている。 The humidifying device 16 is located on the downstream side of the air conditioner 13 in the air conditioning chamber 18, and is a device for humidifying the air in the air conditioning chamber 18 by crushing centrifugal water. As shown in FIG. 2, the humidifying device 16 is between a suction port 31 for sucking air in the air conditioning chamber 18, an outlet 32 for blowing out humidified air into the air conditioning chamber 18, and a suction port 31 and an outlet 32. It is provided with an air passage provided in the air passage and a liquid miniaturization chamber 33 provided in the air passage.
 吸込口31は、加湿装置16の外枠を構成する筐体の上面に設けられている。吸込口31を介して、エアコンディショナー13から送風される空気(気流)が加湿装置16内に流入する。 The suction port 31 is provided on the upper surface of the housing constituting the outer frame of the humidifying device 16. The air (air flow) blown from the air conditioner 13 flows into the humidifying device 16 through the suction port 31.
 吹出口32は、筐体の側面に設けられている。 The outlet 32 is provided on the side surface of the housing.
 液体微細化室33は、加湿装置16の主要部であり、遠心水破砕方式によって水の微細化を行う空間である。 The liquid miniaturization chamber 33 is the main part of the humidifying device 16 and is a space for refining water by a centrifugal water crushing method.
 加湿装置16は、風車36と、風車36によって回転する回転軸35と、回転軸35に取り付けられた回転モータ34と、筒状の揚水管37と、貯水部40と、第一エリミネータ41と、第二エリミネータ42と、を備えている。 The humidifying device 16 includes a wind turbine 36, a rotary shaft 35 rotated by the wind turbine 36, a rotary motor 34 attached to the rotary shaft 35, a tubular pumping pipe 37, a water storage unit 40, a first eliminator 41, and the like. It is equipped with a second eliminator 42.
 風車36は、後述する揚水管37(より正確には回転板38)の鉛直方向上方に重畳して配置され、空調室18(エアコンディショナー13)から加湿装置16内(以下、「装置内」ともいう)に流入する空気によって回転するファンである。風車36は、回転軸35に固定されており、風車36の回転に合わせて回転軸35が回転する。また、装置内に流入した空気は液体微細化室33内に導入される。さらに、風車36は、回転軸35を介して揚水管37と一体的に回転するように構成されている。 The wind turbine 36 is arranged so as to be superimposed on the vertical direction of the pumping pipe 37 (more accurately, the rotating plate 38) described later, and is arranged from the air conditioning chamber 18 (air conditioner 13) to the inside of the humidifying device 16 (hereinafter, also referred to as “inside the device”). It is a fan that is rotated by the air that flows into (referred to as). The wind turbine 36 is fixed to the rotating shaft 35, and the rotating shaft 35 rotates in accordance with the rotation of the wind turbine 36. Further, the air flowing into the apparatus is introduced into the liquid miniaturization chamber 33. Further, the wind turbine 36 is configured to rotate integrally with the pumping pipe 37 via the rotating shaft 35.
 回転軸35は、風車36の回転に合わせて回転する鉛直方向に沿った軸である。回転軸35において、鉛直方向の下方には、揚水管37が固定されている。回転軸35において、鉛直方向の上方には、回転モータ34が固定されている。また、回転軸35において、揚水管37と回転モータ34とに挟まれる位置には、風車36が固定されている。 The rotation shaft 35 is a shaft along the vertical direction that rotates in accordance with the rotation of the wind turbine 36. In the rotating shaft 35, the pumping pipe 37 is fixed below in the vertical direction. A rotary motor 34 is fixed above the rotary shaft 35 in the vertical direction. Further, on the rotary shaft 35, the wind turbine 36 is fixed at a position sandwiched between the pumping pipe 37 and the rotary motor 34.
 回転モータ34は、回転軸35を回転可能に取り付けられたモータであり、電力によって回転軸35を回転させる、または、回転軸35の回転を制限する。そして、回転モータ34は、風車36による揚水管37の回転数が設定回転数となるように、回転軸35の回転数を調整する。より詳細には、回転モータ34は、システムコントローラ14からの制御信号に含まれるエアコンディショナー13の風量(送風量)に関する情報に基づいて、回転軸35の回転数を制御する。例えば、回転モータ34は、風車36による揚水管37の回転数が不足する場合には、回転軸35の回転数を増加させるように動作する。また、回転モータ34は、風車36による揚水管37の回転数が過剰となる場合には、回転軸35の回転数を減少させるように動作する。つまり、回転モータ34は、回転軸35の回転数を制御することにより、風車36の回転が適正な回転数となるように補助する役割を有する。 The rotary motor 34 is a motor to which the rotary shaft 35 is rotatably attached, and the rotary shaft 35 is rotated by electric power or the rotation of the rotary shaft 35 is restricted. Then, the rotary motor 34 adjusts the rotation speed of the rotary shaft 35 so that the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes the set rotation speed. More specifically, the rotary motor 34 controls the rotation speed of the rotary shaft 35 based on the information regarding the air volume (air flow rate) of the air conditioner 13 included in the control signal from the system controller 14. For example, the rotary motor 34 operates so as to increase the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 by the wind turbine 36 is insufficient. Further, the rotary motor 34 operates so as to reduce the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes excessive. That is, the rotary motor 34 has a role of assisting the rotation of the wind turbine 36 to become an appropriate rotation speed by controlling the rotation speed of the rotation shaft 35.
 揚水管37は、液体微細化室33の内側において、回転軸35に固定されている。揚水管37は、風車36(回転軸35)の回転に合わせて回転することにより、揚水管37の鉛直方向の下方に設けられた円形状の揚水口から水を汲み上げる。より詳細には、揚水管37は、逆円錐形の中空構造となっており、揚水管37の鉛直方向の下方には、円形状の揚水口が設けられている。 The pumping pipe 37 is fixed to the rotating shaft 35 inside the liquid miniaturization chamber 33. The pumping pipe 37 rotates in accordance with the rotation of the wind turbine 36 (rotating shaft 35) to pump water from a circular pumping port provided below the pumping pipe 37 in the vertical direction. More specifically, the pumping pipe 37 has an inverted conical hollow structure, and a circular pumping port is provided below the pumping pipe 37 in the vertical direction.
 揚水管37の鉛直方向の上方であって、揚水管37の逆円錐形の天面の中心には、鉛直方向に沿って延伸して配置された回転軸35が固定されている。回転軸35は、液体微細化室33の鉛直方向の上方に設けられた風車36と接続されている。したがって、風車36の回転運動が回転軸35を通じて揚水管37に伝導されるため、揚水管37が回転する。 A rotating shaft 35 extending in the vertical direction is fixed to the center of the inverted conical top surface of the pumping pipe 37 above the vertical direction of the pumping pipe 37. The rotating shaft 35 is connected to a wind turbine 36 provided above the liquid miniaturization chamber 33 in the vertical direction. Therefore, since the rotational movement of the wind turbine 36 is conducted to the pumping pipe 37 through the rotating shaft 35, the pumping pipe 37 rotates.
 揚水管37の逆円錐形の天面側には、揚水管37の外面から外側に突出するように形成された複数の回転板38が設けられている。複数の回転板38のうち上下で隣接する回転板38の間には、回転軸35の軸方向に所定間隔が設けられる。複数の回転板38のそれぞれは、揚水管37の外周面から外側に突出するように形成されている。 On the top surface side of the inverted conical shape of the pumping pipe 37, a plurality of rotating plates 38 formed so as to project outward from the outer surface of the pumping pipe 37 are provided. A predetermined interval is provided in the axial direction of the rotating shaft 35 between the rotating plates 38 that are vertically adjacent to each other among the plurality of rotating plates 38. Each of the plurality of rotating plates 38 is formed so as to project outward from the outer peripheral surface of the pumping pipe 37.
 回転板38は、揚水管37とともに回転するため、回転軸35と同軸の水平な円盤形状が好ましい。なお、回転板38の枚数は、目標とする性能又は揚水管37の寸法に合わせて適宜設定されてもよい。 Since the rotating plate 38 rotates together with the pumping pipe 37, a horizontal disk shape coaxial with the rotating shaft 35 is preferable. The number of rotating plates 38 may be appropriately set according to the target performance or the dimensions of the pumping pipe 37.
 また、揚水管37の壁面には、揚水管37の壁面を開口する複数の開口39が設けられている。複数の開口39のそれぞれは、揚水管37の内部と、揚水管37の外面から外側に突出するように形成された回転板38の上面とを連通する位置に設けられている。 Further, the wall surface of the pumping pipe 37 is provided with a plurality of openings 39 for opening the wall surface of the pumping pipe 37. Each of the plurality of openings 39 is provided at a position communicating the inside of the pumping pipe 37 and the upper surface of the rotating plate 38 formed so as to project outward from the outer surface of the pumping pipe 37.
 貯水部40は、揚水管37の鉛直方向の下方において、揚水管37が揚水口から揚水する水を貯水する。貯水部40の深さは、揚水管37の下部の一部、例えば揚水管37の円錐高さの三分の一から百分の一程度の長さが浸るような深さに設計されている。なお、貯水部40の深さは、必要な揚水量に合わせて設計されてもよい。また、貯水部40の底面は、揚水口に向けてすり鉢状に形成されている。貯水部40への水の供給は、給水部(図示せず)により行われる。 The water storage unit 40 stores the water pumped by the pumping pipe 37 from the pumping port below the vertical direction of the pumping pipe 37. The depth of the water storage portion 40 is designed so that a part of the lower part of the pumping pipe 37, for example, about one-third to one-hundredth of the height of the cone of the pumping pipe 37 is immersed. .. The depth of the water storage unit 40 may be designed according to the required pumping amount. Further, the bottom surface of the water storage unit 40 is formed in a mortar shape toward the pumping port. The water supply to the water storage unit 40 is performed by the water supply unit (not shown).
 第一エリミネータ41は、空気が流通可能な多孔体である。第一エリミネータ41は、液体微細化室33の側方(遠心方向の外周部)に設けられ、遠心方向に空気が流通するように配置されている。揚水管37の開口39から放出された水滴が第一エリミネータ41に衝突することで、水滴が微細化される。このとき、第一エリミネータ41により、液体微細化室33を通過する空気に含まれる水のうち微細化された水滴が捕集される。これにより、加湿装置16内を流れる空気には、気化された水のみが含まれる。 The first eliminator 41 is a porous body through which air can flow. The first eliminator 41 is provided on the side of the liquid miniaturization chamber 33 (outer peripheral portion in the centrifugal direction), and is arranged so that air can flow in the centrifugal direction. The water droplets discharged from the opening 39 of the pumping pipe 37 collide with the first eliminator 41, so that the water droplets are made finer. At this time, the first eliminator 41 collects finely divided water droplets among the water contained in the air passing through the liquid finening chamber 33. As a result, the air flowing in the humidifying device 16 contains only vaporized water.
 第二エリミネータ42は、第一エリミネータ41の下流側に設けられる。第二エリミネータ42は、鉛直方向の上方に空気が流通するように配置されている。第二エリミネータ42もまた、空気が流通可能な多孔体である。 The second eliminator 42 is provided on the downstream side of the first eliminator 41. The second eliminator 42 is arranged so that air can flow upward in the vertical direction. The second eliminator 42 is also a porous body through which air can flow.
 第一エリミネータ41を通過した空気が第二エリミネータ42に衝突することで、第一エリミネータ41を通過した空気に含まれる水のうち水滴が第二エリミネータ42により捕集される。これにより、二つのエリミネータ(第一エリミネータ41及び第二エリミネータ42)によって、微細化された水滴を二重に捕集することができる。したがって、粒径の大きな水滴をより精度よく捕集することができる。 When the air that has passed through the first eliminator 41 collides with the second eliminator 42, water droplets among the water contained in the air that has passed through the first eliminator 41 are collected by the second eliminator 42. As a result, the finely divided water droplets can be double-collected by the two eliminators (first eliminator 41 and second eliminator 42). Therefore, water droplets having a large particle size can be collected more accurately.
 次に、図3、図4A及び図4Bを参照して、加湿装置16を構成する風車36について説明する。図3は、加湿装置16を構成する風車36及び揚水管37の断面図である。図4Aは、加湿装置16を構成する風車36の上面図である。図4Bは、風車36の固定羽根36aの断面図である。なお、図4Bは、図4AのA-A線に沿った断面において、風車36の外周側から回転軸35側を見た状態を示す。 Next, the wind turbine 36 constituting the humidifying device 16 will be described with reference to FIGS. 3, 4A and 4B. FIG. 3 is a cross-sectional view of the wind turbine 36 and the pumping pipe 37 constituting the humidifying device 16. FIG. 4A is a top view of the wind turbine 36 constituting the humidifying device 16. FIG. 4B is a cross-sectional view of the fixed blade 36a of the wind turbine 36. Note that FIG. 4B shows a state in which the rotation shaft 35 side is viewed from the outer peripheral side of the wind turbine 36 in the cross section along the line AA of FIG. 4A.
 図3に示すように、エアコンディショナー13からの空気(気流)は、吸込口31(図2参照)と連通する吸込口31aから液体微細化室33内に流入する。液体微細化室33内に流入する空気は、風車36の固定羽根36aに衝突し、回転板36bに沿って風車36の外周側方へ流れる。エアコンディショナー13からの空気が固定羽根36aに衝突することで、風車36には推進力(回転力)が加わる。これにより、風車36が回転する。 As shown in FIG. 3, the air (air flow) from the air conditioner 13 flows into the liquid miniaturization chamber 33 from the suction port 31a communicating with the suction port 31 (see FIG. 2). The air flowing into the liquid miniaturization chamber 33 collides with the fixed blades 36a of the wind turbine 36 and flows toward the outer peripheral side of the wind turbine 36 along the rotary plate 36b. When the air from the air conditioner 13 collides with the fixed blades 36a, a propulsive force (rotational force) is applied to the wind turbine 36. As a result, the wind turbine 36 rotates.
 風車36は、複数の固定羽根36aと、複数の固定羽根36aが取り付けられた回転板36bとを備える。 The wind turbine 36 includes a plurality of fixed blades 36a and a rotary plate 36b to which the plurality of fixed blades 36a are attached.
 回転板36bは、略円板状の形状であり、相対的に回転軸35に近い位置に設けられる第一回転板部36b1と、第一回転板部36b1に対して相対的に外周側の位置に設けられる第二回転板部36b2とを有する。 The rotary plate 36b has a substantially disk-like shape, and is located on the outer peripheral side relative to the first rotary plate portion 36b1 provided at a position relatively close to the rotary shaft 35 and the first rotary plate portion 36b1. It has a second rotating plate portion 36b2 provided in.
 第一回転板部36b1は、水平な円盤形状を有して形成されている。第二回転板部36b2は、第一回転板部36b1の水平位置から外周側に向かって緩やかな傾斜面を有して形成されている。 The first rotating plate portion 36b1 is formed to have a horizontal disk shape. The second rotating plate portion 36b2 is formed to have a gently inclined surface from the horizontal position of the first rotating plate portion 36b1 toward the outer peripheral side.
 回転板36bにおいて、第一回転板部36b1の上面側には、複数の固定羽根36aが設置されている。 In the rotary plate 36b, a plurality of fixed blades 36a are installed on the upper surface side of the first rotary plate portion 36b1.
 複数の固定羽根36aは、エアコンディショナー13からの空気(気流)が衝突する部材である。複数の固定羽根36aは、図4Aに示すように、回転板36bの上面側において、回転軸35から風車36の外周に向かう方向に沿って、等間隔で放射状に設けられている。本実施の形態では、固定羽根36aは、10枚形成されている。 The plurality of fixed blades 36a are members with which the air (air flow) from the air conditioner 13 collides. As shown in FIG. 4A, the plurality of fixed blades 36a are provided radially at equal intervals along the direction from the rotating shaft 35 toward the outer periphery of the wind turbine 36 on the upper surface side of the rotating plate 36b. In this embodiment, 10 fixed blades 36a are formed.
 図4Bに示すように、複数の固定羽根36aのそれぞれにおいて、回転軸35に対して回転する方向(回転方向)の上流側に上流端P1が位置している。また、複数の固定羽根36aのそれぞれにおいて、回転軸35の回転方向と反対側の下流側に下流端P2が位置している。このため、複数の固定羽根36aのそれぞれは、回転軸35の回転方向に対して傾斜して設けられている。 As shown in FIG. 4B, in each of the plurality of fixed blades 36a, the upstream end P1 is located on the upstream side in the direction of rotation (rotational direction) with respect to the rotation axis 35. Further, in each of the plurality of fixed blades 36a, the downstream end P2 is located on the downstream side opposite to the rotation direction of the rotation shaft 35. Therefore, each of the plurality of fixed blades 36a is provided so as to be inclined with respect to the rotation direction of the rotation shaft 35.
 風車36において、固定羽根36aは傾斜して設けられている。このため、エアコンディショナー13からの空気が鉛直方向の上方(上流側)から風車36に向かって流入し、固定羽根36aに衝突すると、エアコンディショナー13からの空気によって回転方向に力が発生する。これにより、固定羽根36aが取り付けられた回転板36bは回転する。このようにして、上流から流入するエアコンディショナー13からの空気によって、風車36が回転方向(反時計回りの方向)に回転する。 In the wind turbine 36, the fixed blades 36a are provided so as to be inclined. Therefore, when the air from the air conditioner 13 flows toward the wind turbine 36 from above (upstream side) in the vertical direction and collides with the fixed blades 36a, the air from the air conditioner 13 generates a force in the rotational direction. As a result, the rotary plate 36b to which the fixing blades 36a are attached rotates. In this way, the wind turbine 36 is rotated in the rotation direction (counterclockwise direction) by the air from the air conditioner 13 flowing in from the upstream.
 風車36は、図3に示すように、回転軸35の外周に位置する筐体管35aを介して、回転軸35に固定されている。回転軸35において、風車36の鉛直方向の下方には、揚水管37が接続される。また、回転軸35において、風車36の鉛直方向の上方には、回転モータ34が接続される。 As shown in FIG. 3, the wind turbine 36 is fixed to the rotating shaft 35 via a housing pipe 35a located on the outer periphery of the rotating shaft 35. On the rotating shaft 35, a pumping pipe 37 is connected below the wind turbine 36 in the vertical direction. Further, on the rotary shaft 35, a rotary motor 34 is connected above the wind turbine 36 in the vertical direction.
 揚水管37には、上述した通り、揚水管37の外面から外側に突出するように、複数の回転板38が所定間隔を有して接続されている。一方、風車36は、回転板36bの上面において、風車36が回転した際に旋回流を生じさせる固定羽根36aを有して構成される。つまり、風車36(回転板36b)は、揚水管37に接続された回転板38の鉛直方向の上方に重畳して配置されている。 As described above, a plurality of rotating plates 38 are connected to the pumping pipe 37 at predetermined intervals so as to project outward from the outer surface of the pumping pipe 37. On the other hand, the wind turbine 36 is configured to have a fixed blade 36a on the upper surface of the rotary plate 36b to generate a swirling flow when the wind turbine 36 rotates. That is, the wind turbine 36 (rotating plate 36b) is arranged so as to be superimposed on the vertical direction of the rotating plate 38 connected to the pumping pipe 37.
 以上のように、風車36の回転板36bと、揚水管37を構成する回転板38とは、回転軸35の回転に合わせて、一体的に回転するように構成されている。 As described above, the rotary plate 36b of the wind turbine 36 and the rotary plate 38 constituting the pumping pipe 37 are configured to rotate integrally in accordance with the rotation of the rotary shaft 35.
 次に、図2を参照して、加湿装置16における加湿(水の微細化)の動作原理を説明する。なお、図2では、装置内での空気の流れと水の流れをそれぞれ矢印で示している。 Next, with reference to FIG. 2, the operating principle of humidification (miniaturization of water) in the humidifying device 16 will be described. In FIG. 2, the flow of air and the flow of water in the apparatus are indicated by arrows.
 まず、加湿装置16が動作を開始すると、エアコンディショナー13の空気が吸込口31を介して加湿装置16内に流入する。吸込口31を介して流入した空気は、風車36の固定羽根36aに衝突し、風車36が回転する。この際、回転モータ34による回転軸35の回転制限は解除されている。 First, when the humidifying device 16 starts operating, the air of the air conditioner 13 flows into the humidifying device 16 through the suction port 31. The air flowing in through the suction port 31 collides with the fixed blades 36a of the wind turbine 36, and the wind turbine 36 rotates. At this time, the rotation restriction of the rotating shaft 35 by the rotating motor 34 is released.
 風車36が設定回転数である第一回転数R1で回転軸35を回転させると、この回転に合わせて揚水管37が回転する。ここで、回転モータ34は、システムコントローラ14からの制御信号により、回転軸35の回転が設定回転数となるように、必要に応じて風車36による回転軸35の回転を補助する。つまり、回転モータ34は、上述した通り、エアコンディショナー13の風量(送風量)に関する情報に基づいて、風車36による揚水管37の回転数が不足する場合には回転軸35の回転数を増加させ、風車36による揚水管37の回転数が過剰となる場合には回転軸35の回転数を減少させる。 When the wind turbine 36 rotates the rotation shaft 35 at the first rotation speed R1 which is the set rotation speed, the pumping pipe 37 rotates in accordance with this rotation. Here, the rotary motor 34 assists the rotation of the rotary shaft 35 by the wind turbine 36 as necessary so that the rotation of the rotary shaft 35 becomes the set rotation speed by the control signal from the system controller 14. That is, as described above, the rotary motor 34 increases the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 by the wind turbine 36 is insufficient based on the information regarding the air volume (blower volume) of the air conditioner 13. When the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes excessive, the rotation speed of the rotating shaft 35 is reduced.
 図2の破線矢印で示す水の流れのように、風車36(回転軸35)の回転によって生じる遠心力により、貯水部40に貯水された水は、揚水管37によって汲み上げられる。ここで、設定回転数である第一回転数R1は、例えば、加湿装置16からの空気の送風量及び空気への加湿量に応じて、2000rpm~5000rpmの間に設定される。 As shown by the flow of water indicated by the broken arrow in FIG. 2, the water stored in the water storage unit 40 is pumped up by the pumping pipe 37 due to the centrifugal force generated by the rotation of the wind turbine 36 (rotating shaft 35). Here, the first rotation speed R1, which is the set rotation speed, is set between 2000 rpm and 5000 rpm, for example, depending on the amount of air blown from the humidifying device 16 and the amount of humidification to the air.
 揚水管37は、逆円錐形の中空構造である。このため、風車36の回転によって汲み上げられた水は、揚水管37の内壁を伝って、揚水管37の上部へ揚水される。揚水管37の上部へ揚水された水は、揚水管37の開口39から回転板38を伝って風車36の外周方向(遠心方向)に放出され、水滴として飛散する。回転板38から飛散した水滴は、第一エリミネータ41に囲まれた空間(液体微細化室33)を飛翔し、第一エリミネータ41に衝突して微細化される。 The pumping pipe 37 has an inverted conical hollow structure. Therefore, the water pumped up by the rotation of the wind turbine 36 is pumped to the upper part of the pumping pipe 37 along the inner wall of the pumping pipe 37. The water pumped to the upper part of the pumping pipe 37 is discharged from the opening 39 of the pumping pipe 37 through the rotary plate 38 in the outer peripheral direction (centrifugal direction) of the wind turbine 36, and is scattered as water droplets. The water droplets scattered from the rotating plate 38 fly in the space (liquid miniaturization chamber 33) surrounded by the first eliminator 41, collide with the first eliminator 41, and are miniaturized.
 一方、風車36を経由して液体微細化室33を通過する空気は、実線矢印で示す空気の流れのように、第一エリミネータ41によって破砕(微細化)された水を含みながら、第一エリミネータ41の外周部へ移動する。第一エリミネータ41から第二エリミネータ42に至る風路内を空気が流れる過程により、気流の渦が生じ、装置内で水と空気とが混合する。水を含んだ空気は、第二エリミネータ42を通過する。これにより、加湿装置16は、吸込口31より吸い込んだ空気に対して加湿を行い、加湿された空気を吹出口32より吹き出すことができる。 On the other hand, the air passing through the liquid miniaturization chamber 33 via the wind turbine 36 contains the water crushed (miniaturized) by the first eliminator 41 as shown by the solid arrow, and the first eliminator. Move to the outer peripheral portion of 41. The process of air flowing in the air passage from the first eliminator 41 to the second eliminator 42 creates an airflow vortex, and water and air are mixed in the apparatus. The water-containing air passes through the second eliminator 42. As a result, the humidifying device 16 can humidify the air sucked from the suction port 31 and blow out the humidified air from the air outlet 32.
 なお、微細化される液体は水以外でもよく、例えば、殺菌性あるいは消臭性を備えた次亜塩素酸水等の液体であってもよい。 The liquid to be refined may be other than water, and may be, for example, a liquid such as hypochlorite water having bactericidal or deodorant properties.
 以上、実施の形態1に係る空調システム20によれば、以下の効果を享受することができる。 As described above, according to the air conditioning system 20 according to the first embodiment, the following effects can be enjoyed.
 (1)空調システム20は、屋内外から空気を導入可能に構成された空調室18と、空調室18に設置され、空調室18の空気を温調するエアコンディショナー13と、空調室18に設置され、エアコンディショナー13によって温調された空気を加湿する加湿装置16と、空調室18の空気を空調室18とは異なる屋内空間に搬送する搬送ファン3と、を備える。加湿装置16は、エアコンディショナー13によって温調された空気が装置内に流入する流路に配置され、装置内に流入する空気によって回転する風車36と、風車36に固定され、風車36の回転とともに回転する回転軸35と、回転軸35に固定され、回転軸35とともに回転することにより、鉛直方向の下方に設けられた揚水口から揚水し、揚水した水を遠心方向に放出する筒状の揚水管37と、揚水管37より放出された水が衝突することにより、衝突した水を微細化し、微細化した水の一部を捕集する第一エリミネータ41と、揚水管37の鉛直方向の下方に設けられ、揚水口より揚水される水を貯水する貯水部40と、を有して構成した。 (1) The air conditioner system 20 is installed in an air conditioner room 18 configured to allow air to be introduced from indoors and outdoors, an air conditioner 13 installed in the air conditioner room 18 to control the temperature of the air in the air conditioner room 18, and an air conditioner room 18. A humidifying device 16 for humidifying the air temperature controlled by the air conditioner 13 and a transport fan 3 for transporting the air in the air conditioner room 18 to an indoor space different from the air conditioner room 18 are provided. The humidifying device 16 is arranged in a flow path through which the air temperature controlled by the air conditioner 13 flows into the device, and is fixed to the windmill 36 that is rotated by the air flowing into the device and the windmill 36, and is fixed to the windmill 36 with the rotation of the windmill 36. A cylindrical pumping water that is fixed to the rotating shaft 35 and is fixed to the rotating shaft 35 and is rotated together with the rotating shaft 35 to pump water from a pumping port provided below in the vertical direction and discharge the pumped water in the centrifugal direction. When the pipe 37 and the water discharged from the pumping pipe 37 collide with each other, the collided water is made finer, and the first eliminator 41 that collects a part of the finely divided water and the lower part of the pumping pipe 37 in the vertical direction. It is configured to have a water storage unit 40 for storing water pumped from a pumping port.
 こうした構成によれば、風車36がエアコンディショナー13からの空気の送風量に応じた風圧を受けて回転軸35を回転させ、この回転軸35の回転によって揚水管37が回転する。したがって、従来の加湿装置のように回転モータの動力によって回転軸を回転させる場合と比較して、加湿装置16によるエネルギー消費を抑制することができる。このため、加湿装置16のエネルギー効率を向上させることができる。つまり、省エネルギー化に寄与することが可能な加湿装置16を用いた空調システム20とすることができる。 According to such a configuration, the wind turbine 36 receives the wind pressure corresponding to the amount of air blown from the air conditioner 13 to rotate the rotating shaft 35, and the rotation of the rotating shaft 35 causes the pumping pipe 37 to rotate. Therefore, the energy consumption by the humidifying device 16 can be suppressed as compared with the case where the rotating shaft is rotated by the power of the rotating motor as in the conventional humidifying device. Therefore, the energy efficiency of the humidifying device 16 can be improved. That is, the air conditioning system 20 using the humidifying device 16 that can contribute to energy saving can be obtained.
 (2)空調システム20は、回転軸35を回転可能に取り付けられた回転モータ34をさらに備える。回転モータ34は、風車36による揚水管37の回転数が設定回転数となるように回転軸35の回転数を調整する。 (2) The air conditioning system 20 further includes a rotary motor 34 to which a rotary shaft 35 is rotatably attached. The rotary motor 34 adjusts the rotation speed of the rotary shaft 35 so that the rotation speed of the pumping pipe 37 by the wind turbine 36 becomes the set rotation speed.
 これにより、エアコンディショナー13からの空気の送風量(風圧)にバラツキが生じたとしても、回転軸35の回転数が設定回転数に維持される。したがって、揚水管37を設定回転数で回転させることができる。このため、加湿装置16による加湿能力を安定化させることができる。 As a result, even if the amount of air blown from the air conditioner 13 (wind pressure) varies, the rotation speed of the rotating shaft 35 is maintained at the set rotation speed. Therefore, the pumping pipe 37 can be rotated at a set rotation speed. Therefore, the humidifying capacity of the humidifying device 16 can be stabilized.
 (3)空調システム20では、回転モータ34は、エアコンディショナー13の送風量に関する情報に基づいて、揚水管37の回転数が不足する場合には、回転軸35の回転数を増加させるように動作し、揚水管37の回転数が過剰となる場合には、回転軸35の回転数を減少させるように動作する。 (3) In the air conditioning system 20, the rotary motor 34 operates so as to increase the rotation speed of the rotary shaft 35 when the rotation speed of the pumping pipe 37 is insufficient, based on the information regarding the air flow amount of the air conditioner 13. However, when the rotation speed of the pumping pipe 37 becomes excessive, it operates so as to reduce the rotation speed of the rotation shaft 35.
 これにより、エアコンディショナー13からの空気の送風量(風圧)にバラツキが生じたとしても、回転モータ34の最小限の動力によって、回転軸35の回転数をより高精度に設定回転数に維持することができる。 As a result, even if the amount of air blown (wind pressure) from the air conditioner 13 varies, the rotation speed of the rotation shaft 35 is maintained at the set rotation speed with higher accuracy by the minimum power of the rotation motor 34. be able to.
 (4)空調システム20では、風車36は、回転軸35から遠心方向に向かう方向に沿って設けられた固定羽根36aを有する。固定羽根36aは、鉛直方向の上方から装置内に導入された空気が固定羽根36aに当たることによって第一エリミネータ41に向かって遠心方向に吹き出すように構成されている。 (4) In the air conditioning system 20, the wind turbine 36 has a fixed blade 36a provided along the direction toward the centrifugal direction from the rotating shaft 35. The fixed blade 36a is configured so that air introduced into the apparatus from above in the vertical direction hits the fixed blade 36a and blows out toward the first eliminator 41 in the centrifugal direction.
 これにより、遠心方向に吹き出された空気と、遠心方向に放出された水滴とを第一エリミネータ41において混合し、第一エリミネータ41を流通する空気に対して微細化された水を含ませることができる。このため、加湿装置16の加湿性能を向上させることができ、空調室18の空気に対する加湿量を増加させることができる。 As a result, the air blown out in the centrifugal direction and the water droplets discharged in the centrifugal direction are mixed in the first eliminator 41, and the air flowing through the first eliminator 41 can be contained with finely divided water. can. Therefore, the humidifying performance of the humidifying device 16 can be improved, and the amount of humidifying the air in the air conditioning chamber 18 can be increased.
 (5)空調システム20では、揚水管37には、回転軸35の軸方向に互いに所定間隔を有して配置され、揚水管37の外周面から遠心方向に突出して形成された複数の回転板38を形成した。 (5) In the air conditioning system 20, a plurality of rotary plates are arranged on the pumping pipe 37 at predetermined intervals in the axial direction of the rotary shaft 35, and are formed so as to project in the centrifugal direction from the outer peripheral surface of the pumping pipe 37. 38 was formed.
 これにより、揚水管37では、揚水された水を、揚水管37から回転板38を伝って遠心方向に放出し、水滴として第一エリミネータ41に向かって飛散させることができる。 Thereby, in the pumping pipe 37, the pumped water can be discharged from the pumping pipe 37 in the centrifugal direction through the rotating plate 38 and scattered toward the first eliminator 41 as water droplets.
 (6)空調システム20では、風車36は、回転板38の鉛直方向上方において揚水管37と重畳して配置した。 (6) In the air conditioning system 20, the wind turbine 36 is arranged so as to be superimposed on the pumping pipe 37 above the rotating plate 38 in the vertical direction.
 これにより、風車36と回転板38とが実質的に一体化して構成できるので、加湿装置16を小型化することができる。このため、こうした加湿装置16を用いた空調システム20では、空調室18を小型化することができる。 As a result, the wind turbine 36 and the rotating plate 38 can be substantially integrated, so that the humidifying device 16 can be miniaturized. Therefore, in the air conditioning system 20 using such a humidifying device 16, the air conditioning chamber 18 can be miniaturized.
 (7)空調システム20では、エアコンディショナー13の空気(気流)によって駆動する風車36の回転軸35を揚水管37と共有することで、エアコンディショナー13からの空気が流入し、風車36の固定羽根36aが流入した空気に押されて、回転方向に力を発生させて回転するようにした。 (7) In the air conditioning system 20, the rotating shaft 35 of the windmill 36 driven by the air (air flow) of the air conditioner 13 is shared with the pumping pipe 37, so that the air from the air conditioner 13 flows in and the fixed blades of the windmill 36 are fixed. The 36a was pushed by the inflowing air to generate a force in the rotation direction to rotate.
 これにより、加湿装置16として使用する消費電力は、回転の安定化のための回転モータ34の消費電力を使用するだけなので、加湿装置16の省エネルギー化を実現することができる。 As a result, the power consumption used as the humidifying device 16 only uses the power consumption of the rotating motor 34 for stabilizing the rotation, so that the energy saving of the humidifying device 16 can be realized.
 (8)空調システム20では、加湿装置16を、エアコンディショナー13によって温調された空気を装置内に導入する風路に風車36が設けられ、風車36を通過する空気に対して遠心破砕によって微細化した水を含ませて放出する構成とした。 (8) In the air conditioning system 20, a wind turbine 36 is provided in the air passage for introducing the air temperature-controlled by the air conditioner 13 into the humidifying device 16, and the air passing through the wind turbine 36 is finely divided by centrifugal crushing. It was configured to contain the conditioned water and release it.
 これにより、風車36によって加湿装置16内に空気を導入するので、搬送ファン3によって空調室18から搬送される空気量に依存せず、空調室18内の空気に対する加湿量を調整することができる。 As a result, since the air is introduced into the humidifying device 16 by the wind turbine 36, the humidifying amount for the air in the air conditioning chamber 18 can be adjusted independently of the amount of air conveyed from the air conditioning chamber 18 by the transport fan 3. ..
 以上、実施の形態に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the spirit of the present disclosure. It is easy to guess. For example, the numerical values given in the above embodiment are examples, and it is naturally possible to adopt other numerical values.
 本実施の形態に係る空調システム20では、回転モータ34は、エアコンディショナー13の風量(送風量)に関する情報に基づいて、風車36の回転が目標回転数となるように制御したが、これに限られない。例えば、回転モータ34が風車36による回転数を検知し、検知した回転数に関する情報に基づいて、風車36の回転が目標回転数となるように制御してもよい。このようにしても同様の効果を享受することができる。 In the air conditioning system 20 according to the present embodiment, the rotary motor 34 is controlled so that the rotation of the wind turbine 36 becomes the target rotation speed based on the information regarding the air volume (blower volume) of the air conditioner 13. I can't. For example, the rotary motor 34 may detect the rotation speed of the wind turbine 36 and control the rotation of the wind turbine 36 to be the target rotation speed based on the information regarding the detected rotation speed. Even in this way, the same effect can be enjoyed.
 また、本実施の形態に係る空調システム20では、空調室18内に、空調室18の空気の温度を検出する空調室温度センサを設けてもよい。これにより、空調室18内の湿度の調湿制御をより高精度に行うことができる。 Further, in the air conditioning system 20 according to the present embodiment, an air conditioning room temperature sensor for detecting the temperature of the air in the air conditioning room 18 may be provided in the air conditioning room 18. As a result, the humidity control in the air conditioning chamber 18 can be controlled with higher accuracy.
 また、本実施の形態における居室は、必ずしも人が居る必要はなく、一つの空間として捉えることができる。つまり、廊下あるいはキッチンもある程度区切られているのであれば1つの空間として捉えることができ、1つの居室に該当する。 In addition, the living room in this embodiment does not necessarily have to have people, and can be regarded as one space. In other words, if the corridor or kitchen is also divided to some extent, it can be regarded as one space, and corresponds to one living room.
 また、本実施の形態に係る空調システム20は、戸建て住宅あるいはマンション等の複合住宅に適用可能である。ただし、空調システム20を複合住宅に適用する場合には、1つのシステムが世帯単位に対応するものであり、各世帯を1つの居室とするものではない。 Further, the air conditioning system 20 according to the present embodiment can be applied to a detached house or a complex house such as a condominium. However, when the air conditioning system 20 is applied to an apartment house, one system corresponds to each household, not each household as one living room.
 本開示に係る空調システムは、省エネルギー化に寄与することが可能な加湿装置を用いた全館空調システムとして有用である。 The air conditioning system according to the present disclosure is useful as a whole building air conditioning system using a humidifying device that can contribute to energy saving.
 1  一般住宅
 2、2a、2b、2c、2d  居室
 3、3a、3b  搬送ファン
 4  熱交換気扇
 5、5a、5b  ダンパー
 6、6a、6b、6c、6d  循環口
 7、7a、7b、7c、7d  居室排気口
 8、8a、8b、8c、8d  居室給気口
 11、11a、11b、11c、11d  居室温度センサ
 12、12a、12b、12c、12d  居室湿度センサ
 13  エアコンディショナー
 14  システムコントローラ
 16  加湿装置
 17  集塵フィルタ
 18  空調室
 19  入出力端末
 20  空調システム
 31  吸込口
 31a  吸込口
 32  吹出口
 33  液体微細化室
 34  回転モータ
 35  回転軸
 35a  筐体管
 36  風車
 36a  固定羽根
 36b  回転板
 37  揚水管
 38  回転板
 39  開口
 40  貯水部
 41  第一エリミネータ
 42  第二エリミネータ
 P1  上流端
 P2  下流端
1 General house 2, 2a, 2b, 2c, 2d Living room 3, 3a, 3b Conveying fan 4 Heat exchange air conditioner 5, 5a, 5b Damper 6, 6a, 6b, 6c, 6d Circulation port 7, 7a, 7b, 7c, 7d Living room exhaust port 8, 8a, 8b, 8c, 8d Living room air supply port 11, 11a, 11b, 11c, 11d Living room temperature sensor 12, 12a, 12b, 12c, 12d Living room humidity sensor 13 Air conditioner 14 System controller 16 Humidifier 17 Dust collection filter 18 Air-conditioning room 19 Input / output terminal 20 Air-conditioning system 31 Suction port 31a Suction port 32 Blowout port 33 Liquid miniaturization room 34 Rotating motor 35 Rotating shaft 35a Housing tube 36 Windmill 36a Fixed blade 36b Rotating plate 37 Humidifying tube 38 Rotation Plate 39 Opening 40 Water storage section 41 First eliminator 42 Second eliminator P1 upstream end P2 downstream end

Claims (6)

  1.  屋外から空気を導入可能に構成された空調室と、前記空調室に設置され、前記空調室の空気を温調する空調機と、前記空調室に設置され、前記空調機によって温調された空気を加湿する加湿装置と、前記空調室の空気を前記空調室とは異なる屋内空間に搬送する搬送ファンと、を備えた空調システムであって、
     前記加湿装置は、
     前記空調機によって温調された空気が前記加湿装置内に流入する流路に配置され、前記加湿装置内に流入する前記空気によって回転する風車と、
     前記風車に固定され、前記風車の回転とともに回転する回転軸と、
     前記回転軸に固定され、前記回転軸とともに回転することにより、鉛直方向の下方に設けられた揚水口から揚水し、揚水した水を遠心方向に放出する筒状の揚水管と、
     前記揚水管より放出された水が衝突することにより、衝突した水を微細化し、微細化した水の一部を捕集するエリミネータと、
     前記揚水管の前記鉛直方向の前記下方に設けられ、前記揚水口より揚水される水を貯水する貯水部と、
    を有して構成される、
    空調システム。
    An air conditioning room configured to allow air to be introduced from the outside, an air conditioner installed in the air conditioning room to control the temperature of the air in the air conditioning room, and air installed in the air conditioning room and controlled by the air conditioner. An air conditioning system including a humidifying device for humidifying and a transport fan for transporting air in the air conditioning room to an indoor space different from the air conditioning room.
    The humidifier is
    A wind turbine that is arranged in a flow path through which the air temperature-controlled by the air conditioner flows into the humidifier and is rotated by the air that flows into the humidifier.
    A rotating shaft fixed to the wind turbine and rotating with the rotation of the wind turbine,
    A tubular pumping pipe that is fixed to the rotating shaft and rotates together with the rotating shaft to pump water from a pumping port provided below in the vertical direction and discharge the pumped water in the centrifugal direction.
    When the water discharged from the pumping pipe collides with the eliminator, the collided water is miniaturized and a part of the miniaturized water is collected.
    A water storage unit provided below the vertical direction of the pumping pipe to store water pumped from the pumping port, and a water storage unit.
    Consists of
    Air conditioning system.
  2.  前記回転軸を回転可能に取り付けられた回転モータをさらに備え、
     前記回転モータは、前記風車による前記揚水管の回転数が設定回転数となるように前記回転軸の回転数を調整する、
    請求項1に記載の空調システム。
    Further equipped with a rotary motor rotatably attached to the rotary shaft,
    The rotary motor adjusts the rotation speed of the rotation shaft so that the rotation speed of the pumping pipe by the wind turbine becomes the set rotation speed.
    The air conditioning system according to claim 1.
  3.  前記回転モータは、前記空調機の送風量に関する情報に基づいて、前記揚水管の前記回転数が不足する場合には、前記回転軸の回転数を増加させるように動作し、前記揚水管の回転数が過剰となる場合には、前記回転軸の回転数を減少させるように動作する、
    請求項2に記載の空調システム。
    Based on the information regarding the amount of air blown by the air conditioner, the rotary motor operates so as to increase the rotation speed of the rotation shaft when the rotation speed of the pumping pipe is insufficient, and the rotation of the pumping pipe is performed. When the number becomes excessive, it operates to reduce the rotation speed of the rotation shaft.
    The air conditioning system according to claim 2.
  4.  前記風車は、前記回転軸から遠心方向に向かう方向に沿って設けられた固定羽根を有し、
     前記鉛直方向の上方から前記加湿装置内に導入された空気は、前記固定羽根に当たることによって前記エリミネータに向かって遠心方向に吹き出すように構成されている、
    請求項1~3のいずれか一項に記載の空調システム。
    The wind turbine has fixed blades provided along the direction toward the centrifugal direction from the rotation axis.
    The air introduced into the humidifier from above in the vertical direction is configured to blow out in the centrifugal direction toward the eliminator by hitting the fixed blades.
    The air conditioning system according to any one of claims 1 to 3.
  5.  前記揚水管には、前記回転軸の軸方向に互いに所定間隔を有して配置され、前記揚水管の外周面から遠心方向に突出して形成された複数の回転板が形成されている、
    請求項1~4のいずれか一項に記載の空調システム。
    The pumping pipe is arranged with a predetermined distance from each other in the axial direction of the rotating shaft, and a plurality of rotating plates formed so as to project in the centrifugal direction from the outer peripheral surface of the pumping pipe are formed.
    The air conditioning system according to any one of claims 1 to 4.
  6.  前記風車は、前記回転板の前記鉛直方向の前記上方において重畳して配置されている、
    請求項5に記載の空調システム。
    The wind turbine is arranged so as to be superimposed on the upper part of the rotating plate in the vertical direction.
    The air conditioning system according to claim 5.
PCT/JP2021/031640 2020-09-28 2021-08-30 Air conditioning system WO2022064965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161707A JP7407349B2 (en) 2020-09-28 2020-09-28 air conditioning system
JP2020-161707 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022064965A1 true WO2022064965A1 (en) 2022-03-31

Family

ID=80846445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031640 WO2022064965A1 (en) 2020-09-28 2021-08-30 Air conditioning system

Country Status (2)

Country Link
JP (1) JP7407349B2 (en)
WO (1) WO2022064965A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111363U (en) * 1978-01-24 1979-08-04
JP2012207814A (en) * 2011-03-29 2012-10-25 Sanyo Electric Co Ltd Humidifier
CN210154003U (en) * 2019-06-24 2020-03-17 福建农林大学 Building new trend energy-conserving humidification device
JP2020076571A (en) * 2018-10-11 2020-05-21 パナソニックIpマネジメント株式会社 Air conditioning system and air conditioning system controller
JP2020106189A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Humidifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111363U (en) * 1978-01-24 1979-08-04
JP2012207814A (en) * 2011-03-29 2012-10-25 Sanyo Electric Co Ltd Humidifier
JP2020076571A (en) * 2018-10-11 2020-05-21 パナソニックIpマネジメント株式会社 Air conditioning system and air conditioning system controller
JP2020106189A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Humidifier
CN210154003U (en) * 2019-06-24 2020-03-17 福建农林大学 Building new trend energy-conserving humidification device

Also Published As

Publication number Publication date
JP7407349B2 (en) 2024-01-04
JP2022054581A (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP4294784B2 (en) Air conditioning equipment and air conditioning method
US11466872B2 (en) Modular heat pump system
CN112567179B (en) Air conditioning system and air conditioning system controller
JP3731397B2 (en) Blower, air conditioner, and blower method
CN206786983U (en) One kind oxygen VMC
KR101261322B1 (en) Ventilation control system for decentralized ventilation of separated space and ventilation method using this
WO2022004265A1 (en) Air conditioning system
WO2022064965A1 (en) Air conditioning system
JP2017133782A (en) Air Conditioning System
JP6502696B2 (en) Air conditioning system for living room using air supply box and air supply box
JP7422290B2 (en) air conditioning system
JP2022011223A (en) Air conditioning system
JP2016138718A (en) Air-conditioning ventilation system for building
JP2017211175A (en) building
KR20020025128A (en) The compound air control system of convection type and its air control method
JP2022142819A (en) Air-conditioning system
JP2022130837A (en) Air-conditioning system
JP2009103378A (en) Air blowing facility of building
KR100691636B1 (en) Hybrid ventilation system
CN113551325B (en) Air conditioning system and air conditioning system controller
WO2022181658A1 (en) Air conditioning system
WO2022264484A1 (en) Air conditioning system
JP2022130838A (en) Air-conditioning system
JP7281616B2 (en) ventilation system
JP2013011385A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872097

Country of ref document: EP

Kind code of ref document: A1