WO2023095391A1 - 半導体素子 - Google Patents

半導体素子 Download PDF

Info

Publication number
WO2023095391A1
WO2023095391A1 PCT/JP2022/030645 JP2022030645W WO2023095391A1 WO 2023095391 A1 WO2023095391 A1 WO 2023095391A1 JP 2022030645 W JP2022030645 W JP 2022030645W WO 2023095391 A1 WO2023095391 A1 WO 2023095391A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
semiconductor layer
semiconductor
less
Prior art date
Application number
PCT/JP2022/030645
Other languages
English (en)
French (fr)
Inventor
浅井光夫
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to TW111145429A priority Critical patent/TW202339286A/zh
Publication of WO2023095391A1 publication Critical patent/WO2023095391A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes

Definitions

  • the present disclosure relates to a semiconductor device, a method for manufacturing the semiconductor device, and the like.
  • Carbon nanotubes have high field-effect mobility and high chemical stability.
  • CNT can be dispersed in a solution, it is a material that can be applied to simple processes, and can be coated or deposited on various substrates. Therefore, CNTs are considered as a candidate material for forming a semiconductor layer, and semiconductor elements using CNTs are being actively studied. Specifically, research on a CNT field effect transistor (CNT-FET) using CNT as a channel is vigorously conducted.
  • CNT-FET CNT field effect transistor
  • Patent Document 1 a CNT ink is dropped in a channel layer formation region between a source electrode and a drain electrode, and the ink is dried to form a CNT between the source electrode and the drain electrode. Forming a channel layer is disclosed.
  • Patent Document 2 discloses that a dispersion solution in which CNT bundles are dispersed in an organic solvent is dropped between a source electrode and a drain electrode, and the dropped dispersion solution is heated to form a channel portion.
  • Patent Document 3 includes a step of forming a coating film by applying a CNT dispersion containing a polysaccharide, arabinogalactan, or gum arabic as a polymer dispersant, and drying the coating film to form a semiconductor layer.
  • a method for manufacturing a field effect transistor is disclosed.
  • the coated film, that is, the semiconductor layer that has undergone a drying process is subjected to a cleaning process in order to improve the on/off ratio. be.
  • semiconductor elements greatly affects the performance of the devices in which they are used, so semiconductor elements are required to have higher performance. Specifically, they are required to have smaller hysteresis.
  • Patent Documents 1 to 3 operate with the channel layer or the semiconductor layer exposed to the atmosphere, and therefore have a problem of large hysteresis.
  • the hysteresis is greatly reduced by sealing the semiconductor device with PMMA.
  • the semiconductor element disclosed in Non-Patent Document 1 succeeds in reducing hysteresis by sealing the semiconductor layer with a fluorine-based resin.
  • the on/off ratio of the semiconductor element deteriorates to about 10 4 , which is insufficient for practical use.
  • an attempt to reduce the hysteresis results in a worse on/off ratio. Conventionally, there was a trade-off between a small hysteresis and a large on/off ratio.
  • the present disclosure provides a semiconductor device using CNTs with small hysteresis and a large on/off ratio, and a method for manufacturing the same.
  • a CNT is a thin cylinder formed by rolling a graphene sheet into a cylinder.
  • the network structure of CNTs is a structure in which adjacent CNTs are entangled with each other and are connected in a mesh shape over a wide range.
  • the CNT density in the thickness direction of the network structure was high, and, for example, as shown in FIG.
  • the CNT network structure is a multi-layered structure in which a plurality of “substantially single-layer CNT films” are stacked, the CNTs located relatively far from the gate electrode Not enough voltage on the gate. Therefore, it is presumed that the off current does not decrease sufficiently, and as a result, the on/off ratio deteriorates (becomes small).
  • the semiconductor layer it is considered effective from the viewpoint of hysteresis reduction to cover the semiconductor layer with a sealing layer in order to limit the exposure of the semiconductor layer including the CNT network structure to the atmosphere.
  • the material of the sealing layer penetrates between the layers during the manufacturing process. Therefore, it is presumed that the gate voltage is less likely to be applied to the CNTs located relatively far from the gate electrode, and as a result, the on/off ratio is further deteriorated.
  • the substantially single-layer CNT film preferably has a CNT network structure in which two CNTs 50 intersect each other and are repeatedly connected in a planar direction in a network structure. It is a network structure of CNT.
  • the substantially single-layer CNT film preferably does not substantially have a portion in which three or more CNTs are stacked in the thickness direction (the direction orthogonal to the surface of the semiconductor layer 5), more preferably substantially Not present, more preferably not present. It can be confirmed by cross-sectional observation using an atomic force microscope (AFM) that the semiconductor layer is substantially a single-layer CNT film.
  • AFM atomic force microscope
  • the semiconductor device of the present disclosure is, in one aspect, a CNT-field effect transistor (CNT-FET), preferably a p-type CNT field effect transistor.
  • a semiconductor element 1 includes a gate electrode 2 , a source electrode 3 , a drain electrode 4 and a semiconductor layer 5 .
  • a gate insulating layer 6 is arranged between the semiconductor layer 5 and the gate electrode 2 , and the gate insulating layer 6 insulates the semiconductor layer 5 and the gate electrode 2 .
  • the source electrode 3 and the drain electrode 4 are formed on the surface of the semiconductor layer 5 opposite to the surface of the semiconductor layer 5 facing the gate insulating layer 6 with a predetermined gap (channel length) therebetween.
  • the semiconductor layer 5 includes a CNT network structure that is easy to manufacture and allows a large amount of current to flow.
  • the semiconductor layer 5 is composed of a CNT network structure.
  • a network structure refers to a structure in which the CNTs in the semiconductor layer are not oriented in a specific direction, and one CNT preferably intersects five or more other CNTs.
  • CNTs are randomly oriented in two-dimensional directions, and are scattered in all directions without being aligned in one direction. Since CNTs have such a network structure, a large electric current can flow through the semiconductor layer, and anisotropy in conductivity does not appear because they are not oriented in a specific direction.
  • a single CNT does not connect the source electrode and the drain electrode, but multiple CNTs form a conductive path between the source electrode and the drain electrode, so a small amount of metallic CNT is mixed. Even in this case, a good on/off ratio can be obtained without short-circuiting the source electrode and the drain electrode.
  • the CNT network structure is substantially a single-layer CNT film.
  • the average film thickness of the semiconductor layer 5 is 5 nm or less, preferably 4 nm or less, more preferably 3 nm or less, from the viewpoint of reducing hysteresis and improving the on/off ratio.
  • the average film thickness of the semiconductor layer 5 is preferably 0.1 nm or more, more preferably 0.3 nm or more, from the viewpoint of ensuring a sufficient amount of current.
  • the average film thickness of the semiconductor layer 5 can be measured with an atomic force microscope (AFM).
  • the CNTs are preferably in a non-aggregated state and in a non-bundled state.
  • the bundled state is a state in which a plurality of CNTs are attached to each other and bundled.
  • the gate voltage is less likely to be applied, as in the case of using multi-layered CNTs. and the on/off ratio deteriorates.
  • 10% or more of the length of one CNT overlaps with another CNT it can be said to be in a bundle state. Since the diameter of CNTs is about 1 to 2 nm, if the average film thickness of the semiconductor layer is 5 nm or less, the semiconductor layer will be substantially free of bundles (that is, in a non-bundle state).
  • the density of the carbon nanotube network is preferably 100/ ⁇ m 2 or more from the viewpoint of obtaining a sufficient drain current. Moreover, if the density is too high, a conductive path is formed between the source-drain electrodes by the metal-type CNTs that are mixed in a minute amount, and these are short-circuited, resulting in a decrease in the on/off ratio.
  • the density is preferably 8000 lines/ ⁇ m 2 or less from the viewpoint of suppressing a decrease in the on/off ratio.
  • the CNTs forming the semiconductor layer 5 are single-walled carbon nanotubes (SWCNTs) in which a graphene sheet is wound in one layer, SWCNTs and double-walled carbon nanotubes (DWCNTs) in two layers, or three or more layers. It may be a mixture with multi-walled carbon nanotubes (MWCNT), but among these, from the viewpoint of reducing leakage current and ensuring a sufficient on/off ratio, it is preferable to consist substantially only of SWCNT. is preferred, and it is more preferred to be composed only of SWCNTs. These CNTs can be identified by known means such as Raman spectroscopy.
  • the content of semiconducting CNTs in the CNTs constituting the semiconductor layer 5 is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. More preferably, it is 95% by mass or more.
  • the average length of the SWCNTs is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, still more preferably 0.5 ⁇ m or more, from the viewpoint of reducing the number of CNT intersections to ensure sufficient mobility, and From the viewpoint of reducing leakage current caused by mixed metallic CNTs and ensuring a sufficient on/off ratio, it is preferably shorter than the distance (channel length) between the source electrode and the drain electrode of the semiconductor element, more preferably the channel length. , preferably less than half the channel length. For example, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the average length of SWCNTs can be calculated, for example, by measuring the lengths of 10 or more CNTs from an image obtained using a transmission electron microscope and averaging them.
  • the unit of the SP value is (cal/cm 3 ) 1/2 .
  • [ ⁇ E coh / ⁇ V] 1/2 (1)
  • ⁇ E coh indicates cohesive energy and ⁇ V indicates molar molecular volume.
  • the dielectric constant of the material forming the sealing layer 8 is a value measured by the method described in Examples.
  • the material of the sealing layer 8 is preferably an electrically inactive compound that does not dope the semiconductor layer with electrons or holes.
  • a hydrophobic polymer is preferable.
  • an acrylic resin is preferably used from the viewpoint that it does not cause a side reaction with SWCNT during sealing and does not deteriorate the performance of the semiconductor element.
  • styrene-based resins vinyl-based resins, olefin-based resins and fluorine-based resins.
  • acrylic resins include polymethyl methacrylate (PMMA), polybutyl methacrylate, and polycyclohexyl methacrylate
  • styrene resins include polystyrene (P-St), acrylonitrile-styrene copolymer (AS), and acrylonitrile-butadiene.
  • ABS - Styrene copolymer
  • vinyl resins such as polyvinyl acetate, vinyl chloride resin (PVC), polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone (PVP), etc.
  • olefin resins polyethylene, polypropylene, cycloolefin polymer (COP), cycloolefin copolymer (COC), and the like.
  • fluorine-based resins include commercially available products such as CYTOP (registered trademark) CTL-809A (manufactured by AGC).
  • the material of the sealing layer 8 may be one of these resin materials or a combination of two or more of them.
  • the sealing layer 8 is made of polyvinyl alcohol (PVA: SP value 14.6), polyvinylpyrrolidone (PVP: SP value 13.4), vinyl chloride resin (PVC: SP value 11.0). , polystyrene (P-St: SP value 10.5), polymethyl methacrylate (PMMA: SP value 9.9), and CYTOP (registered trademark) CTL-809A (SP value 8.7, manufactured by AGC) One or more selected polymers are preferred.
  • the average thickness of the sealing layer 8 in the region (channel region) between the source electrode 3 and the drain electrode 4 is sufficient for sufficient moisture.
  • the thickness is preferably 200 nm or more, more preferably 500 nm or more, and still more preferably 1000 nm or more.
  • the average thickness of the sealing layer it is preferably 1 mm or less.
  • the average thickness of sealing layer 8 can be measured by an atomic force microscope (AFM) or a stylus profilometer.
  • the source electrode 3 and the drain electrode 4 are electrically connected by the CNT network structure of the semiconductor layer 5 functioning as a channel.
  • the material of the source electrode 3 and the drain electrode 4 is not particularly limited as long as it has conductivity.
  • the source electrode 3 and the drain electrode 4 may have a multi-layer structure with two or more kinds of metals. Methods for forming these electrodes include conventionally known methods such as vacuum deposition, electron beam, sputtering, plating, CVD, ion plating coating, inkjet, and printing, depending on the material.
  • the channel length (L) and channel width (W) may be conventionally known dimensions, and the channel length (L) is, for example, 10 ⁇ m or more and 1000 ⁇ m or less, and the channel width (W) is, for example, 10 ⁇ m or more and 10000 ⁇ m or less.
  • the present disclosure is not limited thereto.
  • a semiconductor element 1 is a so-called bottom-gate semiconductor element, in which a silicon substrate functions as a gate electrode 2, and a thermal oxide film SiO 2 formed on one main surface of the silicon substrate serves as gate insulation. It functions as a membrane 6.
  • a silicon substrate functions as a gate electrode 2
  • a thermal oxide film SiO 2 formed on one main surface of the silicon substrate serves as gate insulation. It functions as a membrane 6.
  • one main surface of the silicon substrate is entirely covered with the gate insulating film 6, but at least the source electrode 3, the drain electrode 4 and the semiconductor layer 5 are arranged. It is sufficient if the region is covered with the gate insulating layer 6 .
  • the gate insulating layer 6 may have a single-layer structure, a multilayer structure, or a partially multilayer structure.
  • the total thickness of the gate insulating layer 6 is preferably 10 nm or more, more preferably 20 nm or more, from the viewpoint of sufficiently reducing gate leakage current. From the viewpoint of reducing the operating voltage, the thickness is preferably 500 nm or less, more preferably 200 nm or less.
  • materials for the gate insulating layer include inorganic compounds such as silicon oxide, silicon nitride, and hafnium oxide, and organic compounds such as vinylphenol resin, paraxylene resin, vinylidene fluoride resin, and polyimide.
  • the semiconductor element of the present disclosure is not limited to the form in which the silicon substrate functions as the gate electrode 2, but includes a substrate having an insulating surface at least on which the electrode is arranged, and the gate electrode is arranged on the substrate. good too.
  • the substrate may be, for example, inorganic materials such as glass, sapphire, alumina sintered body, silicon wafer, and substrates whose surfaces are coated with an oxide film, polyimide (PI) resin, polyester resin, polyamide resin. , an epoxy resin, a polysulfone resin, a polyamide resin, or the like, or a film-like flexible material made of these resins.
  • the material for the gate electrode is not particularly limited as long as it has conductivity, and examples include metals such as gold, platinum, chromium, titanium, and aluminum.
  • the gate electrode is formed, for example, by evaporating these metals at an arbitrary position.
  • a separately prepared metal thin film may be placed as a gate electrode at an arbitrary position on the substrate to form the gate electrode.
  • Methods for forming these electrodes include conventionally known methods such as vacuum deposition, electron beam, sputtering, plating, CVD, ion plating coating, inkjet, and printing, depending on the material.
  • the semiconductor device of the present disclosure can adopt various aspects such as a back gate type, a side gate type, and a top gate type.
  • the surface of the gate insulating layer 6 is treated with a surface treatment agent to form an adsorption layer 9.
  • the adsorption layer 9 is , is arranged between the semiconductor layer 5 and the gate insulating layer 6 and is in contact therewith.
  • a compound having an anion group causes charge trapping due to its presence on the gate insulating layer 6, which can cause an increase in hysteresis or a decrease in the on/off ratio. It is preferably formed of a compound that does not
  • the adsorption layer 9 is preferably formed of, for example, a silane coupling agent having no anionic group, such as 3-aminopropyltriethoxysilane (APTES), methyltriethoxysilane (MTES), methyltrimethoxysilane.
  • APTES 3-aminopropyltriethoxysilane
  • MTES methyltriethoxysilane
  • methyltrimethoxysilane methyltrimethoxysilane.
  • the adsorption layer 9 may be formed, for example, by applying a solution obtained by dissolving these materials in an organic solvent to the gate insulating layer 6 by a coating method such as a dip coating method, or may be formed by a vapor phase method or the like. may be formed by
  • FIGS. 1 and 2 are cross-sectional views showing the manufacturing method of the semiconductor device 1 in order of steps.
  • a gate electrode 2 having one main surface covered with a gate insulating film 6 is prepared. Specifically, a silicon substrate (gate electrode 2) having a silicon oxide (SiO 2 ) layer (gate insulating film 6) formed by thermally oxidizing one main surface is prepared.
  • a coating film 15 is formed by applying a CNT dispersion to the entire surface of the gate insulating film 6 opposite to the surface on the side of the gate electrode 2 . Then, the CNTs are sufficiently adsorbed on the surface of the gate insulating film 6 by allowing it to stand still for a while. Thereafter, excess CNTs are removed from the coating 15 to reduce the thickness of the coating prior to drying. Then, the remaining coating film is dried to form a substantially single-layer CNT film as the semiconductor layer 5′ as shown in FIG. 5C.
  • the CNT dispersion can be applied by a method of dropping the CNT dispersion using a dispenser, a printing method such as inkjet printing, screen printing, or offset printing, a spin coating method, a dip coating method, or the like.
  • the method of dropping the CNT dispersion using a dispenser and the spin coating method are preferable from the viewpoint of forming a CNT network structure with good homogeneity.
  • the adsorption of CNTs to the surface to be coated with the CNT dispersion (the surface of the gate insulating film 6 or the surface of the adsorption layer 9 when the adsorption layer 9 (see FIG. 4) is coated) is caused by the CNTs and the surface to be coated.
  • Excess CNTs are removed from the coating film 15 before the drying treatment, preferably by the washing treatment described below.
  • the thickness of the coating film 15 before washing, the concentration of CNTs in the CNT dispersion, the time from application of the CNT dispersion to washing, etc. should be appropriately adjusted. can be done by
  • the CNT dispersion contains CNTs and a dispersion medium, and optionally a CNT dispersant.
  • the CNT concentration in the CNT dispersion is preferably 0.1 ⁇ g/mL or higher, more preferably 0.5 ⁇ g/mL or higher, and still more preferably 1.0 ⁇ g/mL or higher, from the viewpoint of ensuring a sufficient amount of current, From the viewpoint of forming a substantially single-layer homogeneous CNT network structure, it is preferably 7.0 ⁇ g/mL or less, more preferably 5.0 ⁇ g/mL or less, and even more preferably 3.0 ⁇ g/mL or less.
  • the dispersion medium is preferably an aqueous medium, and the aqueous medium is preferably pure water, ion-exchanged water, purified water or distilled water, more preferably pure water.
  • the aqueous medium may contain, in addition to water, lower alcohols such as methanol, ethanol and isopropyl alcohol, and water-soluble organic solvents such as acetone, tetrahydrofuran and dimethylformamide.
  • the semiconductor layer 5 is formed using a CNT dispersion obtained by applying a technique for increasing the content of semiconducting CNTs to a mixture of metallic CNTs and semiconducting CNTs. preferably.
  • a semiconductor obtained by the method described in JP-A-2021-080121, JP-A-2021-080120, JP-A-2021-080119, or JP-A-2019-202912 Preferably, the semiconductor layer 5 is formed using a type SWCNT dispersion.
  • These semiconducting SWCNT dispersions contain, for example, an acrylic resin as a CNT dispersant.
  • acrylic resins disclosed in these publications include polyacrylic acid, copolymers of acrylic acid and phenoxydioxyethylene acrylate (PDEA), and copolymers of acrylic acid and methoxydioxypropylene acrylate (MDPA). Polymers, copolymers of acrylic acid and polyethylene glycol monoacrylate (average number of added moles of ethyleneoxy group is 2 to 10), polyethylene glycol monomethacrylate (average number of added moles of ethyleneoxy group is 2 to 45), etc. A homopolymer is mentioned.
  • the content of semiconducting CNTs is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. Yes, more preferably 95% by mass or more.
  • the standing time from immediately after the coating film 15 is formed until the cleaning treatment for removing excess CNTs is determined from the viewpoint that the CNTs are appropriately adsorbed on the lower layer, that is, the gate insulating layer 6 or the adsorption layer 9. , preferably 1 minute or more, more preferably 5 minutes or more, still more preferably 10 minutes or more, and even more preferably 30 minutes or more, and from the viewpoint of productivity, preferably 180 minutes or less, more preferably 120 minutes or less. , and more preferably 90 minutes or less.
  • a drying process in one aspect of the method for manufacturing a semiconductor element of the present disclosure, in the formation of the semiconductor layer 5, a CNT dispersion is applied to the surface to be coated to form a coating film, the CNTs are adsorbed to the surface to be coated, and the coating film is formed. After removing excess CNTs from the coated film while it is undried, a drying treatment is performed to form the semiconductor layer.
  • the undried state refers to a state before the dispersion medium, which is a component of the CNT dispersion, is completely evaporated, for example, a state before starting the drying treatment described later. Excess CNTs are removed from the coating film 15 by, for example, washing treatment.
  • the cleaning treatment is carried out by, for example, pouring a cleaning liquid onto the coating film 15 or cleaning the coating film 15, the gate insulating layer 6, and the gate electrode after the CNTs are properly adsorbed to the lower layer through the standing time. It can be performed by a method such as immersing the laminate containing 2 in a cleaning liquid in a bath. From the viewpoint of forming a substantially single-layer CNT film and forming a homogeneous CNT network structure, it is preferable to wash the laminate including the coating film 15 by immersing it in a washing liquid in a bath.
  • the cleaning liquid ultrapure water, alcohol such as ethanol and methanol, acetone, tetrahydrofuran (THF ) are preferred.
  • the immersion time is preferably 1 minute or longer, more preferably 3 minutes or longer, still more preferably 5 minutes or longer, even more preferably 10 minutes or longer, still more preferably 30 minutes or longer, and preferably 180 minutes or shorter, More preferably 120 minutes or less, still more preferably 90 minutes or less, and even more preferably 80 minutes or less.
  • the coating film 15 washed as described above is dried to volatilize the dispersion medium to form the semiconductor layer 5'.
  • the drying process is performed, for example, by arranging in an atmosphere set at a predetermined temperature.
  • the temperature of the atmosphere is preferably 50° C. or higher, more preferably 80° C. or higher, still more preferably 100° C. or higher, and preferably 250° C. or lower, more preferably 220° C. or lower, further preferably 200° C. or lower. be.
  • the drying time is preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 20 minutes or more, still more preferably 30 minutes or more, and preferably 240 minutes or less, more preferably 180 minutes or less, and further preferably It is preferably 120 minutes or less, and still more preferably 90 minutes or less.
  • the source electrode 3 and the drain electrode 4 are formed on the semiconductor layer 5'.
  • the method of forming the source electrode 3 and the drain electrode 4 may be a conventionally known method.
  • a metal material to be the source electrode 3 and the drain electrode 4 is vacuum-deposited on each of the portions.
  • the silicon substrate 2 on which the source electrode 3 and the drain electrode 4 are formed is heated at 100° C. or more and 200° C. or less. Heating is performed for 30 minutes or more and 60 minutes or less to remove a trace amount of moisture adsorbed to the gate insulating layer 6 and the semiconductor layer 5 and perform annealing.
  • a sealing layer 8 is formed on a portion (channel region) of the semiconductor layer 5 that is arranged between the source electrode 3 and the drain electrode 4 .
  • the sealing layer 8 is formed by applying a resin solution for forming the sealing layer 8 by a coating method such as spin coating, and then drying it as necessary.
  • the present application further discloses the following semiconductor device and its manufacturing method.
  • ⁇ 1> including a gate electrode, a source electrode, a drain electrode, a semiconductor layer in contact with the source electrode and the drain electrode, and a gate insulating layer insulating the semiconductor layer from the gate electrode, wherein the semiconductor layer includes a network structure of carbon nanotubes, The semiconductor layer is sealed with a sealing layer, A semiconductor device, wherein the semiconductor layer has an average film thickness of 5 nm or less.
  • ⁇ 2> including a gate electrode, a source electrode, a drain electrode, a semiconductor layer in contact with the source electrode and the drain electrode, and a gate insulating layer insulating the semiconductor layer from the gate electrode,
  • the semiconductor layer includes a network structure of single-walled carbon nanotubes,
  • the semiconductor layer is sealed with a sealing layer having a dielectric constant of 5.0 or less,
  • the semiconductor layer includes a network structure of single-walled carbon nanotubes, The content of semiconducting carbon nanotubes among the carbon nanotubes contained in the semiconductor layer is 70% by mass or more,
  • the semiconductor layer is sealed with a sealing layer containing at least one selected from the group consisting of fluorine-based resin, acrylic resin, styrene-based resin, vinyl-based resin, and olefin-based resin, The average thickness of the sealing layer is 200 nm or more,
  • the sealing layer contains a compound having an SP value of 3 (cal/cm 3 ) 1/2 or more and 15 (cal/cm 3 ) 1/2 or less calculated by the Fedors method ⁇ 1>- ⁇ 3>
  • An adsorption layer disposed between the semiconductor layer and the gate insulating film and in contact with the semiconductor layer and the gate insulating film, wherein the adsorption layer is made of a compound having no anion group ⁇ 1>- ⁇ 4>
  • ⁇ 6> The semiconductor device according to ⁇ 5>, wherein the adsorption layer is formed of a silane coupling agent having no anionic group.
  • ⁇ 7> The semiconductor device according to any one of ⁇ 1> to ⁇ 6>, wherein the network structure has a carbon nanotube density of 100/ ⁇ m 2 or more and 8000/ ⁇ m 2 or less.
  • ⁇ 8> The semiconductor device according to any one of ⁇ 1> to ⁇ 7>, wherein in the network structure, the average length of the carbon nanotubes is shorter than the channel length of the semiconductor device.
  • ⁇ 9> The semiconductor device according to any one of ⁇ 1> to ⁇ 8>, wherein in the network structure, the carbon nanotubes have an average diameter of 0.5 nm or more and 3 nm or less.
  • a method of manufacturing a semiconductor device including a gate electrode, a source electrode, a drain electrode, a semiconductor layer in contact with the source electrode and the drain electrode, and a gate insulating layer insulating the semiconductor layer from the gate electrode can be,
  • a method of manufacturing a semiconductor device including a gate electrode, a source electrode, a drain electrode, a semiconductor layer in contact with the source electrode and the drain electrode, and a gate insulating layer insulating the semiconductor layer from the gate electrode can be,
  • the carbon nanotube dispersion is applied to form a coating film, the carbon nanotubes are adsorbed on the surface to be coated, and the excess carbon nanotubes are removed from the coating film while the coating film is undried, followed by drying. to form the semiconductor layer.
  • the carbon nanotube dispersion liquid has a carbon nanotube concentration of 0.1 ⁇ g/mL or more and 7.0 ⁇ g/mL or less.
  • ⁇ 13> The method of manufacturing a semiconductor device according to ⁇ 11> or ⁇ 12>, wherein the excess carbon nanotubes are removed by immersing the coating film in a cleaning liquid.
  • ⁇ 14> The method for manufacturing a semiconductor device according to any one of ⁇ 10> to ⁇ 13>, including preparing the carbon nanotube dispersion containing an acrylic resin.
  • the ratio of the peak area A s peculiar to semiconducting SWCNTs to the peak area A s peculiar to metallic SWCNTs of SWCNTs before dispersion (A s / m ), and the peak area A m peculiar to metallic SWCNTs of the SWCNT dispersion liquid
  • the semiconducting SWCNT content in the SWCNT dispersion liquid can be calculated from the following formula based on the semiconductor content of 67% by mass of the SWCNT before dispersion.
  • the average diameter and length of SWCNTs were calculated by measuring the diameters and lengths of 10 or more CNTs from an image obtained using a transmission electron microscope and averaging them.
  • the relative dielectric constant of the sealing layer was measured at 25° C. and 1 MHz by the capacitance method using an impedance analyzer after molding the resin used for the sealing layer into a film.
  • the transfer characteristics in semiconductor devices were measured in air.
  • the drain current (Ids) when changing the gate voltage (Vgs) was measured using a semiconductor property evaluation device (manufactured by Keithley Co., Ltd.).
  • the drain voltage (Vds) was set to -1V and the gate voltage (Vgs) was swept back and forth between 20V and -20V.
  • the on/off ratio was obtained from the maximum and minimum values of the drain current (Ids).
  • the hysteresis was calculated from the absolute value
  • of the gate voltage difference between forward (Vgs1) and backward (Vgs2) at drain current (Ids) ⁇ 100 nA.
  • the dispersed solution was centrifuged for 60 minutes using an ultracentrifuge (“CX100GXII” manufactured by Hitachi Koki Co., Ltd., rotor S50) at a rotation speed of 50000 rpm and a liquid temperature of 20°C.
  • CX100GXII manufactured by Hitachi Koki Co., Ltd., rotor S50
  • the ratio of semiconducting CNTs (semiconducting CNT content) to the total amount of CNTs (total of semiconducting CNTs and metallic CNTs) is 98 wt% CNT dispersion. I got the liquid.
  • the SWCNTs used have peaks characteristic of metallic SWCNTs in the vicinity of 100 to 220 cm -1 and peaks characteristic of semiconducting SWCNTs in the vicinity of 220 to 350 cm -1 .
  • Example 1 An adsorption layer of 3-aminopropyltriethoxysilane (APTES) was formed by a vapor phase method on a 1 cm 2 (main surface area) silicon substrate on which a 200 nm thick thermal oxide film (SiO 2 ) was deposited. bottom.
  • the CNT dispersion liquid obtained by the above method is diluted with pure water to adjust the concentration to 1.45 ⁇ g/mL in terms of CNT mass, and is applied to the entire surface of the adsorption layer to form a coating film. , and allowed to stand at room temperature for 1 hour. After that, before the drying treatment, the silicon substrate on which the coating film is formed is immersed in ultrapure water for 60 minutes to remove excess CNTs.
  • APTES 3-aminopropyltriethoxysilane
  • the network density of carbon nanotubes in the semiconductor layer was 625/ ⁇ m 2 .
  • an image of 1 ⁇ m square in the region (channel region) between the source electrode and the drain electrode in the semiconductor layer was observed. They were randomly oriented in two-dimensional directions, and one CNT intersected with five or more other CNTs.
  • the total length of the portions overlapping (intersecting) other CNTs in the length of the CNTs in the longitudinal direction was 3%.
  • Ti was deposited to a thickness of 5 nm through a metal mask so that the channel length (L) and channel width (W) were 100 ⁇ m and 1000 ⁇ m, respectively, and then Au was deposited on the Ti layer to a thickness of 100 nm.
  • a source electrode and a drain electrode each having a two-layer structure (Ti/Au) were formed by vacuum deposition as described above. The substrate on which the source electrode and the drain electrode were formed was heated at 180° C. for 1 hour.
  • Example 2 instead of a 1 wt% chloroform solution of polystyrene, a 9 wt% CT-Solv.180 solution of fluororesin (CYTOP (registered trademark), CTL-809A, manufactured by AGC) was used for spin coating (first stage: 500 rpm for 5 s, 2 Stage: 2000 rpm for 20 s), followed by heating at 180° C. for 60 minutes to fabricate a semiconductor device in the same manner as in Example 1, except that a sealing layer having an average thickness of 1200 nm was formed.
  • CYTOP registered trademark
  • CTL-809A manufactured by AGC
  • Example 3 After spin coating (first stage: 500 rpm 5 s, second stage: 3000 rpm 20 s), heating was performed at 180 ° C. for 60 minutes to form a sealing layer having an average thickness of 500 nm. A semiconductor device was fabricated in the same manner.
  • Example 4 A semiconductor device was fabricated in the same manner as in Example 1, except that a 1 wt % chloroform solution of polymethyl methacrylate was used instead of the 1 wt % chloroform solution of polystyrene to form a sealing layer having an average thickness of 500 nm.
  • Example 5 A semiconductor device was fabricated in the same manner as in Example 1, except that methyltrimethoxysilane (MTMS) was used instead of APTES as the material for the adsorption layer.
  • MTMS methyltrimethoxysilane
  • Example 6 Example except that a 1 wt% isopropanol solution of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of APTES as the material for the adsorption layer.
  • KBM-603 N-2-(aminoethyl)-3-aminopropyltrimethoxysilane
  • APTES APTES
  • Example 7 A semiconductor device was fabricated in the same manner as in Example 1, except that a 1 wt % acetone solution of polyvinyl chloride was used instead of the 1 wt % chloroform solution of polystyrene to form a sealing layer having an average thickness of 500 nm.
  • Example 8 A semiconductor device was fabricated in the same manner as in Example 1, except that a 1 wt % acetone solution of polyvinylpyrrolidone was used instead of the 1 wt % chloroform solution of polystyrene to form a sealing layer having an average thickness of 500 nm.
  • Example 9 Instead of a 1 wt% polystyrene chloroform solution, a 1 wt% polyvinyl alcohol aqueous solution was spin-coated (2000 rpm, 30 s) and then heated at 100°C for 60 minutes to form a sealing layer with an average thickness of 500 nm. A semiconductor device was fabricated in the same manner as in Example 1 except for the above.
  • Example 1 A CNT dispersion with a CNT concentration of 7.5 ⁇ g/mL was used instead of the CNT dispersion with a CNT concentration of 1.45 ⁇ g/mL, and the procedure was the same as in Example 1 except that the formation of the sealing layer was omitted.
  • a semiconductor device was fabricated by From the AFM image, the density of the carbon nanotube network in the semiconductor layer was 10000 lines/ ⁇ m 2 .
  • Example 2 A semiconductor device was fabricated in the same manner as in Example 2, except that a CNT dispersion with a CNT concentration of 7.5 ⁇ g/mL was used instead of the CNT dispersion with a CNT concentration of 1.45 ⁇ g/mL.
  • Example 3 A semiconductor device was fabricated in the same manner as in Example 1, except that a CNT dispersion with a CNT concentration of 7.5 ⁇ g/mL was used instead of the CNT dispersion with a CNT concentration of 1.45 ⁇ g/mL.
  • Example 4 A semiconductor device was fabricated in the same manner as in Example 1, except that the sealing layer was not formed.
  • FIG. 7 shows an atomic force microscope photograph of the semiconductor layer constituting the semiconductor element of Example 1. As shown in FIG. 7, it can be confirmed that the semiconductor layer has a CNT network structure.
  • the average film thickness of the semiconductor layer is 5 nm or less, so that the on/off ratio is significantly larger than that of the semiconductor devices in Comparative Examples 1 to 3. Moreover, from the comparison with Comparative Example 4, in Example, the on/off ratio did not decrease even when the sealing layer was formed. Thus, the semiconductor device of the example has a large on/off ratio and a small hysteresis.
  • the on/off ratio can be improved and the hysteresis can be reduced, which can contribute to the improvement of device performance using this.

Abstract

本開示は、ゲート電極2と、ソース電極3と、ドレイン電極4と、ソース電極3及びドレイン電極4と接する半導体層5と、半導体層5をゲート電極2と絶縁するゲート絶縁層6と、を含み、半導体層5がカーボンナノチューブのネットワーク構造を含み、半導体層5が封止層8により封止されており、半導体層5の平均膜厚が5nm以下である半導体素子1に関する。封止層8は、好ましくは、fedors法で算出されるSP値が15(cal/cm31/2以下である化合物を含む。また、封止層の比誘電率は、好ましくは5.0以下である。封止層8は、好ましくはフッ素系樹脂、アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、オレフィン系樹脂からなる群から選ばれるいずれか一種類以上を含有する。

Description

半導体素子
 本開示は、半導体素子、当該半導体素子の製造方法等に関する。
 近年、IoT(Internet of Things)が社会へ普及することで、様々なモノがインターネットに接続され、多種多様な半導体素子が求められ始めている。これらの多種多様な半導体素子では、様々な基板が使用され、例えば、フレキシブル基板を用いて作製された柔軟性を有する半導体素子や、印刷等の簡易なプロセスに適用可能な材料を用いて製造可能な半導体素子が盛んに検討されている。
 カーボンナノチューブ(CNT)は、電界効果移動度が高く、高い薬品安定性を有する。また、CNTは、溶液に分散可能なため、簡易なプロセスに適用可能な材料であり、様々な基板に対して塗布または成膜が可能である。故に、CNTは、半導体層を形成するための材料として候補に挙げられており、CNTを用いた半導体素子の検討が盛んに行われている。具体的には、CNTをチャネルに使用したCNT電界効果型トランジスタ(CNT-FET)に関する研究が勢力的に行われている。
 WO2019/066074号公報(特許文献1)には、ソース電極とドレイン電極の間のチャネル層形成領域に、CNTインクを滴下し、インクを乾燥させて、ソース電極とドレイン電極の間にCNTからなるチャネル層を形成することが開示されている。特開2008-71898号公報(特許文献2)には、CNT束が有機溶媒に分散した分散溶液をソース電極とドレイン電極の間に滴下し、滴下された分散溶液を加熱して、チャネル部を形成することが開示されている。特許文献3には、多糖類、アラビノガラクタン、またはアラビアゴムをポリマー分散剤として含むCNT分散液を塗布して塗布膜を形成し、塗布膜を乾燥処理して半導体層を形成する工程を含む電界効果トランジスタの製造方法が開示されている。特開2008-53607号公報(特許文献3)に開示の製造方法では、好ましくは、on/off比の向上のために、乾燥処理がなされた塗布膜、すなわち半導体層に対して洗浄処理がなされる。
 Appl. Master. Interface, 2014, 6, 8441.(非特許文献1)には、ヒステリシスの低減のために、CNTの高密度かつ不均一なランダムネットワークからなる半導体層をフッ素系樹脂で覆うことが開示されている。Nano Lett., 2003, 3, 193.(非特許文献2)には、チャネルとして、独立した1本のCNTを使用し、半導体素子をPMMA(ポリメチルメタクリレート)で封止することが開示されている。
 本開示は、一態様において、ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及びドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含み、前記半導体層がカーボンナノチューブのネットワーク構造を含み、前記半導体層が封止層で封止されており、前記半導体層の平均膜厚が5nm以下である、半導体素子に関する。
 本開示は、本開示の一態様の半導体素子の製造方法であり、ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及びドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含む半導体素子の製造方法であり、カーボンナノチューブ分散液を用いて、カーボンナノチューブのネットワーク構造を含み平均膜厚が5nm以下の半導体層を形成すること、および、前記半導体層を封止する封止層を形成することを含む、半導体素子の製造方法に関する。
図1は、本開示の一態様の半導体素子の模式的斜視図である。 図2は、図1に示した半導体素子の模式的I-I断面図である。 図3は、本開示の一態様の半導体素子を構成するカーボンナノチューブのネットワーク構造を説明する模式図である。 図4は、本開示の別の態様の半導体素子の模式的断面図である。 図5A~図5Cは、本開示の一態様の半導体素子の製造方法の各工程図である。 図6A~図6Cは、本開示の一態様の半導体素子の製造方法の各工程図である。 図7は、実施例1の半導体素子を構成する半導体層の原子間力顕微鏡(AFM)像である。 図8は、従来の半導体素子を構成するカーボンナノチューブのネットワーク構造を説明する模式図である。
 半導体素子の性能は、それが使用されるデバイスの性能に大きく影響するため、半導体素子が、より高性能であることが求められており、具体的には、ヒステリシスが小さいこと求められている。
 特許文献1~3に開示の半導体素子は、チャネル層または半導体層が大気に暴露された状態で動作するので、ヒステリシスが大きいという問題がある。
 非特許文献2に開示の半導体素子では、半導体素子をPMMAで封止することでヒステリシスを大幅に低減している。しかし、ナノサイズのCNTを1本だけ使用するため、わずかな電流しか流せない上に、現在の技術では量産も困難である。
 非特許文献1に開示の半導体素子は、半導体層をフッ素系樹脂で封止することで、ヒステリシスの低減に成功している。しかし、封止することにより半導体素子のon/off比は、封止しない場合より悪化して104程度になっており、実用上不十分である。
 このように、従来技術では、ヒステリシスを低減しようとするとon/off比が悪くなり、従来は、ヒステリシスが小さいこととon/off比が大きいことはトレードオフの関係にあった。
 本開示は、一態様において、ヒステリシスが小さく、且つ、on/off比が大きい、CNTを使用した半導体素子、およびその製造方法を提供する。
 CNTは、グラフェンシートが筒状に巻かれて形成された細い円筒状のものである。CNTのネットワーク構造は、隣接するCNT同士が絡み合いながら広範囲にわたって網目状に繋がった構造である。しかし、ネットワーク構造の厚さ方向のCNT密度が高く、例えば、図8に示すように、2本のCNTが交差する交点およびその付近においてさらに1本以上のCNTがそれらの上または下に積み重なった部分がネットワーク構造内に多く存在し、例えば、CNTのネットワーク構造が「実質的に単層のCNT膜」が複数積み重なった多層構造であると、ゲート電極から相対的に遠くに位置するCNTに対しゲートの電圧が十分にかからない。そのため、off電流が十分にさがらず、その結果、on/off比が悪化する(小さくなる)と推定される。
 また、CNTのネットワーク構造を含む半導体層の大気に対する暴露を制限するために、半導体層を封止層にて覆うことは、ヒステリシス低減の観点から有効であると考えられる。しかし、CNTのネットワーク構造が前記多層構造であると、封止層の材料が、その製造過程において、層と層の間に侵入する。そのため、ゲート電極から相対的に遠くに位置するCNTに対し、さらにゲートの電圧がかかりにくくなり、結果、on/off比をさらに悪化させるものと推定される。
 このように、従来技術では、ヒステリシスが小さいことと、on/off比が大きいこととは、トレードオフの関係にあった。本開示は、CNTのネットワーク構造を実質的に単層とした上で、半導体層と大気との接触を無くすための封止層を形成することにより、大きなon/off比を維持したまま、ヒステリシスを低減できることを見出したものである。CNTのネットワーク構造が実質的に単層であることは、半導体層の平均膜厚が5nm以下であることにより確認できる。本明細書では、実質的に単層のCNTのネットワーク構造を「実質的に単層のCNT膜」と呼ぶ場合がある。
 実質的に単層のCNT膜は、好ましくは、図3に示すように、CNTのネットワーク構造が、実質的に、2本のCNT50が互いに交差し、その繰り替えしによって平面方向へ網目状に繋がったCNTのネットワーク構造である。実質的に単層のCNT膜には、好ましくは、厚さ方向(半導体層5の表面と直交する方向)に3本以上のCNTが積み重なった部分が実質的に存在せず、より好ましくはほぼ存在せず、さらに好ましくは存在しない。半導体層が、実質的に単層のCNT膜であることは、原子間力顕微鏡(AFM)を用いた断面観察により確認できる。
 本開示によれば、ヒステリシスが小さく、且つ、on/off比が大きい、CNTを使用した半導体素子を提供できる。
 以下、本開示の一態様の半導体素子について、図面を参照しながら説明する。
 図1および図2に示すように、本開示の半導体素子は、一態様において、CNT-電界効果型トランジスタ(CNT-FET)であり、好ましくは、p型CNT電界効果型トランジスタである。半導体素子1は、ゲート電極2と、ソース電極3と、ドレイン電極4と、半導体層5とを含む。半導体層5とゲート電極2との間にはゲート絶縁層6が配置されて、ゲート絶縁層6は、半導体層5とゲート電極2とを絶縁している。ソース電極3とドレイン電極4は、半導体層5のゲート絶縁層6側の面の反対面上に所定の間隔(チャネル長)を開けて形成されている。半導体層5のうちのソース電極3とドレイン電極4の間に配置された部分(チャネル領域)は、半導体層5の大気との接触防止のために封止層8により覆われている。半導体素子1では、半導体層5が、製造が容易で流せる電流量も大きいCNTのネットワーク構造を含む。
 [半導体層]
 半導体層5は、CNTのネットワーク構造により構成される。本開示において、ネットワーク構造とは、半導体層のCNTが特定の方向に配向しておらず、1本のCNTが好ましくは他の5本以上のCNTと交差している構造をいう。CNTは、その長手方向が、二次元方向にランダムに配向することで一方向に揃うことなく全方向に散在する。CNTが、このようなネットワーク構造をとることで、半導体層に大きな電流を流すことができ、特定の方向に配向していないために導電性に異方性が現れることも無い。さらに、当該ネットワーク構造では、1本のCNTがソース電極とドレイン電極をつなぐのではなく、複数本のCNTでソース電極とドレイン電極の間の導電パスを形成するため、微量の金属型CNTが混入した場合にも、ソース電極とドレイン電極を短絡することなく、良好なon/off比を得ることができる。
 本開示において、CNTのネットワーク構造は実質的に単層のCNT膜である。半導体層5の平均膜厚は、ヒステリシスの低減とon/off比の向上の観点から、5nm以下であり、好ましくは4nm以下であり、さらに好ましくは3nm以下である。半導体層5の平均膜厚は、十分な電流量の確保の観点から、好ましくは0.1nm以上、より好ましくは0.3nm以上である。本開示において、半導体層5の平均膜厚は、原子間力顕微鏡(AFM)により測定できる。
 また、実質的に単層のCNT膜の効果を得るために、CNTは、非凝集状態であり、バンドルしていない状態であることが好ましい。バンドル状態とは複数本のCNTが互いに付着して束ねられている状態であり、このようなCNTを半導体層に用いると、複層のCNTを用いた場合と同様に、ゲートの電圧がかかりにくくなりon/off比が悪化する。CNT1本あたりの長さの10%以上が他のCNTと重なり合っているとバンドル状態にあるといえる。CNTの直径は1~2nm程度なので、半導体層の平均膜厚が5nm以下であれば、実質的にバンドルの無い(すなわち非バンドル状態の)半導体層となる。
 カーボンナノチューブネットワークの密度は、十分なドレイン電流を得る観点から100本/μm2以上であることが好ましい。また、密度が高過ぎると微量に混入した金属型CNTによってソース-ドレイン電極間に導電パスが形成されてこれらが短絡し、その結果、on/off比が低下する。本開示では、on/off比の低下を抑制する観点から、前記密度は8000本/μm2以下であることが好ましい。
 半導体層5を構成するCNTは、グラフェンシートを、1層に巻いたシングルウォールカーボンナノチューブ(SWCNT)のみ、または、SWCNTと、2層に巻いたダブルウォールカーボンナノチューブ(DWCNT)や3層以上に巻いたマルチウォールカーボンナノチューブ(MWCNT)との混合物であってもよいが、これらのなかでも、リーク電流を低減して十分なon/off比を確保する観点から、実質的にSWCNTのみで構成するのが好ましく、SWCNTのみで構成するのがより好ましい。なお、これらのCNTは、公知の手段、例えば、ラマン分光法などにより見分けることができる。
 CNTには、金属性を示す金属型CNTと、半導体性を示す半導体型CNTとがあり、半導体層5を構成するCNTとしては、半導体型CNTが好ましい。CNTは、高圧一酸化炭素不均化法(HiPco法)、改良直噴熱分解合成法(e-DIPS法)、アーク放電法、レーザーアブレーション法等の従来から公知の合成方法により合成されたものでよい。しかし、これらの一般的な合成方法により合成されるSWCNTは、約1/3の金属型SWCNTと約2/3の半導体型SWCNTを含む混合物であるため、半導体型SWCNTの含有率を高める技術を前記混合物に適用して得たCNT分散液を用いて半導体層5を形成するのが好ましい。半導体層5を構成するCNTのうちの半導体型CNTの含有率は、好ましくは70質量%以上であり、より好まししくは80質量%以上であり、さらに好ましくは90質量%以上であり、さらにより好ましくは95質量%以上である。
 本開示において、半導体層5における半導体型CNTの含有率は、半導体層5の形成に用いられるCNT分散液中のCNT全量(半導体型CNTと金属型CNTの合計)に対する半導体型CNTの割合とみなすことができる。本開示において、CNT分散液中および半導体層5中の半導体型CNTの割合は、例えば、実施例に記載のラマン分光光度計を用いたラマンスペクトルの測定結果から算出できる。
 SWCNTの平均直径は、十分な電界効果移動度の確保の観点から、好ましくは0.5nm以上、より好ましくは0.8nm以上であり、そして、半導体として適切なバンドギャップを持たせてリーク電流を抑え、十分なon/off比を確保する観点から、好ましくは3nm以下、より好ましくは2nm以下である。SWCNTの平均直径は、透過型電子顕微鏡を用い得られた画像から10本以上のCNTについて直径を測定し平均することで算出できる。
 SWCNTの平均長さは、CNTの交点を減らして十分な移動度を確保する観点から、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上であり、そして、混入した金属型CNTに起因するリーク電流を低減し十分なon/off比を確保する観点から、半導体素子のソース電極とドレイン電極の間隔(チャネル長)より短いことが好ましく、より好ましくはチャネル長の2/3以下、さらに好ましくはチャネル長の半分以下である。例えば、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下、さらにより好ましくは10μm以下である。SWCNTの平均長さは、例えば、透過型電子顕微鏡を用い得られた画像から10本以上のCNTについて長さを測定し平均することで算出できる。
 [封止層]
 本開示の半導体素子1では、半導体層5を防水、防塵するために、半導体層5が外気に触れることを防止する封止層8によって封止されている。封止層8は、単一層で構成されていても構わないが、複数層積層して構成させても構わない。封止層8は、従来から公知の材料にて形成されていてもよいが、ヒステリシス低減の観点から、下記式(1)を用いたFedors法により計算される溶解度パラメーター値(以下、「SP値」とも言う。)が、15以下の化合物を含んでいると好ましい。封止層8の材料のSP値は、同様の観点から、より好ましくは14以下、さらに好ましくは11以下、さらにより好ましくは9以下である。また、入手性の観点から、3以上が好ましく、4以上がより好ましく、5以上が更に好ましい。SP値の単位は、(cal/cm31/2である。
 δ=[ΣEcoh/ΣV]1/2      (1)
上記式(1)において、ΣEcohは凝集エネルギーを示し、ΣVはモル分子容を示す。
 また、半導体素子の電気特性に影響を与えないために、封止層8の材料の比誘電率は、低ければ低いほどよいが、好ましくは5.0以下より好ましくは4.0以下であり、比誘電率の下限について特に制限はないが、通常1.0以上である。封止層8を形成する材料の比誘電率は、実施例に記載の方法にて測定した値である。加えて、封止層8の材料は、半導体層に電子や正孔をドープすることがない、電気的に不活性な化合物が好ましい。
 封止層8の材料としては、疎水的なポリマーが好ましく、具体的には、好ましくは、封止の際にSWCNTと副反応せず、半導体素子の性能を悪化させないという観点から、アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、オレフィン系樹脂およびフッ素系樹脂から選ばれる少なくとも1種の重合体が挙げられる。
 アクリル系樹脂としては、ポリメタクリル酸メチル(PMMA)、ポリブチルメタクリレート、ポリシクロヘキシルメタクリレート等が、スチレン系樹脂としては、ポリスチレン(P-St)、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)等が、ビニル系樹脂としては、ポリ酢酸ビニル、塩化ビニル樹脂(PVC)、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン(PVP)等が、オレフィン系樹脂としては、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等が、フッ素系樹脂としては、市販品として、CYTOP(登録商標)のCTL―809A(AGC社製)等が挙げられる。封止層8の材料は、これらの樹脂材料のうちの1種でもよいし2種以上の組合せでもよい。また、封止層8の材料は、これらの中でも、ポリビニルアルコール(PVA:SP値14.6)、ポリビニルピロリドン(PVP:SP値13.4)、塩化ビニル樹脂(PVC:SP値11.0)、ポリスチレン(P-St:SP値10.5)、ポリメタクリル酸メチル(PMMA:SP値9.9)、およびCYTOP(登録商標)のCTL―809A(SP値8.7、AGC社製)から選ばれる1種以上の重合体が好ましい。
 ソース電極3とドレイン電極4の間の領域(チャネル領域)における、封止層8の平均厚さ(複数層積層して構成されている場合が各層の平均厚さの合計)は、十分な水分や酸素等に対するバリア性を確保してヒステリシス低減させる観点から、好ましくは200nm以上、より好ましくは500nm以上、さらに好ましくは1000nm以上である。封止層の平均厚さの上限について特に制限は無いが、好ましくは1mm以下である。本開示において、封止層8の平均厚さは、原子間力顕微鏡(AFM)または触針式表面形状測定器により測定できる。
 [ソース電極、ドレイン電極]
 ソース電極3およびドレイン電極4は、チャネルとして機能する半導体層5のCNTネットワーク構造により電気的に接続されている。ソース電極3、及びドレイン電極4の材料について、導電性を有するものであれば特に制限はなく、例えば、チタン、銅、金、白金、クロム、アルミニウム、パラジウム、モリブデンなどの金属、ポリシリコンなどの半導体、酸化錫インジウム(ITO)などの導電性金属酸化物が挙げられる。ソース電極3およびドレイン電極4は、2種以上の金属で多層構造にされていてもよい。これらの電極の形成方法としては、材料に応じて、真空蒸着、電子線ビーム、スパッタリング、メッキ、CVD、イオンプレーティングコーティング、インクジェット、印刷などの、従来から公知の方法が挙げられる。
 チャネル長(L)およびチャネル幅(W)については、従来公知の寸法でよく、チャネル長(L)は、例えば10μm以上1000μm以下であり、チャネル幅(W)は、例えば10μm以上10000μm以下であるが、本開示はこれらに限定されない。
 [ゲート電極、ゲート絶縁膜]
 本開示の一態様の半導体素子1は、いわゆるボトムゲート型の半導体素子であり、シリコン基板がゲート電極2として機能し、シリコン基板の一方の主面に形成された熱酸化膜SiO2がゲート絶縁膜6として機能している。また、図1および図2に示した例では、シリコン基板の一方の主面の全面がゲート絶縁膜6により被覆されているが、少なくともソース電極3、ドレイン電極4および半導体層5が配置された領域がゲート絶縁層6で被覆されていればよい。
 ゲート絶縁層6は、単層構造であってもよいし、多層構造であってもよいし、部分的に多層構造であってもよい。ゲート絶縁層6のトータルの厚さは、ゲートのリーク電流を十分に小さくする観点から好ましくは10nm以上、より好ましくは20nm以上である。また、動作電圧を小さくする観点から好ましくは500nm以下、より好ましくは200nm以下である。ゲート絶縁層の材料としては、例えば、酸化シリコン、窒化シリコン、酸化ハフニウム等の無機化合物、ビニルフェノール樹脂、パラキシレン樹脂、フッ化ビニリデン樹脂、ポリイミドなどの有機化合物が挙げられる。
 本開示の半導体素子は、シリコン基板がゲート電極2として機能する形態に限定されず、少なくとも電極が配置される面が絶縁性の基板を備え、当該基板にゲート電極が配置された形態であってもよい。基板は、例えば、ガラス、サファイア、アルミナ焼結体、シリコンウエハ、およびそれらの表面が酸化膜で被覆された基板等の無機材料であってよいし、ポリイミド(PI)樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリサルフォン樹脂、ポリアミド樹脂等から構成されるシートであってもよいし、これらからなるフィルム状のフレキシブル材料であってもよい。
 ゲート電極の材料としては、導電性を有するものであれば特に制限はなく、例えば、金、白金、クロム、チタン、アルミニウムなどの金属が挙げられる。ゲート電極は、例えば、任意の位置にこれらの金属を蒸着等して形成される。別個に準備した金属薄膜を、ゲート電極として前記基板の任意の位置に配置して、ゲート電極としてもよい。これらの電極の形成方法としては、材料に応じて、真空蒸着、電子線ビーム、スパッタリング、メッキ、CVD、イオンプレーティングコーティング、インクジェット、印刷などの、従来から公知の方法が挙げられる。
 本開示の半導体素子は、ゲート電極の位置により、バックゲート型、サイドゲート型、トップゲート型の各種態様を採ることができる。
 本開示の半導体素子は、図4に示すように、CNTの吸着性を高める観点から、ゲート絶縁層6の表面が表面処理剤により処理されることにより吸着層9が形成され、吸着層9は、半導体層5とゲート絶縁層6の間に配置され、これらと接する構造が好ましい。アニオン基を有する化合物は、ゲート絶縁層6上に存在することで電荷トラップの原因となり、ヒステリシスの増加原因、またはon/off比の低下要因となりうることから、吸着層9は、アニオン基を有さない化合物にて形成されていると好ましい。
 吸着層9は、例えば、アニオン基を有さないシランカップリング剤等にて形成されていると好ましく、3-アミノプロピルトリエトキシシラン(APTES)、メチルトリエトキシシラン(MTES)、メチルトリメトキシシラン(MTMS)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、オクタデシルトリクロロシラン(OTS)、フッ素置換オクタトリクロロシラン(PFOTS)、テトラシアノキノジメタン等のシランカップリング剤等にて形成されていると好ましい。吸着層9は、例えば、これらの材料を有機溶剤に溶解して得た溶液をディップコーティング法等の塗布法にてゲート絶縁層6に塗布して形成してもよいし、気相法等にて形成してもよい。
 [半導体素子の製造方法]
 次に、図1および図2に示した半導体素子1の製造方法を説明する。図5A~Cおよび図6A~Cは、半導体素子1の製造方法を工程順に示す断面図である。
 まず、図5Aに示すように、一方の主面がゲート絶縁膜6により覆われたゲート電極2を用意する。具体的には、一方の主面が熱酸化されることによって形成された酸化シリコン(SiO2)層(ゲート絶縁膜6)を有するシリコン基板(ゲート電極2)を準備する。
 次いで、図5Bに示すように、ゲート絶縁膜6のゲート電極2側の面の反対面の全面に、CNT分散液を塗布して塗膜15を形成する。そしてしばらく静置することによりCNTをゲート絶縁膜6の表面に十分に吸着させる。その後、乾燥処理を行う前に、塗膜15から余分なCNTを除去して前記塗膜の厚みを減じる。次いで、残余の塗膜に対して乾燥処理を行って、図5Cに示すように、実質的に単層のCNT膜を半導体層5'として形成する。CNT分散液の塗布は、ディスペンサーを用いてCNT分散液を滴下する方法、インクジェット印刷、スクリーン印刷、オフセット印刷等の印刷法、スピンコート法、ディップコート法等の方法により行える。なかでも、均質性の良好なCNTのネットワーク構造を形成する観点から、ディスペンサーを用いてCNT分散液を滴下する方法やスピンコート法が好ましい。CNTの、CNT分散液の被塗布面(ゲート絶縁膜6の表面、または、吸着層9(図4参照)に塗布する場合は吸着層9の表面)への吸着は、CNTと被塗布面との疎水相互作用によって行われる。塗膜15からの余分なCNTの除去は、乾燥処理を行う前に、好ましくは、後述の洗浄処理により行う。実質的に単層のCNT膜の形成は、洗浄処理前の塗膜15の厚さ、CNT分散液におけるCNTの濃度、CNT分散液を塗布してから洗浄するまでの時間等を適宜調整することにより行える。
 (CNT分散液)
 CNT分散液は、CNTと分散媒とを含み、必要に応じて、CNTの分散剤を含む。CNT分散液におけるCNTの濃度は、十分な電流量の確保の観点から、好ましくは0.1μg/mL以上、より好ましくは0.5μg/mL以上、さらに好ましくは1.0μg/mL以上であり、実質的に単層で均質なCNTのネットワーク構造を形成する観点から、好ましくは7.0μg/mL以下、より好ましくは5.0μg/mL以下、さらに好ましくは3.0μg/mL以下である。
 分散媒としては、水性媒体が好ましく、水性媒体としては、純水、イオン交換水、精製水又は蒸留水が好ましく、純水がより好ましい。水性媒体は、水以外に、メタノール、エタノール、イソプロピルアルコール等の低級アルコールや、アセトン、テトラヒドロフラン、ジメチルホルムアミド等の水溶性有機溶媒を含んでいてもよい。
 本開示の一態様では、例えば、金属型CNTと半導体型CNTとの混合物に対して半導体型CNTの含有率を高める技術を適用して得られたCNT分散液を用いて、半導体層5を形成するのが好ましい。本開示の一態様では、例えば、特開2021-080121号公報、特開2021-080120号公報、特開2021-080119号公報、または特開2019-202912号公報等に記載の方法により得られる半導体型SWCNT分散液を用いて、半導体層5を形成するのが好ましい。これらの半導体型SWCNT分散液は、CNTの分散剤として、例えば、アクリル酸系樹脂を含む。これらの公報に開示のアクリル酸系樹脂としては、例えば、ポリアクリル酸、アクリル酸とフェノキシジオキシエチレンアクリレート(PDEA)との共重合体、アクリル酸とメトキシジオキシプロピレンアクリレート(MDPA)との共重合体、アクリル酸とポリエチレングリコールモノアクリレート(エチレンオキシ基の平均付加モル数は2~10)との共重合体、ポリエチレングリコールモノメタクリレート(エチレンオキシ基の平均付加モル数が2~45)等の単独重合体が挙げられる。
 前記半導体型SWCNT分散液に含まれるCNTのうち、半導体型CNTの含有率は、好ましくは70質量%以上であり、より好まししくは80質量%以上であり、さらに好ましくは90質量%以上であり、さらにより好ましくは95質量%以上である。
 塗膜15の形成直後から、余分なCNTの除去のための洗浄処理を行うまでの静置時間は、CNTが下層、すなわち、ゲート絶縁層6または吸着層9に対するCNTの吸着を適切に行う観点から、好ましくは1分以上、より好ましくは5分以上、さらに好ましくは10分以上、さらにより好ましくは30分以上であり、生産性の観点から、好ましくは180分以下、より好ましくは120分以下、さらに好ましくは90分以下である。
 [洗浄処理]
 本開示の半導体素子の製造方法は、一態様において、半導体層5の形成において、CNT分散液を被塗布面に塗布して塗膜を形成し、CNTを被塗布面に吸着させ、塗膜が未乾燥のうちに塗膜から余分なCNTを除去した後、乾燥処理を行って、前記半導体層を形成する。ここで、未乾燥とは、CNT分散液の構成成分である分散媒が完全に蒸発する前の状態を指し、例えば、後述する乾燥処理を開始する前の状態を指す。
 塗膜15からの余分なCNTの除去は、例えば、洗浄処理により行う。洗浄処理は、上記静置時間を経て、CNTの下層への吸着が適切に行われた後、例えば、塗膜15に洗浄液を注ぎかけるか、または、塗膜15とゲート絶縁層6とゲート電極2とを含む積層体を浴槽内の洗浄液に浸漬させる等の方法により行える。実質的に単層のCNT膜であり均質なCNTのネットワーク構造を形成する観点から、塗膜15を含む前記積層体を浴槽内の洗浄液に浸漬させて洗浄する方法が好ましい。洗浄液としては、下層に吸着しており、実質的に単層のCNT膜を構成するCNTまで除去してしまわないために、例えば、超純水、エタノール、メタノール等のアルコールやアセトン、テトラヒドロフラン(THF)等の極性溶媒が好ましい。浸漬時間は、好ましくは1分以上、より好ましくは3分以上、さらに好ましくは5分以上、さらにより好ましくは10分以上、さらにより好ましくは30分以上であり、そして、好ましくは180分以下、より好ましくは120分以下、さらに好ましくは90分以下、さらにより好ましくは80分以下である。
 上記のようにして洗浄された塗膜15に対して乾燥処理を行って分散媒を揮発させ、半導体層5'とする。乾燥処理は、例えば、所定の温度に設定された雰囲気下に配置することにより行う。当該雰囲気の温度は、好ましくは50℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上であり、そして、好ましくは250℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。乾燥時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは20分以上、さらにより好ましくは30分以上であり、そして、好ましくは240分以下、より好ましくは180分以下、さらに好ましくは120分以下、さらにより好ましくは90分以下である。
 次に、図6Aに示すように、半導体層5'上に、ソース電極3およびドレイン電極4を形成する。ソース電極3およびドレイン電極4の形成方法は、従来から公知の方法でよく、例えば、半導体層5'のゲート絶縁膜6側の面の反対面上に、メタルマスクを配置し、メタルマスクの開口部に、各々、ソース電極3、ドレイン電極4となる金属材料を真空蒸着する。
 次に、図6Bに示すように、半導体層5'のうちの余分な部分をエッチングにより除去した後、ソース電極3およびドレイン電極4が形成されたシリコン基板2を、100℃以上200℃以下で30分以上60分以下加熱して、ゲート絶縁層6や半導体層5に吸着している微量水分を除去するとともに、アニーリングする。
 次に、図6Cに示すように、半導体層5のうちのソース電極3とドレイン電極4の間に配置された部分(チャネル領域)の上に封止層8を形成する。具体的には、例えば、封止層8を形成する樹脂の溶液をスピンコート等の塗布方法により塗布し、その後、必要に応じて乾燥させることにより封止層8を形成する。
 本願は、さらに以下の半導体素子、及びその製造方法等を開示する。
 <1> ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及び前記ドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含み、
 前記半導体層がカーボンナノチューブのネットワーク構造を含み、
 前記半導体層が封止層で封止されており、
 前記半導体層の平均膜厚が5nm以下である、半導体素子。
 <2> ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及び前記ドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含み、
 前記半導体層が単層カーボンナノチューブのネットワーク構造を含み、
 前記半導体層が、比誘電率が5.0以下の封止層で封止されており、
 前記半導体層の平均膜厚が0.1nm以上5nm以下である、<1>に記載の半導体素子。
 <3> ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及び前記ドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含み、
 前記半導体層が単層カーボンナノチューブのネットワーク構造を含み、
 前記半導体層に含まれるカーボンナノチューブのうちの半導体カーボンナノチューブの含有率が70質量%以上であり、
 前記半導体層が、フッ素系樹脂、アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、オレフィン系樹脂からなる群から選ばれるいずれか一種類以上を含有する封止層で封止されており、
 前記封止層の平均厚さが、200nm以上であり、
 前記半導体層の平均膜厚が0.1nm以上5nm以下である、<1>または<2>に記載の半導体素子。
 <4> 前記封止層が、fedors法で算出されるSP値が3(cal/cm31/2以上15(cal/cm31/2以下である化合物を含む、<1>~<3>のいずれかに記載の半導体素子。
 <5> 前記半導体層と前記ゲート絶縁膜の間に配置され、前記半導体層と前記ゲート絶縁膜に接する吸着層を備え、前記吸着層が、アニオン基を有さない化合物からなる<1>~<4>のいずれかに記載の半導体素子。
 <6> 前記吸着層が、アニオン基を有さないシランカップリング剤にて形成されている、<5>に記載の半導体素子。
 <7> 前記ネットワーク構造において、カーボンナノチューブの密度が100本/μm2以上8000本/μm2以下である、<1>~<6>のいずれかに記載の半導体素子。
 <8> 前記ネットワーク構造において、カーボンナノチューブの平均長さが半導体素子のチャネル長より短い、<1>~<7>のいずれかに記載の半導体素子。
 <9> 前記ネットワーク構造において、カーボンナノチューブの平均直径が0.5nm以上3nm以下である、<1>~<8>のいずれかに記載の半導体素子。
 <10> ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及び前記ドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含む半導体素子の製造方法であり、
 カーボンナノチューブ分散液を用いて、カーボンナノチューブのネットワーク構造を含み平均膜厚が5nm以下の半導体層を形成すること、および、前記半導体層を封止する封止層を形成することを含む、半導体素子の製造方法。
 <11> ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及び前記ドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含む半導体素子の製造方法であり、
 前記カーボンナノチューブ分散液を塗布して塗膜を形成し、前記カーボンナノチューブを被塗布面に吸着させ、前記塗膜が未乾燥のうちに前記塗膜から余分なカーボンナノチューブを除去した後、乾燥処理を行って、前記半導体層を形成することを含む、<10>に記載の半導体素子の製造方法。
 <12> 前記カーボンナノチューブ分散液のカーボンナノチューブ濃度が0.1μg/mL以上7.0μg/mL以下である、<11>に記載の半導体素子の製造方法。
 <13> 前記余分なカーボンナノチューブの除去を、前記塗膜を洗浄液に浸漬させることにより行う、<11>又は<12>に記載の半導体素子の製造方法。
 <14> アクリル酸系樹脂を含む前記カーボンナノチューブ分散液を調整すること、を含む、<10>~<13>のいずれかに記載の半導体素子の製造方法。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
1.各種パラメーターの測定方法
 [重合体の重量平均分子量の測定]
 SWCNT分散液の調製に使用した重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下「GPC」ともいう)法を用いて下記条件で測定した。
 <GPC条件>
測定装置:HLC―8320GPC(東ソー株式会社製)
カラム:α―M + α―M(東ソー株式会社製)
溶離液:60mmol/L、H3PO4および50mmol/L、LiBrのN,N-ジメチルホルムアミド(DMF)溶液
流量:1.0mL/min
カラム温度:40℃
検出:RI
サンプルサイズ:0.5mg/mL
標準物質:単分散ポリスチレン(東ソー株式会社製)
 [半導体型SWCNTの含有率]
 分散する前のSWCNTと、スライドガラス上で乾燥させたSWCNT分散液(分散した後のSWCNT)について、レーザーラマン顕微鏡(ナノフォトン(株)「RAMAN touch」)を用いて励起波長633nmでそれぞれラマンスペクトルを測定した。633nm励起のラマンスペクトルのRBM(Radial Breathing mode)ピーク(100~350cm-1)において、半導体型SWCNTに固有のピークと金属型SWCNTに固有のピークが存在する。分散する前のSWCNTの金属型SWCNT固有のピーク面積Amに対する半導体型SWCNTに固有のピークの面積Asの比(As/m)と、SWCNT分散液の金属型SWCNT固有のピーク面積Amに対する半導体型SWCNTに固有のピークの面積Asの比(As/m')を算出することで、分散した後のSWCNTの半導体型SWCNTの含有率を計算することができる。分散する前のSWCNTの半導体含有率67質量%を基準とし、下記式からSWCNT分散液における半導体型SWCNT含有率を計算できる。
 半導体型SWCNTの含有率=[(0.67/As/m)×As/m'×100]/[0.33+(0.67/As/m)×As/m']
 [SWCNTの平均直径及び平均長さの測定]
 SWCNTの平均直径及び平均長さは、透過型電子顕微鏡を用い得られた画像から10本以上のCNTについて直径及び長さをそれぞれ測定し平均することで算出した。
 [半導体層の平均膜厚の測定]
 原子間力顕微鏡(AFM)を用いて、熱酸化膜(SiO2)表面から半導体層表面までの高さを任意に5か所計測し、それを平均することによって、半導体層の平均膜厚を測定した。
 [カーボンナノチューブネットワークのカーボンナノチューブ密度の測定]
 原子間力顕微鏡を用いて、半導体層のうちのソース電極とドレイン電極との間の領域(チャネル領域)の画像を入手し、そのうちの1μm四方の1つの辺上に存在するCNTの本数を2乗した値をカーボンナノチューブ密度(本/μm2)として計測した。
 [封止層の平均厚さ]
 触針式表面形状測定器を用いて、ソース電極とドレイン電極との間における、半導体層表面から封止層表面までの高さを任意に5か所計測し、それを平均することによって、封止層の平均厚さを測定した。
 [封止層の比誘電率]
 封止層の比誘電率は、封止層に用いた樹脂をフィルム状に成型し、インピーダンスアナライザを用いた容量法にて、25℃、1MHzで測定した。
 [半導体素子の測定]
 半導体素子における伝達特性を大気中で測定した。ゲート電圧(Vgs)を変化させた時のドレイン電流(Ids)を、半導体特性評価装置(KEITHLEY株式会社製)を用いて測定した。ドレイン電圧(Vds)は-1Vに設定し、ゲート電圧(Vgs)を20V~-20Vの間を往復するように掃引した。このとき、ドレイン電流(Ids)の最大値と最小値からon/off比を求めた。また、ドレイン電流(Ids)=-100nAにおける行き(Vgs1)と帰り(Vgs2)のゲート電圧差の絶対値|Vgs1-Vgs2|からヒステリシスを算出した。これらの結果は、下記表1に示した。
 [CNT分散液の作製]
 ポリエチレングリコール(9)モノメタクリレート(PEG(9)MA、新中村化学社製、「MG-90G」、ポリオキシエチレンの平均付加モル数は9)を原料モノマーとして特開2021-80120号公報に記載の方法で合成した重合体(重量平均分子量:100,000)を、純水に溶解してPEG(9)MA0.5wt%水溶液を得た。PEG(9)MA0.5wt%水溶液30gに、SWCNT(NanoIntegris社製、「HiPco-Raw」、平均直径1.0nm、平均長さ0.5μm)を30mg添加して、混合液を得た。
 次いでスターラーで撹拌しながら、超音波ホモジナイザー(Branson社製「450D」)で、出力30%、液温10℃の条件にて10分間分散させた。その後、分散後の溶液を超遠心分離機(日立工機(株)社製「CX100GXII」、ローターS50)を用いて回転数50000rpm、液温20℃の条件にて60分間遠心処理を行った。その上澄み液を体積基準で液面から80%採取することで、CNT全量(半導体型CNTと金属型CNTの合計)に対する半導体型CNTの割合(半導体型CNTの含有率)が98wt%のCNT分散液を得た。
 尚、用いたSWCNTは100~220cm-1付近に金属型SWCNT固有のピークを有し、220~350cm-1付近に半導体型SWCNT固有のピークを有している。
 [実施例1]
 厚さ200nmの熱酸化膜(SiO2)が堆積している1cm2(主面の面積)のシリコン基板に対して、気相法によって3-アミノプロピルトリエトキシシラン(APTES)の吸着層を形成した。次に上記の方法で得たCNT分散液を、純水で希釈してCNTの質量で1.45μg/mLの濃度に調整し、それを吸着層の全面に塗布して塗膜を形成した後、室温下で1時間静置した。その後、乾燥処理を行う前に、塗膜が形成されたシリコン基板を、超純水に60分間浸漬させることにより、余分なCNTを除去し、その後、超純水から引き揚げ、180℃の雰囲気下で60分間乾燥させて、平均膜厚が2nmの半導体層を得た。AFM画像から半導体層のカーボンナノチューブのネットワーク密度は625本/μm2であった。また、原子間力顕微鏡を用いて、半導体層のうちのソース電極とドレイン電極との間の領域(チャネル領域)のうちの1μm四方の画像観察を行ったところ、CNTは、その長手方向が、二次元方向にランダムに配向しており、1本のCNTに対し他の5本以上のCNTと交差していた。また、前記1μm四方で観察される全てのCNTについて、CNTの長手方向の長さのうちの他のCNTと重なり合う部分(交差する部分)の長さの合計は3%であった。次に、チャネル長(L)とチャネル幅(W)がそれぞれ100μmと1000μmとなるように、メタルマスクを通して、Tiを厚さが5nm、次いで、Ti層の上にAuを厚さが100nmとなるように、それぞれ真空蒸着して、2層構造(Ti/Au)のソース電極およびドレイン電極を各々形成した。ソース電極、ドレイン電極が形成された基板を180℃で1時間加熱した。次いで、余分な半導体層をエッチングにより除去した後、ポリスチレン(Aldrich社製)の1wt%クロロホルム溶液を、スピンコート塗布(2000rpm、30s)し、平均厚さが500nmの封止層を形成した。このようにして、図1に示した半導体素子を作製した。
 [実施例2]
 ポリスチレン1wt%クロロホルム溶液の代わりに、フッ素樹脂9wt%CT-Solv.180溶液(CYTOP(登録商標)、CTL―809A、AGC社製)を用いて、スピンコート塗布(1段階目:500rpm 5s,2段階目:2000rpm 20s)した後、180℃で60分間加熱して、平均厚さが1200nmの封止層を形成したこと以外は、実施例1と同様にして半導体素子を作成した。
 [実施例3]
 スピンコート塗布(1段階目:500rpm 5s,  2段階目:3000rpm 20s)した後、180℃で60分間加熱して、平均厚さが500nmの封止層を形成したこと以外は、実施例2と同様にして半導体素子を作成した。
 [実施例4]
 ポリスチレン1wt%クロロホルム溶液の代わりに、ポリメタクリル酸メチル1wt%クロロホルム溶液を用いて平均厚さが500nmの封止層を形成したこと以外は、実施例1と同様にして半導体素子を作成した。
 [実施例5]
 吸着層の材料としてAPTESの代わりに、メチルトリメトキシシラン(MTMS)を用いたこと以外は、実施例1と同様にして半導体素子を作成した。
 [実施例6]
 吸着層の材料としてAPTESの代わりに、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン1wt%イソプロパノール溶液(KBM-603、信越化学工業社製)を用いたこと以外は、実施例2と同様にして半導体素子を作成した。
 [実施例7]
 ポリスチレン1wt%クロロホルム溶液の代わりに、ポリ塩化ビニル1wt%アセトン溶液を用いて平均厚さが500nmの封止層を形成したこと以外は、実施例1と同様にして半導体素子を作成した。
 [実施例8]
 ポリスチレン1wt%クロロホルム溶液の代わりに、ポリビニルピロリドン1wt%アセトン溶液を用いて平均厚さが500nmの封止層を形成したこと以外は、実施例1と同様にして半導体素子を作成した。
 [実施例9]
 ポリスチレン1wt%クロロホルム溶液の代わりに、ポリビニルアルコール1wt%水溶液を用いてスピンコート塗布(2000rpm、30s)し、その後、100℃60分加熱して、平均厚さが500nmの封止層を形成したこと以外は、実施例1と同様にして半導体素子を作成した。
 [比較例1]
 CNTの濃度が1.45μg/mLのCNT分散液の代わりに、CNTの濃度が7.5μg/mLのCNT分散液を用い、封止層の形成を省くこと以外は、実施例1と同様にして半導体素子を作成した。AFM画像から半導体層のカーボンナノチューブネットワークの密度は10000本/μm2であった。
 [比較例2]
 CNTの濃度が1.45μg/mLのCNT分散液の代わりに、CNTの濃度が7.5μg/mLのCNT分散液を用いたこと以外は、実施例2と同様にして半導体素子を作成した。
 [比較例3]
 CNTの濃度が1.45μg/mLのCNT分散液の代わりに、CNTの濃度が7.5μg/mLのCNT分散液を用いたこと以外は、実施例1と同様にして半導体素子を作成した。
 [比較例4]
 封止層の形成を省くこと以外は、実施例1と同様にして半導体素子を作成した。
Figure JPOXMLDOC01-appb-T000001
 図7に、実施例1の半導体素子を構成する半導体層の原子間力顕微鏡写真を示している。図7に示されるように、半導体層が、CNTのネットワーク構造を有していることが確認できる。
 表1に示すように、実施例1~9では、半導体層の平均膜厚が5nm以下であることにより、比較例1~3の半導体素子よりもon/off比が顕著に大きい。また、比較例4との比較から、実施例においては、封止層を形成しても、on/off比は低下していない。このように、実施例の半導体素子では、on/off比が大きく、且つ、ヒステリシスが小さい。
 以上説明した通り、本開示の半導体素子およびその製造方法によれば、on/off比の向上とヒステリシスの低減が行えるで、これを用いるデバイス性能の向上に寄与できる。
 1   半導体素子
 2   半導体基板(ゲート電極)
 3   ソース電極
 4   ドレイン電極
 5   半導体層
 6   ゲート絶縁層
 8   封止層
 9   吸着層
 15  塗膜
 50  カーボンナノチューブ

Claims (17)

  1.  ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及び前記ドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含み、
     前記半導体層がカーボンナノチューブのネットワーク構造を含み、
     前記半導体層が封止層で封止されており、
     前記半導体層の平均膜厚が5nm以下である、半導体素子。
  2.  前記封止層が、fedors法で算出されるSP値が15(cal/cm31/2以下である化合物を含む、請求項1に記載の半導体素子。
  3.  前記封止層の比誘電率が5.0以下である、請求項1または2に記載の半導体素子。
  4.  前記封止層が、フッ素系樹脂、アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、オレフィン系樹脂からなる群から選ばれるいずれか一種類以上を含有する請求項1~3のいずれかに記載の半導体素子。
  5.  前記封止層の平均厚さが、200nm以上である、請求項1~4の何れかに記載の半導体素子。
  6.  前記半導体層と前記ゲート絶縁膜の間に配置され、前記半導体層と前記ゲート絶縁膜に接する吸着層を備え、前記吸着層が、アニオン基を有さない化合物からなる請求項1~5のいずれかの項に記載の半導体素子。
  7.  前記カーボンナノチューブが単層カーボンナノチューブである、請求項1~6のいずれかの項に記載の半導体素子。
  8.  前記ネットワーク構造において、カーボンナノチューブの密度が100本/μm2以上8000本/μm2以下である、請求項1~7のいずれかの項に記載の半導体素子。
  9.  前記ネットワーク構造において、カーボンナノチューブの平均長さが半導体素子のチャネル長より短い、請求項1~8の何れかに記載の半導体素子。
  10.  前記半導体層に含まれるカーボンナノチューブのうちの半導体カーボンナノチューブの含有率が70質量%以上である、請求項1~9のいずれかの項に記載の半導体素子。
  11.  半導体素子が、p型電界効果トランジスタである、請求項1~10のいずれかの項に記載の半導体素子。
  12.  ゲート電極と、ソース電極と、ドレイン電極と、前記ソース電極及びドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層とを含む半導体素子の製造方法であり、
     カーボンナノチューブ分散液を用いて、カーボンナノチューブのネットワーク構造を含み平均膜厚が5nm以下の半導体層を形成すること、および、前記半導体層を封止する封止層を形成することを含む、半導体素子の製造方法。
  13.  前記カーボンナノチューブ分散液のカーボンナノチューブ濃度が0.1μg/mL以上7.0μg/mL以下である、請求項12に記載の半導体素子の製造方法。
  14.  前記半導体層の形成において、
     前記カーボンナノチューブ分散液を塗布して塗膜を形成し、前記カーボンナノチューブを被塗布面に吸着させ、前記塗膜が未乾燥のうちに前記塗膜から余分なカーボンナノチューブを除去した後、乾燥処理を行って、前記半導体層を形成する、請求項12または13に記載の半導体素子の製造方法。
  15.  前記余分なカーボンナノチューブの除去を、洗浄液を用いた洗浄により行う、請求項14に記載の半導体素子の製造方法。
  16.  前記余分なカーボンナノチューブの除去を、前記塗膜を洗浄液に浸漬させることにより行う、請求項14又は15に記載の半導体素子の製造方法。
  17.  アクリル酸系樹脂を含む前記カーボンナノチューブ分散液を調整すること、を含む請求項12~16のいずれかの項に記載の半導体素子の製造方法。
PCT/JP2022/030645 2021-11-29 2022-08-10 半導体素子 WO2023095391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111145429A TW202339286A (zh) 2021-11-29 2022-11-28 半導體元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193569 2021-11-29
JP2021-193569 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023095391A1 true WO2023095391A1 (ja) 2023-06-01

Family

ID=86539140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030645 WO2023095391A1 (ja) 2021-11-29 2022-08-10 半導体素子

Country Status (3)

Country Link
JP (1) JP2023080040A (ja)
TW (1) TW202339286A (ja)
WO (1) WO2023095391A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126727A (ja) * 2009-12-16 2011-06-30 Toray Ind Inc カーボンナノチューブ複合体、カーボンナノチューブ複合体分散液、カーボンナノチューブ複合体分散膜および電界効果型トランジスタ
US20170323930A1 (en) * 2016-05-03 2017-11-09 Tsinghua University Method for making three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circui
WO2018180146A1 (ja) * 2017-03-27 2018-10-04 東レ株式会社 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126727A (ja) * 2009-12-16 2011-06-30 Toray Ind Inc カーボンナノチューブ複合体、カーボンナノチューブ複合体分散液、カーボンナノチューブ複合体分散膜および電界効果型トランジスタ
US20170323930A1 (en) * 2016-05-03 2017-11-09 Tsinghua University Method for making three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circui
WO2018180146A1 (ja) * 2017-03-27 2018-10-04 東レ株式会社 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ

Also Published As

Publication number Publication date
TW202339286A (zh) 2023-10-01
JP2023080040A (ja) 2023-06-08

Similar Documents

Publication Publication Date Title
TWI541828B (zh) 包括內含有碳奈米管及奈米線複合物之透明導電塗層的電子元件以及其製造方法
Weitz et al. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer
US8513804B2 (en) Nanotube-based electrodes
Li et al. Efficient inkjet printing of graphene
Ha et al. Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation
Lee et al. Modification of electronic properties of graphene with self-assembled monolayers
Li et al. Solution‐processed ultrathin chemically derived graphene films as soft top contacts for solid‐state molecular electronic junctions
JP5700583B2 (ja) ドープ済みカーボンナノチューブ及びナノワイヤー複合体を含む大面積透明導電性コーティング、及びその製造方法
Jinkins et al. Substrate‐wide confined shear alignment of carbon nanotubes for thin film transistors
TW201134896A (en) Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
US9620728B2 (en) CNT thin film transistor with high K polymeric dielectric
WO2011111736A1 (ja) 電界効果型トランジスタ及びその製造方法
Basu et al. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene
KR20190019467A (ko) 용액 공정 처리된 탄소/불소중합체 전계 효과 트랜지스터와 그 전하 전이 개선 방법
Guo et al. Large-area metal–semiconductor heterojunctions realized via MXene-induced two-dimensional surface polarization
KR20150080373A (ko) 용액 공정용 그래핀의 합성 방법
WO2023095391A1 (ja) 半導体素子
Jang et al. Strategic Customization of Polymeric Nanocomposites Modified by 2D Titanium Oxide Nanosheet for High‐k and Flexible Gate Dielectrics
US20100051320A1 (en) Circuit board including aligned nanostructures
JP2024036861A (ja) 半導体素子
US20180219044A1 (en) Three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circuit
CN1269195C (zh) 一种纳米晶体管的制备方法
Lee et al. Stable doping of carbon nanotubes via molecular self assembly
CN1251247C (zh) 一种提高纳米材料电性能的方法
JP2010056484A (ja) 有機トランジスタ及び有機トランジスタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898176

Country of ref document: EP

Kind code of ref document: A1