WO2023095309A1 - 光通信システム、制御回路、記録媒体及び光通信方法 - Google Patents

光通信システム、制御回路、記録媒体及び光通信方法 Download PDF

Info

Publication number
WO2023095309A1
WO2023095309A1 PCT/JP2021/043476 JP2021043476W WO2023095309A1 WO 2023095309 A1 WO2023095309 A1 WO 2023095309A1 JP 2021043476 W JP2021043476 W JP 2021043476W WO 2023095309 A1 WO2023095309 A1 WO 2023095309A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
signals
transmission
couplers
Prior art date
Application number
PCT/JP2021/043476
Other languages
English (en)
French (fr)
Inventor
聡 吉間
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112021008476.3T priority Critical patent/DE112021008476T5/de
Priority to PCT/JP2021/043476 priority patent/WO2023095309A1/ja
Priority to JP2023552320A priority patent/JP7466792B2/ja
Publication of WO2023095309A1 publication Critical patent/WO2023095309A1/ja
Priority to US18/609,436 priority patent/US20240223926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present disclosure relates to an optical communication system, a control circuit, a recording medium, and an optical communication method for performing optical communication.
  • Patent Document 1 discloses a configuration having 1:N switches on the input side and N:1 switches on the output side. there is In such a configuration, a signal input to an input port is switched to any output port of the 1:N switch. Then, on the output port side, a selection is made in the N:1 switch to tap only the input port predetermined by the external controller, and the signal is tapped from the output port.
  • Patent Document 1 also discloses a method of using 1:N power dividers instead of 1:N switches on the input side, and a method of using N:1 power combiners instead of N:1 switches on the output side.
  • Power dividers and power combiners may be implemented with active elements, but they can also be implemented with passive elements.
  • the method of using 1:N power dividers and N:1 power combiners is similar to 1:N switches and N:1 switches in that no power is consumed in the passive devices if the power dividers and power combiners are implemented with passive devices. It is possible to reduce power consumption compared to the method using
  • input/output ports hold memories that store data, and multiple switching modules are arranged in a grid pattern to enable low-delay switching from any input port to any output port. configuration is disclosed. This arrangement has the advantage that the digital signals can be switched with the lowest possible delay.
  • Patent Document 3 discloses a configuration in which an optical coupler is used to split multiple-connected signals on the wavelength axis and the time axis in an optical fiber transmission line, and switches from an arbitrary input node to an arbitrary output node. This configuration has the advantage of being able to realize a switching function while making full use of the broadband characteristics of the optical fiber.
  • Patent Document 1 discloses a switch device having a 1:N switch or an N:1 switch, or a 1:N switch and an N:1 switch when realizing a switching function. Since these switches are active elements that require an external power supply, the switch devices described above have the problem of increased power consumption and reduced reliability.
  • the switch device described in Patent Document 1 is a switch device used in a bend-pipe satellite that switches input high-frequency signals without digitizing them. Therefore, the switch device described in Patent Document 1 also has a problem that the device, including peripheral devices such as power supply equipment, becomes large in size.
  • the switch device described in Patent Document 2 digitizes an input high-frequency signal using an ADC (Analog-to-Digital Converter) and performs switching. Therefore, while the switch device described in Patent Document 2 has an advantage in terms of increasing the size of the device, highly integrated electronic circuits such as ASIC (Application Specific Integrated Circuit) and FPGA (Field-Programmable Gate Array) are used. There is a problem that power consumption increases due to the switch function used. A problem with highly integrated electronic circuits is that they are inferior to passive devices in terms of reliability.
  • ADC Analog-to-Digital Converter
  • An object of the present invention is to obtain an optical communication system that
  • an optical communication system provides a plurality of packet signals, each of which converts a first data signal, which is an electrical signal, into packet signals of a plurality of optical signals and transmits them. and a packet signal of a plurality of optical signals transmitted from a portion of the plurality of optical transmitters and the portion of the plurality of optical transmitters. multiplexing packet signals of a plurality of optical signals transmitted from different optical transmission devices, and branching the packet signals of the optical signals obtained by combining into transmission signals of a plurality of optical signals of the same information and outputting them and a plurality of optical couplers.
  • An optical communication system receives, from a plurality of optical couplers, one of transmission signals of a plurality of optical signals branched by the plurality of optical couplers, and converts the received transmission signal into an electrical signal.
  • a plurality of optical receivers for converting the signal into two data signals and outputting the same; and a controller for controlling the operations of the plurality of optical transmitters and the plurality of optical receivers.
  • the multiplexing number of some optical couplers out of the plurality of optical couplers is smaller than the number of the plurality of optical transmitters.
  • the number of multiplexed waves of the remaining optical couplers among the plurality of optical couplers is the same as the number of the plurality of optical transmitters.
  • each of the plurality of optical transmitters controls the signals to be transmitted so as not to collide with packet signals of optical signals transmitted from other optical transmitters.
  • a communication resource is allocated and a packet signal of a plurality of optical signals is transmitted.
  • Each of the plurality of optical receivers converts the received transmission signal into an electrical transmission signal, and selects a designated signal portion from the electrical transmission signal based on the second control signal acquired from the control unit. and outputs the selected signal portion as a second data signal.
  • the optical communication system enables switching from any input port to any output port, achieves low power consumption and high reliability, and achieves highly efficient transfer. play.
  • FIG. 1 is a diagram showing the configuration of an optical communication system according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of input/output signals of each component included in the optical communication system according to Embodiment 1;
  • the amount of data aggregated by the optical coupler connected to the TDMA (Time Division Multiple Access) signal generator of the optical communication system according to Embodiment 1 is large, and all the transfer request signals cannot fit within the time domain.
  • FIG. 4 is a flow chart showing the procedure of operations performed by the optical communication system according to the first embodiment; 6 is a flow chart showing the procedure of operations performed by the optical communication system according to the second embodiment; 10 is a flow chart showing the procedure of operations performed by the optical communication system according to the third embodiment;
  • FIG. 4 is a diagram showing a processing circuit when a control unit included in the optical communication system according to Embodiment 1 is realized by the processing circuit;
  • FIG. 4 is a diagram showing a processor when a controller included in the optical communication system according to Embodiment 1 is realized by the processor;
  • FIG. 2 shows a computer-readable recording medium recording a program for causing a computer to execute a method executed by the optical communication system according to the first embodiment;
  • optical communication system control circuit, recording medium, and optical communication method according to the embodiments will be described in detail below with reference to the drawings.
  • FIG. 1 is a diagram showing the configuration of an optical communication system 1 according to Embodiment 1.
  • the optical communication system 1 has a configuration of N inputs ⁇ J outputs, and has a function of switching a signal from an arbitrary input port to an arbitrary output port.
  • the optical communication system 1 includes a control unit 100, TDMA signal generation units 200-1 to 200-N, optical transmitters 301-1 to 30N-(M+1), optical amplifiers 400-1 to 400-N, optical It has couplers 501-1 to 50(L+1), optical receivers 6011-1 to 60J(L+1), and TDMA signal selectors 700-1 to 700-J. All of N, M, L, K and J are integers of 2 or more. Both L and K are less than N. It should be noted that, in the following, there are cases where each component of the optical communication system 1 is not given a code.
  • the optical transmitters 301-1 to 30N-(M+1) are examples of a plurality of optical transmitters.
  • Each of the plurality of optical transmitters converts a first data signal, which is an electrical signal, into a packet signal of a plurality of optical signals and transmits the packet signals.
  • Optical couplers 501-1 to 50(L+1) are examples of multiple optical couplers.
  • Each of the plurality of optical couplers couples a packet signal of a plurality of optical signals transmitted from a portion of the plurality of optical transmitters with the portion of the plurality of optical transmitters.
  • a plurality of packet signals of optical signals transmitted from different optical transmitters are multiplexed, and the packet signals of the optical signals obtained by the multiplexing are branched into transmission signals of a plurality of optical signals of the same information and output.
  • the optical receivers 6011-1 to 60J(L+1) are examples of multiple optical receivers.
  • Each of the plurality of optical receivers receives one of transmission signals of the plurality of optical signals branched by the plurality of optical couplers from the plurality of optical couplers, and converts the received transmission signal to second data which is an electrical signal. Convert to signal and output.
  • a control unit 100 controls operations of a plurality of optical transmitters and a plurality of optical receivers.
  • the multiplexing number of some optical couplers out of the plurality of optical couplers is smaller than the number of the plurality of optical transmitters.
  • the number of multiplexing waves of the remaining optical couplers among the plurality of optical couplers is the same as the number of the plurality of optical transmitters.
  • each of the plurality of optical transmitters transmits signals so as not to collide with packet signals of optical signals transmitted from other optical transmitters. to transmit a packet signal of a plurality of optical signals.
  • Each of the plurality of optical receivers converts the received transmission signal into an electrical transmission signal, and converts a designated signal portion from the electrical transmission signal based on the second control signal acquired from the control unit 100. Selecting and outputting the selected signal portion as a second data signal.
  • any one of the optical amplifiers 400-1 to 400-N is connected to an optical coupler having the same multiplexing number as the number of the plurality of optical transmitters among the plurality of optical transmitters.
  • An optical amplifier located at the output of the transmitter.
  • An optical communication system 1 is an optical transmitter connected to an optical coupler having the same multiplexing number as the number of optical transmitters out of a plurality of optical couplers, out of a plurality of optical transmitters and a plurality of optical receivers. and optical amplifiers located at the input and output of the optical receiver.
  • the control unit 100 analyzes the amount of total optical signals that can be multiplexed by an optical coupler having a multiplexing number smaller than the number of multiple optical transmitters among multiple optical couplers, and multiplexes the total optical signals by the optical coupler. If the total optical signal can be combined, the total optical signal is transmitted to the optical coupler, and if the total optical signal cannot be multiplexed by the optical coupler, the plurality of optical transmitters among the plurality of optical couplers to each of the plurality of optical transmitters.
  • Each of the plurality of optical transmitters and the plurality of optical receivers stops operating during a period of time during which neither packet signals are transmitted nor received.
  • optical communication system 1 Each component of the optical communication system 1 will be further described below.
  • the TDMA signal generator has a group of optical transceivers with different numbers of input connections in the connected optical couplers. For example, focusing on the TDMA signal generation unit 200-1, the optical transmitters 301-1 to 301-M connected to the optical couplers 501-1 to 501-M having K optical coupler inputs transmit the first optical signal. A group of transmitters. The optical transmitter 301-(M+1) connected to the optical coupler 50(L+1) having N optical coupler inputs is the second optical transmitter group.
  • the second optical transmitter group only one optical transmitter of the optical transmitter 301-(M+1) is illustrated, but like the first optical transmitter group, an arbitrary integer of 2 or more A number of optical transmitters may be arranged in parallel.
  • the second optical transmitter group has a plurality of optical transmitters arranged in parallel, the plurality of optical amplifiers from optical amplifier 400-1 to optical amplifier 400-N and the optical coupler 50(L+1) are also parallelized. and a plurality of optical receivers from optical receiver 601(L+1) to optical receiver 60J(L+1) are also parallelized.
  • the optical amplifiers 400-1, 400-2, . It may be arranged on the side of the optical receivers 601(L+1), 602(L+1), .
  • the optical amplifiers 400-1, 400-2, . . . , 400-N may be arranged not only on one side of the input side or the output side of the optical coupler, but also on both sides of the input side and the output side.
  • Each of TDMA signal generators 200-1 to 200-N adjusts the timing so that the input signal does not collide with time-division multiplexed signals generated by other TDMA signal generators on the time axis.
  • intermittent signal on the top and pass the signal to each connected optical transmitter.
  • the TDMA signal generator 200-1 transfers signals to the optical transmitters 301-1 to 301-(M+1).
  • the electrical signal output from each of the TDMA signal generators 200-1 to 200-N may be a signal followed by "0" indicating no signal, or an idle signal indicating no signal, except for intermittent signal portions. It may also be a signal, for example a "10" alternating signal.
  • the TDMA signal generator and the optical transmitter are coupled by AC (Alternating Current) coupling using a capacitor, so it is possible to insert a DC-balanced idle signal to avoid DC (Direct Current) drift.
  • a gate signal indicating which portion is an intermittent signal portion and which portion is an idle signal is also passed to the optical transmitter through a separate signal line.
  • the gate signal may be passed from the TDMA signal generation section to the optical transmitter, or may be passed from the control section 100 that controls the whole to the optical transmitter.
  • the optical transmitter converts the electrical signal input from the corresponding TDMA signal generator into an optical signal, and transmits the optical signal to the optical fiber network.
  • each of the optical transmitters 301-1 to 301-(M+1) converts the electrical signal input from the TDMA signal generator 200-1 into an optical signal and sends the optical signal to the optical fiber network.
  • the optical transmitter emits light only in the time domain for converting the signal received from the corresponding TDMA signal generator into an optical signal, and transitions to a non-emitting state in other time domains so as not to interfere with signals from other optical transmitters. .
  • FIG. 2 is a diagram showing an example of input/output signals of each component included in the optical communication system 1 according to the first embodiment.
  • the signal to be transferred in all of TDMA signal generation sections 200-1 to 200-K is Consider a situation that occurs but does not forward the signal to optical transmitter 301-(M+1).
  • the input signal to the TDMA signal generator is a continuous signal with a constant voltage amplitude.
  • the TDMA signal generator chops the input signal in a certain time domain or a certain signal block domain, packetizes the input signal for passing the signal to each optical transmitter, and increases the transmission rate accordingly.
  • FIG. 2 shows how the input signal is segmented in the time domain, emphasizing ease of understanding.
  • the TDMA signal generator divides the input signal into time domains Tc. All input signals separated by the time domain Tc are passed to the TDMA signal selector 700-1.
  • the time widths of the signals passed to the optical receivers connected to one TDMA signal generator are all the same and occur at the same timing. As long as there is no conflict on the network, the time widths of the signals passed to the optical receivers may be different, and they do not have to occur at the same timing.
  • all the output signals of the optical transmitter are indicated as "1", but this is to indicate the output from the TDMA signal generation section 200-1, and the contents of the packets indicated in parallel are All different.
  • the output packet from the optical transmitter 301-1 indicates a signal from 0 msec to 0.125 msec relative to the input signal of the TDMA signal generator 200-1, and the output packet from the optical transmitter 301-2 indicates the same relative time. A signal from time 0.125 msec to 0.25 msec is shown.
  • each optical coupler has K input ports and J output ports.
  • K is an integer greater than or equal to 2 and less than N; Since K is an integer equal to or greater than 2 and smaller than N, the number of input ports of the optical coupler can be reduced and the time width that can be assigned to one optical transmitter can be widened.
  • the time width is Tp in FIG.
  • the second column from the right in FIG. 2 shows a sequence of packets from the optical receivers 6011-1 to 601LM connected to the TDMA signal selector 700-1 after being multiplexed by the optical coupler. .
  • the optical receivers 601L-M are not shown for the sake of simplification of the drawing, the optical receivers 601L-M are represented by a rectangle surrounded by the optical receivers 601L-1 in FIG. 1 and indicated by broken lines. are provided inside the area of Each of the optical couplers 501-1 to 50L-M demultiplexes the input signal and passes the signal to other optical receivers. are also received by the optical receivers 6021-1 to 602L-M to the optical receivers 60J1-1 to 60JL-M connected to the TDMA signal selectors 700-2 to 700-J.
  • the packets indicated as "1” have a relative time from 0 msec to 0.125 msec of the input signal of the TDMA signal generator 200-1.
  • the packet described as "2” contains the signal from the relative time 0 msec to 0.125 msec of the input signal of the TDMA signal generation unit 200-2, and is described as "K”.
  • the packet contains a signal from 0 msec to 0.125 msec relative to the input signal of the TDMA signal generator 200-K, and has a cycle of 1 msec in total.
  • the packet train input to the optical receivers 6011-2, 6021-2, .
  • a signal up to .25 msec is included. Since the optical communication system 1 generates a packet sequence as described above, the signal input from any TDMA signal generation section is reconfigured into a signal with a relative time of 0 msec to 1 msec for all TDMA signal selection sections. and select the TDMA signal. Up to this point, it is assumed that all packets have signals with the same relative time width. However, the packet may be a packet having a signal with a different time width for each TDMA signal generator.
  • Each of the optical receivers 6011-1 to 601LM converts an input optical signal into an electrical signal.
  • the transmission path loss from each optical transmitter to the optical receiver or the output optical power of the optical transmitter is different for a sequence of packets input to a certain optical receiver, a difference occurs in the optical level between the packets.
  • This optical level difference can be absorbed without changing the photoelectric conversion gain of the optical receiver, i.e., the signal can be converted to a signal of constant voltage amplitude. It may become necessary to change the conversion gain for each packet.
  • the relative phases are generally different.
  • the phase of the rising edge and the phase of the falling edge are generally different.
  • the ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • G.I.T International Telecommunication Union Telecommunication Standardization Sector
  • preamble lengths from 128.6 ns to 610.9 ns are defined as preamble lengths, and an appropriate preamble pattern may be inserted according to the system configuration.
  • the longer the preamble length the more relaxed the optimization time required for the optical transmitter and optical receiver, but the higher the transmission speed or time compression rate is required to maintain the desired switching capability.
  • the TDMA signal selector converts the temporally intermittent extracted signal into a temporally continuous signal, converts the transmission rate to match the system connected to the subsequent stage, and transmits the signal.
  • Control information necessary for such control and a reference clock for operating the entire optical communication system 1 in synchronization are supplied from the control unit 100 to the TDMA signal generation unit and the TDMA signal selection unit. be.
  • the controller 100 may supply other necessary control signals to each optical transmitter and each optical receiver.
  • Other necessary control signals mentioned above are, for example, state transition signals of the optical transmitter. 2 only shows lines for supplying signals from the control unit 100 to other components, but each component transmits status information, for example, failure information to the control unit 100 as necessary. and the control unit 100 may change the allocation or destination of the packet signal based on the state information.
  • the above method is a signal transfer method when the optical transmitter 301-(M+1) is not used when the signal is transferred from the TDMA signal generation section 200-1 to the TDMA signal selection section 700-1.
  • a signal transfer method when the optical transmitter 301-(M+1) is also used will be described below. Even when the optical transmitter 301-(M+1) is used, the contents of the above description are maintained unless otherwise specified.
  • FIG. 3 shows that the amount of data collected by optical couplers 501-1 to 501-M connected to TDMA signal generation section 200-1 of optical communication system 1 according to Embodiment 1 is large, and the amount of data is within time domain Tc.
  • 1 is a schematic diagram showing a situation when all transfer request signals cannot fit into .
  • the overflowed data is discarded or the next time of the illustrated time domain Tc is discarded. It is necessary to buffer overflow data in the TDMA signal generator up to the area. If the data is discarded, it becomes necessary to retransmit the data between the TDMA signal generator and the TDMA signal selector, and if the data is buffered, the transfer data delay increases.
  • FIG. 4 shows an example of input/output signals of each component of the optical communication system 1 according to the first embodiment when data is retransmitted or when a delay in transfer data increases.
  • 1 is a schematic diagram showing FIG.
  • a signal can be transferred to a desired TDMA signal selection section without transferring data to the TDMA signal selector.
  • the TDMA signal generation unit 200-1 divides the signal in consideration of the optical transmitter 301-(M+1) in order to avoid transfer data overflow. , 60J(L+1) from the optical transmitter 301-(M+1) on the optical fiber transmission line. or only signals from limited optical transmitters are multiplexed on the time axis, the time width Tp′ that can be assigned to the optical transmitter 301-(M+1) is the time width Tp more likely to be increased.
  • the optical communication system 1 includes the optical amplifiers 400-1 to 400-N to compensate for the loss occurring in the optical coupler 50(L+1) and Secure enough optical reception power to reproduce the
  • the optical receiver can reproduce the signal without an optical amplifier.
  • a configuration may be adopted in which the optical amplifiers 400-1 to 400-N are eliminated and the optical transmitters are directly connected to the optical couplers.
  • optical transmitters 301-(M+1), 302-(M+1), . may have a lower transmission speed than the other optical transmitters and optical receivers.
  • optical transmitters 301-(M+1), 302-(M+1), . By reducing the transmission rate to 1/10 that of the other optical transmitters and optical receivers, the reception sensitivity of optical reception can be improved by 10 to 15 dB. In this case, the number of input ports N and the number of output ports J that enable signal transmission without using the optical amplifiers 400-1, 400-2, . . . , 400-N can be increased.
  • the number of optical transmitters and optical receivers connected to each TDMA signal generation section and each TDMA signal selection section is an integer value of 2 or more as described above.
  • each of the plurality of optical transmitters and the plurality of optical receivers may be arranged in parallel.
  • FIG. 5 is a flow chart showing the procedure of operations performed by the optical communication system 1 according to the first embodiment. The operation shown in this flowchart is performed for each time domain Tc to which data is allocated.
  • the control unit 100 selects a group of K input optical couplers, that is, M optical couplers of optical couplers 501-1, 501-2, . It is calculated how much time width Tp can be allocated after merging (S1). That is, in step S1, the control unit 100 calculates the total amount of data to be joined by the uncalculated K-input optical coupler group. The calculation in step S1 enables the control unit 100 to grasp in advance how switching should be performed from all the TDMA signal generation units 200-1 to 200-N to all the TDMA signal selection units 700-1 to 200-J.
  • the switching information may be input to the control unit 100 from the outside of the optical communication system 1, and each TDMA signal generation unit may obtain the switching information from the header information of the input signal.
  • the destination TDMA signal selection section information may be read, and the destination information and transfer data amount may be passed to the control section 100 .
  • the control unit 100 determines whether or not the calculated total amount of data after joining the K-input optical coupler group is less than a preset first threshold that allows transfer of the TDMA signal (S2).
  • a K-input optical coupler group is optical couplers 501-1, 501-2, . . . , 501-M. If the controller 100 determines that the total data amount is less than the first threshold (Yes in S2), the optical transmitter transmits all data to the K input optical coupler group (S3).
  • the first threshold is a value excluding the length of the preamble to be added to the beginning of each TDMA signal in the time domain Tc, the time required for the packet interval, and the information related to the encoding required for transmission. can decide. Examples of encoding-related information required for transmission are 64B/66B line codes as specified in 10 Gigabit Ethernet (registered trademark), or parity bits when forward error correction codes are used. .
  • each TDMA signal connected to the K input optical coupler group The total amount of data that will overflow from the generator is calculated and held (S4).
  • the K input optical coupler group is optical couplers 501-1, 501-2, . -K.
  • the control unit 100 performs calculations similar to those described above for other K-input optical coupler groups.
  • An example of another K-input optical coupler group is optical couplers 502-1, 502-2, . . . , 502-M. That is, the control unit 100 sequentially performs calculations similar to the above-described calculations up to the last K input optical coupler group.
  • the final group of K input optical couplers are optical couplers 50L-1, 50L-2, . . . , 50L-M.
  • the control unit 100 determines whether or not calculations have been performed for all K-input photocoupler groups (S5, S6). When the control unit 100 determines that the calculation has not been performed for all the K-input optical coupler groups (No in S5 and S6), it performs the operation of step S1. When the control unit 100 determines that calculation has been performed for all K-input optical coupler groups (Yes in S5), the optical communication system 1 ends the first operation.
  • the control unit 100 ends the calculation, and the operation of the optical communication system 1 transitions to the mode of waiting for the next time region Tc.
  • the control unit 100 determines that the calculation has been performed for all the K-input photocoupler groups (in S6 Yes)
  • the second threshold is a preset threshold at which a TDMA signal can be transferred over the group of N-input optocouplers.
  • the optical transmitter transmits all data to the K input optical coupler group and the N input optical coupler group.
  • the second threshold like the first, relates to the length of the preamble to be prepended to each TDMA signal in the time domain Tc, the time required for packet spacing, and the encoding required for transmission. It can be determined as a value excluding information. Examples of coding-related information are 64B/66B line codes as specified in 10 Gigabit Ethernet, or parity bits if forward error correction codes are used.
  • the optical transmitter assigns the maximum amount of data that can be allocated to the K input optical coupler groups and the N input optical couplers. The remaining data that could not be assigned to the input optical coupler group and transmitted are waited until the next time region Tc and are preferentially assigned as transfer data (S9).
  • the optical communication system 1 performs the operation shown in the flowchart of FIG. Even if a small amount of data is input to the TDMA signal generator, the overall data transfer can be performed efficiently. Furthermore, the optical communication system 1 has an optical coupler, which is a passive element, for both signal coupling and branching, thereby enabling switching from an arbitrary input port to an arbitrary output port, reducing power consumption and reducing power consumption. High reliability and highly efficient transfer can be achieved.
  • Embodiment 2 As described above, in Embodiment 1, the method of first distributing the signals input to the TDMA signal generator to the K input optical coupler group and then dividing the overflowed signal to the N input optical coupler group has been described. However, signals may be distributed by a method different from the method of the first embodiment. Embodiment 2 will explain a method of distributing signals according to the priority of the signals. In Embodiment 2, differences from Embodiment 1 will be mainly described.
  • FIG. 6 is a flow chart showing the procedure of operations performed by the optical communication system 1 according to the second embodiment.
  • the configuration from the control section and TDMA signal generation section to the TDMA signal selection section is the same as the configuration described in the first embodiment.
  • the control unit 100 provides K input optical coupler groups, that is, optical couplers 501-1, 501-2, . . . , 501- It is calculated how much time width Tp can be allocated after merging of M optical couplers.
  • the above calculation performed by the control unit 100 determines how the control unit 100 should switch from all the TDMA signal generation units 200-1 to 200-N to all the TDMA signal selection units 700-1 to 200-J. This is possible because is known in advance.
  • the switching information may be input to the control unit 100 from the outside of the optical communication system 1, and each TDMA signal generation unit may determine the destination from the header information of the input signal.
  • the TDMA signal selector information may be read, and the destination information and transfer data amount may be passed to the controller 100 .
  • the control unit 100 uses data priority as the basis for calculating the allocated time width Tp.
  • the optical transmitter transmits high-priority data to a certain K-input optical coupler group (S11).
  • An example of a K-input optical coupler group is optical couplers 501-1, 501-2, . . . , 501-M. Now assume that the amount of high priority data does not exceed the amount of data that can be transferred to the K-input optocoupler group. If the amount of high priority data exceeds the amount, the control unit 100 makes adjustments and cancels the high priority or waits until the next time domain Tc.
  • the control unit 100 determines whether or not the K-input photocoupler group has vacant time for data allocation (S12). When the control unit 100 determines that there is a vacant time for data allocation to the K input photocoupler group (Yes in S12), it calculates the amount of low-priority data that can be transferred to the K input photocoupler group (S13). Low priority data is data other than high priority data. The control unit 100 determines whether or not the amount of low-priority data exceeds a preset first threshold at which a TDMA signal can be transferred (S14). That is, in step S14, the control unit 100 determines whether or not the total data amount of the low priority data is less than the first threshold.
  • the optical transmitter transmits all low-priority data to the K-input optical coupler group (S15).
  • the first threshold is the length of the preamble to be added to the beginning of each TDMA signal in the time domain Tc, the time required for the packet interval, and the information related to the encoding required for transmission. can be determined as Examples of encoding-related information required for transmission are 64B/66B line codes as specified in 10 Gigabit Ethernet (registered trademark), or parity bits when forward error correction codes are used. .
  • the control unit 100 determines that there is no idle time in the K input optical coupler group only by allocating the high priority data (No in S12), and when the total amount of data for the low priority data is equal to or greater than the first threshold value. If so (No in S14), the total data amount, which is the amount of data overflowing from each TDMA signal generator connected to the K input optical coupler group, is calculated and held (S16). Examples of the TDMA signal generators connected to the K input optical coupler group are TDMA signal generators 200-1, 200-2, . . . , 200-K.
  • the control unit 100 performs calculations similar to those described above for other K-input optical coupler groups.
  • An example of another K-input optical coupler group is optical couplers 502-1, 502-2, . . . , 502-M. That is, the control unit 100 sequentially performs calculations similar to the above-described calculations up to the last K input optical coupler group.
  • the final group of K input optical couplers are optical couplers 50L-1, 50L-2, . . . , 50L-M.
  • the control unit 100 determines whether or not calculations have been performed for all K-input photocoupler groups (S17). If the control unit 100 determines that all the K-input optical coupler groups have not been calculated (No in S17), it performs the operation of step S11. When the control unit 100 determines that calculation has been performed for all K-input optical coupler groups (Yes in S17), the optical communication system 1 according to the second embodiment ends its operation. That is, if all data is transmitted to all K-input optical coupler groups, the calculation ends there, and the operation of the optical communication system 1 transitions to the mode of waiting for the next time domain Tc.
  • step S16 the control unit 100 performs the same operation as that of step S17 (S18). If the control unit 100 determines that all the K-input optical coupler groups have not been calculated (No in S18), it performs the operation of step S11. If the control unit 100 determines that the calculation has been performed for all the K input optical coupler groups (Yes in S18), the total amount of data overflowing from all the K input optical coupler groups is calculated by the preset N input optical coupler group. A determination is made as to whether or not the TDMA signal transferable second threshold is exceeded (S19).
  • the optical transmitter controls the K input optical coupler groups and the N input optical All data are sent to the coupler group (S20).
  • the second threshold like the first, relates to the length of the preamble to be prepended to each TDMA signal in the time domain Tc, the time required for packet spacing, and the encoding required for transmission. It can be determined as a value excluding information. Examples of coding-related information are 64B/66B line codes as specified in 10 Gigabit Ethernet, or parity bits if forward error correction codes are used.
  • the optical transmitter assigns the maximum amount of data that can be allocated to the K input optical coupler group and the N input optical coupler groups.
  • the remaining data that could not be assigned to the input optical coupler group and transmitted are waited until the next time region Tc and are preferentially assigned as transfer data among the low-priority data (S21).
  • the priority is divided into two, high priority and low priority, in the second embodiment, the priority may be divided into three or more. It is assigned to the K input optical coupler group.
  • Embodiment 2 while high-priority data is firstly transferred reliably, input data is concentrated only in the TDMA signal generation units connected to a specific group of K-input optical couplers, and is input to the other TDMA signal generation units. Even if the data is not input so much, it is possible to efficiently transfer the data as a whole.
  • the control unit 100 analyzes the priority of first data signals converted into optical signals by each of the plurality of optical transmitters, and assigns the data signal with the highest priority among the first data signals to the plurality of optical transmitters.
  • the control unit 100 causes the optical coupler having a multiplexing number smaller than the number of multiple optical transmitters out of the optical couplers to transmit, and the control unit 100 selects the next highest priority among the first data signals out of the multiple optical couplers.
  • the optical coupler is made to transmit the data signal with the next highest priority, and the data signal with the next highest priority is transmitted.
  • the data signal with the next highest priority is transmitted to the optical coupler having the same multiplexing number as the number of multiple optical transmitters among the multiple optical couplers. to each of the plurality of optical transmitters.
  • Embodiment 3 As described above, in Embodiments 1 and 2, the method of first distributing the signal input to the TDMA signal generation unit to the K input optical coupler group and dividing the overflowed signal into the N input optical coupler group will be described. bottom. However, the signals may be distributed in different ways. In the third embodiment, a method of changing the data allocation method according to the density of data in the entire optical communication system 1 will be described. In Embodiment 3, differences from Embodiment 1 will be mainly described.
  • FIG. 7 is a flow chart showing the procedure of operations performed by the optical communication system 1 according to the third embodiment.
  • the configuration from the control section and TDMA signal generation section to the TDMA signal selection section is the same as the configuration described in the first embodiment.
  • the control unit 100 provides K input optical coupler groups, that is, optical couplers 501-1, 501-2, . . . , 501- It is calculated how much time width Tp can be allocated after merging of M optical couplers.
  • the above calculation performed by the control unit 100 determines how the control unit 100 should switch from all the TDMA signal generation units 200-1 to 200-N to all the TDMA signal selection units 700-1 to 700-J. This is possible because is known in advance.
  • the switching information may be input to the control unit 100 from the outside of the optical communication system 1, and each TDMA signal generation unit may determine the destination from the header information of the input signal.
  • the TDMA signal selector information may be read, and the destination information and transfer data amount may be transferred to the controller 100 .
  • control unit 100 uses the amount of data transmitted from all the TDMA signal generation units connected to the switch as the basis for calculating the allocated time width Tp. First, the control unit 100 calculates the total amount of data that each TDMA signal generation unit needs to transmit (S31).
  • the control unit 100 determines whether or not the total amount of data is less than a preset second threshold at which the TDMA signal can be transferred by the N-input optical coupler group (S32). If the controller 100 determines that the total amount of data is less than the second threshold (Yes in S32), the optical transmitter transmits all data to the N-input optical coupler group (S33).
  • the second threshold is a value excluding the length of the preamble to be added to the beginning of each TDMA signal in the time domain Tc, the time required for the packet interval, and the information related to the encoding required for transmission. can decide. Examples of coding-related information are 64B/66B line codes as specified in 10 Gigabit Ethernet, or parity bits if forward error correction codes are used.
  • the controller 100 determines that the total data amount is equal to or greater than the second threshold (No in S32), it calculates the total amount of data overflowing from each TDMA signal generator connected to the N-input optical coupler group. , is held (S34). Next, for each K-input optical coupler group, the control unit 100 determines whether or not the amount of overflowed data is less than a first threshold at which the TDMA signal can be transferred in each K-input optical coupler group (S35). When the controller 100 determines that the amount of overflowed data is less than the first threshold (Yes in S35), the optical transmitter transmits all data to the K input optical coupler group and the N input optical coupler group. (S36).
  • the first threshold like the second, relates to the length of the preamble to be prepended to each TDMA signal in the time domain Tc, the time required for packet spacing, and the encoding required for transmission. It can be determined as a value excluding information. Examples of coding-related information are 64B/66B line codes as specified in 10 Gigabit Ethernet, or parity bits if forward error correction codes are used.
  • the optical transmitter allocates the maximum amount of allocatable data. Data is allocated to the K input optical coupler group and the N input optical coupler group and transmitted, and the remaining data that could not be allocated waits until the next time region Tc and is preferentially allocated as transfer data (S37). ).
  • Embodiment 3 it is possible to lower the probability of data transfer to the K-input optical coupler group, which has a particularly large number of receivers.
  • an optical transmitter connected to the K input optical coupler group not responsible for data transfer within the time domain Tc, an optical receiver, components related to transmission of the TDMA signal generation unit, and a configuration related to reception of the TDMA signal selection unit It is possible to turn off the power of all or part of the elements, and it is possible to reduce the power consumption of the entire optical communication system 1 .
  • the control unit 100 analyzes the total amount of data of the first data signal input to the plurality of optical transmitters, and analyzes the first data signal to determine the number of the plurality of optical transmitters among the plurality of optical couplers. If the optical couplers having the same multiplexing number can be used for multiplexing, the first data signal is transmitted to the optical coupler, and if the first data signal cannot be multiplexed by the optical coupler, multiple A first control signal is output to each of the plurality of optical transmitters to cause the first data signal to be transmitted to the optical coupler having a multiplexing number smaller than the number of the plurality of optical transmitters.
  • the first data signal is a data signal converted into an optical signal by each of the plurality of optical transmitters.
  • FIG. 8 is a diagram showing the processing circuit 81 when the control unit 100 of the optical communication system 1 according to Embodiment 1 is implemented by the processing circuit 81.
  • the control section 100 may be implemented by the processing circuit 81 .
  • the control unit 100 may be a control circuit.
  • the processing circuit 81 is dedicated hardware. Processing circuitry 81 may be, for example, a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • FIG. 9 is a diagram showing the processor 82 when the controller 100 of the optical communication system 1 according to Embodiment 1 is implemented by the processor 82. As shown in FIG. That is, the functions of the control unit 100 may be realized by the processor 82 executing the programs stored in the memory 83 .
  • the processor 82 is a CPU (Central Processing Unit), processing system, arithmetic system, microprocessor, or DSP (Digital Signal Processor). Memory 83 is also shown in FIG.
  • CPU Central Processing Unit
  • processing system arithmetic system
  • microprocessor microprocessor
  • DSP Digital Signal Processor
  • control unit 100 When the functions of the control unit 100 are implemented by the processor 82, the functions are implemented by the processor 82 and software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in the memory 83 . The processor 82 implements the functions of the control unit 100 by reading and executing the programs stored in the memory 83 .
  • the optical communication system 1 has a memory 83 for storing programs that result in the execution of the steps executed by the control unit 100. It can be said that the program stored in the memory 83 causes the computer to execute the procedure or method executed by the control unit 100 .
  • the memory 83 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
  • part of the plurality of functions may be implemented by software or firmware, and the rest of the plurality of functions may be implemented by dedicated hardware.
  • multiple functions of the control unit 100 can be implemented by hardware, software, firmware, or a combination thereof.
  • Each control unit 100 of Embodiments 2 and 3 may be realized by a processing circuit.
  • the processing circuit is a processing circuit similar to the processing circuit 81 .
  • Each control unit 100 of the second and third embodiments may be implemented by a processor that executes a program stored in memory.
  • the memory is a memory similar to memory 83 .
  • the processor is a processor similar to processor 82 .
  • FIG. 10 is a diagram showing a computer-readable recording medium 84 recording a program for causing a computer to execute the method executed by the optical communication system 1 according to the first embodiment. That is, the recording medium 84 includes a procedure in which each of the plurality of optical transmitters converts the first data signal, which is an electrical signal, into a packet signal of a plurality of optical signals for transmission, and each of the plurality of optical couplers, A packet signal of a plurality of optical signals transmitted from a part of the plurality of optical transmitters and a packet signal of a plurality of optical signals transmitted from a different optical transmitter from the part of the plurality of optical transmitters and a step of multiplexing a plurality of packet signals of optical signals and branching the packet signals of the optical signals obtained by the multiplexing into transmission signals of a plurality of optical signals of the same information and outputting them.
  • each of the plurality of optical transmitters converts the first data signal, which is an electrical signal, into a packet signal of a plurality of optical signals
  • a computer-readable recording medium recording a program.
  • each of the plurality of optical receivers receives one of the transmission signals of the plurality of optical signals branched by the plurality of optical couplers from the plurality of optical couplers, and converts the received transmission signal into an electrical signal.
  • a computer storing a program for causing the computer to further execute a procedure for converting it into a second data signal and outputting it, and a procedure for the controller to control the operations of the plurality of optical transmitters and the plurality of optical receivers. It is a readable recording medium.
  • the recording medium 84 prevents a signal transmitted from each of the plurality of optical transmitters from colliding with packet signals of optical signals transmitted from other optical transmitters based on the first control signal acquired from the control unit. a procedure for allocating communication resources to signals to be transmitted to a plurality of optical signals and transmitting packet signals of a plurality of optical signals; a program for causing the computer to further execute a procedure for selecting a designated signal portion from the transmission signal of the electrical signal based on the second control signal and outputting the selected signal portion as the second data signal; It is a computer-readable recording medium on which it is recorded.
  • the multiplexing number of some optical couplers out of the plurality of optical couplers is smaller than the number of the plurality of optical transmitters.
  • the number of multiplexing waves of the remaining optical couplers among the plurality of optical couplers is the same as the number of the plurality of optical transmitters.
  • optical communication system 81 processing circuit, 82 processor, 83 memory, 84 recording medium, 100 control section, 200-1 to 200-N TDMA signal generation section, 301-1 to 30N-(M+1) optical transmitter, 400- 1 to 400-N optical amplifiers, 501-1 to 50(L+1) optical couplers, 6011-1 to 60J(L+1) optical receivers, 700-1 to 700-J TDMA signal selectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

光通信システム(1)は、複数の光送信器(301-1~30N-(M+1))と、複数の光カプラ(501-1~50(L+1))と、複数の光受信器(6011-1~60J(L+1))と、複数の光送信器及び複数の光受信器の動作を制御する制御部(100)とを有する。複数の光カプラのうちの一部の光カプラの合波数は複数の光送信器の数より少ない。複数の光カプラのうちの残りの光カプラの合波数は複数の光送信器の数と同一である。複数の光送信器の各々は、第1の制御信号に基づいて、送信する信号を他の光送信器から送信される光信号のパケット信号に衝突させないように送信する信号に通信リソースを割り当て、複数の光信号のパケット信号を送信する。複数の光受信器の各々は、受信した送信信号を電気信号の送信信号に変換し、第2の制御信号に基づいて、送信信号から指定された信号部分を選択し、選択した信号部分を第2のデータ信号として出力する。

Description

光通信システム、制御回路、記録媒体及び光通信方法
 本開示は、光通信を行うための光通信システム、制御回路、記録媒体及び光通信方法に関する。
 複数の入力ポートと複数の出力ポートとの間をスイッチング可能なスイッチ装置として、特許文献1は、入力側に1:Nスイッチを有し、出力側にN:1スイッチを有する構成を開示している。当該構成では、入力ポートに入力された信号は1:Nスイッチの任意の出力ポートへとスイッチングされる。その後、出力ポートの側では、外部制御装置であらかじめ決定された入力ポートからのみの信号を取り出すようにN:1スイッチで選択が行われ、出力ポートから信号が取り出される。
 特許文献1は、入力側で1:Nスイッチの代わりに1:N電力ディバイダを用いる方法、及び出力側でN:1スイッチの代わりにN:1電力コンバイナを用いる方法も開示している。電力ディバイダ及び電力コンバイナは、アクティブ素子で実現される場合もあるが、パッシブ素子によって実現することも可能である。電力ディバイダ及び電力コンバイナがパッシブ素子で実現される場合、パッシブ素子で電力が消費されないという観点で、1:N電力ディバイダ及びN:1電力コンバイナを用いる方法は、1:Nスイッチ及びN:1スイッチを用いる方法と比較して低消費電力化が可能である。
 特許文献2は、入出力ポートにデータを蓄えるメモリを保持し、複数の切替モジュールを格子状に配置することで任意の入力ポートから任意の出力ポートへの低遅延でのスイッチングを可能にするという構成を開示している。当該構成には、デジタル信号を可能な限り低遅延でスイッチングすることができるという利点がある。
 特許文献3は、光カプラを用いて光ファイバ伝送路で波長軸及び時間軸において多元接続された信号を合分岐し、任意の入力ノードから任意の出力ノードへスイッチングする構成を開示している。当該構成には、光ファイバが持つ広帯域性を十分に活かしながら、スイッチング機能も実現することができるという利点がある。
特表2021-503193号公報 特許第6656466号公報 国際公開第2021/009869号
 特許文献1は、スイッチング機能を実現する場合に1:Nスイッチ若しくはN:1スイッチ、又は1:Nスイッチ及びN:1スイッチを有すスイッチ装置を開示している。これらのスイッチは外部電源を必要とするアクティブ素子であるので、上記のスイッチ装置には、消費電力が増大するとともに、信頼性が低下するという問題がある。
 更に言うと、特許文献1に記載されているスイッチ装置は、入力された高周波信号をデジタル化せずにスイッチングするベンドパイプ型の衛星で用いられるスイッチ装置である。そのため、特許文献1に記載されているスイッチ装置には、給電設備などの周辺機器を含めて装置が大型化してしまうという課題もある。
 特許文献2に記載されているスイッチ装置は、入力された高周波信号をADC(Analog-to-Digital Converter)を用いてデジタル化してスイッチングする。そのため、特許文献2に記載されているスイッチ装置には、装置の大型化という観点では利点がある一方、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)などの高集積電子回路を用いたスイッチ機能により、消費電力が増加してしまうという課題がある。高集積電子回路には、信頼性という観点でパッシブ素子と比較して劣るという問題がある。
 特許文献3に記載されているスイッチ装置には、すべての送信ノードの信号を一つの光ファイバに集約して信号を伝搬させるため、信号を多重するほど1信号当たりの帯域が限られる、すなわち光ファイバ1本で伝送可能な信号容量以下にスイッチング容量を制限しなければならないという欠点がある。
 本開示は、上記に鑑みてなされたものであって、任意の入力ポートから任意の出力ポートへのスイッチングが可能で、低消費電力化及び高信頼化を実現し、かつ高効率な転送を実現する光通信システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る光通信システムは、各々が、電気信号である第1のデータ信号を複数の光信号のパケット信号に変換して送信する複数の光送信装置と、各々が、複数の光送信装置のうちの一部の光送信装置から送信された複数の光信号のパケット信号と複数の光送信装置のうちの当該一部の光送信装置と異なる光送信装置から送信された複数の光信号のパケット信号とを合波し、合波によって得られる光信号のパケット信号を同一の情報の複数の光信号の送信信号に分岐させて出力する複数の光カプラとを有する。本開示に係る光通信システムは、各々が、複数の光カプラから、複数の光カプラで分岐された複数の光信号の送信信号の一つを受信し、受信した送信信号を電気信号である第2のデータ信号に変換して出力する複数の光受信装置と、複数の光送信装置及び複数の光受信装置の動作を制御する制御部とを更に有する。複数の光カプラのうちの一部の光カプラの合波数は、複数の光送信装置の数より少ない。複数の光カプラのうちの残りの光カプラの合波数は、複数の光送信装置の数と同一である。複数の光送信装置の各々は、制御部から取得した第1の制御信号に基づいて、送信する信号を他の光送信装置から送信される光信号のパケット信号に衝突させないように送信する信号に通信リソースを割り当て、複数の光信号のパケット信号を送信する。複数の光受信装置の各々は、受信した送信信号を電気信号の送信信号に変換し、制御部から取得した第2の制御信号に基づいて、電気信号の送信信号から指定された信号部分を選択し、選択した信号部分を第2のデータ信号として出力する。
 本開示に係る光通信システムは、任意の入力ポートから任意の出力ポートへのスイッチングが可能で、低消費電力化及び高信頼化を実現し、かつ高効率な転送を実現することができるという効果を奏する。
実施の形態1に係る光通信システムの構成を示す図 実施の形態1に係る光通信システムが有する各構成要素の入出力信号の例を示す図 実施の形態1に係る光通信システムが有するTDMA(Time Division Multiple Access)信号生成部に接続された光カプラに集約されるデータの量が多く、時間領域内にすべての転送要求信号が入りきらなかった場合の状況を示す概略図 実施の形態1において、データの再送を行う状態又は転送データの遅延の増加が発生した場合の実施の形態1に係る光通信システムが有する各構成要素の入出力信号の例を示す概略図 実施の形態1に係る光通信システムが行う動作の手順を示すフローチャート 実施の形態2に係る光通信システムが行う動作の手順を示すフローチャート 実施の形態3に係る光通信システムが行う動作の手順を示すフローチャート 実施の形態1に係る光通信システムが有する制御部が処理回路によって実現される場合の処理回路を示す図 実施の形態1に係る光通信システムが有する制御部がプロセッサによって実現される場合のプロセッサを示す図 実施の形態1に係る光通信システムが実行する方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を示す図
 以下に、実施の形態に係る光通信システム、制御回路、記録媒体及び光通信方法を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係る光通信システム1の構成を示す図である。光通信システム1は、N入力×J出力の構成を持ち、任意の入力ポートからの信号を、任意の出力ポートにスイッチングすることができる機能を持つ。光通信システム1は、制御部100と、TDMA信号生成部200-1~200-Nと、光送信器301-1~30N-(M+1)と、光アンプ400-1~400-Nと、光カプラ501-1~50(L+1)と、光受信器6011-1~60J(L+1)と、TDMA信号選択部700-1~700-Jとを有する。N、M、L、K及びJはいずれも、2以上の整数である。L及びKはいずれも、Nより小さい。なお、以下では、光通信システム1が有する各構成要素に符号が付与されない場合がある。
 光送信器301-1~30N-(M+1)は、複数の光送信装置の例である。複数の光送信器の各々は、電気信号である第1のデータ信号を複数の光信号のパケット信号に変換して送信する。光カプラ501-1~50(L+1)は、複数の光カプラの例である。複数の光カプラの各々は、複数の光送信器のうちの一部の光送信器から送信された複数の光信号のパケット信号と複数の光送信器のうちの当該一部の光送信器と異なる光送信器から送信された複数の光信号のパケット信号とを合波し、合波によって得られる光信号のパケット信号を同一の情報の複数の光信号の送信信号に分岐させて出力する。
 光受信器6011-1~60J(L+1)は、複数の光受信装置の例である。複数の光受信器の各々は、複数の光カプラから、複数の光カプラで分岐された複数の光信号の送信信号の一つを受信し、受信した送信信号を電気信号である第2のデータ信号に変換して出力する。制御部100は、複数の光送信器及び複数の光受信器の動作を制御する。複数の光カプラのうちの一部の光カプラの合波数は、複数の光送信器の数より少ない。複数の光カプラのうちの残りの光カプラの合波数は、複数の光送信器の数と同一である。
 複数の光送信器の各々は、制御部100から取得した第1の制御信号に基づいて、送信する信号を他の光送信器から送信される光信号のパケット信号に衝突させないように送信する信号に通信リソースを割り当て、複数の光信号のパケット信号を送信する。複数の光受信器の各々は、受信した送信信号を電気信号の送信信号に変換し、制御部100から取得した第2の制御信号に基づいて、電気信号の送信信号から指定された信号部分を選択し、選択した信号部分を第2のデータ信号として出力する。
 光アンプ400-1~400-Nのいずれかは、複数の光送信器のうちの、複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラに接続される光送信器の出力部に位置する光アンプである。なお、光通信システム1は、複数の光送信器のうちの、複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラに接続される光送信器の入力部に位置する光アンプを有してもよい。光通信システム1は、複数の光送信器及び複数の光受信器のうちの、複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラに接続される光送信器及び光受信器の入力部及び出力部に位置する光アンプを有してもよい。
 複数の光送信器及び複数の光受信器のうちの、複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラに接続される光送信器及び光受信器の伝送速度は、複数の光カプラのうちの複数の光送信器の数より少ない合波数を有する光カプラに接続される光送信器及び光受信器の伝送速度より低速である。
 制御部100は、複数の光カプラのうちの複数の光送信器の数より少ない合波数を有する光カプラで合波可能な総光信号の量を解析し、総光信号を当該光カプラで合波することができる場合には総光信号を当該光カプラへ送信させて、総光信号を当該光カプラで合波することができない場合には当該複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラへ総光信号を送信させる内容の第1の制御信号を複数の光送信器の各々に出力する機能を有する。
 複数の光送信器及び複数の光受信器の各々は、パケット信号を送信も受信も行っていない時間帯に動作を停止する。
 以下に、光通信システム1が有する各構成要素について更に説明する。
 TDMA信号生成部は、接続される光カプラでの入力接続数が異なる光送受信器群を持つ。例えばTDMA信号生成部200-1に着目すると、光カプラ入力数がKである光カプラ501-1~501-Mに接続される光送信器301-1~301-Mが、一つ目の光送信器群である。光カプラ入力数がNである光カプラ50(L+1)に接続される光送信器301-(M+1)が、二つ目の光送信器群である。
 二つ目の光送信器群については、光送信器301-(M+1)の一つの光送信器しか図示されていないが、一つ目の光送信器群のように2以上の任意の整数の個数の光送信器が並列に配置されてもよい。二つ目の光送信器群が並列に配置された複数の光送信器を有する場合、光アンプ400-1から光アンプ400-Nまでの複数の光アンプ及び光カプラ50(L+1)も並列化され、光受信器601(L+1)から光受信器60J(L+1)までの複数の光受信器も並列化される。
 なお、実施の形態1では、光アンプ400-1,400-2,・・・,400-Nは、光送信器の直後に配置されているが、光カプラ50(L+1)の出力側、すなわち光受信器601(L+1),602(L+1),・・・,60J(L+1)の側に配置されてもよい。光アンプ400-1,400-2,・・・,400-Nは、光カプラの入力側又は出力側の片側のみならず、入力側及び出力側の両側に配置されてもよい。
 TDMA信号生成部200-1~200-Nの各々は、入力される信号を他のTDMA信号生成部で生成される時分割多重信号と時間軸上で衝突させないようにタイミングを調整して時間軸上での間欠的な信号に変換し、接続されている各光送信器に信号を受け渡す。例えば、TDMA信号生成部200-1は、光送信器301-1~301-(M+1)に信号を受け渡す。TDMA信号生成部200-1~200-Nの各々が出力する電気信号は、間欠的な信号部分以外は、無信号を示す“0”が続く信号であってもよいし、無信号を示すアイドル信号、例えば“10”の交番信号であってもよい。
 通常、TDMA信号生成部と光送信器とはキャパシタを使用したAC(Alternating Current)結合で結合されるため、DC(Direct Current)ドリフトを避けるためにDCバランスのとれたアイドル信号を挿入することが一般的である。この場合、どの部分が間欠的な信号部分で、どの部分がそれ以外のアイドル信号なのかを示すゲート信号も別信号ラインにて併せて光送信器に渡される。ゲート信号は、TDMA信号生成部から光送信器に渡されてもよいし、全体を制御する制御部100から光送信器に渡されてもよい。
 光送信器は、対応するTDMA信号生成部から入力された電気信号を光信号に変換し、光ファイバ網に光信号を送出する。例えば、光送信器301-1~301-(M+1)の各々は、TDMA信号生成部200-1から入力された電気信号を光信号に変換し、光ファイバ網に光信号を送出する。光送信器は、対応するTDMA信号生成部から受け取った信号を光信号化する時間領域のみ発光し、それ以外の時間領域ではその他の光送信器からの信号に干渉しないよう無発光状態に遷移する。
 図2は、実施の形態1に係る光通信システム1が有する各構成要素の入出力信号の例を示す図である。入出力信号の前提として、TDMA信号生成部200-1からTDMA信号選択部700-1へと信号が受け渡される場合、TDMA信号生成部200-1~200-Kのすべてにおいて転送すべき信号が発生する一方、光送信器301-(M+1)へは信号を転送しない状況を考える。
 TDMA信号生成部への入力信号は、一定の電圧の振幅の連続信号である。TDMA信号生成部は、ある時間領域又はある信号ブロック領域で入力信号を切り取り、各光送信器へ信号を渡すために入力信号をパケット化すると共に、それに伴って伝送速度を高速化する。図2では、分かりやすさを重視して、時間領域で入力信号を区切る場合の様子が示されている。TDMA信号生成部は、入力された信号を時間領域Tcで区切る。時間領域Tcで区切られた入力信号はすべて、TDMA信号選択部700-1に渡される。
 その後、各光送信器からの出力の伝送速度が上がりすぎないように、各TDMA信号生成部は信号をM個に分割する。例えばTc=1msecかつM=8の場合、各TDMA信号生成部は信号を1msec/8=0.125msec毎に分割する。各TDMA信号生成部は、分割によって得られた信号を他のTDMA信号生成部からの信号と時間領域Tcで衝突させないように高速化する。各TDMA信号生成部は、時間領域で考えると入力信号を圧縮する。
 例えば、同一ファイバ線路上に接続されるTDMA信号生成部の並列数Kが2であって光通信システム1がノンブロッキング処理を行う場合、光送受信器1台当たりの信号の時間幅Tpは、1msec/2=0.5msecとなる。なお、同一ファイバ線路上に多重される入力ポート数が例え2ポートより多かったとしても、同時にスイッチングするポート数が少なければ、上記の0.5msecという信号時間幅を延ばしても信号の衝突を回避することができる。また、図2では、1台のTDMA信号生成部に接続された光受信器に渡される信号の時間幅はすべて同一かつ同タイミングで発生するが、他のTDMA信号生成部からの信号と光ファイバ網上で衝突しなければ、光受信器に渡される信号については、時間幅は、異なっていてもよいし、同じタイミングで発生しなくてもよい。
 図2では、光送信器の出力信号はすべて“1”と表記されているが、これはTDMA信号生成部200-1からの出力を表すためであり、並列に表記されているパケットの内容はすべて異なる。例えば、光送信器301-1からの出力パケットはTDMA信号生成部200-1の入力信号の相対時間0msecから0.125msecまでの信号を示し、光送信器301-2からの出力パケットは同相対時間0.125msecから0.25msecまでの信号を示す。
 上述の例において、各光送信器301-1~301-Mからの出力は光カプラ501-1~501-Mに入力されて合波される。ここで、光カプラは各々、K入力ポートと、J出力ポートとを持つものとする。Kは、2以上でNより小さい整数である。Kが2以上でNより小さい整数であるので、光カプラの入力ポート数を減らし、一つの光送信器に割り当てることができる時間幅を広くすることができる。当該時間幅は、図2のTpである。
 図2の右から2番目の列に、光カプラで合波された後に、TDMA信号選択部700-1に接続された光受信器6011-1~601L-Mまでのパケット列が示されている。なお、図の簡略化のため光受信器601L-Mは図示されていないが、光受信器601L-Mは、図1の光受信器601L-1が囲まれていて破線で示されている四角形の領域の内部に用意されている。なお、光カプラ501-1~50L-Mの各々は、入力された信号を分波して他の光受信器にも信号を渡すため、光受信器6011-1~601L-Mまでのパケット列は、TDMA信号選択部700-2から700-Jまでに接続された光受信器6021-1~602L-Mから光受信器60J1-1~60JL-Mでも受信される。
 上述の例に倣うと、一番上の行に示されたパケット列については、“1”と記載されたパケットにはTDMA信号生成部200-1の入力信号の相対時間0msecから0.125msecまでの信号が入っており、“2”と記載されたパケットにはTDMA信号生成部200-2の入力信号の相対時間0msecから0.125msecまでの信号が入っており、“K”と記載されたパケットにはTDMA信号生成部200-Kの入力信号の相対時間0msecから0.125msecまでの信号が入っており、合計で1msecの周期となっている。
 図2には示されていないが、その次に来るべき光受信器6011-2,6021-2,・・・,60N1-2に入力されるパケット列には、同相対時間0.125msecから0.25msecまでの信号が入っている。光通信システム1は、上述の通りにパケット列を生成するので、すべてのTDMA信号選択部に対して、任意のTDMA信号生成部から入力される信号を相対時間0msecから1msecまでの信号に再構成することとTDMA信号を選択することとが可能になる。なお、ここまではすべてのパケットが同じ相対時間幅の信号を有するパケットであることが想定されている。しかしながら、パケットは、TDMA信号生成部別に異なる時間幅の信号を有するパケットであってもよい。
 光受信器6011-1~601L-Mの各々は、入力された光信号を電気信号へ変換する。ここで、ある光受信器へ入力されるパケット列に関して、各光送信器から光受信器への伝送路損失又は光送信器の出力光パワーが異なる場合、パケット間の光レベルに差が生じる。この光レベルの差は光受信器の光電変換利得を変化させずに吸収することができる、すなわち信号を一定の電圧の振幅の信号に変換することができる場合もあり得るが、構成によっては光電変換利得をパケット毎に変更する必要がでてくる場合もあり得る。
 また、異なる光送信器間において受信端でのパケット毎の信号の位相を完全に合わせることは困難であるため、相対的な位相は、異なるのが一般的である。例えばNRZ(Non-Return to Zero)信号が用いられる場合、立上りの位相と立下りエッジの位相とは、異なるのが一般的である。その場合、信号ロスが発生しないよう光レベル差又は位相差を吸収するために光受信器の状態をパケット毎に最適化する必要がある。このため、各パケットの先頭には、プリアンブルパタンが挿入される。例えば10Gbps級のシステムであるXGS-PON(10Gigabit capable symmetric Passive Optical Network)を規定したITU-T(International Telecommunication Union Telecommunication Standardization Sector) G.9807.1では、プリアンブル長として128.6nsから610.9nsまでの長さが規定されており、システム構成に合わせて適切なプリアンブルパタンが挿入されればよい。プリアンブル長が長いほど、光送信器及び光受信器に求められる最適化時間は緩和されるが、所望のスイッチング能力を維持するために伝送速度又は時間圧縮率の向上が求められる。
 光受信器によって光電変換された電気信号については、制御部100からTDMA信号選択部にあらかじめ入力された制御信号に従って、必要な宛先の信号のみが抽出され、それ以外の信号は破棄される。その後、TDMA信号選択部は、時間的に間欠な抽出信号を時間的に連続する信号へ変換し、伝送速度を後段に接続されるシステムに合わせて変換して信号を送出する。
 このような制御を行うために必要な制御情報と、光通信システム1の全体が同期して動作するための基準クロックとは、制御部100からTDMA信号生成部とTDMA信号選択部とに供給される。なお、図2には示されていないが、制御部100は、その他の必要な制御信号を各光送信器及び各光受信器に供給してもよい。上記のその他の必要な制御信号は、例えば光送信器の状態遷移信号である。また、図2では制御部100がその他の構成要素に対して信号を供給するラインのみが示されているが、必要に応じて各構成要素は、状態情報を、例えば故障情報を制御部100に対して送信し、制御部100は、状態情報をもとにパケット信号の割り振り又は宛先を変更してもよい。
 上述の方法が、TDMA信号生成部200-1からTDMA信号選択部700-1に対して信号が転送される場合に光送信器301-(M+1)を用いないときの信号転送方法である。以下に、光送信器301-(M+1)も用いた場合の信号転送方法を説明する。なお、光送信器301-(M+1)を用いた場合でも、特に断りのない限り、上述の説明の内容は維持される。
 図3は、実施の形態1に係る光通信システム1が有するTDMA信号生成部200-1に接続された光カプラ501-1~501-Mに集約されるデータの量が多く、時間領域Tc内にすべての転送要求信号が入りきらなかった場合の状況を示す概略図である。この場合、時間領域Tc内にすべてのTDMA信号生成部200-1~200-Kのデータを入れ込むことができないため、溢れたデータを破棄するか、図示されている時間領域Tcの次の時間領域までTDMA信号生成部内で溢れたデータをバッファリングするか、を行う必要がある。データを破棄する場合、TDMA信号生成部とTDMA信号選択部との間でデータの再送を行う必要性が発生し、データをバッファリングする場合、転送データの遅延の増加が発生する。
 上述の状態が発生した場合、本状態が発生した光カプラ群以外の光カプラ群で集約されるデータの量が比較的少ないことを仮定する。本状態が発生した光カプラ群の例は501-1~501-Mであり、本状態が発生した光カプラ群以外の光カプラ群の例は光カプラ502-1~502-M,503-1~503-M,・・・,50L-1~50L-Mである。図4は、実施の形態1において、データの再送を行う状態又は転送データの遅延の増加が発生した場合の実施の形態1に係る光通信システム1が有する各構成要素の入出力信号の例を示す概略図である。
 この場合、光カプラ502-1~502-M,503-1~503-M,・・・,50L-1~50L-Mに接続されるTDMA信号生成部の各々は、M+1番目の光送信器にデータを転送せずとも、所望のTDMA信号選択部へ信号を転送することができる。一方、転送データ溢れを回避するために光送信器301-(M+1)も考慮して、TDMA信号生成部200-1は信号を分割する。そのようにすると、光受信器601(L+1),602(L+1),・・・,60J(L+1)に入力される信号については、光ファイバ伝送線路上では、光送信器301-(M+1)からの信号のみ、又は限られた光送信器からの信号のみが時間軸上に多重されることになるため、光送信器301-(M+1)に割り当てることができる時間幅Tp’は、時間幅Tpより増加させることができる可能性が高くなる。
 一般的に、複数の入力ポートと複数の出力ポートとを有するスイッチでは、ポート数が増加するほどすべてのポートに均一にデータが入力されるという時間帯より任意のポートにはデータが入出力されるが、それ以外のポートにはデータが入出力されないという時間帯の方が多い。よって、図1に示されるように限られた入力ポートからデータを集約するだけでなく、すべての入力ポートからデータを集約する方が統計多重効果によるデータの時間領域を長く取りやすくなるという利点がある。当該時間領域は、図4でのTp’である。
 しかしながら、全入力ポートと全出力ポートとを光カプラで接続した場合、入力ポート数Nと出力ポート数Jとのうちの数値が大きい方で合分岐損失が決定される。よって、図1に示されるように、光通信システム1は、光アンプ400-1~400-Nを有することで、光カプラ50(L+1)で発生する損失を補償し、光受信器にて信号を再生することができるだけの光受信パワーを確保する。
 なお、光送信器の出力光パワーと光受信器の受光感度とのうちのどちらか一方又は両方が高い場合、光アンプがなくても光受信器が信号を再生することができるため、そのような場合、光アンプ400-1~400-Nを削除して、光送信器を光カプラに直接接続する構成が取られてもよい。
 また、光送信器301-(M+1),302-(M+1),・・・,30N-(M+1)と、光受信器601(L+1),602(L+1),・・・,60J(L+1)とは、それら以外の光送信器及び光受信器より伝送速度を低くしてもよい。例えば、光送信器301-(M+1),302-(M+1),・・・,30N-(M+1)、及び光受信器601(L+1),602(L+1),・・・,60J(L+1)の伝送速度を、それら以外の光送信器及び光受信器の伝送速度の1/10にすることで、光受信の受信感度を10から15dB向上させることができる。この場合、光アンプ400-1,400-2,・・・,400-Nを用いなくても信号の伝送が可能となる入力ポート数N及び出力ポート数Jを多くすることができる。
 伝送速度が低下された光送信器及び光受信器についても、前述した通り各TDMA信号生成部及び各TDMA信号選択部に接続される光送信器及び光受信器の数は2以上の整数値であってもよく、複数の光送信器及び複数の光受信器の各々は並列に配置されてもよい。
 ここで、実施の形態1ではどのような場合に光送信器301-(M+1),302-(M+1),・・・,30N-(M+1)に転送データを割り当てるのかを図5のフローチャートを用いて説明する。図5は、実施の形態1に係る光通信システム1が行う動作の手順を示すフローチャートである。本フローチャートが示す動作は、データを割り当てる時間領域Tc毎に行われる。
 制御部100は、時間領域Tc毎に、K入力光カプラ群、すなわちTDMA信号生成部200-1にとっては光カプラ501-1,501-2,・・・,501-MのM個の光カプラの合流後にどの程度の時間幅Tpを割り当てることができるのかを計算する(S1)。つまり、ステップS1において、制御部100は、未計算のK入力光カプラ群で合流される総データ量を計算する。ステップS1における計算は、全TDMA信号生成部200-1~200-Nから全TDMA信号選択部700-1~200-Jに対してどのようにスイッチングを行うべきかを制御部100があらかじめ把握できているために可能となる。制御部100がスイッチング情報を把握するためには、スイッチング情報が光通信システム1の外部から制御部100に入力されていてもよいし、各TDMA信号生成部が、入力された信号のヘッダ情報から宛先TDMA信号選択部情報を読み取り、制御部100に対して宛先情報と転送データ量とを受け渡してもよい。
 制御部100は、計算したK入力光カプラ群の合流後の総データ量が、あらかじめ設定されたTDMA信号を転送可能な第1閾値より少ないか否かを判断する(S2)。K入力光カプラ群の例は、光カプラ501-1,501-2,・・・,501-Mである。総データ量が第1閾値より少ないと制御部100によって判断された場合(S2でYes)、光送信器はK入力光カプラ群に全データを送信する(S3)。第1閾値は、時間領域Tcの中で各TDMA信号の先頭に付加すべきプリアンブルの長さ、パケット間隔に必要な時間、及び伝送するために必要な符号化に関連する情報を除いた値として決定することができる。伝送するために必要な符号化に関連する情報の例は、10Gigabit Ethernet(登録商標)で規定されているような64B/66B伝送路符号、又は前方誤り訂正符号が用いられる場合のパリティビットである。
 他方、制御部100は、計算したK入力光カプラ群の合流後の総データ量が第1閾値以上であると判断した場合(S2でNo)、K入力光カプラ群に接続された各TDMA信号生成部から溢れることになるデータの総量を計算し、保持する(S4)。例えば、K入力光カプラ群は光カプラ501-1,501-2,・・・,501-Mであり、TDMA信号生成部はTDMA信号生成部200-1,200-2,・・・,200-Kである。
 制御部100は、上述の計算と同様の計算を、他のK入力光カプラ群についても行う。他のK入力光カプラ群の例は、光カプラ502-1,502-2,・・・,502-Mである。つまり、制御部100は、上述の計算と同様の計算を、最後のK入力光カプラ群まで順次行う。最後のK入力光カプラ群は、光カプラ50L-1,50L-2,・・・,50L-Mである。
 具体的には、制御部100は、ステップS3及びステップS4の動作を行った後、すべてのK入力光カプラ群について計算を行ったか否かを判断する(S5,S6)。制御部100は、すべてのK入力光カプラ群について計算を行っていないと判断した場合(S5,S6でNo)、ステップS1の動作を実行する。制御部100がすべてのK入力光カプラ群について計算を行ったと判断した場合(S5でYes)、光通信システム1は第1の動作を終了する。
 つまり、全K入力光カプラ群について、総データ量が第1閾値より少ない場合、制御部100は計算を終了し、光通信システム1の動作は次の時間領域Tcを待つモードへと遷移する。他方、K入力光カプラ群の中で一つでも総データ量が第1閾値以上である場合、すなわち、制御部100は、すべてのK入力光カプラ群について計算を行ったと判断した場合(S6でYes)、すべてのK入力光カプラ群から溢れたデータの総量が第2閾値より少ないか否かを判断する(S7)。第2閾値は、N入力光カプラ群でTDMA信号を転送可能なあらかじめ設定された閾値である。
 溢れたデータの総量が第2閾値より少ないと制御部100によって判断された場合(S7でYes)、光送信器は、K入力光カプラ群とN入力光カプラ群とにすべてのデータを送信する(S8)。第2閾値は、第1閾値と同じく、時間領域Tcの中で各TDMA信号の先頭に付加すべきプリアンブルの長さ、パケット間隔に必要な時間、及び伝送するために必要な符号化に関連する情報を除いた値として決定することができる。符号化に関連する情報の例は、10Gigabit Ethernet(登録商標)で規定されているような64B/66B伝送路符号、又は前方誤り訂正符号が用いられる場合のパリティビットである。
 他方、溢れたデータの総量が第2閾値以上であると制御部100によって判断された場合(S7でNo)、光送信器は、割り当て可能な最大の量のデータをK入力光カプラ群とN入力光カプラ群とへ割り当てて送信し、割り当てることができなかった残データについては、次の時間領域Tcまで待機して、優先的に転送データとして割り当てる(S9)。
 実施の形態1に係る光通信システム1は、図5のフローチャートが示す動作を行うことで、ある特定のK入力光カプラ群に接続されたTDMA信号生成部にのみ入力データが集中し、それ以外のTDMA信号生成部にデータがそれほど入力されない場合でも、全体でのデータの転送を効率よく行うことができる。更に言うと、光通信システム1は、信号の合分岐のいずれについてもパッシブ素子である光カプラを有することにより、任意の入力ポートから任意の出力ポートへのスイッチングが可能で、低消費電力化及び高信頼化を実現し、かつ高効率な転送を実現することができる。
実施の形態2.
 上述のように、実施の形態1では、TDMA信号生成部に入力された信号をK入力光カプラ群にまず分配し、溢れた信号をN入力光カプラ群に分ける方法を説明した。しかしながら、実施の形態1の方法と異なる方法で信号を分配してもよい。実施の形態2では、信号の優先度に応じて信号を振り分ける方法を説明する。実施の形態2では、実施の形態1との相違点を主に説明する。
 実施の形態2では、どのような場合に光送信器301-(M+1),302-(M+1),・・・,30N-(M+1)に転送データを割り当てるのかを図6のフローチャートを用いて説明する。図6は、実施の形態2に係る光通信システム1が行う動作の手順を示すフローチャートである。なお、制御部及びTDMA信号生成部からTDMA信号選択部までの構成は、実施の形態1で説明した構成と同一である。
 実施の形態1と同じく、制御部100は、時間領域Tc毎に、K入力光カプラ群、すなわちTDMA信号生成部200-1にとっては光カプラ501-1,501-2,・・・,501-MのM個の光カプラの合流後にどの程度の時間幅Tpを割り当てることができるのかを計算する。制御部100が行う上述の計算は、全TDMA信号生成部200-1~200-Nから全TDMA信号選択部700-1~200-Jに対してどのようにスイッチングを行うべきかを制御部100があらかじめ把握できているために可能となる。制御部100がスイッチング情報を把握するために、スイッチング情報が光通信システム1の外部から制御部100に入力されていてもよいし、各TDMA信号生成部が、入力された信号のヘッダ情報から宛先TDMA信号選択部情報を読み取り、制御部100に対して宛先情報と転送データ量とを受け渡してもよい。
 制御部100は、計算する割り当て時間幅Tpの算出根拠として、実施の形態2ではデータの優先度を用いる。まず、光送信器は、あるK入力光カプラ群へ高優先データを送信する(S11)。K入力光カプラ群の例は、光カプラ501-1,501-2,・・・,501-Mである。ここで、高優先データの量はK入力光カプラ群へ転送することができるデータの量を超えないことを仮定する。もし高優先データの量が当該量を超えてしまった場合、制御部100は、調整を行い、高優先権を取り消すか、次の時間領域Tcまで待つ。
 高優先データがK入力光カプラ群に送信された後、制御部100は、K入力光カプラ群にデータ割り当ての空き時間があるか否かを判断する(S12)。制御部100は、K入力光カプラ群にデータ割り当ての空き時間があると判断した場合(S12でYes)、K入力光カプラ群へ転送可能な低優先データの量を計算する(S13)。低優先データは、高優先データ以外のデータである。制御部100は、低優先データの量があらかじめ設定されたTDMA信号を転送可能な第1閾値を超えていないかを判断する(S14)。つまり、ステップS14において、制御部100は、低優先データについての総データ量が第1閾値より少ないか否かを判断する。
 低優先データについての総データ量が第1閾値より少ないと制御部100によって判断された場合(S14でYes)、光送信器は、K入力光カプラ群へ全低優先データを送信する(S15)。ここで、第1閾値は、時間領域Tcの中で各TDMA信号の先頭に付加すべきプリアンブルの長さ、パケット間隔に必要な時間、及び伝送するために必要な符号化に関連する情報を除いた値として決定することができる。伝送するために必要な符号化に関連する情報の例は、10Gigabit Ethernet(登録商標)で規定されているような64B/66B伝送路符号、又は前方誤り訂正符号が用いられる場合のパリティビットである。
 制御部100は、高優先データを割り当てただけでK入力光カプラ群に空き時間がないと判断した場合(S12でNo)、及び低優先データについての総データ量が第1閾値以上であると判断した場合(S14でNo)、K入力光カプラ群に接続された各TDMA信号生成部から溢れることになるデータの量である総データ量を計算し、保持する(S16)。上記のK入力光カプラ群に接続された各TDMA信号生成部の例は、TDMA信号生成部200-1,200-2,・・・,200-Kである。
 制御部100は、上述の計算と同様の計算を、他のK入力光カプラ群についても行う。他のK入力光カプラ群の例は、光カプラ502-1,502-2,・・・,502-Mである。つまり、制御部100は、上述の計算と同様の計算を、最後のK入力光カプラ群まで順次行う。最後のK入力光カプラ群は、光カプラ50L-1,50L-2,・・・,50L-Mである。
 具体的には、制御部100は、ステップS15の動作を行った後、すべてのK入力光カプラ群について計算を行ったか否かを判断する(S17)。制御部100は、すべてのK入力光カプラ群について計算を行っていないと判断した場合(S17でNo)、ステップS11の動作を実行する。制御部100がすべてのK入力光カプラ群について計算を行ったと判断した場合(S17でYes)、実施の形態2に係る光通信システム1は動作を終了する。つまり、もし全K入力光カプラ群にすべてのデータが送信されれば、そこで計算は終了し、光通信システム1の動作は次の時間領域Tcを待つモードへと遷移する。
 制御部100は、ステップS16の動作を行った後、ステップS17の動作と同じ動作を行う(S18)。制御部100は、すべてのK入力光カプラ群について計算を行っていないと判断した場合(S18でNo)、ステップS11の動作を実行する。制御部100は、すべてのK入力光カプラ群について計算を行ったと判断した場合(S18でYes)、すべてのK入力光カプラ群から溢れたデータの総量があらかじめ設定されたN入力光カプラ群でTDMA信号を転送可能な第2閾値を超えていないかを判断する(S19)。
 すべてのK入力光カプラ群から溢れたデータの総量が第2閾値を超えていないと制御部100によって判断された場合(S19でYes)、光送信器は、K入力光カプラ群とN入力光カプラ群とにすべてのデータを送信する(S20)。第2閾値は、第1閾値と同じく、時間領域Tcの中で各TDMA信号の先頭に付加すべきプリアンブルの長さ、パケット間隔に必要な時間、及び伝送するために必要な符号化に関連する情報を除いた値として決定することができる。符号化に関連する情報の例は、10Gigabit Ethernet(登録商標)で規定されているような64B/66B伝送路符号、又は前方誤り訂正符号が用いられる場合のパリティビットである。
 他方、溢れたデータの総量が第2閾値以上であると制御部100によって判断された場合(S19でNo)、光送信器は、割り当て可能な最大の量のデータをK入力光カプラ群とN入力光カプラ群とへ割り当てて送信し、割り当てることができなかった残データについては、次の時間領域Tcまで待機して、低優先データのなかでも優先的に転送データとして割り当てる(S21)。
 実施の形態2では、優先度を高優先と低優先との二つに分けて説明したものの、優先度は三つ以上に分けられてもよく、その場合、データは最も高い優先度から順番にK入力光カプラ群に割り当てられる。
 また、N入力光カプラ群へのデータの割り当てについても、全TDMA信号生成部から溢れたデータの中で最も高い優先度のデータから割り当てられ、より低優先度のデータが残データとなった場合、次の時間領域Tcまで待機して、同じ優先度のデータの中でも優先的に転送データとして時間が割り当てられる。
 実施の形態2により、高優先データをまず確実に転送しつつ、ある特定のK入力光カプラ群に接続されたTDMA信号生成部にのみ入力データが集中し、それ以外のTDMA信号生成部に入力データがそれほど入力されない場合にでも全体でのデータの転送を効率よく行うことが可能となる。
 以下に、実施の形態2の制御部100について更に言及する。制御部100は、複数の光送信器の各々によって光信号に変換される第1のデータ信号の優先度を解析し、第1のデータ信号の中の最も優先度の高いデータ信号を、複数の光カプラのうちの複数の光送信器の数より少ない合波数を有する光カプラへ送信させ、制御部100は、複数の光カプラのうちの第1のデータ信号の中の次に優先度の高いデータ信号を複数の光送信器の数より少ない合波数を有する光カプラで合波することができる場合、当該光カプラへ次に優先度の高いデータ信号を送信させて、次に優先度の高いデータ信号を当該光カプラで合波することができない場合、複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラへ次に優先度の高いデータ信号を送信させる内容の第1の制御信号を複数の光送信器の各々に出力する。
実施の形態3.
 上述のように、実施の形態1及び実施の形態2では、TDMA信号生成部に入力された信号をK入力光カプラ群にまず分配し、溢れた信号をN入力光カプラ群に分ける方法を説明した。しかしながら、異なる方法で信号を分配してもよい。実施の形態3では、光通信システム1の全体のデータの疎密具合によってデータ割り当て方法を変更する方法を説明する。実施の形態3では、実施の形態1との相違点を主に説明する。
 実施の形態3では、どのような場合に光送信器301-(M+1),302-(M+1),30N-(M+1)に転送データを割り当てるのかを図7のフローチャートを用いて説明する。図7は、実施の形態3に係る光通信システム1が行う動作の手順を示すフローチャートである。なお、制御部及びTDMA信号生成部からTDMA信号選択部までの構成は、実施の形態1で説明した構成と同一である。
 実施の形態1と同じく、制御部100は、時間領域Tc毎に、K入力光カプラ群、すなわちTDMA信号生成部200-1にとっては光カプラ501-1,501-2,・・・,501-MのM個の光カプラの合流後にどの程度の時間幅Tpを割り当てることができるのかを計算する。制御部100が行う上述の計算は、全TDMA信号生成部200-1~200-Nから全TDMA信号選択部700-1~700-Jに対してどのようにスイッチングを行うべきかを制御部100があらかじめ把握できているために可能となる。制御部100がスイッチング情報を把握するために、スイッチング情報が光通信システム1の外部から制御部100に入力されていてもよいし、各TDMA信号生成部が、入力された信号のヘッダ情報から宛先TDMA信号選択部情報を読み取り、制御部100に対して宛先情報と転送データ量を受け渡してもよい。
 制御部100は、計算する割り当て時間幅Tpの算出根拠として、実施の形態3ではスイッチに接続される全TDMA信号生成部から送信されるデータの量を用いる。まず、制御部100は、各TDMA信号生成部が送信する必要があるデータの総量である総データ量を計算する(S31)。
 次に、制御部100は、総データ量がN入力光カプラ群でTDMA信号を転送可能なあらかじめ設定された第2閾値より少ないか否かを判断する(S32)。総データ量が第2閾値より少ないと制御部100によって判断された場合(S32でYes)、光送信器は、N入力光カプラ群にすべてのデータを送信する(S33)。第2閾値は、時間領域Tcの中で各TDMA信号の先頭に付加すべきプリアンブルの長さ、パケット間隔に必要な時間、及び伝送するために必要な符号化に関連する情報を除いた値として決定することができる。符号化に関連する情報の例は、10Gigabit Ethernet(登録商標)で規定されているような64B/66B伝送路符号、又は前方誤り訂正符号が用いられる場合のパリティビットである。
 制御部100は、総データ量が第2閾値以上であると判断した場合(S32でNo)、N入力光カプラ群に接続された各TDMA信号生成部から溢れることになるデータの総量を計算し、保持する(S34)。次に、各K入力光カプラ群について、制御部100は、溢れたデータの量が各K入力光カプラ群でTDMA信号を転送可能な第1閾値より少ないか否かを判断する(S35)。溢れたデータの量が第1閾値より少ないと制御部100によって判断された場合(S35でYes)、光送信器は、K入力光カプラ群とN入力光カプラ群とにすべてのデータを送信する(S36)。
 第1閾値は、第2閾値と同じく、時間領域Tcの中で各TDMA信号の先頭に付加すべきプリアンブルの長さ、パケット間隔に必要な時間、及び伝送するために必要な符号化に関連する情報を除いた値として決定することができる。符号化に関連する情報の例は、10Gigabit Ethernet(登録商標)で規定されているような64B/66B伝送路符号、又は前方誤り訂正符号が用いられる場合のパリティビットである。
 N入力光カプラ群と全K入力光カプラ群とにすべてのデータが送信されれば、そこで計算は終了し、光通信システム1の動作は次の時間領域Tcを待つモードへと遷移する。他方、K入力光カプラ群の中で一つでも総データ量が第1閾値以上であると制御部100によって判断された場合(S35でNo)、光送信器は、割り当て可能な最大の量のデータをK入力光カプラ群とN入力光カプラ群とへ割り当てて送信し、割り当てることができなかった残データについては、次の時間領域Tcまで待機して、優先的に転送データとして割り当てる(S37)。
 実施の形態3により、特に受信器の数が多くなるK入力光カプラ群へのデータの転送確率を下げることが可能となる。この結果、時間領域Tc内でデータ転送を担わないK入力光カプラ群へ接続される光送信器、光受信器及びTDMA信号生成部の送信に係る構成要素、TDMA信号選択部の受信に係る構成要素の全部又は一部の電源をオフすることが可能となり、光通信システム1の全体での低消費電力化を実現することが可能となる。
 以下に、実施の形態3の制御部100について更に言及する。制御部100は、複数の光送信器に入力される第1のデータ信号の総データ量を解析し、解析により第1のデータ信号を複数の光カプラのうちの複数の光送信器の数と同じ合波数を有する光カプラで合波することができる場合、第1のデータ信号を当該光カプラへ送信させて、第1のデータ信号を当該光カプラで合波することができない場合、複数の光カプラのうちの複数の光送信器の数より少ない合波数を有する光カプラへ第1のデータ信号を送信させる内容の第1の制御信号を複数の光送信器の各々に出力する。第1のデータ信号は、複数の光送信器の各々によって光信号に変換されるデータ信号である。
 図8は、実施の形態1に係る光通信システム1が有する制御部100が処理回路81によって実現される場合の処理回路81を示す図である。つまり、制御部100は、処理回路81によって実現されてもよい。更に言うと、制御部100は、制御回路であってもよい。処理回路81は、専用のハードウェアである。処理回路81は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものである。
 図9は、実施の形態1に係る光通信システム1が有する制御部100がプロセッサ82によって実現される場合のプロセッサ82を示す図である。つまり、制御部100の機能は、メモリ83に格納されるプログラムを実行するプロセッサ82によって実現されてもよい。プロセッサ82は、CPU(Central Processing Unit)、処理システム、演算システム、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図9には、メモリ83も示されている。
 制御部100の機能がプロセッサ82によって実現される場合、当該機能は、プロセッサ82と、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせとによって実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ83に格納される。プロセッサ82は、メモリ83に記憶されたプログラムを読み出して実行することにより、制御部100の機能を実現する。
 制御部100の機能がプロセッサ82によって実現される場合、光通信システム1は、制御部100によって実行されるステップが結果的に実行されることになるプログラムを格納するためのメモリ83を有する。メモリ83に格納されるプログラムは、制御部100が実行する手順又は方法をコンピュータに実行させるものであるともいえる。
 メモリ83は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性若しくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。
 制御部100の複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、制御部100の複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。
 実施の形態2及び実施の形態3の各制御部100は、処理回路によって実現されてもよい。当該処理回路は、処理回路81と同様の処理回路である。実施の形態2及び実施の形態3の各制御部100は、メモリに格納されるプログラムを実行するプロセッサによって実現されてもよい。当該メモリは、メモリ83と同様のメモリである。当該プロセッサは、プロセッサ82と同様のプロセッサである。
 図10は、実施の形態1に係る光通信システム1が実行する方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体84を示す図である。すなわち、記録媒体84は、複数の光送信器の各々が、電気信号である第1のデータ信号を複数の光信号のパケット信号に変換して送信する手順と、複数の光カプラの各々が、複数の光送信器のうちの一部の光送信器から送信された複数の光信号のパケット信号と複数の光送信器のうちの当該一部の光送信器と異なる光送信器から送信された複数の光信号のパケット信号とを合波し、合波によって得られる光信号のパケット信号を同一の情報の複数の光信号の送信信号に分岐させて出力する手順とをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体である。記録媒体84は、複数の光受信器の各々が、複数の光カプラから、複数の光カプラで分岐された複数の光信号の送信信号の一つを受信し、受信した送信信号を電気信号である第2のデータ信号に変換して出力する手順と、制御部が、複数の光送信器及び複数の光受信器の動作を制御する手順とを更にコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体である。記録媒体84は、複数の光送信器の各々が、制御部から取得した第1の制御信号に基づいて、送信する信号を他の光送信器から送信される光信号のパケット信号に衝突させないように送信する信号に通信リソースを割り当て、複数の光信号のパケット信号を送信する手順と、複数の光受信器の各々が、受信した送信信号を電気信号の送信信号に変換し、制御部から取得した第2の制御信号に基づいて、電気信号の送信信号から指定された信号部分を選択し、選択した信号部分を第2のデータ信号として出力する手順とを更にコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体である。複数の光カプラのうちの一部の光カプラの合波数は、複数の光送信器の数より少ない。複数の光カプラのうちの残りの光カプラの合波数は、複数の光送信器の数と同一である。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 1 光通信システム、81 処理回路、82 プロセッサ、83 メモリ、84 記録媒体、100 制御部、200-1~200-N TDMA信号生成部、301-1~30N-(M+1) 光送信器、400-1~400-N 光アンプ、501-1~50(L+1) 光カプラ、6011-1~60J(L+1) 光受信器、700-1~700-J TDMA信号選択部。

Claims (12)

  1.  各々が、電気信号である第1のデータ信号を複数の光信号のパケット信号に変換して送信する複数の光送信装置と、
     各々が、前記複数の光送信装置のうちの一部の光送信装置から送信された前記複数の光信号のパケット信号と前記複数の光送信装置のうちの前記一部の光送信装置と異なる光送信装置から送信された前記複数の光信号のパケット信号とを合波し、合波によって得られる光信号のパケット信号を同一の情報の複数の光信号の送信信号に分岐させて出力する複数の光カプラと、
     各々が、前記複数の光カプラから、前記複数の光カプラで分岐された前記複数の光信号の送信信号の一つを受信し、受信した送信信号を電気信号である第2のデータ信号に変換して出力する複数の光受信装置と、
     前記複数の光送信装置及び前記複数の光受信装置の動作を制御する制御部とを備え、
     前記複数の光カプラのうちの一部の光カプラの合波数は、前記複数の光送信装置の数より少なく、
     前記複数の光カプラのうちの残りの光カプラの合波数は、前記複数の光送信装置の数と同一であり、
     前記複数の光送信装置の各々は、前記制御部から取得した第1の制御信号に基づいて、送信する信号を他の光送信装置から送信される光信号のパケット信号に衝突させないように前記送信する信号に通信リソースを割り当て、前記複数の光信号のパケット信号を送信し、
     前記複数の光受信装置の各々は、前記受信した送信信号を電気信号の送信信号に変換し、前記制御部から取得した第2の制御信号に基づいて、前記電気信号の送信信号から指定された信号部分を選択し、選択した信号部分を前記第2のデータ信号として出力する
     ことを特徴とする光通信システム。
  2.  前記複数の光送信装置のうちの、前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラに接続される光送信装置の出力部に位置する光アンプを更に備える
     ことを特徴とする請求項1に記載の光通信システム。
  3.  前記複数の光送信装置のうちの、前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラに接続される光受信装置の入力部に位置する光アンプを更に備える
     ことを特徴とする請求項1に記載の光通信システム。
  4.  前記複数の光送信装置及び前記複数の光受信装置のうちの、前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラに接続される光送信装置及び光受信装置の入力部及び出力部に位置する光アンプを更に備える
     ことを特徴とする請求項1に記載の光通信システム。
  5.  前記複数の光送信装置及び前記複数の光受信装置のうちの、前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラに接続される光送信装置及び光受信装置の伝送速度は、前記複数の光カプラのうちの前記複数の光送信装置の数より少ない合波数を有する光カプラに接続される光送信装置及び光受信装置の伝送速度より低速である
     ことを特徴とする請求項1から4のいずれか1項に記載の光通信システム。
  6.  前記制御部は、前記複数の光カプラのうちの前記複数の光送信装置の数より少ない合波数を有する光カプラで合波可能な総光信号の量を解析し、前記総光信号を前記光カプラで合波することができる場合には前記総光信号を前記光カプラへ送信させて、前記総光信号を前記光カプラで合波することができない場合には前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラへ前記総光信号を送信させる内容の前記第1の制御信号を前記複数の光送信装置の各々に出力する
     ことを特徴とする請求項1から5のいずれか1項に記載の光通信システム。
  7.  前記制御部は、前記第1のデータ信号の優先度を解析し、前記第1のデータ信号の中の最も優先度の高いデータ信号を、前記複数の光カプラのうちの前記複数の光送信装置の数より少ない合波数を有する光カプラへ送信させ、前記複数の光カプラのうちの前記第1のデータ信号の中の次に優先度の高いデータ信号を前記複数の光送信装置の数より少ない合波数を有する光カプラで合波することができる場合、前記光カプラへ前記次に優先度の高いデータ信号を送信させて、前記次に優先度の高いデータ信号を前記光カプラで合波することができない場合、前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラへ前記次に優先度の高いデータ信号を送信させる内容の前記第1の制御信号を前記複数の光送信装置の各々に出力する
     ことを特徴とする請求項1から5のいずれか1項に記載の光通信システム。
  8.  前記制御部は、前記複数の光送信装置に入力される前記第1のデータ信号の総データ量を解析し、解析により前記第1のデータ信号を前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラで合波することができる場合、前記第1のデータ信号を前記光カプラへ送信させて、前記第1のデータ信号を前記光カプラで合波することができない場合、前記複数の光カプラのうちの前記複数の光送信装置の数より少ない合波数を有する光カプラへ前記第1のデータ信号を送信させる内容の前記第1の制御信号を前記複数の光送信装置の各々に出力する
     ことを特徴とする請求項1から5のいずれか1項に記載の光通信システム。
  9.  前記複数の光送信装置及び前記複数の光受信装置の各々は、前記パケット信号を送信も受信も行っていない時間帯に動作を停止する
     ことを特徴とする請求項1から8のいずれか1項に記載の光通信システム。
  10.  複数の光カプラを有する光通信システムが有する複数の光送信装置及び複数の光受信装置の動作を制御する制御回路であって、
     前記複数の光カプラのうちの前記複数の光送信装置の数より少ない合波数を有する光カプラで合波可能な総光信号の量を解析し、前記総光信号を前記光カプラで合波することができる場合には前記総光信号を前記光カプラへ送信させて、前記総光信号を前記光カプラで合波することができない場合には前記複数の光カプラのうちの前記複数の光送信装置の数と同じ合波数を有する光カプラへ前記総光信号を送信させる内容の第1の制御信号を前記複数の光送信装置の各々に出力する
     ことを特徴とする制御回路。
  11.  複数の光送信装置の各々が、電気信号である第1のデータ信号を複数の光信号のパケット信号に変換して送信する手順と、
     複数の光カプラの各々が、前記複数の光送信装置のうちの一部の光送信装置から送信された前記複数の光信号のパケット信号と前記複数の光送信装置のうちの前記一部の光送信装置と異なる光送信装置から送信された前記複数の光信号のパケット信号とを合波し、合波によって得られる光信号のパケット信号を同一の情報の複数の光信号の送信信号に分岐させて出力する手順と、
     複数の光受信装置の各々が、前記複数の光カプラから、前記複数の光カプラで分岐された前記複数の光信号の送信信号の一つを受信し、受信した送信信号を電気信号である第2のデータ信号に変換して出力する手順と、
     制御部が、前記複数の光送信装置及び前記複数の光受信装置の動作を制御する手順と、
     前記複数の光送信装置の各々が、前記制御部から取得した第1の制御信号に基づいて、送信する信号を他の光送信装置から送信される光信号のパケット信号に衝突させないように前記送信する信号に通信リソースを割り当て、前記複数の光信号のパケット信号を送信する手順と、
     前記複数の光受信装置の各々が、前記受信した送信信号を電気信号の送信信号に変換し、前記制御部から取得した第2の制御信号に基づいて、前記電気信号の送信信号から指定された信号部分を選択し、選択した信号部分を前記第2のデータ信号として出力する手順と
     をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記複数の光カプラのうちの一部の光カプラの合波数は、前記複数の光送信装置の数より少なく、
     前記複数の光カプラのうちの残りの光カプラの合波数は、前記複数の光送信装置の数と同一である
     ことを特徴とする記録媒体。
  12.  複数の光送信装置の各々が、電気信号である第1のデータ信号を複数の光信号のパケット信号に変換して送信するステップと、
     複数の光カプラの各々が、前記複数の光送信装置のうちの一部の光送信装置から送信された前記複数の光信号のパケット信号と前記複数の光送信装置のうちの前記一部の光送信装置と異なる光送信装置から送信された前記複数の光信号のパケット信号とを合波し、合波によって得られる光信号のパケット信号を同一の情報の複数の光信号の送信信号に分岐させて出力するステップと、
     複数の光受信装置の各々が、前記複数の光カプラから、前記複数の光カプラで分岐された前記複数の光信号の送信信号の一つを受信し、受信した送信信号を電気信号である第2のデータ信号に変換して出力するステップと、
     制御部が、前記複数の光送信装置及び前記複数の光受信装置の動作を制御するステップとを含み、
     前記複数の光カプラのうちの一部の光カプラの合波数は、前記複数の光送信装置の数より少なく、
     前記複数の光カプラのうちの残りの光カプラの合波数は、前記複数の光送信装置の数と同一であり、
     前記複数の光送信装置の各々が、前記制御部から取得した第1の制御信号に基づいて、送信する信号を他の光送信装置から送信される光信号のパケット信号に衝突させないように前記送信する信号に通信リソースを割り当て、前記複数の光信号のパケット信号を送信するステップと、
     前記複数の光受信装置の各々が、前記受信した送信信号を電気信号の送信信号に変換し、前記制御部から取得した第2の制御信号に基づいて、前記電気信号の送信信号から指定された信号部分を選択し、選択した信号部分を前記第2のデータ信号として出力するステップとを更に含む
     ことを特徴とする光通信方法。
PCT/JP2021/043476 2021-11-26 2021-11-26 光通信システム、制御回路、記録媒体及び光通信方法 WO2023095309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021008476.3T DE112021008476T5 (de) 2021-11-26 2021-11-26 Optisches kommunikationssystem, steuerschaltung, aufzeichnungsmedium und optisches kommunikationsverfahren
PCT/JP2021/043476 WO2023095309A1 (ja) 2021-11-26 2021-11-26 光通信システム、制御回路、記録媒体及び光通信方法
JP2023552320A JP7466792B2 (ja) 2021-11-26 2021-11-26 光通信システム、制御回路、及び光通信方法
US18/609,436 US20240223926A1 (en) 2021-11-26 2024-03-19 Optical communication system, control circuit, and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043476 WO2023095309A1 (ja) 2021-11-26 2021-11-26 光通信システム、制御回路、記録媒体及び光通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/609,436 Continuation US20240223926A1 (en) 2021-11-26 2024-03-19 Optical communication system, control circuit, and optical communication method

Publications (1)

Publication Number Publication Date
WO2023095309A1 true WO2023095309A1 (ja) 2023-06-01

Family

ID=86539213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043476 WO2023095309A1 (ja) 2021-11-26 2021-11-26 光通信システム、制御回路、記録媒体及び光通信方法

Country Status (4)

Country Link
US (1) US20240223926A1 (ja)
JP (1) JP7466792B2 (ja)
DE (1) DE112021008476T5 (ja)
WO (1) WO2023095309A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7229442B2 (ja) * 2021-01-07 2023-02-27 三菱電機株式会社 光通信システム、制御回路、記憶媒体および光通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799496A (ja) * 1993-09-28 1995-04-11 Oki Electric Ind Co Ltd 高速格子型ネットワークシステム
JPH09504926A (ja) * 1993-11-08 1997-05-13 ブリティッシュ テレコミュニケーションズ パブリック リミテッド コンパニー 光ネットワーク用交差接続
JP2000324134A (ja) * 1998-10-08 2000-11-24 Alcatel 受動的な光学的中心部を含むatm通信マトリクス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652563B2 (en) 2019-07-17 2023-05-16 Nippon Telegraph And Telephone Corporation Optical demultiplexer, optical separation device, optical transmission system, and optical transmission method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799496A (ja) * 1993-09-28 1995-04-11 Oki Electric Ind Co Ltd 高速格子型ネットワークシステム
JPH09504926A (ja) * 1993-11-08 1997-05-13 ブリティッシュ テレコミュニケーションズ パブリック リミテッド コンパニー 光ネットワーク用交差接続
JP2000324134A (ja) * 1998-10-08 2000-11-24 Alcatel 受動的な光学的中心部を含むatm通信マトリクス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO, AYANO : "A Study on Optical Matrix Switch applying TDMA Technologies for Satellite Mission Payloads", PROCEEDINGS OF THE 2021 IEICE GENERAL CONFERENCE, COMMUNICATION 1, 1 January 2004 (2004-01-01), Japan , pages 228, XP008151071, ISSN: 1349-1369 *

Also Published As

Publication number Publication date
DE112021008476T5 (de) 2024-09-12
JPWO2023095309A1 (ja) 2023-06-01
JP7466792B2 (ja) 2024-04-12
US20240223926A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
US6512612B1 (en) Intelligent optical router
US7515828B2 (en) System and method for implementing optical light-trails
KR100765599B1 (ko) 데이터 버스트 전송 스케줄링 방법 및 장치와, 컴퓨터 판독가능한 매체
US7590353B2 (en) System and method for bandwidth allocation in an optical light-trail
KR101840916B1 (ko) 시간 동기화에 기초한 전광 타임 슬라이스 스위칭 방법 및 시스템
US7801034B2 (en) System and method for bandwidth allocation in an optical light-trail
US7499465B2 (en) Heuristic assignment of light-trails in an optical network
US8848533B1 (en) Time division multiplex packet fabric ingress scheduler and method
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
EP3443693B1 (en) Channel bonding in multiple-wavelength passive optical networks (pons)
US20060245755A1 (en) System and method for shaping traffic in optical light-trails
US20240223926A1 (en) Optical communication system, control circuit, and optical communication method
US20020105963A1 (en) MAC protocol for optical packet-switched ring network
US11985455B2 (en) Optical communication device and resource management method
US9698930B2 (en) Bandwidth map update method and device
KR100715520B1 (ko) 광 스위칭 시스템에서의 광 데이터 전달장치 및 그 방법
JP4290357B2 (ja) 高容量パケット切替型リングネットワーク
JP2004253881A (ja) 局側集線装置
KR100629501B1 (ko) 광 버스트 스위칭 네트워크에서 채널 할당 방법
JP6279460B2 (ja) ネットワークシステムおよびその制御方法
US9172466B2 (en) Method for switching an optical data stream, computer program product and corresponding storage means and node
WO2013107719A1 (en) Method of allocating bandwidth in an optical network
KR100751447B1 (ko) 파장분할 다중화 기반의 광 피기백 스위칭 방법 및 스위칭노드 구조
EP3051724B1 (en) An optical node and associated method for simultaneous receiving of optical signals
US20040208556A1 (en) Optical network with high density, signaled sources at the edge of the network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552320

Country of ref document: JP