WO2023095261A1 - Mach-zehnder modulator - Google Patents

Mach-zehnder modulator Download PDF

Info

Publication number
WO2023095261A1
WO2023095261A1 PCT/JP2021/043252 JP2021043252W WO2023095261A1 WO 2023095261 A1 WO2023095261 A1 WO 2023095261A1 JP 2021043252 W JP2021043252 W JP 2021043252W WO 2023095261 A1 WO2023095261 A1 WO 2023095261A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
waveguide
mach
type semiconductor
Prior art date
Application number
PCT/JP2021/043252
Other languages
French (fr)
Japanese (ja)
Inventor
崇 柳楽
鴻介 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/043252 priority Critical patent/WO2023095261A1/en
Publication of WO2023095261A1 publication Critical patent/WO2023095261A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells

Definitions

  • the present disclosure relates to Mach-Zehnder modulators.
  • multi-level technology using digital coherent technology is progressing, and in multi-level optical modulators, the amplitude and phase of light can be controlled, and zero-chirp optical modulation signals are generated.
  • a possible Mach-Zehnder modulator has been used (see, for example, US Pat.
  • the response speed required for modulators continues to increase in order to increase the signal capacity per unit time.
  • an optical modulator capable of inputting a modulated electrical signal of 64 GBaud or 96 GBaud or more with low loss and generating a high-speed modulated optical signal by electrical-optical interaction.
  • a Mach-Zehnder modulator equipped with traveling wave electrodes is being vigorously developed.
  • the traveling-wave electrodes have a high-frequency line structure optimized for being driven by a differential signal, making it possible to drive them with a differential driver with high power efficiency.
  • Loss reduction can also be achieved by increasing the electro-optical interaction (refractive index change) per unit length and shortening the modulator length to obtain the necessary amount of phase rotation.
  • it is more essentially achieved by reducing the resistance of the traveling wave electrodes and the resistance between the traveling wave electrodes. Particularly at high frequencies, losses due to semiconductor resistance and contact resistance between traveling wave electrodes are dominant, and reduction of these resistances is important for improving the modulation band.
  • the present disclosure has been made to solve the problems described above, and its object is to obtain a Mach-Zehnder modulator capable of improving the modulation band.
  • a Mach-Zehnder modulator includes a semi-insulating substrate, a p-type semiconductor layer formed on the semi-insulating substrate, and first and spaced apart first and second semiconductor layers formed on the p-type semiconductor layer.
  • the metal electrode is in contact with the p-type semiconductor layer between the first arm waveguide and the second arm waveguide. Since the metal electrode is connected in parallel with the p-type semiconductor layer, the resistance value between the arms is greatly reduced. Therefore, the loss of microwaves propagating through the traveling wave electrode can be reduced, and the modulation band of electro-optical conversion can be greatly improved.
  • FIG. 1 is a plan view showing a Mach-Zehnder modulator according to Embodiment 1;
  • FIG. 1 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 1;
  • FIG. 2 is an equivalent circuit diagram of the Mach-Zehnder modulator according to Embodiment 1.
  • FIG. 5 is a graph showing calculation results of electro-optical modulation bands of Embodiment 1 and Comparative Example.
  • FIG. 8 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 2;
  • FIG. 11 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 3;
  • a Mach-Zehnder modulator according to an embodiment will be described with reference to the drawings.
  • the same reference numerals are given to the same or corresponding components, and repetition of description may be omitted.
  • FIG. 1 is a plan view showing a Mach-Zehnder modulator according to Embodiment 1.
  • FIG. Although only one Mach-Zehnder modulator 1 is shown here, an actual IQ modulator has a configuration in which a plurality of similar Mach-Zehnder modulators are arranged.
  • the light input from the optical input waveguide 2 is demultiplexed into two by the MMI coupler 3 and guided to the arm waveguides 4a and 4b constituting the Mach-Zehnder interferometer, respectively.
  • Traveling wave electrodes 5a and 5b are provided on the arm waveguides 4a and 4b, respectively.
  • Ground lines 6a and 6b are provided in parallel with the traveling wave electrodes 5a and 5b, respectively.
  • the phase of the light guided through the arm waveguides 4a and 4b is modulated by the differentially modulated electric field amplitude input to the traveling wave electrodes 5a and 5b.
  • Terminal resistors 7 matching the differential impedance of the traveling wave electrodes 5a and 5b are connected to the ends of the traveling wave electrodes 5a and 5b.
  • the terminating resistor 7 suppresses reflection of the electric field amplitude propagated through the traveling wave electrodes 5a and 5b.
  • the optical phase is adjusted by the phase adjusters 9a and 9b so as to be coupled to the optical output waveguide 10.
  • FIG. 2 is a cross-sectional view showing the Mach-Zehnder modulator according to Embodiment 1.
  • FIG. A p-type semiconductor layer 12 is formed on a semi-insulating substrate 11 .
  • Arm waveguides 4a and 4b are formed on p-type semiconductor layer 12 while being spaced apart from each other. Traveling wave electrodes 5a and 5b are formed on arm waveguides 4a and 4b, respectively.
  • the arm waveguide 4a has a p-type clad layer 13a, a waveguide layer 14a formed on the p-type clad layer 13a, and an n-type clad layer 15a formed on the waveguide layer 14a.
  • the arm waveguide 4b has a p-type clad layer 13b, a waveguide layer 14b formed on the p-type clad layer 13b, and an n-type clad layer 15b formed on the waveguide layer 14b.
  • the waveguide layers 14a, 14b are composed of semiconductor quantum wells.
  • the side surface of the waveguide layer 14a is covered with a semi-insulating semiconductor embedded layer 16a and an insulating film 17a to be protected from the external environment.
  • the side surface of the waveguide layer 14b is covered with a semi-insulating semiconductor buried layer 16b and an insulating film 17b.
  • a metal electrode 18 is formed on the p-type semiconductor layer 12 between the arm waveguides 4a and 4b.
  • the bottom surface of the metal electrode 18 is in contact with the top surface of the p-type semiconductor layer 12 .
  • Side surfaces of the metal electrode 18 are in contact with the insulating films 17a and 17b.
  • the metal electrode 18 is not electrically connected to any structure other than the p-type semiconductor layer 12 and is connected only to the p-type semiconductor layer 12 .
  • the metal electrode 18 is not connected to a power source for DC biasing and is not a biasing electrode.
  • FIG. 3 is an equivalent circuit diagram of the Mach-Zehnder modulator according to Embodiment 1.
  • FIG. It is necessary to satisfy the conditions of impedance matching of the traveling wave electrodes 5a and 5b and propagation velocity matching with light. Therefore, the inductances La and Lb of the traveling-wave electrodes 5a and 5b and the capacitances Ca and Cb of the waveguide layers 14a and 14b sandwiched between the n-type cladding layers 15a and 15b and the p-type cladding layers 13a and 13b are specified. value should be controlled.
  • the inductances La and Lb are controlled by the thickness, width and electrode spacing of the traveling wave electrodes 5a and 5b.
  • the capacitances Ca and Cb of the waveguide layers 14a and 14b are controlled by the width of the waveguide layers 14a and 14b and the thickness between the n-type clad layers 15a and 15b and the p-type clad layers 13a and 13b.
  • each parameter is shown when the differential impedance is 70 ⁇ and the microwave propagation velocity is matched with light guided through a waveguide with a refractive index of 3.5.
  • the thickness of the traveling wave electrodes 5a and 5b is about 2.5 ⁇ m, the width is about 3.5 ⁇ m, and the distance between the centers of the electrodes is about 15 ⁇ m.
  • the width of the waveguide layers 14a and 14b is approximately 1.5 ⁇ m, and the thickness between the n-type clad layers 15a and 15b and the p-type clad layers 13a and 13b is approximately 0.8 ⁇ m. Under this condition, the above differential impedance and propagation velocity can be matched.
  • the waveguide layers 14a and 14b and the semi-insulating semiconductor buried layers 16a and 16b have a dielectric constant of about 14.
  • the parameters for matching the impedance and propagation velocity are not limited to the above examples, and the thickness, width, electrode spacing, etc. of the traveling wave electrodes 5a and 5b have a degree of freedom. For example, when the electrode interval is widened, the thickness and width of the electrodes must be increased in order to obtain a desired value of inductance. pass characteristic in the relatively low frequency range.
  • the resistance value between the arms is determined only by the resistance value R1 of the p-type semiconductor layer 12. As the distance between the traveling wave electrodes 5a and 5b increases, the resistance value between the arms increases remarkably, and the transmission characteristics deteriorate in the high frequency range of 20 GHz or higher. On the other hand, when the low-resistance resistor R2 of the metal electrode 18 is connected in parallel to the p-type semiconductor layer 12, the increase in the resistance value between the arms due to the expansion of the electrode spacing is slight, and the pass characteristic deteriorates in the high frequency region. will be limited.
  • FIG. 4 is a graph showing calculation results of electro-optical modulation bands in Embodiment 1 and Comparative Example.
  • the metal electrode 18 is not provided in the comparative example. In the high frequency range of 20 GHz or higher, the resistance value between the arms becomes a dominant factor of the pass characteristics. In Embodiment 1, since the resistance value between the arms is reduced by the metal electrode 18, the 3 dB band of electrical-to-optical conversion can be improved to 97 GHz.
  • the surface orientation of the semi-insulating substrate 11 is ⁇ 100>. It is desirable that the extending direction of the arm waveguides 4a and 4b is ⁇ 011> due to restrictions on the regrowth shape after waveguide formation. In the case of this waveguide extending direction, by laminating a p-type clad layer, a waveguide layer, and an n-type clad layer on the semi-insulating substrate 11 in this order, an improvement in phase modulation efficiency due to the Pockels effect can be expected. In the case of such a laminated structure, arm waveguides 4a and 4b are separately formed so as to form a Mach-Zehnder interferometer by dry-etching the waveguide layer and the n-type clad layer.
  • the traveling wave electrodes 5a and 5b are formed on the p-type clad layers 13a and 13b by forming the traveling-wave electrodes 5a and 5b on the n-type clad layers 15a and 15b of the arm waveguides 4a and 4b, respectively. contact resistance can be greatly reduced compared to On the other hand, since the separately formed arm waveguides 4a and 4b are connected by the p-type semiconductor layer 12, the resistance value between the arms of the Mach-Zehnder modulator is governed by the resistance value of the p-type semiconductor layer 12.
  • FIG. The resistance value of the p-type semiconductor layer 12 can be controlled by the doping acceptor concentration and the distance between the arms. However, when the acceptor concentration is increased, the light absorption loss increases, and when the distance between the arms is shortened, the inductance decreases, which makes impedance matching difficult.
  • the metal electrode 18 is brought into contact with the p-type semiconductor layer 12 between the arm waveguides 4a and 4b. Since the metal electrode 18 is connected in parallel with the p-type semiconductor layer 12, the resistance value between the arms is greatly reduced. Therefore, the loss of microwaves propagating through the traveling wave electrodes 5a and 5b can be reduced, and the modulation band of electro-optical conversion can be greatly improved.
  • the metal electrode 18 is formed so as to be in contact with the p-type semiconductor layer 12 over the entire region from the insulating film 17a to the insulating film 17b. Thereby, the resistance value between the arms can be reduced to the maximum.
  • the p-type semiconductor layer 12 is made of InGaAs or the like, and the p-type clad layers 13a and 13b are made of InP or the like. Therefore, the p-type semiconductor layer 12 has a smaller bandgap energy than the p-type clad layers 13a and 13b. Therefore, the contact resistance between the metal electrode 18 and the p-type semiconductor layer 12 can be reduced.
  • Forming the metal electrode 18 reduces the induction component (inductance) at high frequencies. This lowers the impedance and increases the propagation speed of microwaves. Impedance matching and velocity matching must be performed in consideration of the influence of this metal electrode 18 .
  • FIG. 5 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 2.
  • the p-type cladding layer 13 is not etched separately between the arm waveguides 4a and 4b.
  • a metal electrode 18 is in contact with the p-type clad layer 13 .
  • the resistance value between the arms can be further reduced, and the modulation band can be further widened.
  • Other configurations and effects are the same as those of the first embodiment.
  • the contact resistance with the metal electrode 18 is higher than that of materials such as InGaAs having a small bandgap energy.
  • the acceptor concentration of the p-type clad layer 13 is set to 1.0E+18 [cm] so as to suppress light absorption due to intervalence band absorption. ⁇ 3 ] or lower. Therefore, the contact resistance between the metal electrode 18 and the p-type clad layer 13 tends to increase. Therefore, in order to fully exhibit the effect of reducing the resistance value between the arms by forming the metal electrodes 18, it is necessary to appropriately perform sintering after the metal electrodes 18 are formed.
  • FIG. 6 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 3.
  • a p-type contact layer 19 having a bandgap energy smaller than that of the p-type cladding layer 13 is formed on the p-type cladding layer 13 of the second embodiment.
  • Metal electrode 18 is in contact with p-type contact layer 19 .
  • the p-type contact layer 19 with a small bandgap energy has a smaller contact resistance with the metal electrode 18 than the p-type cladding layer 13 .
  • the resistance reduction effect of the metal electrode 18 can be sufficiently obtained while maintaining the thickness of the p-type semiconductor layer between the arms. Therefore, it is expected that the 3 dB band of electrical-to-optical conversion can be improved to 100 GHz or more.
  • Other configurations and effects are the same as those of the second embodiment.

Abstract

A p-type semiconductor layer (12) is formed on a semi-insulating substrate (11). First and second arm waveguides (4a, 4b) are formed on the p-type semiconductor layer (12) and are spaced apart from one another. First and second traveling wave electrodes (5a, 5b) are formed on the first and second arm waveguides (4a, 4b), respectively. A metal electrode (18) which is not connected to a power source for DC bias is provided between the arm waveguide (4a) and the arm waveguide (4b) so as to be in contact with the p-type semiconductor layer (12).

Description

マッハツェンダ変調器mach-zehnder modulator
 本開示は、マッハツェンダ変調器に関する。 The present disclosure relates to Mach-Zehnder modulators.
 近年の通信容量増大に対応するため、デジタルコヒーレント技術を用いた多値化技術が進展しており、多値光変調器においては光の振幅及び位相をそれぞれ制御でき、ゼロチャープの光変調信号が生成可能なマッハツェンダ変調器が用いられている(例えば、特許文献1参照)。また、時間当たりの信号容量を増大させるため、変調器に求められる応答速度はますます増大し続けている。64GBaud又は96GBaud以上の変調電気信号を低損失で入力し、電気-光相互作用により高速な変調光信号が生成可能な光変調器が望まれている。 In order to cope with the recent increase in communication capacity, multi-level technology using digital coherent technology is progressing, and in multi-level optical modulators, the amplitude and phase of light can be controlled, and zero-chirp optical modulation signals are generated. A possible Mach-Zehnder modulator has been used (see, for example, US Pat. In addition, the response speed required for modulators continues to increase in order to increase the signal capacity per unit time. There is a demand for an optical modulator capable of inputting a modulated electrical signal of 64 GBaud or 96 GBaud or more with low loss and generating a high-speed modulated optical signal by electrical-optical interaction.
 上記の光変調器の実現のため、進行波型電極を備えたマッハツェンダ変調器が精力的に開発されている。進行波電極は差動信号によって駆動されることに最適化された高周波線路構造にすることで、電力効率の高い差動ドライバによる駆動を可能としている。 In order to realize the above optical modulator, a Mach-Zehnder modulator equipped with traveling wave electrodes is being vigorously developed. The traveling-wave electrodes have a high-frequency line structure optimized for being driven by a differential signal, making it possible to drive them with a differential driver with high power efficiency.
 ドライバの特性インピーダンス又は終端抵抗と進行波電極のインピーダンスを整合させる必要がある。インピーダンス整合が得られていないと、ドライバから進行波電極に電気信号を入力する際に反射が生じて電力ロスになる。また、終端抵抗部分ではインピーダンス不整合により反射した電気信号が進行波電極内を後進し、その後進波とも光が相互作用することで変調波形の劣化が生じる。 It is necessary to match the characteristic impedance or termination resistance of the driver and the impedance of the traveling wave electrode. If impedance matching is not obtained, reflection occurs when an electric signal is input from the driver to the traveling wave electrode, resulting in power loss. In addition, the electric signal reflected by the impedance mismatch at the terminating resistor travels backward in the traveling wave electrode, and light interacts with the trailing wave, resulting in deterioration of the modulated waveform.
 また、電極内を伝搬するマイクロ波と電極近傍に設置した導波路内を進行する光の伝搬速度を整合させる必要がある。速度整合が得られていないと、マイクロ波と共に伝搬しながら電界振幅による変調を受ける変調光と位相ズレが生じる。特にマイクロ波の波長が短くなる高周波ほど顕著に位相ズレがあらわれることになり、変調帯域の劣化につながる。 In addition, it is necessary to match the propagation speed of the microwave propagating in the electrode and the light propagating in the waveguide installed near the electrode. If velocity matching is not obtained, a phase shift occurs with the modulated light that is modulated by the electric field amplitude while propagating with the microwave. In particular, the higher the wavelength of the microwave becomes, the more pronounced the phase shift appears, leading to deterioration of the modulation band.
日本特開2016-24409号公報Japanese Patent Application Laid-Open No. 2016-24409
 上記のようにインピーダンス整合及び速度整合を満たした上で、進行波電極内を伝搬するマイクロ波の損失を低減して、変調帯域を向上させる必要がある。低損失化は、単位長さあたりの電気-光相互作用(屈折率変化)を大きくし、結果的に必要な位相回転量を得るための変調器長を短くすることでも達成される。しかし、より本質的には進行波電極の抵抗及び進行波電極間の抵抗を低減することで達成される。特に高周波では進行波電極間の半導体抵抗及びコンタクト抵抗に起因した損失が支配的であり、これらの抵抗低減が変調帯域の向上にとって重要である。 After satisfying the impedance matching and velocity matching as described above, it is necessary to reduce the loss of microwaves propagating in the traveling wave electrode and improve the modulation band. Loss reduction can also be achieved by increasing the electro-optical interaction (refractive index change) per unit length and shortening the modulator length to obtain the necessary amount of phase rotation. However, it is more essentially achieved by reducing the resistance of the traveling wave electrodes and the resistance between the traveling wave electrodes. Particularly at high frequencies, losses due to semiconductor resistance and contact resistance between traveling wave electrodes are dominant, and reduction of these resistances is important for improving the modulation band.
 本開示は、上述のような課題を解決するためになされたもので、その目的は変調帯域を向上させることができるマッハツェンダ変調器を得るものである。 The present disclosure has been made to solve the problems described above, and its object is to obtain a Mach-Zehnder modulator capable of improving the modulation band.
 本開示に係るマッハツェンダ変調器は、半絶縁性基板と、前記半絶縁性基板の上に形成されたp型半導体層と、前記p型半導体層の上に形成され、互いに離間した第1及び第2のアーム導波路と、前記第1及び第2のアーム導波路の上にそれぞれ形成された第1及び第2の進行波電極と、前記第1のアーム導波路と前記第2のアーム導波路の間において前記p型半導体層に接触し、DCバイアス用の電源に接続されていない金属電極とを備えることを特徴とする。 A Mach-Zehnder modulator according to the present disclosure includes a semi-insulating substrate, a p-type semiconductor layer formed on the semi-insulating substrate, and first and spaced apart first and second semiconductor layers formed on the p-type semiconductor layer. two arm waveguides, first and second traveling-wave electrodes respectively formed on the first and second arm waveguides, the first arm waveguide and the second arm waveguide. and a metal electrode that is in contact with the p-type semiconductor layer between and is not connected to a power supply for DC bias.
 本開示では、金属電極を、第1のアーム導波路と第2のアーム導波路の間においてp型半導体層に接触させている。p型半導体層に対して金属電極が並列に接続されるため、アーム間の抵抗値が大幅に低下する。従って、進行波電極を伝搬するマイクロ波の損失を低減し、電気-光変換の変調帯域を大幅に向上させることができる。 In the present disclosure, the metal electrode is in contact with the p-type semiconductor layer between the first arm waveguide and the second arm waveguide. Since the metal electrode is connected in parallel with the p-type semiconductor layer, the resistance value between the arms is greatly reduced. Therefore, the loss of microwaves propagating through the traveling wave electrode can be reduced, and the modulation band of electro-optical conversion can be greatly improved.
実施の形態1に係るマッハツェンダ変調器を示す平面図である。1 is a plan view showing a Mach-Zehnder modulator according to Embodiment 1; FIG. 実施の形態1に係るマッハツェンダ変調器を示す断面図である。1 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 1; FIG. 実施の形態1に係るマッハツェンダ変調器の等価回路図である。2 is an equivalent circuit diagram of the Mach-Zehnder modulator according to Embodiment 1. FIG. 実施の形態1及び比較例の電気-光変調帯域の計算結果を示すグラフである。5 is a graph showing calculation results of electro-optical modulation bands of Embodiment 1 and Comparative Example. 実施の形態2に係るマッハツェンダ変調器を示す断面図である。FIG. 8 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 2; 実施の形態3に係るマッハツェンダ変調器を示す断面図である。FIG. 11 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 3;
 実施の形態に係るマッハツェンダ変調器について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 A Mach-Zehnder modulator according to an embodiment will be described with reference to the drawings. The same reference numerals are given to the same or corresponding components, and repetition of description may be omitted.
実施の形態1.
 図1は、実施の形態1に係るマッハツェンダ変調器を示す平面図である。ここでは一つのマッハツェンダ変調器1のみを示しているが、実際のIQ変調器では同様のマッハツェンダ変調器が複数並ぶ構成となる。
Embodiment 1.
FIG. 1 is a plan view showing a Mach-Zehnder modulator according to Embodiment 1. FIG. Although only one Mach-Zehnder modulator 1 is shown here, an actual IQ modulator has a configuration in which a plurality of similar Mach-Zehnder modulators are arranged.
 光入力導波路2から入力した光をMMIカプラ3が2つに分波し、マッハツェンダ干渉器を構成するアーム導波路4a,4bにそれぞれ導く。アーム導波路4a,4bの上にはそれぞれ進行波電極5a,5bが設けられている。グランド線路6a,6bがそれぞれ進行波電極5a,5bに平行して設けられている。 The light input from the optical input waveguide 2 is demultiplexed into two by the MMI coupler 3 and guided to the arm waveguides 4a and 4b constituting the Mach-Zehnder interferometer, respectively. Traveling wave electrodes 5a and 5b are provided on the arm waveguides 4a and 4b, respectively. Ground lines 6a and 6b are provided in parallel with the traveling wave electrodes 5a and 5b, respectively.
 進行波電極5a,5bに入力した差動変調の電界振幅によってアーム導波路4a,4bを導波する光の位相が変調される。進行波電極5a,5bの端には進行波電極5a,5bの差動インピーダンスと整合した終端抵抗7が接続されている。終端抵抗7は、進行波電極5a,5b内を伝搬した電界振幅の反射を抑制する。位相変調を受けた光はMMIカプラ8によって合波される前に、位相調整器9a,9bによって光出力導波路10に結合するように光位相を調整する。 The phase of the light guided through the arm waveguides 4a and 4b is modulated by the differentially modulated electric field amplitude input to the traveling wave electrodes 5a and 5b. Terminal resistors 7 matching the differential impedance of the traveling wave electrodes 5a and 5b are connected to the ends of the traveling wave electrodes 5a and 5b. The terminating resistor 7 suppresses reflection of the electric field amplitude propagated through the traveling wave electrodes 5a and 5b. Before the phase-modulated light is combined by the MMI coupler 8, the optical phase is adjusted by the phase adjusters 9a and 9b so as to be coupled to the optical output waveguide 10. FIG.
 図2は、実施の形態1に係るマッハツェンダ変調器を示す断面図である。半絶縁性基板11の上にp型半導体層12が形成されている。アーム導波路4a,4bが互いに離間してp型半導体層12の上に形成されている。アーム導波路4a,4bの上にそれぞれ進行波電極5a,5bが形成されている。 FIG. 2 is a cross-sectional view showing the Mach-Zehnder modulator according to Embodiment 1. FIG. A p-type semiconductor layer 12 is formed on a semi-insulating substrate 11 . Arm waveguides 4a and 4b are formed on p-type semiconductor layer 12 while being spaced apart from each other. Traveling wave electrodes 5a and 5b are formed on arm waveguides 4a and 4b, respectively.
 アーム導波路4aは、p型クラッド層13aと、p型クラッド層13aの上に形成された導波路層14aと、導波路層14aの上に形成されたn型クラッド層15aとを有する。アーム導波路4bは、p型クラッド層13bと、p型クラッド層13bの上に形成された導波路層14bと、導波路層14bの上に形成されたn型クラッド層15bとを有する。導波路層14a,14bは半導体量子井戸で構成されている。 The arm waveguide 4a has a p-type clad layer 13a, a waveguide layer 14a formed on the p-type clad layer 13a, and an n-type clad layer 15a formed on the waveguide layer 14a. The arm waveguide 4b has a p-type clad layer 13b, a waveguide layer 14b formed on the p-type clad layer 13b, and an n-type clad layer 15b formed on the waveguide layer 14b. The waveguide layers 14a, 14b are composed of semiconductor quantum wells.
 導波路層14aの側面は、半絶縁性の半導体埋め込み層16aと絶縁膜17aにより覆われて外部環境から保護されている。同様に、導波路層14bの側面は、半絶縁性の半導体埋め込み層16bと絶縁膜17bにより覆われている。 The side surface of the waveguide layer 14a is covered with a semi-insulating semiconductor embedded layer 16a and an insulating film 17a to be protected from the external environment. Similarly, the side surface of the waveguide layer 14b is covered with a semi-insulating semiconductor buried layer 16b and an insulating film 17b.
 アーム導波路4aとアーム導波路4bの間において、金属電極18がp型半導体層12の上に形成されている。金属電極18の下面はp型半導体層12の上面に接触している。金属電極18の側面は絶縁膜17a,17bに接触している。金属電極18はp型半導体層12以外の他の構成に電気的に接続されておらず、p型半導体層12だけに接続されている。特に、金属電極18は、DCバイアス用の電源に接続されておらず、バイアス印加用の電極ではない。 A metal electrode 18 is formed on the p-type semiconductor layer 12 between the arm waveguides 4a and 4b. The bottom surface of the metal electrode 18 is in contact with the top surface of the p-type semiconductor layer 12 . Side surfaces of the metal electrode 18 are in contact with the insulating films 17a and 17b. The metal electrode 18 is not electrically connected to any structure other than the p-type semiconductor layer 12 and is connected only to the p-type semiconductor layer 12 . In particular, the metal electrode 18 is not connected to a power source for DC biasing and is not a biasing electrode.
 図3は、実施の形態1に係るマッハツェンダ変調器の等価回路図である。進行波電極5a,5bのインピーダンス整合、光との伝搬速度整合条件を満たす必要がある。このため、進行波電極5a,5bのインダクタンスLa,Lb、及び、n型クラッド層15a,15bとp型クラッド層13a,13bに挟まれた導波路層14a,14bのキャパシタンスCa,Cbを特定の値に制御する必要がある。インダクタンスLa,Lbは、進行波電極5a,5bの厚さ、幅、及び、電極間隔によって制御される。導波路層14a,14bのキャパシタンスCa,Cbは、導波路層14a,14bの幅、及び、n型クラッド層15a,15bとp型クラッド層13a,13bの間の厚さで制御される。 FIG. 3 is an equivalent circuit diagram of the Mach-Zehnder modulator according to Embodiment 1. FIG. It is necessary to satisfy the conditions of impedance matching of the traveling wave electrodes 5a and 5b and propagation velocity matching with light. Therefore, the inductances La and Lb of the traveling- wave electrodes 5a and 5b and the capacitances Ca and Cb of the waveguide layers 14a and 14b sandwiched between the n- type cladding layers 15a and 15b and the p- type cladding layers 13a and 13b are specified. value should be controlled. The inductances La and Lb are controlled by the thickness, width and electrode spacing of the traveling wave electrodes 5a and 5b. The capacitances Ca and Cb of the waveguide layers 14a and 14b are controlled by the width of the waveguide layers 14a and 14b and the thickness between the n-type clad layers 15a and 15b and the p- type clad layers 13a and 13b.
 例として、差動インピーダンスを70Ωとし、マイクロ波の伝搬速度を屈折率3.5の導波路を導波する光と整合させた場合の各パラメータを示す。進行波電極5a,5bの厚さは約2.5μm、幅は約3.5μm、電極中心間の距離は約15μmとする。導波路層14a,14bの幅は約1.5μm、n型クラッド層15a,15bとp型クラッド層13a,13bの間の厚さは約0.8μmとする。この条件で上記の差動インピーダンス、伝搬速度に整合させることができる。なお、導波路層14a,14b及び半絶縁性の半導体埋め込み層16a,16bの誘電率は14程度とした。 As an example, each parameter is shown when the differential impedance is 70 Ω and the microwave propagation velocity is matched with light guided through a waveguide with a refractive index of 3.5. The thickness of the traveling wave electrodes 5a and 5b is about 2.5 μm, the width is about 3.5 μm, and the distance between the centers of the electrodes is about 15 μm. The width of the waveguide layers 14a and 14b is approximately 1.5 μm, and the thickness between the n-type clad layers 15a and 15b and the p-type clad layers 13a and 13b is approximately 0.8 μm. Under this condition, the above differential impedance and propagation velocity can be matched. The waveguide layers 14a and 14b and the semi-insulating semiconductor buried layers 16a and 16b have a dielectric constant of about 14.
 インピーダンス及び伝搬速度の整合が得られるパラメータは上記の例に限らず、進行波電極5a,5bの厚さ、幅、電極間隔などに自由度がある。例えば電極間隔を広げた場合にはインダクタンスを所望の値にするために電極の厚さと幅を大きくとることになり、進行波電極5a,5bの抵抗Ra,Rbを小さくすることができ、20GHz以下の比較的低周波域での通過特性が改善する。 The parameters for matching the impedance and propagation velocity are not limited to the above examples, and the thickness, width, electrode spacing, etc. of the traveling wave electrodes 5a and 5b have a degree of freedom. For example, when the electrode interval is widened, the thickness and width of the electrodes must be increased in order to obtain a desired value of inductance. pass characteristic in the relatively low frequency range.
 金属電極18が設けられていない場合、アーム間の抵抗値はp型半導体層12の抵抗値R1のみで決まる。進行波電極5a,5bの間隔の拡大に対してアーム間の抵抗値は顕著に増加し、20GHz以上の高周波領域での通過特性が悪化する。一方、金属電極18の低抵抗な抵抗R2がp型半導体層12に並列に接続されている場合は、電極間隔の拡大によるアーム間の抵抗値増加は僅かであり、高周波領域での通過特性悪化は限定的なものとなる。 When the metal electrode 18 is not provided, the resistance value between the arms is determined only by the resistance value R1 of the p-type semiconductor layer 12. As the distance between the traveling wave electrodes 5a and 5b increases, the resistance value between the arms increases remarkably, and the transmission characteristics deteriorate in the high frequency range of 20 GHz or higher. On the other hand, when the low-resistance resistor R2 of the metal electrode 18 is connected in parallel to the p-type semiconductor layer 12, the increase in the resistance value between the arms due to the expansion of the electrode spacing is slight, and the pass characteristic deteriorates in the high frequency region. will be limited.
 図4は、実施の形態1及び比較例の電気-光変調帯域の計算結果を示すグラフである。比較例には金属電極18が設けられていない。20GHz以上の高周波域においては、アーム間の抵抗値が通過特性の支配要因となる。実施の形態1では金属電極18によりアーム間の抵抗値が低減されるため、電気-光変換の3dB帯域を97GHzまで向上させることができる。 FIG. 4 is a graph showing calculation results of electro-optical modulation bands in Embodiment 1 and Comparative Example. The metal electrode 18 is not provided in the comparative example. In the high frequency range of 20 GHz or higher, the resistance value between the arms becomes a dominant factor of the pass characteristics. In Embodiment 1, since the resistance value between the arms is reduced by the metal electrode 18, the 3 dB band of electrical-to-optical conversion can be improved to 97 GHz.
 また、半絶縁性基板11の表面の面方位は<100>である。導波路形成後の再成長形状の制約からアーム導波路4a,4bの延伸方向は<011>であることが望ましい。この導波路延伸方向の場合に半絶縁性基板11の上にp型クラッド層、導波路層、n型クラッド層の順に積層することでポッケルス効果による位相変調効率の向上が見込める。このような積層構造の場合、導波路層とn型クラッド層をドライエッチングしてマッハツェンダ干渉器を構成するようにアーム導波路4a,4bを分離形成する。アーム導波路4a,4bのn型クラッド層15a,15bの上にそれぞれ進行波電極5a,5bを形成することで、p型クラッド層13a,13bの上に進行波電極5a,5bを形成した場合と比較してコンタクト抵抗を大幅に低減することができる。一方、分離形成したアーム導波路4a,4bをp型半導体層12で接続しているため、マッハツェンダ変調器のアーム間の抵抗値はp型半導体層12の抵抗値によって支配される。p型半導体層12の抵抗値は、ドーピングするアクセプタ濃度、アーム間の距離で制御することができる。しかし、アクセプタ濃度を増やした場合には光吸収損失増加、アーム間の距離を近づけた場合にはインダクタンスが低下することでインピーダンス整合が困難になるなどの問題がある。 The surface orientation of the semi-insulating substrate 11 is <100>. It is desirable that the extending direction of the arm waveguides 4a and 4b is <011> due to restrictions on the regrowth shape after waveguide formation. In the case of this waveguide extending direction, by laminating a p-type clad layer, a waveguide layer, and an n-type clad layer on the semi-insulating substrate 11 in this order, an improvement in phase modulation efficiency due to the Pockels effect can be expected. In the case of such a laminated structure, arm waveguides 4a and 4b are separately formed so as to form a Mach-Zehnder interferometer by dry-etching the waveguide layer and the n-type clad layer. When the traveling wave electrodes 5a and 5b are formed on the p-type clad layers 13a and 13b by forming the traveling- wave electrodes 5a and 5b on the n-type clad layers 15a and 15b of the arm waveguides 4a and 4b, respectively. contact resistance can be greatly reduced compared to On the other hand, since the separately formed arm waveguides 4a and 4b are connected by the p-type semiconductor layer 12, the resistance value between the arms of the Mach-Zehnder modulator is governed by the resistance value of the p-type semiconductor layer 12. FIG. The resistance value of the p-type semiconductor layer 12 can be controlled by the doping acceptor concentration and the distance between the arms. However, when the acceptor concentration is increased, the light absorption loss increases, and when the distance between the arms is shortened, the inductance decreases, which makes impedance matching difficult.
 そこで、本実施の形態では、金属電極18を、アーム導波路4aとアーム導波路4bの間においてp型半導体層12に接触させている。p型半導体層12に対して金属電極18が並列に接続されるため、アーム間の抵抗値が大幅に低下する。従って、進行波電極5a,5bを伝搬するマイクロ波の損失を低減し、電気-光変換の変調帯域を大幅に向上させることができる。 Therefore, in the present embodiment, the metal electrode 18 is brought into contact with the p-type semiconductor layer 12 between the arm waveguides 4a and 4b. Since the metal electrode 18 is connected in parallel with the p-type semiconductor layer 12, the resistance value between the arms is greatly reduced. Therefore, the loss of microwaves propagating through the traveling wave electrodes 5a and 5b can be reduced, and the modulation band of electro-optical conversion can be greatly improved.
 また、金属電極18は、絶縁膜17aからと絶縁膜17bまでの全ての領域においてp型半導体層12に接触するように形成されている。これにより、アーム間の抵抗値を最大限に低下させることができる。 Also, the metal electrode 18 is formed so as to be in contact with the p-type semiconductor layer 12 over the entire region from the insulating film 17a to the insulating film 17b. Thereby, the resistance value between the arms can be reduced to the maximum.
 p型半導体層12はInGaAsなどからなり、p型クラッド層13a,13bはInPなどからなる。従って、p型半導体層12はp型クラッド層13a,13bよりもバンドギャップエネルギーが小さい。このため、金属電極18とp型半導体層12のコンタクト抵抗を低減することができる。 The p-type semiconductor layer 12 is made of InGaAs or the like, and the p-type clad layers 13a and 13b are made of InP or the like. Therefore, the p-type semiconductor layer 12 has a smaller bandgap energy than the p-type clad layers 13a and 13b. Therefore, the contact resistance between the metal electrode 18 and the p-type semiconductor layer 12 can be reduced.
 なお、金属電極18を形成することで高周波における誘導成分(インダクタンス)が低下する。このため、インピーダンスが低下し、マイクロ波の伝搬速度が上昇する。この金属電極18による影響を考慮してインピーダンス整合及び速度整合を行う必要がある。 Forming the metal electrode 18 reduces the induction component (inductance) at high frequencies. This lowers the impedance and increases the propagation speed of microwaves. Impedance matching and velocity matching must be performed in consideration of the influence of this metal electrode 18 .
実施の形態2.
 図5は、実施の形態2に係るマッハツェンダ変調器を示す断面図である。本実施の形態ではアーム導波路4aとアーム導波路4bの間においてp型クラッド層13を分離エッチングしない。金属電極18はp型クラッド層13に接触している。これによりアーム間の抵抗値を更に低減し、変調帯域の更なる広帯域化を図ることができる。その他の構成及び効果は実施の形態1と同様である。
Embodiment 2.
FIG. 5 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 2. FIG. In this embodiment, the p-type cladding layer 13 is not etched separately between the arm waveguides 4a and 4b. A metal electrode 18 is in contact with the p-type clad layer 13 . As a result, the resistance value between the arms can be further reduced, and the modulation band can be further widened. Other configurations and effects are the same as those of the first embodiment.
 ただし、p型クラッド層13の材料として導波路層14a,14bより屈折率の低いInPなどを用いる。このため、InGaAsなどのバンドギャップエネルギーの小さい材料と比較して金属電極18とのコンタクト抵抗が高くなる。また、p型クラッド層13は導波路層14a,14bの近傍に配置されるため、価電子帯間吸収による光吸収を抑制するように、p型クラッド層13のアクセプタ濃度を1.0E+18[cm-3]程度以下に低くする必要がある。従って、金属電極18とp型クラッド層13のコンタクト抵抗が高くなる傾向がある。よって、金属電極18を形成したことによるアーム間の抵抗値低減効果を十分に発揮するためには、金属電極18を形成した後のシンター処理を適切に実施する必要がある。 However, as the material of the p-type cladding layer 13, InP or the like having a lower refractive index than the waveguide layers 14a and 14b is used. Therefore, the contact resistance with the metal electrode 18 is higher than that of materials such as InGaAs having a small bandgap energy. Further, since the p-type clad layer 13 is arranged near the waveguide layers 14a and 14b, the acceptor concentration of the p-type clad layer 13 is set to 1.0E+18 [cm] so as to suppress light absorption due to intervalence band absorption. −3 ] or lower. Therefore, the contact resistance between the metal electrode 18 and the p-type clad layer 13 tends to increase. Therefore, in order to fully exhibit the effect of reducing the resistance value between the arms by forming the metal electrodes 18, it is necessary to appropriately perform sintering after the metal electrodes 18 are formed.
実施の形態3.
 図6は、実施の形態3に係るマッハツェンダ変調器を示す断面図である。本実施の形態では、実施の形態2のp型クラッド層13の上に、p型クラッド層13よりもバンドギャップエネルギーが小さいp型コンタクト層19を形成している。金属電極18はp型コンタクト層19に接触している。バンドギャップエネルギーが小さいp型コンタクト層19は、p型クラッド層13よりも金属電極18とのコンタクト抵抗が小さい。これにより、アーム間のp型半導体層の厚さを保持しつつ、金属電極18による抵抗低減効果も十分に得られる。従って、電気-光変換の3dB帯域を100GHz以上に向上できることが期待される。その他の構成及び効果は実施の形態2と同様である。
Embodiment 3.
FIG. 6 is a cross-sectional view showing a Mach-Zehnder modulator according to Embodiment 3. FIG. In the present embodiment, a p-type contact layer 19 having a bandgap energy smaller than that of the p-type cladding layer 13 is formed on the p-type cladding layer 13 of the second embodiment. Metal electrode 18 is in contact with p-type contact layer 19 . The p-type contact layer 19 with a small bandgap energy has a smaller contact resistance with the metal electrode 18 than the p-type cladding layer 13 . As a result, the resistance reduction effect of the metal electrode 18 can be sufficiently obtained while maintaining the thickness of the p-type semiconductor layer between the arms. Therefore, it is expected that the 3 dB band of electrical-to-optical conversion can be improved to 100 GHz or more. Other configurations and effects are the same as those of the second embodiment.
1 マッハツェンダ変調器、4a,4b アーム導波路、5a,5b 進行波電極、11 半絶縁性基板、12 p型半導体層、13a,13b p型クラッド層、14a,14b 導波路層、15a,15b n型クラッド層、17a,17b 絶縁膜、18 金属電極、19 p型コンタクト層 1 Mach-Zehnder modulator, 4a, 4b arm waveguides, 5a, 5b traveling wave electrodes, 11 semi-insulating substrate, 12 p-type semiconductor layers, 13a, 13b p-type cladding layers, 14a, 14b waveguide layers, 15a, 15b n type cladding layer, 17a, 17b insulation film, 18 metal electrode, 19 p-type contact layer

Claims (6)

  1.  半絶縁性基板と、
     前記半絶縁性基板の上に形成されたp型半導体層と、
     前記p型半導体層の上に形成され、互いに離間した第1及び第2のアーム導波路と、
     前記第1及び第2のアーム導波路の上にそれぞれ形成された第1及び第2の進行波電極と、
     前記第1のアーム導波路と前記第2のアーム導波路の間において前記p型半導体層に接触し、DCバイアス用の電源に接続されていない金属電極とを備えることを特徴とするマッハツェンダ変調器。
    a semi-insulating substrate;
    a p-type semiconductor layer formed on the semi-insulating substrate;
    first and second arm waveguides formed on the p-type semiconductor layer and separated from each other;
    first and second traveling wave electrodes respectively formed on the first and second arm waveguides;
    A Mach-Zehnder modulator comprising a metal electrode that is in contact with the p-type semiconductor layer between the first arm waveguide and the second arm waveguide and that is not connected to a DC bias power supply. .
  2.  前記第1及び第2のアーム導波路の側面をそれぞれ覆う第1及び第2の絶縁膜を更に備え、
     前記金属電極は、前記第1の絶縁膜から前記第2の絶縁膜までの全ての領域において前記p型半導体層に接触するように形成されていることを特徴とする請求項1に記載のマッハツェンダ変調器。
    further comprising first and second insulating films covering side surfaces of the first and second arm waveguides, respectively;
    2. The Mach-Zehnder according to claim 1, wherein said metal electrode is formed so as to be in contact with said p-type semiconductor layer over the entire region from said first insulating film to said second insulating film. modulator.
  3.  前記第1及び第2のアーム導波路の各々は、p型クラッド層と、前記p型クラッド層の上に形成された導波路層と、前記導波路層の上に形成されたn型クラッド層とを有し、
     前記p型半導体層は、前記p型クラッド層よりもバンドギャップエネルギーが小さいことを特徴とする請求項1又は2に記載のマッハツェンダ変調器。
    Each of the first and second arm waveguides includes a p-type clad layer, a waveguide layer formed on the p-type clad layer, and an n-type clad layer formed on the waveguide layer. and
    3. The Mach-Zehnder modulator according to claim 1, wherein said p-type semiconductor layer has a bandgap energy smaller than that of said p-type cladding layer.
  4.  前記p型半導体層はp型クラッド層を有し、
     前記第1及び第2のアーム導波路の各々は、前記p型クラッド層の上に形成された導波路層と、前記導波路層の上に形成されたn型クラッド層とを有し、
     前記金属電極は前記p型クラッド層に接触していることを特徴とする請求項1又は2に記載のマッハツェンダ変調器。
    The p-type semiconductor layer has a p-type cladding layer,
    each of the first and second arm waveguides has a waveguide layer formed on the p-type cladding layer and an n-type cladding layer formed on the waveguide layer;
    3. The Mach-Zehnder modulator according to claim 1, wherein said metal electrode is in contact with said p-type cladding layer.
  5.  前記p型半導体層は、p型クラッド層と、前記p型クラッド層の上に形成され、前記p型クラッド層よりもバンドギャップエネルギーが小さいp型コンタクト層とを有し、
     前記第1及び第2のアーム導波路の各々は、前記p型クラッド層の上に形成された導波路層と、前記導波路層の上に形成されたn型クラッド層とを有し、
     前記金属電極は前記p型コンタクト層に接触していることを特徴とする請求項1又は2に記載のマッハツェンダ変調器。
    The p-type semiconductor layer has a p-type cladding layer and a p-type contact layer formed on the p-type cladding layer and having a bandgap energy smaller than that of the p-type cladding layer,
    each of the first and second arm waveguides has a waveguide layer formed on the p-type cladding layer and an n-type cladding layer formed on the waveguide layer;
    3. The Mach-Zehnder modulator according to claim 1, wherein said metal electrode is in contact with said p-type contact layer.
  6.  前記半絶縁性基板の表面の面方位は<100>であり、
     前記第1及び第2のアーム導波路の延伸方向は<011>であることを特徴とする請求項1~5の何れか1項に記載のマッハツェンダ変調器。
    The plane orientation of the surface of the semi-insulating substrate is <100>,
    6. The Mach-Zehnder modulator according to claim 1, wherein the extension direction of said first and second arm waveguides is <011>.
PCT/JP2021/043252 2021-11-25 2021-11-25 Mach-zehnder modulator WO2023095261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043252 WO2023095261A1 (en) 2021-11-25 2021-11-25 Mach-zehnder modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043252 WO2023095261A1 (en) 2021-11-25 2021-11-25 Mach-zehnder modulator

Publications (1)

Publication Number Publication Date
WO2023095261A1 true WO2023095261A1 (en) 2023-06-01

Family

ID=86539175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043252 WO2023095261A1 (en) 2021-11-25 2021-11-25 Mach-zehnder modulator

Country Status (1)

Country Link
WO (1) WO2023095261A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008869A (en) * 2008-06-30 2010-01-14 Fujitsu Ltd Mach-zehnder optical modulator
WO2016194369A1 (en) * 2015-06-02 2016-12-08 日本電信電話株式会社 Semiconductor optical modulation element
JP2017227801A (en) * 2016-06-23 2017-12-28 日本電信電話株式会社 Semiconductor optical modulator
US10831044B1 (en) * 2017-03-06 2020-11-10 Acacia Communications, Inc. Traveling wave modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008869A (en) * 2008-06-30 2010-01-14 Fujitsu Ltd Mach-zehnder optical modulator
WO2016194369A1 (en) * 2015-06-02 2016-12-08 日本電信電話株式会社 Semiconductor optical modulation element
JP2017227801A (en) * 2016-06-23 2017-12-28 日本電信電話株式会社 Semiconductor optical modulator
US10831044B1 (en) * 2017-03-06 2020-11-10 Acacia Communications, Inc. Traveling wave modulator

Similar Documents

Publication Publication Date Title
US6867901B2 (en) Optical modulator and design method therefor
CN107003549B (en) Optical modulator
JP6983908B2 (en) Semiconductor light modulator
JP3885528B2 (en) Light modulator
JP3905367B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator using the same, and method for manufacturing the semiconductor optical modulator
US10228605B2 (en) Waveguide optical element
JP6259358B2 (en) Semiconductor Mach-Zehnder type optical modulator
WO2016194369A1 (en) Semiconductor optical modulation element
US9423667B2 (en) High-frequency circuit and optical modulator
WO2020149185A1 (en) Semiconductor mach zehnder optical modulator
JP6926499B2 (en) Light modulator
JP6348880B2 (en) Semiconductor Mach-Zehnder optical modulator
JP6002066B2 (en) Semiconductor light modulator
WO2020170871A1 (en) Optical modulator
WO2023095261A1 (en) Mach-zehnder modulator
WO2019211991A1 (en) Semiconductor mach-zehnder optical modulator and iq optical modulator using same
JP2018036399A (en) Substrate-type optical waveguide and substrate-type optical modulator
JP6734813B2 (en) Optical transmitter
JP4671993B2 (en) Light modulator
US11372307B2 (en) Optical modulator
JP2015212769A (en) Semiconductor Mach-Zehnder optical modulator
JP7224368B2 (en) Mach-Zehnder optical modulator
US20220066281A1 (en) Semiconductor Mach-Zehnder Optical Modulator and IQ Modulator
JP7315118B1 (en) Mach-Zehnder optical modulator and optical transmitter
JP2014224902A (en) Travelling wave electrode type optical modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965633

Country of ref document: EP

Kind code of ref document: A1