WO2023095255A1 - 3次元モデルを作成する装置、方法及びプログラム - Google Patents
3次元モデルを作成する装置、方法及びプログラム Download PDFInfo
- Publication number
- WO2023095255A1 WO2023095255A1 PCT/JP2021/043232 JP2021043232W WO2023095255A1 WO 2023095255 A1 WO2023095255 A1 WO 2023095255A1 JP 2021043232 W JP2021043232 W JP 2021043232W WO 2023095255 A1 WO2023095255 A1 WO 2023095255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- curve
- cluster
- points
- point cloud
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 21
- 239000000725 suspension Substances 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Definitions
- the present disclosure relates to technology for creating a 3D model from point cloud data representing 3D coordinates.
- Patent Literature 1 A technology has been developed to create a three-dimensional model of an outdoor structure using a three-dimensional laser scanner (Mobile Mapping System: MMS) mounted on a vehicle (see Patent Document 1, for example).
- MMS Mobile Mapping System
- Patent Document 1 A technology has been developed to create a three-dimensional model of an outdoor structure using a three-dimensional laser scanner (Mobile Mapping System: MMS) mounted on a vehicle (see Patent Document 1, for example).
- MMS Mobile Mapping System
- MMS can acquire point clouds while moving along the object, it is possible to acquire point clouds in the measurement range evenly and at regular intervals to some extent.
- a fixed 3D laser scanner produces a dense point cloud at a short distance from the measurement point, and a coarse point cloud at a long distance, and this characteristic appears remarkably depending on the size and shape of the object.
- the points are interpolated up to a certain threshold for the distance between the point clouds to form a scan line. Can not do it. Therefore, in 3D modeling using a fixed 3D laser scanner, there is a problem that it is difficult to create a 3D model of an object with a small diameter, such as an overhead cable near a utility pole.
- An object of the present disclosure is to enable the creation of a three-dimensional model even for an object in which the point-to-point distances are not evenly spaced and the point cloud is only partially present.
- the apparatus and method of the present disclosure create a three-dimensional model of an object with a small diameter from point cloud data representing three-dimensional coordinates, Clustering the points included in the point cloud data, for at least one of the clusters find a curve through the points in the cluster; extracting a cloud of points located on a curve coinciding with said curve; A three-dimensional model of the object is created by connecting the extracted point clouds.
- a 3D model of an object can be created without depending on the distance between 3D points. Therefore, the present disclosure can enable the creation of a three-dimensional model even for an object in which the point-to-point distances are not evenly spaced and the point cloud is only partially present.
- FIG. 10 is an explanatory diagram of a process of excluding a point cloud that is too large in the z-axis direction from a cluster; 1 shows a system configuration example of the present disclosure; An example of the flow of processing in the functional unit 3-2 is shown.
- An example of the flow of processing in the functional unit 3-2 is shown.
- An example of the flow of processing in the function unit 3-3 is shown.
- An example of the flow of processing in the functional unit 3-4 is shown.
- An example of point cloud data read as input by the function unit 3-2 is shown.
- An example of a cable model is shown.
- An example of actually creating a model from a point cloud is shown.
- the present disclosure is an apparatus and method for creating a three-dimensional model of an object from point cloud data representing three-dimensional coordinates acquired by a three-dimensional laser scanner.
- FIG. 1 shows an example of point cloud data.
- the point cloud data is data in which the surface shape of an object such as a structure is represented by a set of points 91, and each point 91 represents the three-dimensional coordinates of the surface of the structure.
- a line 92 that connects points 91 of the 3D point cloud data
- a 3D model in which the structure is made into an object can be created.
- a three-dimensional utility pole model 111 and cable model 112 can be created.
- FIG. 3 shows an example of the method of this embodiment.
- a step S11 of clustering the points 91 included in the point cloud data a step S12 of obtaining a curve passing through a point 91 in the cluster for at least one of the clusters generated by the clustering; a step S13 of extracting a point group arranged on a curve that coincides with the curve;
- the present disclosure connects points located on the curve, it is possible to create a three-dimensional model in which point groups on the same object are objectified even when the distance between the points is large. can.
- the present disclosure can create cable models 112 even for small diameter objects such as overhead cables, suspension lines, or horizontal guy lines. Accordingly, the present disclosure is capable of detecting the condition of small diameter target equipment such as aerial cables.
- step S11 point cloud clusters assumed to be other than cables are automatically deleted to generate cable candidate clusters.
- the point group is points d11 to d48 as shown in FIG. Delete d59.
- cable candidate clusters 121 to 125 are generated as shown in FIG.
- points d38 to d48 and d49 to d59 can be used to identify the ground H0 at the points where the cables are arranged.
- any specific example of the method for deleting clusters of point clouds other than cables in step S11 is arbitrary.
- the point group is voxelized.
- the voxel When the voxel is viewed on the xy plane and there are P % or more point clouds in m ⁇ n squares by DBSCAN, it may be deleted as point cloud blocks other than cables such as houses and grounds.
- DBSCAN is one of the clustering methods, and is a method in which a group of points included in the condition that there are more than the number of points within a threshold distance from a certain point is regarded as one cluster and is regarded as a cluster.
- step S12 a three-dimensional straight line is calculated from the point group of the generated cable candidate clusters 121 to 125 by straight line approximation by RANSAC, and the catenary curve 131 is calculated using the straight line.
- the cable looks straight on the xy plane, linear approximation is performed from the point group of the cable candidate clusters 121-125.
- a catenary curve 131 including the z direction is calculated using a point group that falls within the residual using a straight line corresponding to the cable.
- the xy plane refers to a plane parallel to the ground, for example, the x-axis can be north-south and the y-axis east-west.
- the z-axis indicates an axis perpendicular to the ground and is an axis in a direction representing height.
- step S14 a group of points arranged on the same straight line in the xy plane and on the catenary curve 131 is extracted. Then, using all the extracted point groups, a cable model 112 as shown in FIG. 6 is created.
- step S12 linear approximation may be omitted.
- a catenary curve is calculated directly from a point group dense area such as a cluster 123 at the center of the utility pole models 111 .
- step S13 point groups of cable model candidates are extracted again from the catenary curve.
- step S14 the extracted point group is used to create the cable model 112 again, making it possible to create a more accurate cable model.
- the remaining point group shown in FIG. 5 is three-dimensionally clustered by DBSCAN.
- the clusters that are straight lines in RANSAC and whose angle formed by the z-axis is equal to or greater than a certain value are taken as cable candidate clusters.
- RANSAC is a learning method for estimating parameters of a mathematical model to be calculated by excluding the influence of outliers from data containing outliers as much as possible.
- the linear distance between the end points of the cable candidate cluster calculated by RANSAC is stored as the cluster length. Then, the cluster 123 with the maximum calculated cluster length is selected. Next, for the point cloud contained in cluster 123, RANSAC linear approximation is performed in the xy plane. Since the RANSAC straight line can be represented by a "fixed point” and a "value obtained by multiplying the direction vector by the variable T", an arbitrary point included in the cluster 123 is set as the fixed point, and the z direction is a function of T, and catenary approximation is performed. Thereby, the catenary curve 131 can be calculated.
- clusters 121, 122, 124 and 125 other than the cluster 123 in the point cloud are extracted, and the extracted clusters are Determined as combined clusters forming the same object.
- a cable model 112 is created from RANSAC curve approximation using all the points contained in the joint cluster.
- the cable model since the cable model is created using the clusters on the catenary curve 131, it can be used for model creation even if the distances at which the clusters exist are not constant. Therefore, in this embodiment, a cable model can be created regardless of the point-to-point distance. Further, in the present embodiment, since model creation is performed after deleting point groups other than cable candidates, processing can be speeded up.
- Point clouds that are too large in the z-axis direction are highly likely to be utility poles or wall surfaces. Therefore, in this embodiment, when deleting point groups other than cables in step S11, point groups that are too large in the z-axis direction are excluded from clusters.
- points d38 to d48 and d49 to d59 are used to specify the ground H0 at the point where the cable is laid. Then, after extracting a point cloud of a certain height (for example, 4 m or more and 8 m or less) from the ground H 0 to H 1 or more and H 2 or less, three-dimensional clustering is performed by DBSCAN. After that, as shown in FIG. 5, clusters within a certain reference size are selected as cable candidate clusters from among the clusters that are straight lines in RANSAC and whose angle formed by the z-axis is equal to or greater than a certain value.
- a certain height for example, 4 m or more and 8 m or less
- clustering is performed after deleting point groups other than cable candidates, so processing speed can be increased.
- FIG. 8 shows a system configuration example of the present disclosure.
- the system of the present disclosure comprises a stationary 3D laser scanner 1 , a storage medium 2 and a processing unit 3 .
- the arithmetic processing unit 3 includes a cable model extraction unit 3-1 and various equipment information calculation unit 3-5.
- the apparatus of the present disclosure includes an arithmetic processing unit 3 and may include a storage medium 2 in addition to these. Note that the apparatus of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
- the system of the present disclosure stores point clouds acquired by a fixed 3D laser scanner 1 in a storage medium 2 .
- the point group to be saved is, for example, the point group shown in FIG.
- the cable model extraction unit 3-1 includes functional units 3-2 to 3-4.
- the functional unit 3-2 receives the point cloud data as an input, reads the point cloud data, and deletes the point cloud determined as the dense point cloud from the read point cloud data.
- a general clustering method such as DBSCAN is used to delete point groups having a certain density or more on a two-dimensional plane.
- the functional unit 3-2 performs clustering again from point groups other than the dense point group (using DBSCAN, which is a general clustering method, and if the number of point groups is equal to or greater than the number of point groups within a certain distance, it is regarded as a cluster). . Then, the functional unit 3-2 extracts, as a cable candidate cluster, a cluster that can be determined as a straight line by RANSAC and that has a straight line component at a certain angle or more with respect to the vertical axis, as a feature of the cluster. The functional unit 3-3 combines clusters on the catenary curve approximation formula of the extracted clusters in descending order of the distance between the end points of the clusters as a combined cluster forming the same object.
- DBSCAN which is a general clustering method, and if the number of point groups is equal to or greater than the number of point groups within a certain distance, it is regarded as a cluster).
- the functional unit 3-2 extracts, as a cable candidate cluster, a
- the functional unit 3-4 calculates and outputs the parameters of the catenary curve fitted for each connected cluster.
- the various equipment information calculation unit 3-5 uses the parameters calculated by the function unit 3-4 to extract the cable model 112 that matches the catenary curve.
- FIG. 9 shows an example of the flow of processing in the functional unit 3-2.
- the functional unit 3-2 executes the following processing.
- Point cloud data is read (S10), and point clouds below a certain height are deleted (S21). For example, remove the ground component.
- the point cloud data is made two-dimensional on the xy plane by removing the vertical component (S22), and the two-dimensional data is made into a mesh of a set length (S23).
- meshes with a certain range and density or more are deleted by the DBSCAN method (S24).
- the DBSCAN method is applied to the remaining point groups, and point groups having a certain size and density or more are made into clusters (S25).
- Linear approximation is performed by the Ransac method, and it is determined whether or not the point group within a certain residual error exceeds a certain percentage (S31). Also, it is determined whether or not the approximate straight line has a certain angle or more with respect to the vertical axis (S32).
- “within the residual” means that the distance between the approximated straight line and the point group is within the threshold. If No in at least one of steps S31 and S32, the cable candidate cluster is not determined (S43). On the other hand, if Yes in steps S31 and S32, the cable candidate cluster is determined (S41). Then, the distance between the end points of the cable candidate cluster is set as the cluster length (S42). Steps S31 to S42 are executed for each cluster i.
- FIG. 10 shows an example of the flow of processing in the functional unit 3-2.
- Point cloud data is read (S10), and a point cloud is extracted in a certain height range H 1 ⁇ h ⁇ H 2 (S20).
- the DBSCAN method is applied to the remaining point groups, and point groups having a certain size and density or more are made into clusters (S25).
- linear approximation is performed by the Ransac method, and it is determined whether or not the point group within a certain residual error exceeds a certain percentage (S31). Also, it is determined whether or not the approximate straight line has a certain angle or more with respect to the vertical axis (S32).
- step S33 it is determined whether or not the size of the cluster in the vertical direction is greater than or equal to a certain size (S33). In the case of No in at least one of steps S31 and S32, or in the case of Yes in step S33, the cable candidate cluster is not determined (S43). On the other hand, if Yes in steps S31 and S32 and No in step S33, it is determined as a cable candidate cluster (S41). Then, the distance between the end points of the good cable candidate cluster is set as the cluster length (S42). Steps S31 to S42 are executed for each cluster i.
- FIG. 11 shows an example of the flow of processing in the function unit 3-3.
- the cable candidate clusters are sorted in descending order of cluster length (S51), and it is determined whether the clusters have already been combined (S52). If No in step S52, a catenary approximation curve and a RANSAC approximation straight line on the xy plane are calculated from the point group data belonging to the cable candidate cluster j (S53). Then, it is determined whether the ratio within the residual of the approximated curve is equal to or greater than a certain value (S54).
- the "percentage in residual" is the percentage of points whose distance from the approximated curve is within the threshold.
- step S54 it is determined whether the catenary approximation curve of the cable candidate cluster j, the RANSAC approximation straight line on the xy plane, and the ratio within the residual are at least a certain value (S61). If Yes in step S61, k is taken as the joined cluster of j (S62). On the other hand, if No in step S61, k is not taken as a joined cluster of j (S63). Steps S52 to S62 are executed for each cluster j.
- FIG. 12 shows an example of the flow of processing in the function unit 3-4.
- each coordinate of the point group is projected onto the xy plane, and p % or more of the DBSCAN n ⁇ n masses are deleted as a cluster.
- Step S2 Cluster point clouds other than clumps.
- the remaining point cloud is clustered in three dimensions (DBSCAN).
- DBSCAN three dimensions
- clusters which are straight lines in RANSAC and whose angle formed by the Z-axis is equal to or greater than a certain angle are determined as cable candidate clusters.
- the linear distance between the RANSAC endpoints of the cable candidate cluster is stored in memory as the cluster length.
- Step S3 Generate a combined cluster. For example, the following steps S3-1 to S3-4 are executed. Step S3-1.
- Step S3-2 The point group in the cable candidate cluster in step S3-1 is approximated by a RANSAC straight line on the XY plane. Since the RANSAC straight line can be represented by a "fixed point” and "a value obtained by multiplying a direction vector by a variable T", T and Z are used for catenary approximation. Step S3-3.
- Step S3-4 Return to step S3-1.
- Step S4 The connected cluster is subjected to catenary fitting and used as a model.
- Step S4-1 RANSAC linear approximation is performed on the XY plane for point groups in clusters determined to be connected clusters forming the same object in step S3.
- T and Z are used for catenary approximation.
- FIG. 13 shows an example of point cloud data read as input by the function unit 3-2.
- This example shows an example in which the number of points to be analyzed is 2,803,930.
- An example of the cable model 112 is shown in FIG.
- 12 connected clusters were extracted from the point cloud of FIG.
- Dashed lines FL01-FL12 in FIG. 14 are cable models 112 obtained from each connected cluster.
- FIG. 15 shows an example when a model is actually created from the point cloud.
- the tension value was calculated based on the modeled cable model 112 obtained by this, it was 1398.4N.
- the tension of the cable used to measure the point cloud of FIG. 13 was measured, it was 1285N.
- the cable model obtained using the present disclosure can derive tension with +9% error.
- the present disclosure can create a cable model without depending on the distance between three-dimensional points. Therefore, the present disclosure can enable creation of a three-dimensional model even for an object in which the point-to-point distances are not evenly spaced and the point cloud is only partially present.
- This disclosure can be applied to the information and communications industry.
- 3D laser scanner 2 storage medium
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Processing Or Creating Images (AREA)
Abstract
本開示は、点間距離が等間隔で並んでおらず、点群が一部しか存在しない対象物でも、3次元モデルの作成を可能とすることを目的とする。 本開示は、3次元座標を表す点群データから細径の対象物の3次元モデルを作成する装置であって、前記点群データに含まれている点に対してクラスタリングを行い、少なくともいずれかのクラスタについて、クラスタ内の点を通る曲線を求め、前記曲線と一致する曲線上に配置されている点群を抽出し、抽出された点群を連結することで、前記対象物の3次元モデルを作成する、装置である。
Description
本開示は、3次元座標を表す点群データから3次元モデルを作成する技術に関する。
車載した3次元レーザスキャナ(Mobile Mapping System: MMS)により、屋外構造物を3次元モデル化する技術が開発されている(例えば、特許文献1参照。)。特許文献1の技術は、点群が存在しない空間上に点群及びスキャンラインを創り出した後に3次元モデルを作成する。
MMSは対象物に沿って移動しながら点群を取得できるため、計測範囲の点群をまんべんなく、ある程度等間隔に取得できる。これに対し、固定式3Dレーザスキャナにより取得した点群を利用した3次元モデルの作成が求められている。しかし、固定式3Dレーザスキャナは計測点から近距離であれば密な点群、遠距離であれば粗な点群になり、対象物の大きさ、形状により顕著にこの特性が表れる。
従来技術では、点群間距離がある閾値までは点を補完してスキャンラインとしているが、点群間距離が大きく離れ、同じ対象物上の点群とみなされない場合、点間の点を補完することができない。そのため、固定式3Dレーザスキャナによる3Dモデリングでは例えば電柱際の架空ケーブルなど、細径の対象物の3次元モデル作成が困難であるという課題があった。
本開示は、点間距離が等間隔で並んでおらず、点群が一部しか存在しない対象物でも、3次元モデルの作成を可能とすることを目的とする。
本開示の装置及び方法は、3次元座標を表す点群データから細径の対象物の3次元モデルを作成する装置及び方法であって、
前記点群データに含まれている点に対してクラスタリングを行い、
少なくともいずれかのクラスタについて、クラスタ内の点を通る曲線を求め、
前記曲線と一致する曲線上に配置されている点群を抽出し、
抽出された点群を連結することで、前記対象物の3次元モデルを作成する。
前記点群データに含まれている点に対してクラスタリングを行い、
少なくともいずれかのクラスタについて、クラスタ内の点を通る曲線を求め、
前記曲線と一致する曲線上に配置されている点群を抽出し、
抽出された点群を連結することで、前記対象物の3次元モデルを作成する。
本開示によれば、3次元点間の距離に依存することなく、対象物の3次元モデルを作成することができる。このため、本開示は、点間距離が等間隔で並んでおらず、点群が一部しか存在しない対象物でも、3次元モデルの作成を可能にすることができる。
以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(本開示の概要)
本開示は、3次元レーザスキャナで取得した3次元座標を表す点群データから対象物の3次元モデルを作成する装置及び方法である。図1に、点群データの一例を示す。点群データは、構造物等の対象物の表面形状を点91の集合で表したデータであり、各点91が構造物の表面の3次元座標を表す。3次元点群データの点91を連結する線92を形成することで、構造物をオブジェクト化した3次元モデルを作成することができる。例えば、図2に示すように、3次元の電柱モデル111及びケーブルモデル112を作成することができる。
本開示は、3次元レーザスキャナで取得した3次元座標を表す点群データから対象物の3次元モデルを作成する装置及び方法である。図1に、点群データの一例を示す。点群データは、構造物等の対象物の表面形状を点91の集合で表したデータであり、各点91が構造物の表面の3次元座標を表す。3次元点群データの点91を連結する線92を形成することで、構造物をオブジェクト化した3次元モデルを作成することができる。例えば、図2に示すように、3次元の電柱モデル111及びケーブルモデル112を作成することができる。
図3に、本実施形態の方法の一例を示す。
本開示は、点群データに含まれている点91に対してクラスタリングを行うステップS11と、
前記クラスタリングで生成されたクラスタの少なくともいずれかのクラスタについて、クラスタ内の点91を通る曲線を求めるステップS12と、
前記曲線と一致する曲線上に配置されている点群を抽出するステップS13と、
抽出された点群を連結することで、対象物の3次元モデルを生成するステップS14と、
を有する。
本開示は、点群データに含まれている点91に対してクラスタリングを行うステップS11と、
前記クラスタリングで生成されたクラスタの少なくともいずれかのクラスタについて、クラスタ内の点91を通る曲線を求めるステップS12と、
前記曲線と一致する曲線上に配置されている点群を抽出するステップS13と、
抽出された点群を連結することで、対象物の3次元モデルを生成するステップS14と、
を有する。
本開示は、前記曲線上に位置する点を連結するため、点同士の距離が大きく離れている場合であっても、同じ対象物上の点群をオブジェクト化した3次元モデルを作成することができる。このため、本開示は、架空ケーブル、吊り線、又は水平支線等の細径の対象物であっても、ケーブルモデル112を作成することができる。したがって、本開示は、架空ケーブル等の細径の対象設備の状態を検出することができる。
(第1の実施形態)
本実施形態では、細径の対象設備がケーブルであり、曲線がカテナリ曲線である例を示す。
ステップS11において、ケーブル以外と想定される点群塊を自動的に削除し、ケーブル候補クラスタを生成する。例えば、点群が図4に示すような点d11~d48の場合、電柱モデル111に相当する点d38~d48及びd49~d59を判定し、電柱モデル111を生成すると共に点d38~d48及びd49~d59を削除する。これにより、図5に示すような、ケーブル候補クラスタ121~125が生成される。このとき、点d38~d48及びd49~d59を用いて、ケーブルの配置されている地点における地面H0を特定することができる。
本実施形態では、細径の対象設備がケーブルであり、曲線がカテナリ曲線である例を示す。
ステップS11において、ケーブル以外と想定される点群塊を自動的に削除し、ケーブル候補クラスタを生成する。例えば、点群が図4に示すような点d11~d48の場合、電柱モデル111に相当する点d38~d48及びd49~d59を判定し、電柱モデル111を生成すると共に点d38~d48及びd49~d59を削除する。これにより、図5に示すような、ケーブル候補クラスタ121~125が生成される。このとき、点d38~d48及びd49~d59を用いて、ケーブルの配置されている地点における地面H0を特定することができる。
ステップS11において、ケーブル以外の点群の塊を削除する方法の具体例は任意である。例えば、点群をVoxel化する。Voxelをx-y平面で見て、DBSCANによりm×nのマスの中に点群がP%以上ある場合に、家や地面等ケーブル以外の点群塊として削除してもよい。ここで、DBSCANとはクラスタリング手法の一つで、ある点から閾値距離以内にある個数以上の点が存在する、という条件に含まれる点群を1つの塊とみなし、クラスタとする手法である。
そして、ステップS12において、生成されたケーブル候補クラスタ121~125の点群からRANSACによる直線近似により3次元での直線を算出し、その直線を用いてカテナリ曲線131を算出する。一方で、x-y平面ではケーブルは直線に見えるため、ケーブル候補クラスタ121~125の点群から直線近似を行う。これにより、ケーブル候補クラスタ121~125に含まれる点群からケーブルに相当する点群を抽出することができる。ケーブルに相当する直線を用いて残差内に入る点群を用いて、z方向も含めたカテナリ曲線131を算出する。ここで、x-y平面は、地面に平行な面を指しており、例えばx軸は南北、y軸は東西とすることができる。z軸は地面に垂直な軸を示しており、高さを表す方向の軸である。
ステップS14において、x-y平面で同一直線上に配置されかつカテナリ曲線131に乗る点群を抽出する。そして、全て抽出された点群を用いて、図6に示すような、ケーブルモデル112を作成する。
なお、ステップS12は、直線近似を省略してもよい。この場合、例えば、RANSACを用いて、電柱モデル111同士の中心部分のクラスタ123のように点群が濃いところから直接カテナリ曲線を算出する。そして、ステップS13において、そのカテナリ曲線からケーブルモデル候補の点群を再度抽出する。これにより、ステップS14において、抽出された点群を用いて再度ケーブルモデル112を作成することで、より精度の良いケーブルモデルを作ることができる。
ステップS12におけるカテナリ曲線131を算出する際、図5に示す残った点群をDBSCANにより3次元でクラスタリングする。例えば、クラスタ121~125に含まれる点群の中からRANSACで直線かつz軸の成す角が一定以上のクラスタをケーブル候補クラスタとする。本実施形態では、クラスタ121~125がケーブル候補クラスタに該当する例を示す。ここで、RANSACとは、外れ値を含むデータから極力外れ値の影響を除外し、算出したい数学モデルのパラメータを推定する学習方法である。
本実施形態では、ケーブル候補クラスタのRANSACにより算出された端点間の直線距離を、そのクラスタ長として記憶する。そして、算出されたクラスタ長が最大のクラスタ123を選出する。次に、クラスタ123に含まれる点群について、x-y平面でRANSAC直線近似を実施する。RANSAC直線は、「定点」と「方向ベクトルに変数Tを乗じた値」で表現できるので、クラスタ123に含まれる任意の点を定点とし、z方向をTの関数として、カテナリ近似する。これにより、カテナリ曲線131を算出することができる。
点群中でクラスタ123以外のクラスタ121,122,124及び125を含めて、x-y平面で直線に乗る、かつ、3次元空間でカテナリ曲線131に乗るクラスタを抽出し、抽出されたクラスタを同一対象物を構成する結合クラスタと判定する。最終的に抽出された結合クラスタごとに結合クラスタに含まれる点を全て利用して、RANSACの曲線近似からケーブルモデル112を作成する。
本実施形態では、カテナリ曲線131に乗るクラスタを利用してケーブルモデルを作成するため、クラスタが存在する距離が一定でなくてもモデル作成に利用できる。このため、本実施形態は、点間距離に捉われず、ケーブルモデルが作成可能である。また本実施形態では、ケーブル候補以外の点群を削除後モデル作成を実施することから、処理の高速化を図れる。
(第2の実施形態)
z軸方向に大きすぎる点群は、電柱や壁面の可能性が高い。そこで、本実施形態では、ステップS11におけるケーブル以外の点群を削除する際に、z軸方向に大きすぎる点群をクラスタから除外する。
z軸方向に大きすぎる点群は、電柱や壁面の可能性が高い。そこで、本実施形態では、ステップS11におけるケーブル以外の点群を削除する際に、z軸方向に大きすぎる点群をクラスタから除外する。
例えば、本実施形態では、図7に示すように、点d38~d48及びd49~d59を用いて、ケーブルの配置されている地点における地面H0を特定する。そして、地面H0からH1以上H2以下のある一定の高さ(例えば、4m以上8m以下)の点群を抽出後、DBSCANにより3次元でクラスタリングする。その後、図5に示すように、クラスタ点群の中からRANSACで直線かつz軸の成す角が一定以上のクラスタの中から、ある基準の大きさ以内のクラスタをケーブル候補クラスタとする。
本実施形態では、ケーブル候補以外の点群を削除後に、クラスタリングを実施することから、処理の高速化を図れる。
(全体構成)
図8に、本開示のシステム構成例を示す。本開示のシステムは、固定式3Dレーザスキャナ1、記憶媒体2、及び演算処理部3を備える。演算処理部3は、ケーブルモデル抽出部3-1及び各種設備情報算出部3-5を備える。本開示の装置は、演算処理部3を備え、これらに加えて記憶媒体2を備えていてもよい。なお、本開示の装置はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
図8に、本開示のシステム構成例を示す。本開示のシステムは、固定式3Dレーザスキャナ1、記憶媒体2、及び演算処理部3を備える。演算処理部3は、ケーブルモデル抽出部3-1及び各種設備情報算出部3-5を備える。本開示の装置は、演算処理部3を備え、これらに加えて記憶媒体2を備えていてもよい。なお、本開示の装置はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
本開示のシステムは、固定式3Dレーザスキャナ1により取得した点群を記憶媒体2に保存する。保存する点群は、例えば図1に示すような点群である。
ケーブルモデル抽出部3-1は、機能部3-2~3-4を備える。
機能部3-2は、点群データを入力とし読み込み、読み込んだ点群データから密集点群と判定される点群を削除する。このとき、例えば一般的なクラスタリング手法であるDBSCAN等を用い、2次元平面において一定の密度以上の点群を削除する。
そして、機能部3-2は、密集点群以外の点群から再度クラスタリング(一般的なクラスタリング手法であるDBSCANを利用し、一定の距離内に点群がある個数以上あればクラスタとする)する。そして、機能部3-2は、クラスタの特徴として、RANSACで直線と判定できるクラスタかつ直線成分が鉛直軸に対して一定の角度以上のクラスタをケーブル候補クラスタとして抽出する。
機能部3-3は、抽出されたクラスタのうちクラスタの端点間距離が最も長いものから順に、当該クラスタのカテナリ曲線近似式に乗るものは同一対象物を構成する結合クラスタとして結合する。このとき、RANSAC近似直線との残差を用いて、カテナリ曲線近似式に乗るものを判定してもよい。これにより、結合クラスタの判定処理を高速化することができる。
機能部3-4は、結合クラスタ毎にフィッティングしたカテナリ曲線のパラメータを算出し出力とする。
各種設備情報算出部3-5は、機能部3-4の算出したパラメータを用いて、カテナリ曲線に一致するケーブルモデル112を抽出する。
ケーブルモデル抽出部3-1は、機能部3-2~3-4を備える。
機能部3-2は、点群データを入力とし読み込み、読み込んだ点群データから密集点群と判定される点群を削除する。このとき、例えば一般的なクラスタリング手法であるDBSCAN等を用い、2次元平面において一定の密度以上の点群を削除する。
そして、機能部3-2は、密集点群以外の点群から再度クラスタリング(一般的なクラスタリング手法であるDBSCANを利用し、一定の距離内に点群がある個数以上あればクラスタとする)する。そして、機能部3-2は、クラスタの特徴として、RANSACで直線と判定できるクラスタかつ直線成分が鉛直軸に対して一定の角度以上のクラスタをケーブル候補クラスタとして抽出する。
機能部3-3は、抽出されたクラスタのうちクラスタの端点間距離が最も長いものから順に、当該クラスタのカテナリ曲線近似式に乗るものは同一対象物を構成する結合クラスタとして結合する。このとき、RANSAC近似直線との残差を用いて、カテナリ曲線近似式に乗るものを判定してもよい。これにより、結合クラスタの判定処理を高速化することができる。
機能部3-4は、結合クラスタ毎にフィッティングしたカテナリ曲線のパラメータを算出し出力とする。
各種設備情報算出部3-5は、機能部3-4の算出したパラメータを用いて、カテナリ曲線に一致するケーブルモデル112を抽出する。
図9に、機能部3-2における処理のフローの一例を示す。クラスタを生成する前に電柱や木の点群を予め除去されている場合、木や家などの障害物(地面以外の物体)がケーブル上部及び下部にない。この場合、機能部3-2は以下の処理を実行する。
点群データを読込み(S10)、ある高さ以下の点群を削除する(S21)。例えば、地面成分を削除する。
次に、点群データを、鉛直成分をなくしx-y平面に2次元化し(S22)、2次元化したデータを設定した長さのmeshにする(S23)。そして、DBSCAN手法によりある範囲・密度以上のMeshを削除する(S24)。
次に、残った点群についてDBSCAN手法により、ある大きさ・密度以上の点群をクラスタとする(S25)。
点群データを読込み(S10)、ある高さ以下の点群を削除する(S21)。例えば、地面成分を削除する。
次に、点群データを、鉛直成分をなくしx-y平面に2次元化し(S22)、2次元化したデータを設定した長さのmeshにする(S23)。そして、DBSCAN手法によりある範囲・密度以上のMeshを削除する(S24)。
次に、残った点群についてDBSCAN手法により、ある大きさ・密度以上の点群をクラスタとする(S25)。
Ransac手法により直線近似し、ある残差以内の点群がある割合以上あるかを判定する(S31)。また、近似直線が鉛直軸に対してある角度以上あるかを判定する(S32)。ここで、「残差以内」は、近似された直線と点群との距離が閾値以内である。
ステップS31及びS32の少なくともいずれかにおいてNoの場合、ケーブル候補クラスタとしない(S43)。一方、ステップS31及びS32においてYesの場合、ケーブル候補クラスタとする(S41)。そして、ケーブル候補クラスタの端点間の距離をクラスタ長とする(S42)。
ステップS31~S42をクラスタiごとに実行する。
ステップS31及びS32の少なくともいずれかにおいてNoの場合、ケーブル候補クラスタとしない(S43)。一方、ステップS31及びS32においてYesの場合、ケーブル候補クラスタとする(S41)。そして、ケーブル候補クラスタの端点間の距離をクラスタ長とする(S42)。
ステップS31~S42をクラスタiごとに実行する。
図10に、機能部3-2における処理のフローの一例を示す。
点群データを読込み(S10)、ある高さの範囲H1<h<H2で点群を抽出する(S20)。
次に、残った点群についてDBSCAN手法により、ある大きさ・密度以上の点群をクラスタとする(S25)。
次に、Ransac手法により直線近似し、ある残差以内の点群がある割合以上あるかを判定する(S31)。また、近似直線が鉛直軸に対してある角度以上あるかを判定する(S32)。また、クラスタの鉛直軸方向の大きさがある大きさ以上かを判定する(S33)。
ステップS31及びS32の少なくともいずれかにおいてNoの場合、又はステップS33においてYesの場合、ケーブル候補クラスタとしない(S43)。一方、ステップS31及びS32においてYesでありかつステップS33においてNoの場合、ケーブル候補クラスタとする(S41)。そして、ケーブル好候補クラスタの端点間の距離をクラスタ長とする(S42)。
ステップS31~S42をクラスタiごとに実行する。
点群データを読込み(S10)、ある高さの範囲H1<h<H2で点群を抽出する(S20)。
次に、残った点群についてDBSCAN手法により、ある大きさ・密度以上の点群をクラスタとする(S25)。
次に、Ransac手法により直線近似し、ある残差以内の点群がある割合以上あるかを判定する(S31)。また、近似直線が鉛直軸に対してある角度以上あるかを判定する(S32)。また、クラスタの鉛直軸方向の大きさがある大きさ以上かを判定する(S33)。
ステップS31及びS32の少なくともいずれかにおいてNoの場合、又はステップS33においてYesの場合、ケーブル候補クラスタとしない(S43)。一方、ステップS31及びS32においてYesでありかつステップS33においてNoの場合、ケーブル候補クラスタとする(S41)。そして、ケーブル好候補クラスタの端点間の距離をクラスタ長とする(S42)。
ステップS31~S42をクラスタiごとに実行する。
図11に、機能部3-3における処理のフローの一例を示す。ケーブル候補クラスタをクラスタ長の長い順番にし(S51)、すでに結合されたクラスタかを判定する(S52)。ステップS52においてNoの場合、ケーブル候補クラスタjに属する点群データからカテナリ近似曲線及びx-y平面上でのRANSAC近似直線を算出する(S53)。そして、近似曲線の残差内の割合がある値以上かを判定する(S54)。ここで、「残差内の割合」は、近似された曲線との距離が閾値以内である点群の割合である。
ステップS54においてYesの場合、ケーブル候補クラスタjのカテナリ近似曲線及びx-y平面上でのRANSAC近似直線と、残差内の割合がある値以上かを判定する(S61)。ステップS61においてYesの場合、kはjの結合クラスタとする(S62)。一方、ステップS61においてNoの場合、kはjの結合クラスタとしない(S63)。ステップS52~S62をクラスタjごとに実行する。
図12に、機能部3-4における処理のフローの一例を示す。結合クラスタ内のすべての点群を用いてRansacでカテナリ曲線近似し(S71)、近似したカテナリ曲線( Z=cosh(a*(T-b))+c)のa,b,c,Tの値をパラメータとし(S72)、パラメータをファイル出力する(S73)。
ケーブルを抽出する際の各種設備情報算出部3-5の処理の一例について説明する。
固定式点群で計測した範囲から、ケーブル抽出したい範囲を切り抜き、切り抜いたファイルをLAS形式ファイルとしてインプットとする。
・ステップS0.LASファイルを読込む
読み込んだLASファイルデータのx,y,zをnumpy配列としてメモリに格納する。
・ステップS1.塊を見つけて塊を削除する。これにより、樹木、家に相当する点群を消去する。
例えば、0.1mなどのケーブル以外の大きさのVoxel化サイズで点群をVoxel化する。そして、Voxelをフィルタリングする。例えば、点群の各座標をxy平面に投影し、DBSCAN n×nマスのうちp%以上あったら塊として削除する。
・ステップS2.塊以外の点群をクラスタにする。例えば、残った点群を3次元でクラスタリングする(DBSCAN)。次に、RANSACで直線かつZ軸のなす角度が一定の角度以上のクラスタをケーブル候補クラスタとする。次に、ケーブル候補クラスタのRANSAC端点間の直線距離をそのクラスタ長としてメモリに格納する。
・ステップS3.結合クラスタを生成する。例えば、以下のステップS3-1~S3-4を実行する。
ステップS3-1.ケーブル候補クラスタで残っているもののうち、クラスタ長が最も長いクラスタを選ぶ。以下、本実施形態では、ステップS3-2及びS3-3を実施するにあたりクラスタ長が2.0m未満のクラスタは候補としない例を示す。
ステップS3-2.ステップS3-1のケーブル候補クラスタ内の点群についてXY平面でのRANSAC直線で近似する。RANSAC直線は、「定点」と「方向ベクトルに変数Tを乗じた値」で表現できるので、TとZでカテナリ近似する。
ステップS3-3.ステップS3-1以外のすべてのケーブル候補クラスタについて、XY平面で3-2のRANSAC直線に乗るか(r=0.1、60%以上)、ステップS3-2のカテナリに乗るか(r=0.05 有効=70%以上)、を判定し、2つの判定がOKであれば同一対象物を構成する結合クラスタと判断する。
ステップS3-4.ステップS3-1に戻る。
・ステップS4.結合クラスタをカテナリFittingしモデルとする。
ステップS4-1.ステップS3で同一対象物を構成する結合クラスタと判定されたクラスタ内の点群について、XY平面でのRANSAC直線近似を行う。RANSAC直線は、「定点」と「方向ベクトルに変数Tを乗じた値」で表現できるので、TとZでカテナリ近似する。
ステップS4-2.Tの最大値Tmax,Tの最小値Tmin,XY平面の原点、方向ベクトル、TとZのカテナリ曲線パラメータa,b,c(Z=cosh(a*(T-b))+c)を出力する。
以上である。
固定式点群で計測した範囲から、ケーブル抽出したい範囲を切り抜き、切り抜いたファイルをLAS形式ファイルとしてインプットとする。
・ステップS0.LASファイルを読込む
読み込んだLASファイルデータのx,y,zをnumpy配列としてメモリに格納する。
・ステップS1.塊を見つけて塊を削除する。これにより、樹木、家に相当する点群を消去する。
例えば、0.1mなどのケーブル以外の大きさのVoxel化サイズで点群をVoxel化する。そして、Voxelをフィルタリングする。例えば、点群の各座標をxy平面に投影し、DBSCAN n×nマスのうちp%以上あったら塊として削除する。
・ステップS2.塊以外の点群をクラスタにする。例えば、残った点群を3次元でクラスタリングする(DBSCAN)。次に、RANSACで直線かつZ軸のなす角度が一定の角度以上のクラスタをケーブル候補クラスタとする。次に、ケーブル候補クラスタのRANSAC端点間の直線距離をそのクラスタ長としてメモリに格納する。
・ステップS3.結合クラスタを生成する。例えば、以下のステップS3-1~S3-4を実行する。
ステップS3-1.ケーブル候補クラスタで残っているもののうち、クラスタ長が最も長いクラスタを選ぶ。以下、本実施形態では、ステップS3-2及びS3-3を実施するにあたりクラスタ長が2.0m未満のクラスタは候補としない例を示す。
ステップS3-2.ステップS3-1のケーブル候補クラスタ内の点群についてXY平面でのRANSAC直線で近似する。RANSAC直線は、「定点」と「方向ベクトルに変数Tを乗じた値」で表現できるので、TとZでカテナリ近似する。
ステップS3-3.ステップS3-1以外のすべてのケーブル候補クラスタについて、XY平面で3-2のRANSAC直線に乗るか(r=0.1、60%以上)、ステップS3-2のカテナリに乗るか(r=0.05 有効=70%以上)、を判定し、2つの判定がOKであれば同一対象物を構成する結合クラスタと判断する。
ステップS3-4.ステップS3-1に戻る。
・ステップS4.結合クラスタをカテナリFittingしモデルとする。
ステップS4-1.ステップS3で同一対象物を構成する結合クラスタと判定されたクラスタ内の点群について、XY平面でのRANSAC直線近似を行う。RANSAC直線は、「定点」と「方向ベクトルに変数Tを乗じた値」で表現できるので、TとZでカテナリ近似する。
ステップS4-2.Tの最大値Tmax,Tの最小値Tmin,XY平面の原点、方向ベクトル、TとZのカテナリ曲線パラメータa,b,c(Z=cosh(a*(T-b))+c)を出力する。
以上である。
図13に、機能部3-2が入力として読み込む点群データの一例を示す。この例では、解析対象点群が2,803,930点である例を示す。図14に、ケーブルモデル112の一例を示す。この例では、図13の点群から12個の結合クラスタが抽出された。図14における破線FL01~FL12は、各結合クラスタから得られたケーブルモデル112である。図15は、実際に点群からモデルを作成した際の一例である。これによって得られたモデル化したケーブルモデル112に基づいて張力値を算出したところ、1398.4Nであった。図13の点群を測定したケーブルの張力を測定したところ、1285Nであった。このため、本開示を用いて得られるケーブルモデルは、+9%誤差で張力を導出することができることが分かった。
以上説明したように、本開示は、3次元レーザスキャナで取得した3次元点群データからケーブル状の対象設備の3次元モデルを作成する際に、
3次元点群から生成されたクラスタから、線状近似されるクラスタをケーブル候補クラスタとして抽出し、
一のケーブル候補クラスタに対して、当該クラスタから導かれたカテナリ近似曲線から所定距離以内の3次元点群が所定割合以上である結合クラスタを生成し、
結合クラスタに含まれる点を連結することで、ケーブルモデルを作成する。
3次元点群から生成されたクラスタから、線状近似されるクラスタをケーブル候補クラスタとして抽出し、
一のケーブル候補クラスタに対して、当該クラスタから導かれたカテナリ近似曲線から所定距離以内の3次元点群が所定割合以上である結合クラスタを生成し、
結合クラスタに含まれる点を連結することで、ケーブルモデルを作成する。
これにより、本開示は、3次元点間の距離に依存することなく、ケーブルモデルを作成することができる。したがって、本開示は、点間距離が等間隔で並んでおらず、点群が一部しか存在しない対象物でも、3次元モデルの作成を可能にすることができる。
本開示は情報通信産業に適用することができる。
1:固定式3Dレーザスキャナ
2:記憶媒体
3:演算処理部
3-1:ケーブルモデル抽出部
3-2、3-3、3-4:機能部
3-5:各種設備情報算出部
91:点
92:線
111:電柱モデル
112:ケーブルモデル
2:記憶媒体
3:演算処理部
3-1:ケーブルモデル抽出部
3-2、3-3、3-4:機能部
3-5:各種設備情報算出部
91:点
92:線
111:電柱モデル
112:ケーブルモデル
Claims (8)
- 3次元座標を表す点群データから細径の対象物の3次元モデルを作成する装置であって、
前記点群データに含まれている点に対してクラスタリングを行い、
少なくともいずれかのクラスタについて、クラスタ内の点を通る曲線を求め、
前記曲線と一致する曲線上に配置されている点群を抽出し、
抽出された点群を連結することで、前記対象物の3次元モデルを作成する、
装置。 - 地面に平行なx-y平面上で同一直線上に配置されている点を判定し、
前記曲線と一致する曲線上に配置され、かつ前記同一直線上に配置されている点群を抽出する、
請求項1に記載の装置。 - 地面に平行なx-y平面上において、設定された密度以上の点群を、前記細径の対象物以外の点群として削除する、
請求項1又は2に記載の装置。 - 前記対象物が存在する高さに相当するz座標を有する点群を前記点群データから抽出し、抽出した点群データを用いて前記クラスタリングを行う、
請求項1から3のいずれかに記載の装置。 - 前記対象物が架空ケーブル、吊り線、又は水平支線である、
請求項1から4のいずれかに記載の装置。 - 前記点群データに含まれている点群から電柱モデルを生成し、
前記電柱モデル同士の間に位置しかつ密度の高いクラスタについて、クラスタ内の点を通る曲線を求める、
請求項5に記載の装置。 - 3次元座標を表す点群データから細径の対象物の3次元モデルを作成する方法であって、
前記点群データに含まれている点に対してクラスタリングを行い、
少なくともいずれかのクラスタについて、クラスタ内の点を通る曲線を求め、
前記曲線と一致する曲線上に配置されている点群を抽出し、
抽出された点群を連結することで、前記対象物の3次元モデルを作成する、
方法。 - 請求項1から6のいずれかに記載の装置としてコンピュータを実現するためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/043232 WO2023095255A1 (ja) | 2021-11-25 | 2021-11-25 | 3次元モデルを作成する装置、方法及びプログラム |
JP2023563421A JPWO2023095255A1 (ja) | 2021-11-25 | 2021-11-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/043232 WO2023095255A1 (ja) | 2021-11-25 | 2021-11-25 | 3次元モデルを作成する装置、方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023095255A1 true WO2023095255A1 (ja) | 2023-06-01 |
Family
ID=86539165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/043232 WO2023095255A1 (ja) | 2021-11-25 | 2021-11-25 | 3次元モデルを作成する装置、方法及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023095255A1 (ja) |
WO (1) | WO2023095255A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015001901A (ja) * | 2013-06-17 | 2015-01-05 | 日本電信電話株式会社 | 点群解析処理装置、点群解析処理方法、及びプログラム |
JP2015078849A (ja) * | 2013-10-15 | 2015-04-23 | 日本電信電話株式会社 | 設備状態検出方法およびその装置 |
JP2017156179A (ja) * | 2016-02-29 | 2017-09-07 | 日本電信電話株式会社 | 設備状態検出方法および装置の設置方法 |
JP2018195240A (ja) * | 2017-05-22 | 2018-12-06 | 日本電信電話株式会社 | 設備状態検出方法、検出装置およびプログラム |
JP2021060776A (ja) * | 2019-10-07 | 2021-04-15 | 株式会社日立ソリューションズ | 空中線抽出システム及び空中線抽出方法 |
-
2021
- 2021-11-25 JP JP2023563421A patent/JPWO2023095255A1/ja active Pending
- 2021-11-25 WO PCT/JP2021/043232 patent/WO2023095255A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015001901A (ja) * | 2013-06-17 | 2015-01-05 | 日本電信電話株式会社 | 点群解析処理装置、点群解析処理方法、及びプログラム |
JP2015078849A (ja) * | 2013-10-15 | 2015-04-23 | 日本電信電話株式会社 | 設備状態検出方法およびその装置 |
JP2017156179A (ja) * | 2016-02-29 | 2017-09-07 | 日本電信電話株式会社 | 設備状態検出方法および装置の設置方法 |
JP2018195240A (ja) * | 2017-05-22 | 2018-12-06 | 日本電信電話株式会社 | 設備状態検出方法、検出装置およびプログラム |
JP2021060776A (ja) * | 2019-10-07 | 2021-04-15 | 株式会社日立ソリューションズ | 空中線抽出システム及び空中線抽出方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023095255A1 (ja) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Overby et al. | Automatic 3D building reconstruction from airborne laser scanning and cadastral data using Hough transform | |
KR20190082062A (ko) | 포인트 클라우드 데이터 사이의 매칭 관계를 확정하는 방법 및 장치 | |
Ariyachandra et al. | Detection of railway masts in airborne LiDAR data | |
CN110794413B (zh) | 线性体素分割的激光雷达点云数据电力线检测方法和系统 | |
JPWO2003012740A1 (ja) | 三次元構造物形状の自動生成装置、自動生成方法、そのプログラム、及びそのプログラムを記録した記録媒体 | |
CN107133966B (zh) | 一种基于采样一致性算法的三维声纳图像背景分割方法 | |
US11823330B2 (en) | Detection device, detection method and detection program for linear structure | |
US20210103727A1 (en) | Aerial line extraction system and aerial line extraction method | |
CN109816780B (zh) | 一种双目序列影像的输电线路三维点云生成方法及装置 | |
JP6785751B2 (ja) | モデル生成装置、生成方法、及びプログラム | |
CN109472044A (zh) | 一种基于bim的电缆算量方法、系统及介质 | |
WO2021255798A1 (ja) | ワイヤモデル生成装置、ワイヤモデル生成方法及びワイヤモデル生成プログラム | |
CN110795978B (zh) | 路面点云数据提取方法、装置、存储介质及电子设备 | |
CN110544298A (zh) | 变电站建模方法、装置、计算机设备和存储介质 | |
CN111504195A (zh) | 基于激光点云的电力基建验收方法及装置 | |
CN113592324A (zh) | 一种基于层次分析的电缆终端塔带电作业的风险评估方法 | |
JP2019144153A (ja) | 電線形状の再現方法,再現装置,及び再現プログラム、並びに、点群精度の評価方法,評価装置,及び評価プログラム | |
CN110706288A (zh) | 目标检测的方法、装置、设备及可读存储介质 | |
WO2023095255A1 (ja) | 3次元モデルを作成する装置、方法及びプログラム | |
CN112396831B (zh) | 一种交通标识的三维信息生成方法和装置 | |
CN118037790A (zh) | 一种点云处理方法、装置、计算机设备及存储介质 | |
JP4217251B2 (ja) | 三次元構造物形状の自動生成装置、自動生成方法、そのプログラム、及びそのプログラムを記録した記録媒体 | |
CN116912817A (zh) | 三维场景模型拆分方法、装置、电子设备和存储介质 | |
CN112882047B (zh) | 基于激光点云的电力导线相间距离自动获取方法及系统 | |
CN113066188A (zh) | 一种用于室外施工作业的三维仿真方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21965627 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023563421 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18711659 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |