WO2023093882A1 - 健身器材及其内磁控装置、驱动模块及其组装方法 - Google Patents

健身器材及其内磁控装置、驱动模块及其组装方法 Download PDF

Info

Publication number
WO2023093882A1
WO2023093882A1 PCT/CN2022/134671 CN2022134671W WO2023093882A1 WO 2023093882 A1 WO2023093882 A1 WO 2023093882A1 CN 2022134671 W CN2022134671 W CN 2022134671W WO 2023093882 A1 WO2023093882 A1 WO 2023093882A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
magnetic control
drive
driving
control device
Prior art date
Application number
PCT/CN2022/134671
Other languages
English (en)
French (fr)
Inventor
赵元培
Original Assignee
宁波道康智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111427115.5A external-priority patent/CN116173461A/zh
Priority claimed from CN202122997059.0U external-priority patent/CN216755309U/zh
Application filed by 宁波道康智能科技有限公司 filed Critical 宁波道康智能科技有限公司
Publication of WO2023093882A1 publication Critical patent/WO2023093882A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0605Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/66Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means

Definitions

  • the invention relates to the field of fitness equipment, in particular to a fitness equipment and its internal magnetic control device, drive module and assembly method thereof.
  • Fitness equipment for aerobic sports such as spinning bikes, elliptical machines, and rowing machines based on magnetic resistance is becoming more and more popular in the market, which usually includes a frame and an internal magnetic control device installed on the frame , a flywheel and a pedaling device, the flywheel surrounds the exterior of the inner magnetic control device and is drivably connected to the pedaling device.
  • the flywheel can cut the magnetic induction lines of the magnetic group of the internal magnetic control device to obtain resistance, thereby assisting the user in exercising .
  • the resistance of the flywheel when driven to rotate can be adjusted by adjusting the relative position of the magnetic group of the inner magnetic control device and the flywheel, thereby helping the user to achieve different fitness effects.
  • How to easily and reliably drive the magnetic group of the internal magnetic control device to move relative to the flywheel to adjust the relative position of the magnetic group of the internal magnetic control device and the flywheel is a technical problem that the inventors of the present invention are devoted to solving.
  • An object of the present invention is to provide a fitness equipment and its internal magnetic control device, a drive module and its assembly method, wherein a drive module of the internal magnetic control device can smoothly drive two swing arms to swing, so as to adjust the The relative distance between a set of magnetic elements of the swing arm and a flywheel surrounding the inner magnetic control device.
  • An object of the present invention is to provide a fitness equipment and its internal magnetic control device, a driving module and an assembly method thereof, wherein the driving module can reliably drive each of the swing arms to swing.
  • One object of the present invention is to provide a fitness equipment and its internal magnetic control device, a driving module and an assembly method thereof, wherein the driving module provides two linkage mechanisms, and each linkage mechanism can drive each Each of the swing arms swings, so that the drive module can smoothly and reliably drive each of the swing arms to swing.
  • An object of the present invention is to provide a fitness equipment and its internal magnetic control device, a drive module and its assembly method, wherein the two linkage mechanisms have an overlapping portion in the height direction, so that the linkage mechanism can use a larger The angle drives the swing arm to swing.
  • One object of the present invention is to provide a fitness equipment and its internal magnetic control device, drive module and assembly method thereof, wherein the drive module is an independent module, so that the same drive module can be assembled with different magnetic control shells In this way, the development cost of the internal magnetic control device can be greatly reduced to meet the configuration requirements of different fitness equipment.
  • One object of the present invention is to provide a fitness equipment and its internal magnetic control device, drive module and assembly method thereof, wherein the drive module is an independent module, so that when assembling the internal magnetic control device, all the components can be assembled first The magnetic control housing and the swing arm, and secondly assemble the drive module on the magnetic control housing, so as to greatly reduce the difficulty of assembling the inner magnetic control device.
  • One object of the present invention is to provide a fitness equipment and its internal magnetic control device, drive module and assembly method thereof, wherein the drive module is an independent module, so that when the resistance value of the internal magnetic control device is calibrated, it can be On the premise of not disassembling the magnetic control shell, the resistance calibration of the internal magnetic control device can be completed only by disassembling the drive module and calibrating it, so that the internal magnetic control device can be greatly improved.
  • the production efficiency and calibration efficiency of the magnetic control device is to provide a fitness equipment and its internal magnetic control device, drive module and assembly method thereof, wherein the drive module is an independent module, so that when the resistance value of the internal magnetic control device is calibrated, it can be On the premise of not disassembling the magnetic control shell, the resistance calibration of the internal magnetic control device can be completed only by disassembling the drive module and calibrating it, so that the internal magnetic control device can be greatly improved.
  • the production efficiency and calibration efficiency of the magnetic control device is to provide a fitness equipment and its internal magnetic control device, drive module and assembly method thereof, wherein the
  • An object of the present invention is to provide a fitness equipment and its internal magnetic control device, a drive module and its assembly method, wherein the internal magnetic control device provides a pulse unit, when the drive module drives the swing arm to swing, the The pulse unit can generate a pulse signal, and the driving module can accurately adjust the relative distance between a group of the magnetic elements and the flywheel based on the pulse signal.
  • the present invention provides an internal magnetic control device, which includes:
  • each of the swing arms is respectively rotatably mounted on the edge of the magnetic control housing, wherein each set of magnetic elements is respectively arranged on each of the swing arms;
  • a drive module wherein the drive module is mounted on the magnetic control housing, and the drive module further includes a drive mechanism and two linkage mechanisms, and one end of each linkage mechanism is respectively driven Connected to the driving mechanism, the other end of each of the linkage mechanisms is rotatably mounted on the driven end of each of the swing arms, and the two linkage mechanisms have an overlapping portion in the height direction .
  • the magnetic control housing has a housing space and a peripheral opening communicating with the housing space
  • the drive module is installed in the housing space of the magnetic control housing
  • each The swing arm is allowed to swing at the peripheral opening of the magnetron housing.
  • the drive module further includes a drive housing, the drive housing has a housing space and a side opening communicating with the housing space, wherein the drive mechanism is set In the housing space of the driving housing, one end of each linkage mechanism is drivably connected to the driving mechanism in the housing space of the driving housing, and the other The ends respectively extend to the outside of the drive housing through the side openings of the drive housing.
  • the magnetic control housing has an installation channel, and the installation channel communicates with the housing space, wherein the drive module is installed on the magnetic control housing through the installation channel.
  • the housing space of the magnetron housing communicates with the housing space, wherein the drive module is installed on the magnetic control housing through the installation channel.
  • the driving mechanism includes a driving motor and a gear set, wherein the driving motor is installed in the housing space of the driving housing, wherein the gear set includes a driven gears, at least one transmission gear and two power output gears, the driven gear, the transmission gear and each of the power output gears are respectively rotatably mounted in the housing space of the drive housing, and
  • the driven gear is meshed with the output shaft of the driving motor
  • the transmission gear is meshed with the driven gear
  • the two power output gears mesh with each other
  • the power output gear is meshed with the transmission gear, wherein each of the linkage mechanisms has a row of driven teeth, and the driven teeth of each of the linkage mechanisms are respectively meshed with each of the power output gear.
  • each of the linkage mechanisms includes a slider and a connecting rod, one end of the connecting rod is rotatably mounted on the slider, and the other end is rotatably mounted on the slider. Rotationally mounted to the driven end of the swing arm, wherein the slider is drivably connected to the drive mechanism.
  • each of the linkage mechanisms includes a slider and a connecting rod, one end of the connecting rod is rotatably mounted on the slider, and the other end is rotatably mounted on the slider.
  • the drive housing has two rails, each of the sliders of the linkage mechanism has a sliding groove, and the rails extend to the sliding groove to allow the sliding A block is slidably seated on the track.
  • the drive housing has two rails, each of the sliders of the linkage mechanism has a sliding groove, and the rails extend to the sliding groove to allow the sliding A block is slidably seated on the track.
  • the drive module further includes a pulse unit, wherein the pulse unit further includes:
  • An infrared transmitting and receiving element wherein the infrared transmitting and receiving element has an emitting portion and a receiving portion corresponding to the emitting portion;
  • a grid element wherein the grid element includes a turntable and a plurality of grid arms and has a plurality of optical path channels, and each of the grid arms is respectively integrated from the periphery of the turntable in a manner of being spaced apart from each other and forming a ring extend outwards to form the optical path between two adjacent grid arms, the turntable is mounted on the output shaft of the driving motor, wherein the transmitting part and the receiving part are respectively Retained on opposite sides of the grid arms of the grid element.
  • the present invention further provides a fitness equipment, which includes:
  • An internal magnetic control device wherein the internal magnetic control device is installed on the equipment rack, the stepping device is installed on the equipment rack in a stepping manner, and the flywheel is rotatably installed on the equipment rack and is drivably connected to the pedaling device, and the flywheel surrounds the outside of the inner magnetic control device, wherein the inner magnetic control device further includes:
  • each of the swing arms is respectively rotatably mounted on the edge of the magnetic control housing, wherein each set of magnetic elements is respectively arranged on each of the swing arms;
  • a drive module wherein the drive module is mounted on the magnetic control housing, and the drive module further includes a drive mechanism and two linkage mechanisms, and one end of each linkage mechanism is respectively driven Connected to the driving mechanism, the other end of each of the linkage mechanisms is rotatably mounted on the driven end of each of the swing arms, and the two linkage mechanisms have an overlapping portion in the height direction .
  • the present invention further provides a drive module, which includes:
  • a drive housing wherein the drive housing has a housing space and a side opening communicating with the housing space, wherein the drive mechanism is arranged in the housing space of the drive housing, One end of each linkage mechanism is drivably connected to the driving mechanism in the housing space of the driving housing, and the other end is respectively connected to the driving mechanism through the side of the driving housing.
  • the opening extends to the outside of the drive housing.
  • the driving mechanism includes a driving motor and a gear set, wherein the driving motor is installed in the housing space of the driving housing, wherein the gear set includes a driven gears, at least one transmission gear and two power output gears, the driven gear, the transmission gear and each of the power output gears are respectively rotatably mounted in the housing space of the drive housing, and
  • the driven gear is meshed with the output shaft of the driving motor
  • the transmission gear is meshed with the driven gear
  • the two power output gears mesh with each other
  • the power output gear is meshed with the transmission gear, wherein each of the linkage mechanisms has a row of driven teeth, and the driven teeth of each of the linkage mechanisms are respectively meshed with each of the power output gear.
  • each of the linkage mechanisms includes a slider and a connecting rod, one end of the connecting rod is rotatably mounted on the slider, and the other end is rotatably mounted on the slider. Rotationally mounted to the driven end of the swing arm, wherein the slider is drivably connected to the drive mechanism.
  • each of the linkage mechanisms includes a slider and a connecting rod, one end of the connecting rod is rotatably mounted on the slider, and the other end is rotatably mounted on the slider.
  • the drive housing has two rails, each of the sliders of the linkage mechanism has a sliding groove, and the rails extend to the sliding groove to allow the sliding A block is slidably seated on the track.
  • the drive module further includes a pulse unit, wherein the pulse unit further includes:
  • An infrared transmitting and receiving element wherein the infrared transmitting and receiving element has an emitting portion and a receiving portion corresponding to the emitting portion;
  • a grid element wherein the grid element includes a turntable and a plurality of grid arms and has a plurality of optical path channels, and each of the grid arms is respectively integrated from the periphery of the turntable in a manner of being spaced apart from each other and forming a ring extend outwards to form the optical path between two adjacent grid arms, the turntable is mounted on the output shaft of the driving motor, wherein the transmitting part and the receiving part are respectively Retained on opposite sides of the grid arms of the grid element.
  • the present invention further provides an internal magnetic control device, which includes:
  • At least one swing arm wherein the swing arm has a pivot end and a driven end corresponding to the pivot end, the pivot end of the swing arm is rotatably mounted on the magnetic control housing an edge, wherein said swing arm is provided with a set of said magnetic elements;
  • a drive module wherein the drive module includes a drive mechanism and at least one linkage mechanism, one end of the linkage mechanism is drivably connected to the drive mechanism, and the other end of the linkage mechanism connected to the driven end of the swing arm, so that the drive mechanism drives the swing arm to swing through the linkage mechanism.
  • the internal magnetic control device includes two sets of magnetic elements and two swing arms, and each swing arm is provided with a set of magnetic elements, wherein the drive module It includes two linkage mechanisms, one end of each linkage mechanism is drivably connected to the drive mechanism, and the other end of each linkage mechanism is respectively connected to each The driven end of the swing arm.
  • the drive module further includes a drive housing, the drive housing has a housing space and a side opening communicating with the housing space, wherein the drive mechanism is set In the housing space of the driving housing, one end of the linkage mechanism is drivably connected to the driving mechanism in the housing space of the driving housing, and the other end is connected via The side opening of the drive housing extends to the outside of the drive housing.
  • the magnetic control housing has a housing space and a peripheral opening communicating with the housing space
  • the drive module is installed in the housing space of the magnetic control housing
  • the pendulum An arm is allowed to swing within the peripheral opening of the magnetron housing.
  • the magnetic control housing has an installation channel, and the installation channel communicates with the housing space, wherein the drive module is installed on the magnetic control housing through the installation channel.
  • the housing space of the magnetron housing communicates with the housing space, wherein the drive module is installed on the magnetic control housing through the installation channel.
  • the two linkage mechanisms have overlapping portions in the height direction.
  • the internal magnetic control device further includes at least one reset element, and the reset element is arranged between the magnetic control housing and the swing arm to After the swing position swings toward the minimum swing position, the swing arm has a tendency to return to the maximum swing position.
  • the linkage mechanism is rigid.
  • the linkage mechanism is flexible.
  • the reset element is a torsion spring, wherein the main body part of the reset element is arranged at the installation position of the pivot end of the swing arm and the magnetic control housing and is configured as The position remains unchanged, one torsion spring arm of the reset element abuts against the inner side of the swing arm, and the other reset element abuts against the magnetic control housing.
  • the reset element is a compression spring, wherein one end of the reset element abuts against the swing arm, and the other end abuts against the magnetic control housing.
  • the driving mechanism includes a driving motor and a gear set, wherein the driving motor is installed in the housing space of the driving housing, wherein the gear set includes a driven the gear, the transmission gear and each of the power output gears are rotatably installed in the housing space of the driving housing respectively, and the driven gear is engaged with the output shaft of the driving motor,
  • the transmission gear is engaged with the driven gear, two of the power output gears are engaged with each other, and one of the two power output gears is engaged with the transmission gear, wherein the A linkage mechanism is drivably connected to the power output gear.
  • the drive module further includes a drive housing, the drive housing has a housing space and a side opening communicating with the housing space, wherein the drive mechanism is Set in the housing space of the driving housing, wherein the driving mechanism further includes a driving motor and a gear set, wherein the driving motor is installed in the housing space of the driving housing, wherein The gear set includes a driven gear, the transmission gear and each of the power output gears are respectively rotatably installed in the housing space of the driving housing, and the driven gear is engaged with The output shaft of the driving motor, the transmission gear is meshed with the driven gear, the two power output gears are meshed with each other, and one of the two power output gears is meshed with the The transmission gear, wherein, one end of the linkage mechanism is drivably connected to the power output gear of the driving mechanism in the housing space of the driving housing, and the other end is The side opening of the drive housing extends to the outside of the drive housing.
  • the drive module further includes a pulse unit, wherein the pulse unit further includes:
  • An infrared transmitting and receiving element wherein the infrared transmitting and receiving element has an emitting portion and a receiving portion corresponding to the emitting portion;
  • a grid element wherein the grid element includes a turntable and a plurality of grid arms and has a plurality of optical path channels, and each of the grid arms is respectively integrated from the periphery of the turntable in a manner of being spaced apart from each other and forming a ring extend outwards to form the optical path between two adjacent grid arms, the turntable is mounted on the output shaft of the driving motor, wherein the transmitting part and the receiving part are respectively Retained on opposite sides of the grid arms of the grid element.
  • the present invention further provides an assembly method of an internal magnetic control device, wherein the assembly method includes the following steps:
  • the assembly method before the step (c), further includes the step of: (e) rotatably installing an assembly at the end of a linkage mechanism of the drive module; wherein In the step (d), the assembly is mounted on the driven end of the swing arm, so that the driven end of the swing arm is drivably mounted on the driving module.
  • said step (d) further comprises:
  • Fig. 1 is a three-dimensional schematic diagram of a fitness equipment according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application environment of an internal magnetron device according to a preferred embodiment of the present invention.
  • 3A and 3B are three-dimensional schematic views of an internal magnetron device according to the above-mentioned preferred embodiment of the present invention from different viewing angles.
  • FIG. 4A and FIG. 4B are respectively exploded schematic diagrams of different viewing angles of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention.
  • 5A and 5B are three-dimensional schematic views of a drive unit of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention from different perspectives.
  • FIG. 6A and FIG. 6B are respectively exploded schematic diagrams of different viewing angles of the driving unit of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a position of the driving unit of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 8A and FIG. 8B are schematic top views of the partial structure when a swing arm of the inner magnetron device swings to different positions according to the above-mentioned preferred embodiment of the present invention.
  • FIGS 9A to 9E are schematic diagrams of the assembly process of the internal magnetic control device according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 10 is a schematic top view of a partial structure of a modified example of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 11 is a schematic top view of a partial structure of yet another modified example of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 12 is a schematic top view of a partial structure of another modification example of the internal magnetron device according to the above-mentioned preferred embodiment of the present invention.
  • the terms “vertical”, “transverse”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical” , “horizontal”, “top”, “bottom”, “inner”, “outer” and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, Rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, the above terms cannot be construed as limiting the present invention; in the second aspect, the term “a” should be understood as “at least one "or “one or more”, that is, in one embodiment, the number of an element can be one, while in another embodiment, the number of the element can be multiple, and the term “one” cannot be understood as a logarithmic number limits.
  • FIG. 1 has shown a fitness equipment according to a preferred embodiment of the present invention
  • FIG. 8B has shown an internal magnetic control device 100 according to a preferred embodiment of the present invention, and described internal magnetic
  • the control device 100 is used to provide a magnetic field environment, wherein the fitness equipment is applied with the internal magnetic control device 100 of the present invention
  • the accompanying drawings 9A to 9E show the assembly process of the internal magnetic control device 100 .
  • the fitness equipment implemented as an elliptical machine shown in FIG. 1 is only exemplary, and does not limit the specific type of the fitness equipment of the present invention.
  • the fitness equipment may also be a rowing machine, a spinning bike, and the like.
  • described fitness equipment of the present invention comprises described inner magnetic control device 100, an equipment frame 200, a stepping device 300 and a flywheel 400, wherein said inner magnetic control device 100 is installed in the The equipment rack 200, wherein the stepping device 300 is mounted on the equipment rack 200 steppingly, wherein the flywheel 400 is rotatably mounted on the equipment rack 200 and is drivably connected to the stepping device 300 , and the flywheel 400 is arranged around the outer side of the inner magnetic control device 100 .
  • the flywheel 400 continuously cuts the inner magnetic control device 100
  • the magnetic line of induction can obtain load, so that the user can achieve the purpose of fitness through the fitness equipment.
  • the load obtained is related to the amount of magnetic flux lines cut by the flywheel 400 of the inner magnetic control device 100 .
  • the more the flywheel 400 cuts the magnetic field lines of the inner magnetic control device 100 when it is driven to rotate the greater the load that the flywheel 400 can obtain.
  • the more laborious it is to install 300 the less the flywheel 400 cuts the magnetic field lines of the inner magnetic control device 100 when it is driven to rotate, the smaller the load that the flywheel 400 can obtain.
  • the more labor-saving when the device is 300.
  • the load obtained by the flywheel 400 when it is driven to rotate is reflected in the resistance value when the user steps on the stepping device 300, the greater the load obtained by the flywheel 400 when it is driven to rotate, the user The greater the resistance value when stepping on the stepping device 300 , correspondingly, the smaller the load obtained when the flywheel 400 is driven to rotate, the smaller the resistance value when the user steps on the stepping device 300 .
  • the internal magnetic control device 100 of the present invention is configured to be able to adjust the relative position of the magnetic induction line and the flywheel 400, so that the The closer the position of the magnetic field lines of the inner magnetic control device 100 is to the flywheel 400, the more the flywheel 400 cuts the magnetic field lines of the inner magnetic control device 100 when it is driven to rotate.
  • the farther the position of the magnetic field lines of the inner magnetic control device 100 is from the flywheel 400 the less the amount of cutting the magnetic field lines of the inner magnetic control device 100 will be when the flywheel 400 is driven to rotate. Therefore, by adjusting the relative position of the magnetic lines of the inner magnetic control device 100 and the flywheel 400 , the resistance value of the user when stepping on the stepping device 300 can be adjusted.
  • the internal magnetic control device 100 includes a magnetic control housing 10, a drive module 20, at least one swing arm 30 and at least one group of magnetic elements 40, wherein the magnetic control housing 10 It has a housing space 101 and a peripheral opening 102 connected to the housing space 101, wherein the drive module 20 is arranged in the housing space 101 of the magnetron housing 10 to provide a driving force, wherein the The swing arm 30 has a pivot end 31 and a driven end 32 corresponding to the pivot end 31, the pivot end 31 of the swing arm 30 is rotatably mounted on the magnetic control housing 10 , the driven end 32 of the swing arm 30 is drivably connected to the drive module 20, wherein the swing arm 30 is provided with a set of the magnetic elements 40 to allow the magnetic elements 40 to operate in the The peripheral opening 102 of the magnetron housing 10 provides a magnetic field environment.
  • the flywheel 400 can surround the outer side of the magnetic control housing 10 of the inner magnetic control device 100, and the peripheral opening 102 of the magnetic control housing 10 corresponds to the inner side of the flywheel 400, so when the When the flywheel 400 is driven to rotate relative to the inner magnetic control device 100 , the flywheel 400 can cut the magnetic induction line of the magnetic element 40 of the inner magnetic control device 100 to obtain a load.
  • the inner magnetic control device 100 includes two swing arms 30 and two sets of A magnetic element 40, each of the swing arms 30 is provided with one of the magnetic elements 40, wherein the two swing arms 30 are held in the peripheral opening 102 of the magnetic control housing 10 in a mutually symmetrical manner , so as to allow each group of the magnetic elements 40 to provide a magnetic field environment at the peripheral opening 102 of the magnetron housing 10 .
  • each swing arm 30 faces the peripheral opening 102 of the magnetron housing 10
  • each group of magnetic elements 40 is respectively arranged on the outer side of each swing arm 30, so that each group The magnetic element 40 can be directly exposed to the peripheral opening 102 of the magnetron housing 10 .
  • each set of magnetic elements 40 is disposed on each swing arm 30 is not limited in the inner magnetic control device 100 of the present invention.
  • each group of magnetic elements 40 can be arranged on each of the swing arms 30 by means of glue bonding;
  • each set of the magnetic elements 40 can be installed on each of the swing arms 30 in an embedded manner.
  • the number of the magnetic elements 40 in each group of the magnetic elements 40 is not limited in the internal magnetic control device 100 of the present invention.
  • the number of the magnetic elements 40 in each group of the magnetic elements 40 is three, which are arranged at intervals on the outside of the swing arm 30 .
  • the swing arm 30 extends curvedly between the pivot end 31 and the driven end 32 so that the swing arm 30 is arc-shaped, so that the shape of the outer side of the swing arm 30 and
  • the peripheral shapes of the magnetron housing 10 are substantially the same.
  • a set of magnetic elements 40 is arc-shaped, and the shape of the inner side of a set of magnetic elements 40 is consistent with the shape of the outer side of the swing arm 30, so as to reliably set a set of magnetic elements 40 on the outside of the swing arm 30 .
  • the magnetic control housing 10 includes a disc-shaped first housing 11 and a disc-shaped second housing 12, the first housing 11 is provided with a first ring 111, the first The second housing 12 is provided with a second ring body 121, wherein the first housing 11 and the second housing 12 are installed with each other in a manner corresponding to the first ring body 111 and the second ring body 121, so as to
  • the shell space 101 is formed inside the first ring body 111 and the second ring body 121
  • the peripheral opening 102 is formed outside the first ring body 111 and the second ring body 121 .
  • the edge of the first shell 11 is provided with a plurality of first mounting posts 112
  • the edge of the second shell 12 is provided with a plurality of second mounting posts 122, each of the first shell 111
  • the first mounting column 112 and each of the second mounting columns 122 of the second housing 12 are installed and supported by each other, so as to prevent the edge of the first housing 11 and the edge of the second housing 12 from being deformed.
  • screws are allowed to lock the first housing 11 and the second housing 11 at the positions of the first mounting post 112 of the first housing 11 and the second mounting post 122 of the second housing 12.
  • the opposite sides of the pivot end 31 of the swing arm 30 are rotatably mounted on the edge of the first casing 11 and the edge of the second casing 12 to rotatably mount the swing arm 30
  • the pivot end 31 of the magnetic control housing 10 is on the edge, and the swing arm 30 is allowed to swing at the peripheral opening 102 of the magnetic control housing 10, and each of the first housing 11
  • Each of the first mounting post 112 and the second mounting post 122 of the second housing 12 is located on the outer side of the swing arm 30 to limit the outward swinging range of the swing arm 30 .
  • the first mounting column 112 of the first housing 11 and the second mounting column 122 of the second housing 12 correspond to two adjacent magnetic elements 40 in a group.
  • the gap of the element 40 is used to avoid the magnetic element 40 .
  • the magnetic control housing 10 further has a central through hole 103, the housing space 101 is located around the central through hole 103, wherein the mounting shaft of the equipment rack 200 can be installed in the The central hole 103 of the magnetic control housing 10 is used to fixedly install the inner magnetic control device 100 on the equipment rack 200 .
  • the flywheel 400 When the user drives the flywheel 400 to rotate relative to the inner magnetic control device 100 by stepping on the stepping device 300 of the fitness equipment, the flywheel 400 can cut each group of the inner magnetic control device 100 The magnetic field lines of the magnetic element 40 are loaded, so that the user can achieve the purpose of exercising through the fitness equipment.
  • each set of swing arms 30 can drive each set of magnetic elements 40 to swing synchronously, so that Change the relative distance between each group of magnetic elements 40 and the flywheel 400, so as to adjust the relative distance between the magnetic field lines of the inner magnetic control device 100 and the flywheel 400, thereby adjusting the flywheel 400 to be driven to rotate
  • the relative distance between each set of magnetic elements 40 and the flywheel 400 is determined by Adjust to the design maximum value, when the flywheel 400 cuts the magnetic field lines of each set of magnetic elements 40 when it is driven to rotate, the amount of the magnetic field lines of each group of magnetic elements 40 is the least, and the resistance that the flywheel 400 can obtain is the least.
  • the flywheel 400 cuts each set of swing arms when driven to rotate.
  • the magnetic field lines of the magnetic element 40 gradually increase, so that the resistance that the flywheel 400 can obtain when it is driven to rotate gradually increases.
  • the flywheel 400 cuts each group of the swing arms 30 when driven to rotate.
  • the amount of magnetic field lines of the magnetic element 40 gradually decreases, so that the resistance that the flywheel 400 can obtain when it is driven to rotate gradually decreases.
  • the drive module 20 includes a drive mechanism 21 and two linkage mechanisms 22, one end of each linkage mechanism 22 is drivably connected to the drive mechanism 21, The other end of each linkage mechanism 22 is respectively rotatably mounted on the driven end 32 of each swing arm 30, wherein two linkage mechanisms 22 have an overlapping portion in the height direction In this way, when the driving force provided by the driving mechanism 21 is transmitted to each of the linkage mechanisms 22, each of the linkage mechanisms 22 can exert force on each of the pendulums at a relatively large angle.
  • the inner magnetic control device 100 of the present invention can reduce The requirements for the driving force of the driving mechanism 21 are conducive to reducing the cost of the inner magnetic control device 100.
  • the inner magnetic control device 100 of the present invention can smoothly drive each of the swing arms 30 swings in a larger range, which is beneficial to improve the reliability of the inner magnetic control device 100 .
  • the manner in which the linkage mechanism 22 is rotatably mounted on the driven end 32 of the swing arm 30 is not limited in the inner magnetic control device 100 of the present invention.
  • the inner magnetic control device 100 is further provided with two assembly bodies 50, wherein the end of the linkage mechanism 22 is rotatably mounted on the assembly body 50, and the assembly body 50 is mounted on the swing arm 30
  • the driven end 32 of the swing arm 30 is rotatably installed with the end of the linkage mechanism 22 on the driven end 32 of the swing arm 30 .
  • the two swing arms 30 of the inner magnetic control device 100 are defined as a left swing arm 30a and a right swing arm 30b, and correspondingly, the defined
  • the two linkage mechanisms 22 of the drive module 20 of the inner magnetic control device 100 are a left linkage mechanism 22a and a right linkage mechanism 22b.
  • One end of the left linkage mechanism 22a is rotatably mounted on the driven end 32 of the left swing arm 30a, and the other end of the left linkage mechanism 22a faces the right side.
  • the direction of the side swing arm 30b extends and is drivably connected to the drive mechanism 21, correspondingly, one end of the right linkage mechanism 22b is rotatably mounted on the right side of the swing arm 30b.
  • the driven end 32, the other end of the right linkage mechanism 22b extends toward the direction of the left swing arm 30a and is drivably connected to the drive mechanism 21, wherein the left linkage mechanism 22b
  • the mechanism 22a and the right linkage mechanism 22b have overlapping portions in the height direction.
  • the right linkage mechanism 22b is located on the upper part of the left linkage mechanism 22a.
  • the right linkage mechanism 22b may be located at the lower part of the left linkage mechanism 22a.
  • the projection of the left linkage mechanism 22a on the magnetic control housing 10 and the projection of the right linkage mechanism 22b on the magnetron housing 10 have an overlapping portion and are in an "X" shape.
  • the extension direction of the line between the center of the pivot end 31 of the left swing arm 30a and the center of the driven end 32 and the extension direction of the left linkage mechanism 22a form a clamp
  • the angle has a larger angle to allow the left linkage mechanism 22a to apply force to the left swing arm 30a at a larger angle, and accordingly, the pivot end 31 of the right swing arm 30b
  • the angle formed by the extension direction of the line between the center and the center of the driven end 32 and the extension direction of the right linkage mechanism 22b has a relatively large angle, so as to allow the right linkage mechanism 22b to Force is applied to the right swing arm 30b at a relatively large angle.
  • the driving mechanism 21 can drive the left linkage mechanism 22a to move towards the direction close to the right swing arm 30b, so as to allow the left linkage mechanism 22a easily pulls the driven end 32 of the left side swing arm 30a at a relatively large angle to make the left side swing arm 30a swing inwards, and at the same time, the drive mechanism 21 can drive the right side
  • the linkage mechanism 22b moves toward the direction close to the left swing arm 30a, so as to allow the right linkage mechanism 22b to easily pull the driven end 32 of the right swing arm 30b at a relatively large angle to make The right swing arm 30b swings inward.
  • the driving mechanism 21 when the driving mechanism 21 outputs power in the reverse direction, the driving mechanism 21 can drive the left linkage mechanism 22a to move away from the right swing arm 30b, so as to allow the left
  • the side linkage mechanism 22a easily pushes the driven end 32 of the left side swing arm 30a at a relatively large angle to make the left side swing arm 30a swing outwards
  • the drive mechanism 21 can drive
  • the right linkage mechanism 22b moves away from the left swing arm 30a to allow the right linkage mechanism 22b to easily pull the driven side of the right swing arm 30b at a relatively large angle. end 32 so that the right side swing arm 30b swings outward.
  • the left linkage mechanism 22a can Keep applying force to the left swing arm 30a at a relatively large angle; correspondingly, no matter whether the right linkage mechanism 22b pulls the right swing arm 30b to swing from the maximum swing position to the minimum swing position During the process of the right swing mechanism 22b pushing the right swing arm 30b to swing from the minimum swing position to the maximum swing position, the right linkage mechanism 22b can maintain a relatively A large angle is applied to the right swing arm 30b.
  • the drive module 20 includes a drive housing 23, the drive housing 23 has a housing space 231 and a side opening 232 communicating with the housing space 231, wherein
  • the driving mechanism 21 is arranged in the casing space 231 of the driving casing 23 , and one end of each linkage mechanism 22 is connected to the casing space 231 of the driving casing 23 respectively.
  • Driveably connected to the drive mechanism 21, the other end of each linkage mechanism 22 extends to the outside of the drive housing 23 through the side opening 232 of the drive housing 23,
  • the driving module 20 can be rotatably mounted on the driven end 32 of each swing arm 30 through the assembly body 50 , so that the driving module 20 can form an independent module.
  • the drive module 20 can be installed in the housing space 101 of the magnetic control housing 10 as an independent module.
  • the same The drive module 20 can be adapted to different magnetron housings 10, for example, the same drive module 20 can be adapted to magnetron housings 10 of different sizes, so as to obtain the inner magnetron device 100 of corresponding specifications And meet the use needs of different described fitness equipments.
  • the magnetic control housing 10 has an installation channel 104, which communicates with the housing space 101 of the magnetic control housing 10, wherein the drive module 20 is allowed to be installed through the magnetic control housing 10.
  • the channel 104 is installed in the housing space 101 of the magnetron housing 10 .
  • the installation channel 104 of the magnetron housing 10 is formed in the first housing 11 .
  • the internal magnetic control device 100 of the present invention by providing an independent drive module 20, when assembling the internal magnetic control device 100, the first shell 11 and the The magnetic control housing 10 is obtained by the second housing 12, and then the drive module 20 is installed in the housing space 101 of the magnetic control housing 10, so that: on the one hand, the assembly difficulty of the inner magnetic control device 100 can be On the other hand, on the premise of not disassembling the magnetic control housing 10, the resistance of the inner magnetic control device 100 can be completed only by disassembling the drive module 20 and calibrating it. Value calibration, so that the production efficiency and calibration efficiency of the internal magnetic control device 100 can be greatly improved.
  • the driving housing 23 includes a first housing 233 and a second housing 234, and the first housing 233 and the second housing 234 are installed mutually so as to be connected to the first housing.
  • the housing space 231 and the side opening 232 are formed between the body 233 and the second housing 234 .
  • the mutual installation manner of the first housing 233 and the second housing 234 is not limited in the internal magnetic control device 100 of the present invention.
  • the first housing 233 and the second housing 234 can be mounted to each other by screws, or the first housing 233 and the second housing 234 can be connected to each other by a combination of a screw and a nut. installed, or the first housing 233 and the second housing 234 may be installed by engaging with each other.
  • the driving mechanism 21 further includes a driving motor 211 and a gear set 212 .
  • the driving motor 211 is fixedly installed in the housing space 231 of the driving housing 23, for example, by allowing the first housing 233 and the second housing 234 to be connected to the driving motor 211.
  • the driving motor 211 can be fixedly installed in the casing space 231 of the driving casing 23 by clamping the driving motor 211 on opposite sides.
  • the gear set 212 includes a driven gear 2121, at least one transmission gear 2122 and two power output gears 2123, the driven gear 2121, the transmission gear 2122 and each of the power output gears 2123 are respectively rotatably
  • the casing space 231 installed in the driving casing 23, for example, the opposite sides of the driven gear 2121, the opposite sides of the transmission gear 2122 and the opposite sides of each of the power output gears 2123.
  • the sides are respectively rotatably mounted on the first housing 233 and the second housing 234, so as to be respectively rotatably mounted on the driven gear 2121, the transmission gear 2122 and each of the power output
  • the gear 2123 is located in the housing space 231 of the driving housing 23, wherein the driven gear 2121 is engaged with the output shaft 2111 of the driving motor 211, and the transmission gear 2122 is engaged with the driven gear 2121 , the two power output gears 2123 mesh with each other, and one of the two power output gears 2123 is meshed with the transmission gear 2122 .
  • Each of the linkage mechanisms 22 has a row of driven teeth 221 respectively, wherein the driven teeth 221 of each linkage mechanism 22 are respectively engaged with each of the power output gears 2123 of the gear set 212 In this way, when the drive motor 211 outputs power in the manner that the output shaft 2111 of the drive motor 211 rotates, the power can pass through the driven gear 2121, the transmission gear 2122 and each of the power output in turn.
  • the gear 2123 is transmitted to each of the linkage mechanisms 22 to drive each of the linkage mechanisms 22 to move and further drive each of the swing arms 30 to swing.
  • the side of the left linkage mechanism 22a and the side of the right linkage mechanism 22b respectively have a row of the driven teeth 221, wherein the left linkage mechanism
  • the driven tooth 221 of the driving mechanism 22a is meshed with one of the power output gears 2123
  • the driven tooth 221 of the right linkage mechanism 22b is meshed with the other power output gear 2123 .
  • the drive motor 211 When the drive motor 211 outputs power in the manner that the output shaft 2111 of the drive motor 211 rotates, the power can be sequentially transmitted to each of the power output gears through the driven gear 2121 and the transmission gear 2122 2123 to drive each of the power output gears 2123 to rotate synchronously and reversely, at this time, one of the power output gears 2123 and the left linkage mechanism 22a can cooperate with each other to drive the left swing arm 30a to swing, the other power output gear 2123 and the right linkage mechanism 22b can cooperate with each other to drive the right swing arm 30b to swing, and the swing direction and swing amplitude of the left swing arm 30a are the same as those of the left swing arm 30a The swing direction and swing amplitude of the right side swing arm 30b are consistent.
  • the drive mechanism 21 can pass through each linkage mechanism 22 smoothly drives each of the swing arms 30 to swing;
  • each of the linkage mechanisms 22 includes a slider 222 and a connecting rod 223, one end of the connecting rod 223 is rotatably mounted on the slider 222, The other end of the connecting rod 223 is rotatably mounted on the driven end 32 of the swing arm 30, wherein the slider 222 is drivably mounted on the drive mechanism 21, as described
  • the flexibility when the driving module 20 drives the swing arm 30 to swing can be improved, so as to avoid the undesirable phenomenon of "stuck", thereby ensuring the reliability of the internal magnetic control device 100 .
  • the driven tooth 221 of the linkage mechanism 22 is formed on the side wall of the slider 222 to allow the slider 222 to be drivably connected to the power output of the gear set 212 Gear 2123.
  • the drive housing 23 further includes two rails 235, which are respectively formed on the inner wall of the first housing 233 and the inner wall of the second housing 234, correspondingly, each The sliders 222 of the linkage mechanisms 22 respectively have a sliding slot 2221, wherein the track 235 formed on the first casing 233 can extend to the sliders of the linkage mechanism 22.
  • the track 235 of the second housing 234 can extend to the sliding groove 2221 of the slider 222 of another linkage mechanism 22 to allow the slider of the linkage mechanism 22 to 222 is slidably seated on the track 235 formed on the second housing 234 .
  • the track 235 of the drive housing 23 can guide the movement direction of the linkage mechanism 22, so that the drive mechanism 21 can drive the swing arm 30 along the designed path through the linkage mechanism 22. swing.
  • the drive module 20 of the present invention further includes a pulse unit 24, wherein when the drive mechanism 21 drives each of the swing arms 30 to swing through each of the linkage mechanisms 22
  • the pulse unit 24 can generate a pulse signal, so as to allow the driving mechanism 21 to accurately adjust the relative distance between each group of the magnetic elements 40 and the flywheel 400 based on the pulse signal.
  • the pulse unit 24 includes a grid element 241 and an infrared emitting and receiving element 242 .
  • the grid element 241 further includes a turntable 2411 and a plurality of grid arms 2412, and the grid element 241 has a plurality of optical path channels 2413, and each of the grid arms 2412 is spaced apart from each other in an annular manner.
  • the output shaft 2111 of the driving motor 211 of the driving mechanism 21 is used to drive the grid element 241 to rotate when the driving motor 211 drives each of the linkage mechanisms 22 through the gear set 212 .
  • the infrared emitting and receiving element 242 has an emitting portion 2421 and a receiving portion 2422, and the emitting portion 2421 and the receiving portion 2422 are respectively held on opposite sides of the grid arm 2412 of the grid element 241 , and the transmitting part 2421 and the receiving part 2422 correspond to each other.
  • the emitting part 2421 of the infrared transmitting and receiving element 242 is configured to continuously emit infrared light to the receiving part 2422, wherein when the grid element 241 rotates to make the light path of the grid element 241 pass through
  • the infrared light emitted by the emitting part 2421 is allowed to pass through the optical path channel 2413 of the grid element 241 to Can be received by the receiving part 2422, correspondingly, when the grid element 241 is rotated to make the grid arm 2412 of the grid element 241 correspond to the infrared emitting and receiving element 242
  • the pulse unit 24 can generate a pulse signal, and based on the pulse signal, the swing amplitude of each swing arm 30 can be determined, and thus the relative distance between each group of the magnetic elements 40 and the flywheel 400 can be determined.
  • the grid element 241 is drivably installed on the output shaft 2111 of the driving motor 211 of the driving mechanism 21, so that the driving mechanism 21 is driven by the linkage mechanism 22
  • the swinging amplitude of the swing arm 30 is corresponding to the number of turns that the drive mechanism 21 drives the grid element 241 to rotate, and the number of turns of the grid element 241 and the infrared emitting and receiving element 242 generate
  • the number of pulse signals is corresponding, so that by detecting the number of pulse signals generated by the pulse unit 24, it can be accurately determined that the drive mechanism 21 drives the swing arm 30 to swing through the linkage mechanism 22 Therefore, the driving mechanism 21 can accurately adjust the distance between each group of the magnetic elements 40 and the flywheel 400 based on the pulse signal generated by the pulse unit 24 .
  • the number of the grid arm 2412 and the optical path channel 2413 of the grid element 241 is not limited in the internal magnetron device 100 of the present invention, and the grid element 241
  • the distance between each group of the magnetic elements 40 and the flywheel 400 can be precisely adjusted based on the pulse signal generated by the pulse unit 24 .
  • the number of the grid arm 2412 and the number of the optical path channel 2413 of the grid element 241 is 16 respectively. .
  • the drive module 20 of the present invention further includes a circuit board 25, wherein the infrared emitting and receiving element 242 of the pulse unit 24 is mounted on the circuit board 25, and the drive mechanism 21
  • the driving motor 211 is electrically connected to the circuit board 25 .
  • FIG. 9A to 9E show the assembly process of the inner magnetic control device 100 of the present invention.
  • a set of the magnetic elements 40 is disposed on the swing arm 30 .
  • the pivot ends 31 of the two swing arms 30 are respectively installed on the edge of the second housing 12 .
  • described first shell 11 is installed in described second shell 12, to allow described first shell 11 and described second shell 12 to form described magnetron shell 10, and in described first shell 11 and the second housing 12 form the housing space 101 and the peripheral opening 102 , wherein each of the swing arms 30 is swingably held in the peripheral opening 102 of the magnetron housing 10 .
  • the modularized drive module 20 is installed in the shell space 101 of the magnetic control shell 10 through the installation channel 104 of the magnetic control shell 10, and the drive module 20
  • the linkage mechanism 22 can pass through the gap formed between the first ring body 111 of the first housing 11 and the second ring body 121 of the second housing 12 from the magnetic control housing
  • the housing space 101 of 10 extends to the peripheral opening 102 for being rotatably mounted on the driven end 32 of the swing arm 30 , thus assembling the inner magnetron device 100 .
  • the end of the linkage mechanism 22 of the drive module 20 is allowed to pass through the first ring body 111 formed in the first shell 11 and the gap between the second ring body 121 of the second housing 12 to move to the peripheral opening 102 of the magnetron housing 10; secondly, rotatably install the assembly 50 on the connecting The end portion of the driving mechanism 22; again, install the assembly body 50 on the driven end 32 of the swing arm 30, so that the driven end 32 of the swing arm 30 and the connecting end 32 are rotatably installed.
  • the end of the moving mechanism 22 is allowed to pass through the first ring body 111 formed in the first shell 11 and the gap between the second ring body 121 of the second housing 12 to move to the peripheral opening 102 of the magnetron housing 10; secondly, rotatably install the assembly 50 on the connecting The end portion of the driving mechanism 22; again, install the assembly body 50 on the driven end 32 of the swing arm 30, so that the driven end 32 of the swing arm 30 and the connecting end 32 are rotatably installed.
  • the end of the linkage mechanism 22 of the drive module 20 is allowed to pass through the first ring body 111 formed in the first shell 11 and the gap between the second ring body 121 of the second housing 12 to move to the peripheral opening 102 of the magnetron housing 10; secondly, install the assembly 50 on the swing arm 30 The driven end 32; again, the assembly body 50 is rotatably installed at the end of the linkage mechanism 22, so that the driven end 32 of the swing arm 30 and the linkage are rotatably installed. The end of the moving mechanism 22.
  • the present invention further provides an assembly method of the internal magnetic control device 100, wherein the assembly method includes the following steps:
  • the driven end 32 of the swing arm 30 is drivably mounted on the driving module 20 to assemble the inner magnetron device 100 .
  • the inner magnetic control device 100 further includes at least one reset element 60, and the reset element 60 is arranged on the magnetic control housing 10 and the swing arm 30 Between, after the swing arm swings from the maximum swing position to the minimum swing position, the swing arm 30 has a tendency and displacement to return to the maximum swing position.
  • described resetting member 60 is torsion spring, and the main part of described resetting member 60 is arranged on the installation of described pivot end 31 of described swing arm 30 and described magnetron housing 10 position, and the position of the main part of the reset member 60 is configured to remain unchanged, one torsion spring arm of the reset member 60 is against the inner side of the swing arm 30, and the other torsion spring arm is against the inner side of the swing arm 30.
  • the second ring body 121 of the second housing 12 of the magnetic control housing 10 so that the reset element 60 is arranged between the magnetic control housing 10 and the swing arm 30 .
  • the reset member 60 When the driving module 20 drives the swing arm 30 to swing from the maximum swing position to the minimum swing position, the reset member 60 produces elastic deformation and accumulates elastic potential energy. At this time, on the one hand, the reset member 60 60 has a tendency to return the swing arm 30 to the maximum swing position. On the other hand, when the flywheel 400 is driven to rotate relative to the inner magnetic control device 100 to cut the magnetic induction of the inner magnetic control device 100 When the load is obtained from the line, the reset element 60 can absorb the vibration of the swing arm 30, so as to reduce noise and improve the user's experience when using the fitness equipment for fitness.
  • the number of the reset element 60 is two, and the main body part of each reset element 60 is respectively arranged on the pivot end 31 of each swing arm 30 and the magnetic control housing 10.
  • one torsion spring arm of each reset member 60 abuts against the inner side of each swing arm 30 respectively, and the other torsion spring arm abuts against the second shell of the magnetic control shell 10 respectively 12 of the second ring body 121 .
  • FIG. 11 shows another modified example of the internal magnetic control device 100 of the present invention.
  • the difference from the internal magnetic control device 100 shown in Fig. 10 is that the present invention shown in Fig. 11
  • the reset element 60 is a compression spring, one end of which abuts against the swing arm 30, and the other end abuts against the magnetic control housing 10, In this way, the reset element 60 is arranged between the swing arm 30 and the magnetic control housing 10 .
  • the reset member 60 when the driving module 20 drives the swing arm 30 to swing from the maximum swing position to the minimum swing position, the reset member 60 produces elastic deformation and accumulates elastic potential energy. At this time, on the one hand, the The reset element 60 has a tendency to return the swing arm 30 to the maximum swing position.
  • the flywheel 400 when the flywheel 400 is driven to rotate relative to the inner magnetron device 100 to cut the inner magnetron device 100 When the load is obtained by the magnetic lines of induction, the reset element 60 can absorb the vibration of the swing arm 30, so as to reduce noise and improve the user's experience when using the fitness equipment for fitness.
  • the reset element 60 is arranged on the swing arm 30 and the magnetic control housing Between 10.
  • the reset element 60 can be arranged on the swing arm 30 and the swing arm 30 at the pivot end 31 of the swing arm 30 .
  • the reset element 60 is disposed between the swing arm 30 and the magnetic control housing 10 at the driven end 32 of the swing arm 30 .
  • described swing arm 30 has a first holding member 33, and it extends from the inner wall of described swing arm 30 to the direction of described second ring body 121 of described second shell 12, and described first
  • the holding element 33 is configured to hold the outer end of the reset element 60, so that the relative position of the outer end of the reset element 60 and the swing arm 30 remains unchanged, correspondingly, the second housing 12
  • the second ring body 121 has a second holding element 1211, which extends from the outer wall of the second ring body 121 toward the swing arm 30, and the second holding element 1211 is configured to hold the reset The inner end of the element 60, so that the relative position of the inner end of the reset element 60 and the magnetic control housing 10 remains unchanged, so that the reset element 60 is reliably held between the swing arm 30 and the magnetron. between control shells 10.
  • the specific way that the first holding element 33 of the swing arm 30 is used to hold the outer end of the reset element 60 is not limited in the inner magnetron device 100 of the present invention, for example, the swing arm 30
  • the first holding element 33 may have a first holding cavity 331 for accommodating the outer end of the reset element 60 , so that the first holding element 33 of the swing arm 30 can hold the reset element 60 the outer end.
  • the first holding element 33 of the swing arm 30 may also extend to the outer end of the reset element 60, so that the relative position of the outer end of the reset element 60 and the swing arm 30 is maintained. constant.
  • the specific way in which the second holding element 1211 of the second ring body 121 of the second shell 12 is used to hold the inner end of the reset element 60 is in the inner magnetic control device 100 of the present invention
  • the second holding element 1211 of the second ring body 121 may have a second holding cavity 12111 for accommodating the inner end of the reset element 60, so that the second ring body
  • the second holding element 1211 of 121 is capable of holding the inner end of the reset element 60 .
  • the second holding element 1211 of the second ring body 121 can also extend to the inner end of the reset element 60 , so that the inner end of the reset element 60 is opposite to the swing arm 30 The location remains the same.
  • FIG. 11 shows another modified example of the internal magnetic control device 100 of the present invention, and the difference from the hard interlocking mechanism 22 of the internal magnetic control device 100 shown in Fig. 11 is that in the attached
  • the linkage mechanism 22 is flexible, and one end of the linkage mechanism 22 is connected to the swing arm 30
  • the driven end 32 is connected to the power output gear 2123 of the gear set 212 at the other end.
  • the power output gear 2123 is to drive each of the power output gears 2123 to rotate synchronously and reversely.
  • the power output gear 2123 on the left side rotates counterclockwise to pull The swing arm 30 on the left side swings from the maximum swing position to the minimum swing position, and during this process, the reset element 60 on the left side produces elastic deformation and accumulates elastic potential energy.
  • the power output gear 2123 rotates clockwise to pull the swing arm 30 on the right side to swing from the maximum swing position to the minimum swing position through the flexible linkage mechanism 22, and in this process , the reset element 60 on the right produces elastic deformation and accumulates elastic potential energy.
  • the driving motor 211 When the driving motor 211 outputs power in such a way that the output shaft 2111 of the driving motor 211 rotates in another direction, the power can be sequentially transmitted to each of the driven gears 2121 and the transmission gear 2122.
  • the power output gear 2123 to drive each of the power output gears 2123 to rotate synchronously and reversely, at this time, the power output gear 2123 on the left side rotates clockwise, and the reset element 60 on the left side is recovering
  • the swing arm 30 on the left side is driven to return to the direction of the maximum swing position, and at the same time, the power output gear 21223 on the right side rotates counterclockwise, and the reset element 60 on the right side returns to the initial state.
  • the reset element 60 on the right side returns to the initial state. In the process of driving the swing arm 30 on the right side to restore to the direction of the maximum swing position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

本发明公开了一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述组装方法包括如下步骤:(a)设置一组磁性元件于一摆臂;(b)分别可转动地安装两个所述摆臂的枢转端于一磁控外壳的边缘,并且两个所述摆臂被允许于所述磁控外壳的一周缘开口摆动;(c)经所述磁控外壳的一安装通道安装一驱动模块于所述磁控外壳的一外壳空间;以及(d)分别被可驱动地安装两个所述摆臂的受驱端于所述驱动模块,以组装所述内磁控装置。

Description

健身器材及其内磁控装置、驱动模块及其组装方法 技术领域
本发明涉及健身器材领域,特别涉及一健身器材及其内磁控装置、驱动模块及其组装方法。
背景技术
基于磁阻的动感单车、椭圆机、划船机等用于有氧运动项目的健身器材越来越受到市场的欢迎,其通常包括一个架体以及分别被安装于该架体的一个内磁控装置、一个飞轮以及一个踩踏装置,该飞轮环绕于该内磁控装置的外部且被可驱动地连接于该踩踏装置。当用户通过该踩踏装置驱动该飞轮做相对于该架体和该内磁控装置的转动时,该飞轮能够切割该内磁控装置的磁组的磁感线而获得阻力,从而辅助用户进行健身。通过调节该内磁控装置的磁组和该飞轮的相对位置的方式能够调节该飞轮在被驱动而转动时的阻力,从而帮助用户达到不同的健身效果。如何轻松、可靠地驱动该内磁控装置的磁组做相对于该飞轮的运动以调节该内磁控装置的磁组和该飞轮的相对位置是本发明的发明人致力于解决的技术问题。
发明内容
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述内磁控装置的一驱动模块能够顺畅地驱动两摆臂摆动,以调节被设置于所述摆臂的一组磁性元件和环绕于所述内磁控装置的一飞轮的相对距离。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述驱动模块能够可靠地驱动每个所述摆臂摆动。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述驱动模块提供两连动机构,每个所述连动机构能够分别以较大角度驱动每个所述摆臂摆动,如此所述驱动模块能够顺畅地且可靠地驱动每个所述摆臂摆动。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中两个所述连动机构在高度方向具有重叠部分,以使所述连动机构能够 以较大角度驱动所述摆臂摆动。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述驱动模块是一个独立模块,如此同一个驱动模块能够适配不同的一磁控外壳而组装不同规格所述内磁控装置,通过这样的方式,所述内磁控装置的开发成本能够被大幅度地降低,以满足不同的健身器材的配置需要。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述驱动模块是一个独立的模块,如此在组装所述内磁控装置时,可以首先组装所述磁控外壳和所述摆臂,其次组装所述驱动模块于所述磁控外壳,以大幅度地将所述内磁控装置的组装难度。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述驱动模块是一个独立的模块,如此在校准所述内磁控装置的阻值时,可以在不拆卸所述磁控外壳的前提下,仅通过拆卸所述驱动模块并对其进行校准的方式即可完成对所述内磁控装置的阻值校准,从而能够大幅度地提高所述内磁控装置的生产效率和校准效率。
本发明的一个目的在于提供一健身器材及其内磁控装置、驱动模块及其组装方法,其中所述内磁控装置提供一脉冲单元,在所述驱动模块驱动所述摆臂摆动时,所述脉冲单元能够产生脉冲信号,所述驱动模块能够基于脉冲信号精准地调节一组所述磁性元件和所述飞轮的相对距离。
依本发明的一个方面,本发明提供一内磁控装置,其包括:
一磁控外壳;
两组磁性元件;
两摆臂,其中每个所述摆臂的枢转端分别被可转动地安装于所述磁控外壳的边缘,其中每组所述磁性元件分别被设置于每个所述摆臂;以及
一驱动模块,其中所述驱动模块被安装于所述磁控外壳,并且所述驱动模块进一步包括一驱动机构和两连动机构,每个所述连动机构的一个端部分别被可驱动地连接于所述驱动机构,每个所述连动机构的另一个端部分别被可转动地安装于每个所述摆臂的受驱端,两个所述连动机构在高度方向具有重叠部分。
根据本发明的一个实施例,所述磁控外壳具有一外壳空间和连通于所述外壳空间的一周缘开口,所述驱动模块被安装于所述磁控外壳的所述外壳空间,每个所述摆臂被允许于所述磁控外壳的所述周缘开口摆动。
根据本发明的一个实施例,所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
根据本发明的一个实施例,所述磁控外壳具有一安装通道,所述安装通道连通于所述外壳空间,其中所述驱动模块经所述磁控外壳的所述安装通道被安装于所述磁控外壳的所述外壳空间。
根据本发明的一个实施例,两个所述连动机构之间具有间隙。
根据本发明的一个实施例,所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、至少一传动齿轮以及两动力输出齿轮,所述受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中每个所述连动机构分别具有一列受驱齿,每个所述连动机构的所述受驱齿分别被啮合于每个所述动力输出齿轮。
根据本发明的一个实施例,每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述滑块被可驱动地连接于所述驱动机构。
根据本发明的一个实施例,每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述受驱齿形成于所述滑块,以允许所述滑块被可驱动地连接于所述齿轮组中的所述动力输出齿轮。
根据本发明的一个实施例,所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
根据本发明的一个实施例,所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
根据本发明的一个实施例,所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。
依本发明的另一个方面,本发明进一步提供一健身器材,其包括:
一器材架;
一踩踏装置;
一飞轮;以及
一内磁控装置,其中所述内磁控装置被安装于所述器材架,所述踩踏装置被可踩踏地安装于所述器材架,所述飞轮被可转动地安装于所述器材架和被可驱动地连接于所述踩踏装置,并且所述飞轮环绕于所述内磁控装置的外侧,其中所述内磁控装置进一步包括:
一磁控外壳;
两组磁性元件;
两摆臂,其中每个所述摆臂的枢转端分别被可转动地安装于所述磁控外壳的边缘,其中每组所述磁性元件分别被设置于每个所述摆臂;以及
一驱动模块,其中所述驱动模块被安装于所述磁控外壳,并且所述驱动模块进一步包括一驱动机构和两连动机构,每个所述连动机构的一个端部分别被可驱动地连接于所述驱动机构,每个所述连动机构的另一个端部分别被可转动地安装于每个所述摆臂的受驱端,两个所述连动机构在高度方向具有重叠部分。
依本发明的另一个方面,本发明进一步提供一驱动模块,其包括:
一驱动机构;
两连动机构;以及
一驱动壳体,其中所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
根据本发明的一个实施例,所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、至少一传动齿轮以及两动力输出齿轮,所述受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中每个所述连动机构分别具有一列受驱齿,每个所述连动机构的所述受驱齿分别被啮合于每个所述动力输出齿轮。
根据本发明的一个实施例,每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述滑块被可驱动地连接于所述驱动机构。
根据本发明的一个实施例,每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述受驱齿形成于所述滑块,以允许所述滑块被可驱动地连接于所述齿轮组中的所述动力输出齿轮。
根据本发明的一个实施例,两个所述连动机构之间具有间隙。
根据本发明的一个实施例,所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
根据本发明的一个实施例,所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。
依本发明的另一个方面,本发明进一步提供一内磁控装置,其包括:
一磁控外壳;
至少一组磁性元件;
至少一摆臂,其中所述摆臂具有一枢转端和对应于所述枢转端的一受驱端,所述摆臂的所述枢转端被可转动地安装于所述磁控外壳的边缘,其中所述摆臂被设置有一组所述磁性元件;以及
一驱动模块,其中所述驱动模块包括一驱动机构和至少一连动机构,所述连动机构的一个端部被可驱动地连接于所述驱动机构,所述连动机构的另一个端部被连接于所述摆臂的所述受驱端,如此所述驱动机构通过所述连动机构带动所述摆臂摆动。
根据本发明的一个实施例,所述内磁控装置包括两组所述磁性元件和两个所述摆臂,每个所述摆臂分别被设置有一组所述磁性元件,其中所述驱动模块包括两个所述连动机构,每个所述连动机构的一个端部分别被可驱动地连接于所述驱动机构,每个所述连动机构的另一个端部分别被连接于每个所述摆臂的所述受驱端。
根据本发明的一个实施例,所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,所述连动机构的一个端部于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
根据本发明的一个实施例,所述磁控外壳具有一外壳空间和连通于所述外壳空间的一周缘开口,所述驱动模块被安装于所述磁控外壳的所述外壳空间,所述摆臂被允许于所述磁控外壳的所述周缘开口摆动。
根据本发明的一个实施例,所述磁控外壳具有一安装通道,所述安装通道连通于所述外壳空间,其中所述驱动模块经所述磁控外壳的所述安装通道被安装于所述磁控外壳的所述外壳空间。
根据本发明的一个实施例,两个所述连动机构在高度方向具有重叠部分。
根据本发明的一个实施例,两个所述连动机构之间具有间隙。
根据本发明的一个实施例,所述内磁控装置进一步包括至少一复位元件,所述复位元件被设置于所述磁控壳体和所述摆臂之间,以在所述摆臂自最大摆动位置向最小摆动位置方向摆动后使所述摆臂具有向最大摆动位置恢复的趋势。
根据本发明的一个实施例,所述连动机构是硬质的。
根据本发明的一个实施例,所述连动机构是柔性的。
根据本发明的一个实施例,所述复位元件是扭簧,其中所述复位元件的主体部分被设置于所述摆臂的所述枢转端和所述磁控外壳的安装位置并被配置为位置保持不变,所述复位元件的一个扭簧臂抵靠于所述摆臂的内侧,另一个复位元件抵靠于所述磁控外壳。
根据本发明的一个实施例,所述复位元件是压簧,其中所述复位元件的一个端部抵靠于所述摆臂,另一个端部抵靠于所述磁控外壳。
根据本发明的一个实施例,所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中所述连动机构被可驱动地连接于所述动力输出齿轮。
根据本发明的一个实施例,所述驱动模块进一步包括一驱动壳体,,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,其中所述驱动机构进一步包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮 相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中,所述连动机构的一个端部于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构的所述动力输出齿轮,另一个端部经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
根据本发明的一个实施例,所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。
依本发明的另一个方面,本发明进一步提供一内磁控装置的组装方法,其中所述组装方法包括如下步骤:
(a)设置一组磁性元件于一摆臂;
(b)可转动地安装至少一个所述摆臂的枢转端于一磁控外壳的边缘,并且所述摆臂被允许于所述磁控外壳的一周缘开口摆动;
(c)经所述磁控外壳的一安装通道安装一驱动模块于所述磁控外壳的一外壳空间;以及
(d)被可驱动地安装所述摆臂的受驱端于所述驱动模块,以组装所述内磁控装置。
根据本发明的一个实施例,在所述步骤(c)之前,所述组装方法进一步包括步骤:(e)可转动地安装一组装体于所述驱动模块的一连动机构的端部;其中在所述步骤(d)中,安装所述组装体于所述摆臂的受驱端,如此可驱动地安装所述摆臂的受驱端于所述驱动模块。
根据本发明的一个实施例,所述步骤(d)进一步包括:
(d.1)可转动地安装一组装体于一连动机构的端部;和
(d.2)固定地安装所述组装体于所述摆臂的受驱端。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本发明的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明一起用于解释本发发明的内容,并不构成对本发明的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是依本发明的一较佳实施例的一健身器材的立体示意图。
图2是依本发明的一较佳实施例的一内磁控装置的应用环境示意图。
图3A和图3B分别是依本发明的上述较佳实施例的一内磁控装置的不同视角的立体示意图。
图4A和图4B分别是依本发明的上述较佳实施例的所述内磁控装置的不同视角的分解示意图。
图5A和图5B分别是依本发明的上述较佳实施例的所述内磁控装置的一驱动单元的不同视角的立体示意图。
图6A和图6B分别是依本发明的上述较佳实施例的所述内磁控装置的所述驱动单元的不同视角的分解示意图。
图7是依本发明的上述较佳实施例的所述内磁控装置的所述驱动单元的一个位置的剖视示意图。
图8A和图8B分别是依本发明的上述较佳实施例的所述内磁控装置的一摆臂摆动到不同位置时的局部结构的俯视示意图。
图9A至图9E是依本发明的上述较佳实施例的所述内磁控装置的组装过程示意图。
图10是依本发明的上述较佳实施例的所述内磁控装置的一个变形示例的局部结构的俯视示意图。
图11是依本发明的上述较佳实施例的所述内磁控装置的再一个变形示例的局部结构的俯视示意图。
图12是依本发明的上述较佳实施例的所述内磁控装置的另一个变形示例的局部结构的俯视示意图。
具体实施方式
在详细说明本发明的任何实施方式之前,应理解的是,本发明在其应用中并不限于以下描述阐述或以下附图图示的部件的构造和布置细节。本发明能够具有其他实施方式并且能够以各种方式实践或进行。另外,应理解的是,这里使用的措辞和术语出于描述的目的并且不应该被认为是限制性的。本文中使用“包括”、“包括”或“具有”及其变型意在涵盖下文中陈列的条目及其等同物以及附加条目。除非另有指定或限制,否则术语“安装”、“连接”、“支撑”和“联接”及其变型被广泛地使用并且涵盖直接安装和间接的安装、连接、支撑和联接。此外,“连接”和“联接”不限于物理或机械的连接或联接。
并且,第一方面,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制;第二方面,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
附图1示出了依本发明的一较佳实施例的一健身器材,附图2至图8B示出了依本发明的一较佳实施例的一内磁控装置100,所述内磁控装置100用于提供磁场环境,其中所述健身器材应用有本发明的所述内磁控装置100,附图9A至图9E示出了所述内磁控装置100的组装过程。
值得一提的是,附图1示出的被实施为椭圆机的所述健身器材仅为示例性的,其并不限制本发明的所述健身器材的具体类型。例如,在本发明的其他示例中,所述健身器材还可以是划船机、动感单车等。
参考附图1和图2,本发明的所述健身器材包括所述内磁控装置100、一器材架200、一踩踏装置300以及一飞轮400,其中所述内磁控装置100被安装于所述器材架200,其中所述踩踏装置300被可踩踏地安装于所述器材架200,其中所述飞轮400被可转动地安装于所述器材架200和被可驱动地连接于所述踩踏装置300,并且所述飞轮400被设置环绕于所述内磁控装置100的外侧。当用户持续地踩踏所述踩踏装置300而驱动所述飞轮400做相对于所述内磁控装置100 和所述器材架200的转动时,所述飞轮400持续地切割所述内磁控装置100的磁感线而获得负载,如此用户可以通过所述健身器材达到健身之目的。
可以理解的是,所述飞轮400在被驱动而转动时获得的负载与所述飞轮400切割所述内磁控装置100的磁感线的量相关。具体地,所述飞轮400在被驱动而转动时切割所述内磁控装置100的磁感线的量越多,则所述飞轮400能够获得的负载越大,此时用户在踩踏所述踩踏装置300时越费力。相应地,所述飞轮400在被驱动而转动时切割所述内磁控装置100的磁感线的量越少,则所述飞轮400能够获得的负载越小,此时用户在踩踏所述踩踏装置300时越省力。
值得一提的是,所述飞轮400在被驱动而转动时获得的负载体现在用户踩踏所述踩踏装置300时的阻力值,所述飞轮400在被驱动而转动时获得的负载越大,用户在踩踏所述踩踏装置300时的阻力值越大,相应地,所述飞轮400在被驱动而转动时获得的负载越小,用户在踩踏所述踩踏装置300时的阻力值越小。
为了满足用户对所述健身器材的所述飞轮400的负载的不同需求,本发明的所述内磁控装置100被设置为能够调节磁感线和所述飞轮400的相对位置,从而在所述内磁控装置100的磁感线的位置越靠近所述飞轮400时,所述飞轮400在被驱动而转动时切割所述内磁控装置100的磁感线的量越多,相应地,在所述内磁控装置100的磁感线的位置越远离所述飞轮400时,所述飞轮400在被驱动而转动时切割所述内磁控装置100的磁感线的量越少。因此,通过调节所述内磁控装置100的磁感线和所述飞轮400的相对位置的方式,用户在踩踏所述踩踏装置300时的阻力值能够被调节。
具体地,参考附图2至图8B,所述内磁控装置100包括一磁控外壳10、一驱动模块20、至少一摆臂30以及至少一组磁性元件40,其中所述磁控外壳10具有一外壳空间101和连通于所述外壳空间101的一周缘开口102,其中所述驱动模块20被设置于所述磁控外壳10的所述外壳空间101,以用于提供驱动力,其中所述摆臂30具有一枢转端31和对应于所述枢转端31的一受驱端32,所述摆臂30的所述枢转端31被可转动地安装于所述磁控外壳10,所述摆臂30的所述受驱端32被可驱动地连接于所述驱动模块20,其中所述摆臂30被设置有一组所述磁性元件40,以允许所述磁性元件40于所述磁控外壳10的所述周缘开口102提供磁场环境。所述飞轮400能够环绕于所述内磁控装置100的所述磁控外壳10的外侧,并且所述磁控外壳10的所述周缘开口102对应于所述飞轮400 的内侧,如此当所述飞轮400被驱动而做相对于所述内磁控装置100的转动时,所述飞轮400能够切割所述内磁控装置100的所述磁性元件40的磁感线而获得负载。
更具体地,在附图2至图8B示出的本发明的所述内磁控装置100的这个具体示例中,所述内磁控装置100包括两个所述摆臂30和两组所述磁性元件40,每个所述摆臂30分别被设置有一个所述磁性元件40,其中两个所述摆臂30以相互对称的方式被保持在所述磁控外壳10的所述周缘开口102,以允许每组所述磁性元件40分别于所述磁控外壳10的所述周缘开口102提供磁场环境。
优选地,每个所述摆臂30的外侧朝向所述磁控外壳10的所述周缘开口102,每组所述磁性元件40分别被设置于每个所述摆臂30的外侧,如此每组所述磁性元件40能够被直接地暴露于所述磁控外壳10的所述周缘开口102。
值得一提的是,每组所述磁性元件40被设置于每个所述摆臂30的方式在本发明的所述内磁控装置100中不受限制。例如,在本发明的所述内磁控装置100的一个较佳示例中,每组所述磁性元件40可以通过胶水粘接的方式被设置于每个所述摆臂30;在本发明的所述内磁控装置100的另一个较佳示例中,每组所述磁性元件40可以通过嵌装的方式被设置于每个所述摆臂30。
值得一提的是,每组所述磁性元件40中所述磁性元件40的数量在本发明的所述内磁控装置100中不受限制。例如,在附图2至图8B示出的所述内磁控装置100的这个具体示例中,每组所述磁性元件40中的所述磁性元件40的数量是三个,其相互间隔地设置于所述摆臂30的外侧。
优选地,所述摆臂30于所述枢转端31和所述受驱端32之间弯曲地延伸而使所述摆臂30呈弧面型,如此所述摆臂30的外侧的形状和所述磁控外壳10的周缘的形状大致相同。优选地,一组所述磁性元件40呈弧面型,并且一组所述磁性元件40的内侧的形状和所述摆臂30的外侧的形状一致,以便于可靠地设置一组所述磁性元件40于所述摆臂30的外侧。
参考附图3A至图4B,所述磁控外壳10包括一盘状的第一外壳11和一盘状的第二外壳12,所述第一外壳11设有一第一环体111,所述第二外壳12设有一第二环体121,其中所述第一外壳11和所述第二外壳12以所述第一环体111和所述第二环体121相对应的方式被相互安装,以于所述第一环体111和所述第二 环体121的内侧形成所述外壳空间101,和于所述第一环体111和所述第二环体121的外侧形成所述周缘开口102。
进一步地,所述第一外壳11的边缘设有多个第一安装柱112,所述第二外壳12的边缘设有多个第二安装柱122,所述第一外壳111的每个所述第一安装柱112和所述第二外壳12的每个所述第二安装柱122被相互安装和支撑,以避免所述第一外壳11的边缘和所述第二外壳12的边缘产生变形。优选地,螺钉被允许于所述第一外壳11的所述第一安装柱112和所述第二外壳12的所述第二安装柱122的位置锁装所述第一外壳11和所述第二外壳12。
所述摆臂30的所述枢转端31的相对两侧被可转动地安装于所述第一外壳11的边缘和所述第二外壳12的边缘,以可转动地安装所述摆臂30的所述枢转端31于所述磁控外壳10的边缘,并且所述摆臂30被允许于所述磁控外壳10的所述周缘开口102摆动,并且所述第一外壳11的每个所述第一安装柱112和所述第二外壳12的每个所述第二安装柱122位于所述摆臂30的外侧,以限制所述摆臂30向外摆动的幅度。优选地,所述第一外壳11的所述第一安装柱112和所述第二外壳12的所述第二安装柱122对应于一组所述磁性元件40中的相邻两个所述磁性元件40的缝隙,以避让所述磁性元件40。
参考附图3A至图4B,所述磁控外壳10进一步具有一中心穿孔103,所述外壳空间101位于所述中心穿孔103的四周,其中所述器材架200的安装轴能够被安装于所述磁控外壳10的所述中心穿孔103,以固定地安装所述内磁控装置100于所述器材架200。
当用户通过踩踏所述健身器材的所述踩踏装置300而驱动所述飞轮400做相对于所述内磁控装置100的转动时,所述飞轮400能够切割所述内磁控装置100的每组所述磁性元件40的磁感线而获得负载,如此用户可以通过所述健身器材达到健身之目的。
在所述驱动模块20驱动每个所述摆臂30分别做相对于所述磁控外壳10的摆动时,每组所述摆臂30能够分别带动每组所述磁性元件40同步地摆动,以改变每组所述磁性元件40和所述飞轮400的相对距离,如此调节所述内磁控装置100的磁感线和所述飞轮400的相对距离,从而调节所述飞轮400在被驱动而转动时获得的负载,进而用户在踩踏所述踩踏装置300时的阻力值能够被调节。
例如,参考附图8A,在所述驱动模块20驱动每个所述摆臂30向外摆动到一最大摆动位置时,每组所述磁性元件40和所述飞轮400之间的相对距离被调节到设计最小值,此时所述飞轮400在被驱动而转动时切割每组所述磁性元件40的磁感线的量最多,所述飞轮400能够获得的阻力最大。相应地,参考附图8B,在所述驱动模块20驱动每个所述摆臂30向内摆动到一最小摆动位置时,每组所述磁性元件40和所述飞轮400之间的相对距离被调节到设计最大值,此时所述飞轮400在被驱动而转动时切割每组所述磁性元件40的磁感线的量最少,所述飞轮400能够获得的阻力最小。
可以理解的是,在所述驱动模块20驱动每个所述摆臂30分别自所述最小摆动位置向所述最大摆动位置摆动的过程中,所述飞轮400在被驱动而转动时切割每组所述磁性元件40的磁感线的量逐渐增加,从而使得所述飞轮400在被驱动而转动时能够获得的阻力逐渐增大。相应地,在所述驱动模块20驱动每个所述摆臂30分别自所述最大摆动位置向所述最小摆动位置摆动的过程中,所述飞轮400在被驱动而转动时切割每组所述磁性元件40的磁感线的量逐渐减少,从而使得所述飞轮400在被驱动而转动时能够获得的阻力逐渐减小。
参考附图4A至图8B,所述驱动模块20包括一驱动机构21和两连动机构22,每个所述连动机构22的一个端部分别被可驱动地连接于所述驱动机构21,每个所述连动机构22的另一个端部分别被可转动地安装于每个所述摆臂30的所述受驱端32,其中两个所述连动机构22在高度方向具有重叠部分,通过这样的方式,当所述驱动机构21提供的驱动力被传导至每个所述连动机构22时,每个所述连动机构22能够以较大角度施力于每个所述摆臂30,以驱动每个所述摆臂30分别带动每组所述磁性元件40做相对于所述磁控外壳10的摆动,如此:一方面,本发明的所述内磁控装置100能够降低对所述驱动机构21的驱动力的要求,从而有利于降低所述内磁控装置100的成本,另一方面,本发明的所述内磁控装置100能够顺畅地驱动每个所述摆臂30在更大的范围内摆动,从而有利于提高所述内磁控装置100的可靠性。
值得一提的是,所述连动机构22被可转动地安装于所述摆臂30的所述受驱端32的方式在本发明的所述内磁控装置100中不受限制。例如,所述内磁控装置100进一步两组装体50,其中所述连动机构22的端部被可转动地安装于所述 组装体50,所述组装体50被安装于所述摆臂30的所述受驱端32,如此可转动地安装所述连动机构22的端部于所述摆臂30的所述受驱端32。
为了便于理解和描述,参考附图8A和图8B,定义所述内磁控装置100的两个所述摆臂30为一左侧摆臂30a和一右侧摆臂30b,相应地,定义所述内磁控装置100的所述驱动模块20的两个所述连动机构22为一左侧连动机构22a和一右侧连动机构22b。所述左侧连动机构22a的一个端部被可转动地安装于所述左侧摆臂30a的所述受驱端32,所述左侧连动机构22a的另一个端部朝向所述右侧摆臂30b的方向延伸且被可驱动地连接于所述驱动机构21,相应地,所述右侧连动机构22b的一个端部被可转动地安装于所述右侧摆臂30b的所述受驱端32,所述右侧连动机构22b的另一个端部朝向所述左侧摆臂30a的方向延伸且被可驱动地连接于所述驱动机构21,其中所述左侧连动机构22a和所述右侧连动机构22b在高度方向具有重叠部分。例如,在附图2至图8B示出的所述内磁控装置100的这个具体示例中,所述右侧连动机构22b位于所述左侧连动机构22a的上部。当然,可以理解的是,在本发明的所述内磁控装置100的其他可选示例中,所述右侧连动机构22b可以位于所述左侧连动机构22a的下部。
换言之,所述左侧连动机构22a在所述磁控外壳10的投影和所述右侧连动机构22b在所述磁控外壳10的投影具有重叠部分而呈“X”形,通过这样的方式,所述左侧摆臂30a的所述枢转端31的中心和所述受驱端32的中心之间的连线的延伸方向和所述左侧连动机构22a的延伸方向形成的夹角具有较大角度,以允许所述左侧连动机构22a能够以较大角度施力于所述左侧摆臂30a,相应地,所述右侧摆臂30b的所述枢转端31的中心和所述受驱端32的中心之间的连线的延伸方向和所述右侧连动机构22b的延伸方向形成的夹角具有较大角度,以允许所述右侧连动机构22b能够以较大角度施力于所述右侧摆臂30b。
当所述驱动机构21向一个方向输出动力时,所述驱动机构21能够驱动所述左侧连动机构22a朝向靠近所述右侧摆臂30b的方向运动,以允许所述左侧连动机构22a以较大角度轻松地拉动所述左侧摆臂30a的所述受驱端32而使所述左侧摆臂30a向内摆动,与此同时,所述驱动机构21能够驱动所述右侧连动机构22b朝向靠近所述左侧摆臂30a的方向运动,以允许所述右侧连动机构22b以较大角度轻松地拉动所述右侧摆臂30b的所述受驱端32而使所述右侧摆臂30b向内摆动。相应地,当所述驱动机构21向反向方向输出动力时,所述驱动机构21 能够驱动所述左侧连动机构22a朝向远离所述右侧摆臂30b的方向运动,以允许所述左侧连动机构22a以较大角度轻松地推动所述左侧摆臂30a的所述受驱端32而使所述左侧摆臂30a向外摆动,与此同时,所述驱动机构21能够驱动所述右侧连动机构22b朝向远离所述左侧摆臂30a的方向运动,以允许所述右侧连动机构22b以较大角度轻松地拉动所述右侧摆臂30b的所述受驱端32而使所述右侧摆臂30b向外摆动。
优选地,通过本发明的所述内磁控装置100的这种结构设计方式,无论是所述左侧连动机构22a拉动所述左侧摆臂30a自所述最大摆动位置向所述最小摆动位置摆动的过程中,还是所述左侧连动机构22a推动所述左侧摆臂30a自所述最小摆动位置向所述最大摆动位置摆动的过程中,所述左侧连动机构22a均能够保持以较大角度施力于所述左侧摆臂30a;相应地,无论是所述右侧连动机构22b拉动所述右侧摆臂30b自所述最大摆动位置向所述最小摆动位置摆动的过程中,还是所述右侧摆动机构22b推动所述右侧摆臂30b自所述最小摆动位置向所述最大摆动位置摆动的过程中,所述右侧连动机构22b均能够保持以较大角度施力于所述右侧摆臂30b。
继续参考附图5A至图7,所述驱动模块20包括一驱动壳体23,所述驱动壳体23具有一壳体空间231和连通于所述壳体空间231的一侧部开口232,其中所述驱动机构21被设置于所述驱动壳体23的所述壳体空间231,每个所述连动机构22的一个端部分别于所述驱动壳体23的所述壳体空间231被可驱动地连接于所述驱动机构21,每个所述连动机构22的另一个端部分别经所述驱动壳体23的所述侧部开口232延伸至所述驱动壳体23的外部,以能够通过所述组装体50被可转动地安装于每个所述摆臂30的所述受驱端32,如此所述驱动模块20能够形成一个独立的模块。
换言之,在本发明的所述内磁控装置100中,所述驱动模块20可以作为一个独立的模块被安装于所述磁控外壳10的所述外壳空间101,通过这样的方式,同一个所述驱动模块20可以适配不同的所述磁控外壳10,例如,同一个所述驱动模块20可以适配不同尺寸的所述磁控外壳10,以得到相应规格的所述内磁控装置100而满足不同的所述健身器材的使用需要。
优选地,所述磁控外壳10具有一安装通道104,其连通于所述磁控外壳10的所述外壳空间101,其中所述驱动模块20被允许经所述磁控外壳10的所述安 装通道104安装于所述磁控外壳10的所述外壳空间101。优选地,所述磁控外壳10的所述安装通道104形成于所述第一外壳11。换言之,在本发明的所述内磁控装置100中,通过提供独立的所述驱动模块20的方式,在组装所述内磁控装置100时,可以首先安装所述第一外壳11和所述第二外壳12而得到所述磁控外壳10,其次安装所述驱动模块20于所述磁控外壳10的所述外壳空间101,如此:一方面,所述内磁控装置100的组装难度能够被大幅度地降低,另一方面,在不拆卸所述磁控外壳10的前提下,仅通过拆卸所述驱动模块20并对其进行校准的方式即可完成所述内磁控装置100的阻值校准,从而能够大幅度地提高所述内磁控装置100的生产效率和校准效率。
具体地,所述驱动壳体23包括一第一壳体233和一第二壳体234,所述第一壳体233和所述第二壳体234被相互安装,以于所述第一壳体233和所述第二壳体234之间形成所述壳体空间231和所述侧部开口232。
值得一提的是,所述第一壳体233和所述第二壳体234的相互安装方式在本发明的所述内磁控装置100中不受限制。例如,所述第一壳体233和所述第二壳体234可以通过螺钉被相互安装,或者所述第一壳体233和所述第二壳体234可以通过螺杆和螺帽的组合被相互安装,或者所述第一壳体233和所述第二壳体234可以被相互卡合地安装。
继续参考附图5A至图7,所述驱动机构21进一步包括一驱动电机211和一齿轮组212。所述驱动电机211被固定地安装于所述驱动壳体23的所述壳体空间231,例如,通过允许所述第一壳体233和所述第二壳体234于所述驱动电机211的相对两侧夹持所述驱动电机211的方式能够固定地安装所述驱动电机211于所述驱动壳体23的所述壳体空间231。所述齿轮组212包括一受驱齿轮2121、至少一传动齿轮2122以及两动力输出齿轮2123,所述受驱齿轮2121、所述传动齿轮2122和每个所述动力输出齿轮2123分别被可转动地安装于所述驱动壳体23的所述壳体空间231,例如,所述受驱齿轮2121的相对两侧、所述传动齿轮2122的相对两侧和每个所述动力输出齿轮2123的相对两侧分别被可转动地安装于所述第一壳体233和所述第二壳体234,以分别被可转动地安装所述受驱齿轮2121、所述传动齿轮2122和每个所述动力输出齿轮2123于所述驱动壳体23的所述壳体空间231,其中所述受驱齿轮2121被啮合于所述驱动电机211的输出轴2111,所述传动齿轮2122被啮合于所述受驱齿轮2121,两个所述动力输出齿 轮2123相互啮合,并且两个所述动力输出齿轮2123中的一个所述动力输出齿轮2123被啮合于所述传动齿轮2122。
每个所述连动机构22分别具有一列受驱齿221,其中每个所述连动机构22的所述受驱齿221分别被啮合于所述齿轮组212的每个所述动力输出齿轮2123,如此在所述驱动电机211以所述驱动电机211的所述输出轴2111转动的方式输出动力时,动力能够依次经所述受驱齿轮2121、所述传动齿轮2122和每个所述动力输出齿轮2123传动至每个所述连动机构22,以驱动每个所述连动机构22运动而进一步驱动每个所述摆臂30摆动。
具体地,参考附图8A和图8B,所述左侧连动机构22a的侧部和所述右侧连动机构22b的侧部分别具有一列所述受驱齿221,其中所述左侧连动机构22a的所述受驱齿221被啮合于一个所述动力输出齿轮2123,所述右侧连动机构22b的所述受驱齿221被啮合于另一个所述动力输出齿轮2123。当所述驱动电机211以所述驱动电机211的所述输出轴2111转动的方式输出动力时,动力能够依次经所述受驱齿轮2121和所述传动齿轮2122传导至每个所述动力输出齿轮2123,以驱动每个所述动力输出齿轮2123同步地且反向地转动,此时,一个所述动力输出齿轮2123和所述左侧连动机构22a能够相互配合以驱动所述左侧摆臂30a摆动,另一个所述动力输出齿轮2123和所述右侧连动机构22b能够相互配合以驱动所述右侧摆臂30b摆动,并且所述左侧摆臂30a的摆动方向和摆动幅度与所述右侧摆臂30b的摆动方向和摆动幅度是一致的。
优选地,两个所述连动机构22之间具有间隙,以避免两个所述连动机构22之间产生摩擦,如此:一方面,所述驱动机构21能够通过每个所述连动机构22顺畅地驱动每个所述摆臂30摆动;另一方面,两个所述连动机构22不会产生摩擦,从而避免产生噪音和避免磨损所述连动机构22。
继续参考附图5A至图7,每个所述连动机构22分别包括一滑块222和一连杆223,所述连杆223的一个端部被可转动地安装于所述滑块222,所述连杆223的另一个端部被可转动地安装于所述摆臂30的所述受驱端32,其中所述滑块222被可驱动地安装于所述驱动机构21,如此所述驱动模块20驱动所述摆臂30摆动时的灵活性能够被提高,以避免出现“卡死”的不良现象,从而保证所述内磁控装置100的可靠性。
优选地,所述连动机构22的所述受驱齿221形成于所述滑块222的侧壁,以允许所述滑块222被可驱动地连接于所述齿轮组212的所述动力输出齿轮2123。
继续参考附图5A至图7,所述驱动壳体23进一步包括两个轨道235,其分别形成于所述第一壳体233的内壁和所述第二壳体234的内壁,相应地,每个所述连动机构22的所述滑块222分别具有一滑动槽2221,其中形成于所述第一壳体233的所述轨道235能够延伸至一个所述连动机构22的所述滑块222的所述滑动槽2221,以允许这个所述连动机构22的所述滑块222被可滑动地骑坐于形成于所述第一壳体233的所述轨道235,相应地,形成于所述第二壳体234的所述轨道235能够延伸至另一个所述连动机构22的所述滑块222的所述滑动槽2221,以允许这个所述连动机构22的所述滑块222被可滑动地骑坐于形成于所述第二壳体234的所述轨道235。
换言之,所述驱动壳体23的所述轨道235能够引导所述连动机构22的运动方向,如此能够保证所述驱动机构21通过所述连动机构22驱动所述摆臂30沿着设计路径摆动。
继续参考附图6A至图7,本发明的所述驱动模块20进一步包括一脉冲单元24,其中在所述驱动机构21通过每个所述连动机构22驱动每个所述摆臂30摆动时,所述脉冲单元24能够产生脉冲信号,以允许所述驱动机构21基于脉冲信号精准地调节每组所述磁性元件40和所述飞轮400的相对距离。
具体地,所述脉冲单元24包括一栅格元件241和一红外发射接收元件242。所述栅格元件241进一步包括一转盘2411和多个栅格臂2412,并且所述栅格元件241具有多个光路通道2413,每个所述栅格臂2412以相互间隔且呈环形的方式分别自所述转盘2411的周缘一体地向外延伸,以在相邻两个所述栅格臂2412之间形成所述光路通道2413,其中所述栅格元件241的所述转盘2411被安装于所述驱动机构21的所述驱动电机211的所述输出轴2111,以在所述驱动电机211通过所述齿轮组212驱动每个所述连动机构22时驱动所述栅格元件241转动。所述红外发射接收元件242具有一发射部分2421和一接收部分2422,所述发射部分2421和所述接收部分2422分别被保持在所述栅格元件241的所述栅格臂2412的相对两侧,并且所述发射部分2421和所述接收部分2422相互对应。
所述红外发射接收元件242的所述发射部分2421被设置能够持续地向所述接收部分2422发射红外光线,其中当所述栅格元件241转动到使所述栅格元件241的所述光路通道2413对应于所述红外发射接收元件242的所述发射部分2421和所述接收部分2422时,所述发射部分2421发射的红外光线被允许穿过所述栅格元件241的所述光路通道2413以能够被所述接收部分2422接收,相应地,当所述栅格元件241转动到使所述栅格元件241的所述栅格臂2412对应于所述红外发射接收元件242
的所述发射部分2421和所述接收部分2422时,所述发射部分2421发射的红外光线被阻止穿过所述栅格元件241的所述栅格臂2412而无法被所述接收部分2422接收,如此所述脉冲单元24能够产生脉冲信号,并且基于脉冲信号,每个所述摆臂30摆动的幅度能够被确定,进而每组所述磁性元件40和所述飞轮400的相对距离能够被确定。
值得一提的是,所述栅格元件241被可驱动地安装于所述驱动机构21的所述驱动电机211的所述输出轴2111,如此所述驱动机构21通过所述连动机构22驱动所述摆臂30摆动的幅度和所述驱动机构21驱动所述栅格元件241转动的圈数是相对应的,并且所述栅格元件241的转动圈数和所述红外发射接收元件242产生的脉冲信号的个数是相对应的,从而通过检测所述脉冲单元24产生的脉冲信号的数量的方式能够精准地确定所述驱动机构21通过所述连动机构22驱动所述摆臂30摆动的幅度,进而所述驱动机构21能够基于所述脉冲单元24产生的脉冲信号精准地调节每组所述磁性元件40和所述飞轮400之间的距离。
值得一提的是,所述栅格元件241的所述栅格臂2412和所述光路通道2413的数量在本发明的所述内磁控装置100中不受限制,并且所述栅格元件241的所述栅格臂2412和所述光路通道2413的数量越多,在所述驱动机构21驱动所述栅格元件241转动一周时产生的脉冲信号越多,相应地,所述驱动机构21越能够基于所述脉冲单元24产生的脉冲信号精准地调节每组所述磁性元件40和所述飞轮400之间的距离。例如,在附图2至图8B示出的所述内磁控装置100的这个具体示例中,所述栅格元件241的所述栅格臂2412和所述光路通道2413的数量分别是16个。
优选地,本发明的所述驱动模块20进一步包括一电路板25,其中所述脉冲单元24的所述红外发射接收元件242被贴装于所述电路板25,所述驱动机构21的所述驱动电机211被电连接于所述电路板25。
附图9A至图9E示出了本发明的所述内磁控装置100的组装过程。具体地,参考附图9A,设置一组所述磁性元件40于所述摆臂30。参考附图9B,分别安装两个所述摆臂30的所述枢转端31于所述第二外壳12的边缘。参考附图9C,安装所述第一外壳11于所述第二外壳12,以允许所述第一外壳11和所述第二外壳12形成所述磁控外壳10,并且在所述第一外壳11和所述第二外壳12之间形成所述外壳空间101和所述周缘开口102,其中每个所述摆臂30可摆动地保持在所述磁控外壳10的所述周缘开口102。此时,所述第一外壳11的所述第一安装柱112和所述第二外壳12的所述第二安装柱122限制所述摆动30向外摆动的幅度。参考附图9D和图9E,经所述磁控外壳10的所述安装通道104安装模块化的所述驱动模块20于所述磁控外壳10的所述外壳空间101,并且所述驱动模块20的所述连动机构22能够经形成于所述第一外壳11的所述第一环体111和所述第二外壳12的所述第二环体121之间的缝隙自所述磁控外壳10的所述外壳空间101延伸至所述周缘开口102,以供被可转动地安装于所述摆臂30的所述受驱端32,如此组装所述内磁控装置100。
具体地,在本发明的一个实施例中,首先,分别被可转动地安装于所述组装体50于所述连动机构22的端部;其次,允许所述组装体50在穿过形成于所述第一外壳11的所述第一环体111和所述第二外壳12的所述第二环体121之间的缝隙而移动至所述磁控外壳10的所述周缘开口102后被固定地安装于所述摆臂30的所述受驱端31,如此可转动地安装所述摆臂30的所述受驱端32和所述连动机构22的端部。
可选地,在本发明的另一个实施例中,首先,允许所述驱动模块20的所述连动机构22的端部穿过形成于所述第一外壳11的所述第一环体111和所述第二外壳12的所述第二环体121之间的缝隙而移动至所述磁控外壳10的所述周缘开口102;其次,可转动地安装所述组装体50于所述连动机构22的端部;再次,安装所述组装体50于所述摆臂30的所述受驱端32,如此可转动地安装所述摆臂30的所述受驱端32和所述连动机构22的端部。
可选地,在本发明的另一个实施例中,首先,允许所述驱动模块20的所述连动机构22的端部穿过形成于所述第一外壳11的所述第一环体111和所述第二外壳12的所述第二环体121之间的缝隙而移动至所述磁控外壳10的所述周缘开口102;其次,安装所述组装体50于所述摆臂30的所述受驱端32;再次,可转动地安装所述组装体50于所述连动机构22的端部,如此可转动地安装所述摆臂30的所述受驱端32和所述连动机构22的端部。
依本发明的另一个方面,本发明进一步提供所述内磁控装置100的组装方法,其中所述组装方法包括如下步骤:
(a)设置一组所述磁性元件40于所述摆臂30;
(b)可转动地安装至少一个所述摆臂30的所述枢转端31于所述磁控外壳10的边缘,并且所述摆臂30被允许于所述磁控外壳10的所述周缘开口102摆动;
(c)经所述磁控外壳10的所述安装通道104安装所述驱动模块20于所述磁控外壳10的所述外壳空间101;以及
(d)被可驱动地安装所述摆臂30的所述受驱端32于所述驱动模块20,以组装所述内磁控装置100。
附图10示出了本发明的所述内磁控装置100的一个变形示例,与附图2至图8B示出的所述内磁控装置100不同的是,在附图10示出的本发明的所述内磁控装置100的这个具体示例中,所述内磁控装置100进一步包括至少一复位元件60,所述复位元件60被设置于所述磁控外壳10和所述摆臂30之间,以在所述摆臂自所述最大摆动位置向所述最小摆动位置摆动后使所述摆臂30具有回复至所述最大摆动位置的趋势和位移。
具体地,继续参考附图10,所述复位元件60是扭簧,所述复位元件60的主体部分被设置于所述摆臂30的所述枢转端31和所述磁控外壳10的安装位置,并且所述复位元件60的主体部分的位置被配置为保持不变,所述复位元件60的一个扭簧臂抵靠于所述摆臂30的内侧,另一个扭簧臂抵靠于所述磁控外壳10的所述第二外壳12的所述第二环体121,如此设置所述复位元件60于所述磁控外壳10和所述摆臂30之间。
在所述驱动模块20驱动所述摆臂30自所述最大摆动位置向所述最小摆动位置摆动时,所述复位元件60产生弹性形变而积蓄弹性势能,此时,一方面,所 述复位元件60具有使所述摆臂30向最大摆动位置回复的趋势,另一方面,在所述飞轮400被驱动做相对于所述内磁控装置100转动而切割所述内磁控装置100的磁感线来获得负载时,所述复位元件60能够吸收所述摆臂30的震动,以降低噪音和提高用户使用所述健身器材进行健身时的体验。
优选地,所述复位元件60的数量是两个,每个所述复位元件60的主体部分分别被设置于每个所述摆臂30的所述枢转端31和所述磁控外壳10的安装位置,每个所述复位元件60的一个扭簧臂分别抵靠于每个所述摆臂30的内侧,另一个扭簧臂分别抵靠于所述磁控外壳10的所述第二外壳12的所述第二环体121。
附图11示出了本发明的所述内磁控装置100的再一个变形示例,与附图10示出的所述内磁控装置100不同的是,在附图11示出的本发明的所述内磁控装置100的这个具体示例中,所述复位元件60是一个压簧,其一个端部抵靠于所述摆臂30,另一个端部抵靠于所述磁控外壳10,如此设置所述复位元件60于所述摆臂30和所述磁控外壳10之间。
同样地,在所述驱动模块20驱动所述摆臂30自所述最大摆动位置向所述最小摆动位置摆动时,所述复位元件60产生弹性形变而积蓄弹性势能,此时,一方面,所述复位元件60具有使所述摆臂30向最大摆动位置回复的趋势,另一方面,在所述飞轮400被驱动做相对于所述内磁控装置100转动而切割所述内磁控装置100的磁感线来获得负载时,所述复位元件60能够吸收所述摆臂30的震动,以降低噪音和提高用户使用所述健身器材进行健身时的体验。
在附图11示出的本发明的所述内磁控装置100的这个具体示例中,所述复位元件60在所述摆臂30的中部被设置于所述摆臂30和所述磁控外壳10之间。可选地,在本发明的所述内磁控装置100的其他示例中,所述复位元件60可以在所述摆臂30的所述枢转端31被设置于所述摆臂30和所述磁控外壳10之间,或者所述复位元件60在所述摆臂30的所述受驱端32被设置于所述摆臂30和所述磁控外壳10之间。
继续参考附图11,所述摆臂30具有一第一保持元件33,其自所述摆臂30的内壁向所述第二外壳12的所述第二环体121方向延伸,所述第一保持元件33被设置用于保持所述复位元件60的外端,以使所述复位元件60的外端和所述摆臂30的相对位置保持不变,相应地,所述第二外壳12的所述第二环体121具有一第二保持元件1211,其自所述第二环体121的外壁向所述摆臂30方向延伸, 所述第二保持元件1211被设置用于保持所述复位元件60的内端,以使所述复位元件60的内端和所述磁控外壳10的相对位置保持不变,如此所述复位元件60被可靠地保持在所述摆臂30和所述磁控外壳10之间。
所述摆臂30的所述第一保持元件33用于保持所述复位元件60的外端的具体方式在本发明的所述内磁控装置100中不受限制,例如,所述摆臂30的所述第一保持元件33可以具有一第一保持腔331,以用于容纳所述复位元件60的外端,从而所述摆臂30的所述第一保持元件33能够保持所述复位元件60的外端。可选地,所述摆臂30的所述第一保持元件33也可以延伸至所述复位元件60的外端,以使所述复位元件60的外端和所述摆臂30的相对位置保持不变。
相应地,所述第二外壳12的所述第二环体121的所述第二保持元件1211用于保持所述复位元件60的内端的具体方式在本发明的所述内磁控装置100中不受限制,例如,所述第二环体121的所述第二保持元件1211可以具有一第二保持腔12111,以用于容纳所述复位元件60的内端,从而所述第二环体121的所述第二保持元件1211能够保持所述复位元件60的内端。可选地,所述第二环体121的所述第二保持元件1211也可以延伸至所述复位元件60的内端,以使所述复位元件60的内端和所述摆臂30的相对位置保持不变。
附图12示出了本发明的所述内磁控装置100的再一个变形示例,与附图11示出的所述内磁控装置100的硬质的连动机构22不同的是,在附图11示出的本发明的所述内磁控装置100的这个具体示例中,所述连动机构22是柔性的,其中所述连动机构22的一个端部被连接于所述摆臂30的所述受驱端32,另一个端部被连接于所述齿轮组212的所述动力输出齿轮2123。
当所述驱动电机211以所述驱动电机211的所述输出轴2111向一个方向转动的方式输出动力时,动力能够依次经所述受驱齿轮2121和所述传动齿轮2122传导至每个所述动力输出齿轮2123,以驱动每个所述动力输出齿轮2123同步地且反向地转动,此时位于左侧的所述动力输出齿轮2123逆时针转动,以通过柔性的所述连动机构22拉动左侧的所述摆臂30自所述最大摆动位置向所述最小摆动位置方向摆动,并且在这个过程中,左侧的所述复位元件60产生弹性形变而积蓄弹性势能,同时,位于右侧的所述动力输出齿轮2123顺时针转动,以通过柔性的所述连动机构22拉动右侧的所述摆臂30自所述最大摆动位置向所述最小 摆动位置方向摆动,并且在这个过程中,右侧的所述复位元件60产生弹性形变而积蓄弹性势能。
当所述驱动电机211以所述驱动电机211的所述输出轴2111向另一个方向转动的方式输出动力时,动力能够依次经所述受驱齿轮2121和所述传动齿轮2122传导至每个所述动力输出齿轮2123,以驱动每个所述动力输出齿轮2123同步地且反向地转动,此时位于左侧的所述动力输出齿轮2123顺时针转动,左侧的所述复位元件60在恢复初始状态的过程中驱动左侧的所述摆臂30向所述最大摆动位置方向恢复,同时,位于右侧的所述动力输出齿轮21223逆时针转动,右侧的所述复位元件60在恢复初始状态的过程中驱动右侧的所述摆臂30向所述最大摆动位置方向恢复。
值得一提的是,在所述驱动机构21通过柔性的所述连动机构22拉动所述摆臂30自所述最大摆动位置向所述最小摆动位置方向摆动的过程中,为了避免所述连动机构22传动失效,所述连动机构22被允许缠绕在所述驱动机构21的所述齿轮组212的所述动力输出齿轮2123的转轴。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (48)

  1. 一内磁控装置,其特征在于,包括:
    一磁控外壳;
    两组磁性元件;
    两摆臂,其中每个所述摆臂的枢转端分别被可转动地安装于所述磁控外壳的边缘,其中每组所述磁性元件分别被设置于每个所述摆臂;以及
    一驱动模块,其中所述驱动模块被安装于所述磁控外壳,并且所述驱动模块进一步包括一驱动机构和两连动机构,每个所述连动机构的一个端部分别被可驱动地连接于所述驱动机构,每个所述连动机构的另一个端部分别被可转动地安装于每个所述摆臂的受驱端,两个所述连动机构在高度方向具有重叠部分。
  2. 根据权利要求1所述的内磁控装置,其中所述磁控外壳具有一外壳空间和连通于所述外壳空间的一周缘开口,所述驱动模块被安装于所述磁控外壳的所述外壳空间,每个所述摆臂被允许于所述磁控外壳的所述周缘开口摆动。
  3. 根据权利要求1所述的内磁控装置,其中所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  4. 根据权利要求2所述的内磁控装置,其中所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  5. 根据权利要求4所述的内磁控装置,其中所述磁控外壳具有一安装通道,所述安装通道连通于所述外壳空间,其中所述驱动模块经所述磁控外壳的所述安装通道被安装于所述磁控外壳的所述外壳空间。
  6. 根据权利要求1至5中任一所述的内磁控装置,其中两个所述连动机构之间具有间隙。
  7. 根据权利要求3至5中任一所述的内磁控装置,其中所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空 间,其中所述齿轮组包括一受驱齿轮、至少一传动齿轮以及两动力输出齿轮,所述受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中每个所述连动机构分别具有一列受驱齿,每个所述连动机构的所述受驱齿分别被啮合于每个所述动力输出齿轮。
  8. 根据权利要求3至5中任一所述的内磁控装置,其中每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述滑块被可驱动地连接于所述驱动机构。
  9. 根据权利要求7所述的内磁控装置,其中每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述受驱齿形成于所述滑块,以允许所述滑块被可驱动地连接于所述齿轮组中的所述动力输出齿轮。
  10. 根据权利要求7所述的内磁控装置,其中所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
  11. 根据权利要求9所述的内磁控装置,其中所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
  12. 根据权利要求7所述的内磁控装置,其中所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
    一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
    一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。
  13. 一健身器材,其特征在于,包括:
    一器材架;
    一踩踏装置;
    一飞轮;以及
    一内磁控装置,其中所述内磁控装置进一步包括:
    一磁控外壳;
    两组磁性元件;
    两摆臂,其中每个所述摆臂的枢转端分别被可转动地安装于所述磁控外壳的边缘,其中每组所述磁性元件分别被设置于每个所述摆臂;以及
    一驱动模块,其中所述驱动模块被安装于所述磁控外壳,并且所述驱动模块进一步包括一驱动机构和两连动机构,每个所述连动机构的一个端部分别被可驱动地连接于所述驱动机构,每个所述连动机构的另一个端部分别被可转动地安装于每个所述摆臂的受驱端,两个所述连动机构在高度方向具有重叠部分;
    其中所述内磁控装置被安装于所述器材架,所述踩踏装置被可踩踏地安装于所述器材架,所述飞轮被可转动地安装于所述器材架和被可驱动地连接于所述踩踏装置,并且所述飞轮环绕于所述内磁控装置的外侧。
  14. 根据权利要求13所述的健身器材,其中所述磁控外壳具有一外壳空间和连通于所述外壳空间的一周缘开口,所述驱动模块被安装于所述磁控外壳的所述外壳空间,每个所述摆臂被允许于所述磁控外壳的所述周缘开口摆动。
  15. 根据权利要求13所述的健身器材,其中所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  16. 根据权利要求14所述的健身器材,其中所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  17. 根据权利要求16所述的健身器材,其中所述磁控外壳具有一安装通道,所述安装通道连通于所述外壳空间,其中所述驱动模块经所述磁控外壳的所述安装通道被安装于所述磁控外壳的所述外壳空间。
  18. 根据权利要求13至17中任一所述的健身器材,其中两个所述连动机构之间具有间隙。
  19. 根据权利要求15至17中任一所述的健身器材,其中所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、至少一传动齿轮以及两动力输出齿轮,所述受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中每个所述连动机构分别具有一列受驱齿,每个所述连动机构的所述受驱齿分别被啮合于每个所述动力输出齿轮。
  20. 根据权利要求15至17中任一所述的健身器材,其中每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述滑块被可驱动地连接于所述驱动机构。
  21. 根据权利要求20所述的健身器材,其中每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述受驱齿形成于所述滑块,以允许所述滑块被可驱动地连接于所述齿轮组中的所述动力输出齿轮。
  22. 根据权利要求20所述的健身器材,其中所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
  23. 根据权利要求21所述的健身器材,其中所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
  24. 根据权利要求20所述的健身器材,其中所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
    一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
    一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。
  25. 一驱动模块,其特征在于,包括:
    一驱动机构;
    两连动机构;以及
    一驱动壳体,其中所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,每个所述连动机构的一个端部分别于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部分别经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  26. 根据权利要求25所述的驱动模块,其中所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、至少一传动齿轮以及两动力输出齿轮,所述受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中每个所述连动机构分别具有一列受驱齿,每个所述连动机构的所述受驱齿分别被啮合于每个所述动力输出齿轮。
  27. 根据权利要求25所述的驱动模块,其中每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被可转动地安装于所述摆臂的受驱端,其中所述滑块被可驱动地连接于所述驱动机构。
  28. 根据权利要求25所述的驱动模块,其中每个所述连动机构分别包括一滑块和一连杆,所述连杆的一个端部被可转动地安装于所述滑块,另一个端部被 可转动地安装于所述摆臂的受驱端,其中所述受驱齿形成于所述滑块,以允许所述滑块被可驱动地连接于所述齿轮组中的所述动力输出齿轮。
  29. 根据权利要求25至28中任一所述的驱动模块,其中两个所述连动机构之间具有间隙。
  30. 根据权利要求27或28所述的驱动模块,其中所述驱动壳体具有两轨道,每个所述连动机构的所述滑块分别具有一滑动槽,所述轨道延伸至所述滑动槽,以允许所述滑块被可滑动地骑座于所述轨道。
  31. 根据权利要求26至28中任一所述的驱动模块,其中所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
    一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
    一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。32、一内磁控装置,其特征在于,包括:
    一磁控外壳;
    至少一组磁性元件;
    至少一摆臂,其中所述摆臂具有一枢转端和对应于所述枢转端的一受驱端,所述摆臂的所述枢转端被可转动地安装于所述磁控外壳的边缘,其中所述摆臂被设置有一组所述磁性元件;以及
    一驱动模块,其中所述驱动模块包括一驱动机构和至少一连动机构,所述连动机构的一个端部被可驱动地连接于所述驱动机构,所述连动机构的另一个端部被连接于所述摆臂的所述受驱端,如此所述驱动机构通过所述连动机构带动所述摆臂摆动。
  32. 根据权利要求32所述的内磁控装置,其中所述内磁控装置包括两组所述磁性元件和两个所述摆臂,每个所述摆臂分别被设置有一组所述磁性元件,其中所述驱动模块包括两个所述连动机构,每个所述连动机构的一个端部分别被可驱动地连接于所述驱动机构,每个所述连动机构的另一个端部分别被连接于每个所述摆臂的所述受驱端。
  33. 根据权利要求32或33所述的内磁控装置,其中所述驱动模块进一步包括一驱动壳体,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,所述连动机构的一个端部于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构,另一个端部经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  34. 根据权利要求34所述的内磁控装置,其中所述磁控外壳具有一外壳空间和连通于所述外壳空间的一周缘开口,所述驱动模块被安装于所述磁控外壳的所述外壳空间,所述摆臂被允许于所述磁控外壳的所述周缘开口摆动。
  35. 根据权利要求35所述的内磁控装置,其中所述磁控外壳具有一安装通道,所述安装通道连通于所述外壳空间,其中所述驱动模块经所述磁控外壳的所述安装通道被安装于所述磁控外壳的所述外壳空间。
  36. 根据权利要求33所述的内磁控装置,两个所述连动机构在高度方向具有重叠部分。
  37. 根据权利要求37所述的内磁控装置,其中两个所述连动机构之间具有间隙。
  38. 根据权利要求32或33所述的内磁控装置,其中所述内磁控装置进一步包括至少一复位元件,所述复位元件被设置于所述磁控壳体和所述摆臂之间,以在所述摆臂自最大摆动位置向最小摆动位置方向摆动后使所述摆臂具有向最大摆动位置恢复的趋势。
  39. 根据权利要求39所述的内磁控装置,其中所述连动机构是硬质的。
  40. 根据权利要求39所述的内磁控装置,其中所述连动机构是柔性的。
  41. 根据权利要求39所述的内磁控装置,其中所述复位元件是扭簧,其中所述复位元件的主体部分被设置于所述摆臂的所述枢转端和所述磁控外壳的安装位置并被配置为位置保持不变,所述复位元件的一个扭簧臂抵靠于所述摆臂的内侧,另一个复位元件抵靠于所述磁控外壳。
  42. 根据权利要求39所述的内磁控装置,其中所述复位元件是压簧,其中所述复位元件的一个端部抵靠于所述摆臂,另一个端部抵靠于所述磁控外壳。
  43. 根据权利要求34所述的内磁控装置,其中所述驱动机构包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可 转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中所述连动机构被可驱动地连接于所述动力输出齿轮。
  44. 根据权利要求39所述的内磁控装置,其中所述驱动模块进一步包括一驱动壳体,,所述驱动壳体具有一壳体空间和连通于所述壳体空间的一侧部开口,其中所述驱动机构被设置于所述驱动壳体的所述壳体空间,其中所述驱动机构进一步包括一驱动电机和一齿轮组,其中所述驱动电机被安装于所述驱动壳体的所述壳体空间,其中所述齿轮组包括一受驱齿轮、所述传动齿轮以及每个所述动力输出齿轮分别被可转动地安装于所述驱动壳体的所述壳体空间,并且所述受驱齿轮被啮合于所述驱动电机的输出轴,所述传动齿轮被啮合于所述受驱齿轮,两个所述动力输出齿轮相互啮合,并且两个所述动力输出齿轮中的一个所述动力输出齿轮被啮合于所述传动齿轮,其中,所述连动机构的一个端部于所述驱动壳体的所述壳体空间被可驱动地连接于所述驱动机构的所述动力输出齿轮,另一个端部经所述驱动壳体的所述侧部开口延伸至所述驱动壳体的外部。
  45. 根据权利要求44所述的内磁控装置,其中所述驱动模块进一步包括一脉冲部,其中所述脉冲部进一步包括:
    一红外发射接收元件,其中所述红外发射接收元件具有一发射部分和对应于所述发射部分的一接收部分;和
    一栅格元件,其中所述栅格元件包括一转盘和多个栅格臂以及具有多个光路通道,每个所述栅格臂以相互间隔且呈环形的方式分别自所述转盘的周缘一体地向外延伸,以在相邻两个所述栅格臂之间形成所述光路通道,所述转盘被安装于所述驱动电机的输出轴,其中所述发射部分和所述接收部分分别被保持在所述栅格元件的所述栅格臂的相对两侧。
  46. 一内磁控装置的组装方法,其特征在于,所述组装方法包括如下步骤:
    (a)设置一组磁性元件于一摆臂;
    (b)可转动地安装至少一个所述摆臂的枢转端于一磁控外壳的边缘,并且所述摆臂被允许于所述磁控外壳的一周缘开口摆动;
    (c)经所述磁控外壳的一安装通道安装一驱动模块于所述磁控外壳的一外壳空间;以及
    (d)被可驱动地安装述摆臂的受驱端于所述驱动模块,以组装所述内磁控装置。
  47. 根据权利要求47所述的组装方法,其中在所述步骤(c)之前,所述组装方法进一步包括步骤:(e)可转动地安装一组装体于所述驱动模块的一连动机构的端部;其中在所述步骤(d)中,安装所述组装体于所述摆臂的受驱端,如此可驱动地安装所述摆臂的受驱端于所述驱动模块。
  48. 根据权利要求47所述的组装方法,其中所述步骤(d)进一步包括:
    (d.1)可转动地安装一组装体于一连动机构的端部;和
    (d.2)固定地安装所述组装体于所述摆臂的受驱端。
PCT/CN2022/134671 2021-11-28 2022-11-28 健身器材及其内磁控装置、驱动模块及其组装方法 WO2023093882A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111427115.5A CN116173461A (zh) 2021-11-28 2021-11-28 健身器材及其内磁控装置及其组装方法
CN202122997059.0U CN216755309U (zh) 2021-11-28 2021-11-28 健身器材及其内磁控装置
CN202111427115.5 2021-11-28
CN202122997059.0 2021-11-28

Publications (1)

Publication Number Publication Date
WO2023093882A1 true WO2023093882A1 (zh) 2023-06-01

Family

ID=86538888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134671 WO2023093882A1 (zh) 2021-11-28 2022-11-28 健身器材及其内磁控装置、驱动模块及其组装方法

Country Status (1)

Country Link
WO (1) WO2023093882A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050003934A1 (en) * 2003-07-01 2005-01-06 Tsung-Hsiung Wu Resistance device for an exercise apparatus
CN101450247A (zh) * 2007-12-04 2009-06-10 合元群股份有限公司 磁控轮构造
US7785236B1 (en) * 2009-06-18 2010-08-31 Chiu-Hsiang Lo Exerciser having magnets adjusting device
CN206848294U (zh) * 2017-05-12 2018-01-05 徐工集团工程机械有限公司 一种动力头转速测量装置
CN212166399U (zh) * 2020-01-14 2020-12-18 宁波道康智能科技有限公司 内磁控飞轮阻力调节装置及组合装置
CN212187606U (zh) * 2019-12-26 2020-12-22 宁波道康智能科技有限公司 内磁控飞轮阻力调节装置
EP3797842A1 (en) * 2019-09-27 2021-03-31 Ningbo Daokang Intelligent Technology Co., Ltd Integrated flywheel magnetic resistance regulating system and combined device
CN216755309U (zh) * 2021-11-28 2022-06-17 宁波道康智能科技有限公司 健身器材及其内磁控装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050003934A1 (en) * 2003-07-01 2005-01-06 Tsung-Hsiung Wu Resistance device for an exercise apparatus
CN101450247A (zh) * 2007-12-04 2009-06-10 合元群股份有限公司 磁控轮构造
US7785236B1 (en) * 2009-06-18 2010-08-31 Chiu-Hsiang Lo Exerciser having magnets adjusting device
CN206848294U (zh) * 2017-05-12 2018-01-05 徐工集团工程机械有限公司 一种动力头转速测量装置
EP3797842A1 (en) * 2019-09-27 2021-03-31 Ningbo Daokang Intelligent Technology Co., Ltd Integrated flywheel magnetic resistance regulating system and combined device
CN212187606U (zh) * 2019-12-26 2020-12-22 宁波道康智能科技有限公司 内磁控飞轮阻力调节装置
CN212166399U (zh) * 2020-01-14 2020-12-18 宁波道康智能科技有限公司 内磁控飞轮阻力调节装置及组合装置
CN216755309U (zh) * 2021-11-28 2022-06-17 宁波道康智能科技有限公司 健身器材及其内磁控装置

Similar Documents

Publication Publication Date Title
TWI557020B (zh) 電動機械式後變速器
CN219102491U (zh) 一种多角度可调的机械视觉摄像机构
WO2023093882A1 (zh) 健身器材及其内磁控装置、驱动模块及其组装方法
US6290568B1 (en) Monitor toy assembly
WO2023092701A1 (zh) 一种镜头组件和投影设备
WO2021097945A1 (zh) 摄像头系统及移动终端
CN216755309U (zh) 健身器材及其内磁控装置
CN210166795U (zh) 一种自适应身高的人脸识别装置
CN113975711B (zh) 磁控装置及其阻值校准方法
CN207500748U (zh) 一种云台摄像机传动结构
CN216812694U (zh) 飞轮组件和健身器材
CN217724463U (zh) 内磁控装置和健身器材
CN116173461A (zh) 健身器材及其内磁控装置及其组装方法
CN217067532U (zh) 内磁控装置和健身器材
CN117282074A (zh) 内磁控装置及其组装方法和健身器材
WO2022214103A1 (zh) 内磁控装置、飞轮组件和健身器材
CN220424451U (zh) 内磁控装置、飞轮组件和健身器材
CN112248028B (zh) 关节臂结构、机器人
CN212231560U (zh) 一种智能摄像机
CN215822263U (zh) 健身器材以及健身器材的外磁控装置
TW202009173A (zh) 自行車後變速器
CN115708943A (zh) 健身器材以及健身器材的外磁控装置
CN219039553U (zh) 一种交互式微型投影仪
CN206145368U (zh) 应用于自助终端摄像头拍摄角度的调节机构及其安装结构
CN210739269U (zh) 动力传输装置及摄像机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE