WO2023093656A1 - 能量供给装置以及电动工具系统 - Google Patents

能量供给装置以及电动工具系统 Download PDF

Info

Publication number
WO2023093656A1
WO2023093656A1 PCT/CN2022/133095 CN2022133095W WO2023093656A1 WO 2023093656 A1 WO2023093656 A1 WO 2023093656A1 CN 2022133095 W CN2022133095 W CN 2022133095W WO 2023093656 A1 WO2023093656 A1 WO 2023093656A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy supply
supply device
charging
electric tool
terminal assembly
Prior art date
Application number
PCT/CN2022/133095
Other languages
English (en)
French (fr)
Inventor
杨德中
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Priority to EP22897739.3A priority Critical patent/EP4391284A1/en
Publication of WO2023093656A1 publication Critical patent/WO2023093656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of electric tools, for example, an energy supply device and an electric tool system using the energy supply device.
  • Power tools powered by battery packs are widely used due to their convenience.
  • the battery packs that are compatible with electric tools often take several hours to charge. Therefore, if the battery pack is exhausted while the user is using the electric tool, the battery pack needs to be removed from the electric tool and charged for several hours. Afterwards, the battery pack can be reassembled to the power tool before it can be used again, which will cause inconvenience to the user.
  • the common lithium battery packs on the market the voltage drops too fast at sub-zero low temperature, and the use experience is not good.
  • the present application provides an energy supply device and an electric tool system.
  • the present application provides an energy supply device for powering an electric tool, comprising: a shell, detachably connected with the electric tool and supported by the electric tool; a plurality of electric cores, supported by the shell of the energy supply device; a charging terminal assembly for The charging equipment is electrically connected to charge the energy supply device; the discharge terminal assembly is used to electrically connect the electric tool to provide electric energy for the electric tool; wherein, the charging rate of the energy supply device is greater than or equal to 6C.
  • the present application provides an electric tool system, including an electric tool, a first energy supply device, and a first charging device:
  • the electric tool includes: a shell, detachably connected with the first energy supply device; a terminal assembly, used for connecting with the first energy supply device
  • the first energy supply device is electrically connected to obtain electric energy
  • the motor is used to convert the electric energy into mechanical energy output to realize the function of the electric tool
  • the controller is at least used to control the operation of the motor
  • the first energy supply device includes: a shell, which can Detachably connected with the electric tool and supported by the electric tool; a plurality of batteries, supported by the shell of the first energy supply device; a charging terminal assembly, used to electrically connect the first charging device to charge the first energy supply device
  • the discharge terminal assembly is used to electrically connect the electric tool to provide electric energy to the electric tool; wherein, the charging rate of the first energy supply device is greater than or equal to 6C, and the highest discharge rate of the first energy supply device is greater than or equal to 6C.
  • the present application provides an energy supply device for powering an electric tool, comprising: a housing, detachably connected with the electric tool and supported by the electric tool; a cell module, supported by the housing of the energy supply device; a first terminal assembly, It is used to electrically connect the electric tool to provide electric energy to the electric tool, and is used to electrically connect the first type of charging equipment to charge the energy supply device at the first charging rate; the second terminal assembly is used to electrically connect the second type The charging device thus charges the energy supply device at a second charging rate; wherein the second charging rate is greater than the first charging rate.
  • the present application provides an electric tool, including: a housing, used to form a housing cavity; a motor, housed in the housing chamber, used to convert electrical energy into mechanical energy output to realize the function of the power tool; a battery core module, housed in the housing
  • the cavity is used to at least provide electric energy to the motor;
  • the charging terminal assembly is used to electrically connect the charging device to charge the battery module;
  • the controller is at least used to control the operation of the motor and the charging and discharging of the battery module;
  • the cell module includes a plurality of cells, each of which is a lithium carbon capacitor.
  • Fig. 1 is a perspective view of an energy supply device and an electric tool according to an embodiment of the present application
  • Fig. 2 is a perspective view of the energy supply device of Fig. 1;
  • Fig. 3 is a perspective view of the energy supply device of Fig. 1 after the shell is removed;
  • Fig. 4 is a schematic diagram of charging an energy supply device according to an embodiment of the present application.
  • Fig. 5 is a circuit diagram of the energy supply device of Fig. 4.
  • Fig. 6 is a schematic diagram of an electric tool system according to an embodiment of the present application.
  • Fig. 7 is a system block diagram of an electric tool according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a motor control method according to an embodiment of the present application.
  • Fig. 9 is the discharge voltage graph of lithium carbon capacitor and lithium battery
  • Fig. 10 is a comparison diagram of using the motor control method shown in Fig. 5 and not using the motor control method shown in Fig. 5;
  • Fig. 11 is a top view of a third charging device according to an embodiment of the present application.
  • Fig. 12A is a perspective view of the third charging device of Fig. 11;
  • Fig. 12B is a perspective view of another angle of the third charging device of Fig. 11;
  • Fig. 13 is a structural block diagram of an electric tool according to an embodiment of the present application.
  • the present disclosure discloses an energy supply device, called a first energy supply device 100 .
  • the first energy supply device 100 mainly includes: a casing 110; a cell module 120, accommodated in the casing 110, and the cell module 120 includes a plurality of single cells 121; a charging terminal assembly 130, used for connecting with the first type of electronic The connecting terminals of the device are connected; the discharge terminal assembly 140 is used for connecting with the connecting terminals of the second type of electronic device.
  • the first energy supply device 100 is detachably connected to an electric tool 300 and provides electric energy thereto, such as an electric screwdriver, an electric drill, a lawnmower, a snowplow, and the like.
  • the cell module 120 may be a 25.2V, 2P cell module 120, including 12 single cells 121 with a nominal voltage of about 4.2V, of which 6 cells
  • the bulk cell 121 is a series cell group, and two series cell groups are connected in parallel to form the cell module 120 .
  • the first energy supply device 100 weighs approximately 1.6 kg.
  • the battery module 120 can also be of other voltages, such as 12.6V, 21V, 42V, etc., so as to supply power to the electric tool and be charged by the charging device.
  • the first energy supply device 100 may have a different nominal cell voltage, and may also be connected in another configuration, using any combination of series, parallel or series-parallel.
  • the single cell 121 may be a supercapacitor, also known as an electrochemical capacitor; specifically, an asymmetric supercapacitor.
  • Electrochemical capacitors based on the principle of bipolar plate capacitance generally adopt a symmetrical design.
  • the positive and negative electrodes use two identical materials and quality matching, such as activated carbon electrodes.
  • Symmetrical capacitors generally have no positive and negative electrodes, although their power density And cycle life is excellent, but its energy density is much lower than lithium-ion batteries, nickel-metal hydride batteries, etc.
  • the two poles use different materials, such as carbon material/transition metal oxide system electrode material, carbon material/conductive polymer system electrode material, or two activated carbon electrodes with different electrochemical properties, which improves the performance of electrochemical capacitors.
  • the energy density has reached 80-120Wh/kg, so that it can be used as an energy supply unit for electric tools.
  • the single cell 121 may be a lithium carbon capacitor (Lithium Carbon Capacitor, LCC).
  • Lithium-carbon capacitors are asymmetric supercapacitors, which store energy through shallow intercalation and shallow extraction of lithium ions. High rate charge and discharge, low temperature resistance and other excellent performance.
  • the energy supply device 100 using lithium carbon capacitors as the single cells 121 has advantages in terms of safety, charging time, and service life. Compared with traditional lithium batteries, the internal resistance of lithium carbon capacitors is low. Therefore, the internal resistance of the single cell 121 is greater than or equal to 0.1 m ⁇ and less than or equal to 4 m ⁇ ; optionally, the internal resistance of the single cell 121 is greater than or equal to 0.3 m ⁇ . m ⁇ and less than or equal to 3m ⁇ ; optionally, the internal resistance of the single cell 121 is greater than or equal to 0.5m ⁇ and less than or equal to 2m ⁇ . Therefore, when the first energy supply device 100 is in use, it generates less heat and can discharge a large current.
  • the first energy supply device 100 can withstand a continuous discharge of 6C, up to 15C, and a transient discharge of up to 60C; optionally, The first energy supply device 100 can withstand a continuous discharge of 8C, up to 20C, and a transient discharge of up to 80C; optionally, the first energy supply device 100 can withstand a continuous discharge of 10C, up to 25C, and a transient discharge of up to 100C; Optionally, the first energy supply device 100 can withstand a continuous discharge of 20C, up to 50C, and a transient discharge of up to 200C; Optionally, the first energy supply device 100 can withstand a continuous discharge of 40C, up to 100C, and a transient discharge Up to 400C.
  • a short high-current discharge can output high torque to overcome resistance, thereby improving work efficiency and enhancing user experience.
  • using the first energy supply device 100 can make the power tool powerful and greatly improve the working efficiency.
  • the first energy supply device 100 can work in a low temperature environment, especially for electric tools such as snowplows that work outdoors, which is convenient for users and improves user experience.
  • the operating temperature of the first energy supply device 100 is greater than or equal to minus 35 degrees Celsius and less than or equal to minus 65 degrees Celsius; optionally, the operating temperature of the first energy supply device 100 is greater than or equal to minus 40 degrees Celsius and less than or equal to minus 70 degrees Celsius Celsius.
  • a single lithium carbon capacitor can have a capacity between 7F and 5500F.
  • a single cell 121 with a capacity of approximately 750 F is used, and the cell module 120 composed of 12 single cells 121 can provide 9000 F of electricity, which is approximately equivalent to a capacity of 4 Ah.
  • Lithium carbon capacitors have various shapes, and in this embodiment, each single battery cell 121 may be cylindrical.
  • the length of each single cell 121 may be more than twice and almost three times the diameter.
  • each cell 121 may have a diameter of about 26 mm and a length of about 60 mm.
  • each cell 121 may have a length of about 65 millimeters.
  • each cell 121 may have a length of about 70 millimeters.
  • the first energy supply device 100 of the present disclosure may also adopt other shapes of lithium carbon capacitors, for example, sheet-shaped soft-pack lithium carbon capacitors.
  • each group of six cylindrical single cells 121 connected in series can be arranged in parallel, that is, the axes of the cylindrical single cells 121 are parallel to each other.
  • the axes of the six single cells 121 can be arranged in parallel on the same plane, and the axes of the other six single cells 121 can be arranged in parallel on another plane parallel to the above-mentioned plane, that is, 12
  • the single cells 121 are arranged in parallel in two layers, so as to achieve a relatively compact and flat appearance.
  • the casing 110 of the first energy supply device 100 includes a support portion 111 for connecting with a charging device or an electric tool.
  • the supporting portion is a protruding portion with sliding grooves 112 and locking mechanisms 113 formed on both sides.
  • the housing of the energy supply device includes two supporting parts 111, which are respectively used for combining the charging device and the electric tool.
  • the two supporting parts 111 are respectively located on the top surface and the bottom surface of the energy supply device, so that the first energy supply device 100 can be combined with the charging device and the electric tool at the same time, saving the user from having to disassemble the energy supply device for The steps of charging make the operation more convenient.
  • Pressing the eject button 114 on the top of the first energy supply device 100 can unlock the locking mechanism and eject the first energy supply device 100 , so that it is convenient for the user to separate the first energy supply device 100 from the charging device or the electric tool.
  • the first energy supply device 100 includes a charging terminal assembly 130 for electrically connecting with the connection terminals of the first type of electronic device, and a discharge terminal assembly 130 for electrically connecting with the connection terminals of the second type of electronic device. terminal assembly 140 .
  • the first type of electronic device is an electronic device that charges the first energy supply device 100 through the charging terminal assembly 130 , for example, a charging device adapted to the first energy supply device 100 .
  • the charging device can be a dedicated charging device that charges the first energy supply device 100, or a general-purpose charging device that can charge both the first energy supply device 100 and ordinary energy supply devices. . Since the lithium carbon capacitor can withstand high current charging, the charging rate of the first energy supply device 100 is high, and the charging time is calculated in minutes.
  • the charging rate of the first energy supply device 100 is 6C; in one embodiment, the charging rate of the first energy supply device 100 is 8C; in one embodiment, the charging rate of the first energy supply device 100 The rate is 10C; in one embodiment, the charging rate of the first energy supply device 100 is 20C; in one embodiment, the charging rate of the first energy supply device 100 is 30C.
  • the charging current of the first energy supply device 100 is large. For example, for the first energy supply device 100 whose capacity in this embodiment is approximately equivalent to 4 amperes, the charging rate is 6C.
  • the charging rate is 8C, that is, charge with a high current of 32A, and it can be fully charged in 7.5 minutes; the charging rate is 10C, that is, charge with a large current of 40A, and it can be charged in 6 minutes Fully charged; the charging rate is 20C, that is, charging with a high current of 80A, and it can be fully charged in 3 minutes; the charging rate is 30C, that is, charging with a high current of 120A, and it can be fully charged in 2 minutes.
  • the ratio of the charging current to the weight of the first energy supply device 100 is greater than or equal to 25A/kg and less than or equal to 50A/kg. kg; in one embodiment, the ratio of the charging current to the weight of the first energy supply device 100 is greater than or equal to 20A/kg and less than or equal to 75A/kg; in one embodiment, the charging current and weight of the first energy supply device 100 The ratio is greater than or equal to 15A/kg and less than or equal to 150A/kg; in one embodiment, the ratio of the charging current to the weight of the first energy supply device 100 is greater than or equal to 15A/kg and less than or equal to 200A/kg.
  • the second type of electronic device is an electric tool that obtains an electric energy source through the discharge terminal assembly 140 .
  • the first energy supply device 100 can support the electric tool to discharge large current and output high power and high torque.
  • the first energy supply device 100 can withstand a continuous discharge current of 24A, the maximum discharge current is about 60A, and the transient discharge current can reach 240A ;
  • the first battery pack energy supply device 100 can withstand a continuous discharge current of 32A, the highest discharge current is about 80A, and the transient discharge current can reach 320A;
  • the first energy supply device 100 can withstand a continuous discharge current of 40A Discharge current, the maximum discharge current is about 100A, and the transient discharge current can reach 400A; optionally, the first energy supply device 100 can withstand a continuous discharge current of 80A, the maximum discharge current is about 200A, and the transient discharge current can reach 800A;
  • the first battery pack energy supply device 100 can withstand a continuous discharge current of 24A, the maximum discharge current is about 60A, and the transient
  • the first energy supply device realizes intermittent short-term high-current discharge through the discharge terminal assembly 140; current charging. Therefore, in an embodiment, the first energy supply device 100 adopts different charging terminal assemblies 130 and discharging terminal assemblies 140 .
  • the discharge terminal assembly 140 includes: a positive discharge terminal 141 , a negative discharge terminal 142 and a discharge information terminal 143 .
  • the discharge terminal assembly 140 is arranged in the support part 111, and the positive terminal, the negative terminal and the information terminal of the electric tool pass through the hole 115 of the support part 111 to contact the discharge positive terminal 141, the discharge negative terminal 142 and the discharge information terminal 143, so as to realize electric discharge. sexual connection.
  • the charging terminal assembly 130 includes: a charging positive terminal, a charging negative terminal and a charging information terminal.
  • the charging terminal assembly 130 is arranged in the opposite supporting part 111, and the positive terminal, the negative terminal and the information terminal of the charging device pass through the holes of the other supporting part to contact the charging positive terminal, the charging negative terminal and the charging information terminal to realize electrical connection.
  • the charging positive terminal and charging negative terminal can withstand continuous high current to ensure fast and safe charging.
  • the design of the independent charging terminal assembly and discharging terminal assembly on the one hand, can ensure the reliability and safety of high-current charging; on the other hand, it also saves the steps for users to disassemble the first energy supply device 100 for charging , making the operation more convenient.
  • the user when charging, the user does not need to disassemble the first energy supply device 100 from the electric tool, but can directly connect the first energy supply device 100 connected with the electric tool to the charging device for charging, especially the first energy supply device 100 of the present disclosure.
  • the charging time of an energy supply device 100 is very short, and it can be fully charged in a few minutes.
  • the step of disassembling and assembling the first energy supply device 100 is omitted, making the charging process more convenient and quick.
  • the charging terminal assembly 130 and the discharging terminal assembly 140 are arranged on two different sides of the first energy supply device 100, for example, opposite top and bottom surfaces, so that the first energy supply device 100 can be connected simultaneously in space. Electric tools and charging equipment should be staggered to avoid interference.
  • the first energy supply device 100 has two charging modes. In the first charging mode, the first energy supply device 100 is connected to the first charging device to charge at the first charging rate; in the second charging mode, the first energy supply device 100 is connected to the second charging device to charge Charging is performed at a second charging rate, and the second charging rate is greater than the first charging rate.
  • the other aspects of the first energy supply device 100 are the same as the aforementioned first energy supply device 100, the difference lies in the terminal assembly, the first energy supply device 100 of this embodiment is equipped with a first terminal Assembly 150 and second terminal assembly 160 .
  • the first terminal assembly 150 is similar to the terminal assembly of a common lithium battery pack, and can be used for charging the first energy supply device 100, and can also be used for discharging the first energy supply device 100, specifically, the first energy supply device 100
  • the first terminal assembly 150 of the supply device 100 may include a positive terminal 151 , a negative terminal 152 and an information terminal 153 .
  • the first terminal assembly 150 is arranged in the support part 111.
  • the positive terminal, negative terminal and information terminal of the electric tool pass through the hole 115 of the support part 111 and the positive terminal 151,
  • the negative terminal 152 is in contact with the information terminal 153 to realize electrical connection;
  • the positive terminal, negative terminal and information terminal of the first type of charging equipment pass through the support portion 111
  • the hole 115 is in contact with the positive terminal 151 , the negative terminal 152 and the information terminal 153 to realize electrical connection.
  • the first charging rate for charging the first energy supply device 100 through the first terminal assembly 150 is less than or equal to 5C; optionally, the first charging rate for charging the first energy supply device 100 through the first terminal assembly 150 is The charging rate is less than or equal to 4C; optionally, the first charging rate for charging the first energy supply device 100 through the first terminal assembly 150 is less than or equal to 3C.
  • the second terminal assembly 160 may be a contact charging terminal with a larger diameter that is exposed on the surface of the first energy supply device 100 and supports large current charging.
  • the second terminal assembly 160 may include a positive charging terminal 161 and a negative charging terminal 161 .
  • the second terminal assembly 160 may include a separate information terminal (not shown), or superimpose communication signals through a positive terminal.
  • the second terminal assembly 160 and the first terminal assembly 150 are disposed on two different sides of the first energy supply device 100, for example, the opposite bottom surface and top surface, so as to simultaneously connect to the first energy supply device in space.
  • the power tools and charging equipment of the supply device 100 are staggered to avoid interference.
  • the second terminal assembly 160 is exposed on the surface of the first energy supply device 100, when charging is required, only the first energy supply device 100 needs to be placed on the connection part 402 of the second type charging device 401, and the positive charging terminal 161 and the negative charging terminal 162 can be in contact with the positive terminal 403 and the negative terminal 404 of the second-type charging device 401 respectively, and it is not necessary to disassemble the first energy supply device 100 from the electric tool, which simplifies the operation steps of charging and facilitates the user. Charge between using power tools.
  • the second charging rate for charging the first energy supply device 100 through the second terminal assembly 160 is greater than or equal to 6C; optionally, the second charging rate for charging the first energy supply device 100 through the second terminal assembly 160 is The charging rate is greater than or equal to 8C; optionally, the second charging rate for charging the first energy supply device 100 through the second terminal assembly 160 is greater than or equal to 10C. In one embodiment, the second charging rate for charging the first energy supply device 100 through the second terminal assembly 160 is greater than or equal to two times the first charging rate for charging the first energy supply device 100 through the first terminal assembly 150 times.
  • a controller 165 and a semiconductor element 164 are used to control the charging of the first energy supply device 100 .
  • the controller 165 is connected to the control terminal of the semiconductor element 164 and controls the semiconductor element 164 through the control terminal.
  • the semiconductor element 164 is connected between the positive charging terminal 161 and the positive pole of the battery module 120 through two switch terminals;
  • the parasitic diode conducts in one direction and prevents the current from flowing from the cell module 120 to the positive charging terminal 161 .
  • the controller 165 respectively detects the voltages of the positive pole of the battery module 120 and the positive charging terminal 161, and when the voltage of the positive charging terminal 161 is greater than the voltage of the positive pole of the battery module 120, the controller 165 controls The terminal controls the semiconductor element 164 to make it bidirectionally conductive, thereby allowing the charging current from the second type charging device 401 to flow from the positive charging terminal 161 to the positive pole of the battery module 120 to charge the first energy supply device 100 .
  • an electric tool system 10 including: an electric tool 300 , for example, an electric drill.
  • the electric tool 300 can also be other torque output electric tools, such as electric screwdrivers, electric hammers, etc.; the electric tool 300 can also be a grinding electric tool, such as an angle grinder; the electric tool 300 can also be a sawing power tools such as jigsaws, reciprocating saws, and circular saws;
  • the electric tools 300 all have a casing 301 detachably connected with an energy supply device, a motor 310 for converting electrical energy into mechanical energy to realize the functions of the electric tool, and a controller 320 for at least controlling the rotation of the motor.
  • Different power tools can use different casings, motors, controllers, etc. It can be understood that electric tools with different shapes, structures, and functions all have a matching portion that is mated with the support portion of the energy supply device and a terminal assembly that is electrically connected with the terminal assembly of the energy supply device. That is to say, in the electric tool system 10 , different electric tools have the same power interface.
  • the terminal assembly includes a positive terminal, a negative terminal, and an information terminal, and is configured to connect the positive terminal, the negative terminal, and the information terminal of the energy supply device, respectively.
  • the electric tool system 10 also includes: a first energy supply device 100 and a second energy supply device 200.
  • the difference between the first energy supply device 100 and the second energy supply device 200 is mainly due to different chemical principles.
  • the first energy supply device 100 Using the lithium carbon capacitor as the charging and discharging unit as described above, the second energy supply device 200 uses a common lithium battery as the charging and discharging unit, specifically, the second energy supply device 200 may be a lithium battery pack.
  • the first energy supply device 100 is not limited to a single model, that is, the first energy supply device 100 may include multiple first energy supply devices 100 of different models.
  • the first energy supply device 100 may include an energy supply device with a nominal voltage of 21V, may also include an energy supply device with a nominal voltage of 42V, or may include energy supply devices with other nominal voltages.
  • the first energy supply device 100 may be a 1P energy supply device, or may be a 2P or 3P energy supply device.
  • the charging rate of the first energy supply device 100 may be 10C, or 20C, 30C. That is to say, in the power tool system 10 , the energy supply device whose cell module is a lithium carbon capacitor is collectively referred to as the first energy supply device 100 .
  • the second energy supply device 200 is not limited to a single model, that is to say, the second energy supply device 200 may include multiple second energy supply devices 200 of different models.
  • the second energy supply device 200 may include an energy supply device with a nominal voltage of 21V, may also include an energy supply device with a nominal voltage of 42V, or may include energy supply devices with other nominal voltages.
  • the second energy supply device 200 may be a 1P energy supply device, or may be a 2P or 3P energy supply device. That is to say, in the electric tool system 10 , the energy supply device based on lithium battery is collectively referred to as the second energy supply device 200 . In this way, the user can flexibly select different models of the first energy supply device 100 or the second energy supply device 200 according to his own needs.
  • first energy supply devices 100 have the same charging terminal assembly and discharge terminal assembly, that is, different types of first energy supply devices 100 have the same discharge interface, and because of different electric The tools 300 also have the same power interface, therefore, each first energy supply device 100 can be used to supply power to each electric tool 300 in the electric tool system 10 .
  • the second energy supply device 200 of different models has the same terminal assembly, and the difference from the first energy supply device 100 is that the second energy supply device 200 does not distinguish between the charging terminal assembly and the discharging terminal assembly, that is,
  • the terminal assembly of the second energy supply device 200 can be used to charge the second energy supply device 200, and can also be used to discharge the second energy supply device 200, specifically, the terminal assembly of the second energy supply device 200 can include a positive pole terminal, negative terminal and information terminal. Therefore, different types of second energy supply devices 200 have the same discharge interface, and each second energy supply device 200 can be used to supply power to each electric tool 300 in the electric tool system 10 .
  • the discharge terminal assembly of the first energy supply device 100 is similar to the terminal assembly of the second energy supply device 200, so that the terminal assembly of the electric tool 300 can be compatible with the discharge terminal assembly of the first energy supply device 100, and Compatible with the terminal assembly of the second energy supply device 200, that is, the terminal assembly of the electric tool 300 can be electrically connected to the discharge terminal assembly of the first energy supply device 100, and can be electrically connected to the discharge terminal assembly of the second energy supply device 200.
  • the terminal assembly realizes switching between the first energy supply device 100 and the second energy supply device 200 , and also provides users with more diverse choices.
  • the positive terminal, the negative terminal, and the information terminal of the terminal assembly of the electric tool 300 are configured to be respectively connected to the discharge positive terminal of the discharge terminal assembly of the first energy supply device 100 , discharge negative terminal and discharge information terminal.
  • the positive terminal, the negative terminal, and the information terminal of the terminal assembly of the electric tool 300 are configured to be respectively connected to the positive terminal and the negative terminal of the terminal assembly of the second energy supply device 200. terminals and information terminals.
  • the controller 320 of the electric tool 300 can determine whether the electric tool 300 is connected to the first energy supply device 100 or the second energy supply device 200 through the signal received by the information terminal.
  • the circuit of the first energy supply device 100 further includes a first identification resistor (not shown), the controller 320 identifies the first energy supply device 100 through the first identification resistor, and optionally, identifies the first energy supply device 100 specific models.
  • the controller 320 of the electric tool 300 determines that the electric tool 300 is currently electrically connected to the first energy supply device 100
  • the first control method is adopted to control the motor 310.
  • the second control method is adopted to control the motor 310, and the first control method is different from the second control method.
  • the controller 320 adopts the following control methods:
  • the electric tool 300 includes a voltage detection module 330 , the voltage detection module 330 detects the voltage of the first energy supply device 100 and sends it to the controller 320 .
  • n is the number of single cells 121 connected in series in the first energy supply device 100
  • V1/n is the average voltage of the single cells 121 in the first energy supply device 100
  • V0 is the first voltage threshold. In this embodiment, V0 is equal to 3.7V, and V0 can also select other values.
  • the controller 320 calculates and judges whether the average voltage V1/n of the single cell 121 is greater than or equal to the first voltage threshold V0, and when V1/n is greater than or equal to V0, skips to S3; otherwise, skips to S7.
  • the controller 320 detects the actual rotational speed w of the motor 310 through the rotational speed detection module 350, and the method for obtaining the actual rotational speed w of the motor 310 will not be described in detail here. Specifically, it can be detected by means of a Hall sensor, back electromotive force method, and measurement of the winding current of the motor. The rotational speed of the motor 310 .
  • the controller 320 judges whether the motor 310 is stalled according to the ratio of the actual speed w of the motor 310 to the idling speed w0. According to the difference between the electric tool and the motor, the threshold z for judging the stall can also select a different value, such as 1/4, 1 /5, 1/6, etc. When w/w0 is greater than or equal to z, go to S5; otherwise, go to S6.
  • the current passing through the motor 310 is limited to be less than or equal to the first current threshold I0, thereby slowing down the voltage drop speed of the first energy supply device 100 .
  • the motor 310 Since the actual rotational speed w of the motor 310 is too low, it can be considered that the motor 310 is in or close to a locked-rotor state. At this time, the current is not limited, and the high torque is output to overcome the locked-rotor situation.
  • the voltage of the first energy supply device 100 is already at a relatively low level, and it is necessary to use a motor modulation method to improve the voltage utilization rate, thereby optimizing the motor speed and load capacity, and improving user experience.
  • different control methods are adopted according to different motors.
  • BLDC motors it is possible to expand the conduction band and increase the lead angle, for example, increase the 120° conduction band to 150° or 180° conduction band, add 15° or 30° lead angle, etc.
  • PMSM motors the method of overmodulation and field weakening can be used to increase the torque current.
  • the controller 320 controls the switch of the motor drive circuit to be turned on and off according to the calculation result of the above control method.
  • the voltage of the first energy supply device 100 can be reduced more slowly, and when the voltage of the first energy supply device 100 is insufficient, the influence of insufficient voltage on the rotation speed and load capacity of the electric tool 300 can be reduced , to improve user experience.
  • the solid line is the relationship between the motor speed and the remaining capacity of the energy supply device under the common motor control method that is not adjusted for the first energy supply device 100. The relationship between the motor speed and the remaining capacity of the energy supply device under the control method.
  • the motor speed is higher when the first energy supply device 100 has sufficient power, the motor speed drops significantly as the power decreases; while using this control method, although the first energy supply device 100 When the power is sufficient, the speed of the motor is slightly lower, but as the power drops, the slope of the motor speed decline is smaller, that is, the speed drops more smoothly, and because the voltage utilization rate is improved when the voltage is insufficient, it improves to a certain extent. The speed when the voltage is insufficient. It should be noted that, for different electric tools 300 and different motors 310 , the specific thresholds and/or parameters of the above control methods may be different.
  • the electric tool system 10 further includes: a first charging device 400 and a second charging device 500 for charging the first energy supply device 100 and the second energy supply device 200 respectively.
  • a first charging device 400 and a second charging device 500 for charging the first energy supply device 100 and the second energy supply device 200 respectively.
  • different types of first energy supply devices 100 have the same charging terminal assembly 130 and discharging terminal assembly 140, therefore, different types of first energy supply devices have the same charging interface and can be charged by the same charging device.
  • the first charging device 400 is a large current charging device, and when connected to the charging terminal assembly 130 of the first energy supply device 100 , it charges the first energy supply device 100 .
  • the second energy supply devices 200 of different models have the same terminal assembly, therefore, the second energy supply devices 200 of different models have the same charging interface and can be charged by the same charging device.
  • the second charging device 500 may be common devices such as a charging stand and a charging pile for charging a lithium battery pack.
  • the terminal assembly of the first charging device 400 matches the charging terminal assembly 130 of the first energy supply device 100
  • the terminal assembly of the second charging device 500 matches the terminal assembly of the second energy supply device 200 .
  • some first energy supply devices 100 have two rechargeable terminal assemblies, that is to say, some first energy supply devices 100 include a first terminal assembly 150 for realizing slow charging and a first terminal assembly for realizing fast charging.
  • the first charging device 400 of the electric tool system 10 can charge the first energy supply device 100 through the second terminal assembly 160, and the second terminal assembly 100 of the electric tool system 10
  • the charging device 500 can charge the first energy supply device 100 through the first terminal assembly 150 .
  • the electric tool system 10 further includes a third charging device 600 , which is a universal charging device that can charge both the first energy supply device 100 and the second energy supply device 200 .
  • the third charging device 600 has two supporting parts, namely a first supporting part 611 that can support the first energy supply device 100 and a second supporting part 612 that can support the second energy supply device 200 .
  • the two support parts can be arranged back to back; in other embodiments, the two support parts can also be arranged side by side or other arrangements.
  • the first support part 610 is provided with a first terminal assembly 621 for electrically connecting with the charging terminal assembly 130 of the first energy supply device 100; the second support part is provided with a second terminal assembly 622 for connecting with the second The terminal assemblies of the energy supply device 200 are electrically connected.
  • the third charging device 600 has two charging circuits (not shown): the first charging circuit is used to charge the first energy supply device 100; the second charging circuit is used to charge the The second energy supply device 200 is charged.
  • the first charging circuit is arranged on the first PCBA, and the second charging circuit is arranged on the second PCBA.
  • the two PCBAs are packaged in the shell of the third charging device 600 , which means that there are two independent chargers in the third charging device 600 , and they do not interfere with each other.
  • two DC-DCs may be used to charge the first energy supply device 100 and the second energy supply device 200 respectively.
  • the first terminal assembly 621 is electrically connected to the charging terminal assembly 130 of the first energy supply device 100
  • the first charging circuit charges the first energy supply device 100
  • the second terminal assembly 622 is connected to the charging terminal assembly 130 of the second energy supply device 200
  • the second charging circuit charges the second energy supply device 200 .
  • the first charging circuit and the second charging circuit can charge the first energy supply device 100 and the second energy supply device 200 at the same time.
  • the power tool system 10 may also include an integrated power tool 700 .
  • the integrated electric tool 700 includes a housing 710, a battery module 720, and a charging terminal assembly 730; in essence, the integrated electric tool 700 removes the first energy supply device 100 from The assembly is built in the casing 710 of the integrated electric tool 700 , and only the interface of the charging terminal assembly 730 is left on the casing 710 of the integrated electric tool 700 .
  • the positive and negative terminals of the charging terminal assembly 730 of the integrated electric tool 700 are exposed on the surface of the housing 710; optionally, the charging terminal assembly 730 of the integrated electric tool 700 is located in the hole of the mating part connected with the charging device in the slot.
  • the integrated electric tool 700 can be charged by connecting the aforementioned first charging device 400 and the third charging device 600 through the charging terminal assembly 730 .
  • the integrated electric tool 700 also includes a motor 740, which is used to convert electrical energy into mechanical energy output, thereby realizing the specific functions of the integrated electric tool 700; Discharge.
  • the battery module 120 of the integrated electric tool 700 uses an asymmetric capacitor, or more specifically, a lithium carbon capacitor as a battery. Therefore, the integrated electric tool 700 has excellent performances such as high cycle life, fast charging, low temperature resistance, and strong discharge capacity, which improves the user experience.
  • the integrated electric tool 700 can use the aforementioned charging control method, motor control method, etc., which will not be described in detail here.
  • the energy supply device of the present disclosure has fast charging, low temperature resistance, and can withstand high current discharge; the power tool system can be adapted to the above energy supply device and a traditional battery pack at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种为电动工具供电的能量供给装置,其包括:外壳,可拆卸地与电动工具配合连接并由电动工具支撑;多个电芯,由能量供给装置外壳支撑;充电端子组件,用于电性连接充电设备以给能量供给装置充电;放电端子组件,用于电性连接电动工具以给电动工具提供电能;该能量供给装置的充电速率大于等于6C。

Description

能量供给装置以及电动工具系统
本申请要求在2021年11月25日提交中国专利局、申请号为202111411053.9的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动工具领域,例如,涉及能量供给装置以及使用该能量供给装置的电动工具系统。
背景技术
采用电池包供电的电动工具因其便利性而被广泛使用。适配电动工具的电池包往往需要数小时的充电时间,因此,在用户使用电动工具的过程中,如果电池包的电量耗尽,需要将电池包从电动工具上拆卸,并经过数小时的充电后,重新将电池包装配至电动工具,才可继续使用,会给用户带来不便。此外,市面上常见的锂电池包,在零下的低温时电压下降过快,使用体验欠佳。
发明内容
本申请提供一种能量供给装置和电动工具系统。
本申请提供一种为电动工具供电的能量供给装置,包括:外壳,可拆卸地与电动工具配合连接并由电动工具支撑;多个电芯,由能量供给装置外壳支撑;充电端子组件,用于电性连接充电设备以给能量供给装置充电;放电端子组件,用于电性连接电动工具以给电动工具提供电能;其中,能量供给装置的充电速率大于等于6C。
本申请提供一种电动工具系统,包括电动工具,第一能量供给装置,和第一充电设备:电动工具,包括:外壳,可拆卸地与第一能量供给装置配合连接;端子组件,用于与第一能量供给装置电性连接以获得电能;电机,用于将电能转化为机械能输出以实现电动工具的功能;控制器,至少用于控制电机运转;第一能量供给装置,包括:外壳,可拆卸地与电动工具配合连接并由电动工具支撑;多个电芯,由第一能量供给装置的外壳支撑;充电端子组件,用于电性连接第一充电设备以给第一能量供给装置充电;放电端子组件,用于电性连接电动工具以给电动工具提供电能;其中,第一能量供给装置的充电速率大于等于6C,第一能量供给装置的最高放电速率大于等于6C。
本申请提供一种为电动工具供电的能量供给装置,包括:外壳,可拆卸地 与电动工具配合连接并由电动工具支撑;电芯模组,由能量供给装置的外壳支撑;第一端子组件,用于电性连接电动工具以给电动工具提供电能,且用于电性连接第一类充电设备从而以第一充电速率给能量供给装置充电;第二端子组件,用于电性连接第二类充电设备从而以第二充电速率给能量供给装置充电;其中,第二充电速率大于第一充电速率。
本申请提供一种电动工具,包括:外壳,用于形成一个容纳腔;电机,容纳于容纳腔内,用于将电能转化为机械能输出以实现电动工具的功能;电芯模组,容纳于容纳腔内,用于至少给电机提供电能;充电端子组件,用于电性连接充电设备以给电芯模组充电;控制器,至少用于控制电机的运转和电芯模组的充放电;其中,电芯模组包括多个电芯,多个电芯分别是锂碳电容器。
附图说明
图1是本申请一实施例的能量供给装置和电动工具的立体图;
图2是图1的能量供给装置的立体图;
图3是图1的能量供给装置除去外壳后的立体图;
图4是本申请一实施例的能量供给装置的充电示意图;
图5是图4的能量供给装置的电路图;
图6是本申请一实施例的电动工具系统的示意图;
图7是本申请一实施例的电动工具的系统框图;
图8是本申请一实施例的电机控制方法的流程图;
图9是锂碳电容器和锂电池的放电电压曲线图;
图10是使用图5所示的电机控制方法和未使用图5所示的电机控制方法的对比图;
图11是本申请一实施例的第三充电设备俯视图;
图12A是图11的第三充电设备的立体图;
图12B是图11的第三充电设备的另一角度的立体图;
图13是本申请一实施例的电动工具的结构框图。
具体实施方式
下面结合附图和实施例对本公开进行说明。
如图1至图3所示,本公开揭示了一种能量供给装置,称为第一能量供给装置100。第一能量供给装置100主要包括:外壳110;电芯模组120,容纳于 外壳110内,电芯模组120包括多个单体电芯121;充电端子组件130,用于与第一类电子装置的连接端子连接;放电端子组件140,用于与第二类电子装置的连接端子连接。第一能量供给装置100可拆卸地连接到电动工具300并为其提供电能,电动工具例如,电动螺丝批,电钻,割草机,扫雪机等。
在一实施例中,在所示结构中,电芯模组120可以是25.2V、2P电芯模组120,包括12个标称电压大约为4.2V的单体电芯121,其中6节单体电芯121为一个串联电芯组,两个串联电芯组并联组成电芯模组120。在此构造中,第一能量供给装置100大约重1.6kg。在其他构造中,电芯模组120也可以是其他的电压,例如12.6V、21V、42V等,以给电动工具供电并由充电设备充电。应当理解的是,在其他构造中,第一能量供给装置100可以具有不同的标称电芯电压,也可以以另一种配置连接,采用任意串联、并联或串并联的组合。
单体电芯121可以是一种超级电容,又称为电化学电容器;具体地,是非对称超级电容。基于双极板电容原理的电化学电容器,一般都采用对称设计,正负极采用两种完全一样的材料和质量匹配,比如活性碳电极,对称电容器一般无正负极之分,虽然其功率密度和循环寿命优异,但其能量密度远低于锂离子电池、镍氢电池等。而非对称电容,两极采用不同种材料,例如碳材料/过渡金属氧化物体系电极材料,碳材料/导电聚合物体系电极材料,或者电化学性能不同的两种活性炭电极,提升了电化学电容器的能量密度,达到了80-120Wh/kg,使其可以作为电动工具的能量供给单元。在一实施例中,单体电芯121可以是锂碳电容器(Lithium Carbon Capacitor,LCC)。锂碳电容器为不对称超级电容,通过锂离子的浅嵌入浅脱出,进行储能,是一种新型的储能器件,具有不起火不爆炸的高安全性,数十万次的高循环寿命,高速率充放电,耐低温等优良的性能。因此,采用锂碳电容器作为单体电芯121的能量供给装置100,在安全性、充电时间、使用寿命等方面都具备优势。相较于传统的锂电池,锂碳电容器的内阻低,因此,单体电芯121的内阻大于等于0.1mΩ且小于等于4mΩ;可选地,单体电芯121的内阻大于等于0.3mΩ且小于等于3mΩ;可选地,单体电芯121的内阻大于等于0.5mΩ且小于等于2mΩ。因此,第一能量供给装置100使用时发热小,并且能够大电流放电,可选地,第一能量供给装置100能够承受6C的持续放电,最高15C,瞬态放电可达60C;可选地,第一能量供给装置100能够承受8C的持续放电,最高20C,瞬态放电可达80C;可选地,第一能量供给装置100能够承受10C的持续放电,最高25C,瞬态放电可达100C;可选地,第一能量供给装置100能够承受20C的持续放电,最高50C,瞬态放电可达200C; 可选地,第一能量供给装置100能够承受40C的持续放电,最高100C,瞬态放电可达400C。对一些电动工具而言,短暂的大电流放电可以输出大扭矩而克服阻力,从而改善工作效率,提升用户体验感。例如,当电钻工作的钻面坚硬,当扫雪机工作的路面积雪很深,在这些情况下,使用第一能量供给装置100,可以使电动工具动力强劲,工作效率大大提升。此外,第一能量供给装置100可以在低温环境下工作,特别是对于扫雪机等在户外工作的电动工具,方便了用户,提升了用户体验。可选地,第一能量供给装置100的工作温度大于等于零下35摄氏度,且小于等于零上65摄氏度;可选地,第一能量供给装置100的工作温度大于等于零下40摄氏度,且小于等于零上70摄氏度。
根据体积的不同,单个锂碳电容器的容量可以介于7F到5500F之间。在本实施例中,采用容量大致为750F的单体电芯121,12个单体电芯121组成的电芯模组120可以提供9000F的电量,大约相当于4安时的容量。锂碳电容器的形状多样,在本实施例中,每个单体电芯121可以是圆柱形的。此外,在第一能量供给装置100中,每个单体电芯121的长度可以是直径的两倍以上并且几乎是其三倍。例如,每个单体电芯121可以具有大约26毫米的直径和大约60毫米的长度。在一些构造中,每个单体电芯121可以具有大约65毫米的长度。在一些构造中,每个单体电芯121可以具有大约70毫米的长度。值得注意的是,本公开的第一能量供给装置100也可以采用其他形状的锂碳电容器,例如,片状的软包锂碳电容器。
如图3所示,在本实施例中,每组串联连接的6个圆柱形的单体电芯121可以平行地排列,也就是说,圆柱形的单体电芯121的轴线彼此平行。具体地,6个单体电芯121的轴线可以平行排列在同一平面上,另外6个单体电芯121的轴线可以平行排列在与上述平面平行的另一平面上,也就是说,12个单体电芯121分两层平行排列,从而实现较为小巧、扁平化的外型。
如图2所示,第一能量供给装置100的外壳110包括用于与充电设备或者电动工具连接的支撑部111。在一实施例中,支撑部为两侧形成有滑槽112和锁定机构113的凸起部。将能量供给装置与充电设备或者电动工具结合时,沿着滑槽的延伸方向将充电设备或者电动工具的配合部推入滑槽端部直至与锁定机构卡合。在一实施例中,能量供给装置的外壳包括两个支撑部111,分别用于结合充电设备和电动工具。如图2所示,两个支撑部111分别位于能量供给装置的顶面和底面,从而可以使第一能量供给装置100同时与充电设备和电动工具结合,省却了用户需要拆卸能量供给装置以进行充电的步骤,使得操作更加便 捷。按压第一能量供给装置100顶部的弹出按钮114,可以使得锁定机构解锁,将第一能量供给装置100弹出,从而方便用户将第一能量供给装置100与充电设备或者电动工具分离。需要说明的是,图2示出的支撑部111、锁定机构113和弹出按钮114,只是一种结构的示例,本公开并不限制能量供给装置的具体外壳形状和形成于外壳上的支撑部、锁定机构和弹出按钮的具体结构。
在一实施例中,第一能量供给装置100包括用于与第一类电子装置的连接端子电性连接的充电端子组件130,和用于与第二类电子装置的连接端子电性连接的放电端子组件140。第一类电子装置是通过充电端子组件130为第一能量供给装置100充电的电子装置,例如,适配第一能量供给装置100的充电设备。具体地,该充电设备可以是专门为第一能量供给装置100充电的专属型充电设备,也可以是既能够为第一能量供给装置100充电、也可以为普通能量供给装置充电的通用型充电设备。由于锂碳电容器可以承受大电流充电,所以第一能量供给装置100充电速率高,充电时间以分钟计算。在一实施例中,第一能量供给装置100的充电速率为6C;在一实施例中,第一能量供给装置100的充电速率为8C;在一实施例中,第一能量供给装置100的充电速率为10C;在一实施例中,第一能量供给装置100的充电速率为20C;在一实施例中,第一能量供给装置100的充电速率为30C。相较于普通的锂离子能量供给装置,第一能量供给装置100充电电流大,例如,对于本实施例的容量大约相当于4安时的第一能量供给装置100而言,充电速率为6C即以24A的大电流进行充电,10分钟即可充满;充电速率为8C即以32A的大电流进行充电,7.5分钟即可充满;充电速率为10C即以40A的大电流进行充电,6分钟即可充满;充电速率为20C即以80A的大电流进行充电,3分钟即可充满;充电速率为30C即以120A的大电流进行充电,2分钟即可充满。对于重量大约为1.6kg的第一能量供给装置100,根据上述数据可以推算出,在一实施例中,第一能量供给装置100的充电电流与重量的比值大于等于25A/kg且小于等于50A/kg;在一实施例中,第一能量供给装置100的充电电流与重量的比值大于等于20A/kg且小于等于75A/kg;在一实施例中,第一能量供给装置100的充电电流与重量的比值大于等于15A/kg且小于等于150A/kg;在一实施例中,第一能量供给装置100的充电电流与重量的比值大于等于15A/kg且小于等于200A/kg。
第二类电子装置是通过放电端子组件140获取电能来源的电动工具。第一能量供给装置100可以支持电动工具进行大电流放电,输出大功率大扭矩。以本实施例的容量大约相当于4安时的第一能量供给装置100为例,第一能量供 给装置100能够承受24A的持续放电电流,最高放电电流约为60A,瞬态放电电流可达240A;可选地,第一电池包能量供给装置100能够承受32A持续放电电流,最高放电电流约为80A,瞬态放电电流可达320A;可选地,第一能量供给装置100能够承受40A的持续放电电流,最高放电电流约为100A,瞬态放电电流可达400A;可选地,第一能量供给装置100能够承受80A持续放电电流,最高放电电流约为200A,瞬态放电电流可达800A;可选地,第一电池包能量供给装置100能够承受160A持续放电电流,最高放电电流约为400A,瞬态放电电流可达1600A。
正常使用电动工具时,第一能量供给装置通过放电端子组件140实现间歇性地短时间的大电流放电;而正常充电时,第一能量供给装置通过充电端子组件130实现持续性地长时间的大电流充电。因此,在一实施例中,第一能量供给装置100采用不同的充电端子组件130和放电端子组件140。其中,放电端子组件140包括:放电正极端子141、放电负极端子142和放电信息端子143。放电端子组件140设置于支撑部111内,电动工具的正极端子、负极端子和信息端子穿过支撑部111的孔槽115与放电正极端子141、放电负极端子142和放电信息端子143接触从而实现电性连接。相应地,充电端子组件130包括:充电正极端子、充电负极端子和充电信息端子。充电端子组件130设置于相对的另一支撑部111内,充电设备的正极端子、负极端子和信息端子穿过另一支撑部的孔槽与充电正极端子、充电负极端子和充电信息端子接触从而实现电性连接。充电正极端子和充电负极端子能够承受持续的大电流以保证快速、安全地充电。独立的充电端子组件和放电端子组件的设计,在一个方面,可以保证大电流充电的可靠性和安全性;在另一个方面,也省却了用户需要拆卸第一能量供给装置100以进行充电的步骤,使得操作更加便捷。也就是说,充电时,用户不必从电动工具上拆卸第一能量供给装置100,而是可以直接将与电动工具连接的第一能量供给装置100连接至充电设备进行充电,特别是本公开的第一能量供给装置100充电时间很短,几分钟即可充满,省去了拆装第一能量供给装置100的步骤使得充电过程更加方便快捷。在本实施例中,充电端子组件130和放电端子组件140设置于第一能量供给装置100的不同的两面,例如,相对的顶面和底面,从而在空间上使得同时连接第一能量供给装置100的电动工具和充电设备错开,避免干涉。
在另一实施例中,第一能量供给装置100有两种充电模式。在第一充电模式下,第一能量供给装置100与第一充电设备连接,以第一充电速速率进行充 电;在第二充电模式下,第一能量供给装置100与第二充电设备连接,以第二充电速速率进行充电,第二充电速率大于第一充电速率。如图4所示,具体地,第一能量供给装置100的其他方面与前述的第一能量供给装置100相同,其不同点在于端子组件,本实施例的第一能量供给装置100具备第一端子组件150和第二端子组件160。
其中,第一端子组件150类似于常见的锂电池包的端子组件,既可以用于给第一能量供给装置100充电,也可以用于给第一能量供给装置100放电,具体地,第一能量供给装置100的第一端子组件150可以包括正极端子151、负极端子152和信息端子153。第一端子组件150设置于支撑部111内,当第一能量供给装置100与电动工具连接时,电动工具的正极端子、负极端子和信息端子穿过支撑部111的孔槽115与正极端子151、负极端子152和信息端子153接触从而实现电性连接;当第一能量供给装置100与第一类充电设备连接时,第一类充电设备的正极端子、负极端子和信息端子穿过支撑部111的孔槽115与正极端子151、负极端子152和信息端子153接触从而实现电性连接。可选地,通过第一端子组件150给第一能量供给装置100进行充电的第一充电速率小于等于5C;可选地,通过第一端子组件150给第一能量供给装置100进行充电的第一充电速率小于等于4C;可选地,通过第一端子组件150给第一能量供给装置100进行充电的第一充电速率小于等于3C。
第二端子组件160可以是暴露于第一能量供给装置100的表面的,支持大电流充电的直径较大的接触式充电端子,具体地,第二端子组件160可以包括正极充电端子161和负极充电端子162。第二端子组件160可以包括单独的信息端子(未示出),或者通过正极端子叠加传递通信信号。在一实施例中,第二端子组件160与第一端子组件150设置于第一能量供给装置100的不同的两面,例如,相对的底面和顶面,从而在空间上使得同时连接到第一能量供给装置100的电动工具和充电设备错开,避免干涉。又由于第二端子组件160暴露于第一能量供给装置100的表面,需要充电时,仅需将第一能量供给装置100放置于第二类充电设备401的连接部402上,使正极充电端子161和负极充电端子162分别与第二类充电设备401的正极端子403和负极端子404接触即可,而不必要将第一能量供给装置100与电动工具拆卸,简化了充电的操作步骤,方便了用户在使用电动工具的间隙进行充电。可选地,通过第二端子组件160给第一能量供给装置100进行充电的第二充电速率大于等于6C;可选地,通过第二端子组件160给第一能量供给装置100进行充电的第二充电速率大于等于8C;可 选地,通过第二端子组件160给第一能量供给装置100进行充电的第二充电速率大于等于10C。在一实施例中,通过第二端子组件160给第一能量供给装置100进行充电的第二充电速率大于等于通过第一端子组件150给第一能量供给装置100进行充电的第一充电速率的两倍。
由于第二端子组件160裸露在外,需要防止第二端子组件160的正极充电端子161和负极充电端子162之间发生短路。一般而言,设置二极管可以限制电流流向,阻止电流从电芯模组120的正极流向正极充电端子161,从而避免短路;但在正常充电时,电流流经二极管会产生大量的热量,使得充电时的能效利用率偏低。如图5所示,在一实施例中,采取控制器165和半导体元件164,例如,场效应管开关(MOSFET),来控制第一能量供给装置100的充电。控制器165连接到半导体元件164的控制端,通过控制端控制半导体元件164。半导体元件164通过两个开关端连接在正极充电端子161和电芯模组120的正极之间;常态下,半导体元件164的两个开关端由正极充电端子161至电芯模组120的正极通过寄生二极管单向导通,阻止电流从电芯模组120流向正极充电端子161。在一实施例中,控制器165分别检测电芯模组120的正极和正极充电端子161的电压,当正极充电端子161的电压大于电芯模组120的正极的电压时,控制器165通过控制端控制半导体元件164,使其双向导通,从而允许来自第二类充电设备401的充电电流从正极充电端子161流向电芯模组120的正极,给第一能量供给装置100充电。
如图6所示,本公开还揭示了一种电动工具系统10,包括:电动工具300,例如,电钻。可以理解的,电动工具300也可以为其它扭力输出类电动工具,例如电动螺丝批、电锤等;电动工具300还可以为磨削类电动工具,例如角磨;电动工具300还可为锯切类电动工具,例如曲线锯、往复锯、电圆锯等;电动工具300还可以为行走类电动工具,例如割草机、扫雪机等。电动工具300都具有与能量供给装置可拆卸连接的机壳301、用于将电能转化为机械能以实现电动工具功能的电机310、和至少用于控制电机转动的控制器320。不同电动工具,可以采用不同的机壳、电机、控制器等。可以理解的是,形状、结构、功能各异的电动工具都具有与能量供给装置的支撑部配合连接的配合部和与能量供给装置的端子组件电性连接的端子组件。也就是说,本电动工具系统10中,不同的电动工具具备相同的电源接口。端子组件包括正极端子、负极端子、和信息端子,被配置为分别连接能量供给装置的正极端子、负极端子和信息端子。
电动工具系统10还包括:第一能量供给装置100和第二能量供给装置200, 第一能量供给装置100和第二能量供给装置200的区别主要是化学原理不同,例如,第一能量供给装置100使用如上所述的使用锂碳电容器作为充放电单元,第二能量供给装置200使用常见的锂电池作为充放电单元,具体地,第二能量供给装置200可以是锂电池包。第一能量供给装置100不限于单一型号,也就是说,第一能量供给装置100可以包括不同型号的多个第一能量供给装置100。例如,第一能量供给装置100可以包括标称电压为21V的能量供给装置,也可以包括标称电压为42V的能量供给装置,也可以包括其他标称电压的能量供给装置。第一能量供给装置100可以是1P的能量供给装置,也可以是2P、3P的能量供给装置。第一能量供给装置100的充电速率可以是10C,也可以是20C,30C。也就是说,在本电动工具系统10中,电芯模组为锂碳电容器的能量供给装置统称为第一能量供给装置100。类似地,第二能量供给装置200也不限于单一型号,也就是说,第二能量供给装置200可以包括不同型号的多个第二能量供给装置200。例如,第二能量供给装置200可以包括标称电压为21V的能量供给装置,也可以包括标称电压为42V的能量供给装置,也可以包括其他标称电压的能量供给装置。第二能量供给装置200可以是1P的能量供给装置,也可以是2P、3P的能量供给装置。也就是说,在本电动工具系统10中,基于锂电池的能量供给装置统称为第二能量供给装置200。这样,用户可以根据自己的需求,灵活地选配不同型号的第一能量供给装置100或第二能量供给装置200。
可以理解的是,不同型号的第一能量供给装置100都有相同的充电端子组件和放电端子组件,也就是说,不同型号的第一能量供给装置100具有相同的放电接口,又因为不同的电动工具300也具有相同的电源接口,因此,各个第一能量供给装置100都可以用于给本电动工具系统10中的各个电动工具300供电。类似的,不同型号的第二能量供给装置200都有相同的端子组件,与第一能量供给装置100不同的是,第二能量供给装置200不区分充电端子组件和放电端子组件,也就是说,第二能量供给装置200的端子组件既可以用于给第二能量供给装置200充电,也可以用于给第二能量供给装置200放电,具体地,第二能量供给装置200的端子组件可以包括正极端子、负极端子和信息端子。因此,不同型号的第二能量供给装置200具有相同的放电接口,各个第二能量供给装置200都可以用于给本电动工具系统10中的各个电动工具300供电。值得注意的是,第一能量供给装置100的放电端子组件与第二能量供给装置200的端子组件相似,从而使得电动工具300的端子组件既能兼容第一能量供给装置100的放电端子组件,又能兼容第二能量供给装置200的端子组件,也就是 说,电动工具300的端子组件既可以电性连接第一能量供给装置100的放电端子组件,又可以电性连接第二能量供给装置200的端子组件,从而实现第一能量供给装置100与第二能量供给装置200的切换使用,也给用户提供了更多样化的选择。
当电动工具300连接至第一能量供给装置100时,电动工具300的端子组件的正极端子、负极端子、和信息端子,被配置为分别连接第一能量供给装置100的放电端子组件的放电正极端子、放电负极端子和放电信息端子。当电动工具300连接至第二能量供给装置200时,电动工具300的端子组件的正极端子、负极端子、和信息端子,被配置为分别连接第二能量供给装置200的端子组件的正极端子、负极端子和信息端子。电动工具300的控制器320通过信息端子接受到的信号,可以判断与电动工具300相连的是第一能量供给装置100还是第二能量供给装置200。例如,第一能量供给装置100的电路中还包括第一识别电阻(未示出),控制器320通过第一识别电阻识别第一能量供给装置100,可选地,识别出第一能量供给装置100的具体型号。当电动工具300的控制器320判断电动工具300当前电性连接到第一能量供给装置100时,采取第一控制方法控制电机310,当电动工具300的控制器320判断电动工具300当前电性连接到第二能量供给装置200时,采取第二控制方法控制电机310,第一控制方法不同于第二控制方法。
参考如图9所示的锂碳电容器和锂电池的放电曲线,其中,锂碳电容器的电压与容量的关系如实线所示,锂电池的电压与容量的关系如虚线所示。可以理解,不像锂电池存在一段较为稳定的电压平台,锂碳电容器的电压值随着容量的下降而下降,这样,使用第一能量供给装置100供电时,会给电动工具300带来不好的体验感:刚开始动力十足,使用中逐渐疲软无后劲。参照图7的系统框图和图8的流程图,为了缓解这个问题,提升用户体验,控制器320采用以下的控制方法:
S1:获取第一能量供给装置100的电压V1;
电动工具300包括电压检测模块330,电压检测模块330检测第一能量供给装置100的电压并发送给控制器320。
S2:判断单体电芯121的平均电压V1/n是否大于等于第一电压阈值V0;
n是第一能量供给装置100中串联的单体电芯121的节数,V1/n即第一能量供给装置100中单体电芯121的平均电压。V0是第一电压阈值,在本实施例中,V0等于3.7V,V0也可以选取其他数值。控制器320计算并判断单体电芯 121的平均电压V1/n是否大于等于第一电压阈值V0,当V1/n大于等于V0时,跳转至S3;否则跳转至S7。
S3:获取电机310的实际转速w;
控制器320通过转速检测模块350检测电机310的实际转速w,获取电机310的实际转速w的方法不在此详述,具体地,可以利用霍尔传感器、反电动势法、测量电机绕组电流等方式检测电机310的转速。
S4:判断电机实际转速w与电机空载转速w0的比值w/w0是否大于等于堵转阈值z;
控制器320根据电机310的实际转速w和空转转速w0的比值判断电机310是否堵转,根据电动工具和电机的不同,判断堵转的阈值z也可以选取不同的值,例如1/4,1/5,1/6等。当w/w0大于等于z时,跳转至S5;否则跳转至S6。
S5:限制电流至第一电流阈值I0;
根据电流检测模块340反馈的实际电流和第一电流阈值I0,限制通过电机310的电流小于等于第一电流阈值I0,从而减缓第一能量供给装置100电压下降的速度。
S6:不限制电流,输出大扭矩;
由于电机310的实际转速w过低,可以认为电机310处于或者接近堵转状态。此时不限制电流,输出大扭矩以克服堵转状况。
S7:提高电压利用率。
此时第一能量供给装置100电压已处于较低水平,需要采用电机调制方法提高电压利用率,从而优化电机转速和带载能力,改善用户的使用体验。具体地,根据电机的不同,采用不同的控制方法。对于BLDC电机,可以采用扩展导通带和增加超前角的方式,例如,将120°导通带提升到150°或者180°导通带,加入15°或者30°超前角等。对于PMSM电机,可以采用过调制和弱磁的方法,提高转矩电流。最终,控制器320根据以上控制方法的计算结果,控制电机驱动电路的开关通断。
通过以上电机控制方式,可以使第一能量供给装置100的电压下降地更为缓慢,并在第一能量供给装置100的电压不足时,减少电压不足对于电动工具300的转速和带载能力的影响,提升用户体验。如图10所示,实线为未针对第一能量供给装置100进行调整的普通电机控制方法下的电机转速和能量供给装置剩余容量之间的关系,虚线为采用如上所述的可以看到电机控制方法下的电机转速和能量供给装置剩余容量之间的关系。不使用本控制方式,虽然在第一 能量供给装置100电量充足时,电机的转速更高,但是随着电量的下降,电机转速下降明显;而使用本控制方式,虽然在第一能量供给装置100电量充足时,电机的转速稍低,但是随着电量的下降,电机转速下降的斜率更小,也就是转速下降更为平缓,并且由于在电压不足时提高了电压利用率,一定程度上提升了电压不足时的转速。值得注意的是,对于不同的电动工具300,不同的电机310,以上控制方法的具体阈值和/或参数可能不同。
电动工具系统10还包括:第一充电设备400和第二充电设备500,分别用于给第一能量供给装置100和第二能量供给装置200充电。如上所述,不同型号的第一能量供给装置100都有相同的充电端子组件130和放电端子组件140,因此,不同型号的第一能量供给装置具有相同的充电接口,可以接受同一充电设备充电。第一充电设备400是大电流充电设备,与第一能量供给装置100的充电端子组件130连接时,对第一能量供给装置100充电。如上所述,不同型号的第二能量供给装置200都有相同的端子组件,因此,不同型号的第二能量供给装置200具有相同的充电接口,可以接受同一充电设备充电。第二充电设备500可以是常见的为锂电池包进行充电的充电座、充电桩等设备。第一充电设备400的端子组件匹配第一能量供给装置100的充电端子组件130,第二充电设备500的端子组件匹配第二能量供给装置200的端子组件。需要注意的是,一些第一能量供给装置100具备两个可充电的端子组件,也就是说,一些第一能量供给装置100包括用于实现慢充的第一端子组件150和用于实现快充的第二端子组件160,对于这些第一能量供给装置100,电动工具系统10的第一充电设备400可以通过第二端子组件160给第一能量供给装置100进行充电,电动工具系统10的第二充电设备500可以通过第一端子组件150给第一能量供给装置100进行充电。
可选地,电动工具系统10还包括第三充电设备600,第三充电设备600是既可以为第一能量供给装置100充电、也可以为第二能量供给装置200充电的通用型充电设备。如图11至12所示,第三充电设备600具有两个支撑部,分别是可以支撑第一能量供给装置100的第一支撑部611和可以支撑第二能量供给装置200的第二支撑部612。在一实施例中,两个支撑部可以背靠背地设置;在其他实施例中,两个支撑部也可以采取并排等其他的设置方式。第一支撑部610上设置有第一端子组件621,用于与第一能量供给装置100的充电端子组件130电性连接;第二支撑部上设置有第二端子组件622,用于与第二能量供给装置200的端子组件电性连接。在一实施例中,第三充电设备600具有两个充电 电路(未示出):第一充电电路,用于给所述第一能量供给装置100充电;第二充电电路,用于给所述第二能量供给装置200充电。可选地,第一充电电路设置于第一PCBA上,第二充电电路设置于第二PCBA上。两个PCBA封装在第三充电设备600的外壳内,相当于第三充电设备600内有两个相互独立的充电器,它们之间互不干涉。在另一实施例中,也可以在AC-DC之后采用两路DC-DC分别给第一能量供给装置100和第二能量供给装置200进行充电。当第一端子组件621与第一能量供给装置100的充电端子组件130电性连接时,第一充电电路给第一能量供给装置100充电,当第二端子组件622与第二能量供给装置200的端子组件电性连接时,第二充电电路给第二能量供给装置200充电。第一充电电路和第二充电电路可以同时为第一能量供给装置100和第二能量供给装置200充电。
可选地,电动工具系统10还可以包括一体式电动工具700。如图13所示,一体式电动工具700包括外壳710,电芯模组720,和充电端子组件730;本质上,一体式电动工具700是将第一能量供给装置100除去外壳,将电芯模组内置于一体式电动工具700的外壳710之中,并仅在一体式电动工具700的外壳710留出充电端子组件730的接口。可选地,一体式电动工具700的充电端子组件730的正、负极端子暴露于外壳710的表面;可选地,一体式电动工具700的充电端子组件730位于与充电设备连接的配合部的孔槽内。一体式电动工具700可以通过充电端子组件730连接前述的第一充电设备400和第三充电设备600进行充电。一体式电动工具700还包括电机740,用于将电能转化为机械能输出,从而实现一体式电动工具700的具体功能;和控制器750,用于控制电机740的运转和管理电芯模组720的充放电。一体式电动工具700的电芯模组120采用非对称电容器,或者更为具体地,锂碳电容器作为电芯。因此,一体式电动工具700具备高循环寿命,充电快,耐低温,放电能力强等优良的性能,提升了用户的使用体验。一体式电动工具700可以运用前述的充电控制方法、电机控制方法等,在此不再详述。
本公开的能量供给装置充电快,耐低温,能够承受大电流放电;电动工具系统可以同时适配上述能量供给装置和传统的电池包。
对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。

Claims (30)

  1. 一种为电动工具供电的能量供给装置,包括:
    外壳,可拆卸地与所述电动工具配合连接并由所述电动工具支撑;
    多个电芯,由所述能量供给装置的外壳支撑;
    充电端子组件,用于电性连接充电设备以给所述能量供给装置充电;
    放电端子组件,用于电性连接所述电动工具以给所述电动工具提供电能;
    其中,所述能量供给装置的充电速率大于等于6C。
  2. 如权利要求1所述的能量供给装置,其中,所述电芯的电阻大于等于0.3mΩ且小于等于3mΩ。
  3. 如权利要求1所述的能量供给装置,其中,所述能量供给装置的充电电流与所述能量供给装置的重量的比值大于等于15A/kg且小于等于200A/kg。
  4. 如权利要求1所述的能量供给装置,其中,所述能量供给装置的最高放电速率大于等于6C。
  5. 如权利要求1所述的能量供给装置,其中,所述多个电芯是非对称超级电容器。
  6. 如权利要求1所述的能量供给装置,其中,所述多个电芯分别是锂碳电容器。
  7. 如权利要求1所述的能量供给装置,其中,所述能量供给装置的工作温度大于等于零下40摄氏度,且小于等于零上70摄氏度。
  8. 如权利要求1所述的能量供给装置,其中,所述充电端子组件与所述放电端子组件为不同部件,当所述能量供给装置与所述电动工具配合连接时,所述能量供给装置可以通过所述充电设备充电。
  9. 如权利要求1所述的能量供给装置,其中,所述能量供给装置的最高放电电流约为400A。
  10. 如权利要求1所述的能量供给装置,其中,所述电动工具是电钻或者扫雪机。
  11. 一种电动工具系统,包括电动工具,第一能量供给装置,和第一充电设备:
    所述电动工具,包括:
    外壳,可拆卸地与第一能量供给装置配合连接;
    端子组件,用于与所述第一能量供给装置电性连接以获得电能;
    电机,用于将所述电能转化为机械能输出以实现所述电动工具的功能;
    控制器,至少用于控制所述电机运转;
    所述第一能量供给装置,包括:
    外壳,可拆卸地与所述电动工具配合连接并由所述电动工具支撑;
    多个电芯,由所述第一能量供给装置的外壳支撑;
    充电端子组件,用于电性连接所述第一充电设备以给所述第一能量供给装置充电;
    放电端子组件,用于电性连接所述电动工具以给所述电动工具提供电能;
    其中,所述第一能量供给装置的充电速率大于等于6C,所述第一能量供给装置的最高放电速率大于等于6C。
  12. 如权利要求11所述的电动工具系统,其中,所述多个电芯分别是非对称超级电容器。
  13. 如权利要求11所述的电动工具系统,其中,所述多个电芯分别是锂碳电容器。
  14. 如权利要求11所述的电动工具系统,其中,所述第一能量供给装置的充电电流与所述第一能量供给装置的重量的比值大于等于15A/kg且小于等于200A/kg。
  15. 如权利要求11所述的电动工具系统,其中,当所述电动工具连接所述第一能量供给装置时,所述控制器至少根据所述第一能量供给装置的电压控制所述电机,当所述第一能量供给装置的电压大于等于第一电压阈值时,限制所述电机的电流至第一电流阈值。
  16. 如权利要求11所述的电动工具系统,其中,所述第一能量供给装置还包括第一识别电阻,所述控制器通过所述第一识别电阻识别所述第一能量供给装置。
  17. 如权利要求11所述的电动工具系统,其中,所述第一能量供给装置的所述充电端子组件与所述放电端子组件为不同部件,当所述第一能量供给装置与所述电动工具配合连接时,所述第一能量供给装置可以通过所述第一充电设备充电。
  18. 如权利要求11所述的电动工具系统,所述电动工具系统还包括第二能量供给装置和第二充电设备:
    所述第二能量供给装置,包括:
    外壳,可拆卸地与所述电动工具配合连接并由所述电动工具支撑;
    多个锂电芯,由所述第二能量供给装置的外壳支撑;
    端子组件,用于电性连接所述电动工具以给所述电动工具提供电能,或者 电性连接第二充电设备以给所述第二能量供给装置充电。
  19. 如权利要求18所述的电动工具系统,其中,当所述电动工具连接所述第一能量供给装置时,所述控制器采取第一控制方法控制所述电机,当所述电动工具连接所述第二能量供给装置时,所述控制器采取第二控制方法控制所述电机,所述第一控制方法不同于所述第二控制方法。
  20. 如权利要求18所述的电动工具系统,所述电动工具系统还包括:
    第三充电设备,包括:
    第一端子组件,用于与所述第一能量供给装置的充电端子组件电性连接;
    第二端子组件,用于与所述第二能量供给装置的端子组件电性连接;
    第一充电电路,用于给所述第一能量供给装置充电;
    第二充电电路,用于给所述第二能量供给装置充电;
    当所述第一端子组件与所述第一能量供给装置的充电端子组件电性连接时,所述第一充电电路给所述第一能量供给装置充电,当所述第二端子组件与所述第二能量供给装置的端子组件电性连接时,所述第二充电电路给所述第二能量供给装置充电,所述第一充电电路和所述第二充电电路可以同时为所述第一能量供给装置和所述第二能量供给装置充电。
  21. 一种为电动工具供电的能量供给装置,包括:
    外壳,可拆卸地与所述电动工具配合连接并由所述电动工具支撑;
    电芯模组,由所述能量供给装置的外壳支撑;
    第一端子组件,用于电性连接所述电动工具以给所述电动工具提供电能,且用于电性连接第一类充电设备从而以第一充电速率给所述能量供给装置充电;
    第二端子组件,用于电性连接第二类充电设备从而以第二充电速率给所述能量供给装置充电;
    其中,所述第二充电速率大于所述第一充电速率。
  22. 如权利要求21所述的能量供给装置,其中,所述第二端子组件充电包括正极充电端子和负极充电端子,所述正极充电端子和所述负极充电端子暴露于外壳表面。
  23. 如权利要求21所述的能量供给装置,其中,所述第一充电速率小于等于5C;所述第二充电速率大于等于6C。
  24. 如权利要求21所述的能量供给装置,其中,所述第二充电速率大于等于所述第二充电速率的两倍。
  25. 如权利要求21所述的能量供给装置,其中,当所述能量供给装置与所述电动工具配合连接时,所述能量供给装置可以通过所述第二端子组件充电。
  26. 如权利要求22所述的能量供给装置,所述能量供给装置还包括:控制器和半导体元件,其中,所述控制器与所述半导体元件电性连接并至少检测所述电芯模组的正极和所述正极充电端子的电压;在所述正极充电端子的电压大于所述电芯模组的正极的电压时,所述半导体元件导通。
  27. 如权利要求26所述的能量供给装置,其中,在所述正极充电端子的电压小于所述电芯模组的正极的电压时,所述半导体元件阻止电流由所述电芯模组流向所述正极充电端子。
  28. 如权利要求21所述的能量供给装置,其中,所述电芯模组包括多个电芯,所述多个电芯分别是非对称超级电容器。
  29. 如权利要求28所述的能量供给装置,其中,所述多个电芯分别是锂碳电容器。
  30. 一种电动工具,包括:
    外壳,用于形成一个容纳腔;
    电机,容纳于所述容纳腔内,用于将所述电能转化为机械能输出以实现所述电动工具的功能;
    电芯模组,容纳于所述容纳腔内,用于至少给所述电机提供电能;
    充电端子组件,用于电性连接充电设备以给所述电芯模组充电;
    控制器,至少用于控制所述电机的运转和所述电芯模组的充放电;
    其中,所述电芯模组包括多个电芯,所述多个电芯分别是锂碳电容器。
PCT/CN2022/133095 2021-11-25 2022-11-21 能量供给装置以及电动工具系统 WO2023093656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22897739.3A EP4391284A1 (en) 2021-11-25 2022-11-21 Energy supply apparatus and electric tool system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111411053.9 2021-11-25
CN202111411053 2021-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/602,181 Continuation US20240208026A1 (en) 2021-11-25 2024-03-12 Energy supply apparatus and electric tool system

Publications (1)

Publication Number Publication Date
WO2023093656A1 true WO2023093656A1 (zh) 2023-06-01

Family

ID=86538840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133095 WO2023093656A1 (zh) 2021-11-25 2022-11-21 能量供给装置以及电动工具系统

Country Status (2)

Country Link
EP (1) EP4391284A1 (zh)
WO (1) WO2023093656A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162225A (zh) * 2015-09-06 2015-12-16 盐城工学院 一种外混自重构超级电容电池电路及快速充电控制方法
CN206259722U (zh) * 2016-11-18 2017-06-16 凌容新能源科技(上海)股份有限公司 一种快速充电的电动设备
CN208400721U (zh) * 2018-03-21 2019-01-18 博世电动工具(中国)有限公司 超级电池包和电动工具组件
CN109861368A (zh) * 2017-11-30 2019-06-07 苏州宝时得电动工具有限公司 供电装置和带有该供电装置的电动工具
WO2020168416A1 (en) * 2019-02-21 2020-08-27 Omachron Intellectual Property Inc. Cordless appliance, such as a surface cleaning apparatus, and a charging unit therefor
CN112259866A (zh) * 2020-11-06 2021-01-22 格力博(江苏)股份有限公司 电池包、电动工具及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162225A (zh) * 2015-09-06 2015-12-16 盐城工学院 一种外混自重构超级电容电池电路及快速充电控制方法
CN206259722U (zh) * 2016-11-18 2017-06-16 凌容新能源科技(上海)股份有限公司 一种快速充电的电动设备
CN109861368A (zh) * 2017-11-30 2019-06-07 苏州宝时得电动工具有限公司 供电装置和带有该供电装置的电动工具
CN208400721U (zh) * 2018-03-21 2019-01-18 博世电动工具(中国)有限公司 超级电池包和电动工具组件
WO2020168416A1 (en) * 2019-02-21 2020-08-27 Omachron Intellectual Property Inc. Cordless appliance, such as a surface cleaning apparatus, and a charging unit therefor
CN112259866A (zh) * 2020-11-06 2021-01-22 格力博(江苏)股份有限公司 电池包、电动工具及系统

Also Published As

Publication number Publication date
EP4391284A1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
US11837694B2 (en) Lithium-based battery pack
US9786877B2 (en) Battery pack of electric power tool
JP5959619B2 (ja) 手持ち式動力工具及び手持ち式動力工具用のバッテリパック
CN102457088B (zh) 电动工具系统
CN102452069B (zh) 电动工具系统
JP4624012B2 (ja) 電池パック
US20130314055A1 (en) Electrical charger for charging rechargeable power tools
CA2596779A1 (en) Rechargeable powered device
TW201011957A (en) Lithium ion battery pack charging system and device including the same
CN103050740A (zh) 一种电池组间串并联切换控制装置
WO2004050307A1 (ja) コードレス電動工具
JP2015508552A (ja) ハイブリッドバッテリーシステム
CA3119391C (en) Electric tool power supply having vehicle starting function
US20080166624A1 (en) Li-ion battery pack and method of outputting DC power supply from the Li-ion battery pack to a power hand tool
WO2023093656A1 (zh) 能量供给装置以及电动工具系统
CN203135551U (zh) 一种具有大电流输出高能量密度的移动工具锂电容加锂电池混合电源系统
US20240208026A1 (en) Energy supply apparatus and electric tool system
CN213602428U (zh) 基于超级电池电容供电的电动工具
CN118235307A (zh) 能量供给装置以及电动工具系统
WO2021115330A1 (zh) 电动车
CN218632320U (zh) 一种智能切换双电压电池包
US11837901B2 (en) Electric tool power supply having vehicle starting function
CN118017114A (zh) 电动工具、为电动工具提供电力的电池包
CN117584088A (zh) 电动工具
JP2007268162A (ja) 清掃用充電式ブラシ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022897739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897739

Country of ref document: EP

Effective date: 20240319