WO2023093648A1 - 一种眼球追踪模组及其制作方法、头戴式显示设备 - Google Patents
一种眼球追踪模组及其制作方法、头戴式显示设备 Download PDFInfo
- Publication number
- WO2023093648A1 WO2023093648A1 PCT/CN2022/132968 CN2022132968W WO2023093648A1 WO 2023093648 A1 WO2023093648 A1 WO 2023093648A1 CN 2022132968 W CN2022132968 W CN 2022132968W WO 2023093648 A1 WO2023093648 A1 WO 2023093648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- conductive film
- lens
- circuit
- eye tracking
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000002070 nanowire Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 239000012780 transparent material Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 23
- 238000007639 printing Methods 0.000 claims description 20
- 239000000178 monomer Substances 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 6
- 229920002799 BoPET Polymers 0.000 claims description 5
- 210000001508 eye Anatomy 0.000 description 66
- 238000002834 transmittance Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 12
- 239000004020 conductor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004424 eye movement Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 2
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000010017 direct printing Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 238000001028 reflection method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003183 myoelectrical effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010020 roller printing Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0187—Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
Definitions
- the present disclosure relates to wearable technology, in particular to an eye tracking module, a manufacturing method thereof, and a head-mounted display device.
- the existing head-mounted display device can be worn by the user on the head, and realizes augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR) and mixed reality (Mix Reality, MR) by emitting optical signals to the user's eyes. ) and other different effects.
- augmented reality Augmented Reality, AR
- virtual reality Virtual Reality, VR
- mixed reality Mat Reality, MR
- Eye-tracking technology can be implemented using optical recording methods.
- the principle of the optical recording method is to use an infrared camera to record the eye movement of the test subject, that is, to obtain an eye image that can reflect the eye movement, and extract eye features from the acquired eye image to establish an estimation model of the line of sight.
- the eye features may include: pupil position, pupil shape, iris position, iris shape, eyelid position, eye corner position, spot position (or Purchin's spot), etc.
- Optical recording methods include the pupil-corneal reflection method.
- the principle of the pupil-cornea reflection method is that a near-infrared light source shines on the eye, and the infrared camera takes pictures of the eye, and at the same time captures the reflection point of the light source on the cornea, that is, the spot, thereby obtaining an eye image with the spot.
- an infrared lighting system and an image acquisition system are generally installed on the head-mounted device.
- the infrared lighting system in order to obtain images of infrared spots when the eyeball rotates to different angles, the infrared lighting system generally consists of a plurality of infrared light sources arranged in sequence and embedded on the head-mounted device.
- the lines of the infrared lighting system are opaque, the opaque lines will block the user's field of vision. Therefore, the current VR/AR lines can only be arranged on the housing at the edge of the lens.
- the eye tracking device can also be a MEMS micro-electro-mechanical system, such as including a MEMS infrared scanning mirror, an infrared light source, and an infrared receiver; It can also be a myogalvanic detector, which detects eye movement through the detected myoelectric signal pattern by placing electrodes on the bridge of the nose, forehead, ears or earlobes.
- MEMS micro-electro-mechanical system such as including a MEMS infrared scanning mirror, an infrared light source, and an infrared receiver
- It can also be a myogalvanic detector, which detects eye movement through the detected myoelectric signal pattern by placing electrodes on the bridge of the nose, forehead, ears or earlobes.
- Embodiments of the present disclosure provide an eye tracking module, a manufacturing method thereof, and a head-mounted display device, which solve the problem of limited wiring layout on the lens, and realize that the wiring does not block the user's field of vision, thereby improving user experience.
- an eye tracking module including:
- a transparent conductive film is located on the optical path on one side of the lens;
- the transparent conductive film includes a substrate and a circuit, and the circuit is located on the substrate;
- the base material includes a transparent material, and the material of the circuit includes nanowires.
- the width of the wires in the circuit is less than or equal to 0.01mm.
- the substrate includes PVC film, PI film, PF film and PET film.
- At least one infrared lamp is further included, the infrared lamp is located on a side of the transparent conductive film away from the lens and is electrically connected to the circuit.
- an embodiment of the present disclosure provides a method for manufacturing an eye tracking module, including:
- the substrate includes a transparent material.
- the transparent conductive film before attaching the transparent conductive film to the lens, it also includes:
- the transparent conductive film is divided into pieces to form monomers.
- the transparent conductive film before attaching the transparent conductive film to the lens, it also includes:
- the transparent conductive film is shaped according to the curvature of the lens.
- the transparent conductive film before attaching the transparent conductive film to the lens, it also includes:
- the transparent conductive film before attaching the transparent conductive film to the lens, it also includes:
- At least one infrared lamp electrically connected to the circuit is formed on the side of the transparent conductive film provided with the circuit.
- an embodiment of the present disclosure provides a head-mounted display device, including the eye tracking module described in the first aspect.
- An embodiment of the present disclosure provides an eye tracking module, including the eye tracking module including a lens and a transparent conductive film.
- the transparent conductive film includes a base material and a circuit.
- the material of the circuit includes nanowires, that is, the nanowire material is used to form the circuit, so that the circuit has a high transmittance at least for visible light, and the transparent conductive film has a high transmittance for visible light at least.
- the problem of limited circuit layout on the lens is solved.
- the lines do not block visible light, the lines do not block the user's field of vision, which improves user experience.
- FIG. 1 is a top view of an eye tracking module circuit provided by an embodiment of the present disclosure
- Fig. 2 is a side view of the eye tracking module circuit shown in Fig. 1;
- Fig. 3 is a side view of an eye tracking module provided by an embodiment of the present disclosure.
- FIG. 4 is a flow chart of a manufacturing method of an eye tracking module provided by an embodiment of the present disclosure
- FIGs 5-7, Figure 9, and Figure 11 are schematic diagrams of the manufacturing process of an eye tracking module provided by an embodiment of the present disclosure
- Fig. 8 is a side view of the eye tracking module shown in Fig. 7;
- Figure 10 is a side view of the eye tracking module shown in Figure 9;
- Figure 12 is a side view of the eye tracking module shown in Figure 11;
- FIG. 13 is a flow chart of another method for making an eye tracking module provided by an embodiment of the present disclosure.
- FIG. 14 is a schematic diagram of a head-mounted display device provided by an embodiment of the present disclosure.
- the lines can only be arranged on the housing at the edge of the lens, not on the lens.
- the lens size of VR/AR helmets increases due to the increase in the viewing field of view, which limits and affects the circuit layout used in eye tracking technology. In other words, the lens is getting bigger and bigger, but the eyes will not be enlarged.
- the circuit is arranged on the housing at the edge of the lens, the infrared lamp is arranged on the housing at the edge of the lens, which affects the effect of eye tracking. Set the line on the lens, and the opaque line will block the user's field of vision.
- an embodiment of the present disclosure provides an eye tracking module, which includes an eye tracking module circuit.
- Figure 1 is a top view of an eye tracking module circuit provided by an embodiment of the present disclosure
- Figure 2 is a side view of the eye tracking module circuit shown in Figure 1, referring to Figure 1 and Figure 2,
- the eye tracking module includes eye tracking Module circuit
- the eye tracking module circuit includes a lens 10 and a transparent conductive film 11 .
- the lens 10 is a light-transmitting medium, which can be formed of materials such as glass or plastic.
- the transparent conductive film 11 is located on the optical path on one side of the lens 10 , and the light transmitted through the lens 10 passes through the transparent conductive film 11 .
- the light propagating through the lens 10 may include at least one of visible light and infrared light, for example.
- the transparent conductive film 11 includes a substrate 12 and a circuit 13 , and the circuit 13 is located on the substrate 12 .
- the substrate 12 includes a transparent material.
- the transparent material has a relatively high transmittance for visible light at least, and the transparent material may also have a relatively high transmittance for infrared light, such as 90%, 95% or 99%.
- the material of the wire 13 includes nanowires.
- the nanowire is a nanoscale wire.
- metal nanowires such as: Cu, Ni, Pt, Au, Ag, etc.
- ITO transparent electrode material which can be set to be transparent (translucent) flexible and bendable to prepare various optical components.
- nano-silver circuits made of silver materials are widely used.
- the lens 10 and the transparent conductive film 11 are spaced apart in FIG. 2 .
- the transparent conductive film 11 can be fixed on the lens 10 .
- other optical elements and/or adhesive layers may be arranged between the lens 10 and the transparent conductive film 11 .
- An embodiment of the present disclosure provides an eye tracking module.
- the eye tracking module includes an eye tracking module circuit.
- the eye tracking module circuit includes the eye tracking module including a lens 10 and a transparent conductive film 11 .
- the transparent conductive film 11 includes a substrate 12 and a circuit 13 .
- the material of the circuit 13 includes a nanowire, that is, the nanowire material is used to form the circuit 13, so that the circuit 13 has a relatively high transmittance at least for visible light, and the transparent conductive film 11 has a relatively high transmittance for at least visible light.
- the transparent conductive film 11 is arranged on the lens 10, which solves the problem of limited circuit layout on the lens 10. Moreover, since the line 13 will not block visible light, the line 13 will not block the user's field of vision, which improves the user's experience.
- the eye tracking module may also include components such as an infrared lamp, a main control unit, and an image acquisition unit.
- the width of the wires in the circuit 13 is less than or equal to 0.01mm. It can be understood that the smaller the width of the conductors in the circuit 13, the weaker the light shielding effect of the conductors in the circuit 13 is, and the larger the width of the conductors in the circuit 13 is, the stronger the shielding effect of the conductors in the circuit 13 is.
- the width of the wires in the circuit 13 is less than or equal to 0.01 mm, so as to reduce the light shielding effect of the wires in the circuit 13 and increase the transmittance of the circuit 13 , thereby increasing the transmittance of the transparent conductive film 11 . 0.01mm has been verified as a width that cannot be observed by human eyes. If it is greater than this value, it may be observed by users and affect user experience.
- the distance between adjacent wires in the line 13 will also affect the transmittance of the line 13 .
- the distance between adjacent conductors in the circuit 13 needs to be greater than a preset value, so as to prevent the distance between adjacent conductors in the circuit 13 from being too close to affect the passage of light.
- the substrate 12 includes PVC film, PI film, PF film and PET film.
- the main component of PVC film is polyvinyl chloride, which is a polymer material that uses a chlorine atom to replace a hydrogen atom in polyethylene.
- PF film is polyethylene film, which refers to the film produced with PF particles.
- PF film has moisture resistance and low moisture permeability.
- PF film is a kind of packaging film with comprehensive performance. It has good transparency and luster; it has good air tightness and fragrance retention; it has moderate moisture resistance, and its moisture permeability decreases at low temperatures.
- PET film has excellent mechanical properties, its strength and toughness are the best among all thermoplastics, and its tensile strength and impact strength are much higher than ordinary films; it has good stiffness and stable size, and is suitable for secondary processing such as printing and paper bags.
- PI film also known as polyimide film, is the best film insulating material in the world. It is made of pyromellitic dianhydride (PMDA) and diaminodiphenyl ether (DDE) in a strong polar solvent. It is formed by polycondensation and casting into a film and then imidized. It has excellent high and low temperature resistance, electrical insulation, adhesion, radiation resistance, and medium resistance.
- PET film, PI film, PF film and PVC film can be formed by roll-to-roll groove die printing, micro gravure printing or direct printing and other printing methods.
- the substrate 12 may also include a glass substrate, and the glass substrate may be formed by printing methods such as spray printing, shower printing, roller printing, scraping printing or direct printing.
- FIG. 3 is a side view of an eye tracking module provided by an embodiment of the present disclosure.
- the eye tracking module further includes at least one infrared lamp 14, and the infrared lamp 14 is located on the side of the transparent conductive film 11 away from the lens 10.
- the lamp 14 is electrically connected to the line 13 .
- the circuit 13 provides working voltage and/or working current for the infrared lamp 14, so as to drive the infrared lamp 14 to emit infrared light, thereby realizing eye tracking.
- the infrared lamp 14 can be a traditional infrared lamp, or an infrared luminous body formed by printing. This kind of infrared illuminant is invisible, and the experience for users will be more imperceptible.
- FIG. 4 is a flow chart of a method for manufacturing an eye tracking module provided by an embodiment of the present disclosure.
- FIG. 11 is a schematic diagram of the manufacturing process of an eye tracking module provided by an embodiment of the present disclosure
- FIG. 8 is a side view of the eye tracking module shown in FIG. 7
- FIG. 10 is a side view of the eye tracking module shown in FIG. 9
- Figure 12 is a side view of the eye tracking module shown in Figure 11, referring to Figure 1- Figure 12, the method includes:
- the base material 12 includes a transparent material.
- the circuit 13 may be printed on the substrate 12 by nanowire printing technology. After the circuit 13 is printed on the substrate 12 using nanowires, the circuit 13 is in a transparent state.
- the nanowire printing technology may include at least one of screen printing technology, pad printing technology, transfer printing technology and printing technology.
- An embodiment of the present disclosure provides a method for manufacturing an eye tracking module, which is used to form the eye tracking module in the above embodiments.
- the method includes: providing a base material 12 , printing a circuit 13 onto the base material 12 by using nanowires to form a transparent conductive film 11 , and attaching the transparent conductive film 11 to the lens 10 .
- the nanowire material is used to form the circuit 13, so that the circuit 13 has a high transmittance at least for visible light, and the transparent conductive film 11 has a high transmittance at least for visible light.
- the transparent conductive film 11 It is arranged on the lens 10 to solve the problem of limited circuit layout on the lens 10 .
- the line 13 will not block visible light, the line 13 will not block the user's field of vision, which improves the user's experience.
- Fig. 13 is a flow chart of another method for making an eye tracking module provided by an embodiment of the present disclosure. Referring to Figs. 1-13, the method includes:
- the circuit 13 may be printed on the substrate 12 in an imposition manner by nanowire printing technology. After the circuits 13 are printed onto the substrate 12 by using nanowires, a plurality of circuits 13 are formed on the substrate 12 . It can be seen that on one base material 12, multiple circuits 13 can be formed simultaneously in the same process step, so that the manufacturing efficiency of the eye tracking module can be improved.
- the transparent conductive film 11 formed in the above step S202 is divided into pieces to form a plurality of monomers, and the formed monomers (ie, single transparent conductive films) may include at least one circuit 13 .
- the operation on the transparent conductive film 11 in the subsequent steps may be the operation on the monomer.
- the transparent conductive film 11 is flat.
- the surface of lens 10 is generally a curved surface (for a spherical lens, the surface of lens 10 can include a spherical surface; for an aspheric lens, the surface of lens 10 can include an aspheric surface), in one embodiment, the plane shape can be
- the transparent conductive film 11 is attached to the lens 10, and the transparent conductive film 11 is deformed during the attachment process by the adhesive force.
- the transparent conductive film 11 is first bent according to the curvature of the lens 10, that is, the transparent conductive film 11 is bent according to the curvature of the lens 10. forming.
- the shape of the transparent conductive film 11 is compatible with the curvature of the lens 10, and when the transparent conductive film 11 is attached to the lens 10, there is no need to apply excessive sticking force , to avoid damage to the circuit 13 and the lens 10 in the transparent conductive film 11 caused by excessive adhesive force.
- the shape of the transparent conductive film 11 is a rectangle.
- the transparent conductive film 11 can be cut according to the shape and size of the lens.
- a circular transparent conductive film 11 is formed as shown in FIG. 11 .
- the circular transparent conductive film 11 shown in FIG. 11 is only an example.
- the transparent conductive film 11 is divided into pieces to form a monomer, the monomer is shaped according to the curvature of the lens 10, and the transparent conductive film 11 is formed according to the shape and size of the lens. cutting, and then attaching the transparent conductive film 11 to the lens 10 . It can be understood that, in other implementation manners, one of the above steps S203, S204 and S205 may also be omitted, or both of the above steps S203, S204 and S205 may be omitted.
- the manufacturing method of the eye tracking module before attaching the transparent conductive film 11 to the lens 10, further includes: forming a circuit 13 on the side of the transparent conductive film 11 provided with the circuit 13. 13 is electrically connected to at least one infrared lamp 14 .
- the circuit 13 provides working voltage and/or working current for the infrared lamp 14, so as to drive the infrared lamp 14 to emit infrared light, thereby realizing eye tracking.
- FIG. 14 is a schematic diagram of a head-mounted display device provided by an embodiment of the present disclosure.
- the head-mounted display device includes a lens 10, a housing 22 and a headband 23.
- the device also includes an eye-tracking module as described in implementations of the present disclosure. Since the head-mounted display device provided by this embodiment includes the eye tracking module in the above embodiment, it has the beneficial effect of the above eye tracking module, that is, it solves the problem of limited circuit layout on the lens, and realizes that the circuit does not It will block the user's field of vision and improve the user's experience.
- the eye tracking module provided by the embodiments of the present disclosure can be applied to a head-mounted display device, and the circuit is formed by using nanowire material, so that the circuit has a high transmittance at least for visible light, and the transparent conductive film is at least for visible light With high transmittance, the transparent conductive film is arranged on the lens 10, which solves the problem of limited circuit layout on the lens. Moreover, the lines will not block visible light, and the lines will not block the user's field of vision, which improves user experience.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Eye Examination Apparatus (AREA)
- Eyeglasses (AREA)
Abstract
一种眼球追踪模组及其制作方法、头戴式显示设备,眼球追踪模组包括:透镜(10);透明导电薄膜(11),位于透镜(10)的一侧的光学路径上;透明导电薄膜(11)包括基材(12)和线路(13),线路(13)位于基材(12)上;基材(12)包括透明材料,线路(13)的材料包括纳米线。
Description
交叉援引
本公开要求于2021年11月26日提交中国专利局、申请号为2021114208541、申请名称“一种眼球追踪模组及其制作方法、头戴式显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及可穿戴技术,尤其涉及一种眼球追踪模组及其制作方法、头戴式显示设备。
随着科技的发展,头戴式显示设备得到了广泛的应用。现有的头戴式显示设备可供用户佩戴于头部,通过向用户眼睛发射光学信号,实现增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)和混合现实(Mix Reality,MR)等不同的效果。
眼球追踪技术可以采用光学记录法实现。光学记录法的原理是,利用红外相机记录被测试者的眼睛运动情况,即获取能够反映眼睛运动的眼部图像,从获取到的眼部图像中提取眼部特征,以建立视线的估计模型。其中,眼部特征可以包括:瞳孔位置、瞳孔形状、虹膜位置、虹膜形状、眼皮位置、眼角位置、光斑位置(或者普尔钦斑)等。光学记录法包括瞳孔-角膜反射法。瞳孔-角膜反射法的原理是,近红外光源照向眼睛,由红外相机对眼部进行拍摄,同时拍摄到光源在角膜上的反射点即光斑,由此获取到带有光斑的眼部图像。
为了实现眼球追踪,一般在头戴式设备上设置红外照明系统与图像采集系统。其中,为了在眼球旋转至不同角度时均能采到红外光斑的图片,红外照明系统一般由多个依次排列并镶嵌于头戴式设备上的红外光源组成。
由于红外照明系统的线路是不透明的,不透明的线路会遮挡用户的视野,故,当前VR/AR中线路只能布置于透镜边缘的壳体上。
当然,除了光学记录法外,眼球追踪装置还可以是MEMS微机电系统,例如包括MEMS红外扫描反射镜、红外光源、红外接收器;又或者是电容传感器,其通过眼球与电容极板之间的电容值来检测眼球运动;还可以是肌电流检测器,其通过在鼻梁、额头、耳朵或耳垂处放置电极,通过检测的肌电流信号模式来检测眼球运动。
发明内容
本公开实施例提供一种眼球追踪模组及其制作方法、头戴式显示设备,解决了透镜上线路布局受限的问题,以及实现线路不会遮挡用户的视野,提高了用户的体验。
第一方面,本公开实施例提供一种眼球追踪模组,包括:
透镜;
透明导电薄膜,位于所述透镜的一侧的光学路径上;所述透明导电薄膜包括基材和线路,所述线路位于所述基材上;
所述基材包括透明材料,所述线路的材料包括纳米线。
可选地,所述线路中导线的宽度小于或者等于0.01mm。
可选地,所述基材包括PVC薄膜、PI薄膜、PF薄膜和PET薄膜。
可选地,还包括至少一个红外灯,所述红外灯位于所述透明导电薄膜远离所述透镜一侧,与所述线路电连接。
第二方面,本公开实施例提供一种眼球追踪模组的制作方法,包括:
提供基材;
采用纳米线将线路印刷至所述基材上,形成透明导电薄膜;
将所述透明导电薄膜贴装至透镜上;
其中,所述基材包括透明材料。
可选地,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:
将所述透明导电薄膜分片形成单体。
可选地,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:
将所述透明导电薄膜按照所述透镜的曲率进行成型。
可选地,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:
将所述透明导电薄膜按照所述透镜的形状尺寸进行裁切。
可选地,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:
在所述透明导电薄膜设置有所述线路的一侧形成与所述线路电连接的至少一个红外灯。
第三方面,本公开实施例提供一种头戴式显示设备,包括第一方面所述的眼球追踪模组。
本公开实施例提供一种眼球追踪模组,包括眼球追踪模组包括透镜和透明导电薄膜。透明导电薄膜包括基材和线路。线路的材料包括纳米线,即,采用纳米线材料来形成线路,从而使得线路至少对于可见光具有较高的透过率,透明导电薄膜至少对于可见光具有较高的透过率,将透明导电薄膜设置于透镜上, 解决了透镜上线路布局受限的问题。且由于线路不会对可见光造成遮挡,线路不会遮挡用户的视野,提高了用户的体验。
图1为本公开实施例提供的一种眼球追踪模组电路的俯视图;
图2为图1中所示眼球追踪模组电路的侧视图;
图3为本公开实施例提供的一种眼球追踪模组的侧视图;
图4为本公开实施例提供的一种眼球追踪模组的制作方法流程图;
图5-图7,图9,图11为本公开实施例提供的一种眼球追踪模组的制作过程示意图;
图8为图7中所示眼球追踪模组的侧视图;
图10为图9中所示眼球追踪模组的侧视图;
图12为图11中所示眼球追踪模组的侧视图;
图13为本公开实施例提供的另一种眼球追踪模组的制作方法流程图;
图14为本公开实施例提供的一种头戴式显示设备的示意图。
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
当前VR/AR中线路只能布置于透镜边缘的壳体上,而不能布置在透镜上。 VR/AR头盔的透镜尺寸因观看视野需求增大随之增大,从而对眼球追踪技术所用线路布局产生了限制和影响。也就是说,透镜越做越大,但是的眼睛不会增大。如果将线路布置于透镜边缘的壳体上,红外灯布置于透镜边缘的壳体上,影响眼球追踪的效果。将线路设置于透镜上,不透明的线路会遮挡用户的视野。
针对上述问题,本公开实施例提供一种眼球追踪模组,眼球追踪模组包括眼球追踪模组电路。图1为本公开实施例提供的一种眼球追踪模组电路的俯视图,图2为图1中所示眼球追踪模组电路的侧视图,参考图1和图2,眼球追踪模组包括眼球追踪模组电路,眼球追踪模组电路包括透镜10和透明导电薄膜11。透镜10为透光介质,可以采用玻璃或者塑料等材料形成。透明导电薄膜11位于透镜10的一侧的光学路径上,透过透镜10传播的光线穿过透明导电薄膜11。穿过透镜10传播的光线例如可以包括可见光和红外光中的至少一者。透明导电薄膜11包括基材12和线路13,线路13位于基材12上。基材12包括透明材料,透明材料至少对可见光具有较高的透过率,透明材料还可以对红外光具有较高的透过率,例如90%,95%或者99%的透过率。线路13的材料包括纳米线。
其中,纳米线是一种纳米尺度的线。根据组成材料的不同,金属纳米线(如:Cu,Ni,Pt,Au,Ag等)可以被用来制作超小电路,其除了具有优良的导电性之外,还具有优异的透光性、耐曲挠性,因此已逐渐替代传统ITO透明电极的材料,可设置为透明(半透明)柔性可弯折各类光学零部件制备。以纳米线、水性树脂、分散剂、助剂和溶剂水复配而成的一种环保型导电油墨,通过使用一种高粘度、低固含量的纳米线印刷膏并配合如下对应基材的印刷技术,固化制得透明(半透明)纳米线导电印刷层,最终成为眼球追踪所需的透明(半透 明)导电电路。目前使用比较广泛的是银材料制作的纳米银电路。
需要说明的是,为了清晰起见,图2中透镜10和透明导电薄膜11之间间隔设置。在一实施方式中,透明导电薄膜11可以固定于透镜10上。在另一实施方式中,透镜10和透明导电薄膜11之间还可以设置其他光学元件和/或粘接层。
本公开实施例提供一种眼球追踪模组,眼球追踪模组包括眼球追踪模组电路,眼球追踪模组电路包括眼球追踪模组包括透镜10和透明导电薄膜11。透明导电薄膜11包括基材12和线路13。线路13的材料包括纳米线,即,采用纳米线材料来形成线路13,从而使得线路13至少对于可见光具有较高的透过率,透明导电薄膜11至少对于可见光具有较高的透过率,将透明导电薄膜11设置于透镜10上,解决了透镜10上线路布局受限的问题。且由于线路13不会对可见光造成遮挡,线路13不会遮挡用户的视野,提高了用户的体验。
可以理解的是,为了实现完整的眼球追踪功能,除了眼球追踪模组电路外,眼球追踪模组还可以包括红外灯、主控单元和图像获取单元等部件。
可选地,线路13中导线的宽度小于或者等于0.01mm。可以理解的是,线路13中导线的宽度越小,则线路13中导线对光线的遮挡作用越弱,线路13中导线的宽度越大,则线路13中导线对光线的遮挡作用越强。本公开实施例中,线路13中导线的宽度小于或者等于0.01mm,以减轻线路13中导线对光线的遮挡作用,增加线路13的透过率,从而增加透明导电薄膜11的透过率。0.01mm被验证为人眼无法观察到的宽度,如果大于这个数值,则可能会被用户观察到,影响用户体验。
线路13中相邻导线之间的距离也会对线路13的透过率产生影响。通常地, 线路13中相邻导线之间的距离需要大于预设值,防止线路13中相邻导线之间距离过近,影响光线的通过。
可选地,基材12包括PVC薄膜、PI薄膜、PF薄膜和PET薄膜。其中,PVC薄膜主要成分为聚氯乙烯,是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。PF薄膜即聚乙烯薄膜,是指用PF颗粒生产的薄膜。PF薄膜具有防潮性,透湿性小。PF薄膜是一种性能比较全面的包装薄膜。其透明性好,有光泽;具有良好的气密性和保香性;防潮性中等,在低温下透湿率下降。PET薄膜的机械性能优良,其强韧性是所有热塑性塑料中最好的,抗张强度和抗冲击强度比一般薄膜高得多;且挺力好,尺寸稳定,适于印刷、纸袋等二次加工。PI薄膜也称为聚酰亚胺薄膜,是世界上性能最好的薄膜类绝缘材料,由均苯四甲酸二酐(PMDA)和二胺基二苯醚(DDE)在强极性溶剂中经缩聚并流延成膜再经亚胺化而成。具有优良的耐高低温性、电气绝缘性、粘结性、耐辐射性、耐介质性,能在-269℃~280℃的温度范围内长期使用,短时可达到400℃的高温。特别适宜用作柔性印制电路板基材和各种耐高温电机电器绝缘材料。其中,PET薄膜、PI薄膜、PF薄膜和PVC薄膜可以采用辊对辊槽模具印刷、微凹版印刷或直接打印等印刷方式形成。基材12还可以包括玻璃基材,玻璃基材可以采取喷印、淋印、辊印、刮印或直接打印等印刷方式形成。
图3为本公开实施例提供的一种眼球追踪模组的侧视图,参考图3,眼球追踪模组还包括至少一个红外灯14,红外灯14位于透明导电薄膜11远离透镜10一侧,红外灯14与线路13电连接。线路13为红外灯14提供工作电压和/或工作电流,从而驱动红外灯14发射红外光,进而实现眼球追踪。其中,红外灯14可以采用传统的红外灯,或者,采用印刷方式形成的红外发光体。这种红 外发光体具有不可见性,对于用户来说体验会更加具备无感性。
基于同样的发明构思,本公开实施例还提供一种眼球追踪模组的制作方法,图4为本公开实施例提供的一种眼球追踪模组的制作方法流程图,图5-图7,图9,图11为本公开实施例提供的一种眼球追踪模组的制作过程示意图,图8为图7中所示眼球追踪模组的侧视图,图10为图9中所示眼球追踪模组的侧视图,图12为图11中所示眼球追踪模组的侧视图,参考图1-图12,该方法包括:
S101、提供基材12。
其中,基材12包括透明材料。
S102、采用纳米线将线路13印刷至基材12上,形成透明导电薄膜11。
本步骤中,例如可以通过纳米线印刷技术将线路13印刷至基材12上,线路13采用纳米线印刷至基材12上后,线路13呈透明状态。
其中,纳米线印刷技术可以包括丝印技术、移印技术、转印技术和打印技术中的至少一个。
S103、将透明导电薄膜11贴装至透镜10上。
本公开实施例提供一种眼球追踪模组的制作方法,用于形成上述实施例中的眼球追踪模组。该方法包括:提供基材12,采用纳米线将线路13印刷至基材12上,形成透明导电薄膜11,将透明导电薄膜11贴装至透镜10上。本公开实施例中,采用纳米线材料来形成线路13,从而使得线路13至少对于可见光具有较高的透过率,透明导电薄膜11至少对于可见光具有较高的透过率,将透明导电薄膜11设置于透镜10上,解决了透镜10上线路布局受限的问题。且由于线路13不会对可见光造成遮挡,线路13不会遮挡用户的视野,提高了用户的体验。
图13为本公开实施例提供的另一种眼球追踪模组的制作方法流程图,参考图1-图13,该方法包括:
S201、提供基材12。
S202、采用纳米线将线路13印刷至基材12上,形成透明导电薄膜11。
本步骤中,例如可以通过纳米线印刷技术将线路13按照拼版的方式印刷至基材12上。线路13采用纳米线印刷至基材12上后,基材12上形成多个线路13。可见,在一个基材12上,可以在同一工艺步骤中同时形成多个线路13,从而可以提高眼球追踪模组的制作效率。
S203、将透明导电薄膜11分片形成单体。
本步骤中,将上述步骤S202形成的透明导电薄膜11分片形成多个单体,分片后形成的单体(即单体透明导电薄膜)上可以包括至少一个线路13。后续步骤中对于透明导电薄膜11的操作可以为对单体的操作。
S204、将透明导电薄膜11按照透镜10的曲率进行成型。
如图8所示,在成型之前,透明导电薄膜11呈平面状。而透镜10的表面通常为曲面(对于球面透镜而言,透镜10的表面可以包括球面;对于非球面透镜而言,透镜10的表面可以包括非球面),在一实施方式中,可以将平面状的透明导电薄膜11贴附到透镜10,通过贴附力使透明导电薄膜11在贴附的过程中发生形变。在本步骤中,如图10所示,在透明导电薄膜11贴附到透镜10之前,先按照透镜10的曲率对透明导电薄膜11进行弯曲,即,将透明导电薄膜11按照透镜10的曲率进行成型。则,在透明导电薄膜11贴附到透镜10之前,透明导电薄膜11的形状和透镜10的曲率相适配,在将透明导电薄膜11贴附到透镜10时,无需施加过大的贴附力,避免过大的贴附力对透明导电薄膜11中 的线路13以及透镜10造成损伤。
S205、将透明导电薄膜11按照透镜的形状尺寸进行裁切。
如图9所示,在裁切之前,透明导电薄膜11的形状为矩形。为了适配透镜的形状尺寸。可以将透明导电薄膜11按照透镜的形状尺寸进行裁切。形成如图11所示圆形的透明导电薄膜11。当然,图11所示的圆形的透明导电薄膜11仅为一种示例,在透镜的形状尺寸发生变化时,裁切所形成的透明导电薄膜11的形状对应发生变化。
S206、将透明导电薄膜11贴装至透镜10上。
本公开实施例提供的制作方法,在上述实施例的基础上,将透明导电薄膜11分片形成单体,将单体按照透镜10的曲率进行成型,将透明导电薄膜11按照透镜的形状尺寸进行裁切,然后再将透明导电薄膜11贴装至透镜10上。可以理解是,在其他实施方式中,还可以省略上述步骤S203、步骤S204和S205中的一者,或者,省略上述步骤S203、步骤S204和S205中的两者。
可选地,在另一实施方式中,在将透明导电薄膜11贴装至透镜10上之前,眼球追踪模组的制作方法还包括:在透明导电薄膜11设置有线路13的一侧形成与线路13电连接的至少一个红外灯14。线路13为红外灯14提供工作电压和/或工作电流,从而驱动红外灯14发射红外光,进而实现眼球追踪。
图14为本公开实施例提供的一种头戴式显示设备的示意图的头戴式显示设备,参考图14,头戴式显示设备包括透镜10、壳体22和头带23,头戴式显示设备还包括如本公开实施中所述的眼球追踪模组。由于本实施例提供的头戴式显示设备包括上述实施例中的眼球追踪模组,因此具有上述眼球追踪模组的有益效果,即,解决了透镜上线路布局受限的问题,以及实现线路不会遮挡用 户的视野,提高了用户的体验。
注意,上述仅为本公开的较佳实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。
本公开实施例所提供的眼球追踪模组可应用于头戴式显示设备中,通过采用纳米线材料来形成线路,从而使线路至少对于可见光具有较高的透过率,透明导电薄膜至少对于可见光具有较高的透过率,将透明导电薄膜设置于透镜10上,解决了透镜上线路布局受限的问题。而且,线路不会对可见光造成遮挡,线路不会遮挡用户的视野,提高了用户的体验。
Claims (10)
- 一种眼球追踪模组,包括:透镜;透明导电薄膜,位于所述透镜的一侧的光学路径上;所述透明导电薄膜包括基材和线路,所述线路位于所述基材上;所述基材包括透明材料,所述线路的材料包括纳米线。
- 根据权利要求1所述的眼球追踪模组,其中,所述线路中导线的宽度小于或者等于0.01mm。
- 根据权利要求1所述的眼球追踪模组,其中,所述基材包括PVC薄膜、PI薄膜、PE薄膜和PET薄膜。
- 根据权利要求1所述的眼球追踪模组,其中,还包括至少一个红外灯,所述红外灯位于所述透明导电薄膜远离所述透镜一侧,与所述线路电连接。
- 一种眼球追踪模组的制作方法,包括:提供基材;采用纳米线将线路印刷至所述基材上,形成透明导电薄膜;将所述透明导电薄膜贴装至透镜上;其中,所述基材包括透明材料。
- 根据权利要求5所述的方法,其中,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:将所述透明导电薄膜分片形成单体。
- 根据权利要求5所述的方法,其中,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:将所述透明导电薄膜按照所述透镜的曲率进行成型。
- 根据权利要求5所述的方法,其中,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:将所述透明导电薄膜按照所述透镜的形状尺寸进行裁切。
- 根据权利要求5所述的方法,其中,在将所述透明导电薄膜贴装至所述透镜上之前,还包括:在所述透明导电薄膜设置有所述线路的一侧形成与所述线路电连接的至少一个红外灯。
- 一种头戴式显示设备,包括权利要求1-4任一项所述的眼球追踪模组。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111420854.1 | 2021-11-26 | ||
CN202111420854.1A CN116184663A (zh) | 2021-11-26 | 2021-11-26 | 一种眼球追踪模组及其制作方法、头戴式显示设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023093648A1 true WO2023093648A1 (zh) | 2023-06-01 |
Family
ID=86450993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/132968 WO2023093648A1 (zh) | 2021-11-26 | 2022-11-18 | 一种眼球追踪模组及其制作方法、头戴式显示设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116184663A (zh) |
WO (1) | WO2023093648A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220359A (en) * | 1990-07-24 | 1993-06-15 | Johnson & Johnson Vision Products, Inc. | Lens design method and resulting aspheric lens |
CN104992781A (zh) * | 2015-07-10 | 2015-10-21 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种石墨烯基三元复合材料的制备方法 |
CN106598260A (zh) * | 2017-02-06 | 2017-04-26 | 上海青研科技有限公司 | 眼球追踪装置、采用该眼球追踪装置的vr设备和ar设备 |
US20180217400A1 (en) * | 2017-01-30 | 2018-08-02 | Jacob Kon | Composite lens structure and method for prevention of condensation for use in eyewear |
CN211014845U (zh) * | 2019-12-25 | 2020-07-14 | 常州欣盛半导体技术股份有限公司 | 一种眼球追踪感测器的线路结构 |
CN211427305U (zh) * | 2019-12-25 | 2020-09-04 | 常州欣盛半导体技术股份有限公司 | 一种眼球追踪感测器的多层线路结构 |
-
2021
- 2021-11-26 CN CN202111420854.1A patent/CN116184663A/zh active Pending
-
2022
- 2022-11-18 WO PCT/CN2022/132968 patent/WO2023093648A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220359A (en) * | 1990-07-24 | 1993-06-15 | Johnson & Johnson Vision Products, Inc. | Lens design method and resulting aspheric lens |
CN104992781A (zh) * | 2015-07-10 | 2015-10-21 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种石墨烯基三元复合材料的制备方法 |
US20180217400A1 (en) * | 2017-01-30 | 2018-08-02 | Jacob Kon | Composite lens structure and method for prevention of condensation for use in eyewear |
CN106598260A (zh) * | 2017-02-06 | 2017-04-26 | 上海青研科技有限公司 | 眼球追踪装置、采用该眼球追踪装置的vr设备和ar设备 |
CN211014845U (zh) * | 2019-12-25 | 2020-07-14 | 常州欣盛半导体技术股份有限公司 | 一种眼球追踪感测器的线路结构 |
CN211427305U (zh) * | 2019-12-25 | 2020-09-04 | 常州欣盛半导体技术股份有限公司 | 一种眼球追踪感测器的多层线路结构 |
Also Published As
Publication number | Publication date |
---|---|
CN116184663A (zh) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107025007B (zh) | 触控面板及其立体盖板 | |
CN105224115B (zh) | 曲面触控面板及可穿戴设备 | |
US20140085865A1 (en) | Microlens array film and display device including the same | |
CN104199570B (zh) | 触控屏的制作方法及触控屏 | |
CN105518516B (zh) | 音频换能器的隔离 | |
CN108064350A (zh) | 光学镜头、摄像头模组及终端 | |
CN105335027B (zh) | 电容式触控结构和电容式触摸屏及其制备方法 | |
CN108897449A (zh) | 导电层叠结构及其制备方法、显示装置 | |
US20190220117A1 (en) | Capacitive sensor | |
CN107239181A (zh) | 触摸面板传感器用构件以及触摸面板 | |
TW201421321A (zh) | 應用在觸控面板的黏合層及其製備方法 | |
WO2023093648A1 (zh) | 一种眼球追踪模组及其制作方法、头戴式显示设备 | |
JPWO2018101209A1 (ja) | 透明電極部材およびその製造方法、ならびに該透明電極部材を用いた静電容量式センサ | |
CN105242799B (zh) | 曲面触控显示模组及可穿戴设备 | |
RU2758912C1 (ru) | Система беспроводной передачи мощности и устанавливаемое на голове устройство, снабженное такой системой | |
CN104360778A (zh) | 一种石墨烯电容屏及其制作方法 | |
CN204575983U (zh) | 立体影像显示屏 | |
CN212569705U (zh) | 一种追踪眼球的镜片 | |
TWI769480B (zh) | 眼球追蹤結構、電子裝置及智能眼鏡 | |
CN205540650U (zh) | 触控面板及其立体盖板 | |
JP2013208862A (ja) | 導電パターンが積層された積層構造体及びその製造方法並びに該積層構造体を備えるタッチパネル | |
CN105093542A (zh) | 立体影像显示屏 | |
CN206236047U (zh) | 触控屏 | |
CN215344791U (zh) | 眼球仿真摄像机及仿真机器人 | |
CN109002206A (zh) | 触控结构、显示装置及触控结构的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22897731 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024531433 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |