WO2023093572A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023093572A1
WO2023093572A1 PCT/CN2022/131966 CN2022131966W WO2023093572A1 WO 2023093572 A1 WO2023093572 A1 WO 2023093572A1 CN 2022131966 W CN2022131966 W CN 2022131966W WO 2023093572 A1 WO2023093572 A1 WO 2023093572A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
forwarding
time
message
Prior art date
Application number
PCT/CN2022/131966
Other languages
English (en)
French (fr)
Inventor
李奎奎
曾清海
孙飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023093572A1 publication Critical patent/WO2023093572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the traditional repeater is composed of radio unit (radio unit, RU) module, does not perform adaptive beamforming (beamforming, BF) on the user access side, usually uses static beamforming with a fixed direction, and manually manage.
  • Smart repeater can realize signal amplification and forwarding operations, for example, it can support uplink and downlink perception and dynamic time division duplex (time division duplex, TDD), configurable bandwidth, beam sensing, access side beamforming (beamforming, BF), uplink (uplink, UL) or downlink (downlink, DL) forwarding power control and dynamic switching, etc.
  • the SR is also different from the traditional repeater in architecture.
  • a separate mobile terminal (MT) module is added to receive and feed back the base station control signaling.
  • MT mobile terminal
  • the current research on SR still lacks corresponding protocol standards in many aspects, such as the design of the SR protocol stack, initial access, authentication design, and the update and changes of system information (SI) after the introduction of SR and network How the device sends control information to the SR, and what configurations are included in the control information, and so on.
  • the embodiment of the present application discloses a communication method and device. By applying the method to a smart repeater, intelligent forwarding of beams by the relay can be realized.
  • the first aspect of the embodiment of the present application discloses a communication method, including:
  • the first node generates node configuration information
  • the first node sends the node configuration information to the second node, where the node configuration information is used to convert the first beam set of the first node to the second beam set of the second node, and the The first set of beams and the second set of beams each include at least one beam;
  • the first node transmits the first set of beams.
  • the first node generates node configuration information and sends the node configuration information to the second node.
  • the second node can configure according to the node configuration information.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing.
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming parameter information supported by the second node, the first Two-node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the time-frequency resource location where the first node sends control information to the second node, and the beamforming parameter
  • the information includes one or more of a phase offset, an amplitude, and an index, wherein the index indicates a phase offset and/or amplitude parameter.
  • the first node sends node configuration information to the second node.
  • the second node can set the uplink and downlink forwarding power, filter Passband bandwidth and gain of the module, as well as possible stopband suppression and other parameters, so as to better forward each beam of the second beam set.
  • the second node may also detect the control signal sent by the first node at the indicated time-frequency position according to the timing information of the control information, and at the same time indicate that the second node will not blindly forward the signal sent by the first node to the second node. Two-node control signal.
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the second node, time forwarding pattern information of the second node, Direction forwarding pattern information;
  • the first duration information indicates the usage duration of the first beamforming parameter, where the usage duration of the first beamforming parameter is equal to the transmission duration of the first beam in the second beamset, and the first beamforming parameter
  • the indication information indicates the number of beams in the second beam set
  • the time forwarding pattern information of the second node indicates the time position of the forwarded beam in the second beam set
  • the direction forwarding pattern information of the second node indicates Forwarding beamforming parameters used by each beam in the second set of beams.
  • the first node sends node configuration information to the second node.
  • the second node receives the node configuration information from the first node, it can also set the second node to forward from the indicated forwarding configuration information according to the forwarding configuration information. Starting from the start time, on the unit time interval indicated by the time forwarding pattern information, use the BF parameter indicated by the direction forwarding pattern information to forward each beam in the second beam set according to the usage time indicated by the first duration information beams.
  • the number of beams in the second beam set is equal to the number of sets of beamforming parameters used by the second node, and the number of sets of beamforming parameters used by the second node is less than or equal to The N.
  • the forwarding start time information includes identification information of a first beam in the first beam set, or first time interval and initial OFDM symbol information;
  • the identification information of the first beam indicates that forwarding starts from the time corresponding to the first beam
  • the first time interval indicates the interval between the time slot for receiving the node configuration information and the forwarding start time slot
  • the number of time slots, the initial OFDM symbol information indicates the forwarding initial OFDM symbol in the forwarding initial time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the node configuration information is carried in radio resource control layer signaling, downlink control information of a physical layer downlink control channel, or a control element of a medium access control layer.
  • the signaling overhead can be reduced by carrying the node configuration information in the RRC layer signaling, DCI or MAC CE.
  • the method further includes: the first node generates system information, where the system information includes index information of at least one beam in the first beam set; the first node sends the system information information.
  • the method further includes: the first node sending system information change indication information to the second node.
  • the method further includes: the first node continuously sends beams in the first set of beams in time.
  • the method further includes: the first node determines, according to the forwarding capability information of the second node, that the number of sets of beamforming parameters supported by the second node is the N, or, Determine the number of sets of beamforming parameters supported by the second node under different subcarrier spacings and/or different frequency bands.
  • the number of sets of beamforming parameters supported by the second node is greater than or equal to the number of beams in the second beam set or the number of sets of beamforming parameters used by the second node.
  • the first node receives a first message from the second node, where the first message is used to request establishment of a radio resource control connection, where the first message includes second indication information, The second indication information is used to indicate that the terminal that initiates the request is the second node; the first node sends a second message to the second node.
  • the initial access of the second node can be completed, the signaling process can be simplified, and the signaling overhead can be reduced.
  • the first message includes third indication information, where the third indication information is used to indicate identification information of the second node.
  • the first message includes third indication information, where the third indication information is used to indicate capability information of the second node.
  • the third indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the third indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the third indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • it further includes: the first node receiving a third message from the second node, the third message including a first response number; the first node obtaining the first response number
  • the public key of the two nodes, the public key is pre-configured by the network management function network element or obtained by the first node from the request of the network management function network element; the first node according to the first node The value and the public key are used to verify the identity information of the second node against the first response number.
  • the third message includes capability information of the second node.
  • the method further includes: the first node sends a capability query message to the second node; the first node receives capability information of the second node from the second node .
  • the first node receives capability information from the second node, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, maximum uplink and downlink of the second node transmit power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the first node sends to the second node physical random access channel configuration information dedicated to the second node, where the physical random access channel configuration information includes a first preamble;
  • the first node receives the first preamble from the second node.
  • the physical random access channel configuration information further includes time-frequency domain positions of physical random access channel resources, and the first node receives the first A preamble, comprising: the first node receives the preamble from the second node at a position in the time-frequency domain of the physical random access channel resource.
  • the first node sends the second node dedicated physical random access channel configuration information to the second node, where the physical random access channel configuration information includes a physical random access channel The time-frequency domain position of the resource; the first node receives the preamble from the second node at the time-frequency domain position of the physical random access channel resource.
  • the second aspect of the embodiment of the present application discloses a communication method, including:
  • the second node receives node configuration information from the first node and the first beam set of the first node;
  • the second node converts the first beam set into a second beam set of the second node according to the node configuration information; both the first beam set and the second beam set include at least one beam ;
  • the second node transmits the second set of beams.
  • the second node converts the first beam set into the second beam set of the second node according to the node configuration information, including: the second node according to the The node configuration determines to forward the first beam set to form the second beam set of the second node.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming parameter information supported by the second node, the first Two-node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the time-frequency resource position where the second node receives the control information from the first node, and the beamforming
  • the parameters include one or more of a phase offset, an amplitude, and an index, wherein the index indicates a phase offset and/or amplitude parameter.
  • the forwarding configuration information includes at least one or more of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the second node, the first Two-node direction forwarding pattern information; wherein, the first duration information indicates the transmission duration of the second node using the first beamforming parameter to send the first beam in the second beamset, and the first indication information indicating the number of beams in the second beam set, and the time forwarding pattern information of the second node is used to indicate at which time positions the second node forwards the second beam set starting from the forwarding start time ; The directional forwarding pattern information of the second node is used to indicate which beamforming parameters the second node uses to forward the second beam set.
  • the number of beams in the second beam set is equal to the number of sets of beamforming parameters used by the second node, and the number of sets of beamforming parameters used by the second node is less than or equal to The N.
  • the forwarding start time information includes identification information of a first beam in the first beam set, or first time interval and initial OFDM symbol information;
  • the identification information of the first beam indicates that the second node starts forwarding the second beam set from the time corresponding to the first beam
  • the first time interval indicates that the second node receives the The number of time slots between the time slot of the node configuration information and the forwarding start time slot
  • the initial OFDM symbol information indicates the forwarding start OFDM in the forwarding start time slot Use symbols.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the time forwarding pattern information of the second node includes a first bit map, and one bit in the first bit map corresponds to a unit time interval; wherein, when the first A value of a bit in a bitmap is a first preset value, and the second node forwards a beam in the second beam set at a unit time interval corresponding to the one baud.
  • the directional forwarding pattern information of the second node includes a second bitmap, and one bit in the second bitmap corresponds to a set of beamforming parameters; when the first A value of a bit in the two-bit bitmap is a second preset value, and the second node uses a set of BF parameters corresponding to the bit to forward a beam in the second beam set.
  • the timing information of the control information includes at least one of the following: a time period, a frequency domain resource block, a number of occupied OFDM symbols, and a time start position.
  • the node configuration information is carried in radio resource control layer signaling, downlink control information of a physical layer downlink control channel, or a control element of a media access control layer.
  • the method further includes: the second node receiving system information from the first node, where the system information includes index information of at least one beam in the first beam set.
  • the method further includes: the second node receiving system information change indication information from the first node.
  • the method further includes: the second node continuously receives beams in the first set of beams in time.
  • control plane protocol stack of the second node includes a radio resource control layer, a medium access control layer, and a physical layer.
  • the second node sends a first message to the first node, where the first message is used to request establishment of a radio resource control connection, where the first message includes second indication information, and the first The second indication information is used to indicate that the terminal that initiates the request for establishing the radio resource control connection is the second node; the second node receives the second message from the first node; the second node receives the second message from the first node according to the second node Two messages, establishing a radio resource control connection with the first node.
  • the first message includes third indication information, where the third indication information is used to indicate identification information of the second node.
  • the first message includes third indication information, where the third indication information is used to indicate capability information of the second node.
  • the third indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the third indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the third indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes the first value, and further includes: the second node generates a first response number according to the first value and the private key in the digital certificate; the second The node sends a third message to the first node, where the third message includes the first response number, and the first response number is used by the first node to verify the identity information of the second node.
  • the third message includes capability information of the second node.
  • it further includes: the second node receiving a capability query message from the first node; the second node sending the capability information of the second node to the first node .
  • the second node sends capability information of the second node to the first node, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, maximum uplink and downlink of the second node transmit power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the second node receives from the first node the physical random access channel configuration information dedicated to the second node, where the physical random access channel configuration information includes a first preamble ; The second node sends the first preamble to the first node.
  • the configuration information of the physical random access channel further includes the time-frequency domain position of the physical random access channel resource: the second node sends the first
  • the preamble includes: the second node sends a preamble to the first node at a position in the time-frequency domain of the physical random access channel resource.
  • the second node receives from the first node the physical random access channel configuration information dedicated to the second node, where the physical random access channel configuration information includes a physical random access channel configuration information A time-frequency domain position of the channel resource; the second node sends a preamble to the first node at the time-frequency domain position of the physical random access channel resource.
  • the third aspect of the embodiment of the present application discloses a communication method, including:
  • the second node sends a first message to the first node, the first message is used to request establishment of a radio resource control connection, the first message includes first indication information, and the first indication information is used to indicate initiation of establishment of the radio resource control connection.
  • the terminal of the radio resource control connection request is the second node;
  • the second node receives a second message from the first node
  • the second node establishes a radio resource control connection with the first node according to the second message.
  • the initial access of the second node can be completed, the signaling process can be simplified, and the signaling overhead can be reduced.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the second node.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the second node.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the second indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the method further includes: the second node generates a first response number according to the first value and a private key in the digital certificate; The second node sends a third message to the first node, the third message includes the first response number, and the first response number is used by the first node to verify the identity information of the second node .
  • the method further includes: the third message includes capability information of the second node.
  • the method further includes: the second node receiving a capability query message from the first node; the second node sending the second node to the first node capability information.
  • control plane protocol stack in the second node includes a radio resource control layer, a media access control layer, and a physical layer.
  • the fourth aspect of the embodiment of the present application discloses a communication method, including:
  • the first node receives a first message from a second node, where the first message is used to request establishment of a radio resource control connection, where the first message includes first indication information, and the first indication information is used to indicate initiation
  • the requesting terminal is the second node;
  • the first node sends a second message to the second node.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the second node.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the second node.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the second indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • the method further includes: the first node receives a third message from the second node, the third message includes a first response number; the first node acquires The public key of the second node, the public key is pre-configured by the network management function element or obtained by the first node from the request of the network management function network element; the first node according to the Verifying the identity information of the second node against the first response number using the first value and the public key.
  • the third message includes capability information of the second node.
  • the method further includes: the first node sending a capability query message to the second node; the first node receiving the second node's capability information.
  • the fifth aspect of the embodiment of the present application discloses a communication method, including:
  • the second node sends capability information of the second node to the first node, where the capability information includes forwarding capability information of the second node.
  • reporting the capability information of the second node to the first node through the second node can simplify the signaling interaction process and reduce signaling overhead.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, maximum uplink and downlink transmission of the second node power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the sixth aspect of the embodiment of the present application discloses a communication method, including:
  • the first node receives capability information from the second node, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, maximum uplink and downlink transmission of the second node power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the seventh aspect of the embodiment of the present application discloses a communication method, including:
  • the second node receives the physical random access channel configuration information dedicated to the second node from the first node, where the physical random access channel configuration information includes a first preamble;
  • the second node sends the first preamble to the first node.
  • the first node configures dedicated physical random access channel configuration information for the second node, and the configuration information includes the first preamble.
  • the second node sends the first preamble to the first node. , which can reduce signaling overhead.
  • the configuration information of the physical random access channel further includes the time-frequency domain position of the physical random access channel resource
  • the second node sends the first preamble to the first node
  • the code includes: the second node sends a preamble to the first node at a position in the time-frequency domain of the physical random access channel resource.
  • the eighth aspect of the embodiment of the present application discloses a communication method, including:
  • the first node sends the physical random access channel configuration information dedicated to the second node to the second node, where the physical random access channel configuration information includes a first preamble;
  • the first node receives the first preamble from the second node.
  • the physical random access channel configuration information further includes time-frequency domain positions of physical random access channel resources
  • the preamble includes: the first node receives the preamble from the second node at the time-frequency domain position of the physical random access channel resource.
  • the ninth aspect of the embodiment of the present application discloses a communication method, including:
  • the second node receives the physical random access channel configuration information dedicated to the second node from the first node, wherein the physical random access channel configuration information includes the time-frequency domain position of the physical random access channel resource;
  • the second node sends a preamble to the first node at a position in the time-frequency domain of the physical random access channel resource.
  • the first node configures dedicated physical random access channel configuration information for the second node, and the configuration information includes the time-frequency domain position of the physical random access channel resource.
  • the second node The method of sending the preamble to the first node from the time-frequency domain position of the incoming channel resource can reduce signaling overhead.
  • the tenth aspect of the embodiment of the present application discloses a communication method, including:
  • the first node sends the physical random access channel configuration information dedicated to the second node to the second node, where the physical random access channel configuration information includes the time-frequency domain position of the physical random access channel resource;
  • the first node receives the preamble from the second node at a position in the time-frequency domain of the physical random access channel resource.
  • the eleventh aspect of the embodiment of the present application discloses a communication device, the device includes at least one processor and a communication interface, and the at least one processor invokes a computer program or instruction stored in a memory to execute the above first to second aspects Any one of the ten aspects of implementation.
  • the twelfth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the processing unit is configured to generate node configuration information
  • the communication unit is configured to send the node configuration information to a second node, where the node configuration information is used for converting the first beam set of the device to the second beam set of the second node, the
  • the first set of beams and the second set of beams each include at least one beam;
  • the communication unit is configured to send the first beam set.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming parameter information supported by the second node, the first Two-node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the location of the time-frequency resource where the device sends control information to the second node, and the beamforming parameter information includes One or more of phase offset, amplitude, and index, wherein the index indicates a phase offset and/or amplitude parameter.
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the second node, time forwarding pattern information of the second node, Direction forwarding pattern information;
  • the first duration information indicates the usage duration of the first beamforming parameter, where the usage duration of the first beamforming parameter is equal to the transmission duration of the first beam in the second beamset, and the first beamforming parameter
  • the indication information indicates the number of beams in the second beam set
  • the time forwarding pattern information of the second node indicates the time position of the forwarded beam in the second beam set
  • the direction forwarding pattern information of the second node indicates Forwarding beamforming parameters used by each beam in the second set of beams.
  • the number of beams in the second beam set is equal to the number of sets of beamforming parameters used by the second node, and the number of sets of beamforming parameters used by the second node is Less than or equal to the N.
  • the forwarding start time information includes identification information of a first beam in the first beam set, or first time interval and initial OFDM symbol information;
  • the identification information of the first beam indicates that forwarding starts from the time corresponding to the first beam
  • the first time interval indicates the interval between the time slot for receiving the node configuration information and the forwarding start time slot
  • the number of time slots, the initial OFDM symbol information indicates the forwarding initial OFDM symbol in the forwarding initial time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the node configuration information is carried in radio resource control layer signaling, downlink control information of a physical layer downlink control channel, or a control element of a media access control layer.
  • the processing unit is further configured to generate system information, where the system information includes index information of at least one beam in the first beam set; the communication unit is further configured to send The system information.
  • the communication unit is further configured to send system information change indication information to the second node.
  • the communication unit is further configured to continuously send beams in the first set of beams in time.
  • the processing unit is further configured to determine that the number of sets of beamforming parameters supported by the second node is the N according to the forwarding capability information of the second node, or, Determine the number of sets of beamforming parameters supported by the second node under different subcarrier spacings and/or different frequency bands.
  • the number of sets of beamforming parameters supported by the second node is greater than or equal to the number of beams in the second beam set or the number of sets of beamforming parameters used by the second node.
  • the communication unit is further configured to receive a first message from the second node, where the first message is used to request establishment of a radio resource control connection, where the first message includes Second indication information, where the second indication information is used to indicate that the terminal that initiates the request is the second node; the communication unit is further configured to send a second message to the second node.
  • the first message includes third indication information, where the third indication information is used to indicate identification information of the second node.
  • the first message includes third indication information, where the third indication information is used to indicate capability information of the second node.
  • the third indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the third indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the third indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • the communication unit is further configured to receive a third message from the second node, where the third message includes the first response number; the processing unit is further configured to obtain The public key of the second node, the public key is pre-configured by the network management function element or obtained by the device from the request of the network management function network element; the processing unit is further configured to: The first value and the public key verify the identity information of the second node with respect to the first response number.
  • the third message includes capability information of the second node.
  • the communication unit is further configured to send a capability query message to the second node; the communication unit is further configured to receive the second node message from the second node capability information.
  • the communication unit is further configured to receive capability information from a second node, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, maximum uplink and downlink of the second node transmit power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the communication unit is further configured to send physical random access channel configuration information dedicated to the second node to the second node, where the physical random access channel configuration information includes A first preamble; the communication unit is further configured to receive the first preamble from the second node.
  • the configuration information of the physical random access channel further includes the time-frequency domain position of the resource of the physical random access channel
  • the communication unit is further configured to The time-frequency domain position of the resource receives the preamble from the second node.
  • the communication unit is further configured to send physical random access channel configuration information dedicated to the second node to the second node, where the physical random access channel configuration information includes The time-frequency domain position of the physical random access channel resource; the communication unit is further configured to receive the preamble from the second node at the time-frequency domain position of the physical random access channel resource.
  • the thirteenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to receive node configuration information from a first node and a first beam set of the first node;
  • the processing unit is configured to convert the first beam set into a second beam set of the device according to the node configuration information; both the first beam set and the second beam set include at least one beam ;
  • the communication unit is configured to send the second beam set.
  • the processing unit is configured to determine, according to the node configuration, to forward the first beam set to form the second beam set of the apparatus.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming parameter information supported by the device, and the second node Frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the location of the time-frequency resource where the device receives the control information from the first node, and the beamforming parameters include a phase offset One or more of shift, magnitude, and index, where the index indicates a phase shift and/or magnitude parameter.
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the device, and direction forwarding pattern information of the device ;
  • the first duration information indicates that the device uses the first beamforming parameter to transmit the transmission duration of the first beam in the second beam set
  • the first indication information indicates the beam in the second beam set
  • the time forwarding pattern information of the device is used to indicate at which time positions the device forwards the second beam set from the forwarding start time; the direction forwarding pattern information of the device is used to indicate the Which beamforming parameters are used by the apparatus to forward the second beam set.
  • the number of beams in the second beam set is equal to the number of sets of beamforming parameters used by the device, and the number of sets of beamforming parameters used by the device is less than or equal to the N.
  • the forwarding start time information includes identification information of a first beam in the first beam set, or first time interval and initial OFDM symbol information;
  • the identification information of the first beam indicates that the device starts forwarding the second beam set from the time corresponding to the first beam
  • the first time interval indicates that the device receives the node configuration information
  • the initial OFDM symbol information indicates the forwarding start OFDM symbol in the forwarding start time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the time forwarding pattern information of the device includes a first bit map, and one bit in the first bit map corresponds to a unit time interval; wherein, the communication unit uses Since the value of one bit in the first bitmap is a first preset value, one beam in the second beam set is forwarded at a unit time interval corresponding to the one bit.
  • the directional forwarding pattern information of the device includes a second bitmap, and one bit in the second bitmap corresponds to a set of beamforming parameters; the communication unit uses Because a value of a bit in the second bitmap is a second preset value, a beam in the second beam set is forwarded using a set of BF parameters corresponding to the bit.
  • the timing information of the control information includes at least one of the following: a time period, a frequency domain resource block, a number of occupied OFDM symbols, and a time start position.
  • the node configuration information is carried in radio resource control layer signaling, downlink control information of a physical layer downlink control channel, or a control element of a media access control layer.
  • the communication unit is further configured to receive system information from the first node, where the system information includes index information of at least one beam in the first beam set.
  • the communication unit is further configured to receive system information change indication information from the first node.
  • the communication unit is further configured to continuously receive beams in the first set of beams in time.
  • control plane protocol stack of the device includes a radio resource control layer, a media access control layer, and a physical layer.
  • the communication unit is further configured to send a first message to the first node, where the first message is used to request establishment of a radio resource control connection, and the first message includes a second indication information, the second indication information is used to indicate that the terminal that initiates the request to establish the radio resource control connection is the device; the communication unit is further configured to receive a second message from the first node; the processing The unit is further configured to establish a radio resource control connection with the first node according to the second message.
  • the first message includes third indication information, where the third indication information is used to indicate identification information of the apparatus.
  • the first message includes third indication information, where the third indication information is used to indicate capability information of the apparatus.
  • the third indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the device.
  • the third indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the apparatus.
  • the third indication information includes an index value, where the index value is used to indicate the device capability information.
  • the second message includes a first value
  • the processing unit is further configured to generate a first response number according to the first value and a private key in the digital certificate
  • the communication unit further configured to send a third message to the first node, where the third message includes the first response number, and the first response number is used for the first node to verify the identity information of the device.
  • the third message includes capability information of the device.
  • the communication unit is further configured to receive a capability query message from the first node; and the device sends capability information of the device to the first node.
  • the communication unit is further configured to send capability information of the device to the first node, where the capability information includes forwarding capability information of the device.
  • the capability information further includes one or more of the following: specifications of the device, frequency band amplification and suppression information of the device, and maximum uplink and downlink transmit power of the device.
  • the forwarding capability information of the device includes one or more of the following: the maximum number of beams that the device can support for forwarding, and the The number of beams that support forwarding, and the different subcarrier spacings and/or different frequency bands supported by the device.
  • the communication unit is further configured to receive device-specific physical random access channel configuration information from the first node, where the physical random access channel configuration information includes the first A preamble; the communication unit is further configured to send the first preamble to the first node.
  • the configuration information of the physical random access channel further includes the time-frequency domain position of the physical random access channel resource: the communication unit is configured to Send the preamble to the first node at the position in the time-frequency domain.
  • the communication unit is further configured to receive device-specific physical random access channel configuration information from the first node, where the physical random access channel configuration information includes physical A time-frequency domain position of a random access channel resource; the communication unit is further configured to send a preamble to the first node at the time-frequency domain position of the physical random access channel resource.
  • the fourteenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to send a first message to the first node, the first message is used to request establishment of a radio resource control connection, the first message includes first indication information, and the first indication information is used to indicate
  • the terminal that initiates the request for establishing the radio resource control connection is the device;
  • the communication unit configured to receive a second message from the first node
  • the processing unit is configured to establish a radio resource control connection with the first node according to the second message.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the apparatus.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the apparatus.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the device.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the apparatus.
  • the second indication information includes an index value, where the index value is used to indicate the device capability information.
  • the second message includes a first value
  • the processing unit is further configured to generate a first response number according to the first value and a private key in the digital certificate
  • the communication unit further configured to send a third message to the first node, where the third message includes the first response number, and the first response number is used for the first node to verify the identity information of the device.
  • the third message includes capability information of the device.
  • the communication unit is further configured to receive a capability query message from the first node; the communication unit is further configured to send the capability of the device to the first node information.
  • control plane protocol stack in the device includes a radio resource control layer, a medium access control layer, and a physical layer.
  • the fifteenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to receive a first message from a second node, where the first message is used to request establishment of a radio resource control connection, where the first message includes first indication information, and the first indication information used to indicate that the terminal that initiates the request is the second node;
  • the communication unit is configured to send a second message to the second node.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the second node.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the second node.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the second indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • the communication unit is further configured to receive a third message from the second node, where the third message includes the first response number; the processing unit is further configured to obtain The public key of the second node, where the public key is pre-configured by the network management function element or requested from the network management function element; the processing unit is configured to, according to the first The value and the public key are used to verify the identity information of the second node against the first response number.
  • the third message includes capability information of the second node.
  • the communication unit is further configured to send a capability query message to the second node; the communication unit is further configured to receive the second node message from the second node capability information.
  • the sixteenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to send capability information of the device to the first node, where the capability information includes forwarding capability information of the device.
  • the capability information further includes one or more of the following: specifications of the device, frequency band amplification and suppression information of the device, and maximum uplink and downlink transmit power of the device.
  • the forwarding capability information of the device includes one or more of the following: the maximum number of beams that the device can support for forwarding, and the The number of beams that support forwarding, and the different subcarrier spacings and/or different frequency bands supported by the device.
  • the seventeenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to receive capability information from the second node, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, uplink and downlink information of the second node Maximum transmit power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the eighteenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to receive physical random access channel configuration information dedicated to the second node from the first node, wherein the physical random access channel configuration information includes a first preamble;
  • the communication unit is configured to send the first preamble to the first node.
  • the configuration information of the physical random access channel further includes the time-frequency domain position of the physical random access channel resource: the communication unit is configured to The time-frequency domain position sends a preamble to the first node.
  • the nineteenth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to send physical random access channel configuration information dedicated to the second node to the second node, where the physical random access channel configuration information includes a first preamble;
  • the communication unit is configured to receive the first preamble from the second node.
  • the configuration information of the physical random access channel further includes the time-frequency domain position of the physical random access channel resource, and the communication unit is configured to A time-frequency domain location receives a preamble from the second node.
  • the twentieth aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to receive the physical random access channel configuration information dedicated to the second node from the first node, wherein the physical random access channel configuration information includes the time-frequency domain of the physical random access channel resources Location;
  • the communication unit is configured to send a preamble to the first node at a position in the time-frequency domain of the physical random access channel resource.
  • the twenty-first aspect of the embodiment of the present application discloses a communication device, including: a processing unit and a communication unit,
  • the communication unit is configured to send the physical random access channel configuration information dedicated to the second node to the second node, where the physical random access channel configuration information includes the time-frequency domain position of the physical random access channel resource ;
  • the communication unit is configured to receive the preamble from the second node at the time-frequency domain position of the physical random access channel resource.
  • the twenty-second aspect of the embodiment of the present application discloses a chip system, the chip system includes at least one processor and a communication interface, and the at least one processor is used to execute computer programs or instructions, so as to realize any of the above-mentioned aspects. Methods.
  • the twenty-third aspect of the embodiment of the present application discloses a computer-readable storage medium, wherein computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on a processor, any of the above-mentioned aspects can be realized the method described.
  • the twenty-fourth aspect of the embodiment of the present application discloses a computer program product, the computer program product includes computer program code, when the computer program code is run on the computer, to implement the method described in any one of the above aspects .
  • the twenty-fifth aspect of the embodiment of the present application discloses a communication system, and the system includes:
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a second node provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a protocol stack of a user plane and a control plane of a second node provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a protocol stack of a user plane and a control plane of a second node provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a protocol stack of a control plane of a second node provided by an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of sending control information provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of sending SSB provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of sending SSB provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of sending SSB provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 includes a first node 101, a second node 102, and a third node 103, wherein the first node 101 can As a network device, the second node 102 may be a smart repeater (smart repeater, SR), where the SR may also be called a smart repeater or a smart repeater.
  • SR smart repeater
  • the second node 102 amplifies the uplink signal sent by the third node 103 through time division duplex (time division duplex, TDD) or frequency division duplex (frequency division duplex, FDD) Forwarding to the first node 101, the downlink signal sent by the first node 101 may also be amplified and forwarded to the third node 103, and when the downlink signal is forwarded to the third node 103, beamforming (beamforming) for the third node 103 is realized , BF) transmission.
  • TDD time division duplex
  • FDD frequency division duplex
  • FIG. 2 shows a schematic structural diagram of a second node 102
  • the second node 102 may be composed of a radio unit (radio unit, RU) module and a mobile terminal (mobileterminal, MT) module, wherein,
  • the RU module in the second node may be called SR-RU for short
  • the MT module in the second node may be called SR-MT for short.
  • the MT module of the second node is used to receive and feed back the control signaling of the first node 101 .
  • the communication link between the second node 102 and the first node 101 can be called a backhaul link (backhaul link), and the backhaul link can be used to receive a signal sent from the first node 101 or forward a signal sent by the third node 103. signal of.
  • the communication link between the second node 102 and the third node 103 can be referred to as an access link (access link), and the access link can be used to receive a signal sent from the third node 103 or forward the signal sent by the first node 101 The signal sent.
  • the protocol layer design of the second node 102 is as follows: when the second node 102 transmits the business data between the third node 103 and the first node 101, that is, when the second node 102 acts as a forwarding node, as shown in FIG. 3 , the protocol stacks of the user plane (user plane, UP) and the control plane (control plane, CP) of the RU module and the MT module in the second node 102 are empty.
  • the second node 102 transmits service data between itself and the network equipment, since the MT module of the second node does not generate user plane data itself, it only exchanges control plane signaling with the first node 101, requiring the second node’s
  • the MT module does not involve the RU module of the second node. Therefore, as shown in FIG. 4 , the UP protocol stacks of the RU module of the second node and the MT module of the second node are empty.
  • the CP protocol stack of the MT module of the second node can be divided into three situations according to functional requirements, as follows:
  • the CP protocol stack of the MT module of the second node includes 3 layers: respectively radio resource control (radio resource control, RRC) layer, media access control (media access control) layer , MAC) layer, physical (physical, PHY) layer.
  • radio resource control radio resource control
  • media access control media access control
  • MAC media access control
  • PHY physical (physical, PHY) layer.
  • the CP protocol stack of the MT module of the second node comprises 4 layers: be respectively RRC layer, radio link control (radio link control, RLC) layer, MAC layer, PHY layer.
  • the CP protocol stack of the MT module of the second node comprises 5 layers: be respectively RRC layer, packet data convergence protocol (packet data convergence protocol, PDCP) layer, RLC layer, MAC layer, PHY layer.
  • RRC layer packet data convergence protocol (packet data convergence protocol, PDCP) layer
  • RLC layer packet data convergence protocol
  • MAC layer Packet data convergence protocol
  • PHY layer PHY layer
  • the RRC layer can implement RRC signaling interaction between the second node 102 and the first node 101 to complete processes such as initial access, RRC connection establishment, SR identity information verification, SR capability information reporting, and initial configuration.
  • the hybrid automatic repeat request (automatic repeat request, ARQ) protocol of the RLC layer and the ARQ protocol of the MAC layer can ensure high reliability of information transmission on the control plane.
  • the PDCP layer can complete the encryption and integrity protection of the control plane data to ensure the security of information transmission. The method in the embodiment of the present application may be applied to the communication system 100 shown in FIG. 1 .
  • Terminal equipment including user equipment (UE), including equipment that provides voice and/or data connectivity to users, specifically, equipment that provides voice to users, or equipment that provides data connectivity to users , or include devices that provide voice and data connectivity to users. Examples may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (vehicle to everything, V2X) terminal equipment , machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (Internet of things, IoT) terminal equipment, light terminal equipment (light UE), and those with reduced capabilities User equipment (reduced capability UE, REDCAP UE), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote Terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • user equipment user equipment
  • UE wireless terminal equipment
  • mobile terminal equipment device-to-device communication
  • vehicle to everything vehicle to everything
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal devices. ).
  • the terminal device may further include a relay (relay).
  • a relay relay
  • all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • Network equipment for example including access network (access network, AN) equipment, such as base stations (for example, access points), can refer to equipment in the access network that communicates with wireless terminal equipment through one or more cells through the air interface , or for example, a network device in a vehicle-to-everything (V2X) technology is a road side unit (RSU).
  • the base station can be used to convert received over-the-air frames to and from IP packets, acting as a router between the terminal device and the rest of the access network, which can include an IP network.
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an advanced long term evolution (long term evolution-advanced, LTE-A), Or it may also include the next generation node B (next generation node B, gNB) in the fifth generation mobile communication technology (the 5th generation, 5G) NR system (also referred to as NR system) or it may also include the cloud access network (cloud).
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (long term evolution, LTE) system or an advanced long term evolution (long term evolution-advanced, LTE-A)
  • LTE long term evolution
  • LTE-advanced long term evolution-advanced
  • LTE-A long term evolution-advanced
  • the next generation node B next generation node B
  • 5G fifth generation mobile communication technology
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF), a user plane function (user plane function, UPF) or a session management function (session management function, SMF) wait.
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • Figure 6 is a communication method provided by the embodiment of this application, which includes but is not limited to the following steps:
  • Step S601 the first node generates node configuration information.
  • Step S602 the first node sends node configuration information to the second node.
  • the node configuration information is used for converting the first beam set of the first node to the second beam set of the second node.
  • the first beam set and the second beam set both include at least one beam, and the beams in the first beam set and the second beam set can be synchronization signal blocks (synchronization signal and physical broadcast channel block, SSB), channel state information reference signals (channel state information reference Signal, CSI-RS), or the beam corresponding to downlink service data transmission, which is not limited here.
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of BF parameter information supported by the second node, and frequency band amplification and suppression information of the second node.
  • the frequency band amplification and suppression information of the second node refers to the frequency band amplification and suppression information of the RU module of the second node.
  • the forwarding configuration information, power control information and control information timing information are mandatory
  • the N sets of BF parameter information supported by the second node and the frequency band amplification and suppression information of the second node are optional.
  • the node configuration information can be carried in the RRC layer signaling, the downlink control information (DCI) of the physical layer downlink control channel (physical downlink control channel, PDCCH), or the control element (control element, CE) of the MAC layer. )middle.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • CE control element
  • the first node sends the node configuration information to the second node through a protocol data unit (protocol data unit, PDU) of the MAC layer.
  • PDU protocol data unit
  • the node configuration information may be carried in RRC signaling, for example, an RRC reconfiguration (RRCReconfiguration) message, wherein the node configuration information includes one or more of the following: forwarding configuration information, power control information, control information timing information, the N sets of BF parameter information supported by the second node, the frequency band amplification and suppression information of the second node can be carried in the extensible information element contained in the RRCReconfiguration message, such as the future critical extension (criticalExtensionsFuture) information element, RRC reconfiguration IE ( Among the delayed non-critical extension (lateNonCriticalExtension) information elements and non-critical extension (nonCriticalExtension) information elements in RRCReconfiguration-IEs) information elements, wherein, in specific implementation, whether to use the example extension information elements contained in the above RRCReconfiguration message, And which scalable information element is specifically used is not limited in this embodiment of the present application.
  • RRC reconfiguration RRCReconfiguration
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern (SR-time-forwarding-pattern) information of the second node, direction of the second node Forwarding pattern (SR-direction-forwarding-pattern) information.
  • the forwarding configuration information is used to instruct the second node in which time period, in which direction, and what BF parameter is used to forward the second beam set.
  • the forwarding start time information is mandatory.
  • the first duration information, the first indication information, the time forwarding pattern information of the second node, and the direction forwarding pattern information of the second node are optional.
  • the forwarding time start information may be understood as a forwarding start time at which the second node forwards the second beam set.
  • the forwarding time start information includes identification information of the first beam in the first beam set, or information about the first time interval and the start OFDM symbol.
  • the identification information of the first beam indicates that the forwarding starts from the time corresponding to the first beam
  • the first time interval indicates the number of time slots between the time slot in which the node configuration information is received and the forwarding start time slot
  • the start OFDM symbol The information indicates the forwarding start OFDM symbol in the forwarding start slot.
  • the identification information of the first beam in the first beam set may be the identification information of the backhaul synchronization signal block (backhaul synchronization signal and physical broadcast channel block, BH-SSB), channel state information reference signal (channel state information reference signal, CSI-RS) identification information.
  • the identification information of the BH-SSB may be the index of the BH-SSB.
  • BH-SSB is the SSB that works best with the second node determined by the first node during the initial access process of the second node, for example, the SSB with the best signal received by the second node can also be understood as aligning the second node The SSB of the node's orientation.
  • the node configuration information is carried in the DCI of the PDCCH.
  • the time domain resource assignment (Time domain resource assignment) field in the DCI can indicate the second The node starts forwarding the second beam set at the forwarding start OFDM symbol position indicated by the start OFDM symbol information after the first time slot after receiving the start moment of the node configuration information through the DCI.
  • the forwarding start time information may further include forwarding duration information, where the forwarding duration information indicates a duration for the second node to forward the second beam set.
  • the DCI indicates that the node configuration information may be one-off, that is, used only once, and then the original configuration is restored, or permanent, that is, the original configuration is overwritten.
  • the first duration information indicates the usage duration of the first BF parameter, which can also be understood as the usage duration of each set of BF parameters, wherein the usage duration of the first BF parameter is equal to the transmission duration of the first beam in the second beam set, or It is understood that the first duration information instructs the second node to use the first BF parameter to forward the sending duration of the first beam in the second beam set.
  • the first parameter is used to generate the first beam in the second beam set.
  • the second node may determine the usage duration of the first BF parameter according to the preset duration, that is, determine the transmission duration of the first beam in the second beam set according to the preset duration.
  • the first indication information indicates the number of beams in the second beam set, where the number of beams in the second beam set is equal to the number of sets of BF parameters used by the second node, and the number of sets of BF parameters used by the second node is less than or equal to The number of sets of BF parameters supported by the second node.
  • the first indication information may include at least one of the following items: subcarrier spacing, frequency band, cell identification information, K, where K is greater than or equal to 1 and less than or equal to N.
  • the second node may determine the second beam concentration according to the subcarrier spacing and/or frequency band and the number of sets of BF parameters supported under the subcarrier spacing and/or frequency band
  • the number of beams is K, where the subcarrier spacing and/or the number of sets of BF parameters supported in the frequency band may be predefined by the protocol.
  • the first indication information includes cell identification information
  • the second node can determine the subcarrier spacing and/or frequency band corresponding to the cell according to the cell identification information, and then determine the second node according to the number of BF parameter sets supported by the subcarrier spacing and/or frequency band.
  • the number of beams in the beam set is K, where the subcarrier spacing and/or the number of sets of BF parameters supported in the frequency band may be predefined by the protocol. If the forwarding configuration information does not contain the first indication information, the second node according to the subcarrier spacing and/or frequency band corresponding to the cell carrying the forwarding configuration information, and the number of BF parameter sets supported under the subcarrier spacing and/or frequency band , determine the number of beams in the second beam set as K.
  • the time forwarding pattern information of the second node indicates the time position of the beam to be forwarded in the second beam set, that is to say, whether to forward a unit time interval of a beam in the second beam set, that is, the second node from the forwarding start time Initially, at which time positions the second set of beams is forwarded.
  • the time forwarding pattern of the second node may include a first bit map (bitmap), a bit in the first bit map corresponds to a unit time interval, and a value of a bit in the first bit map is the first preset The set value is used to instruct the second node to forward one beam in the second beam set at a unit time interval corresponding to the one bit.
  • the time position of the forwarded beam in the second beam set may refer to a unit time interval corresponding to a bit in the first bit map when the value of the bit is the first preset value.
  • the time position of the forwarded beam in the second beam set is a unit time interval corresponding to the value of one bit being 1.
  • the value of a bit in the first bit map is 0, it means The second node does not forward the second set of beams.
  • the forwarding configuration information includes forwarding start time information, where the forwarding start time information includes identification information of a first beam in the first beam set, and the identification information of the first beam in the first beam set is BH-
  • the index of the SSB correspondingly, after the second node receives the forwarding configuration information, it determines the four orthogonal frequency division multiplexing (orthogonal frequency division) Multiplexing (OFDM) symbols have a duration of a time interval, and K sets of BF parameters are used to cyclically forward the second beam set.
  • OFDM orthogonal frequency division multiplexing
  • the directional forwarding pattern information of the second node indicates the BF parameters used to forward each beam in the second beam set, that is, which BF parameters are used by the second node to forward the second beam set.
  • the direction forwarding pattern (SR-direction-forwarding-pattern) information of the second node includes a second bitmap, a bit in the second bitmap corresponds to a set of BF parameters, and a bit in the second bitmap corresponds to a set of BF parameters.
  • the value of the bit is a second preset value used to instruct the second node to forward a beam in the second beam set by using a set of BF parameters corresponding to the bit.
  • the second node when the value of a bit in the second bit map is 1, it means that the second node can use the BF parameter corresponding to the bit value of 1 to forward a beam in the second beam set; in a In an example, when the value of a bit in the second bitmap is 0, it means that the second node does not forward the second beam set. If the forwarding configuration information does not include the directional forwarding pattern information of the second node, the second node continuously uses K sets of BF parameters to forward K beams in the second beam set starting from the forwarding start time, where K is greater than or equal to 1.
  • the power control information includes one or more of the following: the power gain of the SR-RU radio frequency power amplifier module, the power gain of the low noise amplifier module, and the power gain of the wireless feeder line.
  • the timing information of the control information includes at least one of the following items: time period, frequency domain resource block, number of occupied OFDM symbols, and time start position.
  • the control information timing information is used to indicate the time-frequency resource location where the first node sends the control information to the second node, and correspondingly, is also used to indicate the time-frequency resource location where the second node receives the control information from the first node.
  • the timing information of the control information includes the time period, the frequency domain resource block, the number of occupied OFDM symbols, and the time start position, that is to say, the timing information of the control information includes the time period for sending the control information, which frequencies are used Resource block (resource block, RB), how many OFDM symbols are occupied, and the time start position, where the time start position can also be the offset relative to the start time when the system frame number is 0 and the time slot or subframe is 0 place.
  • the first node sends control information to the second node at a period of every 2 time slots within the available bandwidth (band width part, BWP), and the frequency domain uses the third node in each column.
  • the second node will monitor the control information that may be sent from the first node at the time specified by the timing information of the control information.
  • the BWP may also be called bandwidth self-adaptation, which refers to a segment of continuous spectrum resource configured by the network side for the terminal device, and the terminal device performs data transmission on the BWP.
  • the second node may communicate with the first node according to the BWP configuration in the protocol.
  • time-frequency resources specified by the timing of the control information are resources reserved for the first node to send control information to the second node, but it does not mean that these resources are always used, and the first node only needs to send control information will only be used when.
  • the first node may also send control information to the second node by initiating paging, and the second node may pass the ID information of the second node allocated by the first node through The predefined rule determines the paging occasion (PO), and then detects and receives the control information sent by the second node at the corresponding time-frequency position.
  • the identification information of the second node can be a pseudo-identity, for example, it can be a temporary Mobile subscriber identity (serving-temporary mobile subscriber identity, S-TSMI).
  • system frame number (system frame number, SFN) of the control information where the PO is detected by the second node in a discontinuous transmission (DRX) cycle can be determined by the following formula:
  • the SFN of the control information satisfies:
  • SFN represents the system frame number of the control information
  • PF_offset represents the offset of the control information
  • T represents the DRX cycle
  • N represents the total number of control information included in one DRX cycle
  • N s represents a control information contains
  • mod means modulo calculation
  • SR_ID means the quantity obtained according to the identity number (ID) of the second node
  • floor(x) means rounding x down.
  • PF_offset, T, N, Ns, etc. are all configured by the first node
  • SR_ID is determined according to the ID of the second node.
  • the N sets of beamforming BF parameter information supported by the second node may refer to the N sets of BF parameters supported by the second node, or may be an index value, where the index value is used to indicate the N sets of BF parameters supported by the second node.
  • the second node configuration information does not include N sets of beamforming BF parameter information supported by the second node
  • the N sets of beamforming BF parameter information supported by the second node may be preset in the second node.
  • the BF parameter includes one or more of the following: phase and amplitude, where the BF parameter is used to set the signal phase and amplitude on the antenna element on the second node.
  • the number of sets of BF parameters supported by the second node is said N, or, the number of sets of BF parameters supported by the second node under different subcarrier intervals and/or frequency bands may be the number of sets of BF parameters supported by the first node according to the forwarding capability of the second node
  • the information is determined, wherein, the number of sets of BF parameters supported by the second node is greater than or equal to the number of beams in the second beam set or the number of sets of BF parameters used by the second node.
  • the BF parameter is used to generate beams in the second beam set.
  • the forwarding capability information of the second node may be reported by the second node to the first node.
  • the forwarding capability information of the second node may be carried in the capability information of the second node, wherein the capability information of the second node may also include one or more of the following: specifications of the second node, frequency band amplification of the second node and Suppression information, the maximum uplink and downlink transmit power of the second node.
  • the frequency band amplification and suppression information of the second node may refer to the frequency band amplification and suppression information of the RU module of the second node, and may include one or more of the following: the passband bandwidth and gain of the filter module of the RU module of the second node, and the stopband suppression .
  • the method further includes: the first node generates system information (system information, SI), where the SI includes index information of at least one beam in the first beam set, and then the first node may send the The second node sends the SI change indication information, and secondly, the first node may send the SI in a broadcast manner.
  • system information system information
  • the beams in the first beam set may be SSBs.
  • the index information of the beams in the first beam set may include newly added index information of the SSB and index information of the BH-SSB.
  • the second node in the downlink direction of the air interface, the second node does not generate signals, but only forwards the signals received from the first node, and the second node scans the SSB of its coverage by forwarding multiple SSBs received from the first node Achieved. Therefore, when the first node accepts the second node to provide signal relay service for the terminal equipment under its coverage, in each SSB burst (SSB burst) period, the first node needs to additionally increase the number of SSBs to be sent. Quantity, which is the newly added SSB.
  • each system information block for example, system information block 1 (system information block 1, SIB1), system information block 2 (system information block 2, SIB2) is used to indicate the bitmap (Bitmap) of the SSB information currently sent by the cell.
  • a bit of 1 means that the SSB of the corresponding index is currently sent, otherwise it is not sent.
  • the bitmap used to indicate SSB transmission or measurement has three optional formats: short bitmap (shortBitmap), medium bitmap (mediumBitmap), long bitmap (longBitmap), respectively 4, 8, 64 A bit-sized bit string.
  • it is further extended to a Bitmap containing a 16-bit and/or 32-bit bit string, so as to flexibly support the expansion of the number of SSBs after the second node accesses the system.
  • the number of newly added SSBs depends on the number of SSBs forwarded by the second node scanning its coverage area. If the number of SSBs scanned by the second node for coverage and forwarding is Q, where Q is greater than or equal to 1, then the first node needs to add Q-1 SSBs.
  • the first node determines the BH-SSB, such as SSBx, that is, the index of the SSB is x.
  • the first node sends the newly added Q-1 SSBs in the same sending direction as BH-SSB with the same beamforming parameters as sending BH-SSB, so that the second node can receive Q SSBs, and according to the node configuration
  • the information forwards the Q SSBs to the air interface to realize SSB scanning of its coverage.
  • the first node may continuously send beams in the first set of beams in time.
  • the beams in the first beam set may be SSBs, and the beams in the first beam set include newly added SSBs and/or BH-SSBs.
  • the second node joins it means that the second node connects to the first node through the initial access process, and completes relevant configurations to perform beam forwarding work normally; after the second node joins, it means that the second node passes through After the initial access process connects to the first node and completes relevant configurations to perform beam forwarding work normally.
  • the newly added 3 SSBs may be SSB8, SSB9 and SSB10, that is to say, the first node continuously transmits the beams in the first beam set in time, which may refer to continuously transmit SSB2 and SSB8 in time ⁇ SSB10, correspondingly, the second node continuously receives the beams in the first beam set in time, that is, continuously receives SSB2 and SSB8 ⁇ SSB10 in time, and then, the second node can continuously send the beams in the second beam set in time , that is, SSB2 and SSB8-SSB10 are sent continuously in time.
  • the BH- The SSB is SSB2
  • the SSB forwarding quantity M 4.
  • the first node continuously transmits the beams in the first beam set in time, which means continuously transmits SSB2 ⁇ SSB5 in time.
  • the second node The beams in the first beam set may be continuously received in time, that is, SSB2-SSB5 may be continuously received in time, and then the second node may continuously transmit beams in the second beam set in time, that is, SSB2-SSB5 may be continuously transmitted in time.
  • the first node sends the beams in the first beam set discontinuously in time.
  • the number of SSBs sent by the first node increases from 8 to 11, and the newly added three SSBs follow SSB7 Insertion, that is, the first node can send SSB8 ⁇ SSB10 sequentially after SSB7 in the order of increasing SSB index.
  • SSB2 of the first node receives and forwards SSB8-SSB10 from the first node after waiting for a period of time.
  • the forwarding configuration information in the node configuration information cannot be preset in the second node
  • the second node will Configure according to the node configuration information and the forwarding configuration information therein, and then execute the first node to generate SI
  • the first node can send SI change instruction information to the second node, and then the first node sends the SI change instruction information to the second node and the third node SI; then the first node sends the first set of beams of the first node to the second node.
  • the forwarding configuration information in the node configuration information is preset in the second node, for example, it is pre-configured at the factory, first execute the first node to generate the SI, and then the first node can send the SI change indication information to the second node, and then The first node sends the SI to the second node and the third node, and then executes the first node to generate configuration information, and sends the node configuration information and the first beam set of the first node to the second node, and the node configuration information may include forwarding configuration The information is used to update preset forwarding configuration information; then the first node sends the first beam set of the first node to the second node.
  • Step S603 the second node receives the node configuration information from the first node and performs configuration.
  • the second node may configure the second node according to the node configuration information. For example, the second node may configure forwarding settings in the SR-RU module of the second node according to the forwarding configuration information in the node configuration information. If the node configuration information is carried in an RRC reconfiguration (RRCReconfiguration) message, the second node may send an RRC reconfiguration complete (RRCReconfigurationComplete) message to the first node after completing the configuration.
  • RRCReconfiguration RRC reconfiguration
  • RRCReconfigurationComplete RRC reconfiguration complete
  • Step S604 the first node sends the first beam set of the first node to the second node.
  • Step S605 the second node receives the first beam set of the first node from the first node.
  • Step S606 the second node converts the first beam set into the second beam set of the second node according to the node configuration information.
  • the conversion of the first beam set by the second node into the second beam set of the second node according to the node configuration information can be understood as the second node determines to forward the first beam set according to the node configuration information to form the second beam set of the second node. beam set.
  • the beam multiplexing mode in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing mode in the second beam set includes space division multiplexing.
  • Step S607 the second node sends a second beam set.
  • the second node may forward the second beam set in a TDD manner.
  • the second node may forward beams of signals such as SSB, paging (paging) message, scheduling control information, and downlink scheduling service data issued by the first node to the third node according to the forwarding configuration information , to establish a downlink connection and a transmission channel for the third node; during the uplink transmission period, the second node can forward signals such as random access, RRC connection, uplink scheduling request and service data initiated by the third node to the first node, for the first node
  • the three nodes establish uplink connections and transmission channels.
  • the update and change of the SI and the specific content of the node configuration information can be realized.
  • the second node can be configured through the node configuration information In order to run the work, and by applying the method to a smart repeater, the intelligent forwarding of the beam by the relay can be realized.
  • Figure 11 is a communication method provided by the embodiment of this application, which includes but is not limited to the following steps:
  • Step S1101 the second node sends a first message to the first node.
  • the first message is used to request the establishment of the RRC connection, and the first message includes first indication information, and the first indication information is used to indicate that the terminal that initiates the RRC connection establishment request is the second node, and may specifically indicate that the second node The MT in , namely SR-MT.
  • the first message may be an RRC setup request (RRCSetupRequest) message, that is, a message 3 (message 3, Msg3) in a four-step random access (4-step random access) process.
  • RRCSetupRequest RRC setup request
  • the first message includes first indication information, and the first indication information may refer to adding an assignment (such as "SR-MT-Access") to an establishment cause (establishmentCause) information element in the RRCSetupRequest message.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the second node.
  • the first message may be an RRCSetupRequest message
  • the second indication information may be a user equipment identification (ue-Identity) information element in the RRCSetupRequest message.
  • the identification information of the second node may be understood as identity information of the second node, which may be a temporary mobile subscriber identity (TMSI).
  • the value of the identification information belongs to the range of 0-80, it is used to indicate that the terminal device is a normal UE; when the value of the identification information belongs to the range of 80-100, it is used to indicate that the terminal device is the second node; If the identification information starts with 000, it indicates that the terminal device is a common UE; when the identification information starts with 111, it indicates that the terminal device is a second node.
  • the first node may determine that the terminal that initiates the request to establish the RRC connection is the second node in the following three ways, specifically as follows: Method 1: the first message includes the first indication information, The terminal that initiates the RRC connection establishment request with the first indication information is the second node.
  • the first indication information may refer to the addition of an assignment (such as "SR-MT-Access" in the establishmentCause information element in the RRCSetupRequest message ).
  • Mode 2 the first message includes second indication information, the second indication information is used to indicate the identification information of the second node, and the characteristics or value range of the identification information of the second node may indicate the terminal that initiated the RRC connection establishment request is the second node.
  • the value of the identification information falls within the range of 0-80 to indicate that the terminal device is a normal UE, and when the value of the identification information falls within the range of 81-100, it is used to indicate that the terminal device is a second node, assuming The identification information of the second node is 90, and since 90 belongs to the range of 81-100, it is determined according to the identification information of the second node that the terminal that initiates the RRC connection request is the second node.
  • Mode 3 The first message includes first indication information, and the terminal that initiates the RRC connection establishment request in the first indication information is the second node.
  • the first indication information may refer to the establishment cause (establishmentCause) information element in the RRCSetupRequest message An assignment (such as "SR-MT-Access") is added in the first message, and the first message further includes second indication information, where the second indication information is used to indicate the identification information of the second node.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the second node.
  • the first message may be an RRCSetupRequest message
  • the second indication information may be a user equipment identification (ue-Identity) information element in the RRCSetupRequest message.
  • the capability information of the second node may be one or more of the following: specifications of the second node, maximum uplink and downlink transmission power of the second node, forwarding capability information of the second node, frequency band amplification and suppression information of the second node.
  • the forwarding capability information of the second node includes the maximum number of beams that the second node can support forwarding, the number of beams that the second node supports forwarding under different subcarrier spacings and/or different frequency bands, and the different subcarrier spacings supported by the second node and/or different frequency bands.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the first message may be the RRCSetupRequest message
  • the second indication information may be the ue-Identity information element in the RRCSetupRequest message
  • an information field is newly added under the ue-Identity information element, for example, the name is "Second Node-Capability" domain, and define a structure under this newly added information domain, for example, a structure named "Second Node-Capability" to specifically define the capability information of the second node.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the first message may be an RRCSetupRequest message
  • the second indication information may be a ue-Identity information element in the RRCSetupRequest message, where the ue-Identity information element may carry 39-bit information.
  • the capability information of the second node includes: specifications of the second node, maximum uplink and downlink transmission power of the second node, forwarding capability information of the second node, and frequency band amplification and suppression information of the second node.
  • the forwarding capability information of the second node includes the maximum number of beams that the second node can support forwarding, the number of beams that the second node supports forwarding under different subcarrier spacings and/or different frequency bands, and the different subcarrier spacings supported by the second node and/or different frequency bands.
  • the 1-3 bits of the ue-Identity information element are used to indicate the specifications of the second node; the 4-6 bits are used to indicate the maximum For the forwarding capability information of the node, the 10th to 12th bits are used to indicate the frequency band amplification and suppression information of the second node.
  • the second indication information includes an index value, where the index value is used to indicate capability information of the second node.
  • the first message may be an RRCSetupRequest message
  • the second indication information may be a random value (randomValue) cell in the RRCSetupRequest message, and an index value is assigned to the randomValue cell, and correspondingly, the first node receives the first message Afterwards, the index value of the randomValue information element is determined, and the locally stored capability information of the second node is queried according to the index value, or the capability information of the second node is queried from the core network.
  • the first node before the second node sends the first message to the first node, the first node performs periodic synchronization signal and physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB), or It is called synchronization signal block beam scanning.
  • periodic synchronization signal and physical broadcast channel block synchronization signal and physical broadcast channel block, SSB
  • SSB physical broadcast channel block
  • the second node detects the SSB at the corresponding frequency point, determines the physical cell identifier (PCI), establishes downlink (DL) synchronization, and decodes the main system Message block (master information block, MIB), type 1 system information block (system information block type1, SIB1), determine physical random access channel (physical random access channel, PRACH) configuration information; then the second node initiates according to the PRACH configuration information
  • PCI physical cell identifier
  • MIB master information block
  • type 1 system information block system information block type1, SIB1
  • PRACH physical random access channel
  • PRACH physical random access channel
  • Step S1102 the first node receives the first message from the second node.
  • Step S1103 the first node sends a second message to the second node.
  • the second message may be an RRC setup (RRCSetup) message, that is, a message 4 (message 4, Msg4) in a four-step random access (4-step random access) process.
  • RRC setup RRCSetup
  • Msg4 message 4, Msg4
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • the first value may be a non-repetitive random value (number used once, Nonce) that is used once.
  • the authentication message can be protected from replay attacks.
  • Step S1104 the second node receives the second message from the first node.
  • the second message includes the first numerical value
  • the method further includes: the second node generates a first response number according to the first numerical value and the private key in the digital certificate; then, the second node sends the first numerical value to the second A node sends a third message, the third message includes a first response number, and the first response number is used by the first node to verify the identity information of the second node.
  • the first node receives the third message from the second node including the first response number; the first node obtains the public key of the second node, and the public key is provided by a network management function (operation, administration and maintenance, OAM) network element Pre-configured or obtained by the first node from the request of the OAM network element; the first node verifies the identity information of the second node according to the first value and the public key to the first response number.
  • OAM operation, administration and maintenance
  • the digital certificate can be pre-installed in the second node
  • the third message can be an RRC setup completion (RRCsetupComplete) message, that is, message 5 (message 5, Msg5), wherein the public key and the private key can be pre-installed A key pair obtained by defining rules.
  • RRC setup completion RRCsetupComplete
  • the first node verifies the identity information of the second node according to the first value and the public key to the first response number, which may mean that the first node determines the private key according to the public key, and then generates the response number according to the private key and the first value, If the response number is the first response number, it means that the verification is passed, the identity of the second node is confirmed, and the second node is allowed to access the network to provide relay services; if the response number is not the first response number, it means that the verification fails , rejecting the second node from accessing the network to provide the relay service.
  • the third message includes capability information of the second node. That is, when the message space of the third message allows, the capability information of the second node may be carried in the third message.
  • the method further includes: the first node sends a capability query message to the second node, and correspondingly, the second node receives the capability query message from the first node, and then the second node sends a capability query message to the first node.
  • the node sends capability information of the second node. It can be understood that when the message space of the third message is not allowed to carry the capability information of the second node, the first node initiates a capability query process to the second node, and sends a capability query message to the second node, wherein the capability query message can be the Two-node capability inquiry (SR CapabilityInquiry) message.
  • the second node sends capability information of the second node to the first node, and the capability information of the second node may be carried in an SR capability information (SRCapabilityInformation) message.
  • the current protocol standard of the second node does not specify the verification of the identity information of the second node and the initial access of the second node.
  • the second The second indication information and the like can complete the initial access of the second node, which simplifies the signaling interaction process and reduces the signaling overhead.
  • Figure 12 is a communication method provided by the embodiment of this application, which includes but is not limited to the following steps:
  • Step S1201 the second node sends capability information of the second node to the first node.
  • the capability information of the second node includes forwarding capability information of the second node.
  • the capability information of the second node also includes one or more of the following: specifications of the second node, frequency band amplification and suppression information of the second node, and maximum uplink and downlink transmit power of the second node.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support forwarding, the number of beams that the second node supports forwarding under different subcarrier intervals and/or different frequency bands, the second Different subcarrier spacing and/or different frequency bands supported by the node.
  • Step S1202 the first node receives capability information of the second node from the second node.
  • reporting the capability information of the second node to the first node by the second node can simplify the signaling interaction process and reduce signaling overhead.
  • Figure 13 is a communication method provided by the embodiment of this application, which includes but is not limited to the following steps:
  • Step S1301 the first node sends PRACH configuration information dedicated to the second node to the second node.
  • the physical random access channel (physical random access channel, PRACH) configuration information includes a first preamble, where the first preamble is a random access preamble dedicated to the second node.
  • the PRACH configuration information may also include the time-frequency domain position of the PRACH resource.
  • Step S1302 the second node receives dedicated PRACH configuration information from the first node.
  • Step S1303 the second node sends the first preamble to the first node.
  • the PRACH configuration information also includes the time-frequency domain position of the PRACH resource; the second node sends the first preamble to the first node, including: the time-frequency domain position of the PRACH resource of the second node The domain location sends a preamble to the first node.
  • the second node sends the preamble to the first node at the time-frequency domain position of the PRACH resource may mean that the second node sends the first preamble to the first node at the time-frequency domain position of the PRACH resource, that is, the second node sends the first preamble to the first node at the time-frequency domain position of the PRACH resource.
  • Step S1304 the first node receives the first preamble from the second node.
  • the first node after the first node receives the first preamble from the second node, it can determine that the terminal that initiated the request is the second node according to the first preamble or/and the dedicated PRACH time-frequency domain position, specifically, it can indicate that the terminal in the second node Mt.
  • the subsequent steps are performed in combination with the embodiment described in FIG. 11 .
  • the previous steps have indicated that the terminal that initiated the request is the second node by using the first preamble or/and the dedicated PRACH time-frequency domain position, so the subsequent process does not need to report the terminal that initiated the request as the second node instructions for the .
  • the first node configures dedicated PRACH configuration information for the second node, and the configuration information includes the first preamble.
  • the second node sends the first preamble to the first node. , which can reduce signaling overhead.
  • Figure 14 is a communication method provided by the embodiment of this application, which includes but is not limited to the following steps:
  • Step S1401 the first node sends to the second node PRACH configuration information dedicated to the second node.
  • the PRACH configuration information includes the time-frequency domain position of the PRACH resource.
  • Step S1402 the second node receives dedicated PRACH configuration information from the first node.
  • Step S1403 the second node sends a preamble to the first node at the time-frequency domain position of the PRACH resource.
  • the preamble may be a first preamble, that is, a preamble for random access dedicated to the second node; the preamble may also be a common preamble, that is, a preamble for random access of an ordinary UE.
  • Step S1404 the first node receives the preamble from the second node at the time-frequency domain position of the PRACH resource.
  • the first node may determine that the requesting terminal is the second node, and may specifically indicate the MT in the second node.
  • the subsequent steps are performed in combination with the embodiment described in FIG. 11 .
  • the previous steps have indicated that the terminal that initiated the request is the second node by using the first preamble or/and the dedicated PRACH time-frequency domain position, so the subsequent process does not need to report the terminal that initiated the request as the second node instructions for the .
  • the first node configures dedicated PRACH configuration information for the second node, and the configuration information includes the time-frequency domain position of the PRACH resource.
  • the second node configures the time-frequency domain position of the PRACH resource.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 may include a processing unit 1501 and a communication unit 1502 , where each unit is described in detail as follows.
  • the processing unit 1501 is configured to generate node configuration information
  • the communication unit 1502 is configured to send the node configuration information to a second node, where the node configuration information is used for converting the first beam set of the device to the second beam set of the second node, the first set of beams and the second set of beams each include at least one beam;
  • the communication unit 1502 is configured to send the first beam set.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming BF parameter information supported by the second node, Second node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the location of the time-frequency resource where the device sends control information to the second node, and the BF parameter information includes a phase One or more of offset, magnitude, and index, wherein the index indicates a phase offset and/or magnitude parameter.
  • the forwarding configuration information includes at least one or more of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the second node, the first Forward pattern information in the direction of two nodes;
  • the first duration information indicates the usage duration of the first BF parameter, wherein the usage duration of the first BF parameter is equal to the transmission duration of the first beam in the second beam set, and the first indication information indicates The number of beams in the second beam set, the time forwarding pattern information of the second node indicates the time position of the forwarded beam in the second beam set, and the direction forwarding pattern information of the second node indicates forwarding the first The BF parameters used by each beam in the two-beam set.
  • the number of beams in the second beam set is equal to the number of sets of BF parameters used by the second node, and the number of sets of BF parameters used by the second node is less than or equal to the N.
  • the forwarding start time information includes identification information of the first beam in the first beam set, or the first time interval and initial OFDM symbol information ;
  • the identification information of the first beam indicates that forwarding starts from the time corresponding to the first beam
  • the first time interval indicates the interval between the time slot for receiving the node configuration information and the forwarding start time slot
  • the number of time slots, the information of the starting OFDM symbol indicates the forwarding starting OFDM symbol in the forwarding starting time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the node configuration information is carried in radio resource control RRC layer signaling, downlink control information DCI of a physical layer downlink control channel, or control element CE of a medium access control MAC layer.
  • the processing unit 1501 is further configured to generate system information SI, where the SI includes index information of at least one beam in the first beam set; the communication unit 1502 is further configured to use to send the SI.
  • the communication unit 1502 is further configured to send SI change indication information to the second node.
  • the communication unit 1502 is further configured to continuously send beams in the first set of beams in time.
  • the processing unit 1501 is further configured to, according to the forwarding capability information of the second node, determine that the number of sets of BF parameters supported by the second node is the N, or determine The number of sets of BF parameters supported by the second node under different subcarrier spacings and/or different frequency bands.
  • the number of sets of BF parameters supported by the second node is greater than or equal to the number of beams in the second beam set or the number of sets of BF parameters used by the second node.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to receive node configuration information from a first node and a first beam set of the first node;
  • the processing unit 1501 is configured to convert the first beam set into a second beam set of the device according to the node configuration information; both the first beam set and the second beam set include at least one beam;
  • the communication unit 1502 is configured to send the second beam set.
  • the processing unit 1501 is configured to determine, according to the node configuration, to forward the first beam set to form the second beam set of the apparatus.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming BF parameter information supported by the device, the second Node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the time-frequency resource location where the device receives the control information from the first node, and the BF parameter includes a phase offset , one or more of magnitude and index, where the index indicates a phase offset and/or magnitude parameter.
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the device, and direction forwarding pattern information of the device ;
  • the first duration information indicates that the device uses the first BF parameter to transmit the transmission duration of the first beam in the second beam set
  • the first indication information indicates the number of beams in the second beam set
  • the time forwarding pattern information of the device is used to indicate at which time positions the device forwards the second beam set from the forwarding start time
  • the direction forwarding pattern information of the device is used to indicate the device Which BF parameters are used to forward the second beam set.
  • the number of beams in the second beam set is equal to the number of sets of BF parameters used by the device, and the number of sets of BF parameters used by the device is less than or equal to the N.
  • the forwarding start time information includes identification information of the first beam in the first beam set, or the first time interval and initial OFDM symbol information ;
  • the identification information of the first beam indicates that the device starts forwarding the second beam set from the time corresponding to the first beam
  • the first time interval indicates that the device receives the node configuration information
  • the start OFDM symbol information indicates the forwarding start OFDM symbol in the forwarding start time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the time forwarding pattern information of the device includes a first bit map, and one bit in the first bit map corresponds to a time interval; wherein, the communication unit 1502 uses Since the value of one bit in the first bitmap is a first preset value, one beam in the second beam set is forwarded at a unit time interval corresponding to the one bit.
  • the direction forwarding pattern information of the device includes a second bitmap, and one bit in the second bitmap corresponds to a set of BF parameters; the communication unit 1502 is configured to A value of a bit in the second bitmap is a second preset value, and a set of BF parameters corresponding to the bit is used to forward a beam in the second beam set.
  • the timing information of the control information includes at least one of the following: a time period, a frequency domain resource block, a number of occupied OFDM symbols, and a time start position.
  • the node configuration information is carried in radio resource control RRC layer signaling, downlink control information DCI of a physical layer downlink control channel, or control element CE of a medium access control MAC layer.
  • the communication unit 1502 is further configured to receive system information SI from the first node, where the SI includes index information of at least one beam in the first beam set.
  • the communication unit 1502 is further configured to receive SI change instruction information from the first node.
  • the communication unit 1502 is further configured to continuously receive beams in the first set of beams in time.
  • control plane protocol stack of the device includes a radio resource control RRC layer, a medium access control MAC layer, and a physical PHY layer.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to send a first message to the first node, the first message is used to request establishment of a radio resource control RRC connection, the first message includes first indication information, and the first indication information uses indicating that the terminal that initiates the RRC connection establishment request is the device;
  • the communication unit 1502 is configured to receive a second message from the first node
  • the processing unit 1501 is configured to establish an RRC connection with the first node according to the second message.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the apparatus.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the apparatus.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the device.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the apparatus.
  • the second indication information includes an index value, where the index value is used to indicate the device capability information.
  • the second message includes the first value
  • the processing unit 1501 is further configured to generate the first response number according to the first value and the private key in the digital certificate;
  • the communication A unit 1502 further configured to send a third message to the first node, where the third message includes the first response number, and the first response number is used for the first node to verify the identity information of the device .
  • the third message includes capability information of the device.
  • the communication unit 1502 is further configured to receive a capability query message from the first node; the communication unit 1502 is further configured to send the apparatus capability information.
  • control plane protocol stack in the device includes a radio resource control (RRC) layer, a media access control (MAC) layer, and a physical PHY layer.
  • RRC radio resource control
  • MAC media access control
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to receive a first message from a second node, where the first message is used to request establishment of a radio resource control RRC connection, where the first message includes first indication information, and the first The indication information is used to indicate that the terminal initiating the request is the second node;
  • the communication unit 1502 is configured to send a second message to the second node.
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the second node.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the second node.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the second indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • the communication unit 1502 is further configured to receive a third message from the second node, where the third message includes the first response number; the processing unit 1501 is further configured to Obtaining the public key of the second node, the public key is pre-configured by the network management function OAM network element or obtained by request from the OAM network element; the processing unit 1501 is configured to, according to the The first value and the public key verify the identity information of the second node with respect to the first response number.
  • the third message includes capability information of the second node.
  • the communication unit 1502 is further configured to send a capability query message to the second node; the communication unit 1502 is further configured to receive the first Capability information of two nodes.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to send capability information of the device to the first node, where the capability information includes forwarding capability information of the device.
  • the capability information further includes one or more of the following: specifications of the device, frequency band amplification and suppression information of the device, and maximum uplink and downlink transmit power of the device.
  • the forwarding capability information of the device includes one or more of the following: the maximum number of beams that the device can support for forwarding, and the The number of beams that support forwarding, and the different subcarrier spacings and/or different frequency bands supported by the device.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to receive capability information from the second node, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification or out-of-band suppression of the second node, uplink and downlink of the second node the maximum transmit power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to receive PRACH configuration information dedicated to the second node from the first node, where the PRACH configuration information includes a first preamble;
  • the communication unit 1502 is configured to send the first preamble to the first node.
  • the PRACH configuration information further includes the time-frequency domain position of the PRACH resource: the communication unit 1502 is configured to send the time-frequency domain position of the PRACH resource to the first node preamble.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to send physical random access channel PRACH configuration information dedicated to the second node to the second node, where the PRACH configuration information includes a first preamble;
  • the communication unit 1502 is configured to receive the first preamble from the second node.
  • the PRACH configuration information further includes the time-frequency domain position of the PRACH resource
  • the communication unit 1502 is configured to receive the time-frequency domain position of the PRACH resource from the second node preamble.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to receive PRACH configuration information dedicated to the second node from the first node, where the PRACH configuration information includes time-frequency domain positions of PRACH resources;
  • the communication unit 1502 is configured to send a preamble to the first node at the time-frequency domain position of the PRACH resource.
  • each unit in the communication device 1500 may also be as follows.
  • the communication unit 1502 is configured to send the physical random access channel PRACH configuration information dedicated to the second node to the second node, where the PRACH configuration information includes the time-frequency domain position of the PRACH resource;
  • the communication unit 1502 is configured to receive the preamble from the second node at the time-frequency domain position of the PRACH resource.
  • FIG. 16 is a communication device 1600 provided by an embodiment of the present application.
  • the communication device 1600 includes at least one processor 1601 and a communication interface 1603, and optionally, a memory 1602.
  • the processor 1601, The memory 1602 and the communication interface 1603 are connected to each other through a bus 1604 .
  • Memory 1602 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1602 is used for related computer programs and data.
  • the communication interface 1603 is used to receive and send data.
  • the processor 1601 may be one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the node configuration information is used to convert the first beam set of the device to the second beam set of the second node, the first set of beams and the second set of beams each include at least one beam;
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming BF parameter information supported by the second node, Second node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the location of the time-frequency resource where the device sends control information to the second node, and the BF parameter information includes a phase One or more of offset, magnitude, and index, wherein the index indicates a phase offset and/or magnitude parameter.
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the second node, time forwarding pattern information of the second node, Direction forwarding pattern information;
  • the first duration information indicates the usage duration of the first BF parameter, wherein the usage duration of the first BF parameter is equal to the transmission duration of the first beam in the second beam set, and the first indication information indicates The number of beams in the second beam set, the time forwarding pattern information of the second node indicates the time position of the forwarded beam in the second beam set, and the direction forwarding pattern information of the second node indicates forwarding the first The BF parameters used by each beam in the two-beam set.
  • the number of beams in the second beam set is equal to the number of sets of BF parameters used by the second node, and the number of sets of BF parameters used by the second node is less than or equal to the N.
  • the forwarding start time information includes identification information of the first beam in the first beam set, or the first time interval and initial OFDM symbol information ;
  • the identification information of the first beam indicates that forwarding starts from the time corresponding to the first beam
  • the first time interval indicates the interval between the time slot for receiving the node configuration information and the forwarding start time slot
  • the number of time slots, the information of the starting OFDM symbol indicates the forwarding starting OFDM symbol in the forwarding starting time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the node configuration information is carried in radio resource control RRC layer signaling, downlink control information DCI of a physical layer downlink control channel, or control element CE of a medium access control MAC layer.
  • the processor 1601 is further configured to generate system information SI, where the SI includes index information of at least one beam in the first beam set; Describe SI.
  • the processor 1601 is further configured to send SI change indication information to the second node through the communication interface 1603 .
  • the processor 1601 is further configured to continuously send the beams in the first beam set through the communication interface 1603 in time.
  • the processor 1601 is further configured to, according to the forwarding capability information of the second node, determine that the number of sets of BF parameters supported by the second node is the N, or determine The number of sets of BF parameters supported by the second node under different subcarrier spacings and/or different frequency bands.
  • the number of sets of BF parameters supported by the second node is greater than or equal to the number of beams in the second beam set or the number of sets of BF parameters used by the second node.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • both the first beam set and the second beam set include at least one beam
  • the processor 1601 is configured to determine, according to the node configuration, to forward the first beam set to form the second beam set of the apparatus.
  • the beam multiplexing manner in the first beam set includes time division multiplexing or frequency division multiplexing
  • the beam multiplexing manner in the second beam set includes space division multiplexing
  • the node configuration information includes at least one of the following: forwarding configuration information, power control information, control information timing information, N sets of beamforming BF parameter information supported by the device, the second Node frequency band amplification and suppression information, wherein the N is greater than or equal to 1, the control information timing information indicates the time-frequency resource location where the device receives the control information from the first node, and the BF parameter includes a phase offset , one or more of magnitude and index, where the index indicates a phase offset and/or magnitude parameter.
  • the forwarding configuration information includes at least one of the following: forwarding start time information, first duration information, first indication information, time forwarding pattern information of the device, and direction forwarding pattern information of the device ;
  • the first duration information indicates that the device uses the first BF parameter to transmit the transmission duration of the first beam in the second beam set
  • the first indication information indicates the number of beams in the second beam set
  • the time forwarding pattern information of the device is used to indicate at which time positions the device forwards the second beam set from the forwarding start time
  • the direction forwarding pattern information of the device is used to indicate the device Which BF parameters are used to forward the second beam set.
  • the number of beams in the second beam set is equal to the number of sets of BF parameters used by the device, and the number of sets of BF parameters used by the device is less than or equal to the N.
  • the forwarding start time information includes identification information of a first beam in the first beam set, or first time interval and initial OFDM symbol information; wherein, the first The identification information of a beam indicates that the device starts forwarding the second beam set from the time corresponding to the first beam, and the first time interval indicates that the time slot at which the device receives the node configuration information is different from the forwarding time.
  • the number of time slots between start time slots, and the OFDM symbol information indicates the forwarding start OFDM symbol in the forwarding start time slot.
  • the first indication information includes at least one of the following: subcarrier spacing, frequency band, cell identity information, K, where K is greater than or equal to 1.
  • the time forwarding pattern information of the apparatus includes a first bit map, and one bit in the first bit map corresponds to a unit time interval; wherein, the processor 1601, It is further configured to use the communication interface 1603 to transmit the data in the second beam set at a unit time interval corresponding to the first bit by using the value of a bit in the first bit map of the communication interface 1603 as a first preset value. a beam.
  • the direction forwarding pattern information of the device includes a second bitmap, and one bit in the second bitmap corresponds to a set of BF parameters; the processor 1601 further uses Based on the value of a bit in the second bitmap through the communication interface 1603 being a second preset value, using a set of BF parameters corresponding to the bit to forward a beam in the second beam set .
  • the timing information of the control information includes at least one of the following: a time period, a frequency domain resource block, a number of occupied OFDM symbols, and a time start position.
  • the node configuration information is carried in radio resource control RRC layer signaling, downlink control information DCI of a physical layer downlink control channel, or control element CE of a medium access control MAC layer.
  • the processor 1601 is further configured to receive system information SI from the first node through the communication interface 1603, where the SI includes at least one of the first beam set The index information of the beam.
  • the processor 1601 is further configured to receive SI change indication information from the first node through the communication interface 1603 .
  • the processor 1601 is further configured to continuously receive beams in the first beam set in time through the communication interface 1603 .
  • control plane protocol stack of the device includes a radio resource control RRC layer, a medium access control MAC layer, and a physical PHY layer.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the first message is used to request establishment of a radio resource control RRC connection, the first message includes first indication information, and the first indication information is used to indicate
  • the terminal that initiates the request to establish the RRC connection is the device;
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the apparatus.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the apparatus.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the device.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the apparatus.
  • the second indication information includes an index value, where the index value is used to indicate the device capability information.
  • the second message includes the first value
  • the processor 1601 is further configured to generate the first response number according to the first value and the private key in the digital certificate; through the The communication interface 1603 sends a third message to the first node, where the third message includes the first response number, and the first response number is used for the first node to verify the identity information of the device.
  • the third message includes capability information of the device.
  • the processor 1601 is further configured to receive a capability query message from the first node through the communication interface 1603; and send capability information of the device to the first node .
  • control plane protocol stack in the device includes a radio resource control (RRC) layer, a media access control (MAC) layer, and a physical PHY layer.
  • RRC radio resource control
  • MAC media access control
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the first message includes second indication information, where the second indication information is used to indicate identification information of the second node.
  • the first message includes second indication information, where the second indication information is used to indicate capability information of the second node.
  • the second indication information includes an information field, and a structure corresponding to the information field is used to define capability information of the second node.
  • the second indication information includes a bit sequence, and the bit sequence is used to indicate capability information of the second node.
  • the second indication information includes an index value, where the index value is used to indicate the second node capability information.
  • the second message includes a first value
  • the first value is used for identity information verification of the second node.
  • the processor 1601 is further configured to receive a third message from the second node through the communication interface 1603, where the third message includes the first response number; the The processor 1601 is further configured to acquire the public key of the second node, where the public key is pre-configured by the network management function OAM network element or obtained by request from the OAM network element; according to the first The value and the public key are used to verify the identity information of the second node against the first response number.
  • the third message includes capability information of the second node.
  • the processor 1601 is further configured to send a capability query message to the second node through the communication interface 1603; capability information.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the capability information further includes one or more of the following: specifications of the device, frequency band amplification or out-of-band suppression of the device, and maximum uplink and downlink transmit power of the device.
  • the forwarding capability information of the device includes one or more of the following: the maximum number of beams that the device can support for forwarding, and the The number of beams that support forwarding, and the different subcarrier spacings and/or different frequency bands supported by the device.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • Capability information from the second node is received through the communication interface 1603, where the capability information includes forwarding capability information of the second node.
  • the capability information further includes one or more of the following: specifications of the second node, frequency band amplification or out-of-band suppression of the second node, uplink and downlink of the second node the maximum transmit power.
  • the forwarding capability information of the second node includes one or more of the following: the maximum number of beams that the second node can support for forwarding, the second node at different subcarrier intervals and/or the number of beams that support forwarding in different frequency bands, and the different subcarrier spacings and/or different frequency bands supported by the second node.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the PRACH configuration information further includes the time-frequency domain position of the PRACH resource: the processor 1601 is configured to send the time-frequency domain position of the PRACH resource through the communication interface 1603 to The first node sends a preamble.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the PRACH configuration information further includes the time-frequency domain position of the PRACH resource
  • the processor 1601 is configured to receive the time-frequency domain position of the PRACH resource through the communication interface 1603 a preamble from said second node.
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the processor 1601 in the communication device 1600 is used to read the computer program code stored in the memory 1602, and perform the following operations:
  • the PRACH configuration information includes the time-frequency domain position of the PRACH resource
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • transmission may include the following three situations: sending of data, receiving of data, or sending of data and receiving of data.
  • data may include service data and/or signaling data.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more.
  • “Including at least one of the following: A, B, C.” means that it may include A, or include B, or include C, or include A and B, or include A and C, or include B and C, or include A, B, and c. Among them, A, B, and C can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,该方法包括第一节点生成节点配置信息并向第二节点发送该节点配置信息,其中,该节点配置信息用于将第一节点发送的第一波束集转化为第二节点发送的第二波束集,通过将本方法应用到智能中继(smart repeater),可以实现中继对波束的智能转发。

Description

通信方法及装置
本申请要求于2021年11月29日提交中国专利局、申请号为202111432913.7、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
覆盖是蜂窝网络的基本功能,在信号覆盖差的区域部署中继节点可扩大网络覆盖。传统的中继器(repeater)由射频单元(radio unit,RU)模块组成,在用户接入侧不执行自适应波束赋形(beamforming,BF),通常使用固定方向的静态波束成型,并由手动管理。智能中继器(smart repeater,SR)可以实现信号放大转发操作,例如,可支持上下行感知与动态时分双工(time division duplex,TDD)、带宽可配置、波束感知、接入侧波束赋形(beamforming,BF)、上行(uplink,UL)或下行(downlink,DL)转发功控以及动态开关等。特别是在5G新空口(new radio,NR)标准或第三代合作伙伴计划(3rd generation partnership project,3GPP)组织定义的频率范围2(frequency range 2,FR2)频段中,具有自适应BF能力,SR与传统的中继器(repeater)在架构上也有所不同,除了有RU模块,还新增了一个单独的移动终端(mobile terminal,MT)模块,用来专门接收和反馈基站控制信令。但是目前对SR的研究仍然在很多方面缺乏相应的协议标准,例如,SR的协议栈的设计、初始接入、鉴权设计,以及引入SR后系统信息(system information,SI)的更新变化和网络设备如何向SR发送控制信息、以及控制信息包含哪些配置等等。
发明内容
本申请实施例公开了一种通信方法及装置,能够通过将本方法应用到智能中继(smart repeater),可以实现中继对波束的智能转发。
本申请实施例第一方面公开了一种通信方法,包括:
第一节点生成节点配置信息;
所述第一节点向第二节点发送所述节点配置信息,其中,所述节点配置信息用于所述第一节点的第一波束集到所述第二节点的第二波束集的转化,所述第一波束集和所述第二波束集均包括至少一个波束;
所述第一节点发送所述第一波束集。
在上述方法中,通过第一节点生成节点配置信息并向第二节点发送节点配置信息,相应的,第二节点可以根据该节点配置信息进行配置,通过将本方法应用到智能中继(smart repeater),可以实现中继对波束的智能转发。
在一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。其中,通过空分复用的方式,能够使得第二波束集中的不同波束的能量聚集在不同的空间方向。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功 控信息,控制信息时机信息,所述第二节点支持的N套波束赋形参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述第一节点向所述第二节点发送控制信息的时频资源位置,所述波束赋形参数信息包括相位偏移,幅度以及索引中的一项或者多项,其中,所述索引指示相位偏移和/或幅度参数。
在上述方法中,第一节点向第二节点发送节点配置信息,相应的,第二节点接收来自第一节点的节点配置信息后,可以根据功控信息设置第二节点的上下行转发功率、滤波模块的通带带宽与增益以及可能的阻带抑制等参数,从而更好的转发第二波束集的每个波束。第二节点也可以根据控制信息时机信息,按照所指示的监听周期到所指示的时频位置上检测第一节点下发的控制信号,同时指示第二节点不会盲目转发第一节点发送给第二节点的控制信号。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;
其中,所述第一时长信息指示第一波束赋形参数的使用时长,其中,所述第一波束赋形参数的使用时长等于所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息指示所述第二波束集中被转发波束的时间位置,所述第二节点的方向转发图样信息指示转发所述第二波束集中每个波束所使用的波束赋形参数。
在上述方法中,第一节点向第二节点发送节点配置信息,相应的,第二节点接收来自第一节点的节点配置信息后,也可以根据转发配置信息,设置第二节点从所指示的转发起始时间开始,在所述时间转发图样信息所指示的单位时间间隔上,按照第一时长信息所指示的使用时长来使用所述方向转发图样信息所指示的BF参数转发第二波束集中的每个波束。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述第二节点使用的波束赋形参数的套数,所述第二节点使用的波束赋形参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用符号信息;其中,所述第一波束的标识信息指示从所述第一波束对应的时间开始转发,所述第一时间间隔指示接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始正交频分复用符号信息指示所述转发起始时隙中的转发起始正交频分复用符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制层信令,物理层下行控制信道的下行控制信息,或者媒体接入控制层的控制元素中。
在上述方法中,通过节点配置信息携带在RRC层信令、DCI或MAC CE中,能够实现降低信令开销。
在又一种可能的实现方式中,还包括:所述第一节点生成系统信息,所述系统信息包括所述第一波束集中的至少一个波束的索引信息;所述第一节点发送所述系统信息。
在又一种可能的实现方式中,还包括:所述第一节点向所述第二节点发送系统信息变更指示信息。
在又一种可能的实现方式中,还包括:所述第一节点在时间上连续发送所述第一波束集中的波束。
在又一种可能的实现方式中,还包括:所述第一节点根据所述第二节点的转发能力信息, 确定所述第二节点支持的波束赋形参数的套数为所述N,或者,确定在不同子载波间隔和/或不同频段下,所述第二节点支持的波束赋形参数的套数。
在又一种可能的实现方式中,所述第二节点支持的波束赋形参数的套数大于或等于所述第二波束集的波束数量或所述第二节点使用的波束赋形参数的套数。
在又一种可能的实现方式中,第一节点接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制连接,其中,所述第一消息包括第二指示信息,所述第二指示信息用于指示发起请求的终端为所述第二节点;所述第一节点向所述第二节点发送第二消息。
在上述方法中,通过上述方式,能够完成第二节点的初始接入,简化信令流程,降低信令开销。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
在又一种可能的实现方式中,还包括:所述第一节点接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;所述第一节点获取所述第二节点的公钥,所述公钥是由所述网络管理功能网元预先配置的或所述第一节点从所述网络管理功能网元请求得到的;所述第一节点根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,还包括:所述第一节点向所述第二节点发送能力查询消息;所述第一节点接收来自所述第二节点的所述第二节点的能力信息。
在又一种可能的实现方式中,第一节点接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在又一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
在又一种可能的实现方式中,第一节点向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;所述第一节点接收来自所述第二节点的所述第一前导码。
在又一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置,所述第一节点接收来自所述第二节点的所述第一前导码,包括:所述第一节点在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
在又一种可能的实现方式中,第一节点向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;所述第一节点在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
本申请实施例第二方面公开了一种通信方法,包括:
第二节点接收来自第一节点的节点配置信息和所述第一节点的第一波束集;
所述第二节点根据所述节点配置信息,将所述第一波束集转化为所述第二节点的第二波束集;所述第一波束集和所述第二波束集均包括至少一个波束;
所述第二节点发送所述第二波束集。
在一种可能的实现方式中,所述第二节点根据所述节点配置信息,将所述第一波束集转化为所述第二节点的第二波束集,包括:所述第二节点根据所述节点配置确定对所述第一波束集进行转发形成所述第二节点的第二波束集。
在又一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述第二节点支持的N套波束赋形参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述第二节点接收来自所述第一节点的控制信息的时频资源位置,所述波束赋形参数包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项或多项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;其中,所述第一时长信息指示所述第二节点使用第一波束赋形参数发送所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息用于指示所述第二节点从所述转发起始时间开始,在哪些时间位置转发所述第二波束集;所述第二节点的方向转发图样信息用于指示所述第二节点采用哪些波束赋形参数转发所述第二波束集。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述第二节点使用的波束赋形参数的套数,所述第二节点使用的波束赋形参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用符号信息;其中,所述第一波束的标识信息指示所述第二节点从所述第一波束对应的时间开始转发所述第二波束集,所述第一时间间隔指示所述第二节点接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始正交频分复用符号信息指示所述转发起始时隙中的转发起始正交频分复用符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述第二节点的时间转发图样信息包括第一比特位图,所述第一比特位图中的一个比特对应一个单位时间间隔;其中,当所述第一比特位图中的一个比特的取值为第一预设值,所述第二节点在所述一个波特对应的一个单位时间间隔转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述第二节点的方向转发图样信息包括第二比特位图,所 述第二比特位图中的一个比特对应一套波束赋形参数;当所述第二比特位图中的一个比特的取值为第二预设值,所述第二节点使用所述一个比特对应的一套BF参数转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述控制信息时机信息包括以下至少一项:时间周期,频域资源块,占用的正交频分复用符号的个数,时间起始位置。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制层信令,物理层下行控制信道的下行控制信息,或者媒体接入控制层的控制元素中。
在又一种可能的实现方式中,还包括:所述第二节点接收来自所述第一节点的系统信息,所述系统信息包括所述第一波束集中的至少一个波束的索引信息。
在又一种可能的实现方式中,还包括:所述第二节点接收来自所述第一节点的系统信息变更指示信息。
在又一种可能的实现方式中,还包括:所述第二节点在时间上连续接收所述第一波束集中的波束。
在又一种可能的实现方式中,所述第二节点的控制面协议栈包括无线资源控制层、媒体接入控制层、物理层。
在又一种可能的实现方式中,第二节点向第一节点发送第一消息,所述第一消息用于请求建立无线资源控制连接,所述第一消息包括第二指示信息,所述第二指示信息用于指示发起建立所述无线资源控制连接请求的终端为所述第二节点;所述第二节点接收来自所述第一节点的第二消息;所述第二节点根据所述第二消息,与所述第一节点建立无线资源控制连接。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,还包括:所述第二节点根据第一数值和数字证书中的私钥,生成第一响应数;所述第二节点向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,还包括:所述第二节点接收来自所述第一节点的能力查询消息;所述第二节点向所述第一节点发送所述第二节点的能力信息。
在又一种可能的实现方式中,第二节点向第一节点发送第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在又一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述 第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
在又一种可能的实现方式中,第二节点接收来自第一节点的所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;所述第二节点向所述第一节点发送所述第一前导码。
在又一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置:所述第二节点向所述第一节点发送所述第一前导码,包括:所述第二节点在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
在又一种可能的实现方式中,第二节点接收来自第一节点的所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;所述第二节点在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
本申请实施例第三方面公开了一种通信方法,包括:
第二节点向第一节点发送第一消息,所述第一消息用于请求建立无线资源控制连接,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起建立所述无线资源控制连接请求的终端为所述第二节点;
所述第二节点接收来自所述第一节点的第二消息;
所述第二节点根据所述第二消息,与所述第一节点建立无线资源控制连接。
在上述方法中,通过上述方式,能够完成第二节点的初始接入,简化信令流程,降低信令开销。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述方法还包括:所述第二节点根据第一数值和数字证书中的私钥,生成第一响应数;所述第二节点向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述方法还包括:所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,所述方法还包括:所述第二节点接收来自所述第一节点的能力查询消息;所述第二节点向所述第一节点发送所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二节点中的控制面协议栈包括无线资源控制层、媒体接入控制层、物理层。
本申请实施例第四方面公开了一种通信方法,包括:
第一节点接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制连接,其中,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起请求的终端为所述第二节点;
所述第一节点向所述第二节点发送第二消息。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
在又一种可能的实现方式中,所述方法还包括:所述第一节点接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;所述第一节点获取所述第二节点的公钥,所述公钥是由所述网络管理功能网元预先配置的或所述第一节点从所述网络管理功能网元请求得到的;所述第一节点根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,所述方法还包括:所述第一节点向所述第二节点发送能力查询消息;所述第一节点接收来自所述第二节点的所述第二节点的能力信息。
本申请实施例第五方面公开了一种通信方法,包括:
第二节点向第一节点发送第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在上述方法中,通过第二节点向第一节点上报第二节点的能力信息能够简化了信令交互过程,降低了信令开销。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
本申请实施例第六方面公开了一种通信方法,包括:
第一节点接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
本申请实施例第七方面公开了一种通信方法,包括:
第二节点接收来自第一节点的所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;
所述第二节点向所述第一节点发送所述第一前导码。
在上述方法中,通过第一节点为第二节点配置专用的物理随机接入信道配置信息,该配置信息包括第一前导码,相应的,第二节点向第一节点发送第一前导码的方式,能够降低信令开销。
在一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置,所述第二节点向所述第一节点发送所述第一前导码,包括:所述第二节点在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
本申请实施例第八方面公开了一种通信方法,包括:
第一节点向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;
所述第一节点接收来自所述第二节点的所述第一前导码。
在一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置,所述第一节点接收来自所述第二节点的所述第一前导码,包括:所述第一节点在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
本申请实施例第九方面公开了一种通信方法,包括:
第二节点接收来自第一节点的所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;
所述第二节点在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
在上述方法中,通过第一节点为第二节点配置专用的物理随机接入信道配置信息,该配置信息包括物理随机接入信道资源的时频域位置,相应的,第二节点在物理随机接入信道资源的时频域位置向第一节点发送前导码的方式,能够降低信令开销。
本申请实施例第十方面公开了一种通信方法,包括:
第一节点向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;
所述第一节点在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
本申请实施例第十一方面公开了一种通信装置,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行上述第一方面至第十 方面中的任一种实现方式。
本申请实施例第十二方面公开了一种通信装置,包括:处理单元和通信单元,
所述处理单元,用于生成节点配置信息;
所述通信单元,用于向第二节点发送所述节点配置信息,其中,所述节点配置信息用于所述装置的第一波束集到所述第二节点的第二波束集的转化,所述第一波束集和所述第二波束集均包括至少一个波束;
所述通信单元,用于发送所述第一波束集。
在一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述第二节点支持的N套波束赋形参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述装置向所述第二节点发送控制信息的时频资源位置,所述波束赋形参数信息包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;
其中,所述第一时长信息指示第一波束赋形参数的使用时长,其中,所述第一波束赋形参数的使用时长等于所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息指示所述第二波束集中被转发波束的时间位置,所述第二节点的方向转发图样信息指示转发所述第二波束集中每个波束所使用的波束赋形参数。
在又一种可能的实现方式中,其中,所述第二波束集中的波束的数量等于所述第二节点使用的波束赋形参数的套数,所述第二节点使用的波束赋形参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用符号信息;
其中,所述第一波束的标识信息指示从所述第一波束对应的时间开始转发,所述第一时间间隔指示接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始正交频分复用符号信息指示所述转发起始时隙中的转发起始正交频分复用符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制层信令,物理层下行控制信道的下行控制信息,或者媒体接入控制层的控制元素中。
在又一种可能的实现方式中,所述处理单元,还用于生成系统信息,所述系统信息包括所述第一波束集中的至少一个波束的索引信息;所述通信单元,还用于发送所述系统信息。
在又一种可能的实现方式中,所述通信单元,还用于向所述第二节点发送系统信息变更指示信息。
在又一种可能的实现方式中,所述通信单元,还用于在时间上连续发送所述第一波束集中的波束。
在又一种可能的实现方式中,所述处理单元,还用于根据所述第二节点的转发能力信息, 确定所述第二节点支持的波束赋形参数的套数为所述N,或者,确定在不同子载波间隔和/或不同频段下,所述第二节点支持的波束赋形参数的套数。
在又一种可能的实现方式中,所述第二节点支持的波束赋形参数的套数大于或等于所述第二波束集的波束数量或所述第二节点使用的波束赋形参数的套数。
在又一种可能的实现方式中,所述通信单元,还用于接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制连接,其中,所述第一消息包括第二指示信息,所述第二指示信息用于指示发起请求的终端为所述第二节点;所述通信单元,还用于向所述第二节点发送第二消息。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;所述处理单元,还用于获取所述第二节点的公钥,所述公钥是由所述网络管理功能网元预先配置的或所述装置从所述网络管理功能网元请求得到的;所述处理单元,还用于根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,所述通信单元,还用于向所述第二节点发送能力查询消息;所述通信单元,还用于接收来自所述第二节点的所述第二节点的能力信息。
在又一种可能的实现方式中,所述通信单元,还用于接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在又一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
在又一种可能的实现方式中,所述通信单元,还用于向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;所述通信单元,还用于接收来自所述第二节点的所述第一前导码。
在又一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置,所述通信单元,还用于在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
在又一种可能的实现方式中,所述通信单元,还用于向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;所述通信单元,还用于在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
关于第十二方面或可能的实现方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
本申请实施例第十三方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于接收来自第一节点的节点配置信息和所述第一节点的第一波束集;
所述处理单元,用于根据所述节点配置信息,将所述第一波束集转化为所述装置的第二波束集;所述第一波束集和所述第二波束集均包括至少一个波束;
所述通信单元,用于发送所述第二波束集。
在一种可能的实现方式中,所述处理单元,用于根据所述节点配置确定对所述第一波束集进行转发形成所述装置的第二波束集。
在又一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述装置支持的N套波束赋形参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述装置接收来自所述第一节点的控制信息的时频资源位置,所述波束赋形参数包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,装置的时间转发图样信息,装置的方向转发图样信息;其中,所述第一时长信息指示所述装置使用第一波束赋形参数发送所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述装置的时间转发图样信息用于指示所述装置从所述转发起始时间开始,在哪些时间位置转发所述第二波束集;所述装置的方向转发图样信息用于指示所述装置采用哪些波束赋形参数转发所述第二波束集。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述装置使用的波束赋形参数的套数,所述装置使用的波束赋形参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用符号信息;其中,所述第一波束的标识信息指示所述装置从所述第一波束对应的时间开始转发所述第二波束集,所述第一时间间隔指示所述装置接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始正交频分复用符号信息指示所述转发起始时隙中的转发起始正交频分复用符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述装置的时间转发图样信息包括第一比特位图,所述第一比特位图中的一个比特对应一个单位时间间隔;其中,所述通信单元,用于在所述第一比特位图中的一个比特的取值为第一预设值,在所述一个比特对应的一个单位时间间隔转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述装置的方向转发图样信息包括第二比特位图,所述第 二比特位图中的一个比特对应一套波束赋形参数;所述通信单元,用于在所述第二比特位图中的一个比特的取值为第二预设值,使用所述一个比特对应的一套BF参数转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述控制信息时机信息包括以下至少一项:时间周期,频域资源块,占用的正交频分复用符号的个数,时间起始位置。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制层信令,物理层下行控制信道的下行控制信息,或者媒体接入控制层的控制元素中。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述第一节点的系统信息,所述系统信息包括所述第一波束集中的至少一个波束的索引信息。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述第一节点的系统信息变更指示信息。
在又一种可能的实现方式中,所述通信单元,还用于在时间上连续接收所述第一波束集中的波束。
在又一种可能的实现方式中,所述装置的控制面协议栈包括无线资源控制层、媒体接入控制层、物理层。
在又一种可能的实现方式中,所述通信单元,还用于向第一节点发送第一消息,所述第一消息用于请求建立无线资源控制连接,所述第一消息包括第二指示信息,所述第二指示信息用于指示发起建立所述无线资源控制连接请求的终端为所述装置;所述通信单元,还用于接收来自所述第一节点的第二消息;所述处理单元,还用于根据所述第二消息,与所述第一节点建立无线资源控制连接。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述装置的标识信息。
在又一种可能的实现方式中,所述第一消息包括第三指示信息,所述第三指示信息用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括信息域,所述信息域对应的结构用于定义所述装置的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括比特序列,所述比特序列用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第三指示信息包括索引值,所述索引值用于指示所述装置能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述处理单元,还用于根据第一数值和数字证书中的私钥,生成第一响应数;所述通信单元,还用于向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述装置的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述装置的能力信息。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述第一节点的能力查询消息;所述装置向所述第一节点发送所述装置的能力信息。
在又一种可能的实现方式中,所述通信单元,还用于向第一节点发送装置的能力信息,所述能力信息包括所述装置的转发能力信息。
在又一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述装置的规格,所述装置频段放大和抑制信息,所述装置的上下行的最大发射功率。
在又一种可能的实现方式中,所述装置的转发能力信息包括以下一项或多项:所述装置最多可支持转发的波束数量,所述装置在不同子载波间隔和/或不同频段下支持转发的波束数量,所述装置支持的不同子载波间隔和/或不同频段。
在又一种可能的实现方式中,所述通信单元,还用于接收来自第一节点的所述装置专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;所述通信单元,还用于向所述第一节点发送所述第一前导码。
在又一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置:所述通信单元,用于在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
在又一种可能的实现方式中,所述通信单元,还用于接收来自第一节点的所述装置专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;所述通信单元,还用于在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
关于第十三方面或可能的实现方式所带来的技术效果,可参考对于第二方面或相应的实施方式的技术效果的介绍。
本申请实施例第十四方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于向第一节点发送第一消息,所述第一消息用于请求建立无线资源控制连接,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起建立所述无线资源控制连接请求的终端为所述装置;
所述通信单元,用于接收来自所述第一节点的第二消息;
所述处理单元,用于根据所述第二消息,与所述第一节点建立无线资源控制连接。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述装置的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述装置能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述处理单元,还用于根据第一数值和数字证书中的私钥,生成第一响应数;所述通信单元,还用于向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述装置的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述装置的能力信息。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述第一节点的能力查询消息;所述通信单元,还用于向所述第一节点发送所述装置的能力信息。
在又一种可能的实现方式中,所述装置中的控制面协议栈包括无线资源控制层、媒体接入控制层、物理层。
关于第十四方面或可能的实现方式所带来的技术效果,可参考对于第三方面或相应的实施方式的技术效果的介绍。
本申请实施例第十五方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制连接,其中,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起请求的终端为所述第二节点;
所述通信单元,用于向所述第二节点发送第二消息。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;所述处理单元,还用于获取所述第二节点的公钥,所述公钥是由所述网络管理功能网元预先配置的或从所述网络管理功能网元请求得到的;所述处理单元,用于根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,所述通信单元,还用于向所述第二节点发送能力查询消息;所述通信单元,还用于接收来自所述第二节点的所述第二节点的能力信息。
关于第十五方面或可能的实现方式所带来的技术效果,可参考对于第四方面或相应的实施方式的技术效果的介绍。
本申请实施例第十六方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于向第一节点发送装置的能力信息,所述能力信息包括所述装置的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述装置的规格,所述装置频段放大和抑制信息,所述装置的上下行的最大发射功率。
在又一种可能的实现方式中,所述装置的转发能力信息包括以下一项或多项:所述装置最多可支持转发的波束数量,所述装置在不同子载波间隔和/或不同频段下支持转发的波束数量,所述装置支持的不同子载波间隔和/或不同频段。
关于第十六方面或可能的实现方式所带来的技术效果,可参考对于第五方面或相应的实施方式的技术效果的介绍。
本申请实施例第十七方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,所述第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
关于第十七方面或可能的实现方式所带来的技术效果,可参考对于第六方面或相应的实施方式的技术效果的介绍。
本申请实施例第十八方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于接收来自第一节点的所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;
所述通信单元,用于向所述第一节点发送所述第一前导码。
在一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置:所述通信单元,用于在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
关于第十八方面或可能的实现方式所带来的技术效果,可参考对于第七方面或相应的实施方式的技术效果的介绍。
本申请实施例第十九方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于向第二节点发送所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括第一前导码;
所述通信单元,用于接收来自所述第二节点的所述第一前导码。
在一种可能的实现方式中,所述物理随机接入信道配置信息中还包括物理随机接入信道资源的时频域位置,所述通信单元,用于在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
关于第十九方面或可能的实现方式所带来的技术效果,可参考对于第八方面或相应的实施方式的技术效果的介绍。
本申请实施例第二十方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于接收来自第一节点的所述第二节点专用的物理随机接入信道配置信息,其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;
所述通信单元,用于在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
关于第二十方面或可能的实现方式所带来的技术效果,可参考对于第九方面或相应的实施方式的技术效果的介绍。
本申请实施例第二十一方面公开了一种通信装置,包括:处理单元和通信单元,
所述通信单元,用于向第二节点发送所述第二节点专用的物理随机接入信道配置信息, 其中,所述物理随机接入信道配置信息包括物理随机接入信道资源的时频域位置;
所述通信单元,用于在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
关于第二十一方面或可能的实现方式所带来的技术效果,可参考对于第十方面或相应的实施方式的技术效果的介绍。
本申请实施例第二十二方面公开了一种芯片系统,所述芯片系统包括至少一个处理器和通信接口,所述至少一个处理器用于执行计算机程序或指令,以实现上述任一方面所述的方法。
本申请实施例第二十三方面公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在处理器上运行时,以实现上述任一方面所述的方法。
本申请实施例第二十四方面公开了一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以实现上述任一方面所述的方法。
本申请实施例第二十五方面公开了一种通信系统,所述系统包括:
如第十二方面所述的装置和如第十三方面所述的装置;和/或,
如第十四方面所述的装置和如第十五方面所述的装置;和/或,
如第十六方面所述的装置和如第十七方面所述的装置;和/或,
如第十八方面所述的装置和如第十九方面所述的装置;和/或,
如第二十方面所述的装置和如第二十一方面所述的装置。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种第二节点的结构示意图;
图3是本申请实施例提供的一种第二节点的用户面和控制面的协议栈的示意图;
图4是本申请实施例提供的一种第二节点的用户面和控制面的协议栈的示意图;
图5是本申请实施例提供的一种第二节点的控制面的协议栈的示意图;
图6是本申请实施例提供的一种通信方法的流程示意图;
图7是本申请实施例提供的一种发送控制信息的示意图;
图8是本申请实施例提供的一种发送SSB的示意图;
图9是本申请实施例提供的一种发送SSB的示意图;
图10是本申请实施例提供的一种发送SSB的示意图;
图11是本申请实施例提供的一种通信方法的流程示意图;
图12是本申请实施例提供的一种通信方法的流程示意图;
图13是本申请实施例提供的一种通信方法的流程示意图;
图14是本申请实施例提供的一种通信方法的流程示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种通信系统100的结构示意图,该通信系统100包括第一节点101、第二节点102、第三节点103,其中,第一节点101可以为网络设备,第二节点102可以为智能中继器(smart repeater,SR),其中,SR也可以称为智能直放站、或者智能转发器。其中,在第一节点101的控制下,第二节点102通过时分双工(time division duplex,TDD)或频分双工(frequency division duplex,FDD)方式,将第三节点103发送的上行信号放大转发给第一节点101,也可以将第一节点101发送的下行信号放大转发给第三节点103,并且在转发下行信号给第三节点103时,实现针对第三节点103的波束赋形(beamforming,BF)传输。
如图2所示,图2给出了一种第二节点102的结构示意图,该第二节点102可以由射频单元(radio unit,RU)模块和移动终端(mobileterminal,MT)模块组成,其中,当第二节点为SR,那么第二节点中的RU模块可以简称为SR-RU,第二节点中的MT模块可以简称为SR-MT。第二节点的MT模块用于接收和反馈第一节点101的控制信令。第二节点102与第一节点101之间的通信链路可以称为回程链路(backhaul link),该回程链路可以用于接收来自第一节点101发送的信号或转发第三节点103的发送的信号。第二节点102与第三节点103之间的通信链路可以称为接入链路(access link),该接入链路可以用于接收来自第三节点103发送的信号或转发第一节点101发送的信号。其中,第二节点102的协议层设计如下:当第二节点102传输第三节点103与第一节点101之间的业务数据时,也即第二节点102作为转发节点时,如图3所示,第二节点102中的RU模块和MT模块的用户面(user plane,UP)和控制面(control plane,CP)的协议栈均为空。当第二节点102传输自身与网络设备之间的业务数据时,由于第二节点的MT模块自身不会产生用户面数据,它只与第一节点101交互控制面信令,需要第二节点的MT模块来完成,不涉及第二节点的RU模块,因此,如图4所示,第二节点的RU模块和第二节点的MT模块的UP协议栈为空。如图5所示,第二节点的MT模块的CP协议栈可以按照功能需求设计分为3种情况,具体如下:
(1)如图5中的(a)所示,第二节点的MT模块的CP协议栈包括3层:分别为无线资源控制(radio resource control,RRC)层、媒体接入控制(media access control,MAC)层、物理(physical,PHY)层。
(2)如图5中的(b)所示,第二节点的MT模块的CP协议栈包括4层:分别为RRC层、无线链路控制(radio link control,RLC)层、MAC层、PHY层。
(3)如图5中的(c)所示,第二节点的MT模块的CP协议栈包括5层:分别为RRC层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、RLC层、MAC层、PHY层。
其中,RRC层可以实现第二节点102与第一节点101之间的RRC信令交互,以完成初始接入、RRC连接建立、SR身份信息验证、SR能力信息上报以及初始配置等过程。RLC层的混合自动重传请求(automatic repeat request,ARQ)协议和MAC层的ARQ协议可以保证控制面信息传输的高可靠性。PDCP层可以完成对控制面数据的加密和完整性保护,以保证信息传输的安全性。在本申请实施例中的方法可以应用于图1所示的通信系统100中。
1)终端设备,包括用户设备(user equipment,UE),包括向用户提供语音和/或数据连通 性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、轻型终端设备(light UE)、能力降低的用户设备(reduced capability UE,REDCAP UE)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设 施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)或会话管理功能(session management function,SMF)等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
目前对SR的研究仍然在很多方面缺乏相应的协议标准,例如,SR的协议栈的设计、初始接入、鉴权设计,以及引入SR后系统信息(system information,SI)的更新变化和网络设备如何向SR发送控制信息、控制信息包含哪些配置等等,因此为了解决上述问题,本申请实施例提出以下解决方案。
请参见图6,图6是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S601:第一节点生成节点配置信息。
步骤S602:第一节点向第二节点发送节点配置信息。
其中,该节点配置信息用于第一节点的第一波束集到第二节点的第二波束集的转化。其中,第一波束集和第二波束集均包括至少一个波束,第一波束集和第二波束集中的波束可以为同步信号块(synchronization signal and physical broadcast channel block,SSB)、信道状态信息参考信号(channel state information reference Signal,CSI-RS)、或者下行业务数据传输对应的波束,此处不做限定。
具体地,节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,第二节点支持的N套BF参数信息,第二节点频段放大和抑制信息。其中,该第二节点频段放大和抑制信息是指第二节点的RU模块频段放大和抑制信息。其中,转发配置信息,功控信息以及控制信息时机信息为必选的,第二节点支持的N套BF参数信息以及第二节点频段放大和抑制信息为可选的。其中,该节点配置信息可以携带在RRC层信令,物理层下行控制信道(physical downlink control channel,PDCCH)的下行控制信息(downlink control information,DCI),或者MAC层的控制元素(control element,CE)中。当节点配置信息携带在MAC层的CE中时,第一节点通过MAC层的协议数据单元(protocol data unit,PDU)向第二节点发送节点配置信息。具体地,该节点配置信息可以携带在RRC信令中,例如,RRC重配置(RRCReconfiguration)消息,其中,节点配置信息中包括以下一项或多项:转发配置信息,功控信息,控制信息时机信息,第二节点支持的N套BF参数信息,第二节点频段放大和抑制信息可以携带在RRCReconfiguration消息中包含的可扩展信元中,例如未来关键扩展(criticalExtensionsFuture)信元、RRC重配置IE(RRCReconfiguration-IEs)信元中的延后非关键扩展(lateNonCriticalExtension)信元和非关键扩展(nonCriticalExtension)信 元中,其中,在具体实施时,是否使用上述RRCReconfiguration消息中包含的举例的扩展信元、以及具体使用哪个可扩展信元,本申请实施例不做限定。
其中,转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样(SR-time-forwarding-pattern)信息,第二节点的方向转发图样(SR-direction-forwarding-pattern)信息。其中,转发配置信息用于指示第二节点在哪个时间段、向哪个方向、采用什么样的BF参数转发第二波束集。其中,转发起始时间信息为必选的。第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息为可选的。
其中,转发时间起始信息可以理解为第二节点转发第二波束集的转发起始时间。转发时间起始信息包括第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始OFDM符号信息。第一波束的标识信息指示从所述第一波束对应的时间开始转发,第一时间间隔指示接收到节点配置信息的时隙与转发起始时隙之间间隔的时隙数,起始OFDM符号信息指示转发起始时隙中的转发起始OFDM符号。其中,第一波束集中的第一波束的标识信息可以为回程的同步信号块(backhaul synchronization signal and physical broadcast channel block,BH-SSB)的标识信息、信道状态信息参考信号(channel state information reference signal,CSI-RS)的标识信息。其中,BH-SSB的标识信息可以为BH-SSB的索引。其中,BH-SSB为第一节点在第二节点初始接入过程中确定的与第二节点工作最好的SSB,例如第二节点接收的信号最好的SSB,也可以理解为对准第二节点的方向的SSB。当转发起始时间信息包括第一时间间隔和起始OFDM符号信息时,节点配置信息携带在PDCCH的DCI中,具体地,可以通过DCI中的时间资源分配(Time domain resource assignment)域指示第二节点在通过DCI接收到节点配置信息的起始时刻之后的第一时隙后,在起始OFDM符号信息指示的转发起始OFDM符号位置开始转发第二波束集。其中,该转发起始时间信息还可以包括转发持续时间信息,该转发持续时间信息指示第二节点转发第二波束集的持续时间。其中,该DCI指示节点配置信息可以是一次性的,即只使用一次,之后恢复原来的配置,也可以是永久性的,即覆盖原来的配置。
其中,第一时长信息指示第一BF参数的使用时长,也可以理解为每套BF参数的使用时长,其中,第一BF参数的使用时长等于第二波束集中第一波束的发送时长,也可以理解为,第一时长信息指示第二节点使用第一BF参数转发第二波束集中第一波束的发送时长。第一参数是用于生成第二波束集中第一波束。当转发时间起始信息不包括第一时长信息,第二节点可以根据预设时长确定第一BF参数的使用时长,也就是说根据预设时长确定第二波束集中第一波束的发送时长。
其中,第一指示信息指示第二波束集中的波束的数量,其中,该第二波束集中的波束的数量等于第二节点使用的BF参数的套数,该第二节点使用的BF参数的套数小于等于第二节点支持的BF参数的套数。其中,该第一指示信息可以包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,该K大于等于1,且小于等于N。当第一指示信息为K时,可以理解为第一节点显示的指示了BF参数的套数为K,也即第二节点使用K套BF参数转发第二波束集中的K个波束。当第一指示信息包括子载波间隔和/或频段,第二节点可以根据该子载波间隔和/或频段、以及在该子载波间隔和/或频段下支持的BF参数的套数确定第二波束集中的波束的数量为K,其中,该子载波间隔和/或频段下支持的BF参数的套数可以是协议预先定义的。当第一指示信息包括小区标识信息,则第二节点可以根据小区标识信息确定该小区对应的子载波间隔和/或频段,然后根据该子载波间隔和/或频段支持的BF参数套数确定 第二波束集中的波束的数量为K,其中,该子载波间隔和/或频段下支持的BF参数的套数可以是协议预先定义的。如果转发配置信息没有包含该第一指示信息,则第二节点根据承载该转发配置信息的小区对应的子载波间隔和/或频段,以及在该子载波间隔和/或频段下支持的BF参数套数,确定第二波束集中的波束的数量为K。
其中,第二节点的时间转发图样信息指示所述第二波束集中被转发波束的时间位置,也就是说是否转发第二波束集中一个波束的单位时间间隔,也即第二节点从转发起始时间开始,在哪些时间位置转发第二波束集。第二节点的时间转发图样可以包括第一比特位图(bitmap),该第一比特位图中的一个比特对应一个单位时间间隔,第一比特位图中的一个比特的取值为第一预设值用于指示第二节点在该一个比特对应的一个单位时间间隔转发第二波束集中的一个波束。其中,第二波束集中被转发波束的时间位置可以是指第一比特位图中的一个比特的取值为第一预设值时,该一个比特对应的一个单位时间间隔。在一种示例中,当第一比特位图中的一个比特的取值为1,则表示第二节点在该一个比特取值为1对应的一个单位时间间隔转发第二波束集中的一个波束,其中,第二波束集中被转发波束的时间位置为该一个比特取值为1对应的一个单位时间间隔在一种示例中,当第一比特位图中的一个比特的取值为0,则表示第二节点不转发第二波束集。若转发配置信息不包括第二节点的时间转发图样信息,则第二节点从转发起始时间开始连续转发所述K个波束。在一种示例中,转发配置信息包括转发起始时间信息,其中转发起始时间信息包括第一波束集中的第一波束的标识信息,该第一波束集中的第一波束的标识信息为BH-SSB的索引,相应的,第二节点接收到该转发配置信息之后确定从每次BH-SSB出现的起始时刻开始、以协议约定或者预设的4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的时长为时间间隔,采用K套BF参数循环转发第二波束集。其中,假设第二节点在接入侧支持K套BF参数用于从转发起始时间开始连续转发第二波束集中的K个波束,其中,K大于等于1。
其中,第二节点的方向转发图样信息指示转发第二波束集中每个波束所使用的BF参数,也即第二节点采用哪些BF参数转发第二波束集。其中,第二节点的方向转发图样(SR-direction-forwarding-pattern)信息包括第二比特位图,该第二比特位图中的一个比特对应一套BF参数,第二比特位图中的一个比特的取值为第二预设值用于指示第二节点采用该一个比特对应的一套BF参数转发第二波束集中的一个波束。在一种示例中,当第二比特位图中的一个比特的取值为1,则表示第二节点可以采用比特取值为1对应的BF参数转发第二波束集中的一个波束;在一种示例中,当第二比特位图中的一个比特的取值为0,则表示第二节点不转发第二波束集。若转发配置信息不包括第二节点的方向转发图样信息,则第二节点从转发起始时间开始、连续采用K套BF参数转发第二波束集中的K个波束,其中,K大于等于1。
其中,功控信息包括以下一项或多项:SR-RU射频功放模块的功率增益、低噪放模块功率增益、无线馈电线路的功率增益。
其中,控制信息时机信息包括以下至少一项:时间周期、频域资源块、占用的OFDM符号的个数、时间起始位置。控制信息时机信息用于指示第一节点向第二节点发送控制信息的时频资源位置,相应的,也用于指示第二节点接收来自第一节点的控制信息的时频资源位置。在一种示例中,控制信息时机信息包括时间周期、频域资源块、占用的OFDM符号的个数、时间起始位置,也就是说控制信息时机信息包括发送控制信息的时间周期、使用哪些频率资源块(resource block,RB)、占用多少个OFDM符号、时间起始位置,其中该时间起始位置还可以为相对于系统帧号为0,时隙或子帧为0的起始时刻的偏置。在一种示例中,如图7 所示,第一节点在可用带宽(band width part,BWP)内按每2个时隙的周期向第二节点发送控制信息,频域上使用每列第3个RB开始的6个RB,时域上占用符号#0、符号#1、符号#2,一共3个OFDM符号,起始位置为0号系统帧、0号时隙的符号#0。相应的,第二节点将在控制信息时机信息指定的时刻监听可能从第一节点发来的控制信息。其中,BWP也可以称为带宽自适应,是指网络侧给终端设备配置的一段连续的频谱资源,终端设备在BWP上进行数据传输。在本实施例中,第二节点可以按照协议中的BWP配置,与第一节点进行通信。需要说明的是,这个控制信息时机指定的时频资源是预留给第一节点向第二节点发送控制信息的资源,但不表示这些资源总是被使用,第一节点只在需要发送控制信息的时候才会使用。
在一种可能的实现方式中,第一节点也可以通过发起寻呼(paging)的方式向第二节点发送控制信息,则第二节点可以根据第一节点分配的第二节点的标识信息并经过预定义的规则确定寻呼时机(paging occasion,PO),然后到相应的时频位置检测并接收第二节点下发的控制信息,该第二节点的标识信息可以是伪标识,例如可以为临时移动用户标识(serving-temporary mobile subscriber identity,S-TSMI)。
例如,第二节点在一个非连续接收(discontinuous transmission,DRX)周期中检测的PO所在的控制信息的系统帧号(system frame number,SFN),以及该SFN对应的控制信息内的PO的索引等,可以通过下面的公式确定:
控制信息的SFN满足:
Figure PCTCN2022131966-appb-000001
在该SFN中的PO的索引i s满足:
Figure PCTCN2022131966-appb-000002
在如上公式中,SFN表示控制信息的系统帧号,PF_offset表示控制信息的偏移量,T表示DRX周期,N表示一个DRX周期内包括的控制信息的总数量,N s表示一个控制信息中包含的PO数,mod表示取模运算,SR_ID表示根据第二节点的标识信息(identity number,ID)得到的量,floor(x)表示对x向下取整。其中,PF_offset、T、N、N s等均是第一节点配置的,而SR_ID则是根据第二节点的ID决定的。
其中,第二节点支持的N套波束赋形BF参数信息可以是指第二节点支持的N套BF参数,也可以是索引值,该索引值用于指示第二节点支持的N套BF参数。其中,当第二节点配置信息不包括第二节点支持的N套波束赋形BF参数信息,则该第二节点支持的N套波束赋形BF参数信息可以预置在第二节点中。其中,BF参数包括以下一项或多项:相位、幅度,其中,BF参数用于设置第二节点上天线阵子上的信号相位和幅度。
其中,该第二节点支持的BF参数的套数为所述N,或者,在不同子载波间隔和/或频段下第二节点支持的BF参数的套数可以是第一节点根据第二节点的转发能力信息确定的,其中,所述第二节点支持的BF参数的套数大于或等于所述第二波束集的波束数量或所述第二节点使用的BF参数的套数。其中,所述BF参数用于生成所述第二波束集中的波束。其中,该第二节点的转发能力信息可以是由第二节点上报给第一节点的。该第二节点的转发能力信息可以携带在第二节点的能力信息中,其中,该第二节点的能力信息还可以包括以下一项或者多项:第二节点的规格,第二节点频段放大和抑制信息,第二节点的上下行的最大发射功率。
第二节点频段放大和抑制信息可以是指第二节点的RU模块频段放大和抑制信息,可以包括以下一项或多项:第二节点的RU模块滤波模块的通带带宽和增益、阻带抑制。
在一种可能的实现方式中,所述方法还包括:第一节点生成系统信息(system information,SI),该SI包括第一波束集中的至少一个波束的索引信息,然后第一节点可以向第二节点发送SI变更指示信息,其次,第一节点可以通过广播的方式发送该SI。其中,第一波束集中的波束可以为SSB。第一波束集中的波束的索引信息可以包括新增的SSB的索引信息和BH-SSB的索引信息。其中,在空口下行方向,第二节点并不产生信号,而只是转发从第一节点接收到的信号,第二节点对其覆盖范围的SSB扫描是通过转发从第一节点接收到的多个SSB实现的。因此,当第一节点接纳了第二节点为其覆盖下的终端设备提供信号中继服务的时候,在每个SSB突发(SSB burst)周期内,第一节点需要额外增加要发送的SSB的数量,即新增的SSB。对于新增的SSB,第一节点需要更新各系统信息块(system information block,SIB),例如,系统信息块1(system information block 1,SIB1),系统信息块2(system information block 2,SIB2)中用于指示小区当前发送的SSB信息的比特位图(Bitmap),比特为1代表对应索引的SSB当前被发送,否则未被发送。其中,用于指示SSB发送或测量的比特位图有三种可选格式:短比特位图(shortBitmap)、中比特位图(mediumBitmap)、长比特位图(longBitmap),分别为4、8、64位大小的比特字符串,可选地,将其进一步扩展包含16位和/或32位比特字符串的Bitmap,以灵活支持第二节点接入系统后SSB数量的扩增需要。
新增的SSB数量取决于第二节点扫描其覆盖范围转发的SSB数量。如果第二节点扫描其覆盖转发的SSB数量为Q,其中,Q大于等于1,则第一节点需要新增Q-1个SSB。第一节点确定BH-SSB,比如SSBx,也就是SSB的索引为x。第一节点在BH-SSB相同的发送方向上、以与发送BH-SSB相同的波束赋形参数发送新增的Q-1个SSB,以便第二节点能接收到Q个SSB,并根据节点配置信息将这Q个SSB转发到空口,实现对其覆盖范围的SSB扫描。
在一种可能的实现方式中,第一节点可以在时间上连续发送所述第一波束集中的波束。在一种示例中,第一波束集中的波束可以为SSB,第一波束集中的波束包括新增的SSB和/或BH-SSB。在以下实施例中,第二节点加入前是指第二节点通过初始接入过程连接到第一节点,并完成相关配置以正常进行波束转发工作之前;第二节点加入后是指第二节点通过初始接入过程连接到第一节点,并完成相关配置以正常进行波束转发工作之后。SSB突发周期是指SSB的扫描周期,也可以称为SSB周期。如图8所示,假定第二节点加入前,也即第一节点在接纳第二节点之前在每个SSB突发周期内广播8个SSB,第二节点的BH-SSB为SSB2,SSB转发数量M=4。第二节点加入后,也即第一节点接纳了第二节点提供信号中继服务后,第一节点发送的SSB从8个增加到11个,并将新增的三个SSB紧跟在BH-SSB之后插入,新增的3个SSB可以是SSB8、SSB9和SSB10,也就是说,第一节点在时间上连续发送所述第一波束集中的波束,可以是指在时间上连续发送SSB2和SSB8~SSB10,相应的,第二节点在时间上连续接收第一波束集中的波束,即在时间上连续接收SSB2和SSB8~SSB10,然后,第二节点可以在时间上连续发送第二波束集中的波束,即在时间上连续发送SSB2和SSB8~SSB10。在又一种示例中,如图9所示,假定第二节点加入前,也即第一节点在接纳第二节点之前在每个SSB突发周期内广播8个SSB,第二节点的BH-SSB为SSB2,SSB转发数量M=4。第二节点加入后,也即第一节点接纳了第二节点提供信号中继服务后,第一节点发送的SSB从8个增加到11个,新增的3个SSB可以是SSB3、SSB4和SSB5,而原来的SSB3到SSB7的索引依次修改为6到10,相应的,第一节点在时间上连续发送第一波束集中的波束是指在时间上连续发送SSB2~SSB5,相应的,第二节点可以在时间上连续接收第一波 束集中的波束,即在时间上连续接收SSB2~SSB5,然后第二节点在时间上连续发送第二波束集中的波束,即在时间上连续发送SSB2~SSB5。
在又一种可能的实现方式中,第一节点在时间上不连续发送第一波束集中的波束。在一种示例中,如图10所示,假定第二节点加入前,也即第一节点在接纳第二节点之前在每个SSB突发周期广播8个SSB,第二节点的BH-SSB为SSB2,SSB转发数量M=4。第二节点加入后,也即第一节点接纳了第二节点提供信号中继服务后,第一节点发送的SSB从8个增加到11个,并将新增的三个SSB紧跟在SSB7之后插入,即第一节点可以按照SSB index递增的顺序在SSB7之后依次发送SSB8~SSB10,也就是说第一节点先发送SSB2,等待一段时间后发送SSB8~SSB10,而第二节点先接收并转发来自第一节点的SSB2,等待一段时间之后接收并转发来自第一节点的SSB8~SSB10。
在一种可能的实现方式中,当节点配置信息中的转发配置信息不能预设在第二节点中,则先执行第一节点生成配置信息,向第二节点发送节点配置信息,第二节点会根据节点配置信息以及其中的转发配置信息进行配置,其次执行第一节点生成SI,然后第一节点可以向第二节点发送SI变更指示信息,然后第一节点向第二节点和第三节点发送该SI;然后第一节点向第二节点发送第一节点的第一波束集。当节点配置信息中的转发配置信息是预设在第二节点中,例如,出厂预配的,则先执行第一节点生成SI,然后第一节点可以向第二节点发送SI变更指示信息,然后第一节点向第二节点和第三节点发送该SI,然后执行第一节点生成配置信息,向第二节点发送节点配置信息和第一节点的第一波束集,该节点配置信息可以包含转发配置信息,用于更新预设的转发配置信息;然后第一节点向第二节点发送第一节点的第一波束集。
步骤S603:第二节点接收来自第一节点的节点配置信息进行配置。
其中,第二节点接收第一节点的节点配置信息之后,可以根据节点配置信息对第二节点进行配置。例如,第二节点可以根据节点配置信息中的转发配置信息配置第二节点的SR-RU模块中的转发设置。若该节点配置信息携带在RRC重配置(RRCReconfiguration)消息中,则第二节点完成配置后可以向第一节点发送RRC重配置完成(RRCReconfigurationComplete)消息。
步骤S604:第一节点向第二节点发送第一节点的第一波束集。
步骤S605:第二节点接收来自第一节点的第一节点的第一波束集。
步骤S606:第二节点根据节点配置信息将第一波束集转化为第二节点的第二波束集。
具体地,第二节点根据节点配置信息将第一波束集转化为第二节点的第二波束集可以理解为第二节点根据节点配置信息确定对第一波束集进行转发形成第二节点的第二波束集。其中,第一波束集中的波束复用方式包括时分复用或频分复用,第二波束集中的波束复用方式包括空分复用。
步骤S607:第二节点发送第二波束集。
具体地,第二节点接收到该节点配置信息之后,可以通过TDD方式转发第二波束集。
其中,在每个下行传输周期内,第二节点可以根据转发配置信息转发第一节点下发的SSB、寻呼(paging)消息、调度控制信息、下行调度业务数据等信号的波束给第三节点,为第三节点建立下行连接和传输通道;在上行传输周期内,第二节点可以转发第三节点发起的随机接入、RRC连接、上行调度请求和业务数据等信号给第一节点,为第三节点建立上行连接和传输通道。
在图6所描述的方法中,通过本申请实施例,能够实现引入第二节点提供中继服务后,SI的更新变化,以及节点配置信息具体内容,该第二节点可以通过节点配置信息进行配置从而运行工作,并且,通过将本方法应用到智能中继(smart repeater),可以实现中继对波束的智能转发。
请参见图11,图11是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S1101:第二节点向第一节点发送第一消息。
具体地,该第一消息用于请求建立RRC连接,第一消息包括第一指示信息,该第一指示信息用于指示发起建立RRC连接请求的终端为第二节点,具体可以是指示第二节点中的MT,即SR-MT。
具体地,该第一消息可以为RRC建立请求(RRCSetupRequest)消息,即四步随机接入(4-step random access)过程中的消息3(message 3,Msg3)。其中,第一消息包括第一指示信息,该第一指示信息可以是指在RRCSetupRequest消息中的建立原因(establishmentCause)信元中添加赋值(例如“SR-MT-Access”)。
在一种可能的实现方式中,第一消息包括第二指示信息,该第二指示信息用于指示第二节点的标识信息。其中,第一消息可以为RRCSetupRequest消息,第二指示信息可以为RRCSetupRequest消息中的用户设备标识(ue-Identity)信元。第二节点的标识信息可以理解为第二节点的身份信息,可以为临时移动用户识别码(temporary mobile subscriber identity,TMSI)。例如,当标识信息取值属于0-80范围用于指示该终端设备为普通UE,当标识信息取值属于80-100范围用于指示该终端设备为第二节点;或者,当标识信息是以000开头,则指示终端设备为普通UE,当标识信息是以111开头,则指示终端设备为第二节点。
在一种可能的实现方式中,第一节点可以通过以下三种方式确定发起建立所述RRC连接请求的终端为所述第二节点,具体如下:方式一:第一消息包括第一指示信息,该第一指示信息发起建立RRC连接请求的终端为第二节点,例如,该第一指示信息可以是指RRCSetupRequest消息中的建立原因(establishmentCause)信元中添加赋值(例如“SR-MT-Access”)。方式二:第一消息包括第二指示信息,该第二指示信息用于指示第二节点的标识信息,第二节点的标识信息的特征或取值范围可以指示发起建立所述RRC连接请求的终端为所述第二节点。在一种示例中,假设标识信息取值属于0-80范围中用于指示该终端设备为普通UE,当标识信息取值属于81-100范围中用于指示该终端设备为第二节点,假设第二节点的标识信息为90,由于90属于81-100范围,则根据第二节点的标识信息确定发起RRC连接请求的终端为所述第二节点。方式三:第一消息包括第一指示信息,该第一指示信息发起建立RRC连接请求的终端为第二节点,例如,该第一指示信息可以是指RRCSetupRequest消息中的建立原因(establishmentCause)信元中添加赋值(例如“SR-MT-Access”),该第一消息还包括第二指示信息,该第二指示信息用于指示第二节点的标识信息。
在一种可能的实现方式中,第一消息包括第二指示信息,该第二指示信息用于指示第二节点的能力信息。其中,第一消息可以为RRCSetupRequest消息,第二指示信息可以为RRCSetupRequest消息中的用户设备标识(ue-Identity)信元。第二节点的能力信息可以为以下一项或多项:第二节点的规格,第二节点的上下行的最大发射功率,第二节点的转发能力信息,第二节点频段放大和抑制信息。其中,第二节点的转发能力信息包括第二节点最多可支持转发的波束数量,第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,第 二节点支持的不同子载波间隔和/或不同频段。
在一种可能的实现方式中,第二指示信息包括信息域,该信息域对应的结构用于定义第二节点的能力信息。其中,第一消息可以为RRCSetupRequest消息,第二指示信息可以为RRCSetupRequest消息中的ue-Identity信元,在ue-Identity信元下新增一个信息域,例如,名称为“第二节点-Capability”域,并在这个新增的信息域下定义一个结构,例如名称为“第二节点-Capability”结构来具体定义第二节点的能力信息。
在又一种可能的实现方式中,第二指示信息包括比特序列,比特序列用于指示第二节点的能力信息。第一消息可以为RRCSetupRequest消息,第二指示信息可以为RRCSetupRequest消息中的ue-Identity信元,其中,该ue-Identity信元可以承载39比特大小的信息。在一种示例中,假设第二节点的能力信息包括:第二节点的规格、第二节点的上下行的最大发射功率、第二节点的转发能力信息、第二节点频段放大和抑制信息。其中,第二节点的转发能力信息包括第二节点最多可支持转发的波束数量,第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,第二节点支持的不同子载波间隔和/或不同频段。该ue-Identity信元的第1-3比特用于指示第二节点的规格;第4~6比特用于指示第二节点的上下行的最大发射功率,第6~9比特用于指示第二节点的转发能力信息,第10~12比特用于指示第二节点频段放大和抑制信息。
在又一种可能的实现方式中,第二指示信息包括索引值,该索引值用于指示第二节点的能力信息。其中,第一消息可以为RRCSetupRequest消息,第二指示信息可以为RRCSetupRequest消息中的随机数值(randomValue)信元,对该randomValue信元赋值一个索引值,相应的,第一节点接收到该第一消息后,确定randomValue信元的索引值,根据该索引值查询本地存储的第二节点的能力信息或者向核心网查询第二节点的能力信息。
在一种可能的实现方式中,第二节点向第一节点发送第一消息之前,第一节点执行周期性的同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB),也可以称为同步信号块波束扫描,相应的,第二节点在对应的频点上检测SSB,确定物理小区标识(physical cell identifier,PCI),建立下行链路(downlink,DL)同步,并解码主系统消息块(master information block,MIB)、类型1系统信息块(systeminformation block type1,SIB1),确定物理随机接入信道(physical random access channel,PRACH)配置信息;然后第二节点根据该PRACH配置信息发起随机接入(random access,RA)过程,在相应的时频位置上向第一节点发送RA前导码,即消息1(message 1,Msg1)。相应的,第一节点接收来自第二节点的Msg1,向第二节点发送RA响应消息,即消息2(message 2,Msg2)。
步骤S1102:第一节点接收来自第二节点的第一消息。
步骤S1103:第一节点向第二节点发送第二消息。
具体的,该第二消息可以为RRC建立(RRCSetup)消息,即四步随机接入(4-step random access)过程中的消息4(message 4,Msg4)。
在一种可能的实现方式中,第二消息包括第一数值,该第一数值用于第二节点的身份信息验证。其中,该第一数值可以为被使用一次的非重复的随机数值(number used once,Nonce)。
通过这样的方式,由于每次鉴权过程中,第一数值都不相同,可以保护鉴权消息免受重放攻击。
步骤S1104:第二节点接收来自第一节点的第二消息。
在一种可能的实现方式中,第二消息包括第一数值,该方法还包括:第二节点根据第一数值和数字证书中的私钥,生成第一响应数;然后,第二节点向第一节点发送第三消息,第 三消息包括第一响应数,第一响应数用于第一节点验证第二节点的身份信息。相应的,第一节点接收来自第二节点的第三消息包括第一响应数;第一节点获取第二节点的公钥,公钥是由网络管理功能(operation,administration and maintenance,OAM)网元预先配置的或第一节点从OAM网元请求得到的;第一节点根据第一数值和公钥对第一响应数验证第二节点的身份信息。其中,第二节点的身份信息的验证除了可以是通过第二节点完成,也可以通过网络完成,但是需要网管参与。
其中,数字证书可以预先安装在第二节点中的,该第三消息可以为RRC建立完成(RRCsetupComplete)消息,即消息5(message 5,Msg5),其中,该公钥和私钥可以是通过预定义规则得到的一个密钥对。其中,第一节点根据第一数值和公钥对第一响应数验证第二节点的身份信息,可以是指第一节点根据公钥确定私钥,然后根据私钥和第一数值生成响应数,若该响应数为第一响应数,则表示验证通过,第二节点的身份被确认,允许该第二节点接入网络提供中继服务;若该响应数不是第一响应数,则表示验证失败,拒绝第二节点接入网络提供中继服务。
在一种可能的实现方式中,第三消息包括第二节点的能力信息。也即当第三消息的消息空间允许,第二节点的能力信息可以携带在第三消息中。
在又一种可能的实现方式中,该方法还包括:第一节点向第二节点发送能力查询消息,相应的,第二节点接收来自第一节点的能力查询消息,然后第二节点向第一节点发送第二节点的能力信息。可以理解为当第三消息的消息空间不允许携带第二节点的能力信息,第一节点向第二节点发起能力查询过程,向第二节点发送能力查询消息,其中,该能力查询消息可以为第二节点能力查询(SR CapabilityInquiry)消息。第二节点向第一节点发送第二节点的能力信息,该第二节点的能力信息可以携带在SR能力信息(SRCapabilityInformation)消息中。
在图11所描述的方法中,目前的第二节点的协议标准并没有说明第二节点的身份信息的验证以及第二节点的初始接入,通过在第一消息中携带第一指示信息、第二指示信息等能够完成第二节点的初始接入,简化了信令交互过程,降低了信令开销。
请参见图12,图12是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S1201:第二节点向第一节点发送第二节点的能力信息。
其中,该第二节点的能力信息包括第二节点的转发能力信息。该第二节点的能力信息还包括以下一项或多项:第二节点的规格,第二节点频段放大和抑制信息,第二节点的上下行的最大发射功率。
其中,第二节点的转发能力信息包括以下一项或多项:第二节点最多可支持转发的波束数量,第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,第二节点支持的不同子载波间隔和/或不同频段。
步骤S1202:第一节点接收来自第二节点的第二节点的能力信息。
在图12所描述的方法中,通过第二节点向第一节点上报第二节点的能力信息能够简化了信令交互过程,降低了信令开销。
请参见图13,图13是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S1301:第一节点向第二节点发送第二节点专用的物理随机接入信道PRACH配置信 息。
其中,该物理随机接入信道(physical random access channel,PRACH)配置信息包括第一前导码,其中,该第一前导码为第二节点专用的随机接入前导码。其中,该PRACH配置信息还可以包括PRACH资源的时频域位置。
步骤S1302:第二节点接收来自第一节点的专用的PRACH配置信息。
步骤S1303:第二节点向第一节点发送第一前导码。
其中,在一种可能的实现方式中,该PRACH配置信息还包括PRACH资源的时频域位置;第二节点向第一节点发送第一前导码,包括:第二节点在该PRACH资源的时频域位置向第一节点发送前导码。其中,第二节点在该PRACH资源的时频域位置向第一节点发送前导码可以是指第二节点在该PRACH资源的时频域位置向第一节点发送第一前导码,也就是说第二节点专用的随机接入前导码;或者,第二节点在该PRACH资源的时频域位置向第一节点发送前导码,该前导码是普通UE随机接入的前导码。
步骤S1304:第一节点接收来自第二节点的第一前导码。
其中,第一节点接收来自第二节点的第一前导码之后,可以根据第一前导码或/和专用的PRACH时频域位置确定发起请求的终端为第二节点,具体可以指示第二节点中的MT。
其中,根据第二节点与第一节点之间的协议约定中是否含有第二节点的身份信息验证过程,后续步骤结合图11所述的实施例进行。其中,前面步骤已经通过使用第一前导码或/和专用的PRACH时频域位置来指示发起请求的终端为第二节点,所以后续过程不需要再上报用于指示发起请求的终端为第二节点的指示信息。
在图13所描述的方法中,通过第一节点为第二节点配置专用的PRACH配置信息,该配置信息包括第一前导码,相应的,第二节点向第一节点发送第一前导码的方式,能够降低信令开销。
请参见图14,图14是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S1401:第一节点向第二节点发送第二节点专用的物理随机接入信道PRACH配置信息。
其中,该PRACH配置信息包括PRACH资源的时频域位置。
步骤S1402:第二节点接收来自第一节点的专用的PRACH配置信息。
步骤S1403:第二节点在PRACH资源的时频域位置向所述第一节点发送前导码。
其中,该前导码可以为第一前导码,也即第二节点专用的随机接入的前导码;该前导码还可以为普通前导码,也就是普通UE随机接入的前导码。
步骤S1404:第一节点在PRACH资源的时频域位置接收来自第二节点的前导码。
其中,第一节点在PRACH资源的时频域位置接收来自第二节点的前导码之后,可以确定发起请求的终端为第二节点,具体可以指示第二节点中的MT。
其中,根据第二节点与第一节点之间的协议约定中是否含有第二节点的身份信息验证过程,后续步骤结合图11所述的实施例进行。其中,前面步骤已经通过使用第一前导码或/和专用的PRACH时频域位置来指示发起请求的终端为第二节点,所以后续过程不需要再上报用于指示发起请求的终端为第二节点的指示信息。
在图14所描述的方法中,通过第一节点为第二节点配置专用的PRACH配置信息,该配置信息包括PRACH资源的时频域位置,相应的,第二节点在PRACH资源的时频域位置向 第一节点发送前导码的方式,能够降低信令开销。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图15,图15是本申请实施例提供的一种通信装置1500的结构示意图,该通信装置1500可以包括处理单元1501和通信单元1502,其中,各个单元的详细描述如下。
所述处理单元1501,用于生成节点配置信息;
所述通信单元1502,用于向第二节点发送所述节点配置信息,其中,所述节点配置信息用于所述装置的第一波束集到所述第二节点的第二波束集的转化,所述第一波束集和所述第二波束集均包括至少一个波束;
所述通信单元1502,用于发送所述第一波束集。
在一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述第二节点支持的N套波束赋形BF参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述装置向所述第二节点发送控制信息的时频资源位置,所述BF参数信息包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项或多项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;
其中,所述第一时长信息指示第一BF参数的使用时长,其中,所述第一BF参数的使用时长等于所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息指示所述第二波束集中被转发波束的时间位置,所述第二节点的方向转发图样信息指示转发所述第二波束集中每个波束所使用的BF参数。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述第二节点使用的BF参数的套数,所述第二节点使用的BF参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用OFDM符号信息;
其中,所述第一波束的标识信息指示从所述第一波束对应的时间开始转发,所述第一时间间隔指示接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始OFDM符号信息指示所述转发起始时隙中的转发起始OFDM符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制RRC层信令,物理层下行控制信道的下行控制信息DCI,或者媒体接入控制MAC层的控制元素CE中。
在又一种可能的实现方式中,所述处理单元1501,还用于生成系统信息SI,所述SI包括所述第一波束集中的至少一个波束的索引信息;所述通信单元1502,还用于发送所述SI。
在又一种可能的实现方式中,所述通信单元1502,还用于向所述第二节点发送SI变更指示信息。
在又一种可能的实现方式中,所述通信单元1502,还用于在时间上连续发送所述第一波 束集中的波束。
在又一种可能的实现方式中,所述处理单元1501,还用于根据所述第二节点的转发能力信息,确定所述第二节点支持的BF参数的套数为所述N,或者,确定在不同子载波间隔和/或不同频段下,所述第二节点支持的BF参数的套数。
在又一种可能的实现方式中,所述第二节点支持的BF参数的套数大于或等于所述第二波束集的波束数量或所述第二节点使用的BF参数的套数。
需要说明的是,各个单元的实现及有益效果还可以对应参照图6所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于接收来自第一节点的节点配置信息和所述第一节点的第一波束集;
所述处理单元1501,用于根据所述节点配置信息,将所述第一波束集转化为所述装置的第二波束集;所述第一波束集和所述第二波束集均包括至少一个波束;
所述通信单元1502,用于发送所述第二波束集。
在一种可能的实现方式中,所述处理单元1501,用于根据所述节点配置确定对所述第一波束集进行转发形成所述装置的第二波束集。
在又一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述装置支持的N套波束赋形BF参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述装置接收来自所述第一节点的控制信息的时频资源位置,所述BF参数包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,装置的时间转发图样信息,装置的方向转发图样信息;其中,所述第一时长信息指示所述装置使用第一BF参数发送所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述装置的时间转发图样信息用于指示所述装置从所述转发起始时间开始,在哪些时间位置转发所述第二波束集;所述装置的方向转发图样信息用于指示所述装置采用哪些BF参数转发所述第二波束集。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述装置使用的BF参数的套数,所述装置使用的BF参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用OFDM符号信息;其中,所述第一波束的标识信息指示所述装置从所述第一波束对应的时间开始转发所述第二波束集,所述第一时间间隔指示所述装置接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始OFDM符号信息指示所述转发起始时隙中的转发起始OFDM符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述装置的时间转发图样信息包括第一比特位图,所述第一比特位图中的一个比特对应一个时间间隔;其中,所述通信单元1502,用于在所述第一比 特位图中的一个比特的取值为第一预设值,在所述一个比特对应的一个单位时间间隔转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述装置的方向转发图样信息包括第二比特位图,所述第二比特位图中的一个比特对应一套BF参数;所述通信单元1502,用于在所述第二比特位图中的一个比特的取值为第二预设值,使用所述一个比特对应的一套BF参数转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述控制信息时机信息包括以下至少一项:时间周期,频域资源块,占用的正交频分复用OFDM符号的个数,时间起始位置。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制RRC层信令,物理层下行控制信道的下行控制信息DCI,或者媒体接入控制MAC层的控制元素CE中。
在又一种可能的实现方式中,所述通信单元1502,还用于接收来自所述第一节点的系统信息SI,所述SI包括所述第一波束集中的至少一个波束的索引信息。
在又一种可能的实现方式中,所述通信单元1502,还用于接收来自所述第一节点的SI变更指示信息。
在又一种可能的实现方式中,所述通信单元1502,还用于在时间上连续接收所述第一波束集中的波束。
在又一种可能的实现方式中,所述装置的控制面协议栈包括无线资源控制RRC层、媒体接入控制MAC层、物理PHY层。
需要说明的是,各个单元的实现及有益效果还可以对应参照图6所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于向第一节点发送第一消息,所述第一消息用于请求建立无线资源控制RRC连接,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起建立所述RRC连接请求的终端为所述装置;
所述通信单元1502,用于接收来自所述第一节点的第二消息;
所述处理单元1501,用于根据所述第二消息,与所述第一节点建立RRC连接。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述装置的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述装置能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述处理单元1501,还用于根据第一数值和数字证书中的私钥,生成第一响应数;所述通信单元1502,还用于向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述装置的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述装置的能力信息。
在又一种可能的实现方式中,所述通信单元1502,还用于接收来自所述第一节点的能力查询消息;所述通信单元1502,还用于向所述第一节点发送所述装置的能力信息。
在又一种可能的实现方式中,所述装置中的控制面协议栈包括无线资源控制RRC层、媒体接入控制MAC层、物理PHY层。
需要说明的是,各个单元的实现及有益效果还可以对应参照图11所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制RRC连接,其中,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起请求的终端为所述第二节点;
所述通信单元1502,用于向所述第二节点发送第二消息。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
在又一种可能的实现方式中,所述通信单元1502,还用于接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;所述处理单元1501,还用于获取所述第二节点的公钥,所述公钥是由所述网络管理功能OAM网元预先配置的或从所述OAM网元请求得到的;所述处理单元1501,用于根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,所述通信单元1502,还用于向所述第二节点发送能力查询消息;所述通信单元1502,还用于接收来自所述第二节点的所述第二节点的能力信息。
需要说明的是,各个单元的实现及有益效果还可以对应参照图11所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于向第一节点发送装置的能力信息,所述能力信息包括所述装置的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述装置的规格,所述装置频段放大和抑制信息,所述装置的上下行的最大发射功率。
在又一种可能的实现方式中,所述装置的转发能力信息包括以下一项或多项:所述装置最多可支持转发的波束数量,所述装置在不同子载波间隔和/或不同频段下支持转发的波束数量,所述装置支持的不同子载波间隔和/或不同频段。
需要说明的是,各个单元的实现及有益效果还可以对应参照图12所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,所述第二节点频段放大或带外抑制,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
需要说明的是,各个单元的实现及有益效果还可以对应参照图12所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于接收来自第一节点的所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括第一前导码;
所述通信单元1502,用于向所述第一节点发送所述第一前导码。
在一种可能的实现方式中,所述PRACH配置信息中还包括PRACH资源的时频域位置:所述通信单元1502,用于在所述PRACH资源的时频域位置向所述第一节点发送前导码。
需要说明的是,各个单元的实现及有益效果还可以对应参照图13所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于向第二节点发送所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括第一前导码;
所述通信单元1502,用于接收来自所述第二节点的所述第一前导码。
在一种可能的实现方式中,所述PRACH配置信息中还包括PRACH资源的时频域位置,所述通信单元1502,用于在所述PRACH资源的时频域位置接收来自所述第二节点的前导码。
需要说明的是,各个单元的实现及有益效果还可以对应参照图13所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于接收来自第一节点的所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括PRACH资源的时频域位置;
所述通信单元1502,用于在所述PRACH资源的时频域位置向所述第一节点发送前导码。
需要说明的是,各个单元的实现及有益效果还可以对应参照图14所示的方法实施例的相应描述。
可选的,通信装置1500中的各个单元的详细描述还可以如下。
所述通信单元1502,用于向第二节点发送所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括PRACH资源的时频域位置;
所述通信单元1502,用于在所述PRACH资源的时频域位置接收来自所述第二节点的前导码。
需要说明的是,各个单元的实现及有益效果还可以对应参照图14所示的方法实施例的相应描述。
请参见图16,图16是本申请实施例提供的一种通信装置1600,该通信装置1600包括至少一个处理器1601和通信接口1603,可选的,还包括存储器1602,所述处理器1601、存储器1602和通信接口1603通过总线1604相互连接。
存储器1602包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1602用于相关计算机程序及数据。通信接口1603用于接收和发送数据。
处理器1601可以是一个或多个中央处理器(central processing unit,CPU),在处理器1601是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
生成节点配置信息;
通过所述通信接口1603向第二节点发送所述节点配置信息,其中,所述节点配置信息用于所述装置的第一波束集到所述第二节点的第二波束集的转化,所述第一波束集和所述第二波束集均包括至少一个波束;
发送所述第一波束集。
在一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述第二节点支持的N套波束赋形BF参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述装置向所述第二节点发送控制信息的时频资源位置,所述BF参数信息包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;
其中,所述第一时长信息指示第一BF参数的使用时长,其中,所述第一BF参数的使用时长等于所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息指示所述第二波束集中被转发波束的时间位置,所述第二节点的方向转发图样信息指示转发所述第二波束集中每个波束所使用的BF参数。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述第二节点使用的BF参数的套数,所述第二节点使用的BF参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用OFDM符号信息;
其中,所述第一波束的标识信息指示从所述第一波束对应的时间开始转发,所述第一时间间隔指示接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始OFDM符号信息指示所述转发起始时隙中的转发起始OFDM符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制RRC层信令,物理层下行控制信道的下行控制信息DCI,或者媒体接入控制MAC层的控制元素CE中。
在又一种可能的实现方式中,所述处理器1601,还用于生成系统信息SI,所述SI包括所述第一波束集中的至少一个波束的索引信息;通过所述通信接口1603发送所述SI。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603向所述第二节点发送SI变更指示信息。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603在时间上连续发送所述第一波束集中的波束。
在又一种可能的实现方式中,所述处理器1601,还用于根据所述第二节点的转发能力信息,确定所述第二节点支持的BF参数的套数为所述N,或者,确定在不同子载波间隔和/或不同频段下,所述第二节点支持的BF参数的套数。
在又一种可能的实现方式中,所述第二节点支持的BF参数的套数大于或等于所述第二波束集的波束数量或所述第二节点使用的BF参数的套数。
需要说明的是,各个操作的实现及有益效果还可以对应参照图6所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603接收来自第一节点的节点配置信息和所述第一节点的第一波束集;
根据所述节点配置信息,将所述第一波束集转化为所述装置的第二波束集;所述第一波束集和所述第二波束集均包括至少一个波束;
通过所述通信接口1603发送所述第二波束集。
在一种可能的实现方式中,所述处理器1601,用于根据所述节点配置确定对所述第一波束集进行转发形成所述装置的第二波束集。
在又一种可能的实现方式中,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
在又一种可能的实现方式中,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述装置支持的N套波束赋形BF参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述装置接收来自所述第一节点的控制信息的时频资源位置,所述BF参数包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
在又一种可能的实现方式中,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,装置的时间转发图样信息,装置的方向转发图样信息;其中,所述第一时长信息指示所述装置使用第一BF参数发送所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述装置的时间转发图样信息用于指示所述装置从所述转发起始时间开始,在哪些时间位置转发所述第二波束集;所述装置的方向转发图样信息用于指示所述装置采用哪些BF参数转发所述第二波束集。
在又一种可能的实现方式中,所述第二波束集中的波束的数量等于所述装置使用的BF参数的套数,所述装置使用的BF参数的套数小于等于所述N。
在又一种可能的实现方式中,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始OFDM符号信息;其中,所述第一波束的标识信息指示所述装置从所述第一波束对应的时间开始转发所述第二波束集,所述第一时间间隔指示所述装置接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述OFDM符号信息指示所述转发起始时隙中的转发起始OFDM符号。
在又一种可能的实现方式中,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
在又一种可能的实现方式中,所述装置的时间转发图样信息包括第一比特位图,所述第一比特位图中的一个比特对应一个单位时间间隔;其中,所述处理器1601,还用于通过所述通信接口1603在所述第一比特位图中的一个比特的取值为第一预设值,在所述一个比特对应的一个单位时间间隔转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述装置的方向转发图样信息包括第二比特位图,所述第二比特位图中的一个比特对应一套BF参数;所述处理器1601,还用于通过所述通信接口1603在所述第二比特位图中的一个比特的取值为第二预设值,使用所述一个比特对应的一套BF参数转发所述第二波束集中的一个波束。
在又一种可能的实现方式中,所述控制信息时机信息包括以下至少一项:时间周期,频域资源块,占用的正交频分复用OFDM符号的个数,时间起始位置。
在又一种可能的实现方式中,所述节点配置信息携带在无线资源控制RRC层信令,物理层下行控制信道的下行控制信息DCI,或者媒体接入控制MAC层的控制元素CE中。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603接收来自所述第一节点的系统信息SI,所述SI包括所述第一波束集中的至少一个波束的索引信息。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603接收来自所述第一节点的SI变更指示信息。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603在时间上连续接收所述第一波束集中的波束。
在又一种可能的实现方式中,所述装置的控制面协议栈包括无线资源控制RRC层、媒体接入控制MAC层、物理PHY层。
需要说明的是,各个操作的实现及有益效果还可以对应参照图6所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603向第一节点发送第一消息,所述第一消息用于请求建立无线资源 控制RRC连接,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起建立所述RRC连接请求的终端为所述装置;
通过所述通信接口1603接收来自所述第一节点的第二消息;
根据所述第二消息,与所述第一节点建立RRC连接。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述装置的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述装置的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述装置能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述处理器1601,还用于根据第一数值和数字证书中的私钥,生成第一响应数;通过所述通信接口1603向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述装置的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述装置的能力信息。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603接收来自所述第一节点的能力查询消息;向所述第一节点发送所述装置的能力信息。
在又一种可能的实现方式中,所述装置中的控制面协议栈包括无线资源控制RRC层、媒体接入控制MAC层、物理PHY层。
需要说明的是,各个操作的实现及有益效果还可以对应参照图11所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制RRC连接,其中,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起请求的终端为所述第二节点;
通过所述通信接口1603向所述第二节点发送第二消息。
在一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
在又一种可能的实现方式中,所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
在又一种可能的实现方式中,所述第二指示信息包括索引值,所述索引值用于指示所述 第二节点能力信息。
在又一种可能的实现方式中,所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;所述处理器1601,还用于获取所述第二节点的公钥,所述公钥是由所述网络管理功能OAM网元预先配置的或从所述OAM网元请求得到的;根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
在又一种可能的实现方式中,所述第三消息包括所述第二节点的能力信息。
在又一种可能的实现方式中,所述处理器1601,还用于通过所述通信接口1603向所述第二节点发送能力查询消息;接收来自所述第二节点的所述第二节点的能力信息。
需要说明的是,各个操作的实现及有益效果还可以对应参照图11所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603向第一节点发送装置的能力信息,所述能力信息包括所述装置的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述装置的规格,所述装置频段放大或带外抑制,所述装置的上下行的最大发射功率。
在又一种可能的实现方式中,所述装置的转发能力信息包括以下一项或多项:所述装置最多可支持转发的波束数量,所述装置在不同子载波间隔和/或不同频段下支持转发的波束数量,所述装置支持的不同子载波间隔和/或不同频段。
需要说明的是,各个操作的实现及有益效果还可以对应参照图12所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
在一种可能的实现方式中,所述能力信息还包括以下一项或多项:所述第二节点的规格,所述第二节点频段放大或带外抑制,所述第二节点的上下行的最大发射功率。
在又一种可能的实现方式中,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
需要说明的是,各个操作的实现及有益效果还可以对应参照图12所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603接收来自第一节点的所述第二节点专用的物理随机接入信道 PRACH配置信息,其中,所述PRACH配置信息包括第一前导码;
通过所述通信接口1603向所述第一节点发送所述第一前导码。
在一种可能的实现方式中,所述PRACH配置信息中还包括PRACH资源的时频域位置:所述处理器1601,用于通过所述通信接口1603在所述PRACH资源的时频域位置向所述第一节点发送前导码。
需要说明的是,各个操作的实现及有益效果还可以对应参照图13所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603向第二节点发送所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括第一前导码;
通过所述通信接口1603接收来自所述第二节点的所述第一前导码。
在一种可能的实现方式中,所述PRACH配置信息中还包括PRACH资源的时频域位置,所述处理器1601,用于通过所述通信接口1603在所述PRACH资源的时频域位置接收来自所述第二节点的前导码。
需要说明的是,各个操作的实现及有益效果还可以对应参照图13所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603接收来自第一节点的所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括PRACH资源的时频域位置;
通过所述通信接口1603在所述PRACH资源的时频域位置向所述第一节点发送前导码。
需要说明的是,各个操作的实现及有益效果还可以对应参照图14所示的方法实施例的相应描述。
该通信装置1600中的处理器1601用于读取所述存储器1602中存储的计算机程序代码,执行以下操作:
通过所述通信接口1603向第二节点发送所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括PRACH资源的时频域位置;
通过所述通信接口1603在所述PRACH资源的时频域位置接收来自所述第二节点的前导码。
需要说明的是,各个操作的实现及有益效果还可以对应参照图14所示的方法实施例的相应描述。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
在本申请的描述中,“第一”,“第二”,“S101”,或“S102”等词汇,仅用于区分描述以及上下文行文方便的目的,不同的次序编号本身不具有特定技术含义,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示操作的执行顺序,各过程的执行顺序应以其功能和内在逻辑确定。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请中,“传输”可以包括以下三种情况:数据的发送,数据的接收,或者数据的发送和数据的接收。本申请中,“数据”可以包括业务数据,和/或,信令数据。
本申请中术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤的过程/方法,或一系列单元的系统/产品/设备,不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程/方法/产品/设备固有的其它步骤或单元。
在本申请的描述中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即“一个或多个”。“至少一个”,表示一个或者多个。“包括以下至少一个:A,B,C。”表示可以包括A,或者包括B,或者包括C,或者包括A和B,或者包括A和C,或者包括B和C,或者包括A,B和C。其中A,B,C可以是单个,也可以是多个。

Claims (71)

  1. 一种通信方法,其特征在于,包括:
    第二节点接收来自第一节点的节点配置信息和所述第一节点的第一波束集;
    所述第二节点根据所述节点配置信息,将所述第一波束集转化为所述第二节点的第二波束集;所述第一波束集和所述第二波束集均包括至少一个波束;
    所述第二节点发送所述第二波束集。
  2. 根据权利要求1所述的方法,其特征在于,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
  3. 根据权利要求1或2所述的方法,其特征在于,所述节点配置信息包括以下至少一项:转发配置信息,功控信息,控制信息时机信息,所述第二节点支持的N套波束赋形BF参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述第二节点接收来自所述第一节点的控制信息的时频资源位置,所述BF参数包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度参数。
  4. 根据权利要求3所述的方法,其特征在于,所述转发配置信息包括以下至少一项:转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;
    其中,所述第一时长信息指示所述第二节点使用第一BF参数发送所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息用于指示所述第二节点从所述转发起始时间开始,在哪些时间位置转发所述第二波束集;所述第二节点的方向转发图样信息用于指示所述第二节点采用哪些BF参数转发所述第二波束集。
  5. 根据权利要求4所述的方法,其特征在于,所述第二波束集中的波束的数量等于所述第二节点使用的BF参数的套数,所述第二节点使用的BF参数的套数小于等于所述N。
  6. 根据权利要求4或5所述的方法,其特征在于,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用OFDM符号信息;
    其中,所述第一波束的标识信息指示所述第二节点从所述第一波束对应的时间开始转发所述第二波束集,所述第一时间间隔指示所述第二节点接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始OFDM符号信息指示所述转发起始时隙中的转发起始OFDM符号。
  7. 根据权利要求4或5所述的方法,其特征在于,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,
    所述第二节点的时间转发图样信息包括第一比特位图,所述第一比特位图中的一个比特对应一个单位时间间隔;
    其中,当所述第一比特位图中的一个比特的取值为第一预设值,所述第二节点在所述一个比特对应的一个单位时间间隔转发所述第二波束集中的一个波束。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,
    所述第二节点的方向转发图样信息包括第二比特位图,所述第二比特位图中的一个比特对应一套BF参数;
    当所述第二比特位图中的一个比特的取值为第二预设值,所述第二节点使用所述一个比特对应的一套BF参数转发所述第二波束集中的一个波束。
  10. 根据权利要求4所述的方法,其特征在于,所述控制信息时机信息包括以下至少一项:时间周期,频域资源块,占用的正交频分复用OFDM符号的个数,时间起始位置。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述节点配置信息携带在无线资源控制RRC层信令,物理层下行控制信道的下行控制信息DCI,或者媒体接入控制MAC层的控制元素CE中。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,还包括:
    所述第二节点接收来自所述第一节点的系统信息SI,所述SI包括所述第一波束集中的至少一个波束的索引信息。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    所述第二节点接收来自所述第一节点的SI变更指示信息。
  14. 根据权利要求12或13所述的方法,其特征在于,还包括:
    所述第二节点在时间上连续接收所述第一波束集中的波束。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,
    所述第二节点的控制面协议栈包括无线资源控制RRC层、媒体接入控制MAC层、物理PHY层。
  16. 一种通信方法,其特征在于,包括:
    第一节点生成节点配置信息;
    所述第一节点向第二节点发送所述节点配置信息,其中,所述节点配置信息用于所述第一节点的第一波束集到所述第二节点的第二波束集的转化,所述第一波束集和所述第二波束集均包括至少一个波束;
    所述第一节点发送所述第一波束集。
  17. 根据权利要求16所述的方法,其特征在于,所述第一波束集中的波束复用方式包括时分复用或频分复用,所述第二波束集中的波束复用方式包括空分复用。
  18. 根据权利要求16或17所述的方法,其特征在于,所述节点配置信息包括以下至少 一项:
    转发配置信息,功控信息,控制信息时机信息,所述第二节点支持的N套波束赋形BF参数信息,第二节点频段放大和抑制信息,其中,所述N大于等于1,所述控制信息时机信息指示所述第一节点向所述第二节点发送控制信息的时频资源位置,所述BF参数信息包括相位偏移,幅度以及索引中的一项或多项,其中,所述索引指示相位偏移和/或幅度。
  19. 根据权利要求18所述的方法,其特征在于,所述转发配置信息包括以下至少一项:
    转发起始时间信息,第一时长信息,第一指示信息,第二节点的时间转发图样信息,第二节点的方向转发图样信息;
    其中,所述第一时长信息指示第一BF参数的使用时长,其中,所述第一BF参数的使用时长等于所述第二波束集中的第一波束的发送时长,所述第一指示信息指示所述第二波束集中的波束的数量,所述第二节点的时间转发图样信息指示所述第二波束集中被转发波束的时间位置,所述第二节点的方向转发图样信息指示转发所述第二波束集中每个波束所使用的BF参数。
  20. 根据权利要求19所述的方法,其特征在于,所述第二波束集中的波束的数量等于所述第二节点使用的波束赋形参数的套数,所述第二节点使用的波束赋形参数的套数小于等于所述N。
  21. 根据权利要求18或19所述的方法,其特征在于,所述转发起始时间信息包括所述第一波束集中的第一波束的标识信息,或者,第一时间间隔和起始正交频分复用OFDM符号信息;
    其中,所述第一波束的标识信息指示从所述第一波束对应的时间开始转发,所述第一时间间隔指示接收到所述节点配置信息的时隙与转发起始时隙之间间隔的时隙数,所述起始OFDM符号信息指示所述转发起始时隙中的转发起始OFDM符号。
  22. 根据权利要求18或19所述的方法,其特征在于,所述第一指示信息包括以下至少一项:子载波间隔,频段,小区标识信息,K,其中,所述K大于等于1。
  23. 根据权利要求16-22任一项所述的方法,其特征在于,所述节点配置信息携带在无线资源控制RRC层信令,物理层下行控制信道的下行控制信息DCI,或者媒体接入控制MAC层的控制元素CE中。
  24. 根据权利要求16-23任一项所述的方法,其特征在于,还包括:
    所述第一节点生成系统信息SI,所述SI包括所述第一波束集中的至少一个波束的索引信息;
    所述第一节点发送所述SI。
  25. 根据权利要求24所述的方法,其特征在于,还包括:
    所述第一节点向所述第二节点发送SI变更指示信息。
  26. 根据权利要求24或25所述的方法,其特征在于,还包括:
    所述第一节点在时间上连续发送所述第一波束集中的波束。
  27. 根据权利要求18-26任一项所述的方法,其特征在于,还包括:
    所述第一节点根据所述第二节点的转发能力信息,确定所述第二节点支持的BF参数的套数为所述N,或者,确定在不同子载波间隔和/或不同频段下,所述第二节点支持的BF参数的套数。
  28. 一种通信方法,其特征在于,包括:第二节点向第一节点发送第一消息,所述第一消息用于请求建立无线资源控制RRC连接,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起建立所述RRC连接请求的终端为所述第二节点;
    所述第二节点接收来自所述第一节点的第二消息;
    所述第二节点根据所述第二消息,与所述第一节点建立RRC连接。
  29. 根据权利要求28所述的方法,其特征在于,
    所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
  30. 根据权利要求28所述的方法,其特征在于,
    所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
  31. 根据权利要求30所述的方法,其特征在于,所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
  32. 根据权利要求30所述的方法,其特征在于,所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
  33. 根据权利要求30所述的方法,其特征在于,所述第二指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
  34. 根据权利要求28或29所述的方法,其特征在于,所述第二消息包括第一数值,所述方法还包括:
    所述第二节点根据第一数值和数字证书中的私钥,生成第一响应数;
    所述第二节点向所述第一节点发送第三消息,所述第三消息包括所述第一响应数,所述第一响应数用于所述第一节点验证所述第二节点的身份信息。
  35. 根据权利要求34所述的方法,其特征在于,所述第三消息包括所述第二节点的能力信息。
  36. 根据权利要求34或35所述的方法,其特征在于,
    所述第二节点接收来自所述第一节点的能力查询消息;
    所述第二节点向所述第一节点发送所述第二节点的能力信息。
  37. 根据权利要求28-36中任一项所述的方法,其特征在于,所述第二节点中的控制面协议栈包括无线资源控制层RRC、媒体接入控制层MAC、物理PHY层。
  38. 一种通信方法,其特征在于,包括:
    第一节点接收来自第二节点的第一消息,所述第一消息用于请求建立无线资源控制RRC连接,其中,所述第一消息包括第一指示信息,所述第一指示信息用于指示发起请求的终端为所述第二节点;
    所述第一节点向所述第二节点发送第二消息。
  39. 根据权利要求38所述的方法,其特征在于,
    所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的标识信息。
  40. 根据权利要求38所述的方法,其特征在于,
    所述第一消息包括第二指示信息,所述第二指示信息用于指示所述第二节点的能力信息。
  41. 根据权利要求40所述的方法,其特征在于,
    所述第二指示信息包括信息域,所述信息域对应的结构用于定义所述第二节点的能力信息。
  42. 根据权利要求40所述的方法,其特征在于,
    所述第二指示信息包括比特序列,所述比特序列用于指示所述第二节点的能力信息。
  43. 根据权利要求40所述的方法,其特征在于,
    所述第二指示信息包括索引值,所述索引值用于指示所述第二节点能力信息。
  44. 根据权利要求38或39所述的方法,其特征在于,
    所述第二消息包括第一数值,所述第一数值用于所述第二节点的身份信息验证。
  45. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第二节点的第三消息,所述第三消息包括第一响应数;
    所述第一节点获取所述第二节点的公钥,所述公钥是由所述网络管理功能OAM网元预先配置的或所述第一节点从所述OAM网元请求得到的;
    所述第一节点根据所述第一数值和所述公钥对所述第一响应数验证所述第二节点的身份信息。
  46. 根据权利要求45所述的方法,其特征在于,所述方法还包括:
    所述第三消息包括所述第二节点的能力信息。
  47. 根据权利要求45或46所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送能力查询消息;
    所述第一节点接收来自所述第二节点的所述第二节点的能力信息。
  48. 一种通信方法,其特征在于,包括:
    第二节点向第一节点发送第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
  49. 根据权利要求48所述的方法,其特征在于,
    所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
  50. 根据权利要求48或49所述的方法,其特征在于,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
  51. 一种通信方法,其特征在于,包括:
    第一节点接收来自第二节点的能力信息,所述能力信息包括所述第二节点的转发能力信息。
  52. 根据权利要求51所述的方法,其特征在于,
    所述能力信息还包括以下一项或多项:所述第二节点的规格,第二节点频段放大和抑制信息,所述第二节点的上下行的最大发射功率。
  53. 根据权利要求51或52所述的方法,其特征在于,所述第二节点的转发能力信息包括以下一项或多项:所述第二节点最多可支持转发的波束数量,所述第二节点在不同子载波间隔和/或不同频段下支持转发的波束数量,所述第二节点支持的不同子载波间隔和/或不同频段。
  54. 一种通信方法,其特征在于,包括:
    第二节点接收来自第一节点的所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括第一前导码;
    所述第二节点向所述第一节点发送所述第一前导码。
  55. 根据权利要求54所述的方法,其特征在于,所述PRACH配置信息中还包括PRACH资源的时频域位置,
    所述第二节点向所述第一节点发送所述第一前导码,包括:所述第二节点在所述物理随机接入信道资源的时频域位置向所述第一节点发送前导码。
  56. 一种通信方法,其特征在于,包括:
    第一节点向第二节点发送所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括第一前导码;
    所述第一节点接收来自所述第二节点的所述第一前导码。
  57. 根据权利要求56所述的方法,其特征在于,所述PRACH配置信息中还包括PRACH资源的时频域位置,
    所述第一节点接收来自所述第二节点的所述第一前导码,包括:所述第一节点在所述物理随机接入信道资源的时频域位置接收来自所述第二节点的前导码。
  58. 一种通信方法,其特征在于,包括:
    第二节点接收来自第一节点的所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括PRACH资源的时频域位置;
    所述第二节点在所述PRACH资源的时频域位置向所述第一节点发送前导码。
  59. 一种通信方法,其特征在于,包括:
    第一节点向第二节点发送所述第二节点专用的物理随机接入信道PRACH配置信息,其中,所述PRACH配置信息包括PRACH资源的时频域位置;
    所述第一节点在所述PRACH资源的时频域位置接收来自所述第二节点的前导码。
  60. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求1-15所述的方法。
  61. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求16-27所述的方法。
  62. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求28-37所述的方法。
  63. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求38-47所述的方法。
  64. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求48-50所述的方法。
  65. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求51-53所述的方法。
  66. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求54或55所述的方法。
  67. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求56或57所述的方法。
  68. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求58所述的方法。
  69. 一种通信装置,其特征在于,所述装置包括至少一个处理器和通信接口,所述至少一个处理器调用存储器中存储的计算机程序或指令来执行如权利要求59所述的方法。
  70. 一种通信系统,其特征在于,所述系统包括:
    如权利要求60所述的装置和如权利要求61所述的装置;或者,
    如权利要求62所述的装置和如权利要求63所述的装置;或者,
    如权利要求64所述的装置和如权利要求65所述的装置;或者,
    如权利要求66所述的装置和如权利要求67所述的装置;或者,
    如权利要求68所述的装置和如权利要求69所述的装置。
  71. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现如权利要求1-59任一项所述的方法。
PCT/CN2022/131966 2021-11-29 2022-11-15 通信方法及装置 WO2023093572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111432913.7 2021-11-29
CN202111432913.7A CN116193460A (zh) 2021-11-29 2021-11-29 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023093572A1 true WO2023093572A1 (zh) 2023-06-01

Family

ID=86438858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131966 WO2023093572A1 (zh) 2021-11-29 2022-11-15 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116193460A (zh)
WO (1) WO2023093572A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391338A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种干扰测量方法及装置
CN110268640A (zh) * 2017-02-06 2019-09-20 诺基亚技术有限公司 用于无线网络的多波束寻呼技术
WO2020029868A1 (zh) * 2018-08-10 2020-02-13 索尼公司 电子装置、无线通信方法和计算机可读介质
CN110958620A (zh) * 2018-09-26 2020-04-03 成都华为技术有限公司 一种测量信号配置的方法及装置
US20210014815A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Methods and apparatus to facilitate beam-based sequence spaces for synchronization signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268640A (zh) * 2017-02-06 2019-09-20 诺基亚技术有限公司 用于无线网络的多波束寻呼技术
CN109391338A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种干扰测量方法及装置
WO2020029868A1 (zh) * 2018-08-10 2020-02-13 索尼公司 电子装置、无线通信方法和计算机可读介质
CN110958620A (zh) * 2018-09-26 2020-04-03 成都华为技术有限公司 一种测量信号配置的方法及装置
US20210014815A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Methods and apparatus to facilitate beam-based sequence spaces for synchronization signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (QUALCOMM): "Email discussion for RAN4 R17 non-spectrum work areas: Smart Repeaters", 3GPP TSG-RAN MEETING #89E, RP-201830, 7 September 2020 (2020-09-07), XP051932516 *

Also Published As

Publication number Publication date
CN116193460A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
TWI746774B (zh) 用於經由共享射頻頻帶用信號發送公用陸上行動網路識別符的技術
WO2019232732A1 (zh) 一种寻呼消息传输方法和相关设备
JP2020536429A (ja) 通信方法及び通信装置
JP2017085579A (ja) 高速初期リンク設定探索フレーム
WO2014012457A1 (zh) 一种d2d资源获取方法、设备及系统
TWI492656B (zh) 無線存取點
WO2015109749A1 (zh) 设备到设备业务资源配置方法和装置
US20180359633A1 (en) Neighbor Awareness Networking Device Pairing
JP7254721B2 (ja) 情報決定方法、端末機器及びネットワーク機器
JP2012531769A (ja) ピアツーピア通信のためのページングメッセージを送信する装置及び方法
WO2019024756A1 (zh) 通信方法、网络设备和中继设备
US20220014901A1 (en) Method and apparatus for identifying user equipment capability in sidelink transmission
WO2021179895A1 (zh) 一种通信方法及装置
WO2022247432A1 (zh) 时间同步方法、电子设备及存储介质
EP3422750B1 (en) Method and apparatus for providing service provider identifier, access device, and terminal device
WO2014169670A1 (zh) 一种wlan组网方法及系统
KR20210119791A (ko) 통신 시스템에서 멀티 유심 단말의 페이징 방법 및 장치
WO2021056131A1 (zh) 无线通信方法、终端设备和网络设备
WO2023093572A1 (zh) 通信方法及装置
WO2023102940A1 (zh) 无线通信方法、远端终端以及中继终端
WO2022021165A1 (zh) 中继发现方法和终端
WO2014082215A1 (zh) Fdd系统中多载波配置、用户设备接入方法及相应装置
WO2021229510A1 (en) Aligning transmission timing on different carrier frequencies
WO2022257733A1 (zh) 一种网络共享场景下的通信处理方法及装置
WO2023138308A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897655

Country of ref document: EP

Kind code of ref document: A1