WO2023093521A1 - 一种信息接收与发送方法及装置 - Google Patents

一种信息接收与发送方法及装置 Download PDF

Info

Publication number
WO2023093521A1
WO2023093521A1 PCT/CN2022/130547 CN2022130547W WO2023093521A1 WO 2023093521 A1 WO2023093521 A1 WO 2023093521A1 CN 2022130547 W CN2022130547 W CN 2022130547W WO 2023093521 A1 WO2023093521 A1 WO 2023093521A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
frequency domain
information
domain width
scs
Prior art date
Application number
PCT/CN2022/130547
Other languages
English (en)
French (fr)
Inventor
鲁振伟
吴毅凌
陈俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023093521A1 publication Critical patent/WO2023093521A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • G06K17/0029Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device the arrangement being specially adapted for wireless interrogation of grouped or bundled articles tagged with wireless record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for receiving and sending information.
  • Radio Frequency Identification (RFID) technology is a non-contact automatic identification technology.
  • the reader or reader can send an excitation signal to a low-cost tag.
  • the tag can send a reflected signal to the reader.
  • the reader can identify the label (identification, ID ), and read and write operations on tags. How the reader or the reader/writer sends downlink information to the tag, and how the tag receives the downlink information are technical problems to be solved in this application.
  • the present application provides a method and device for receiving and sending information, so that network equipment can flexibly send information to terminals.
  • an information receiving method the method can be executed by a terminal, and the terminal can be a tag, including: receiving a first frame from a network device according to a first frequency domain width, and the first frame includes the first frame information; according to the first information, determine a second frequency domain width; according to the second frequency domain width, receive a second frame from the network device, the second frame includes second information, and the first The second frequency domain width is used to determine the transmission duration of one bit or symbol in the second information, and the second frame is the same frame or a different frame from the first frame.
  • the downlink information transmitted between the reader and the tag uses a fixed frequency domain width of 180kHz, which is also called channel bandwidth, so the flexibility of the frequency domain width is poor.
  • the reader can first use a fixed frequency domain bandwidth, such as 180kHz frequency domain bandwidth, to send the first frame to the tag, and the first information in the first frame can indicate or implicitly indicate that the fixed frequency domain is not fixed.
  • other frequency domain bandwidths other than the domain bandwidth such as the second frequency domain bandwidth, so that downlink data can be transmitted using multiple frequency domain bandwidths, and the flexibility of frequency domain width in downlink transmission is improved.
  • the rate at which the reader sends downlink information can be increased.
  • the receiving the first frame from the network device according to the first frequency domain width includes: receiving the frame from the network device according to the first subcarrier spacing SCS and the first frequency domain width.
  • the first frame of the first frame; the receiving the second frame from the network device according to the second frequency domain width includes: receiving the first frame from the network device according to the second SCS and the second frequency domain width In two frames, the second SCS is the same as or different from the first SCS.
  • the second SCS there is a corresponding relationship between the second SCS and the second frequency domain width; wherein, when the second SCS is 15kHz, the value of the second frequency domain width is at least One item: 180kHz, 360kHz, 540kHz, or 720kHz; or, when the second SCS is 30kHz, the value of the second frequency domain width is at least one of the following: 360kHz, or 720kHz.
  • the downlink transmission between the reader and the tag adopts a fixed 15kHz SCS and a frequency domain width of 180kHz.
  • different SCSs and different frequency domain widths can be supported between the reader and the tag, and the downlink transmission mechanism is more flexible.
  • the first information is public signaling
  • the public signaling includes indication information of the second frequency domain width
  • the second information is downlink data.
  • the reader can use a fixed frequency domain bandwidth, such as the second frequency domain bandwidth, to send public signaling to the tag, and the common signaling carries indication information of the second frequency domain bandwidth. Afterwards, the reader can use the indicated second frequency domain bandwidth to send downlink data to the tag, and display the frequency domain bandwidth indicating the downlink data through public signaling, so that downlink data can be sent with multiple frequency domain bandwidths.
  • a fixed frequency domain bandwidth such as the second frequency domain bandwidth
  • the common signaling when the second SCS is different from the first SCS, the common signaling further includes indication information of the second SCS.
  • the first frame includes a preamble, the preamble marks the start of the first frame, the preamble is the first information, and the second frame includes downlink data , the downlink data is the second information;
  • the determining the second frequency domain width according to the first information includes: determining the preamble in the first frame according to the corresponding relationship between the preamble sequence and the frequency domain width The second frequency domain width corresponding to the sequence; or, according to the corresponding relationship between the preamble sequence spreading code and the frequency domain width, determine the second frequency domain width corresponding to the preamble sequence spreading code in the first frame.
  • the preamble sequence in the frame, or the spreading code of the preamble sequence can be used to implicitly indicate the second frequency domain width, without additionally adding other control information, thereby saving signaling overhead.
  • the first frame when the first frame and the second frame are the same frame, the first frame further includes at least one of the following items: the preamble sequence is located before the downlink data, the The downlink data includes first downlink data and second downlink data, an intermediate guide is included between the first downlink data and the second downlink data, and the intermediate guide is used to maintain synchronization during downlink data transmission; or A tail guide is included after the downlink data, and the tail guide marks the end of the first frame;
  • At least one of the middle pilot or the tail pilot is transmitted by using the second SCS and the second frequency domain width, or by using the first SCS and the first frequency domain width for transmission.
  • the first frame includes control information
  • the control information is the first information
  • the second frame includes downlink data
  • the downlink data is the second information
  • the control information includes indication information of the second frequency domain width.
  • a control part is added to the frame structure used by the downlink data, and the control part is used to carry control information, and the control information is at least used to indicate the second frequency used by the downlink data in this frame or in other frames.
  • the control information is at least used to indicate the second frequency used by the downlink data in this frame or in other frames.
  • other frequency domain bandwidths can be used to transmit downlink data, and the flexibility of transmitting downlink data can be improved.
  • control information when the second SCS is different from the first SCS, the control information further includes indication information of the second SCS.
  • the first frame when the first frame and the second frame are the same frame, the first frame further includes at least one of the following: a preamble sequence, located before the downlink data, the The preamble sequence marks the start of the first frame; the downlink data includes the first downlink data and the second downlink data, and an intermediate guide is included between the first downlink data and the second downlink data, and the intermediate guide It is used to maintain synchronization in downlink data transmission, and the control information is located between the preamble sequence and the downlink data; or includes a trailing guide after the downlink data, and the trailing guide marks the end of the first frame ; wherein, the preamble sequence is transmitted using the first SCS and the first frequency domain width, and at least one of the middle pilot and the tail pilot is transmitted using the first SCS and the first frequency domain domain width transmission, or using the second SCS and the second frequency domain width transmission.
  • a preamble sequence located before the downlink data
  • the preamble sequence marks the start of the first frame
  • the downlink data includes
  • the second information includes first indication information
  • the first indication information is used to instruct the terminal to update the second frequency domain width
  • the reader can also use other frequency domain width and SCS to send downlink information to the tag.
  • a specific manner includes: including in the downlink data indication information indicating to update the frequency domain width.
  • the tag jumps back to the first SCS and receives common signaling with the first frequency domain width, where the common signaling may indicate a new frequency domain width, for example, the third frequency domain width.
  • the subsequent reader uses the third frequency domain width and the third SCS to send downlink data to the tag.
  • the first information when the third SCS is different from the first SCS, the first information further includes indication information of the third SCS.
  • the second information includes indication information of the third SCS and/or the third frequency domain width, and further includes: according to the third SCS and the third frequency domain width, Receive a third frame from the network device, where the third frame includes the second information.
  • the reader can directly carry the indication of the new frequency domain width in the downlink data.
  • the reader carries the indication information of updating the frequency domain width in the downlink data, and the tag needs to jump back to the first SCS and the first frequency domain width to receive public signaling, and then receive the new frequency domain according to the indication of the public signaling.
  • the domain width can reduce the overhead of common signaling.
  • the second information includes indication information of the fourth SCS and/or the fourth frequency domain width, and further includes: according to the fourth SCS and the fourth frequency domain width, receiving information from A third frame of the network device, where the third frame includes the first information.
  • the indication information of the new frequency domain width and SCS that can be carried in the downlink data can be read to send public signaling to the tag according to the new frequency domain width and SCS.
  • the tag can receive public signaling from the reader according to the new frequency domain width and SCS.
  • the center frequency of the frequency domain resource for transmitting the first frame is aligned with the center frequency of the frequency domain resource for transmitting the second frame; or, the center frequency of the frequency domain resource for transmitting the first frame is aligned;
  • the frequency domain resource is any one of multiple non-overlapping frequency domain resources included in the frequency domain resource for transmitting the second frame.
  • the second aspect provides an information sending method, which is the network device corresponding to the above-mentioned first aspect, and the beneficial effect can be referred to the description of the above-mentioned first aspect.
  • the method may be performed by a network device, the network device may be a reader, and includes: sending a first frame to the terminal according to the first frequency domain width, the first frame includes first information, and the first information is used to determine Second frequency domain width: according to the second frequency domain width, send a second frame to the terminal, the second frame includes second information, and the second frequency domain width is used to determine the second information
  • the transmission duration of one bit or symbol, the second frame and the first frame are the same frame or different frames.
  • the sending the first frame to the terminal according to the first frequency domain width includes: sending the first frame to the terminal according to the first subcarrier spacing SCS and the first frequency domain width .
  • the sending the second frame to the terminal according to the second frequency domain width includes: sending the second frame to the terminal according to the second SCS and the second frequency domain width.
  • frame, the second SCS is the same as or different from the first SCS.
  • the second SCS when the second SCS is 15kHz, the value of the second frequency domain width is at least one of the following : 180kHz, 360kHz, 540kHz, or 720kHz; or, when the second SCS is 30kHz, the value of the second frequency domain width is at least one of the following: 360kHz, or 720kHz.
  • the first information is public signaling
  • the public signaling includes indication information of the second frequency domain width
  • the second information is downlink data.
  • the common signaling when the second SCS is different from the first SCS, the common signaling further includes indication information of the second SCS.
  • the first frame includes a preamble, the preamble marks the start of the first frame, the preamble is the first information, and the second frame includes downlink data , the downlink data is the second information; wherein, there is a corresponding relationship between the preamble sequence and the frequency domain width, and the preamble sequence in the first frame corresponds to the second frequency domain width; or, the preamble sequence spreading code and the frequency domain width There is a corresponding relationship between the widths, and the preamble sequence spreading code in the first frame corresponds to the second frequency domain width.
  • the first frame when the first frame and the second frame are the same frame, the first frame further includes at least one of the following items: the preamble sequence is located before the downlink data, the The downlink data includes first downlink data and second downlink data, and an intermediate guide is included between the first downlink data and the second downlink data, and the intermediate guide is used to maintain the downlink data during the transmission of the downlink data.
  • the preamble sequence is located before the downlink data
  • the The downlink data includes first downlink data and second downlink data
  • an intermediate guide is included between the first downlink data and the second downlink data, and the intermediate guide is used to maintain the downlink data during the transmission of the downlink data.
  • synchronous or include a tail guide after the downlink data, and the tail guide marks the end of the first frame; wherein, at least one of the middle guide or the tail guide adopts the second SCS and the The transmission with the second frequency domain width, or the transmission using the first SCS and the first frequency domain width.
  • the first frame includes control information
  • the control information is the first information
  • the second frame includes downlink data
  • the downlink data is the second information
  • the control information includes indication information of the second frequency domain width.
  • control information when the second SCS is different from the first SCS, the control information further includes indication information of the second SCS.
  • the first frame when the first frame and the second frame are the same frame, the first frame further includes at least one of the following: a preamble sequence, located before the downlink data, the The preamble sequence marks the start of the first frame; the downlink data includes the first downlink data and the second downlink data, and an intermediate guide is included between the first downlink data and the second downlink data, and the intermediate guide It is used to maintain synchronization in downlink data transmission, and the control information is located between the preamble sequence and the downlink data; or includes a trailing guide after the downlink data, and the trailing guide marks the end of the first frame ; wherein, the preamble sequence is transmitted using the first SCS and the first frequency domain width, and at least one of the middle pilot and the tail pilot is transmitted using the first SCS and the first frequency domain Domain width transmission, or using the second SCS and the second frequency domain width transmission.
  • a preamble sequence located before the downlink data
  • the preamble sequence marks the start of the first frame
  • the downlink data includes
  • the second information includes first indication information
  • the first indication information is used to instruct the terminal to update the second frequency domain width
  • the first information when the third SCS is different from the first SCS, the first information further includes indication information of the third SCS.
  • the second information includes indication information of the third SCS and/or the third frequency domain width, and further includes: according to the third SCS and the third frequency domain width, sending information to the The terminal sends a third frame, where the third frame includes the second information.
  • the second information includes indication information of the fourth SCS and/or the fourth frequency domain width, and further includes: according to the fourth SCS and the fourth frequency domain width, sending information to the The terminal sends a third frame, where the third frame includes the first information.
  • the center frequency of the frequency domain resource for transmitting the first frame is aligned with the center frequency of the frequency domain resource for transmitting the second frame; or, the center frequency of the frequency domain resource for transmitting the first frame is aligned;
  • the frequency domain resource is any one of multiple non-overlapping frequency domain resources included in the frequency domain resource for transmitting the second frame.
  • the transmitting power of the reader increases with the increase of the frequency domain width, which is beneficial to maintain coverage.
  • the device may be a terminal device, or a module configured in the terminal device, or other devices having functions of the terminal device.
  • the device includes a unit for executing the method described in the first aspect, and the unit may be a hardware circuit, or software, or a combination of hardware circuit and software.
  • the device may include a processing unit and a transceiver unit, and the processing unit and the transceiver unit may perform corresponding functions in any design example of the first aspect above, specifically:
  • a transceiver unit configured to receive a first frame from a network device according to a first frequency domain width, where the first frame includes first information
  • a processing unit configured to determine a second frequency domain width according to the first information
  • the transceiver unit is further configured to receive a second frame from the network device according to the second frequency domain width, the second frame includes second information, and the second frequency domain width is used to determine the The transmission duration of one bit or symbol in the second information, and the second frame is the same frame or a different frame from the first frame.
  • a device in a fourth aspect, there is provided a device, and the beneficial effect may refer to the description in the first aspect, and the device includes a processor configured to implement the method described in the first aspect above.
  • the apparatus may also include memory for storing instructions and/or data.
  • the memory is coupled to the processor, and when the processor executes the program instructions stored in the memory, the method described in the first aspect above can be implemented.
  • the device may also include a communication interface for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, pin or other types of communication interface.
  • the device includes:
  • a communication interface configured to perform the functions of the transceiver unit in the first aspect above;
  • a processor configured to execute the functions of the processing unit in the first aspect above.
  • the device may be a network device, or a module configured in the network device, or other devices having the function of the network device.
  • the device includes a unit for executing the method described in the second aspect.
  • the unit may be a hardware circuit, or software, or may be implemented by combining hardware circuits with software.
  • the device may include a processing unit and a transceiver unit, and the processing unit and the transceiver unit may perform the corresponding functions in any design example of the second aspect above, specifically:
  • a processing unit for generating the first frame and the second frame
  • the transceiver unit is configured to send a first frame to the terminal according to the first frequency domain width, the first frame includes first information, and the first information is used to determine the second frequency domain width;
  • the transceiver unit is further configured to send a second frame to the terminal according to the second frequency domain width, the second frame includes second information, and the second frequency domain width is used to determine the first
  • the transmission duration of one bit or symbol in the second information, the second frame and the first frame are the same frame or different frames.
  • the device includes a processor, configured to implement the method described in the second aspect above.
  • the apparatus may also include memory for storing instructions and/or data.
  • the memory is coupled to the processor, and when the processor executes the program instructions stored in the memory, the method described in the second aspect above can be implemented.
  • the device may also include a communication interface for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, pin or other types of communication interface.
  • the device includes:
  • a communication interface configured to perform the function of the transceiver unit in the second aspect above;
  • a processor configured to execute the functions of the processing unit in the second aspect above.
  • the embodiment of the present application further provides a computer-readable storage medium storing instructions, and when the instructions are run on the communication device, the communication device is made to execute the method of the first aspect or the second aspect.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor and may further include a memory, for implementing the method of the first aspect or the second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiments of the present application further provide a computer program product, including instructions, which, when run on a communication device, cause the communication device to execute the method of the first aspect or the second aspect.
  • the embodiment of the present application further provides a system, the system includes the device in the third aspect or the fourth aspect, and the device in the fifth aspect or the sixth aspect.
  • Fig. 1 is a schematic diagram of the communication system provided by the present application.
  • FIGS. 1 and Figure 3 are schematic diagrams of readers and tags provided by the present application.
  • Figure 4 is a schematic diagram of the centralized control unit, reader and tag provided by the present application.
  • Fig. 5 is a schematic diagram of signal types in the RFID process provided by the present application.
  • Figure 6 is a schematic diagram of the inventory provided by the present application.
  • Figure 7 is a schematic flow diagram provided by the present application.
  • Figure 8 Figure 9 and Figure 10 are schematic diagrams of frame structures provided by this application.
  • FIG. 11 is a schematic diagram of frequency domain resources for transmitting common signaling and downlink data provided by the present application.
  • FIG. 12 and FIG. 13 are schematic diagrams of the frequency domain width corresponding to the updated downlink data provided by the present application.
  • FIG. 14 is a schematic diagram of frequency domain width corresponding to updating common signaling provided by the present application.
  • FIG. 15 and Figure 16 are schematic diagrams of the device provided in this application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in the present application.
  • the communication system includes a network device 100 and a terminal 200 .
  • the communication system 1000 may also include the Internet 300 .
  • the network device 100 and the terminal 200, and different terminals 200 may be connected to each other in a wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as access network devices, relay devices, and wireless backhaul devices, which are not shown in FIG. 1 .
  • the network device may be a reader-writer, a reader (reader), and the like. This application does not limit the specific technology and specific equipment form adopted by the network equipment. For ease of description, a reader is used as an example of a network device for description below.
  • Terminals can be tags, etc., and can be widely used in various scenarios. For example, device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of things (IOT), virtual reality , augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc. This application does not limit the specific technology and specific equipment form adopted by the terminal. For ease of description, the label is used as an example of a terminal for description below.
  • Readers and tags can be fixed or moveable. Readers and tags can be deployed on land, indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; and they can be deployed in the air on aircraft, balloons and satellites. This application does not limit the application scenarios of readers and tags.
  • Communication between readers and tags, between readers, and between tags can be through licensed spectrum, or through license-free spectrum, or through licensed spectrum and license-free spectrum at the same time; Communication may be performed by using a frequency spectrum below 6 gigahertz (gigahertz, GHz), or may be performed by using a frequency spectrum above 6 GHz, or may also be performed by simultaneously using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz. This application does not limit the resources used by wireless communication.
  • the functions of the reader may be performed by a module (such as a chip) in the reader, or may be performed by a control subsystem including the function of the reader.
  • the control subsystem including the reader function may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the function of the tag can also be executed by a module in the tag (such as a chip or a modem), and can also be executed by a device including the tag function.
  • RFID radio frequency identification
  • RFID technology is a non-contact automatic identification technology.
  • the reader provides energy to the tag by sending an excitation signal to the tag.
  • the tag receives the excitation signal sent by the reader, and sends information to the reader through the reflected signal.
  • the reader can identify the tag's identification (identification, ID), and perform operations such as reading and writing the tag.
  • ID identification
  • the reader is required to provide an excitation signal, and part of the energy is used for internal processing such as codec and modulation and demodulation of the tag.
  • the excitation signal is also used as a carrier to carry the uplink information of the tag for reflection;
  • the source tag contains a battery inside, and the processing such as codec and modem can use the battery, but the reader still needs to send an excitation signal as a reflected carrier.
  • the tag does not have its own carrier, and needs to borrow the downlink carrier that sends the excitation signal as the uplink carrier, and modulate the tag's uplink information on the carrier for transmission.
  • the tag can adjust the antenna impedance to achieve signal reflections of different strengths, thereby achieving different bit modulations.
  • the reader adopts an integrated architecture (see FIG. 2 ) or a separate architecture (see FIG. 3 ).
  • the reader is split into two parts: a helper and a receiver.
  • the receiver in downlink or forward transmission, the receiver is responsible for generating RFID-related signaling and sending it to the facilitator.
  • the helper is responsible for forwarding the RFID signaling to the tag.
  • the receiver In upstream or reverse transmission, the receiver is responsible for receiving the reflected signal from the tag.
  • the facilitator can also send relevant information to the receiver.
  • the fifth generation (5 th generation, 5G) new air interface (new radio, NR) technology, or 5G sidelink (sidelink, SL) technology can be used between the above-mentioned assistant and the receiver for transmission, that is, receiving
  • the device generates RFID signaling, which can be sent to the assistant through 5G NR air interface technology or 5G sidelink technology.
  • the helper then forwards the RFID signaling to the tag.
  • the link through which the reader transmits information to the tag may be referred to as a forward link or downlink
  • the link through which the tag transmits information to the reader may be referred to as a reverse link or uplink.
  • the link through which the facilitator transmits information to the reader since the reader is split into a facilitator and a receiver, as shown in Figure 3, since the facilitator is responsible for sending RFID signaling to the tag, the link between the facilitator and the tag to transmit information can be Called the forward link or downlink.
  • the receiver is responsible for receiving the reflected signal from the tag, so the link that transmits information between the tag and the receiver can be called the reverse link or uplink.
  • the link through which the receiver sends signals to the helper may be called a fronthaul downlink
  • the link through which the helper sends information to the receiver may be called a fronthaul uplink.
  • the reader in addition to the activation and reflection of signals between the reader and the tag through the forward link and the reverse link, as shown in Figure 4, the reader also communicates with the centralized control unit.
  • the centralized control unit can schedule and control the resource and transmission behavior of the forward link.
  • the centralized control unit may be a base station or the like. The communication between the base station and the reader adopts 5G NR air interface technology, or 5G sidelink technology, etc.
  • the transmitted signal is divided into two types, one type is the excitation signal, and the excitation signal is a continuous wave (continuous wave, CW ); another type is RFID signaling, which includes query (query) signaling, query repetition (query repetition, QueryRep) signaling, and the like.
  • the inventory is a process of counting, checking or counting objects in the Internet of Things (including items, boxes, or pallets).
  • objects including items, boxes, or pallets.
  • EPC electronic product code
  • Objects are globally uniquely identified.
  • the reader can send an inventory signaling, the tag tries to respond, and the tag that responds successfully continues to report the EPC of the corresponding product to the reader. Based on the received EPC fed back by the tag, the reader can realize the inventory of the products in the warehouse.
  • the inventory process includes at least the following steps:
  • the reader executes a query (select) process: selects a tag subset, and the tag subset includes at least one tag.
  • tags belonging to the same tag subset may be assigned the same tag subset identifier in advance.
  • the reader sends a query (query) signaling to the tag, and the query signaling includes an identifier corresponding to the tag subset.
  • the tag When the tag receives the above query signaling, if it finds that the ID of the tag subset carried in the above query signaling is the same as the ID of the tag subset pre-assigned to itself, the tag selects a 16-bit random number as the temporary ID , send the temporary ID to the reader, and the temporary ID can be carried in the RN16.
  • the reader sends a positive acknowledgment (acknowledgment, ACK) signaling to the tag, and the signaling includes the temporary ID fed back by the tag before—a 16-bit random number, as a confirmation of the tag feedback.
  • ACK positive acknowledgment
  • the tag After receiving the ACK signaling, the tag judges that it contains its own temporary ID, and then sends the EPC of the corresponding object to the reader. Optionally, the complete EPC, or a part of the EPC can be sent. Alternatively, the reader may also send IDs other than the EPC to the tag, which is not limited.
  • NAK negative acknowledgment
  • the reader can directly send a QueryRep to the tag, instructing to skip these conflicting tags and proceed directly to the follow-up inventory process.
  • T1 is the time interval between the end of the reader sending signaling and the tag starting to send signaling
  • T2 is the time interval between the reader sending one signaling and the next one starting Time interval
  • T3 is the reader's inventory, and when there is no tag feedback, the additional delay needs to be waited
  • T2 is the time interval between the end of the tag sending signaling and the reader starting to send signaling.
  • the reader can send downlink information such as Query and QueryRep to the tag through the downlink or reverse link.
  • downlink information such as Query and QueryRep
  • the new technology or enhanced technology of radio frequency identification it can share physical resources with cellular technology and support 15kHz subcarrier spacing.
  • a fixed 180kHz is allocated to this type of technology, and the reader can only use the fixed 180kHz frequency domain width to send downlink information to the tag. How to improve the flexibility of the frequency domain width occupied by downlink information in this type of technology is the technical problem to be solved in this application.
  • the reader can first send the first frame including the first information to the tag with a fixed frequency domain width, such as the first frequency domain width. ;
  • the first information displays or implicitly indicates to the tag the second frequency domain width;
  • the reader sends the second frame including the second information to the tag with the second frequency domain width.
  • the reader can transmit downlink information to the tag by using different frequency domain widths. Especially when the second frequency domain width is greater than the first frequency domain width, the transmission rate of downlink information can also be increased.
  • the process includes at least the following steps:
  • Step 701 The reader sends the first frame to the tag according to the first frequency domain width.
  • the tag receives the first frame from the reader according to the first frequency domain width.
  • the first frame includes first information, and the first information is used to determine the second frequency domain width.
  • the tag determines the second frequency domain width according to the first information.
  • the reader may send the first frame to the tag according to the first subcarrier spacing (subcarrier spacing, SCS) and the first frequency domain width.
  • the tag may receive the first frame from the reader according to the first SCS and the first frequency domain width.
  • the first SCS is a fixed SCS, for example, the first SCS is a fixed 15kHz; the first frequency domain width is a fixed frequency domain width, for example, the first frequency domain width may be a fixed 180kHz.
  • the reader and the tag may determine the first SCS and the first frequency domain width according to the frequency band to which the frequency domain resource for transmitting the first frame belongs. For example, for frequency band A, the first SCS is 15 kHz, and the first frequency domain width is 180 kHz. For frequency band B, the first SCS is 30 kHz, and the first frequency domain width is 360 kHz.
  • multiple SCSs and frequency domain widths may be supported for the same frequency band.
  • frequency band C it not only supports the first SCS 15kHz and the first frequency domain width of 180kHz, but also supports the first SCS 30kHz and the first frequency domain width of 360kHz.
  • the reader can choose any one of the first SCS and the first frequency domain width to send the first frame, and the tag needs to try to receive the first frame according to the above two SCS and frequency domain width.
  • the reader selects a certain SCS and frequency domain width to send the first frame, the subsequent transmission of the first frame will not change.
  • the tag receives the first frame for the first time, it needs to try to receive the first frame according to the above two SCSs and frequency domain widths.
  • the attempt to receive the first frame is successful, and the tag will always use the SCS and frequency domain width to receive the first frame.
  • the reader reselects the first SCS and the first frequency domain width each time the first frame is sent, that is, the first SCS and the first frequency domain used for sending the first frame each time. Field widths may vary. Then, each time the tag receives the first frame, it needs to try to receive the first frame according to two different SCSs and frequency domain widths.
  • Step 702 The reader sends a second frame to the tag according to the second frequency domain width.
  • the tag receives the second frame from the reader according to the second frequency domain width.
  • the second frame is the same frame or a different frame from the first frame, and the second frequency domain width is the same as or different from the first frequency domain width.
  • the reader may send the second frame to the tag according to the second SCS and the second frequency domain width.
  • the tag may receive the second frame from the reader according to the second SCS and the second frequency domain width.
  • the second SCS is the same as or different from the first SCS.
  • the reader may send a first frame to the tag according to the SCS of 15KHz and the frequency domain width of 180kHz, and the first frame includes the first information.
  • the first information may display or implicitly indicate a value of the second frequency domain width.
  • the reader may send the second frame to the tag according to the SCS of 15 kHz and the second frequency domain bandwidth.
  • the first information may also display or implicitly indicate the size of the second SCS.
  • the first information indicates the second frequency domain width and the second SCS, reference may be made to the following.
  • the label can determine the position and/or length of the cyclic prefix (cyclic prefix, CP) in the first frame according to the first SCS, similarly, it can be determined according to the second SCS The position and/or length of the CP in the second frame, etc.
  • the CP may refer to a regular cyclic prefix or an extended cyclic prefix, etc., determine the position and length of the CP in the corresponding frame, and detect the information carried in the corresponding frame, such as the preamble, midamble, or trailer.
  • the tag can determine the transmission duration or time domain length of a symbol or bit in the second information in the first frame according to the first frequency domain width.
  • the tag can determine the first information in the second frame according to the second frequency domain width.
  • the transmission duration or time domain length of one symbol or bit, etc., the above bits may refer to coded bits.
  • the transmission duration or time domain length of a symbol or bit in the corresponding information in the corresponding frame is determined, the information carried in the corresponding frame can be detected, and the downlink data symbols can be demodulated.
  • the frequency domain width may also be referred to as channel bandwidth.
  • the second SCS there may be a corresponding relationship between the second SCS and the second frequency domain width.
  • the value of the second frequency domain width is at least one of the following: 180kHz, 360kHz, 540kHz, or 720kHz; or, when the second SCS is 30kHz, the The value of the second frequency domain width is at least one of the following: 360kHz or 720kHz.
  • the first information in the above first frame may also indicate the value of the second SCS.
  • the second SCS when there is a corresponding relationship between the second SCS and the second frequency domain width, especially when the corresponding relationship is a one-to-one corresponding relationship.
  • the tag can acquire the value of the second SCS by itself according to the corresponding relationship between the frequency domain width and the SCS. For example, when the second frequency domain width is 720 kHz, its corresponding second SCS is 30 kHz. However, when the corresponding relationship between the SCS and the frequency domain width is not a one-to-one relationship, multiple values of the SCS may be obtained according to the value of the second frequency domain width. At this time, the reader may be required to additionally indicate the value of the second SCS. Alternatively, the reader may not indicate that the tag may need to detect in the second frame respectively according to the SCS with the above-mentioned corresponding relationship until the detection succeeds.
  • the downlink transmission between the reader and the tag adopts a fixed 15kHz SCS and a frequency domain width of 180kHz.
  • different SCSs and different frequency domain widths can be supported between the reader and the tag, and the downlink transmission mechanism is more flexible.
  • the above-mentioned correspondence between the second SCS and the second frequency domain width may be stipulated by a protocol, or configured to the reader by the base station or other control equipment.
  • the reader determines to use 15kHz SCS to send downlink information to the tag, it can choose any frequency domain width of 180kHz, 360kHz, 540kHz or 720kHz to send downlink information; similarly, when the reader determines to use 30kHz SCS to send downlink information to the tag For downlink information, it can choose any frequency domain width of 360kHz or 720kHz to send downlink information to the tag.
  • the above-mentioned first information is public signaling
  • the public signaling includes select, query or other public signaling.
  • the other common signaling includes other common signaling in the current RFID technology except select and query, and newly defined common signaling.
  • the common signaling includes indication information of the second frequency domain width, and the second information is downlink data.
  • the common signaling may further include indication information of the second SCS.
  • the reader first sends common signaling to the tag, and the common signaling is sent using a fixed first SCS (for example, 15 kHz) and a first frequency domain width (for example, 180 kHz).
  • the common signaling includes indication information of the second frequency domain width to be used by downlink data to be transmitted subsequently.
  • the reader uses the second frequency domain width to send downlink data to the tag.
  • the tag when the above-mentioned second frequency domain width is not obtained, try to receive public signaling according to the above-mentioned fixed first SCS and first frequency domain width, and obtain the second frequency domain width in the public signaling. Afterwards, subsequent downlink data is received according to the fixed first SCS and the second frequency domain width indicated in the public signaling.
  • the SCS used in subsequent downlink transmissions may also be different from the fixed SCS used in public signaling.
  • the fixed SCS is 15kHz, but the subsequent downlink transmission may use the SCS of 30kHz, then the public signaling also needs to indicate the second SCS used for the subsequent downlink transmission.
  • the second frequency domain width is greater than the fixed frequency domain width , that is, more frequency domain resources are used to transmit downlink data at this time, which can reduce transmission delay and increase transmission rate.
  • the frame structure used in the downlink transmission between the reader and the tag is introduced.
  • the frame structure includes at least one of the following:
  • the preamble (preamble, pre) is used to mark the start of the frame; optionally, the preamble may also be called a preamble sequence.
  • Downlink data (downlink data, DL data);
  • the midamble (mid) can be inserted when the downlink data is long to maintain synchronization during transmission; it should be pointed out that in this application, the downlink data is split into two parts, and between the two parts It is described by inserting an intermediate guide as an example, and it is not limited to this.
  • the first frame includes a preamble
  • the preamble marks the start of the first frame
  • the preamble is the first information
  • the second frame includes downlink data
  • the downlink data is the second information.
  • the process for the tag to determine the second frequency domain width according to the first information includes: the tag determines the second frequency domain width corresponding to the preamble sequence in the first frame according to the correspondence between the preamble sequence and the frequency domain width. For example, when the preamble sequence is A1, its corresponding frequency domain width is B1; and when the preamble sequence is A2, its corresponding frequency domain width may be B2.
  • the process for the tag to determine the second frequency domain width according to the first information includes: according to the corresponding relationship between the spreading code of the preamble sequence and the frequency domain width, the tag determines the frequency corresponding to the spreading code of the preamble sequence in the first frame. Second frequency domain width.
  • the spreading code may also be called a mask. That is to say, in this design, different frequency domain widths can be indicated by different spreading codes carried in the preamble. For example, when the spreading code of the preamble sequence is F1, its corresponding frequency domain width is B3; and when the spreading code of the preamble sequence is F2, its corresponding frequency domain width is B4, etc.
  • the preamble sequence or the spreading code carried by the preamble sequence is used as an example to indicate the width of the second frequency domain, and it is not limited thereto.
  • the preamble or the spreading code of the preamble may also indicate the second SCS.
  • different preamble sequences are used to indicate different SCSs.
  • different spreading codes of the preamble sequence are used to indicate different SCSs.
  • the preamble, or the spreading code carried by the preamble can simultaneously indicate the frequency domain width and the SCS.
  • the preamble sequence is A3
  • it may indicate that the frequency domain width is 360 kHz
  • the SCS is 30 kHz
  • the process of using the spreading code carried in the preamble to simultaneously indicate the frequency domain width and the SCS is similar to the above and will not be repeated here.
  • the reader may indicate to the tag the size of the second frequency domain width, or the size of the second SCS.
  • the specific indication manner may include the preamble or the spreading code of the preamble in the second design, or the control information in the third manner described below.
  • There is a corresponding relationship between the second frequency domain width and the second SCS and the corresponding relationship may be stipulated by the protocol or pre-configured to the tag by the reader.
  • the reader may indicate to the tag the size of the second frequency domain width.
  • the tag acquires the second SCS corresponding to the second frequency domain width according to the corresponding relationship between the frequency domain width and the SCS.
  • the reader may indicate to the tag the size of the second SCS.
  • the tag After acquiring the size of the second SCS, the tag acquires the second frequency domain width corresponding to the second SCS according to the corresponding relationship between the frequency domain width and the SCS.
  • the first frame when the first frame and the second frame are the same frame, the first frame also includes at least one of the following, or described as, in this design, when the frame structure includes the preamble sequence and the downlink
  • the preamble is located before the downlink data, and may also include at least one of the following:
  • the intermediate guide is inserted between different downlink data to maintain synchronous transmission of the downlink data.
  • the downlink data includes first downlink data and second downlink data, and an intermediate conductor is inserted between the first downlink data and the second downlink data.
  • the preamble sequence is transmitted using the first SCS and the first frequency domain width
  • the downlink data is transmitted using the second SCS and the second frequency domain width.
  • the second SCS and the second frequency domain width may be used for transmission, or the first SCS and the first frequency domain width may be used for transmission, which is not limited.
  • the first frequency domain width is 180kHz
  • the second frequency domain width is 360kHz
  • the preamble sequence is transmitted at 180kHz
  • the downlink data, midamble and trailer are transmitted at 360kHz.
  • the reader sends a preamble sequence according to a fixed first SCS (for example, 15kHz) and a first frequency domain width (for example, 180kHz), and the preamble sequence can indicate the frame
  • the second frequency domain width and/or the second SCS of signals or data for example, downlink data, middle guide, and tail guide, etc.
  • Subsequent downlink data, middle pilots, and tail pilots in the frame may be sent according to the second frequency domain width and the second SCS.
  • different preamble sequences may be used to indicate different parameters, where the parameters correspond to the second frequency domain width and/or the second SCS.
  • the preamble sequence carries different spreading codes or masks, and the different codes can indicate different parameters and the like.
  • the tag always detects the preamble sequence in each frame according to the fixed first SCS and the fixed first frequency domain width, and obtains the second frequency domain width and/or the second frequency domain width and/or of subsequent signals or data in the frame through the preamble sequence
  • the second SCS is to detect or demodulate subsequent signals or data in the frame according to the second SCS and the second frequency domain width.
  • the preamble sequence is sent according to a fixed frequency domain width, which is beneficial to reduce the complexity of the label's detection of the preamble sequence, and the remaining signals and data in the frame are transmitted using the second frequency domain width indicated by the preamble sequence , especially when the second frequency domain width is greater than the fixed frequency domain width, the transmission delay of downlink information can be reduced, and the inventory speed can be improved.
  • the preamble may be sent according to the above frame structure for each frame sent from the reader to the tag, or only part of the frames may be sent according to the above frame structure.
  • the reader sends the first frame to the tag according to the fixed first SCS and the first frequency domain width, and the preamble sequence in the first frame is used to indicate the second frequency domain width and/or the second SCS.
  • the reader sends the second frame to the Nth frame according to the second SCS and the second frequency domain width.
  • the reader wishes to change the second frequency domain width to the third frequency domain width, and/or change the second SCS to the third SCS.
  • the reader may send the N+1th frame to the tag according to the fixed frequency domain width and the fixed SCS, and the preamble sequence of the N+1th frame may indicate the third frequency domain width and/or the third SCS.
  • the reader sends the N+2th frame, N+3th frame, etc. to the tag according to the third frequency domain width and/or the third SCS.
  • the above description is described in units of frames.
  • the first frame includes control information
  • the control information is the first information
  • the second frame includes downlink data
  • the downlink data is the second information
  • the control information includes indication information of the second frequency domain width.
  • the control information further includes indication information of the second SCS.
  • the first frame when the first frame is the same as the second frame, the first frame also includes at least one of the following, or described as, when the frame structure includes control information and downlink data, it may also include At least one of the following:
  • preamble sequence located before the downlink data, and the preamble sequence marks the beginning of the first frame
  • the downlink data includes first downlink data and second downlink data, an intermediate guide is included between the first downlink data and the second downlink data, and the intermediate guide is used to maintain synchronization during downlink data transmission, And the control information is located between the preamble and the downlink data;
  • the preamble sequence is transmitted using the first SCS and the first frequency domain width
  • at least one of the middle pilot and the tail pilot is transmitted using the first SCS and the first frequency domain Width transmission, or transmission using the second SCS and the second frequency domain width.
  • the preamble sequence, control information, middle guide and tail guide can be transmitted at the above-mentioned 180kHz, and the downlink data can be transmitted at 360kHz transmission.
  • the tag detects the preamble, control information, middle guide and tail guide according to the fixed 180kHz, and detects the downlink data according to the 360kHz.
  • the preamble, control information, mid-lead and tail-lead are all sent according to a fixed frequency domain width, which can reduce the complexity of tag detection pre-amble, control information, mid-lead and tail-lead.
  • the downlink data is transmitted using the second frequency domain width, and when the second frequency domain width is greater than the fixed frequency domain width, the transmission delay can be reduced and the inventory rate can be increased.
  • the reader sends the first frame to the tag according to the first SCS and the first frequency domain width; and sends the second frame to the tag according to the second SCS and the second frequency domain width.
  • the first frame and the second frame may be the same frame, or different frames.
  • the first information included in the first frame is common signaling
  • the second information included in the second frame is downlink data
  • the first frame and the second frame are different frames.
  • the first frame is a frame for transmitting public signaling
  • the second frame is a frame for transmitting downlink data.
  • the above-mentioned first frame and the second frame may be the same frame, the preamble sequence or control information in the same frame in the first information, and the second information is the same frame Downlink data in .
  • the first frequency domain width is the same as or different from the second frequency domain width.
  • the second frequency domain width is greater than the first frequency domain width
  • the first power at which the reader sends the first frame is greater than the second power at which the reader sends the second frame.
  • the transmit power of the reader to transmit different frames increases as the frequency domain width increases.
  • the power to transmit the first frame is x mW/y dBm
  • the power to transmit The power of the second frame is 2x mW/(y+3)dBm.
  • a coefficient ⁇ can be considered.
  • the power for sending the first frame is x mW; when the reader sends the second frame according to the frequency domain width of 360kHz, The power of two frames is 2 ⁇ x mW and so on.
  • the transmitting power of the reader increases with the increase of the frequency domain width, which is beneficial to maintain coverage.
  • the center frequency of the frequency domain resource for transmitting the first frame is aligned with the center frequency of the frequency domain resource for transmitting the second frame.
  • the first frequency domain width is 180 kHz
  • the second frequency domain width is 360 kHz.
  • the center frequency of the frequency domain resource for transmitting the first frame including the common signaling is aligned with the center frequency of the frequency domain resource for transmitting the second frame including downlink data.
  • the frequency domain resource for transmitting the first frame is any one of multiple non-overlapping frequency domain resources included in the frequency domain resource for transmitting the second frame. For example, as shown in the second graph in FIG.
  • the first frequency domain width is 180 kHz
  • the second frequency domain width is 360 kHz.
  • the total frequency domain resource for transmitting the second frame including downlink data is 360kHz, which is divided into two frequency domain resources including 180kHz, and the frequency domain resource for transmitting the first frame including public signaling occupies the above two frequency resources including 180kHz one.
  • the reader when the reader sends the first frame according to the first SCS and the first frequency domain width, and sends the second frame according to the second SCS and the second frequency domain width, it can also refresh the SCS and frequency domain width of the subsequent sent frames , which can be respectively referred to as the third SCS and the third frequency domain width, for example:
  • the second frame may include first indication information, where the first indication information is used to instruct the tag to update the second frequency domain width.
  • the tag obtains the above-mentioned first indication information, it can fall back to receive the third frame from the reader according to the first SCS and the first frequency domain width, the third frame includes the first information, and the first information includes Including indication information of the width of the third frequency domain.
  • the subsequent tag receives a fourth frame from the reader according to the third frequency domain width and the third SCS, where the fourth frame includes the second information.
  • the third SCS is the same as or different from the first SCS, especially when the third SCS is different from the first SCS, the third frame further includes indication information of the third SCS.
  • the reader sends public signaling to the tag according to a frequency domain width of 180 kHz, and the public signaling includes indication information of 360 kHz.
  • the reader subsequently sends downlink data to the tag at 360 kHz, and the downlink data includes instruction information for refreshing the frequency domain width of downlink data transmission.
  • the tag acquires the indication information of the frequency domain width, it jumps back to receive public signaling at 180 kHz, and the public signaling may carry a new frequency domain width, for example, the new frequency domain width may be 540 kHz.
  • the tag subsequently receives downlink data according to the new frequency domain width.
  • the second information includes indication information of the third SCS and/or the third frequency domain width
  • the tag may receive the information from the reader according to the third SCS and the third frequency domain width.
  • the second information in the second frame directly indicates the third SCS and/or the third frequency domain width.
  • the second information in the second frame carries an update indication, and the tag needs to jump back to the first SCS and the second frequency domain width, receive the third frame, and then indicate the third SCS and the second frequency domain width in the third frame. /or the third frequency domain width, which can save signaling overhead and simplify the processing flow.
  • the first information is public signaling
  • the second information is downlink data
  • the first frequency domain width is 180 kHz
  • the second frequency domain width is 360 kHz.
  • the reader sends public signaling to the tag according to a frequency domain width of 180 kHz
  • the public signaling carries indication information of 360 kHz.
  • the reader sends downlink data to the tag according to the frequency domain width of 360kHz, and the downlink data carries new frequency domain width indication information, which is used to indicate the frequency domain width adopted by the downlink data for subsequent transmission.
  • the reader will send public signaling according to a fixed frequency domain width of 180 kHz only before each round of inventory. At other times, the reader sends public signaling or downlink data according to the frequency domain width of 360kHz. For tags, only before each round of inventory, or after the previous round of tag inventory is successful, will try to use the fixed frequency domain width of 180kHz to receive public signaling. commands or downstream data.
  • the fixed first frequency domain width and the first SCS may also be updated.
  • the second information includes indication information of the fourth SCS and/or the fourth frequency domain width, and the tag can receive the fourth SCS from the reader according to the fourth SCS and the fourth frequency domain width.
  • the third frame includes the first information.
  • the reader can send public signaling to the tag at a rate of 180 kHz, and the public signaling carries 360 kHz indication information corresponding to the subsequent downlink data.
  • the reader then sends downlink data to the tag at a rate of 360kHz, and the downlink data may carry indication information of a new frequency domain width corresponding to the public signaling, for example, the new frequency domain width may be 360kHz.
  • the subsequent tag can receive the public signaling from the reader according to the new frequency domain width of 360kHz.
  • the frequency domain width and SCS for transmitting common signaling can be flexibly adjusted.
  • the reader and the tag include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 15 and FIG. 16 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of tags or readers in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be a tag or a reader as shown in FIG. 1 , or a module (such as a chip) applied to the tag or reader.
  • a communication device 1500 includes a processing unit 1510 and a transceiver unit 1520 .
  • the communication device 1500 is used to realize the function of the tag or the reader in the above method embodiment shown in FIG. 7 .
  • the transceiver unit 1520 is used to receive the first frame from the network device according to the first frequency domain width, and the first frame includes the first information; the processing unit 1510 is configured to determine a second frequency domain width according to the first information; the transceiver unit 1520 is further configured to receive a second frame from the network device according to the second frequency domain width, the The second frame includes second information, the second frequency domain width is used to determine a transmission duration of a bit or symbol in the second information, and the second frame is the same frame or a different frame from the first frame.
  • the processing unit 1510 is used to generate the first frame and the second frame; the transceiver unit 1520 is used to transmit the sending a first frame, where the first frame includes first information, and the first information is used to determine a second frequency domain width; the transceiver unit 1520 is further configured to send to the terminal according to the second frequency domain width sending a second frame, the second frame includes second information, the second frequency domain width is used to determine the transmission duration of a bit or symbol in the second information, the second frame and the first The frames are the same frame or different frames.
  • processing unit 1510 and the transceiver unit 1520 can be directly obtained by referring to related descriptions in the method embodiment shown in FIG. 7 , and details are not repeated here.
  • a communication device 1600 includes a processor 1610 and an interface circuit 1620 .
  • the processor 1610 and the interface circuit 1620 are coupled to each other.
  • the interface circuit 1620 may be a transceiver or an input/output interface.
  • the communication device 1600 may further include a memory 1630 for storing instructions executed by the processor 1610 or storing input data required by the processor 1610 to execute the instructions or storing data generated by the processor 1610 after executing the instructions.
  • the processor 1610 is used to implement the functions of the above-mentioned processing unit 1510
  • the interface circuit 1620 is used to implement the functions of the above-mentioned transceiver unit 1520 .
  • the tag chip When the aforementioned communication device is a chip applied to a tag, the tag chip implements the functions of the tag in the aforementioned method embodiment.
  • the tag chip receives information from other modules in the tag (such as a radio frequency module or antenna), and the information is sent to the tag by the reader; or, the tag chip sends information to other modules in the tag (such as a radio frequency module or antenna), This information is sent by the tag to the reader.
  • the reader module implements the functions of the reader in the above-mentioned method embodiment.
  • the reader module receives information from other modules in the reader (such as radio frequency modules or antennas), which is sent to the reader by the tag; or, the reader module sends information to other modules in the reader (such as radio frequency modules or antennas) ) to send the information that the reader sends to the tag.
  • the reader module here may be a baseband chip of the reader.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the reader or in the tag.
  • the processor and the storage medium can also exist in the reader or the tag as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Abstract

一种信息接收与发送方法及装置,方法至少包括:终端根据第一频域宽度,接收来自网络设备的第一帧,所述第一帧包括第一信息;终端根据所述第一信息,确定第二频域宽度;终端根据所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二帧包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。

Description

一种信息接收与发送方法及装置
相关申请的交叉引用
本申请要求在2021年11月24日提交中国专利局、申请号为202111405174.2、申请名称为“一种信息接收与发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信息接收与发送方法及装置。
背景技术
射频识别(radio frequency identification,RFID)技术,是一种非接触式的自动识别技术。阅读器或读写器,可以通过向低成本的标签发送激励信号,根据该激励信号的激励,标签可以向阅读器中发送反射信号,通过这种方式阅读器可以识别标签的标识(identification,ID),以及对标签进行读写等操作。阅读器或读写器如何对标签发送下行信息,以及标签如何接收下行信息,是本申请待解决的技术问题。
发明内容
本申请提供一种信息接收与发送方法及装置,以使得网络设备灵活的向终端发送信息。
第一方面,提供一种信息接收方法,该方法可以由终端执行,所述终端可以是标签,包括:根据第一频域宽度,接收来自网络设备的第一帧,所述第一帧包括第一信息;根据所述第一信息,确定第二频域宽度;根据所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二帧包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
在目前的设计中,阅读器与标签间传输的下行信息固定采用180kHz的频域宽度,所述频域宽度还称为信道带宽,这样频域宽度的灵活性较差。而在该设计中,阅读器可先利用固定的频域带宽,例如180kHz的频域带宽,向标签发送第一帧,该第一帧中的第一信息可显示指示或隐示指示除固定频域带宽外的其它频域带宽,例如第二频域带宽,从而使得可采用多种频域带宽发送下行数据,提高下行传输中频域宽度的灵活性。尤其是在第二频域宽度大于第一频域宽度的情况下,可提高阅读器发送下行信息的速率。
在一种可能的设计中,所述根据第一频域宽度,接收来自网络设备的第一帧,包括:根据第一子载波间隔SCS和所述第一频域宽度,接收来自所述网络设备的第一帧;所述根据所述第二频域宽度,接收来自所述网络设备的第二帧,包括:根据第二SCS和所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二SCS和所述第一SCS相同或不同。
在一种可能的设计中,所述第二SCS与所述第二频域宽度存在对应关系;其中,当所述第二SCS为15kHz时,所述第二频域宽度的取值为以下至少一项:180kHz、360kHz、540kHz、或720kHz;或者,当所述第二SCS为30kHz时,所述第二频域宽度的取值为以下至少一项:360kHz、或720kHz。
在目前的方案中,阅读器与标签间的下行传输采用固定15kHz的SCS和180kHz的频域宽度。而在该设计中,阅读器与标签间可以支持不同SCS和不同频域宽度,下行传输机制更加灵活。
在一种可能的设计中,所述第一信息为公共信令,所述公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。
通过上述设计中,阅读器可采用固定的频域带宽,例如第二频域带宽,向标签发送公共信令,该公共信令中携带有第二频域带宽的指示信息。之后,阅读器可采用指示的第二频域带宽向标签发送下行数据,通过公共信令显示指示下行数据的频域带宽,可实现用多种频域带宽发送下行数据。
在一种可能的设计中,当所述第二SCS和所述第一SCS不同时,所述公共信令还包括所述第二SCS的指示信息。
在一种可能的设计中,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息;所述根据所述第一信息,确定第二频域宽度,包括:根据前导序列与频域宽度的对应关系,确定所述第一帧中的前导序列对应的第二频域宽度;或者,根据前导序列扩频码与频域宽度的对应关系,确定所述第一帧中的前导序列扩频码对应的第二频域宽度。
通过上述设计,可采用帧中前导序列,或者前导序列的扩展码隐示指示第二频域宽度,无需额外添加其它控制信息,从而节省信令开销。
在一种可能的设计中,当所述第一帧与所述第二帧为同一帧时,所述第一帧中还包括以下至少一项:所述前导序列位于所述下行数据之前,所述下行数据包括第一下行数据和第二下行数据,所述第一下行数据和所述第二下行数据之间包括中导,所述中导用于在下行数据传输中维持同步;或在所述下行数据之后包括尾导,所述尾导标志所述第一帧结束;
其中,所述中导或所述尾导中的至少一项,采用所述第二SCS和所述第二频域宽度传输,或者采用所述第一SCS和所述第一频域宽度传输。
在一种可能的设计中,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。
在该设计中,在下行数据所采用的帧结构中添加控制部分,该控制部分用于承载控制信息,该控制信息至少用于显示指示该帧中或其它帧中下行数据所采用的第二频域宽度,从而实现采用除固定频域带宽外,其它频域带宽传输下行数据,提高传输下行数据的灵活性。
在一种可能的设计中,当所述第二SCS和所述第一SCS不同时,所述控制信息中还包括所述第二SCS的指示信息。
在一种可能的设计中,当所述第一帧与所述第二帧为同一帧时,所述第一帧中还包括以下至少一项:前导序列,位于所述下行数据之前,所述前导序列标志所述第一帧开始;所述下行数据包括第一下行数据和第二下行数据,所述第一下行数据和所述第二下行数据之间包括中导,所述中导用于在下行数据传输中维持同步,且所述控制信息位于所述前导序列与所述下行数据之间;或在所述下行数据之后包括尾导,所述尾导标志所述第一帧结束;其中,所述前导序列,采用所述第一SCS和所述第一频域宽度传输,所述中导和所述尾导中的至少一个,采用所述第一SCS和所述第一频域宽度传输,或者采用所述第二SCS 和所述第二频域宽度传输。
在一种可能的设计中,所述第二信息中包括第一指示信息,所述第一指示信息用于指示终端更新所述第二频域宽度,还包括:根据所述第一SCS和所述第一频域宽度,接收来自所述网络设备的第三帧,所述第三帧中包括所述第一信息,所述第一信息中包括第三频域宽度的指示信息;根据第三SCS和所述第三频域宽度,接收来自所述网络设备的第四帧,所述第四帧中包括所述第二信息,所述第三SCS和所述第一SCS相同或不同。
在该设计中,在阅读器采用第二频域宽度和第二SCS向标签发送下行信息之后,阅读器还可以再采用其它频域宽度和SCS向标签发送下行信息。具体的方式,包括:在下行数据中包括指示更新频域宽度的指示信息。后续,标签跳回第一SCS和第一频域宽度接收公共信令,该公共信令可指示新的频域宽度,例如第三频域宽度。后续阅读器采用第三频域宽度和第三SCS,向标签发送下行数据。
在一种可能的设计中,当所述第三SCS与所述第一SCS不同时,所述第一信息中还包括所述第三SCS的指示信息。
在一种可能的设计中,所述第二信息中包括第三SCS和/或所述第三频域宽度的指示信息,还包括:根据所述第三SCS和所述第三频域宽度,接收来自所述网络设备的第三帧,所述第三帧中包括所述第二信息。
在该设计中,阅读器可以直接在下行数据中携带新的频域宽度的指示。相对应上述,阅读器在下行数据中携带更新频域宽度的指示信息,标签需要先跳回到第一SCS和第一频域宽度接收公共信令,再根据公共信令的指示接收新的频域宽度,可减小公共信令的开销。
在一种可能的设计中,所述第二信息中包括第四SCS和/或第四频域宽度的指示信息,还包括:根据所述第四SCS和所述第四频域宽度,接收来自所述网络设备的第三帧,所述第三帧中包括所述第一信息。
在该设计中,所述下行数据中可携带的新的频域宽度和SCS的指示信息,阅读可根据新的频域宽度和SCS,向标签发送公共信令。相应的,标签可根据新的频域宽度和SCS,接收来自阅读器的公共信令。
在一种可能的设计中,所述第一SCS和第一频域宽度中的至少一个与传输所述第一帧的频域资源所属的频段间存在对应关系。
在一种可能的设计中,传输所述第一帧的频域资源的中心频率与所述传输所述第二帧的频域资源的中心频率两者对齐;或者,传输所述第一帧的频域资源为所述传输所述第二帧的频域资源中包括的多个不重叠的频域资源中的任一个。
第二方面,提供一种信息发送方法,该方法为上述第一方面对应的网络设备,有益效果可参见上述第一方面的记载。该方法可由网络设备执行,该网络设备可以为阅读器,包括:根据第一频域宽度,向终端发送第一帧,所述第一帧中包括第一信息,所述第一信息用于确定第二频域宽度;根据所述第二频域宽度,向所述终端发送第二帧,所述第二帧中包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
在一种可能的设计中,所述根据第一频域宽度,向终端发送第一帧,包括:根据第一子载波间隔SCS和所述第一频域宽度,向所述终端发送第一帧。
在一种可能的设计中,所述根据所述第二频域宽度,向所述终端发送第二帧,包括:根据第二SCS和所述第二频域宽度,向所述终端发送第二帧,所述第二SCS和所述第一 SCS相同或不同。
在一种可能的设计中,所述第二SCS与所述第二频域宽度存在对应关系;当所述第二SCS为15kHz时,所述第二频域宽度的取值为以下至少一项:180kHz、360kHz、540kHz、或720kHz;或者,当所述第二SCS为30kHz时,所述第二频域宽度的取值为以下至少一项:360kHz、或720kHz。
在一种可能的设计中,所述第一信息为公共信令,所述公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。
在一种可能的设计中,当所述第二SCS和所述第一SCS不同时,所述公共信令中还包括所述第二SCS的指示信息。
在一种可能的设计中,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息;其中,前导序列与频域宽度存在对应关系,所述第一帧中的前导序列对应第二频域宽度;或者,前导序列扩频码与频域宽度存在对应关系,所述第一帧中的前导序列扩频码对应第二频域宽度。
在一种可能的设计中,当所述第一帧与所述第二帧为同一帧时,所述第一帧中还包括以下至少一项:所述前导序列位于所述下行数据之前,所述下行数据中包括第一下行数据和第二下行数据,所述第一下行数据和所述第二下行数据之间包括中导,所述中导用于在所述下行数据传输中维持同步;或在所述下行数据之后包括尾导,所述尾导标志所述第一帧结束;其中,所述中导或所述尾导中的至少一项,采用所述第二SCS和所述第二频域宽度传输,或者采用所述第一SCS和所述第一频域宽度传输。
在一种可能的设计中,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。
在一种可能的设计中,当所述第二SCS和所述第一SCS不同时,所述控制信息中还包括所述第二SCS的指示信息。
在一种可能的设计中,当所述第一帧与所述第二帧为同一帧时,所述第一帧中还包括以下至少一项:前导序列,位于所述下行数据之前,所述前导序列标志所述第一帧开始;所述下行数据包括第一下行数据和第二下行数据,所述第一下行数据和所述第二下行数据之间包括中导,所述中导用于在下行数据传输中维持同步,且所述控制信息位于所述前导序列与所述下行数据之间;或在所述下行数据之后包括尾导,所述尾导标志所述第一帧结束;其中,所述前导序列,采用所述第一SCS和所述第一频域宽度传输,所述中导和所述尾导中的至少一个,采用所述第一SCS和所述第一频域宽度传输,或者采用所述第二SCS和所述第二频域宽度传输。
在一种可能的设计中,所述第二信息中包括第一指示信息,所述第一指示信息用于指示终端更新所述第二频域宽度,还包括:根据所述第一SCS和所述第一频域宽度,向所述终端发送第三帧,所述第三帧中包括所述第一信息,所述第一信息中包括第三频域宽度的指示信息;根据第三SCS和所述第三频域宽度,发所述终端发送第四帧,所述第四帧中包括所述第二信息,所述第三SCS和所述第一SCS相同或不同。
在一种可能的设计中,当所述第三SCS和所述第一SCS不同时,所述第一信息中还包括所述第三SCS的指示信息。
在一种可能的设计中,所述第二信息中包括第三SCS和/或第三频域宽度的指示信息,还包括:根据所述第三SCS和所述第三频域宽度,向所述终端发送第三帧,所述第三帧中包括所述第二信息。
在一种可能的设计中,所述第二信息中包括第四SCS和/或第四频域宽度的指示信息,还包括:根据所述第四SCS和所述第四频域宽度,向所述终端发送第三帧,所述第三帧中包括所述第一信息。
在一种可能的设计中,所述第一SCS和第一频域宽度中的至少一个与传输所述第一帧的频域资源所属的频段间存在对应关系。
在一种可能的设计中,传输所述第一帧的频域资源的中心频率与所述传输所述第二帧的频域资源的中心频率两者对齐;或者,传输所述第一帧的频域资源为所述传输所述第二帧的频域资源中包括的多个不重叠的频域资源中的任一个。
在一种可能的设计中,在所述第一频域宽度上,以第一功率发送所述第一帧;在所述第二频域宽度上,以第二功率发送所述第二帧;其中,当所述第二频域宽度大于所述第一频域宽度时,所述第二功率大于所述第一功率。
在本申请中,阅读器的发送功率随着频域宽度的增加而增加,有利于保持覆盖。
第三方面,提供一种装置,有益效果可参见第一方面的记载,该装置可以是终端设备,或者是配置于终端设备中的模块,或者是具有终端设备的功能的其它装置。一种设计中,该装置包括执行第一方面中所描述的方法的单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。示例性地,该装置可以包括处理单元和收发单元,且处理单元和收发单元可以执行上述第一方面任一种设计示例中的相应功能,具体的:
收发单元,用于根据第一频域宽度,接收来自网络设备的第一帧,所述第一帧包括第一信息;
处理单元,用于根据所述第一信息,确定第二频域宽度;
所述收发单元,还用于根据所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二帧包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
关于收发单元和处理单元的具体执行过程可参见第一方面。
第四方面,提供一种装置,有益效果可参见第一方面的记载,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和/或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置和其它设备进行通信。示例性地,通信接口可以是收发器、电路、总线、管脚或其它类型的通信接口。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
通信接口,用于执行上述第一方面中收发单元的功能;
处理器,用于执行上述第一方面中处理单元的功能。
第五方面,提供一种装置,有益效果可参见第二方面的记载,该装置可以是网络设备,或者是配置于网络设备中的模块,或者是具有网络设备的功能的其它装置。一种设计中,该装置包括执行第二方面中所描述的方法的单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。示例性地,该装置可以包括处理单元和收发单元,且处 理单元和收发单元可以执行上述第二方面任一种设计示例中的相应功能,具体的:
处理单元,用于生成第一帧和第二帧;
收发单元,用于根据第一频域宽度,向终端发送第一帧,所述第一帧中包括第一信息,所述第一信息用于确定第二频域宽度;
所述收发单元,还用于根据所述第二频域宽度,向所述终端发送第二帧,所述第二帧中包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
关于收发单元和处理单元的具体执行过程可参见第二方面。
第六方面,提供一种装置,有益效果可参见第二方面的记载,所述装置包括处理器,用于实现上述第二方面描述的方法。所述装置还可以包括存储器,用于存储指令和/或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置和其它设备进行通信。示例性地,通信接口可以是收发器、电路、总线、管脚或其它类型的通信接口。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
通信接口,用于执行上述第二方面中收发单元的功能;
处理器,用于执行上述第二方面中处理单元的功能。
第七方面,本申请实施例还提供一种存储有指令的计算机可读存储介质,当该指令在通信装置上运行时,使得该通信装置执行第一方面或第二方面的方法。
第八方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面或第二方面的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在通信装置上运行时,使得通信装置执行第一方面或第二方面的方法。
第十方面,本申请实施例中还提供一种系统,该系统中包括第三方面或第四方面的装置,以及第五方面或第六方面的装置。
附图说明
图1是本申请提供的通信系统的示意图;
图2和图3是本申请提供的阅读器和标签的示意图;
图4是本申请提供的集中控制单元、阅读器和标签的示意图;
图5为本申请提供的RFID过程中信号类型的示意图;
图6为本申请提供的盘存的示意图;
图7为本申请提供的流程示意图;
图8、图9和图10为本申请提供的帧结构示意图;
图11为本申请提供的传输公共信令和下行数据的频域资源的示意图;
图12和图13为本申请提供的更新下行数据对应的频域宽度的示意图;
图14为本申请提供的更新公共信令对应的频域宽度的示意图;
图15和图16为本申请提供的装置示意图。
具体实施方式
图1是本申请应用的通信系统1000的架构示意图。如图1所示,该通信系统包括网络设备100和终端200。可选的,通信系统1000还可以包括互联网300。其中,网络设备100与终端200之间,以及不同终端200之间可以通过无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括接入网设备、中继设备和无线回传设备等,在图1中未画出。
网络设备可以是读写器、阅读器(reader)等。本申请对网络设备所采用的具体技术和具体设备形态不作限定。为了便于描述,下文以阅读器作为网络设备的例子进行描述。
终端可以是标签(tag)等,可以广泛应用于各种场景。例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请对终端所采用的具体技术和具体设备形态不作限定。为了便于描述,下文以标签作为终端的例子进行描述。
阅读器与标签可以是固定位置的,也可以是可移动的。阅读器和标签可以部署在陆地上,包括室内或室外、手持或车持;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请对阅读器和标签的应用场景不作限定。
阅读器与标签之间、阅读器与阅读器之间、标签与标签之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请对无线通信所使用的资源不作限定。
在本申请中,阅读器的功能可以由阅读器中的模块(如芯片)来执行,也可以由包含有阅读器功能的控制子系统来执行。这里的包含有阅读器功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。标签的功能也可以由标签中的模块(如芯片或调制解调器)来执行,也可以由包含有标签功能的装置来执行。
以下以阅读器和标签为例,对射频识别(radio frequency identification,RFID)的原理和工作过程进行介绍。
RFID技术,是一种非接触式的自动识别技术。阅读器通过向标签发送激励信号为标签提供能量。标签接收阅读器发送的激励信号,并通过反射信号向阅读器发送信息,通过这种方式阅读器可以识别标签的标识(identification,ID),和对标签进行读写等操作。其中,对于无源标签,需要阅读器提供激励信号,部分能量用于标签的编解码和调制解调等内部处理,同时该激励信号还作为载波用于承载标签的上行信息进行反射;对于半无源标签,内部包含电池,编解码和调制解调等处理可借助电池,但仍需要阅读器发送激励信号作为反射载波。应当指出,对于标签而言,其没有自己的载波,需要借用发送激励信号的下行载波,作为上行载波,并在该载波上调制标签的上行信息进行传输。例如,标签可以通过调整天线阻抗,以实现不同强度的信号反射,从而实现不同比特的调制。
在本申请中,阅读器采用一体式架构(可参见图2),或分离式架构(可参见图3)。在分离式架构下,阅读器被拆分为辅助器(helper)和接收器(receiver)两部分。在分离 式架构下,在下行或前向传输中,接收器负责生成RFID相关的信令,发送给辅助器。辅助器负责向标签转发RFID信令。在上行或反向传输中,接收器负责从标签接收反射信号。另外,辅助器还可以向接收器发送相关的信息。
可选的,上述辅助器与接收器之间可以采用第五代(5 th generation,5G)新空口(new radio,NR)技术,或者5G侧行链路(sidelink,SL)技术传输,即接收器生成RFID信令,可以通过5G NR空口技术,或者5G sidelink技术发送给辅助器。辅助器再将该RFID信令转发给标签。
在本申请中,阅读器向标签传输信息的链路可称为前向链路或下行链路,标签向阅读传输信息的链路可称为反向链路或上行链路。在阅读器的分离式架构下,由于阅读器被拆分为辅助器与接收器,如图3所示,由于辅助器负责向标签发送RFID信令,因此辅助器与标签传输信息的链路可称为前向链路或下行链路。接收器负责从标签接收反射信号,因此标签与接收器间传输信息的链路可称为反向链路或上行链路。对于接收器向辅助器发送信号的链路可称为前传下行链路,辅助器向接收器发送信息的链路可称为前传上行链路。
在上述集中式或一体式架构下,除了阅读器与标签通过前向链路和反向链路进行信号的激活和反射之外,如图4所示,阅读器还与集中控制单元进行通信。该集中控制单元可以对前向链路的资源和发送行为等进行调度和控制等。该集中控制单元可以为基站等。基站与阅读器间的通信采用5G NR空口技术,或者5G sidelink技术等。
如图5所示,阅读器与标签之间在前向链路或下行链路上,传输的信号分为两种类型,一种类型是激励信号,该激励信号是连续波(continuous wave,CW);另一种类型是RFID信令,该RFID信令包括询问(query)信令、询问重复(query repetition,QueryRep)信令等。
以盘存流程为例,对阅读器与标签间的通信过程进行介绍。所述盘存是对物联网中的对象(包括物品、货箱、或货盘)进行盘点、清查或清点的过程。例如,在一个仓库内存储有各种类型的产品,每个产品上包括对应的标签,该标签内存储有对应该产品的产品电子代码(electronic product code,EPC),EPC可以对供应链中的对象进行全球唯一标识。当需要对仓库内的某种产品进行盘点时,阅读器可以发送盘存信令,标签尝试响应,响应成功的标签继续向阅读器上报对应产品的EPC。阅读器基于接收到的标签反馈的EPC,可以实现对仓库中产品的盘存。如图6所示,盘存流程至少包括以下步骤:
1、阅读器执行查询(select)过程:选择一个标签子集,该标签子集中包括至少一个标签。可选的,可以预先为属于同一个标签子集的标签分配相同的标签子集标识。
2、阅读器向标签发送查询(query)信令,该查询信令中包括标签子集对应的标识。
3、标签在接收到上述查询信令时,如果发现上述查询信令中携带的标签子集的标识与预分配给自己的标签子集的标识相同,则标签选择一个16位随机数作为临时ID,向阅读器发送该临时ID,该临时ID可携带于RN16中。
4、阅读器向标签发送肯定确认(acknowledgement,ACK)信令,该信令中包括了标签之前反馈的临时ID——16位随机数,作为对标签反馈的确定。
5、标签接收到ACK信令后,判断其中包含了自己的临时ID,则向阅读器发送对应对象的EPC。可选的,可以发送完整的EPC,或者EPC的一部分。或者阅读器也可向标签发送除EPC之外的其它ID等,不作限定。
6、若阅读器发现标签上报的EPC无效,则向标签反馈否定确认(negtive acknowledgement,NAK);或者,阅读器可以不再向标签发送NAK,而是直接发送QueryRep, 指示标签跳过当前存盘流程,直接进行后续存盘流程。
应当指出,在上述流程中:
1、当阅读器检测到单个标签反馈临时ID时,说明盘存正常,则按照上述图6中的流程继续后续操作。
2、当多个标签均反馈临时ID时,阅读器无法解出时,说明标签冲突。阅读器可以直接向标签发送QueryRep,指示跳过这些冲突的标签,直接进行后续盘存流程。
3、当阅读器未检测到标签反馈临时ID时,则阅读器直接进行后续盘存流程。
针对上述图6中的时间间隔,作如下说明:T1为阅读器发送信令结束到标签开始发送信令之间的时间间隔;T2为阅读器发送一条信令到下一条信令开始之间的时间间隔;T3为阅读器盘存,无标签反馈时,额外需要等待的时延;T2为标签发送信令结束到阅读器开始发送信令之间的时间间隔。
在本申请中,阅读器可以通过下行链路或反向链路,向标签发送Query和QueryRep等下行信息。通过射频识别类的新技术或增强技术,可以和蜂窝技术共享物理资源和支持15kHz的子载波间隔。但是,目前在蜂窝技术采用的授权频谱资源中,分配固定的180kHz给该类技术使用,阅读器仅能采用固定的180kHz的频域宽度向标签发送下行信息。如何提高该类技术中下行信息所占用频域宽度的灵活性,是本申请所要解决的技术问题。
如图7所示,提供一种信息接收与发送方法的流程,在该方法,阅读器可以先以固定的频域宽度,例如第一频域宽度,向标签发送包括第一信息的第一帧;所述第一信息显示或隐示向标签指示第二频域宽度;阅读器再以第二频域宽度,向标签发送包括第二信息的第二帧。采用本申请的方法,可以使得阅读器采用不同的频域宽度向标签传输下行信息。尤其在第二频域宽度大于第一频域宽度的情况,还可以提高下行信息的传输速率。该流程至少包括以下步骤:
步骤701:阅读器根据第一频域宽度,向标签发送第一帧。相应的,标签根据第一频域宽度,接收来自阅读器的第一帧。其中,所述第一帧中包括第一信息,第一信息用于确定第二频域宽度。标签根据所述第一信息,确定第二频域宽度。
进一步的,阅读器可以根据第一子载波间隔(subcarrier spacing,SCS)和第一频域宽度,向标签发送第一帧。相应的,标签可以根据第一SCS和第一频域宽度,接收来自阅读器的第一帧。所述第一SCS是固定的SCS,例如,第一SCS是固定的15kHz;所述第一频域宽度是固定的频域宽度,例如第一频域宽度可以是固定的180kHz。
在一种设计中,上述第一SCS和第一频域宽度中的至少一项与传输第一帧的频域资源所属的频段间存在对应关系。阅读器和标签可以根据传输第一帧的频域资源所属的频段,确定第一SCS和第一频域宽度。例如,对于频段A,第一SCS为15kHz,第一频域宽度为180kHz。对于频段B,第一SCS为30kHz,第一频域宽度为360kHz。
或者,对于同一个频段可以支持多种SCS和频域宽度。例如,对于频段C,既支持第一SCS 15kHz,第一频域宽度180kHz,也支持第一SCS 30kHz,第一频域宽度360kHz。则阅读器可以选择任意一种第一SCS和第一频域宽度发送第一帧,而标签需要按照上述两种SCS和频域宽度,尝试接收第一帧。在一种方式中,阅读器一旦选择某一种SCS和频域宽度发送第一帧,则后续传输第一帧时不会改变。标签在首次接收第一帧时,需要按照上述两种SCS和频域宽度,尝试接收第一帧。一旦通过某一种SCS和频域宽度,尝试接收第一帧成功,标签后续始终采用该SCS和频域宽度接收第一帧。在另一种方式中,阅读 器在每次发送第一帧时,均会重新选择第一SCS和第一频域宽度,也就是每次发送第一帧所采用的第一SCS和第一频域宽度可能不同。则标签在每次接收第一帧时,均需要按照两种不同的SCS和频域宽度尝试接收第一帧。
步骤702:阅读器根据第二频域宽度,向标签发送第二帧。相应的,标签根据第二频域宽度,接收来自阅读器的第二帧。所述第二帧与第一帧为同一帧或不同帧,所述第二频域宽度与第一频域宽度相同或不同。
进一步的,阅读器可以根据第二SCS和第二频域宽度,向标签发送第二帧。相应的,标签可以根据第二SCS和第二频域宽度,接收来自阅读器的第二帧。所述第二SCS与第一SCS相同或不同。例如,当第二SCS与第一SCS相同均为固定的15kHz时,阅读器可以根据15KHz的SCS和180kHz的频域宽度,向标签发送第一帧,该第一帧中包括第一信息。该第一信息可以显示或隐示指示第二频域宽度的取值。阅读器可以根据15kHz的SCS和第二频域带宽,向标签发送第二帧。或者,当第二SCS与第一SCS不同时,所述第一信息还可以显示或隐示指示第二SCS的大小。关于第一信息指示第二频域宽度和第二SCS的实现方式,可参见下述。
在本申请中,上述步骤701或者步骤702中,标签可以根据第一SCS,确定第一帧中循环前缀(cyclic prefix,CP)的位置和/或长度,相似的,可以根据第二SCS,确定第二帧中CP的位置和/或长度等。所述CP可以指常规循环前缀或扩展循环前缀等,确定对应帧中的CP的位置和长度等,可以对对应帧中携带的信息,例如前导、中导或尾导等,进行检测。标签可以根据第一频域宽度,确定第一帧中第二信息中一个符号或比特的传输时长或时域长度,相似的,标签可以根据第二频域宽度,确定第二帧中第一信息中一个符号或比特的传输时长或时域长度等,上述比特可以指编码后的比特。确定对应帧中对应信息中一个符号或比特的传输时长或时域长度,可以对对应帧中携带的信息进行检测,和对下行数据符号进行解调等。可选的,在本申请中,频域宽度还可以称为信道带宽。
在本申请中,上述第二SCS与第二频域宽度间可以存在对应关系。例如,当所述第二SCS为15kHz时,所述第二频域宽度的取值为以下至少一项:180kHz、360kHz、540kHz、或720kHz;或者,当所述第二SCS为30kHz时,所述第二频域宽度的取值为以下至少一项:360kHz、或720kHz。在上述说明中,当第二SCS与第一SCS不同时,上述第一帧中的第一信息还可以指示第二SCS的取值。在该设计中,当第二SCS与第二频域宽度存在对应关系时,尤其该对应关系是一对一的对应关系时。即便第二SCS与第一SCS不同,第二SCS也无需指示,阅读器仅指示第二频域宽度即可。标签在获取到第二频域宽度后,根据频域宽度与SCS的对应关系,可以自行获取第二SCS的取值。比如,当第二频域宽度为720kHz时,其对应的第二SCS为30kHz。而当SCS与频域宽度的对应关系不是一对一的关系时,根据第二频域宽度的取值,可能获得多个SCS的取值。此时,可能需要阅读器额外指示第二SCS的取值。或者,阅读器也可以不指示,标签可能需要按照上述存在对应关系的SCS的,分别检测第二帧中,直至检测成功。
在目前的方案中,阅读器与标签间的下行传输采用固定15kHz的SCS和180kHz的频域宽度。而在该设计中,阅读器与标签间可以支持不同SCS和不同频域宽度,下行传输机制更加灵活。
在本申请中,上述第二SCS与第二频域宽度的对应关系可以是协议规定的,或者基站或其它控制设备配置给阅读器的。当阅读器确定采用15kHz的SCS向标签发送下行信息时, 其可以选择180kHz、360kHz、540kHz或720kHz中的任一个频域宽度发送下行信息;同理,当阅读器确定采用30kHz的SCS向标签发送下行信息时,其可以选择360kHz、或720kHz中的任一个频域宽度向标签发送下行信息。
关于阅读器如何向标签发送第一信息和第二信息,本申请提供以下三种设计:
在第一种设计中,上述第一信息为公共信令,该公共信令包括select、query或其它公共信令。该其它公共信令中包括目前RFID技术中除select和query外的其它公共信令,以及新定义的公共信令等。该公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。可选的,当第二SCS与第一SCS不同时,公共信令中还可以包括第二SCS的指示信息。
例如,阅读器先向标签发送公共信令,该公共信令采用固定的第一SCS(例如,15kHz)和第一频域宽度(例如,180kHz)发送。该公共信令中包括后续传输的下行数据要使用的第二频域宽度的指示信息。在后续的下行传输中,阅读器采用第二频域宽度,向标签发送下行数据。对于标签,在没有获取到上述第二频域宽度时,按照上述固定的第一SCS和第一频域宽度尝试接收公共信令,并获取公共信令中的第二频域宽度。之后,根据固定的第一SCS和公共信令中指示的第二频域宽度接收后续的下行数据。或者,后续下行传输采用的SCS也可以和公共信令采用的固定SCS不同。例如固定SCS为15kHz,而后续下行传输可以采用30kHz的SCS,则公共信令中还需要指示后续下行传输所采用的第二SCS。
在该第一种设计中,仅少数的公共信令采用固定的频域宽度传输,后续大量的下行数据采用所指示的第二频域宽度传输,当第二频域宽度大于固定的频域宽度时,即此时有更多的频域资源用来传输下行数据,可以降低传输时延,提高传输速率。
为了便于理解后续两种设计,首先介绍下,阅读器与标签间下行传输中所采用的帧结构。如图8所示,该帧结构中包括以下至少一项:
前导(preamble,pre),用于标志帧开始;可选的,前导还可以称为前导序列。
下行数据(downlink data,DL data);
中导(midamble,mid),可以在下行数据较长时插入,用于在传输中维持同步;应当指出,在本申请中,是以将下行数据拆分为两部分,在两部分下行数据之间插入中导为例描述的,对此并不限定。
导尾(postamble,post),用于标志帧结束。
在第二种设计中,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息。
其中,前导序列与频域宽度间存在对应关系。标签根据所述第一信息,确定第二频域宽度的过程,包括:标签根据前导序列与频域宽度的对应关系,确定所述第一帧中的前导序列对应的第二频域宽度。例如,当前导序列为A1时,其对应的频域宽度为B1;而当前导序列为A2时,其对应的频域宽度可以为B2。
或者,前导序列的扩频码与频域宽度存在对应关系。标签根据所述第一信息,确定第二频域宽度的过程包括:标签根据前导序列的扩频码与频域宽度的对应关系,确定所述第一帧中的前导序列的扩频码对应的第二频域宽度。所述扩频码也可称为掩码(mask)。也就是说,在该设计中,可以通过前导序列携带的扩频码的不同,指示不同的频域宽度。例如,当前导序列的扩频码为F1时,其对应的频域宽度为B3;而当前导序列的扩频码为F2 时,其对应的频域宽度为B4等。
应当指出,在上述描述中,是以前导序列,或前导序列携带的扩频码,指示第二频域宽度为例描述的,并不限于此。前导序列或前导序列的扩频码,还可以指示第二SCS。比如,预先设计或配置,前导序列与SCS间存在对应关系,则利用不同的前导序列,指示不同的SCS。或者,前导序列的扩频码与SCS间存在对应关系,则利用不同的前导序列扩频码,指示不同的SCS。或者,在本申请中,前导序列、或前导序列携带的扩频码,可同时指示频域宽度和SCS。例如,前导序列与频域宽度和SCS同时存在对应关系,通过不同的前导序列,可同时指示不同的频域宽度和SCS。例如,当前导序列为A3时,可指示频域宽度为360kHz,SCS为30kHz等。关于利用前导序列携带的扩频码同时指示频域宽度和SCS的过程,与上述相似,不再赘述。或者,在本申请中,阅读器可以向标签指示第二频域宽度的大小,或第二SCS的大小。具体的指示方式,可包括该第二种设计中的通过前导序列或前导序列的扩频码,或者下述第三种方式中的控制信息。第二频域宽度与第二SCS间存在对应关系,该对应关系,可以是协议规定的,或者阅读器预先配置给标签的。在一种方式中,阅读器可以向标签指示第二频域宽度的大小。标签在获取到第二频域宽度的大小时,根据频域宽度与SCS的对应关系,获取到第二频域宽度对应的第二SCS。或者,阅读器可以向标签指示第二SCS的大小。标签在获取到第二SCS的大小时,根据频域宽度与SCS的对应关系,获取第二SCS对应的第二频域宽度。
在第二种设计中,当第一帧与第二帧为同一帧时,第一帧中还包括以下至少一项,或者描述为,在该设计中,当帧结构中除包括前导序列和下行数据外,所述前导序列位于所述下行数据之前,还可以包括以下至少一项:
中导,所述中导插入在不同下行数据之间,用于保持下行数据的同步传输。例如,所述下行数据包括第一下行数据和第二下行数据,所述第一下行数据和所述第二下行数据之间插入有中导。
在所述下行数据之后包括尾导;
通过前述可以看出,在所述帧结构中,前导序列采用第一SCS和第一频域宽度传输,下行数据采用第二SCS和第二频域宽度传输。关于中导和尾导中的至少一项,可以采用第二SCS和第二频域宽度传输,也可以采用第一SCS和第一频域宽度传输,不作限定。举例来说,如图9所示,第一频域宽度为180kHz,第二频域宽度为360kHz,前导序列采用180kHz传输,下行数据、中导和尾导采用360kHz传输。
举例来说,当第一帧与第二帧为同一帧时,阅读器按照固定的第一SCS(例如15kHz)和第一频域宽度(例如180kHz)发送前导序列,该前导序列可指示该帧中后续下行传输中的信号或数据(例如,下行数据、中导、和尾导等)的第二频域宽度和/或第二SCS。该帧中后续的下行数据、中导和尾导等可以按照第二频域宽度和第二SCS发送。具体地,可以通过不同的前导序列来指示不同的参数,该参数对应于第二频域宽度和/或第二SCS。或者,前导序列携带不同的扩频码或掩码,通过码不同可指示不同的参数等。对于标签而言,标签总是按照固定的第一SCS和固定的第一频域宽度检测每帧中的前导序列,通过前导序列获取该帧中后续信号或数据的第二频域宽度和/或第二SCS,按照第二SCS和第二频域宽度检测或解调该帧中后续信号或数据。
在该第二种设计中,前导序列按照固定的频域宽度进行发送,有利于降低标签对前导序列的检测复杂度,该帧中的其余信号和数据采用前导序列指示的第二频域宽度传输,尤 其当第二频域宽度大于固定的频域宽度时,可以降低下行信息的传输时延,提高盘存速度。
在本申请中,针对阅读器向标签发送的每帧可以均按照上述帧结构发送前导序列,或者也可以仅部分帧按照上述帧结构发送前导序列。比如,阅读器按照固定的第一SCS和第一频域宽度向标签发送第一帧,该第一帧中的前导序列用于指示第二频域宽度和/或第二SCS。后续,阅读器按照第二SCS和第二频域宽度发送第二帧至第N帧。在第N+1帧,阅读器希望将第二频域宽度变更为第三频域宽度,和/或将第二SCS变更为第三SCS。则阅读器可以按照固定的频域宽度和固定的SCS,向标签发送第N+1帧,该第N+1帧的前导序列可指示第三频域宽度和/或第三SCS。阅读器按照第三频域宽度和/或第三SCS,向标签发送第N+2帧,第N+3帧等。当然,上述描述是以帧为单位描述的。
在第三种设计中,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。可选的,当所述第二SCS和所述第一SCS不同时,所述控制信息中还包括所述第二SCS的指示信息。
在该设计中,当第一帧与第二帧相同时,所述第一帧中还包括以下至少一项,或者描述为,当所述帧结构中包括控制信息和下行数据外,还可以包括以下至少一项:
前导序列,位于所述下行数据之前,所述前导序列标志所述第一帧开始;
所述下行数据包括第一下行数据和第二下行数据,所述第一下行数据和所述第二下行数据之间包括中导,所述中导用于在下行数据传输中维持同步,且所述控制信息位于所述前导序列与所述下行数据之间;
或在所述下行数据之后包括尾导,所述尾导标志所述第一帧结束;
其中,所述前导序列,采用所述第一SCS和所述第一频域宽度传输,所述中导和所述尾导中的至少一个,采用所述第一SCS和所述第一频域宽度传输,或者采用所述第二SCS和所述第二频域宽度传输。
例如,如图10所示,当第一频域宽度为180kHz,第二频域宽度为360kHz时,所述前导序列、控制信息、中导和尾导可以采用上述180kHz传输,下行数据可采用360kHz传输。标签按照固定的180kHz检测前导、控制信息、中导和尾导,按照360kHz检测下行数据。在该设计中,前导序列、控制信息、中导和尾导均按照固定的频域宽度进行发送,可以降低标签检测前导序列、控制信息、中导和尾导的复杂度。对于下行数据采用第二频域宽度进行传输,而第二频域宽度大于固定的频域宽度时,可以降低传输时延,提高盘存速率。
通过前述描述可知,阅读器根据第一SCS和第一频域宽度,向标签发送第一帧;根据第二SCS和第二频域宽度,向标签发送第二帧。第一帧与第二帧可以是相同帧,或者不同帧。在上述第一种设计中,上述第一帧中包括的第一信息为公共信令,上述第二帧中包括的第二信息为下行数据,则第一帧与第二帧为不同的帧。具体的,第一帧为传输公共信令的帧,第二帧为传输下行数据的帧。而在上述第二种设计和第三种设计中,上述第一帧与第二帧可以为相同的帧,第一信息中该相同帧中的前导序列或控制信息,第二信息为该相同帧中的下行数据。
其中,第一频域宽度与第二频域宽度相同或不同。当第二频域宽度大于第一频域宽度时,阅读器发送第一帧的第一功率,大于阅读器发送第二帧的第二功率。例如,阅读器发送不同帧的发送功率,随着频域宽度的增加而增加。在一种设计中,当阅读器按照180kHz 的频域宽度发送第一帧时,发送第一帧的功率为x mW/y dBm;当阅读器按照360kHz的频域宽度发送第二帧时,发送第二帧的功率为2x mW/(y+3)dBm。或者,可以考虑一个系数α,当阅读器按照180kHz的频域宽度发送第一帧时,发送第一帧的功率为x mW;当阅读器按照360kHz的频域宽度发送第二帧时,发送第二帧的功率为2αx mW等。在本申请中,阅读器的发送功率随着频域宽度的增加而增加,有利于保持覆盖。
在本申请中,传输所述第一帧的频域资源的中心频率与所述传输所述第二帧的频域资源的中心频率两者对齐。例如,如图11中的第一个图所示,第一频域宽度为180kHz,第二频域宽度为360kHz。传输包括公共信令的第一帧的频域资源的中心频率,与传输包括下行数据的第二帧的频域资源的中心频率两者对齐。或者,传输所述第一帧的频域资源为所述传输所述第二帧的频域资源中包括的多个不重叠的频域资源中的任一个。例如,如图11中的第二个图所示,第一频域宽度为180kHz,第二频域宽度为360kHz。传输包括下行数据的第二帧的频域资源总共360kHz,划分为2个包括180kHz的频域资源,传输包括公共信令的第一帧的频域资源占用上述2个包括180kHz的频率资源中的一个。
在本申请中,阅读器根据第一SCS和第一频域宽度发送第一帧,根据第二SCS和第二频域宽度发送第二帧时,还可以刷新后续发送帧的SCS和频域宽度,可分别称为第三SCS和第三频域宽度,例如:
上述第二帧中可以包括第一指示信息,该第一指示信息用于指示标签更新第二频域宽度。标签在获取到上述第一指示信息时,可回退到根据第一SCS和第一频域宽度,接收来自阅读器的第三帧,该第三帧中包括第一信息,该第一信息中包括第三频域宽度的指示信息。后续标签根据第三频域宽度和第三SCS,接收来自阅读器的第四帧,该第四帧中包括第二信息。该第三SCS与第一SCS相同或不同,尤其当第三SCS与第一SCS不同时,该第三帧中还包括第三SCS的指示信息。
例如,以上述第一信息为公共信令,第二信息为下行数据为例说明。如图12所示,阅读器按照180kHz的频域宽度,向标签发送公共信令,该公共信令中包括360kHz的指示信息。阅读器后续按照360kHz,向标签发送下行数据,该下行数据中包括刷新下行数据传输的频域宽度的指示信息。在标签获取到该频域宽度的指示信息时,跳回按照180kHz接收公共信令,该公共信令中可以携带新的频域宽度,例如该新的频域宽度可以为540kHz。标签后续按照新的频域宽度,接收下行数据。
或者,所述第二信息中包括第三SCS和/或所述第三频域宽度的指示信息,标签可以根据所述第三SCS和所述第三频域宽度,接收来自所述阅读器的第三帧,所述第三帧中包括所述第二信息。
该方式,与上述方式的不同之处在于,在第二帧中的第二信息直接指示第三SCS和/或第三频域宽度。相对于上述方式中,在第二帧中的第二信息中携带有更新指示,标签需要跳回第一SCS和第二频域宽度,接收第三帧,第三帧中再指示第三SCS和/或第三频域宽度,可节省信令开销,简化处理流程。
例如,同样以第一信息为公共信令,第二信息为下行数据,第一频域宽度为180kHz,第二频域宽度为360kHz为例。如图13所示,阅读器按照180kHz的频域宽度,向标签发送公共信令,该公共信令中携带有360kHz的指示信息。阅读器按照360kHz的频域宽度,向标签发送下行数据,该下行数据中携带有新的频域宽度指示信息,用于指示后续传输的下行数据所采用的频域宽度。
或者,阅读器只有在每轮盘存前,才会按照固定的180kHz的频域宽度发送公共信令。其它时间,阅读器均按照360kHz的频域宽度发送公共信令或下行数据。而对于标签,只有每轮盘存前,或者前一轮标签被盘存成功后,才会尝试利用固定的180kHz的频域宽度接收公共信令,其它时间,标签都按照360kHz的频域宽度接收公共信令或下行数据。
除此之外,在本申请中,还可以更新固定的第一频域宽度和第一SCS。在该设计中,所述第二信息中包括第四SCS和/或第四频域宽度的指示信息,标签可以根据所述第四SCS和所述第四频域宽度,接收来自阅读器的第三帧,所述第三帧中包括所述第一信息。
例如,以第一信息为公共信令,第二信息为下行数据,第一频域宽度为180kHz,第二频域宽度为360kHz为例。如图14所示,阅读器可以按照180kHz的大小,向标签发送公共信令,该公共信令携带有后续下行数据对应的360kHz的指示信息。阅读器后续按照360kHz的大小,向标签发送下行数据,该下行数据中可携带有公共信令对应的新的频域宽度的指示信息,例如该新的频域宽度可以为360kHz。则后续标签可以按照新的频域宽度360kHz,接收来自阅读器的公共信令。
采用上述设计,可以灵活的调整传输公共信令的频域宽度和SCS。
可以理解的是,为了实现上述实施例中的功能,阅读器和标签包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图15和图16为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中标签或阅读器的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的标签或阅读器,还可以是应用于标签或阅读器的模块(如芯片)。
如图15所示,通信装置1500包括处理单元1510和收发单元1520。通信装置1500用于实现上述图7中所示的方法实施例中标签或阅读器的功能。
当通信装置1500用于实现图7所示的方法实施例中标签的功能时:收发单元1520用于根据第一频域宽度,接收来自网络设备的第一帧,所述第一帧包括第一信息;处理单元1510用于根据所述第一信息,确定第二频域宽度;收发单元1520,还用于根据所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二帧包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
当通信装置1500用于实现图7所示的方法实施例中阅读器的功能时:处理单元1510用于生成第一帧和第二帧;收发单元1520用于根据第一频域宽度,向终端发送第一帧,所述第一帧中包括第一信息,所述第一信息用于确定第二频域宽度;收发单元1520,还用于根据所述第二频域宽度,向所述终端发送第二帧,所述第二帧中包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
有关上述处理单元1510和收发单元1520更详细的描述可以直接参考图7所示的方法实施例中相关描述直接得到,这里不加赘述。
如图16所示,通信装置1600包括处理器1610和接口电路1620。处理器1610和接口 电路1620之间相互耦合。可以理解的是,接口电路1620可以为收发器或输入输出接口。可选的,通信装置1600还可以包括存储器1630,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入数据或存储处理器1610运行指令后产生的数据。
当通信装置1600用于实现图7所示的方法时,处理器1610用于实现上述处理单元1510的功能,接口电路1620用于实现上述收发单元1520的功能。
当上述通信装置为应用于标签的芯片时,该标签芯片实现上述方法实施例中标签的功能。该标签芯片从标签中的其它模块(如射频模块或天线)接收信息,该信息是阅读器发送给标签的;或者,该标签芯片向标签中的其它模块(如射频模块或天线)发送信息,该信息是标签发送给阅读器的。
当上述通信装置为应用于阅读器的模块时,该阅读器模块实现上述方法实施例中阅读器的功能。该阅读器模块从阅读器中的其它模块(如射频模块或天线)接收信息,该信息是标签发送给阅读器的;或者,该阅读器模块向阅读器中的其它模块(如射频模块或天线)发送信息,该信息是阅读器发送给标签的。这里的阅读器模块可以是阅读器的基带芯片。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于阅读器或标签中。当然,处理器和存储介质也可以作为分立组件存在于阅读器或标签中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术 语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (28)

  1. 一种信息接收方法,其特征在于,包括:
    根据第一频域宽度,接收来自网络设备的第一帧,所述第一帧包括第一信息;
    根据所述第一信息,确定第二频域宽度;
    根据所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二帧包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
  2. 如权利要求1所述的方法,其特征在于,所述根据第一频域宽度,接收来自网络设备的第一帧,包括:根据第一子载波间隔SCS和所述第一频域宽度,接收来自所述网络设备的第一帧。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述第二频域宽度,接收来自所述网络设备的第二帧,包括:根据第二SCS和所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二SCS和所述第一SCS相同或不同。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一信息为公共信令,所述公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。
  5. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息;
    所述根据所述第一信息,确定第二频域宽度,包括:根据前导序列与频域宽度的对应关系,确定所述第一帧中的前导序列对应的第二频域宽度;或者,根据前导序列扩频码与频域宽度的对应关系,确定所述第一帧中的前导序列扩频码对应的第二频域宽度。
  6. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。
  7. 一种信息发送方法,其特征在于,包括:
    根据第一频域宽度,向终端发送第一帧,所述第一帧中包括第一信息,所述第一信息用于确定第二频域宽度;
    根据所述第二频域宽度,向所述终端发送第二帧,所述第二帧中包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
  8. 如权利要求7所述的方法,其特征在于,所述根据第一频域宽度,向终端发送第一帧,包括:根据第一子载波间隔SCS和所述第一频域宽度,向所述终端发送第一帧。
  9. 如权利要求7或8所述的方法,其特征在于,所述根据所述第二频域宽度,向所述终端发送第二帧,包括:根据第二SCS和所述第二频域宽度,向所述终端发送第二帧,所述第二SCS和所述第一SCS相同或不同。
  10. 如权利要求7至9中任一项所述的方法,其特征在于,所述第一信息为公共信令,所述公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。
  11. 如权利要求7至9中任一项所述的方法,其特征在于,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下 行数据,所述下行数据为所述第二信息;
    其中,前导序列与频域宽度存在对应关系,所述第一帧中的前导序列对应第二频域宽度;或者,前导序列扩频码与频域宽度存在对应关系,所述第一帧中的前导序列扩频码对应第二频域宽度。
  12. 如权利要求7至9中任一项所述的方法,其特征在于,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。
  13. 一种信息接收装置,其特征在于,包括:
    收发单元,用于根据第一频域宽度,接收来自网络设备的第一帧,所述第一帧包括第一信息;
    处理单元,用于根据所述第一信息,确定第二频域宽度;
    所述收发单元,还用于根据所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二帧包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
  14. 如权利要求13所述的装置,其特征在于,所述根据第一频域宽度,接收来自网络设备的第一帧,包括:根据第一子载波间隔SCS和所述第一频域宽度,接收来自所述网络设备的第一帧。
  15. 如权利要求13或14所述的装置,其特征在于,所述根据所述第二频域宽度,接收来自所述网络设备的第二帧,包括:根据第二SCS和所述第二频域宽度,接收来自所述网络设备的第二帧,所述第二SCS和所述第一SCS相同或不同。
  16. 如权利要求13至15中任一项所述的装置,其特征在于,所述第一信息为公共信令,所述公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。
  17. 如权利要求13至15中任一项所述的装置,其特征在于,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息;
    所述根据所述第一信息,确定第二频域宽度,包括:根据前导序列与频域宽度的对应关系,确定所述第一帧中的前导序列对应的第二频域宽度;或者,根据前导序列扩频码与频域宽度的对应关系,确定所述第一帧中的前导序列扩频码对应的第二频域宽度。
  18. 如权利要求13至15中任一项所述的装置,其特征在于,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。
  19. 一种信息发送装置,其特征在于,包括:
    收发单元,用于根据第一频域宽度,向终端发送第一帧,所述第一帧中包括第一信息,所述第一信息用于确定第二频域宽度;
    所述收发单元,还用于根据所述第二频域宽度,向所述终端发送第二帧,所述第二帧中包括第二信息,所述第二频域宽度用于确定所述第二信息中一个比特或符号的传输时长,所述第二帧与所述第一帧为同一帧或不同帧。
  20. 如权利要求19所述的装置,其特征在于,所述根据第一频域宽度,向终端发送第一帧,包括:根据第一子载波间隔SCS和所述第一频域宽度,向所述终端发送第一帧。
  21. 如权利要求19或20所述的装置,其特征在于,所述根据所述第二频域宽度,向所 述终端发送第二帧,包括:根据第二SCS和所述第二频域宽度,向所述终端发送第二帧,所述第二SCS和所述第一SCS相同或不同。
  22. 如权利要求19至21中任一项所述的装置,其特征在于,所述第一信息为公共信令,所述公共信令中包括所述第二频域宽度的指示信息,所述第二信息为下行数据。
  23. 如权利要求19至21中任一项所述的装置,其特征在于,所述第一帧中包括前导序列,所述前导序列标志所述第一帧开始,所述前导序列为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息;
    其中,前导序列与频域宽度存在对应关系,所述第一帧中的前导序列对应第二频域宽度;或者,前导序列扩频码与频域宽度存在对应关系,所述第一帧中的前导序列扩频码对应第二频域宽度。
  24. 如权利要求19至21中任一项所述的装置,其特征在于,所述第一帧中包括控制信息,所述控制信息为所述第一信息,所述第二帧中包括下行数据,所述下行数据为所述第二信息,所述控制信息中包括所述第二频域宽度的指示信息。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至6中任一项所述的方法,或者用于实现如权利要求7至12中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至6中任一项所述的方法,或者实现如权利要求7至12中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括指令,当用于信息接收或发送的装置读取并执行所述指令时,使得所述装置执行如权利要求1至6中任一项所述的方法,或者执行如权利要求7至12中任一项所述的方法。
  28. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至6中任一项所述的方法被执行,或者如权利要求7至12中任一项所述的方法被执行。
PCT/CN2022/130547 2021-11-24 2022-11-08 一种信息接收与发送方法及装置 WO2023093521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111405174.2A CN116170888A (zh) 2021-11-24 2021-11-24 一种信息接收与发送方法及装置
CN202111405174.2 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023093521A1 true WO2023093521A1 (zh) 2023-06-01

Family

ID=86420538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130547 WO2023093521A1 (zh) 2021-11-24 2022-11-08 一种信息接收与发送方法及装置

Country Status (2)

Country Link
CN (1) CN116170888A (zh)
WO (1) WO2023093521A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611938A (zh) * 2018-06-15 2019-12-24 华为技术有限公司 通信方法和装置
CN111698788A (zh) * 2019-03-14 2020-09-22 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020237489A1 (zh) * 2019-05-27 2020-12-03 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
WO2021026926A1 (zh) * 2019-08-15 2021-02-18 华为技术有限公司 通信方法及终端设备、网络设备
US20210119758A1 (en) * 2019-10-18 2021-04-22 Qualcomm Incorporated Automatic adaptation of data subcarrier spacing numerology based on synchronization signal block transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611938A (zh) * 2018-06-15 2019-12-24 华为技术有限公司 通信方法和装置
CN111698788A (zh) * 2019-03-14 2020-09-22 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020237489A1 (zh) * 2019-05-27 2020-12-03 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
WO2021026926A1 (zh) * 2019-08-15 2021-02-18 华为技术有限公司 通信方法及终端设备、网络设备
US20210119758A1 (en) * 2019-10-18 2021-04-22 Qualcomm Incorporated Automatic adaptation of data subcarrier spacing numerology based on synchronization signal block transmission

Also Published As

Publication number Publication date
CN116170888A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2017031625A1 (zh) 解调参考信号的传输方法、装置以及通信系统
WO2020253660A1 (zh) 一种同步方法及装置
CN113573409A (zh) 一种通信方法及装置
US20210235401A1 (en) Synchronization signal sending method and communications device
US9628149B2 (en) Emulation of multiple NFC devices inside a communication device
CN114424666B (zh) 一种通信方法及装置
WO2023093521A1 (zh) 一种信息接收与发送方法及装置
US20230376704A1 (en) Method for inventorying tag and related device
WO2023109786A1 (zh) 反向散射通信方法、终端及网络侧设备
WO2021092925A1 (zh) 一种通信方法和通信装置
WO2023103904A1 (zh) 传输数据的方法及其装置
WO2024041309A1 (zh) 一种通信方法及装置
WO2024045835A1 (zh) 充能方法及装置
WO2024088147A1 (zh) 通信方法及装置
WO2023236868A1 (zh) 反向散射通信配置方法、装置、网络侧设备和终端
WO2024082969A1 (zh) 一种随机接入方法以及装置
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2022178850A1 (zh) 传输信息的方法及装置
WO2024037523A1 (zh) 一种定位方法及装置
WO2024037516A1 (zh) 传输处理方法、装置及设备
WO2024007832A1 (en) Method and user equipment for applying timing advance command for multiple transmission reception points
US20230328799A1 (en) Wireless Communication with Conflict Avoidance
US20230128351A1 (en) Sidelink communication method and apparatus
WO2023226844A1 (zh) 反向散射信号传输方法、装置、通信设备及可读存储介质
WO2022193189A1 (zh) 一种传输信号方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897604

Country of ref document: EP

Kind code of ref document: A1