WO2023093449A1 - 加热组件及气溶胶产生装置 - Google Patents

加热组件及气溶胶产生装置 Download PDF

Info

Publication number
WO2023093449A1
WO2023093449A1 PCT/CN2022/128023 CN2022128023W WO2023093449A1 WO 2023093449 A1 WO2023093449 A1 WO 2023093449A1 CN 2022128023 W CN2022128023 W CN 2022128023W WO 2023093449 A1 WO2023093449 A1 WO 2023093449A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
layer
substrate
temperature measuring
temperature
Prior art date
Application number
PCT/CN2022/128023
Other languages
English (en)
French (fr)
Inventor
刘小力
梁峰
郭玉
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2023093449A1 publication Critical patent/WO2023093449A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the invention relates to the technical field of electronic atomization devices, in particular to a heating component and an aerosol generating device.
  • HNB aerosol generators have attracted more and more attention and favor because of their safety, convenience, health, and environmental protection.
  • the existing heat-not-burn aerosol generating device generally includes a heating assembly and a power supply assembly; wherein the heating assembly is used to heat and atomize the aerosol generating substrate when energized, and the power supply assembly is connected to the heating assembly for feeding the heating assembly powered by.
  • the heating assembly is used to heat and atomize the aerosol generating substrate when energized
  • the power supply assembly is connected to the heating assembly for feeding the heating assembly powered by.
  • external temperature measuring elements such as thermocouple temperature sensors are generally added to measure the temperature of the heating component in real time, so as to adjust the heating temperature at any time.
  • measuring temperature by adding a separate temperature measuring sensor or element will not only occupy a large space, but also be inconvenient to install.
  • the present application provides a heating assembly and an aerosol generating device.
  • the heating assembly can solve the existing problem of adding a separate temperature measuring sensor or temperature measuring element to measure temperature, which not only occupies a large space, but also is inconvenient to install.
  • the present application provides a heating assembly.
  • the heating assembly includes a substrate, a heating layer, and a temperature measuring layer; wherein, the substrate is used to accommodate the aerosol generating substrate; the heating layer is arranged on the surface of the substrate, and is used to heat and atomize the aerosol generating substrate when energized; the temperature measuring layer is set on the surface of the substrate and/or the heating layer, and the temperature measuring layer has a temperature coefficient of resistance (temperature coefficient of resistance, TCR) characteristic.
  • TCR temperature coefficient of resistance
  • the temperature measuring layer is arranged on the heating layer and is located on the surface away from the substrate.
  • the temperature measuring layer is arranged on the surface of the base body, and is located on the same surface of the base body as the heating layer and is arranged at intervals from each other.
  • the temperature measuring layer is arranged on the surface of the substrate, and the temperature measuring layer is located between the substrate and the heating layer.
  • the temperature measuring layer is arranged on the surface of the substrate, and is arranged on different surfaces of the substrate from the heating layer.
  • the temperature measuring layer is arranged in a circle along the circumferential direction of the base body.
  • the temperature measuring layer is located at the end of the substrate.
  • the temperature measuring layer is located in the middle of the base body and is distributed in a wave shape along the circumferential direction of the base body.
  • the temperature measuring layer at least covers the highest temperature region of the heating component.
  • the heating layer is an infrared heating film.
  • the base body is a hollow columnar body
  • the heating layer is arranged on the outer surface of the base body of the hollow columnar body.
  • the base body is a hollow columnar body
  • the heating layer is arranged on the inner surface of the base body of the hollow columnar body.
  • both the heating layer and the temperature measuring layer are arranged on the outer surface of the substrate by silk screen printing or coating, and the area of the temperature measuring layer is smaller than that of the heating layer.
  • the substrate is quartz.
  • the present application provides an aerosol generating device.
  • the aerosol generating device includes a heating assembly, a power supply assembly, and a controller; wherein, the heating assembly is used to heat and atomize the aerosol generating substrate when energized; the heating assembly is the above-mentioned aerosol generating device; the power supply assembly and the heating assembly
  • the connection is used to supply power to the heating component; the controller is used to control the power supply component to supply power to the heating component, and detect the resistance value of the temperature measuring layer in real time and monitor the temperature of the heating component according to the resistance value.
  • the heating assembly is provided with a substrate to accommodate the aerosol generating substrate.
  • the substrate is heated and atomized to generate the aerosol through the heating layer when electrified.
  • the heating component can monitor the temperature of the heating component by detecting the resistance value of the temperature measuring layer.
  • Temperature value compared with the prior art, because the temperature measuring layer is in the form of a film, it can be directly deposited on the surface of the substrate and/or the heating layer, without installing installation grooves or fixing with screws or screws on the surface of the substrate and/or heating layer It is installed and fixed by hardware, so that the temperature measurement layer is not only easy to set up, but also takes up less space.
  • the temperature measuring layer can be selected to cover some specific positions of the substrate and/or the heating layer and to cover a larger area of the substrate and/or the surface of the heating layer according to actual needs, it is possible to monitor the surface of the substrate and/or the heating layer.
  • the temperature measurement can be performed in a specific area, and the temperature measurement accuracy is high, and the temperature measurement can be performed on most areas of the substrate and/or the heating layer, effectively expanding the temperature measurement range of the heating component.
  • FIG. 1 is a schematic structural diagram of a heating assembly provided in the first embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the heating assembly corresponding to Fig. 1;
  • Fig. 3 is a schematic structural diagram of a heating assembly provided in a second embodiment of the present application.
  • Fig. 4 is an A-A sectional view of the heating assembly shown in Fig. 3;
  • Fig. 5 is a schematic structural diagram of a heating assembly provided in a third embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of the heating assembly corresponding to Fig. 5;
  • FIG. 7 is a schematic structural diagram of a heating assembly provided in a fourth embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of the heating assembly provided in the first embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the heating assembly corresponding to FIG. 1
  • a heating component 10 is provided, and the heating component 10 is specifically used for heating and atomizing the aerosol-generating substrate to form an aerosol when energized.
  • the heating assembly 10 can be used in different fields, such as electronic atomization and other fields.
  • the heating assembly 10 includes a substrate 11 , a heating layer 12 and a temperature measuring layer 13 .
  • the base body 11 may be in the shape of a hollow column, and the hollow structure of the base body 11 is formed into a housing chamber 111, and the housing chamber 111 is used for housing the aerosol generating matrix.
  • the aerosol-generating substrate can be a plant-grass-like substrate or a paste-like substrate.
  • the base body 11 is made of insulating material, and the base body 11 may be a high temperature resistant insulating material such as quartz glass, ceramics or mica, so as to prevent short circuit between two electrodes.
  • the substrate 11 can be transparent quartz.
  • the substrate 11 can also be made of conductive materials, and in this case an insulating layer can be coated on the surface of the substrate 11 .
  • the base body 11 is a cylindrical ceramic tube. It should be noted that, the inner surface of the base body 11 referred to in the following embodiments refers to the inner wall surface of the receiving cavity 111 , and the outer surface of the base body 11 refers to the outer wall surface of the receiving cavity 111 .
  • the heat generating layer 12 is disposed on the surface of the substrate 11 and is used for generating heat to heat and atomize the aerosol generating substrate when energized.
  • the heating layer 12 can be formed on the inner surface or the outer surface of the substrate 11 by means of silk screen printing, sputtering, coating, printing and the like. Among them, since infrared rays have a certain penetration, no medium is required, the heating efficiency is higher, and the baking of the aerosol-generating substrate is more uniform.
  • the heating layer 12 may specifically be an infrared heating layer, such as an infrared ceramic coating.
  • the infrared heating layer can be an infrared heating film, and the thickness and area of the infrared heating film are not limited, and can be selected according to needs.
  • the infrared heating layer may be a metal layer, a conductive ceramic layer or a conductive carbon layer.
  • the shape of the infrared heating layer can be continuous film, porous net or strip. Wherein, the material, shape and size of the infrared heating layer can be set as required.
  • the infrared heating layer when the infrared heating layer is energized, it radiates infrared rays to heat the aerosol-generating substrate in the containing cavity 111 .
  • the wavelength of infrared heating is 2.5um-20um.
  • the heating temperature usually needs to be above 350°C, and the energy radiation extreme value is mainly in the 3-5um band.
  • the temperature measuring layer 13 is disposed on the surface of the substrate 11 and/or the heating layer 12, and the temperature measuring layer 13 has a temperature coefficient of resistance (TCR) characteristic. That is, the resistance value of the temperature measuring layer 13 has a monotonous one-to-one correspondence with its own temperature value. For example, the resistance value of the temperature measuring layer 13 increases as its temperature increases; or, the resistance value of the temperature measuring layer 13 decreases as its temperature increases. In this way, the heating component 10 can monitor the temperature value of the heating component 10 by detecting the resistance value of the temperature measuring layer 13 , and then adjust the temperature field of the heating component 10 to achieve the best effect of puffing taste.
  • TCR temperature coefficient of resistance
  • the temperature-measuring layer 13 is in the form of a film, it can be directly deposited on the surface of the substrate 11 and/or the heating layer 12, without the need Alternatively, installation grooves are provided on the surface of the heating layer 12 or it is installed and fixed by screws or screws, so that the temperature measuring layer 13 is not only easy to install, but also takes up less space.
  • the temperature measuring layer 13 can be selected to cover some specific positions of the substrate 11 and/or the heating layer 12 and to cover a larger area of the substrate 11 and/or the surface of the heating layer 12 according to actual needs, it is possible to control the substrate 11 and/or a specific area on the surface of the heating layer 12, the temperature measurement accuracy is high, and it is possible to measure the temperature of most areas of the substrate 11 and/or the heating layer 12, effectively expanding the temperature measurement of the heating element 10 scope.
  • the temperature measuring layer 13 can also be formed on the surface of the substrate 11 and/or the heating layer 12 by means of silk screen printing, sputtering, coating, printing and the like.
  • the temperature measuring layer 13 can at least cover the highest temperature region of the heating element 10, so as to avoid the problem that the local temperature is too high and affects the heating taste of the aerosol generating substrate. It can be understood that, in a specific embodiment, if the highest temperature region of the heating component 10 corresponds to a certain region of the substrate 11, the temperature measuring layer 13 at least covers this position of the substrate 11; if the highest temperature region of the heating component 10 corresponds to At a certain position of the heating layer 12 , the temperature measuring layer 13 at least covers the position of the heating layer 12 .
  • the square resistance of the temperature measuring layer 13 is 1 ⁇ / ⁇ ⁇ 5 ⁇ / ⁇ , and the temperature coefficient of resistance of the temperature measuring layer 13 is 300ppm/°C ⁇ 3500ppm/°C. Further, the square resistance of the temperature measuring layer 13 is 2 ⁇ / ⁇ ⁇ 4 ⁇ / ⁇ , and the temperature coefficient of resistance of the temperature measuring layer 13 is 700ppm/°C ⁇ 2000ppm/°C.
  • the area of the temperature measuring layer 13 can be smaller than the area of the heat generating layer 12, which can not only reduce the energy consumption, and does not affect the heating effect of the infrared heating layer 12; at the same time, the overall temperature field of the heating layer 12 can be consistent.
  • the ratio of the area of the temperature measuring layer 13 to the area of the heat generating layer 12 may range from 1:5 to 1:10.
  • the resistance slurry for preparing the temperature measuring layer 13 includes an organic vehicle, an inorganic binder and a conductive agent.
  • the number of parts of the organic vehicle is 10 to 20 parts
  • the number of parts of the inorganic binder is 30-45 parts
  • the number of conductive agent is 30-50 parts
  • the inorganic binder includes glass powder
  • the conductive agent is at least one selected from silver and palladium.
  • the organic carrier is at least one selected from terpineol, ethyl cellulose, butyl carbitol, polyvinyl butyral, tributyl citrate and polyamide wax.
  • the inorganic binder includes glass frit with a melting point of 700°C-780°C.
  • the temperature measuring layer 13 can be arranged in a circle along the circumferential direction of the base body 11 .
  • two electrodes can be set at two preset positions of the temperature measuring layer 13 , and the two electrodes are respectively used to connect the positive electrode lead and the negative electrode lead to detect the resistance value of the temperature measuring layer 13 .
  • the temperature-measuring layer 13 can also be in the shape of an arc with a gap along the circumferential direction of the substrate 11, and the two ends where the gap of the temperature-measuring layer 13 is located can be formed as two electrodes to connect with the positive electrode lead. It is connected to the negative electrode lead, which is not limited in this application.
  • the temperature-measuring layer 13 can be distributed in waves along the circumferential direction of the base body 11, so as to cover different regions of the heating component 10 as much as possible, and then sense the temperature of different positions of the heating component 10, so as to control the temperature of the heating component 10. Temperatures in different areas are monitored. For example, when the base body 11 is tubular, the temperature measuring layer 13 is disposed in the middle of the base body 11 and undulates along the length direction of the base body 11 , thereby covering different regions along the length direction of the base body 11 .
  • the temperature measuring layer 13 may also be distributed in a linear, connected “Z” shape, U shape, bent shape, point shape, etc. along the circumferential direction of the base body 11 .
  • the material of the temperature measuring layer 13 and the heating layer 12 may be the same. Wherein, the power of the temperature measuring layer 13 is greater than that of the heat generating layer 12 .
  • the temperature measuring layer 13 and the heating layer 12 can be arranged on the same surface of the substrate 11, or on different surfaces of the substrate 11, for example, one is arranged on the inner surface of the substrate 11, and the other is arranged on the substrate 11. the outer surface.
  • the temperature measuring layer 13 can be arranged only on the surface of the heating layer 12, also can only be arranged on the surface of the substrate 11, can also be arranged on the surface of the heating layer 12 and the substrate 11 at the same time, for example, a part is arranged on the surface of the heating layer 12, and another A part is provided on the surface of the substrate 11 .
  • the temperature measuring layer 13 can be disposed on the surface of the heating layer 12 facing away from the substrate 11 , or can be disposed on the surface of the heating layer 12 close to the substrate 11 .
  • the heating layer 12 is arranged on the outer surface of the substrate 11 , and the temperature measuring layer 13 is only arranged on the surface of the heating layer 12 facing away from the substrate 11 .
  • the temperature of the heating layer 12 increases, the temperature of the temperature measuring layer 13 increases with the temperature of the heating layer 12, and the resistance value of the temperature measuring layer 13 changes with the change of its temperature.
  • the temperature value of the heating component 10 is monitored in real time by detecting the resistance value of the temperature measuring layer 13 .
  • the base body 11 is a hollow cylinder, and the heating layer 12 can cover the entire outer surface of the base body 11, which can prevent the temperature of the heating layer 12 from being lost after the base body 11 conducts heat, resulting in a temperature measurement result
  • the temperature measuring layer 13 can be specifically located in the middle of the base body 11 along its axial direction, and can be arranged around the outer surface of the base body 11 .
  • Fig. 3 is a schematic structural diagram of the heating assembly provided in the second embodiment of the present application
  • Fig. 4 is a cross-sectional view of the heating assembly shown in Fig. 3 along the direction of A-A.
  • the heating layer 12 is disposed on the inner surface of the substrate 11
  • the temperature measuring layer 13 is specifically disposed on the surface of the heating layer 12 facing away from the substrate 11 , which is not limited in this application.
  • FIG. 5 is a schematic structural diagram of a heating assembly provided in the third embodiment of the present application
  • FIG. 6 is a schematic structural diagram of the heating assembly corresponding to FIG. 5
  • the temperature measuring layer 13 is disposed on the surface of the base body 11 , and is located on the same surface of the base body 11 as the heat generating layer 12 and is spaced apart.
  • the heating layer 12 generates heat after being energized, the temperature of the heating layer 12 is conducted to the surface of the substrate 11, and the temperature of the temperature measuring layer 13 arranged on the surface of the substrate 11 changes with the temperature of the substrate 11.
  • the resistance value of the layer 13 changes with the change of its temperature, so the temperature value of the heating component 10 can be monitored in real time by detecting the resistance value of the temperature measuring layer 13 .
  • the position of the temperature measuring layer 13 is selected to be arranged at any position of the base 11 or any position of the covering base 11 according to actual requirements.
  • the temperature measuring layer 13 may be disposed at the first end.
  • the temperature measuring layer 13 can be disposed in the middle of the base body 11 , as shown in FIG. 1 . If you want to monitor the temperature of the first end portion and the second end portion of the substrate 11 simultaneously, then a plurality of temperature measuring layers 13 can be set, so that one temperature measuring layer 13 covers the first end portion, and another temperature measuring layer 13 covers the second end portion.
  • the heat-generating layer 12 can be disposed on the first end of the outer surface of the substrate 11, and the temperature-measuring layer 13 can be disposed on the second end of the substrate 11 at intervals from the heat-generating layer 12, The temperature value of the second end of the substrate 11 is detected by detecting the resistance value of the temperature measuring layer 13 .
  • the base body 11 is a hollow cylinder, and the heat generating layer 12 is disposed on the outer surface of the base body 11 and only exposes one end of the base body 11 .
  • the temperature measuring layer 13 is disposed on the exposed area of the outer surface of the base body 11 , spaced apart from the heat generating layer 12 , and the temperature measuring layer 13 is disposed around the base body 11 in a circumferential direction.
  • the temperature measuring layer 13 can be arranged in a circle along the circumferential direction of the base body 11, that is, the temperature measuring layer 13 is in a closed ring shape; of course, the temperature measuring layer 13 can also be arranged in an open ring shape along the circumferential direction of the base body 11, that is, The arc corresponding to the temperature measuring layer 13 is less than 360 degrees.
  • FIG. 7 is a schematic structural diagram of a heating assembly provided in the fourth embodiment of the present application.
  • the temperature measuring layer 13 and the heating layer 12 are located on the same surface of the substrate 11 , such as the outer surface, and the temperature measuring layer 13 can be provided on one side of the substrate 11 and the side of the heating layer 12 facing away from the substrate 11 .
  • the temperature measuring layer 13 arranged on the base 11 can be arranged at intervals from the heat generating layer 12 , and the temperature measuring layer 13 arranged on the base 11 can be arranged in a circle along the circumferential direction of the base 11 in a straight line.
  • the temperature measuring layer 13 disposed on the surface of the heating layer 12 facing away from the substrate 11 can specifically correspond to the middle position of the substrate 11 along its axial direction, and can be arranged around the peripheral direction of the substrate 11 in a wave shape.
  • the manner of performing resistance detection on the two temperature measuring layers 13 can refer to the relevant text description above, and will not be repeated here.
  • the temperature measuring layer 13 can sense the temperature of the base body 11 and the heating layer 12 at the same time, so as to ensure that the temperature measuring layer 13 covers at least the heating layer 13.
  • the highest temperature region of the component 10 avoids the occurrence of the problem that the highest temperature region of the heating component 10 appears in other regions not covered by the temperature measurement layer 13, resulting in large errors in temperature measurement results.
  • the temperature measuring layer 13 is disposed on the surface of the substrate 11 , and the temperature measuring layer 13 is specifically located between the substrate 11 and the heating layer 12 . It can be understood that, in this embodiment, the temperature measuring layer 13 and the heat generating layer 12 are located on the same surface of the substrate 11 .
  • the temperature measuring layer 13 is located on the surface of the substrate 11 , and the temperature measuring layer 13 and the heating layer 12 are disposed on different surfaces of the substrate 11 .
  • the heating layer 12 is disposed on the inner surface of the base 11 of the hollow column, and the temperature measuring layer 13 is disposed on the outer surface of the base 11 .
  • the temperature of the heat-generating layer 12 is conducted to the substrate 11 after being energized and heated, and the temperature of the substrate 11 is further conducted to the temperature-measuring layer 13 , so that the resistance of the temperature-measuring layer 13 changes with its temperature.
  • the heat generating layer 12 is disposed on the outer surface of the substrate 11, and the temperature measuring layer 13 is disposed on the inner surface of the substrate 11.
  • a substrate 11 is provided to accommodate the aerosol-generating substrate.
  • the aerosol generating substrate is heated and atomized by the heat generating layer 12 when electrified.
  • the heating assembly 10 can detect the resistance of the temperature measuring layer 13. The value is used to monitor the temperature value of the heating component 10. Compared with the prior art, the temperature measuring layer 13 is not only convenient to install, but also takes up less space.
  • the temperature-measuring layer 13 can be selected to cover a larger area of the substrate 11 and/or the surface of the heat-generating layer 12 according to actual needs, it is possible to measure the temperature of most areas of the substrate 11 and/or the surface of the heat-generating layer 12, effectively The temperature measurement range of the heating assembly 10 is expanded.
  • FIG. 8 is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • an aerosol generating device 100 is provided.
  • the aerosol generating device 100 includes a heating component 10 , a power component 20 and a controller 30 .
  • the heating component 10 is used for heating and atomizing the aerosol-generating substrate to form an aerosol when energized.
  • the heating component 10 can specifically be the heating component 10 involved in any of the above-mentioned embodiments, and its specific structure and function can refer to the description of the specific structure and function of the heating component 10 in the above-mentioned embodiment, and can realize the same or similar technology effect, see below for details.
  • the power supply assembly 20 is connected to the heating assembly 10 for supplying power to the heating assembly 10 .
  • the heating assembly 10 and the power supply assembly 20 may be detachably connected to facilitate the replacement of the heating assembly 10 and improve the utilization rate of the power supply assembly 20 .
  • the power supply assembly 20 and the heating assembly 10 may also be provided integrally, which is not limited in this application.
  • the controller 30 is used to control the power supply assembly 20 to supply power to the heating assembly 10, and detect the resistance value of the temperature measuring layer 13 on the heating assembly 10 in real time, and monitor the temperature of the heating assembly 10 according to the resistance value, and then regulate the temperature field of the heating assembly 10, In order to achieve the best effect of smoking taste.
  • the aerosol generating device 100 further includes a casing 40 , and the heating assembly 10 is specifically housed in the casing 40 and connected to the power supply assembly 20 .
  • the aerosol generating device 100 provided in this embodiment is provided with a heating component 10, and the heating component 10 is provided with a substrate 11 to accommodate the aerosol generating substrate.
  • the heating component 10 is provided with a substrate 11 to accommodate the aerosol generating substrate.
  • the heat generating layer 12 is heated and atomized by the heat generating layer 12 when electrified.
  • the heating assembly 10 can detect the resistance of the temperature measuring layer 13. The value is used to monitor the temperature value of the heating component 10.
  • the temperature measuring layer 13 is not only convenient to install, but also takes up less space.
  • the temperature-measuring layer 13 can be selected to cover a larger area of the substrate 11 and/or the surface of the heat-generating layer 12 according to actual needs, it is possible to measure the temperature of most areas of the substrate 11 and/or the surface of the heat-generating layer 12, effectively The temperature measurement range of the heating assembly 10 is expanded.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种加热组件及气溶胶产生装置。该加热组件(10)包括基体(11)、发热层(12)以及测温层(13);其中,基体(11)用于收容气溶胶产生基质;发热层(12)设置于基体(11)的表面,用于在通电时加热并雾化气溶胶产生基质;测温层(13)设置于基体(11)和/或发热层(12)的表面,且测温层(13)具有电阻温度系数特性。该加热组件(10)不仅便于设置,且占用的空间较小。

Description

加热组件及气溶胶产生装置
相关申请的交叉引用
本申请基于2021年11月26日提交的中国专利申请2021114232998主张其优先权,此处通过参照引入其全部的记载内容。
【技术领域】
本发明涉及电子雾化装置技术领域,尤其涉及一种加热组件及气溶胶产生装置。
【背景技术】
加热不燃烧(Heat Not Burning,HNB)气溶胶产生装置因其具有使用安全、方便、健康、环保等优点,而越来越受到人们的关注和青睐。
现有的加热不燃烧气溶胶产生装置,其一般包括加热组件和电源组件;其中,加热组件用于在通电时加热并雾化气溶胶产生基质,电源组件与加热组件连接,用于向加热组件供电。在具体加热过程中,经常需要实时监控加热组件或加热组件内气溶胶产生基质的温度,以随时调整温度场,满足不同的温度需求。目前,一般通过增设热电偶温度传感器等外置式测温元件对加热组件进行实时测温,以便于随时调整加热温度。
然而,通过增设单独的测温传感器或测温元件进行测温,不仅会占用较大空间,且安装较为不便。
【发明内容】
本申请提高一种加热组件及气溶胶产生装置,该加热组件能够解决现有通过增设单独的测温传感器或测温元件进行测温,不仅会占用较大空间,且安装较为不便的问题。
第一方面,本申请提供一种加热组件。该加热组件包括基体、发热 层以及测温层;其中,基体用于收容气溶胶产生基质;发热层设置于基体的表面,用于在通电时加热并雾化气溶胶产生基质;测温层设置于基体和/或发热层的表面,且测温层具有电阻温度系数(temperature coefficient of resistance,TCR)特性。
其中,测温层设置于发热层上且位于背离基体的一侧表面。
其中,测温层设置于基体的表面,并与发热层位于基体的同一表面且相互间隔设置。
其中,测温层设置于基体的表面,且测温层位于基体与发热层之间。
其中,测温层设置于基体的表面,并与发热层设置于基体的不同表面。
其中,测温层沿基体的周向方向一圈设置。
其中,测温层位于基体的端部。
其中,测温层位于基体的中部且沿基体的周向方向呈波浪型分布。
其中,测温层至少覆盖加热组件的最高温度区域。
其中,发热层为红外发热膜。
其中,基体为中空柱状体,发热层设置于中空柱状体的基体的外表面。
其中,基体为中空柱状体,发热层设置于中空柱状体的基体的内表面。
其中,发热层及测温层均通过丝印或涂覆方式设置在基体的外表面,且测温层的面积小于发热层的面积。
其中,基体为石英。
第二方面,本申请提供一种气溶胶产生装置。该气溶胶产生装置包括加热组件、电源组件以及控制器;其中,加热组件用于在通电时加热并雾化气溶胶产生基质;加热组件为上述所涉及的气溶胶产生装置;电源组件与加热组件连接,用于向加热组件供电;控制器用于控制电源组件向加热组件供电,并实时检测测温层的电阻值以及根据电阻值监测加热组件的温度。
本申请提供的加热组件及气溶胶产生装置,该加热组件通过设置基 体,以收容气溶胶产生基质。同时,通过在基体的表面设置发热层,以通过发热层在通电时加热并雾化气溶胶产生基质。另外,通过在基体和/或发热层的表面设置测温层,并使测温层具有电阻温度系数(TCR)特性,从而使得该加热组件可通过检测测温层的电阻值以监测加热组件的温度值,相比于现有技术,由于测温层呈膜状,其可直接沉积于基体和/或发热层表面,无需在基体和/或发热层表面设置安装槽或利用螺钉或螺丝等固定件对其进行安装固定,从而使得该测温层不仅便于设置,且占用的空间较小。此外,由于该测温层可根据实际需求选择覆盖基体和/或发热层的某些特定位置以及选择覆盖较大范围面积的基体和/或发热层表面,从而能够对基体和/或发热层表面的特定的区域进行测温,测温精确度较高,并能够对基体和/或发热层的大部分区域进行测温,有效扩大了加热组件的测温范围。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本申请第一实施例提供的加热组件的结构示意图;
图2为图1所对应的加热组件的结构简图;
图3为本申请第二实施例提供的加热组件的结构示意图;
图4为图3所示加热组件的A-A向剖视图;
图5为本申请第三实施例提供的加热组件的结构示意图;
图6为图5所对应的加热组件的结构简图;
图7为本申请第四实施例提供的加热组件的结构示意图;
图8为本申请一实施例提供的气溶胶产生装置的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1和图2,图1为本申请第一实施例提供的加热组件的结构示意图;图2为图1所对应的加热组件的结构简图。在本实施例中,提供一种加热组件10,该加热组件10具体用于在通电时加热并雾化气溶胶产生基质以形成气溶胶。该加热组件10可用于不同的领域,比如,电子雾化等领域。具体的,该加热组件10包括基体11、发热层12以及测温层13。
其中,基体11可呈中空柱状,基体11的中空结构形成为收容腔111, 收容腔111用于收容气溶胶产生基质。其中,气溶胶产生基质可为植物草叶类基质或膏状基质等。基体11采用绝缘材料制备,基体11可以是石英玻璃、陶瓷或云母等耐高温的绝缘材料,以防止两个电极短路。优选地,基体11可为透明石英。当然,基体11也可以采用导电材料制备,此时可在基体11表面涂覆绝缘层。在一具体实施例中,基体11为圆柱状陶瓷管。需要说明的是,以下实施例中所涉及的基体11的内表面均指收容腔111的内壁面,基体11的外表面均指收容腔111的外壁面。
发热层12设置于基体11的表面,用于在通电时发热以加热并雾化气溶胶产生基质。具体的,发热层12可采用丝印、溅射、涂敷、印刷等方式形成于基体11的内表面或外表面。其中,由于红外线具有一定的穿透性,不需要介质,加热效率较高,且对气溶胶产生基质的烘烤更加均匀。
在具体实施例中,该发热层12具体可选用红外发热层,例如红外陶瓷涂层。红外发热层可为红外发热膜,红外发热膜的厚度和面积不限,可以根据需要选择。其中,红外发热层可以为金属层、导电陶瓷层或导电碳层。红外发热层的形状可以为连续的膜状,多孔的网状或条状。其中,红外发热层的材料、形状和大小可以根据需要进行设置。在具体实施例中,红外发热层通电时辐射红外线,以加热收容腔111中的气溶胶产生基质。其中,红外加热波长2.5um~20um,针对加热气溶胶形成基质的特点,通常加热温度需要350℃以上,能量辐射极值主要在3~5um波段。
测温层13设置于基体11和/或发热层12的表面,且测温层13具有电阻温度系数(TCR)特性。即测温层13的电阻值与其本身的温度值具有单调的一一对应关系。比如,测温层13的电阻值随其温度值的升高而升高;或,测温层13的电阻值随其温度值的升高而降低。这样使得该加热组件10可通过检测测温层13的电阻值以监测加热组件10的温度值,进而调控加热组件10的温度场,以达到抽吸口感的最佳效果。相比于现有技术中需要另设测温传感器等测温元件的方案,由于测温层13呈膜状,其可直接沉积于基体11和/或发热层12表面,无需在基体 11和/或发热层12表面设置安装槽或利用螺钉或螺丝等固定件对其进行安装固定,从而使得该测温层13不仅便于设置,且占用的空间较小。此外,由于该测温层13可根据实际需求选择覆盖基体11和/或发热层12的某些特定位置以及选择覆盖较大范围面积的基体11和/或发热层12表面,从而能够对基体11和/或发热层12表面的特定的区域进行测温,测温精确度较高,并能够对基体11和/或发热层12的大部分区域进行测温,有效扩大了加热组件10的测温范围。
其中,该测温层13也可采用丝印、溅射、涂敷、印刷等方式形成于基体11和/或发热层12的表面。测温层13可至少覆盖加热组件10的最高温度区域,以避免局部温度过高而影响气溶胶产生基质的加热口感的问题发生。可以理解的是,在具体实施例中,若加热组件10的最高温度区域对应于基体11的某一区域,则测温层13至少覆盖基体11的该位置;若加热组件10的最高温度区域对应于发热层12的某一位置,则测温层13至少覆盖发热层12的该位置。
在其中一个实施例中,测温层13的方阻为1Ω/□~5Ω/□,测温层13的电阻温度系数为300ppm/℃~3500ppm/℃。进一步地,测温层13的方阻为2Ω/□~4Ω/□,测温层13的电阻温度系数为700ppm/℃~2000ppm/℃。
其中,由于测温层13的电阻较大,且测温层13只实现测温功能,因此,在具体实施例中,测温层13的面积可小于发热层12的面积,这样不仅可以降低能耗,并且不影响红外发热层12的发热效果;同时,发热层12的整体温场可以达到一致。具体的,测温层13的面积与发热层12的面积比例范围可为1:5至1:10。
具体地,制备测温层13的电阻浆料包括有机载体、无机粘结剂和导电剂,以质量份数计,有机载体的份数为10份~20份,无机粘结剂的份数为30份~45份,导电剂的份数为30份~50份,无机粘结剂包括玻璃粉,导电剂选自银和钯中的至少一种。
在其中一个实施例中,有机载体选自松油醇、乙基纤维素、丁基卡必醇、聚乙烯醇缩丁醛、柠檬酸三丁酯和聚酰胺蜡中的至少一种。
在其中一个实施例中,无机粘结剂包括熔点为700℃~780℃的玻璃粉。
如图1所示,测温层13可沿基体11的周向方向一圈设置。在该实施例中,可在测温层13的两个预设位置设置两个电极,两个电极分别用于连接正极引线和负极引线,以对该测温层13的电阻值进行检测。当然,在其它实施例中,该测温层13也可沿基体11的周向方向呈具有缺口的弧形状,测温层13的缺口所在的两端可形成为两个电极,以与正极引线和负极引线连接,本申请对此并不加以限制。
具体的,测温层13可沿基体11的周向方向呈波浪型分布,以尽可能地覆盖加热组件10的不同区域,进而感测加热组件10的不同位置的温度,以对加热组件10的不同区域的温度进行监测。例如,当基体11为管状时,测温层13设置于基体11的中部并沿着基体11长度方向波动,从而覆盖基体11长度方向的不同区域。当然,在其它实施例中,测温层13也可沿基体11的周向方向呈直线型、连接的“Z”型、U形、弯折型、点状等方式分布。
具体的,测温层13与发热层12的材质可相同。其中,测温层13的功率大于发热层12的功率。
在具体实施例中,测温层13和发热层12可以设置于基体11的同一个表面,也可以设置于基体11的不同表面,例如一个设置于基体11的内表面,另一个设置于基体11的外表面。测温层13可以仅设置于发热层12的表面,也可以仅设置于基体11的表面,还可以同时设置于发热层12和基体11的表面,例如,一部分设置于发热层12的表面,另一部分设置于基体11的表面。测温层13可以设置于发热层12背离基体11的一侧表面,也可以设置于发热层12靠近基体11的一侧表面。
在第一个具体实施例中,如图1和图2所示,发热层12设置于基体11的外表面,测温层13仅设置于发热层12背离基体11的一侧表面。在发热层12通电后,发热层12的温度升高,测温层13的温度随发热层12的温度的升高而升高,测温层13的电阻值随其温度的变化而发生变化,进而通过检测测温层13的电阻值实时监测该加热组件10的温度 值。
具体的,如图1所示,基体11为中空圆柱状,发热层12可覆盖于基体11的整个外表面,这样能够避免发热层12的温度经基体11导热后,热量损失,导致温度测量结果误差较大的问题发生;同时,避免发热层12被气溶胶产生基质划伤的问题发生。在该实施例中,测温层13具体可位于基体11沿其轴向方向的中部位置,并环绕基体11的外表面一圈设置。
在第二个具体实施例中,参见图3和图4,图3为本申请第二实施例提供的加热组件的结构示意图;图4为图3所示加热组件的A-A向剖视图。发热层12设置于基体11的内表面,测温层13具体设置于发热层12背离基体11的一侧表面,本申请对此并不加以限制。
在第三个具体实施例中,参见图5和图6,图5为本申请第三实施例提供的加热组件的结构示意图;图6为图5所对应的加热组件的结构简图。测温层13设置于基体11的表面,并与发热层12位于基体11的同一表面且间隔设置。在该具体实施例中,发热层12通电后发热,发热层12的温度传导至基体11的表面,设置于基体11表面的测温层13的温度随基体11的温度的变化而变化,测温层13的电阻值随其温度的变化而发生改变,从而通过检测测温层13的电阻值实时监测该加热组件10的温度值。
在该实施例中,测温层13的位置具体根据实际需求选择设置在基体11的任一位置或覆盖基体11的任一位置。比如,若要监测基体11的第一端部的温度,则可将测温层13设置于第一端部。若要监测基体11的中部的温度,则可将测温层13设置于基体11的中部位置,如图1所示。若要同时监测基体11的第一端部和第二端部的温度,则可设置多个测温层13,使一个测温层13覆盖第一端部,另一个测温层13覆盖第二端部,以对基体11的相应位置的温度进行监测。优选地,在一具体实施例中,发热层12可设置于基体11的外表面的第一端部,测温层13可设置于基体11的第二端部,且与发热层12间隔设置,以通过检测测温层13的电阻值检测基体11的第二端部的温度值。
参见图5,基体11为中空圆柱状,发热层12设置于基体11的外表面且仅使基体11的一端暴露。测温层13设置于基体11的外表面暴露的区域,并与发热层12间隔设置,且测温层13沿基体11的周向方向环绕设置。其中,测温层13可沿基体11的周向方向一圈设置,即测温层13呈闭环状;当然,测温层13也可以沿基体11的周向方向呈开环状设置,即,测温层13所对应的弧度小于360度。
在第四个具体实施例中,参见图7,图7为本申请第四个实施例提供的加热组件的结构示意图。测温层13与发热层12位于基体11的同一表面,例如外表面,且基体11的一侧表面和发热层12背离基体11的一侧表面均可设置有测温层13。其中,设置于基体11上的测温层13可与发热层12间隔设置,且设置于基体11上的测温层13可沿基体11的周向方向环绕一圈设置并呈直线状。设置于发热层12背离基体11的一侧表面的测温层13具体可对应基体11沿其轴向方向的中部位置,且具体可成波浪型环绕基体11的周向方向一圈设置。其中,对两个测温层13进行电阻检测的方式具体可参见上述相关文字描述,在此不再赘述。
其中,通过在发热层12的表面和基体11的表面均设置测温层13,能够使测温层13同时感测基体11和发热层12的温度,以保证该测温层13至少覆盖该加热组件10的最高温度区域,避免发生该加热组件10的最高温度区域出现在测温层13未覆盖的其它区域,导致测温结果误差较大的问题发生。
在第五个具体实施例中,测温层13设置于基体11的表面,且测温层13具体位于基体11与发热层12之间。可以理解的是,在该实施例中,测温层13和发热层12位于基体11的同一表面。
在第六个具体实施例中,测温层13位于基体11的表面,且测温层13与发热层12设置于基体11的不同的表面。比如,发热层12设置于中空柱状体的基体11的内表面,测温层13设置于基体11的外表面。发热层12通电发热后的温度传导至基体11,基体11的温度进一步传导至测温层13,从而使得测温层13的电阻随其温度的变化而发生改变。或 者,发热层12设置于基体11的外表面,测温层13设置于基体11的内表面。
本实施例提供的加热组件10,通过设置基体11,以收容气溶胶产生基质。同时,通过在基体11的表面设置发热层12,以通过发热层12在通电时加热并雾化气溶胶产生基质。另外,通过在基体11和/或发热层12的表面设置测温层13,并使测温层13具有电阻温度系数(TCR)特性,从而使得该加热组件10可通过检测测温层13的电阻值以监测加热组件10的温度值,相比于现有技术,该测温层13不仅便于设置,且占用的空间较小。此外,由于该测温层13可根据实际需求选择覆盖较大范围面积的基体11和/或发热层12表面,从而能够对基体11和/或发热层12表面的大部分区域进行测温,有效扩大了加热组件10的测温范围。
请参阅图8,图8为本申请一实施例提供的气溶胶产生装置的结构示意图。在本实施例中,提供一种气溶胶产生装置100。该气溶胶产生装置100包括加热组件10、电源组件20以及控制器30。
其中,加热组件10用于在通电时加热并雾化气溶胶产生基质以形成气溶胶。该加热组件10具体可为上述任一实施例所涉及的加热组件10,其具体结构与功能可参见上述实施例中关于加热组件10的具体结构与功能的描述,且可实现相同或相似的技术效果,具体可参见下文。
电源组件20与加热组件10连接,用于向加热组件10供电。其中,加热组件10与电源组件20可以是可拆卸式连接,以方便更换加热组件10,提高电源组件20的利用率。当然,在其他实施例中,电源组件20与加热组件10也可以是一体设置,本申请对此并不加以限制。
控制器30用于控制电源组件20向加热组件10供电,并实时检测加热组件10上测温层13的电阻值,以及根据电阻值监测加热组件10的温度,进而调控加热组件10的温度场,以达到抽吸口感的最佳效果。
在具体实施例中,该气溶胶产生装置100还包括壳体40,加热组件10具体容置在壳体40内,并与电源组件20连接。
本实施例提供的气溶胶产生装置100,通过设置加热组件10,该加 热组件10将通过设置基体11,以收容气溶胶产生基质。同时,通过在基体11的表面设置发热层12,以通过发热层12在通电时加热并雾化气溶胶产生基质。另外,通过在基体11和/或发热层12的表面设置测温层13,并使测温层13具有电阻温度系数(TCR)特性,从而使得该加热组件10可通过检测测温层13的电阻值以监测加热组件10的温度值,相比于现有技术,该测温层13不仅便于设置,且占用的空间较小。此外,由于该测温层13可根据实际需求选择覆盖较大范围面积的基体11和/或发热层12表面,从而能够对基体11和/或发热层12表面的大部分区域进行测温,有效扩大了加热组件10的测温范围。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种加热组件,其中,包括:
    基体,用于收容气溶胶产生基质;
    发热层,设置于所述基体的表面,用于在通电时加热并雾化所述气溶胶产生基质;
    测温层,设置于所述基体和/或所述发热层的表面,且所述测温层具有电阻温度系数特性。
  2. 根据权利要求1所述的加热组件,其中,所述测温层设置于所述发热层上且位于背离所述基体的一侧表面。
  3. 根据权利要求1所述的加热组件,其中,所述测温层设置于所述基体的表面,并与所述发热层位于所述基体的同一表面且相互间隔设置。
  4. 根据权利要求1所述的加热组件,其中,所述测温层设置于所述基体的表面,且所述测温层位于所述基体与所述发热层之间。
  5. 根据权利要求1所述的加热组件,其中,所述测温层设置于所述基体的表面,并与所述发热层设置于所述基体的不同表面。
  6. 根据权利要求1所述的加热组件,其中,所述测温层沿所述基体的周向方向一圈设置。
  7. 根据权利要求1所述的加热组件,其中,所述测温层位于所述基体的端部。
  8. 根据权利要求1所述的加热组件,其中,所述测温层位于所述基体的中部且沿所述基体的周向方向呈波浪型分布。
  9. 根据权利要求1所述的加热组件,其中,所述测温层至少覆盖所述加热组件的最高温度区域。
  10. 根据权利要求1所述的加热组件,其中,所述发热层为红外发热膜。
  11. 根据权利要求1所述的加热组件,其中,所述基体为中空柱状体,所述发热层设置于所述中空柱状体的基体的外表面。
  12. 根据权利要求1所述的加热组件,其中,所述基体为中空柱状体,所述发热层设置于所述中空柱状体的基体的内表面。
  13. 根据权利要求11所述的加热组件,其中,所述发热层及所述测温层均通过丝印或涂覆方式设置在所述基体的外表面,且所述测温层的面积小于所述发热层的面积。
  14. 根据权利要求11所述的加热组件,其中,所述基体为石英。
  15. 一种气溶胶产生装置,其中,包括:
    加热组件,用于在通电时加热并雾化气溶胶产生基质;所述加热组件为如权利要求1所述的气溶胶产生装置;
    电源组件,与所述加热组件连接,用于向所述加热组件供电;
    控制器,用于控制所述电源组件向所述加热组件供电,并实时检测所述测温层的电阻值以及根据所述电阻值监测所述加热组件的温度。
PCT/CN2022/128023 2021-11-26 2022-10-27 加热组件及气溶胶产生装置 WO2023093449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111423299.8 2021-11-26
CN202111423299.8A CN114052298A (zh) 2021-11-26 2021-11-26 加热组件及气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023093449A1 true WO2023093449A1 (zh) 2023-06-01

Family

ID=80276805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128023 WO2023093449A1 (zh) 2021-11-26 2022-10-27 加热组件及气溶胶产生装置

Country Status (2)

Country Link
CN (1) CN114052298A (zh)
WO (1) WO2023093449A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052298A (zh) * 2021-11-26 2022-02-18 深圳麦时科技有限公司 加热组件及气溶胶产生装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112293804A (zh) * 2020-11-05 2021-02-02 深圳市吉迩科技有限公司 加热组件、测温方法及气溶胶产生装置
CN112888327A (zh) * 2019-07-23 2021-06-01 韩国烟草人参公社 加热器组装体、加热器组装体的制造方法及包括加热器组装体的气溶胶生成装置
CN213604404U (zh) * 2020-07-03 2021-07-06 深圳市合元科技有限公司 气雾生成装置及红外发射器
CN213604400U (zh) * 2020-09-22 2021-07-06 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
WO2021233791A1 (en) * 2020-05-22 2021-11-25 Jt International Sa Layered heater assembly
CN114052298A (zh) * 2021-11-26 2022-02-18 深圳麦时科技有限公司 加热组件及气溶胶产生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888327A (zh) * 2019-07-23 2021-06-01 韩国烟草人参公社 加热器组装体、加热器组装体的制造方法及包括加热器组装体的气溶胶生成装置
WO2021233791A1 (en) * 2020-05-22 2021-11-25 Jt International Sa Layered heater assembly
CN213604404U (zh) * 2020-07-03 2021-07-06 深圳市合元科技有限公司 气雾生成装置及红外发射器
CN213604400U (zh) * 2020-09-22 2021-07-06 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN112293804A (zh) * 2020-11-05 2021-02-02 深圳市吉迩科技有限公司 加热组件、测温方法及气溶胶产生装置
CN114052298A (zh) * 2021-11-26 2022-02-18 深圳麦时科技有限公司 加热组件及气溶胶产生装置

Also Published As

Publication number Publication date
CN114052298A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2023093450A1 (zh) 加热组件及气溶胶产生装置
WO2020173125A1 (zh) 低温烘烤烟具
EP4082367A1 (en) Heater and smoking set comprising same
WO2023093449A1 (zh) 加热组件及气溶胶产生装置
US7003220B2 (en) Quartz heater
WO2023093535A1 (zh) 加热组件及气溶胶生成装置
US20230263237A1 (en) Vapor generation device and infrared emitter
WO2016123738A1 (zh) 卷烟加热器及其加热组件
WO2023109532A1 (zh) 加热器以及包括该加热器的烟具
US20230051387A1 (en) Aerosol generating device
WO2022063131A1 (zh) 气溶胶生成装置以及红外加热器
US20220338541A1 (en) Heater and smoking device including heater
WO2024055719A1 (zh) 加热组件及气溶胶生成装置
US20220408814A1 (en) Heater and cigarette device having same
KR20230043187A (ko) 히터 및 해당 히터를 포함하는 스모킹 세트
WO2023000902A1 (zh) 加热组件和气溶胶产生装置
WO2023216701A1 (zh) 加热组件及气溶胶产生装置
WO2024055731A1 (zh) 加热组件及气溶胶生成装置
CN216776103U (zh) 加热组件及气溶胶产生装置
CN115736366A (zh) 气溶胶产生装置及发热结构
WO2024055732A1 (zh) 加热组件、气溶胶生成装置及气溶胶生成系统
WO2023000858A1 (zh) 加热组件和气溶胶产生装置
WO2024055720A1 (zh) 加热组件及气溶胶生成装置
CN217161071U (zh) 加热组件及气溶胶产生装置
CN115736369A (zh) 气溶胶产生装置及其发热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897532

Country of ref document: EP

Kind code of ref document: A1