WO2023093149A1 - 天线系统及电子设备 - Google Patents

天线系统及电子设备 Download PDF

Info

Publication number
WO2023093149A1
WO2023093149A1 PCT/CN2022/114125 CN2022114125W WO2023093149A1 WO 2023093149 A1 WO2023093149 A1 WO 2023093149A1 CN 2022114125 W CN2022114125 W CN 2022114125W WO 2023093149 A1 WO2023093149 A1 WO 2023093149A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
radiators
radio frequency
sub
module
Prior art date
Application number
PCT/CN2022/114125
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023093149A1 publication Critical patent/WO2023093149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of electronic technology, in particular to an antenna system and electronic equipment.
  • low-frequency signals are widely used in various places. For example, the lower the frequency band, the wider the coverage. Low-frequency signals have great potential in covering rural areas, Gobi, mountains, rivers, forests and other areas, and are also a powerful supplement to urban 5G coverage.
  • the effective electrical length of the radiator is required to be higher.
  • the space left for the first radiator is limited, resulting in portable The application efficiency of the first radiator in the electronic device is low. How to provide an antenna system that supports more frequency bands and enhances the breadth and depth of low-frequency coverage has become the focus of research.
  • the present application provides an antenna system and electronic equipment that support more frequency bands and improve the width and depth of low-frequency coverage.
  • an antenna system including:
  • At least three first radiators at least one of the at least three first radiators is capable of emitting a preset low-frequency signal, and all of the first radiators are capable of receiving the preset low-frequency signal;
  • At least one second radiator at least one second radiator is coupled to at least one first radiator through a coupling slot, and the minimum value of the frequency band supported by the second radiator is greater than or equal to the preset Set the maximum value of the frequency band of the low frequency signal.
  • the embodiment of the present application provides an electronic device, including the above-mentioned antenna system.
  • At least three first radiators are provided, and at least one second radiator is provided to couple with the first radiator, wherein the frequency band supported by the second radiator is higher than that supported by the first radiator
  • the preset low-frequency signal, the first radiator and the second radiator are multiplexed with each other, and the first radiator and the second radiator support many frequency bands.
  • the length of the radiator is relatively short, which saves the space on the electronic device, so as to make room for a plurality of first radiators; at least one first radiator can emit a preset low-frequency signal, and all the first radiators can at least Receiving preset low-frequency signals, the at least three first radiators can enhance the reception of low-frequency signals, which is more conducive to improving the width and depth of low-frequency coverage.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic exploded view of the structure of the electronic device provided in FIG. 1;
  • FIG. 3 is a schematic structural diagram of the first antenna system provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second antenna system provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of the coupling between the first radiator and the second radiator of the first type of antenna system provided by the embodiment of the present application;
  • Fig. 6 is a schematic structural diagram of the coupling between the second first radiator and the second radiator of the antenna system provided by the embodiment of the present application;
  • Fig. 7 is a schematic structural diagram of the coupling between the third first radiator and the second radiator of the antenna system provided by the embodiment of the present application;
  • FIG. 8 is a schematic diagram of a layout of an antenna system provided by the present application.
  • Fig. 9 is a first switching control block diagram of at least two first radiators provided by the present application.
  • Fig. 10 is a block diagram of a switching control mode of at least two first radiators shown in Fig. 9;
  • Fig. 11 is a schematic diagram of the first type of partial back (that is, the side where the back cover is located) of the three first radiators provided by the embodiment of the present application;
  • Fig. 12 is a block diagram of a switching control mode of the three first radiators shown in Fig. 11;
  • Fig. 13 is a schematic diagram of the second partial back of the three first radiators provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of the third partial back of the three first radiators provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of the first partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 16 is a switching control block diagram of the first four first radiators provided by the present application.
  • Fig. 17 is a block diagram of a switching control mode of the four first radiators shown in Fig. 16;
  • Fig. 18 is a schematic diagram of the second partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 19 is a schematic diagram of the third partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 20 is a block diagram 1 of a switching control mode of the four first radiators shown in Fig. 19;
  • Fig. 21 is a detailed block diagram of a switching control mode of the four first radiators shown in Fig. 20;
  • Fig. 22 is a schematic diagram of the fourth partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 23 is a schematic diagram of the fifth partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 24 is a schematic diagram of the sixth partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 25 is a schematic diagram of the seventh partial back of the four first radiators provided by the embodiment of the present application.
  • Fig. 26 is a partial back schematic diagram of a plurality of first radiators and a plurality of second radiators provided by an embodiment of the present application;
  • Fig. 27 is a block diagram 1 of a switching control mode of the four second radiators shown in Fig. 26;
  • FIG. 28 is a detailed block diagram of a switching control mode of the four second radiators shown in FIG. 27 .
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 provided in an embodiment of the present application.
  • the electronic device 1000 includes an antenna system 100 .
  • the antenna system 100 is used to send and receive electromagnetic wave signals to realize the communication function of the electronic device 1000 .
  • the present application does not specifically limit the position of the antenna system 100 on the electronic device 1000 , and FIG. 1 is only an example.
  • the electronic device 1000 further includes a display screen 200 and a casing 300 that are closed and connected to each other.
  • the antenna system 100 can be disposed inside the housing 300 of the electronic device 1000 , or partly integrated with the housing 300 , or partially disposed outside the housing 300 .
  • the radiator of the antenna system 100 in FIG. 1 is integrated with the casing 300 .
  • the antenna system 100 can also be arranged on the retractable component of the electronic device 1000, in other words, at least part of the antenna system 100 can extend out of the electronic device 1000 along with the retractable component. outside the device 1000, and as the retractable components are retracted into the electronic device 1000; or, the overall length of the antenna system 100 is extended as the retractable components of the electronic device 1000 are extended.
  • the electronic equipment 1000 includes, but is not limited to, mobile phones, telephones, televisions, tablet computers, cameras, personal computers, notebook computers, vehicle equipment, earphones, watches, wearable equipment, base stations, vehicle radars, customer premise equipment (Customer Premise Equipment) , CPE) and other equipment capable of sending and receiving electromagnetic wave signals.
  • the electronic device 1000 is taken as an example of a mobile phone, and for other devices, reference may be made to the specific description in this application.
  • the thickness direction of the device 1000 is defined as the Z-axis direction.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the direction indicated by the arrow is the forward direction.
  • the casing 300 includes a frame 310 and a rear cover 320 .
  • a middle plate 330 is formed in the frame 310 by injection molding, and a plurality of installation slots for installing various electronic devices are formed on the middle plate 330 .
  • the middle board 330 together with the frame 310 becomes the middle board 330 of the electronic device 1000 .
  • the middle frame 340 and the rear cover 320 are closed, a receiving space is formed on both sides of the middle frame 340 .
  • One side (such as the rear side) of the frame 310 surrounds the periphery of the rear cover 320
  • the other side (such as the front side) of the frame 310 surrounds the periphery of the display screen 200 .
  • the electronic device 1000 also includes a circuit board 500, a battery 600, a camera module, a microphone, a receiver, a loudspeaker, a face recognition module, a fingerprint recognition module, etc., which can realize the basic functions of the mobile phone. , which will not be described in detail in this embodiment. Understandably, the above introduction to the electronic device 1000 is only an illustration of an environment in which the antenna system 100 is applied, and the specific structure of the electronic device 1000 should not be construed as a limitation to the antenna system 100 provided in this application.
  • the antenna system 100 includes but is not limited to the following implementation manners.
  • the antenna system 100 includes at least three first radiators 10 and at least one second radiator 20 .
  • At least one of the at least three first radiators 10 can emit preset low frequency signals.
  • the first radiator 10 is a low frequency radiator.
  • the preset low-frequency signal is used to establish a communication connection with a base station or other terminals.
  • the preset low frequency signal includes but not limited to B5 and so on.
  • all the first radiators 10 are at least capable of receiving preset low-frequency signals.
  • each first radiator 10 can receive a preset low-frequency signal, and optionally, each first radiator 10 can also receive other low-frequency signals in addition to the preset low-frequency signal.
  • the frequency band of the low-frequency signal received by each first radiator 10 is any frequency band in the low-frequency signal band (for example, less than 1000 MHz), including but not limited to B5, N20, N5, N8, N28 and so on. It can be understood that the low frequency band mentioned in this application includes but is not limited to 5G mobile communication signals or 4G mobile communication signals.
  • the first radiator 10 it may be a radiator supporting 5G mobile communication signals or 4G mobile communication signals independently, or it may be a radiator supporting both 5G mobile communication signals and 4G mobile communication signals.
  • low-frequency signals are widely used in various places. For example, the lower the frequency band, the wider the coverage. Low-frequency signals have great potential in covering rural areas, Gobi, mountains, rivers, forests and other areas, and are also a powerful supplement to urban 5G coverage. In rural areas, Gobi, mountains, rivers, forests and other relatively sparsely populated areas, the cost of establishing a relatively large number of base stations is relatively high. To increase the receiving strength of electronic equipment 1000 for low-frequency signals to receive signals from relatively farther base stations, it becomes One of the directions of research and development.
  • the electronic device 1000 Since the length of the first radiator 10 is relatively long, the electronic device 1000, especially the portable electronic device 1000, must not only ensure its portability, but also support other frequency bands at the same time, for example, support the MHB frequency band (middle and high frequency band) functions such as mobile communication signals in the UHB frequency band (Ultra High Frequency Band), Wi-Fi signals, GNSS signals, etc.
  • MHB frequency band middle and high frequency band
  • the support of these frequency bands also requires setting up corresponding radiators.
  • the position of a radiator 10 is extremely limited. The limited spatial location limits the number of first radiators 10, and also limits the ability to receive low-frequency signals, resulting in limited coverage depth and throughput of low-frequency signals, and also limits the low-frequency signals in rural areas, Gobi, mountains, rivers, forests, etc. applications in other areas.
  • the portable electronic device 1000 since the portable electronic device 1000 is often held by the user, the user's holding will reduce the working efficiency of the radiator. In the case where the number of the first radiators 10 is extremely limited, there may be a risk of being grasped by the user, so that the application efficiency of the first radiators 10 in the portable electronic device 1000 will be low.
  • the number of the first radiators 10 may be three, four or the like.
  • at least one second radiator 20 is provided to be coupled with at least one first radiator 10 through a coupling gap 13 .
  • the minimum value of the frequency band supported by the second radiator 20 is greater than or equal to the maximum value of the frequency band of the preset low-frequency signal.
  • the signals supported by the second radiator 20 include but are not limited to at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the second radiator 20 can support mobile communication signals in the MHB+UHB frequency band.
  • the full name of GNSS is Global Navigation Satellite System
  • the Chinese name is Global Navigation Satellite System.
  • GNSS includes global positioning system (Global Positioning System, GPS), Beidou, Global Navigation Satellite System (Global Navigation Satellite System, GLONASS), Galileo Satellite navigation system (Galileo satellite navigation system, Galileo) and regional navigation system, etc.
  • the second radiator 20 may be a mid-frequency radiator, a high-frequency radiator, a mid-high frequency radiator, a Wi-Fi radiator or a GNSS radiator.
  • the MHB frequency band is greater than or equal to 1000MHz and less than 3000MHz; the UHB frequency band is greater than or equal to 3000MHz and less than 10000MHz.
  • Wi-Fi signals include but are not limited to Wi-Fi 2.4G frequency band (2.4-2.5GHz), Wi-Fi 5G frequency band (5.15-5.85GHz), and Wi-Fi 6E frequency band.
  • GNSS signals include but are not limited to GPS-L1 frequency band (1575GHz), GPS-L5 frequency band (1176GHz).
  • the MHB+UHB frequency band is greater than or equal to 1000MHz and less than 10000MHz.
  • the number of the second radiator 20 may be one, two, three, four and so on.
  • one second radiator 20 may be coupled with one first radiator 10 .
  • one second radiator 20 can also be coupled with two first radiators 10 .
  • two second radiators 20 may also be coupled with one first radiator 10 .
  • some of the second radiators 20 may be coupled to the first radiator 10 , or all of the second radiators 20 may be coupled to the first radiator 10 .
  • the width of the coupling slot 13 may be 0.5-2 mm, but not limited to this size.
  • the second radiator 20 is capacitively coupled to the first radiator 10 through the coupling slot 13 .
  • capacitively coupling means that an electric field is generated between the second radiator 20 and the first radiator 10, and the electrical signal on the second radiator 20 can be transmitted to the first radiator 10 through the electric field.
  • the radiator 10, and the electrical signal on the first radiator 10 can be transmitted to the second radiator 20 through an electric field, so that the first radiator 10 and the second radiator 20 can Electrical signal conduction can also be achieved in a state of contact or no direct connection, which can also be referred to as the second radiator 20 having the same aperture as the first radiator 10 .
  • the first radiator 10 can also be used to support at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals, or in other words, the second radiator 20 can also support low frequency band. That is to say, the first radiator 10 and the second radiator 20 can be multiplexed with each other. In this way, under the limited radiator length, the supported frequency bands and frequency bandwidth are realized, and the required radiator length is relatively short. Short, the space on the electronic device 1000 is saved, so that a plurality of first radiators 10 can be arranged in space.
  • all the first radiators 10 are capable of receiving low frequency signals.
  • the signal gains of multiple first radiators 10 are superimposed, which can be applied to rural areas, Gobi, mountains, rivers, forests and other areas to connect to farther In this way, a relatively long-distance base station can be set up in a less populated area to improve the low-frequency coverage; or, it can also have a better signal in areas with relatively weak signals such as elevators, underground garages, and warehouses. Strength, improve coverage depth, and ensure communication quality.
  • different first radiators 10 can also face in different directions, that is, the orientation patterns of at least two first radiators 10 are different, and the patterns of at least two first radiators 10 are complementary to improve the antenna system 100.
  • the low-frequency coverage is improved.
  • the multiple first radiators 10 can be switched to each other to switch to the first radiator with higher work efficiency.
  • a radiator 10 works to ensure that the electronic device 1000 also has high working efficiency when it is held.
  • the antenna system 100 further includes a first feeding system 30 .
  • the first feeding system 30 is electrically connected to the second radiator 20 .
  • the first feeding system 30 includes a first feeding source 31 and a third matching circuit 32 (the first matching circuit and the second matching circuit will be described later).
  • the first feed source 31 is electrically connected to a radio frequency signal source.
  • the radio frequency signal source includes but not limited to at least one of a radio frequency transceiving module, a radio frequency receiving module, a radio frequency transmitting module and the like. In the present application, the radio frequency signal source is used to receive or transmit at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the third matching circuit 32 is electrically connected between the second radiator 20 and the first feed source 31 .
  • the third matching circuit 32 includes, but is not limited to, a matching circuit formed by capacitive devices, inductive devices, switch tuning devices and the like. Wherein, the third matching circuit 32 is used for tuning the impedance of the electrically connected second radiator 20 so that the second radiator 20 has a higher transceiving efficiency for the supported frequency band.
  • the second radiator 20 generates a resonance mode under the excitation of the first feeding system 30 to support the required frequency band. For example, the second radiator 20 is used to support the MHB frequency band.
  • the second radiator 20 generates a resonance mode of at least one of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, and 1 wavelength mode under the excitation of the first feeding system 30 to support MHB band.
  • the current generating the resonant mode of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, or 1 wavelength mode can be distributed in part or all of the second radiator 20 .
  • the second radiator 20 generates multiple resonant modes in the frequency band greater than or equal to 1000 MHz and less than 3000 MHz, and the multiple resonant modes can form a larger supported bandwidth, thereby achieving full coverage of the 1000 MHz-3000 MHz frequency band.
  • Other frequency bands are also supported as in the above-mentioned implementation manner, which will not be repeated here.
  • At least one of the first radiators 10 also generates at least one of the 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode and 1 wavelength mode under the excitation of the first feeding system 30 One of the resonant modes.
  • the current generating the resonant mode of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, or 1 wavelength mode can be distributed in part or all of the first radiator 10 .
  • the first feeding system 30 can not only use the directly connected second radiator 20 to transmit and receive the MHB frequency band, but also reuse the first radiator 10 originally used to support low-frequency signals to transmit and receive the MHB frequency band.
  • the length of the second radiator 20 is less than the length of the radiator for transmitting and receiving MHB frequency bands, which can reduce the overall length of the radiator while supporting multiple frequency bands and ultra-wideband, thus saving the space on the electronic device 1000, which is beneficial to the electronic device 1000 A greater number of first radiators 10 are arranged on the top.
  • the antenna system 100 further includes a second feeding system 40 .
  • the second feeding system 40 is electrically connected to the first radiator 10 .
  • the second feeding system 40 includes a second feeding source 41 and a fourth matching circuit 42 .
  • the second feed source 41 is electrically connected to a radio frequency signal source.
  • the radio frequency signal source includes but not limited to at least one of a radio frequency transceiving module, a radio frequency receiving module, a radio frequency transmitting module and the like.
  • the radio frequency signal source is used to receive or transmit low-frequency signals, the specific frequency band is 0-1000MHB, and the signal types include but are not limited to 4G mobile communication signals and 5G mobile communication signals.
  • the fourth matching circuit 42 is electrically connected between the first radiator 10 and the second feed 41 .
  • the fourth matching circuit 42 includes, but is not limited to, a matching circuit formed by capacitive devices, inductive devices, switch tuning devices and the like. Wherein, the fourth matching circuit 42 is used for tuning the impedance of the electrically connected first radiator 10 , so that the first radiator 10 has higher transceiving efficiency for the supported frequency band.
  • the first radiator 10 generates a resonant mode under the excitation of the second feeding system 40 to support the low frequency band.
  • the first radiator 10 generates a resonance mode of at least one of the 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, and 1 wavelength mode under the excitation of the second feeding system 40 to support MHB band.
  • the current generating the resonant mode of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, or 1 wavelength mode can be distributed in part or all of the first radiator 10 .
  • the first radiator 10 generates a resonance mode of the 1/4 wavelength mode under the excitation of the second feeding system 40, wherein the 1/4 wavelength mode is the ground state, has high radiation efficiency, and can fully utilize The entire length of the first radiator 10.
  • the second radiator 20 also generates at least one of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode and 1 wavelength mode under the excitation of the second feeding system 40 the resonance mode.
  • the current generating the resonant mode of 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, or 1 wavelength mode can be distributed in part or all of the second radiator 20 .
  • the second feeding system 40 can not only use the first radiator 10 directly electrically connected to transmit and receive the low-frequency band, but also reuse the second radiator 20 originally used to support the MHB frequency band to transmit and receive the low-frequency band.
  • the actual The length of the radiator for transmitting and receiving low-frequency bands is greater than the length of the first radiator 10, which can reduce the overall length of the radiator while supporting multi-band and ultra-wideband, thus saving the space on the electronic device 1000 and benefiting the electronic device. More number of first radiators 10 are set on 1000.
  • the present application does not specifically limit the material, shape, and structure of the first radiator 10 and the second radiator 20 .
  • the materials of the first radiator 10 and the second radiator 20 are conductive materials, and the specific materials include but are not limited to metals such as copper, gold, and silver, or alloys formed by copper, gold, and silver, or Alloys of copper, gold, silver and other materials; graphene, or conductive materials formed by combining graphene with other materials; oxide conductive materials such as tin oxide and indium oxide; carbon nanotubes and polymers to form hybrid materials, etc.
  • the first radiator 10 and the second radiator 20 include but are not limited to metal frame 310 radiators, conductive radiators embedded in plastic frames 310, formed on flexible printed circuit boards (Flexible Printed Circuit board, FPC)
  • the flexible circuit board radiator the laser direct structuring radiator by laser direct structuring (LDS), the printed direct structuring radiator by printing direct structuring (PDS), the conductive sheet radiator, etc.
  • the shapes of the first radiator 10 and the second radiator 20 include but are not limited to strips, sheets, rods, coatings, films, and the like.
  • the present application does not limit the extension tracks of the first radiator 10 and the second radiator 20, so the Both the first radiating body 10 and the second radiating body 20 can extend along a trajectory such as a straight line, a curve, or multiple bends.
  • the above-mentioned extension track may be a line with uniform width, or may be a strip with unequal width such as gradually changing width or having a widening area.
  • the first radiator 10 and the second radiator 20 are both conductive frame radiators as an example for illustration.
  • the second radiator 20 has a first ground terminal 21 and a first coupling terminal 22 , and a first feeding point between the first ground terminal 21 and the first coupling terminal 22 a.
  • the first feeding system 30 is electrically connected to the first feeding point A.
  • the first ground terminal 21 and the first coupling terminal 22 shown in FIG. 5 are opposite ends of the second radiator 20 in a straight line, which is only an example and cannot be used for the description provided in this application.
  • the shape of the second radiator 20 is limited. In other embodiments, the second radiator 20 may also be in a bent shape, and the first ground terminal 21 and the first coupling terminal 22 may not face each other along a straight line, but the first ground terminal 21 and the first coupling terminal 22 are two ends of the second radiator 20 respectively.
  • the first feeding system 30 is electrically connected to the first feeding point A of the second radiator 20 .
  • the first feeding system 30 may be disposed on a circuit board in the electronic device 1000 and electrically connected to the first feeding point A of the second radiator 20 through a conductive elastic piece.
  • the first feeding system 30 may also be electrically connected to the first feeding point A of the second radiator 20 through conductive fasteners, conductive glue, conductive pads, and the like.
  • the first radiator 10 has an active end 11 and a second coupled end 12 , and a second feeding point B located between the active end 11 and the second coupled end 12 .
  • the active end 11 and the second coupling end 12 shown in FIG. 5 are opposite ends of the first radiator 10 in a straight line, which is only an example and cannot be used for the first radiator 10 provided in this application.
  • the shape of the radiator 10 is constrained. In other embodiments, the first radiator 10 may also be in a bent shape, and the active end 11 and the second coupled end 12 may not face each other along a straight line, but the active end 11 and the second coupled end 12 are respectively Two ends of a radiator 10.
  • the coupling gap 13 is between the second coupling end 12 and the first coupling end 22 .
  • the first radiator 10 and the second radiator 20 can be arranged in a straight line or roughly in a straight line (that is, in design with tight tolerances).
  • the first radiator 10 and the second radiator 20 may also be arranged in a staggered manner in the extension direction to form an avoidance space.
  • the second coupling end 12 is opposite to and spaced apart from the first coupling end 22 .
  • the coupling slot 13 is a gap between the first radiator 10 and the second radiator 20 , for example, the width of the coupling slot 13 may be 0.5-2 mm, but not limited to this size.
  • the first radiator 10 and the second radiator 20 can be regarded as two parts formed by the conductive frame 310 separated by the coupling gap 13 .
  • an insulating medium will be filled in the coupling gap 13 to ensure the integrity and structural strength of the entire frame 310 .
  • the second feeding system 40 is electrically connected to the second feeding point B on the first radiator 10 .
  • the second feeding system 40 may be disposed on a circuit board in the electronic device 1000 and electrically connected to the second feeding point B of the first radiator 10 through a conductive shrapnel.
  • the second feeding system 40 may also be electrically connected to the second feeding point B of the first radiator 10 through conductive fasteners, conductive glue, conductive pads, and the like.
  • the first ground terminal 21 is grounded. It can be understood that the "ground” mentioned in this application refers to the electrical connection reference ground or the electrical connection reference ground system GND.
  • the first ground terminal 21 is electrically connected to the reference ground system GND, and its electrical connection methods include but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, and the like.
  • the reference ground system GND can be an independent overall structure, or multiple independent but electrically connected structures.
  • the antenna system 100 itself has a reference ground system GND.
  • Specific forms of the reference ground system GND include but are not limited to metal conductive plates, metal conductive layers formed inside flexible circuit boards, and rigid circuit boards.
  • the reference ground system GND of the antenna system 100 is electrically connected to the reference ground of the electronic device 1000 .
  • the antenna system 100 itself does not have a reference ground system GND, and the first ground terminal 21 of the antenna system 100 is electrically connected to the reference ground of the electronic device 1000 through a direct electrical connection or an indirect electrical connection through a conductive member.
  • the ground system GND or the reference ground system GND of the electronic devices in the electronic device 1000 are examples of the reference ground system GND.
  • the antenna system 100 is set in the electronic device 1000, the electronic device 1000 is a mobile phone, and the reference ground system GND is the magnesium-aluminum metal alloy plate of the middle board 330 of the mobile phone.
  • the reference ground system GND is the magnesium-aluminum metal alloy plate of the middle board 330 of the mobile phone.
  • Other structures of the antenna system 100 described later are electrically connected to the reference ground system GND, and reference can be made to any one of the above-mentioned implementation manners of being electrically connected to the reference ground system GND.
  • the design of the action end 11 in this application includes but not limited to the following embodiments.
  • the active end 11 is grounded, that is, electrically connected to the reference ground system GND.
  • the active end 11 can also be a "ground end”.
  • the first radiator 10 forms an inverted-F antenna.
  • the first radiator 10 is multiplexed as a radiator for the first feeding system 30 to transmit and receive the MHB frequency band.
  • the first feeding system 30 at least excites the part between the second coupling end 12 and the second feeding point B to generate resonance.
  • the first feeding system 30 excites the part between the second coupling end 12 and the second feeding point B to generate a resonance mode of a 1/4 wavelength mode corresponding to the MHB frequency band.
  • the resonant current in the 1/4 wavelength mode shown in FIG. 5 (shown by the dashed arrow in FIG. 5 ) is mainly distributed between the second coupling end 12 and the second feeding point B.
  • a small part of the resonant current may also be distributed between the second feeding point B and the active end 11 , or on the second radiator 20 . It can be understood that the above-mentioned 1/4 wavelength mode is only one of the resonance modes of the first feeding system 30 transmitting and receiving the MHB frequency band.
  • the direction of the resonance current in the 1/4 wavelength mode shown in FIG. 5 is to flow from the second feeding point B to the second coupling end 12 (ie, the coupling slot 13 ).
  • the direction of the resonant current can also flow from the second coupling end 12 (ie, the coupling slot 13 ) to the second feeding point B.
  • the 1/4 wavelength mode can be understood as the medium whose effective electrical length between the second coupling end 12 and the second feeding point B is about the center frequency of the resonant mode 1/4 times the wavelength (wavelength in the medium), this description is an explanation for the understanding of the term, but it cannot be used as a limitation of the length between the second coupling end 12 and the second feeding point B.
  • the effective electrical length between the second coupling end 12 and the second feeding point B that is, designing the position of the second feeding point B, so that the second coupling end 12 and the The effective electrical length between the second feeding points B corresponds to 1/4 of the medium wavelength required to support the MHB frequency band.
  • the "correspondence" can be understood as the effective electrical length between the second coupling end 12 and the second feeding point B is about 1/4 of the medium wavelength required to support the MHB frequency band.
  • the 1/4 wavelength mode may also be referred to as a base state, and the base state has higher antenna efficiency, thereby improving the transceiving efficiency for the MHB frequency band required to be supported.
  • the effective electrical length between the second coupling end 12 and the second feeding point B in this application is about a certain medium wavelength in a certain frequency band, and does not limit the distance between the second coupling end 12 and the second feeding point B.
  • the physical length between the second feeding points B is the medium wavelength of the frequency band. Because some tuning devices can be electrically connected between the second coupling end 12 and the second feeding point B to tune the effective electrical length between the second coupling end 12 and the second feeding point B, for example, The effective electrical length between the second coupling end 12 and the second feeding point B is increased or decreased by setting the inductance and capacitance.
  • the first feeding system 30 can also be excited
  • the part between the second coupling end 12 and the second feeding point B generates a resonant mode of 1/2, 3/4 or 1 times the wavelength mode corresponding to the MHB frequency band.
  • the working end 11 is a free end. That is, the active end 11 is not electrically connected to the reference ground system GND, nor will it form coupling with other radiators.
  • the active end 11 can be separated from other radiators by insulating breaks. At this time, the first radiator 10 forms a T-shaped antenna.
  • the form of the first radiator 10 is not limited to the above-mentioned inverted-F antenna and T-shaped antenna, and may also be a loop antenna (LOOP antenna) and the like.
  • LOOP antenna loop antenna
  • the first radiator 10 may also have a first matching point D located between the second feeding point B and the second coupling end 12 .
  • the antenna system 100 further includes a first matching circuit M1.
  • One end of the first matching circuit M1 is electrically connected to the first matching point D, and the other end of the first matching circuit M1 is grounded.
  • the first feeding system 30 at least excites the part between the second coupling end 12 and the first matching point D to generate resonance.
  • the first feeding system 30 excites the part between the second coupling end 12 and the first matching point D to generate a resonance mode corresponding to a 1/4 wavelength mode in the MHB frequency band.
  • the resonant current in the 1/4 wavelength mode shown in FIG. 6 (shown by the dotted arrow in FIG. 6 ) is mainly distributed between the second coupling end 12 and the first matching point D. As shown in FIG.
  • a small part of the resonant current may also be distributed between the first matching point D and the active end 11 , or on the second radiator 20 . It can be understood that the above-mentioned 1/4 wavelength mode is only one of the resonance modes of the first feeding system 30 transmitting and receiving the MHB frequency band.
  • the first matching circuit M1 includes at least one of a capacitive device, an inductive device, and a switch tuning device. It can be understood that the first matching circuit M1 is in a low impedance state for the resonance current of the 1/4 wavelength mode corresponding to the MHB frequency band, so that the resonance current of the 1/4 wavelength mode corresponding to the MHB frequency band can be returned to the ground, which increases the resonance current of the MHB frequency band. The path of the resonant current to support the 1/4 wavelength mode corresponding to the MHB frequency band.
  • the direction of the resonance current in the 1/4 wavelength mode shown in FIG. 6 is to flow from the first matching point D to the second coupling end 12 (ie, the coupling slot 13 ).
  • the direction of the resonant current can also flow from the second coupling end 12 (ie, the coupling slot 13 ) to the first matching point D.
  • the first matching circuit M1 is designed so that the resonance current supporting the 1/4 medium wavelength of the MHB frequency band passes through the second A matching circuit M1 is grounded to support the 1/4 wavelength mode corresponding to the MHB frequency band.
  • the above is a specific example of the multiplexing of the first radiator 10 as the radiator of the first feeding system 30 to transmit and receive the MHB frequency band.
  • the first The feed system 30 excites the part between the second coupling end 12 and the first matching point D to generate a resonance mode of 1/2, 3/4 or 1 times the wavelength mode corresponding to the MHB frequency band.
  • the first radiator 10 is multiplexed as the radiator of the first feeding system 30
  • the second radiator 20 is multiplexed as the radiator of the second feeding system 40 as an example.
  • the second radiator 20 also has a second matching point E located between the first ground terminal 21 and the first coupling terminal 22 .
  • the antenna system 100 further includes a second matching circuit M2.
  • the second matching circuit M2 includes a capacitive device. One end of the second matching circuit M2 is electrically connected to the second matching point E, and the other end of the second matching circuit M2 is grounded.
  • the second feeding system 40 is at least used to excite the part between the first coupling end 22 and the second matching point E to generate resonance.
  • the second feeding system 40 excites the part between the first coupling end 22 and the second matching point E to generate a resonance mode of a 1/4 wavelength mode corresponding to a low frequency band.
  • the second matching circuit M2 is configured to include a capacitor.
  • the capacitive device is grounded.
  • the capacitive device shifts the resonant frequency of the part between the first coupling end 22 and the second matching point E to a lower value.
  • the resonant frequency at which the part between the first coupling end 22 and the second matching point E resonates originally is 1500MHz, and by setting a capacitive device at the second matching point E, the capacitive device adjusts the resonant frequency from 1500MHz to Near 1000MHz, so as to realize the support of the second radiator 20 for the low frequency band.
  • the capacitor device is in a low-impedance state for the resonance current of the 1/4 wavelength mode corresponding to the above-mentioned low-frequency band, which can return the resonance current of the 1/4-wavelength mode corresponding to the above-mentioned low-frequency band to the ground, increasing the path of the resonance current of the low-frequency band, To support the 1/4 wavelength mode corresponding to the low frequency band.
  • the direction of the resonant current in the 1/4 wavelength mode shown in FIG. 7 is to flow from the first coupling end 22 (that is, the coupling slot 13 ) to the second matching point E. As shown in FIG. Of course, the direction of the resonant current can also flow from the second matching point E to the first coupling end 22 (ie, the coupling slot 13 ).
  • the second matching circuit M2 is designed so that the resonant current supporting the 1/4 medium wavelength of the low frequency band is in the second radiation
  • the body 20 is grounded via the second matching circuit M2 to support the 1/4 wavelength mode corresponding to the low frequency band, so as to realize the support of the second radiator 20 for the low frequency band, and further realize the multiplexing of the second radiator 20 .
  • the second feeding system 40 can also be used to excite the part between the first coupling end 22 and the second matching point E to generate a corresponding low-frequency band. Resonant modes of 1/2, 3/4 or 1 times the wavelength mode.
  • the above is an example of the structures of the first radiator 10 and the second radiator 20 , and an example of the working states of at least three first radiators 10 in the antenna system 100 provided in the present application is given below.
  • the radiation system of the antenna system 100 will be affected by hand holding, for example, different antennas (ie, radiators) will be held in different hand postures, resulting in low radiation efficiency of the antenna and poor working environment.
  • different antennas ie, radiators
  • FIG. 8 the antenna ANT0 has a high probability of being held dead when held vertically, and the antenna ANT1 has a high probability of being held dead when held horizontally.
  • the user's holding gesture is uncertain, that is to say, the antenna in the electronic device 1000 may be held dead, and if the transmitting antenna (the transmitting antenna is a radiator for transmitting) is held dead, it will cause The electronic device 1000 cannot be connected to the base station or the connection is poor, that is, the electronic device 1000 has no signal or the signal is extremely weak, resulting in user experience.
  • the antenna system 100 further includes at least three first radio frequency modules 50 , at least one first control module 60 and a first detection module 70 .
  • the at least three first radio frequency modules 50 include at least one first radio frequency receiving module 51 and at least one first radio frequency transceiving module 52 .
  • the first radio frequency transceiver module 52 is used for receiving and transmitting low frequency signals. It can be understood that the first radio frequency transceiving module 52 is integrated with a radio frequency receiving module and a radio frequency transmitting module. Wherein, the radio frequency receiving module is electrically connected to the power source. It should be noted that the radio frequency receiving module and the radio frequency transmitting module are integrated into one chip (namely, the first radio frequency transceiver module 52 ), so that the chip can receive and transmit information. Wherein, the first radio frequency transceiver module 52 can simultaneously realize the reception and transmission of radio frequency signals (i.e. FDD mode); it is also possible to transmit radio frequency signals in the first time period through switch switching, and receive radio frequency signals in the second time period through switch switching. Signal (i.e. TDD mode). The first RF transceiver module 52 can switch between the above two modes.
  • radio frequency signals i.e. FDD mode
  • the first radio frequency receiving module 51 is used for receiving low frequency signals, and the first radio frequency receiving module 51 can receive low frequency signals of any frequency band.
  • the total number of first radio frequency modules 50 is the same as the total number of first radiators 10 .
  • the first control module 60 is electrically connected to at least two first radio frequency modules 50 , the first detection module 70 and at least two first radiators 10 . It can be understood that the first control module 60 is electrically connected to the first radiator 10 through the first feed source 31 of the first feed system 30 (refer to FIG. 5 and FIG. 9 together). When the number of the first radiators 10 is three, the first control module 60 can be electrically connected to two or three first radiators 10 . When the number of the first radiators 10 is four, the first control module 60 can be electrically connected to two, three or four first radiators 10 .
  • the first detection module 70 is used to determine the first radiator 10 with the highest signal intensity among at least two first radiators 10 (possibly two, three or four).
  • the first detection module 70 detects the signal strength of the first radiator 10 electrically connected to the first control module 60, and determines at least one target first radiator according to the signal strength 10a and at least one non-target first radiator 10b. Wherein, the signal strength of the target first radiator 10a is greater than the signal strength of the non-target first radiator 10b.
  • the first radiator 10 with the highest signal strength is the target first radiator 10a, and the remaining first radiators 10 are Non-target first radiator 10b.
  • the first detection module 70 detects the signal strength of the first radiator 10 by detecting the signal receiving strength at the end of the first radio frequency module 50 , so as to determine whether the working environment of the first radiator 10 is good.
  • the first control module 60 includes a first switch module 61 and a controller (not shown) for controlling the operation of the first switch module 61 .
  • the input end of the first switch module 61 is electrically connected to the above-mentioned at least one first radio frequency transceiver module 52 and the above-mentioned at least one first radio frequency receiver module 51, and the output end of the first switch module 61 is electrically connected to at least three third A radiator 10 .
  • the above-mentioned division of the input end and output end of the first switch module 61 is described with reference to the direction of the radio frequency signal from the first radio frequency module 50 to the radiator end, and does not limit that the radio frequency signal can only be transmitted from the first radio frequency
  • the radio frequency signal in this application can also be transmitted from the radiation end to the first radio frequency module 50.
  • the first switch module 61 has at least two input terminals and at least two output terminals, that is, the first switch module 61 needs to realize at least two-way switching Function
  • the first switch module 61 can be a switch element, also can be the combination of a plurality of switch elements, these switch elements include but not limited to DP4T (double pole 4 throw switch), DPDT (double pole double throw switch), SP4T (Single Pole 4 Throw Switch), SPST (Single Pole Double Throw Switch), SPnT (Single Pole n Throw Switch).
  • DP4T double pole 4 throw switch
  • SP4T Single Pole 4 Throw Switch
  • SPST Single Pole Double Throw Switch
  • SPnT Single Pole n Throw Switch
  • the first control module 60 is used to switch the electrical connection of the first radio frequency transceiver module 52 to the The target first radiator 10a. And the first control module 60 is also used to switch the electrical connection of the first radio frequency receiving module 51 to the non-target first radiator 10b after the first detection module 70 determines the non-target first radiator 10b. A radiator 10b.
  • the first detection module 70 detects the signal reception strengths of multiple first radiators 10 at the first radio frequency module 50, and compares the magnitudes of multiple signal reception strengths to determine the one with the highest signal reception strength.
  • the first radiator 10 is the target first radiator 10a, and it is determined that the first radiator 10 with a lower signal receiving intensity is the non-target first radiator 10b, and the determined target first radiator 10a, the non-target first radiator
  • the position of the radiator 10b is sent to the controller in the form of an electrical signal, and the controller switches the first switch module 61 so that the first radio frequency transceiver module 52 is electrically connected to the first radiator 10 with the highest signal strength, and the first radio frequency
  • the transceiver module 52 is electrically connected to the first radiator 10 of other signal strength.
  • the above process may be a real-time dynamic process. That is, the first detection module 70 detects the signal reception strength of multiple first radiators 10 in real time, and the controller adjusts the first switch module 61 in real time to realize intelligent switching, so as to ensure that no matter how the working environment of multiple first radiators 10 changes (or how the hand-holding posture changes), the first radiator 10 with the best signal receiving strength can be used as the transmitting radiator, and the other first radiators 10 can be used as the receiving radiators to keep the emitting radiator in different hand-holding postures.
  • the radiator has better signal quality, improves the signal stability of the electronic device 1000, and improves user experience.
  • the present application provides multiple embodiments of the antenna system 100 in different working modes, so as to achieve higher signal strength under different holding gestures.
  • the number of the first radiators 10 is three. Radiation directions of at least two of the three first radiators 10 are different.
  • the three first radiators 10 are taken as an example of conductive frame radiators.
  • the frame 310 of the electronic device 1000 is roughly rectangular. At least two of the three first radiators 10 are disposed on different sides of the frame 310 to achieve different radiation directions of at least two of the three first radiators 10 . The radiation directions of at least two of the three first radiators 10 are different. On the one hand, to prevent multiple first radiators 10 from being blocked by the same holding gesture, and to increase the first radiation under different holding gestures.
  • the probability that the body 10 is not held is to ensure that under different holding gestures, it can be switched to the first radiator 10 in a suitable working environment as the target first radiator 10a; on the other hand, the first radiator can be increased 10 complementary patterns to improve the coverage angle of low-frequency signals.
  • the three first radiators 10 are respectively denoted as a first sub-radiator 101 , a second sub-radiator 102 , and a third sub-radiator 103 .
  • the frame 310 includes a first side 311 , a second side 312 , a third side 313 , and a fourth side 314 arranged in sequence.
  • the first side 311 is the top side
  • the second side 312 is the left-hand side facing the viewing angle of the frame 310 shown in FIG.
  • the three first radiators 10 are arranged on as many sides of the frame 310 as possible, so as to radiate antenna signals in different directions and to cope with different holding gestures.
  • the first sub-radiator 101 is arranged on the second side 312 (for example, the middle part) of the frame 310
  • the second sub-radiator 102 is arranged on the third side 313 (ie, the bottom) of the frame 310
  • the second The arrangement of the three sub-radiators 103 at the middle of the fourth side 314 of the frame 310 is taken as an example for illustration, and is not limited to this layout.
  • the first sub-radiator 101 and the third sub-radiator 103 are not blocked, and can have a higher signal strength; when the user holds the screen vertically (the user faces When facing the display screen), the second sub-radiator 102 is not blocked and can have a higher signal strength.
  • the at least three first radio frequency modules 50 include two first radio frequency transceiving modules 52 and one first radio frequency receiving module 51 .
  • the two first radio frequency transceiver modules 52 are respectively denoted as a first transceiver module 521 and a second transceiver module 522 .
  • the first control module 60 is electrically connected to the three first radiators 10 , the first transceiver module 521 , the second transceiver module 522 and the first RF receiver module 51 .
  • the first control module 60 controls the three first radiators 10 to be electrically connected to the first transceiver module 521 , the second transceiver module 522 and the first radio frequency receiver module 51 respectively.
  • 3P3T represents the first switch module 61 that can be switched arbitrarily with three poles and three throws, and it is not limited to this mode, which will be described in detail later.
  • TX1/RX represents an interface electrically connected to a first radio frequency transceiver module 52
  • TX2/RX represents an interface electrically connected to another first radio frequency transceiver module 52
  • RX represents an interface electrically connected to the first radio frequency receiving module 51 .
  • PA- 1 represents a first power source electrically connected to a first radio frequency transceiver module 52 .
  • PA- 2 represents a second power source electrically connected to another first radio frequency transceiver module 52 .
  • the first detection module 70 is used to determine that two of the three first radiators 10 are the two target first radiators 10a according to the signal strengths of the three first radiators 10, and the other One is the non-target first radiator 10b.
  • the first control module 60 is used to switch the first transceiver module 521 to be electrically connected to two target first radiators 10a after the first detection module 70 determines two One of the target first radiators 10a, switching the second transceiver module 522 to be electrically connected to the other of the two target first radiators 10a, and switching between the first detection module 70 After determining the non-target first radiator 10b, switch the electrical connection of the first radio frequency receiving module 51 to the non-target first radiator 10b.
  • the first control module 60 switches in real time the two first radiators 10 with stronger signal strength among the three first radiators 10 to perform receiving and transmitting operations, Another first radiator 10 with a relatively weaker signal strength performs receiving work.
  • two transmitting antennas and three receiving antennas are formed during operation, which is beneficial to support LB frequency band + LB frequency band, that is, it is beneficial to support two different low frequency frequency bands.
  • the two first radiators 10 are used as emitters and receivers.
  • the radiating body that can be transmitted is called a transmitting antenna.
  • the signal gains of multiple transmitting antennas are superimposed, which can be applied in rural areas, Gobi, mountains, rivers, forests and other areas to connect to longer-distance antenna base stations. Set up relatively long-distance base stations in a small number of areas to improve low-frequency coverage; or, in areas with relatively weak signals such as elevators, underground garages, and warehouses, it can also have better signal strength, improve coverage depth, and ensure communication quality.
  • the radiation patterns of the multiple transmitting antennas are complementary, the multiple transmitting antennas can increase the signal coverage angle, which is beneficial for receiving base station signals in different directions.
  • the two transmitting antennas can respectively support 4G mobile communication signals and 5G mobile communication signals, which is beneficial to realize 4G-5G dual connection (that is, 4G-5G ENDC); or, when the electronic device 1000 has a dual card configuration , one SIM card needs a transmitting antenna to support 5G mobile communication signals, and another SIM card needs another transmitting antenna to support 4G-5G ENDC mobile communication signals, etc.
  • multiple transmitting antennas are beneficial to increase antenna gain, expand coverage, improve signal quality, and support dual card configurations.
  • first radiators 10 are used for transmission. In other embodiments, three or more first radiators 10 can also be used for transmission.
  • One transmission antenna can support 4G-5G ENDC, other transmitting antennas support 4G mobile communication signals, or 5G mobile communication signals, or 4G-5G ENDC mobile communication signals, etc.
  • the receiving antennas are radiators for receiving
  • the first detection module 70 detects that the signal strengths of the first sub-radiator 101 and the third sub-radiator 103 are relatively high, and determine that the second The first sub-radiator 101 and the third sub-radiator 103 are the target first radiator 10a, and the second sub-radiator 102 is the non-target first radiator 10b.
  • the controller controls the first switch module 61 to switch the first transceiver module 521 to be electrically connected to the first sub-radiator 101, and controls the first switch module 61 to switch the second transceiver module 522 to be electrically connected to the third sub-radiator 103, and The first switch module 61 is controlled to switch the electrical connection of the first radio frequency receiving module 51 to the second sub-radiator 102 .
  • the first detection module 70 detects that the signal strengths of the first sub-radiator 101 and the second sub-radiator 102 are relatively high, and determine that the first sub-radiator 101, the second sub-radiator 102
  • the second sub-radiator 102 is the target first radiator 10a
  • the third sub-radiator 103 is the non-target first radiator 10b.
  • the controller controls the first switch module 61 to switch the first transceiver module 521 to be electrically connected to the first sub-radiator 101, and controls the first switch module 61 to switch the second transceiver module 522 to be electrically connected to the second sub-radiator 102, and The first switch module 61 is controlled to switch the electrical connection of the first radio frequency receiving module 51 to the third sub-radiator 103 .
  • the above first detection module 70 and first control module 60 cooperate to realize the switching of the transmitting antenna and the receiving antenna under different holding gestures, so that the transmitting antenna has better signal strength, and because the transmitting antenna simultaneously Reception can be achieved, so the antenna system 100 still has a good signal transceiving capability.
  • a relatively small number of first radiators 10 can simultaneously support two different low-frequency bands, which will be described in detail below.
  • the first transceiver module 521 is used to transmit a first low-frequency signal
  • the second transceiver module 522 is used to transmit a second low-frequency signal.
  • the frequency bands of the first low-frequency signal and the second low-frequency signal are different, for example, the first low-frequency signal is one of B20 and N28, and the second low-frequency signal is the other of B20 and N28.
  • the first control module 60 is further configured to select two of the three first radiators 10 to receive the first low frequency signal and select the other two to receive the second low frequency signal.
  • the first sub-radiator 101 and the second sub-radiator 102 support the reception of B20
  • the first sub-radiator 101 and the third sub-radiator 103 support the reception of N28.
  • three first radiators 10 Simultaneously support two different low-frequency frequency bands, not only realize the simultaneous support for two different low-frequency frequency bands, but also reduce the number of the first radiator 10, save the occupied space, and set other radiators for the electronic device 1000 create space conditions.
  • this application includes the following designs for the first control module 60:
  • the first control module 60 includes a first switch module 61 that can be switched arbitrarily with three poles and three throws. That is, the radio frequency modules with three input terminals can be electrically connected to any first radiator 10 .
  • the first control module 60 includes a first switch module 61 that can be switched arbitrarily with double pole double throw and a radio frequency module and a The first radiator 10 is fixedly connected electrically. That is, the radio frequency modules at the two input ends of the first switch module 61 can be electrically connected to any one of the two first radiators 10 .
  • the radio frequency module fixed and electrically connected to the first radiator 10 may be the first transceiver module 521 , or the second transceiver module 522 , or the first radio frequency receiving module 51 .
  • FIG. 13 is only one implementation manner.
  • each radio frequency module is fixedly electrically connected to one first radiator 10 .
  • the present application also provides a modified implementation of this embodiment, please refer to FIG. 14 , the number of the first radio frequency transceiver module 52 is one, and the number of the first radio frequency receiving module 51 is two.
  • RX1 in FIG. 14 represents an interface electrically connected to a first radio frequency receiving module 51 .
  • RX2 in FIG. 14 represents an interface electrically connected to another first radio frequency receiving module 51 .
  • TX1/RX in FIG. 14 represents an interface electrically connected to a first radio frequency transceiver module 52 .
  • the first control module 60 is used to switch the first radio frequency transceiver module 52 to be electrically connected to the first radiator 10 with relatively high signal strength among the three first radiators 10, and the two first radio frequency receiving modules 51 are electrically connected to each other.
  • the first control module 60 can also control the first radio frequency transceiver module 52 to work with a first radio frequency receiver module 51 to support a low-frequency signal; or, switch to the first radio frequency transceiver module 52 and Another first radio frequency receiving module 51 works together to support a low frequency signal.
  • the number of the first radiators 10 is four. Radiation directions of at least two of the four first radiators 10 are different. The effect of different radiation orientations of at least two of the four first radiators 10 may refer to the different radiation orientations of at least two of the three first radiators 10 in the antenna system 100 in the first working mode. , which will not be repeated here.
  • the four first radiators 10 are respectively denoted as a first sub-radiator 101 , a second sub-radiator 102 , a third sub-radiator 103 and a fourth sub-radiator 104 .
  • the first sub-radiator 101 is arranged on the second side 312 (for example, the middle part) of the frame 310
  • the second sub-radiator 102 is arranged on the third side 313 (ie, the bottom) of the frame 310
  • the second The third sub-radiator 103 is disposed in the middle of the fourth side 314 of the frame 310
  • the fourth sub-radiator 104 is disposed on the second side 312 of the frame 310 close to the third side 313 as an example for illustration. limited to this layout.
  • the first sub-radiator 101 and the third sub-radiator 103 are not blocked and can have high signal strength; when the user holds the screen vertically, the second sub-radiator 102 If it is not blocked, the fourth sub-radiator 104 is not easy to be blocked and can have a higher signal strength.
  • the at least three first radio frequency modules 50 include at least one first radio frequency transceiving module 52 and at least two first radio frequency receiving modules 51 .
  • At least one first control module 60 is electrically connected to at least two first radiators 10 , at least one first radio frequency transceiver module 52 and at least one first radio frequency receiver module 51 .
  • the at least three first radio frequency modules 50 include one first radio frequency transceiving module 52 and three first radio frequency receiving modules 51 .
  • the three first radio frequency receiving modules 51 are respectively a first receiving module 511 , a second receiving module 512 and a third receiving module 513 .
  • TX1/RX in FIG. 15 is an interface electrically connected to the first radio frequency transceiver module 52 .
  • RX1 , RX2 and RX3 are interfaces electrically connected to the first receiving module 511 , the second receiving module 512 and the third receiving module 513 respectively.
  • 4P4T is a first switch module 61 with 4 inputs and 4 outputs that can be switched arbitrarily.
  • the first detection module 70 is used to determine one of the four first radiators 10 according to the signal strength of at least one of the first radiators 10 electrically connected to the first control module 60.
  • the first control module 60 is used to switch the electrical connection of the first radio frequency transceiver module 52 to the target first radiator 10a, and control the three first radio frequency receiver modules 51 are respectively electrically connected to the three non-target first radiators 10b.
  • this application includes the following design for the first control module 60 :
  • the first radiators 10 are electrically connected to the output terminals of the first switch module 61 .
  • the first radio frequency transceiver module 52 can be electrically connected to any one of the first radiators 10 .
  • the first control module 60 is electrically connected to the four first radiators 10, the first radio frequency transceiver module 52, the first receiving module 511, the second receiving module 512 and the The third receiving module 513 .
  • the first detection module 70 is used to determine one of the four first radiators 10 as the target first radiator 10a according to the signal strengths of the four first radiators 10, and the other three There are three non-target first radiators 10b.
  • the first control module 60 is used to switch the electrical connection of the first radio frequency transceiver module 52 to the target first radiator 10a after the first detection module 70 determines the target first radiator 10a , and switch the first receiving module 511, the second receiving module 512 and the third receiving module after the first detection module 70 determines three non-target first radiators 10b 513 are respectively electrically connected to the three non-target first radiators 10b.
  • the first control module 60 switches in real time the first radiator 10 with stronger signal strength among the four first radiators 10 to perform the receiving and transmitting work, and the other The three first radiators 10 with relatively weak signal strengths perform receiving work.
  • Multiple receiving antennas can increase the download data of the electronic device 1000, increase the Internet access speed of the electronic device 1000, and improve user experience.
  • the first detection module 70 detects that the signal strength of the first sub-radiator 101 is relatively high, and determines that the first sub-radiator 101 is the target The first radiator 10a, and the other first radiators 10 are non-target first radiators 10b.
  • the controller controls the first switch module 61 to switch the first radio frequency transceiver module 52 to be electrically connected to the first sub-radiator 101, and controls the first switch module 61 to switch the first receiving module 511, the second receiving module 512 and the third receiving module 512.
  • the receiving module 513 is electrically connected to the second sub-radiator 102 , the third sub-radiator 103 , and the fourth sub-radiator 104 respectively.
  • the first detection module 70 detects that the signal strength of the third sub-radiator 103 is relatively high, and determines that the third sub-radiator 103 is the target first radiator 10a, and the other first radiators 10 are non-target first radiators 10b.
  • the controller controls the first switch module 61 to switch the first radio frequency transceiver module 52 to be electrically connected to the third sub-radiator 103, and controls the first switch module 61 to switch the first receiver module 511, the second receiver module 512 and the third receiver module 512.
  • the receiving module 513 is electrically connected to the second sub-radiator 102 , the first sub-radiator 101 , and the fourth sub-radiator 104 respectively.
  • the above first detection module 70 and first control module 60 cooperate to realize the switching of the transmitting antenna and the receiving antenna under different holding gestures, so that the transmitting antenna has better signal strength, and because the transmitting antenna simultaneously Reception can be achieved, so the antenna system 100 still has a good signal transceiving capability.
  • the first control module 60 can switch the first radio frequency transceiver module 52 to be electrically connected to any one of the four first radiators 10, then each first radiator 10 can support signal transmission and reception, thus realizing 4*4 multiple input multiple output (Multiple input Multiple output, MIMO) in the low frequency band, the low frequency signal can be 5G or 4G signal, which is beneficial to realize the low frequency band including 5G independent networking (SA) or non-independent networking (NSA) 4*4MIMO is conducive to improving the deep coverage of antenna signals, increasing throughput and improving download speed, and also realizes 1 transmission and 4 reception of 5G independent networking (SA) low-band search reference signal (Sounding Reference Signal, SRS).
  • SA 5G independent networking
  • NSA non-independent networking
  • the present application also provides a second implementation of the first control module 60.
  • the first control module 60 includes a three-pole three-throw switch module 61 that can One radiator 10 is electrically connected to the first switch module 61 , and the other first radiator 10 is electrically connected to the first radio frequency receiving module 51 or the first radio frequency transceiver module 52 . That is, the first radio frequency module 50 at the three input terminals of the first switch module 61 can be electrically connected to any one of the three first radiators 10 .
  • the first radio frequency module 50 fixedly electrically connected with the first radiator 10 may be the first radio frequency transceiver module 52 , or the first receiving module 511 , or the second receiving module 512 , or the third receiving module 513 .
  • the first control module 60 switches in real time the first radiator 10 with the stronger signal strength among the three first radiators 10 for receiving and transmitting work, and the other Two first radiators 10 with relatively weak signal strengths perform receiving work.
  • Multiple receiving antennas can increase the download data of the electronic device 1000, increase the Internet access speed of the electronic device 1000, and improve user experience.
  • the first radiator 10 of the first control module 60 that is not electrically connected is fixedly connected with a first radio frequency module 50 .
  • the four first radiators 10 work as one transmitting antenna and four receiving antennas.
  • one transmitting antenna can be switched arbitrarily among the first sub-radiator 101 , the second sub-radiator 102 and the third sub-radiator 103 .
  • the three receiving antennas can be freely switched among the first sub-radiator 101 , the second sub-radiator 102 and the third sub-radiator 103 , while the other receiving antenna is a fixed antenna.
  • the first radiator 10 not electrically connected to the first control module 60 is located on the second side 312 of the frame 310 close to the third side 313 .
  • the position where the second side 312 of the frame 310 is close to the third side 313 is easy to be blocked when being held, so no transmitting antenna is installed at the position where the second side 312 of the frame 310 is close to the third side 313, and other relatively difficult Switching the transmitting antenna at a position covered by the grip can relatively improve the radiation efficiency of the transmitting antenna.
  • the switch module with four input and output the number of control terminals is reduced and the cost is saved.
  • the fixed antenna can also be the first radiator 10 arranged at other positions on the second side 312, the first radiator 10 arranged on the first side 311, and the first radiator 10 arranged on the third side 313 of the first radiator 10 , and the first radiator 10 disposed on the fourth side 314 .
  • the present application also provides a third implementation manner of the first control module 60, and the number of the first control module 60 is two.
  • Each of the first control modules 60 includes a double-pole double-throw first switch module 61 that can be switched arbitrarily.
  • Two of the four first radiators 10 are electrically connected to one of the first control modules 60, and the other two of the four first radiators 10 are electrically connected to the other first control module. 60.
  • each first radio frequency module 50 is fixedly electrically connected to one first radiator 10 .
  • this embodiment is substantially the same as the embodiment of the antenna system 100 in the second working mode, and the number of the first radiators 10 is four. At least two of the four first radiators 10 have different radiation orientations.
  • the four first radiators 10 are respectively denoted as a first sub-radiator 101 , a second sub-radiator 102 , a third sub-radiator 103 and a fourth sub-radiator 104 .
  • the first sub-radiator 101 is arranged on the middle part of the second side 312 of the frame 310
  • the second sub-radiator 102 is arranged on the third side 313 (i.e.
  • the third sub-radiator The body 103 is set in the middle of the fourth side 314 of the frame 310, and the fourth sub-radiator 104 is set in the position of the second side 312 of the frame 310 close to the third side 313 as an example for illustration, and is not limited to this layout. Way.
  • the at least three first radio frequency modules 50 include two first radio frequency transceiving modules 52 and two first radio frequency receiving modules 51 .
  • the first detection module 70 is used to determine two of the first radiators 10 among the four first radiators 10 according to the signal strength of at least one first radiator 10 electrically connected to the first control module 60 .
  • the first control module 60 is used to switch the two first radio frequency transceiver modules 52 electrically connected to the two target first radiators 10a, and switch the two first radio frequency receiver modules 51 are respectively electrically connected to the two non-target first radiators 10b.
  • the two first radio frequency receiving modules 51 are respectively a first receiving module 511 and a second receiving module 512 .
  • the two first radio frequency transceiver modules 52 are respectively a first transceiver module 521 and a second transceiver module 522 .
  • TX1/RX in FIG. 19 is an interface electrically connected to a first transceiver module 521 .
  • TX2/RX is an interface electrically connected to another second transceiver module 522 .
  • RX1 and RX2 are interfaces electrically connected to the first receiving module 511 and the second receiving module 512 respectively.
  • 4P4T is a first switch module 61 with 4 inputs and 4 outputs that can be switched arbitrarily.
  • the two first radio frequency transceiver modules 52 and the two first radio frequency receiver modules 51 this application includes the following for the first control module 60 design:
  • the first control module 60 includes a four-pole four-throw first switch module 61 that can be switched arbitrarily.
  • Each of the first radiators 10 is electrically connected to the output end of the first switch module 61 .
  • the first radio frequency transceiver module 52 can be electrically connected to any one of the first radiators 10 .
  • the first control module 60 is electrically connected to the four first radiators 10, the first receiving module 511, the second receiving module 512, the first transceiver module 521 and the second receiving module 521. Two transceiver modules 522 .
  • the first detection module 70 is used to determine that two of the four first radiators 10 are two target first radiators 10a according to the signal strengths of the four first radiators 10, The other two are respectively the two non-target first radiators 10b.
  • the first control module 60 is used to switch between the first transceiver module 521 and the second transceiver module 522 after the first detection module 70 determines two target first radiators 10a. electrically connected to the two target first radiators 10a, and switching between the first receiving module 511 and the second first radiator 10b after the first detection module 70 determines the two non-target first radiators 10b
  • the two receiving modules 512 are respectively electrically connected to the two non-target first radiators 10b. Functionally, two first radiators 10 transmit and four first radiators 10 receive.
  • the first control module 60 switches in real time the two first radiators 10 with stronger signal strength among the four first radiators 10 for receiving and transmitting work,
  • the other two first radiators 10 with relatively weaker signal strengths perform receiving work.
  • Multiple receiving antennas can increase the download data of the electronic device 1000, increase the Internet access speed of the electronic device 1000, and improve user experience.
  • the number of the first control module 60 is two, each of the first control modules 60 includes A double-throw switch module with random switching, two of the four first radiators 10 are electrically connected to one of the first control modules 60, and the other two of the four first radiators 10 are electrically connected Another first control module 60.
  • the two first control modules 60 are a first switch module 61 and a second switch module 62 which are independent of each other.
  • the first switch module 61 is a double-pole double-throw switch that can be switched arbitrarily.
  • the second switch module 62 is a double-pole double-throw switch that can be switched arbitrarily. That is, the dual switch module realizes switching of 4 antennas.
  • the two input terminals of the first switch module 61 can be any two of the first transceiver module 521 , the first receiver module 511 , the second transceiver module 522 and the second receiver module 512 .
  • the two output terminals of the first switch module 61 may be any two of the first sub-radiator 101 , the second sub-radiator 102 , the third sub-radiator 103 and the fourth sub-radiator 104 .
  • the two input ends of the first switch module 61 are respectively electrically connected to the first transceiver module 521 (TX1/RX in FIG. 22 is an interface electrically connected to the first transceiver module 521) and the first The receiving module 511 (RX1 in FIG. 22 is an interface electrically connected to the first receiving module 511); the two output terminals of the first switch module 61 are electrically connected to the first sub-radiator 101 and the fourth sub-radiator 104 respectively.
  • Two input terminals of the second switch module 62 are electrically connected to the second transceiver module 522 (TX2/RX in FIG. 22 is an interface electrically connected to the second transceiver module 522) and the second receiving module 512 (RX2 in FIG.
  • both the first switch module 61 and the second switch module 62 are double-pole double-throw switches.
  • the first sub-radiator 101 and the fourth sub-radiator 104 are arranged on the overall left side of the frame 310 (refer to FIG. side, by setting one of the first sub-radiator 101 and the fourth sub-radiator 104 as a transmitting antenna, and one of the second sub-radiator 102 and the third sub-radiator 103 as a transmitting antenna, so that the two The radiation patterns of the transmitting antennas are complementary to improve the signal coverage of the antenna system 100 .
  • the first sub-radiator 101 is easy to excite the lateral current (along the direction of the first side 311) of the reference ground system GND, and the fourth sub-radiator 104 is easy to excite the longitudinal current of the reference ground system GND.
  • the current mode excited by the first sub-radiator 101 on the reference ground system GND is different from the current mode excited by the fourth sub-radiator 104 on the reference ground system GND, then
  • the radiation patterns of the first sub-radiator 101 and the fourth sub-radiator 104 are different, so that the radiation pattern of the first sub-radiator 101 and the radiation pattern of the fourth sub-radiator 104 are at least partially complementary, so that the performance of the antenna system 100 is improved. Coverage.
  • the third sub-radiator 103 is easy to excite the transverse current of the reference ground system GND
  • the second sub-radiator 102 is easy to excite the vertical current of the reference ground system GND
  • the third sub-radiator 103 excites on the reference ground system GND If the current mode induced by the second sub-radiator 102 is different from the current mode excited by the second sub-radiator 102 on the reference ground system GND, then the pattern of the second sub-radiator 102 and the third sub-radiator 103 are different, thus realizing the second sub-radiator
  • the radiation pattern of 102 and the radiation pattern of the third sub-radiator 103 are at least partially complementary, thus improving the coverage of the antenna system 100 .
  • the two input ends of the first switch module 61 are electrically connected to the first transceiver module 521 (TX1/RX in FIG. 23 is electrically connected to the first transceiver module 521). group 521) and the first receiving module 511 (RX1 in FIG. 23 is an interface electrically connected to the first receiving module 511); the two output terminals of the first switch module 61 are respectively electrically connected to the first sub-radiator 101 and The second sub-radiator 102 .
  • the two input terminals of the second switch module 62 are electrically connected to the second transceiver module 522 (TX2/RX in FIG.
  • TX2 in FIG. /RX is an interface electrically connected to the second receiving module 512
  • the two output ends of the second switch module 62 are electrically connected to the third sub-radiator 103 and the fourth sub-radiator 104 respectively.
  • the bodies 102 are arranged diagonally.
  • the pattern of the first sub-radiator 101 is complementary to the pattern of the second sub-radiator 102, so as to improve the coverage of the antenna system 100; correspondingly, the third sub-radiator 103 is easy to excite the lateral direction on the reference ground system GND. current, the fourth sub-radiator 104 is easy to excite a longitudinal current on the reference ground system GND, and the third sub-radiator 103 and the fourth sub-radiator 104 are arranged diagonally.
  • the radiation pattern of the third sub-radiator 103 is complementary to the radiation pattern of the fourth sub-radiator 104 to improve the coverage of the antenna system 100 .
  • the two input terminals of the first switch module 61 are electrically connected to the first transceiver module 521 and the first receiving module 511 respectively; the two input terminals of the second switch module 62 are electrically connected to the second The transceiver module 522 and the second receiving module 512 ; the two output ends of the first switch module 61 are electrically connected to the first sub-radiator 101 and the third sub-radiator 103 respectively.
  • Two output terminals of the second switch module 62 are electrically connected to the second sub-radiator 102 and the fourth sub-radiator 104 respectively.
  • the present application also provides a third implementation of the first control module 60, please refer to FIG.
  • the first radiator 10 is electrically connected to the first switch module 61 , and the other first radiator 10 is electrically connected to the first radio frequency receiving module 51 or the first radio frequency transceiver module 52 .
  • the first radio frequency module 50 at the three input terminals of the first switch module 61 can be electrically connected to any one of the three first radiators 10 .
  • the first radio frequency module 50 fixedly electrically connected to the first radiator 10 may be the first transceiver module 521 , or the second transceiver module 522 , or the first receiving module 511 , or the second receiving module 512 .
  • the first control module 60 switches in real time the first radiator 10 with the stronger signal strength among the three first radiators 10 for receiving and transmitting work, and the other Two first radiators 10 with relatively weak signal strengths perform receiving work.
  • Multiple receiving antennas can increase the download data of the electronic device 1000, increase the Internet access speed of the electronic device 1000, and improve user experience.
  • the first radiator 10 of the first control module 60 that is not electrically connected is fixedly connected with a first radio frequency module 50 .
  • the four first radiators 10 work as two transmitting antennas and four receiving antennas.
  • one transmitting antenna can be switched arbitrarily among the first, second and third sub-radiators 103 .
  • the other transmitting antenna is a fixed antenna.
  • the three receiving antennas can be freely switched among the first sub-radiator 101 , the second sub-radiator 102 and the third sub-radiator 103 , while the other receiving antenna is a fixed antenna.
  • the first radiator 10 that is not electrically connected to the first control module 60 is located on the second side 312 of the frame 310 close to the third side 313.
  • the fixed antenna can also be For the first radiator 10 arranged at other positions on the second side 312, the first radiator 10 arranged on the first side 311, the first radiator 10 arranged on the third side 313, and the first radiator 10 arranged on the second side The first radiator 10 with four sides 314 .
  • each first radio frequency module 50 is fixedly electrically connected to one first radiator 10 .
  • the number of receiving antennas is increased to realize 4*4MIMO realizes 4*4 multiple input and multiple output (4*4 multiple MIMO), which is beneficial to the deep coverage of antenna signals, increased throughput and improved download speed; compared with the antenna system 100 provided by the second working mode,
  • the increase in the number of transmitting antennas is conducive to increasing antenna gain, expanding coverage, and improving signal quality to support dual-card configurations, etc. It also realizes the 2 Transmit 4 receive.
  • the electronic device 1000 further includes a reference ground system GND.
  • the at least three first radiators 10 are arranged sequentially in a ring around the periphery of the reference ground system GND.
  • the reference ground system GND is roughly rectangular as an example for illustration.
  • the reference ground system GND includes a first side 81 , a second side 82 , a third side 83 and a fourth side 84 connected in sequence.
  • the first side 81 of the reference ground system GND is opposite to the first side 311 of the frame 310 .
  • the second side 82 of the reference ground system GND is opposite to the second side 312 of the frame 310 .
  • the third side 83 of the reference ground system GND is opposite to the third side 313 of the frame 310 .
  • the fourth side 84 of the reference ground system GND is opposite to the fourth side 314 of the frame 310 .
  • the at least three first radiators 10 are respectively arranged facing at least three sides.
  • the at least three first radiators 10 are disposed on at least three sides of the reference ground system GND.
  • the number of the first radiators 10 is three
  • the three first radiators 10 are respectively disposed on the second side 82 , the third side 83 and the fourth side 84 of the reference ground system GND.
  • the number of the first radiator 10 is four
  • the four first radiators 10 are respectively arranged on the second side 82, the third side 83 and the fourth side 84; or, respectively arranged on the first side 81, the second side side 82 , third side 83 and fourth side 84 .
  • At least two of the first radiators 10 have different resonant modes.
  • at least two of the first radiators 10 have different resonance modes.
  • the resonance modes of the two first radiators 10 are different, for example, one is a 1/4 wavelength mode, and the other is a 1/2 wavelength mode.
  • the current modes and patterns of the two first radiators 10 are different, which is beneficial to the complementarity of the patterns of the two first radiators 10 , and is conducive to improving the coverage of the antenna system 100 .
  • the length of the first side 81 is smaller than the length of the second side 82 . That is, the first side 81 is a short side, the third side 83 is a short side; the second side 82 is a long side, and the fourth side 84 is a long side.
  • the at least three first radiators 10 include a first sub-radiator 101 , a second sub-radiator 102 and a third sub-radiator 103 arranged sequentially in a ring.
  • the first sub-radiator 101 extends along a first direction. Wherein, the first direction is the extending direction of the second side 82 .
  • the first sub-radiator 101 is disposed outside the second side 82 (eg, the middle part) of the reference ground system GND and extends along the second side 82 .
  • the first sub-radiator 101 can be integrated on the second side 312 .
  • the second sub-radiator 102 is relatively close to the first sub-radiator 101 and extends along a second direction, and the second direction intersects the first direction (the intersection angle is (0-90°]).
  • the first direction is perpendicular to the second direction.
  • the part of the second sub-radiator 102 that is relatively far away from the first sub-radiator 101 extends along the first direction.
  • the second sub-radiator 102 A part of the second sub-radiator 102 is arranged outside the third side 83 of the reference ground system GND and extends along the third side 83, and another part of the second sub-radiator 102 is arranged outside the fourth side 84 and extends along the fourth side 84.
  • the second sub-radiator 102 can be integrated on the third side 313 and the fourth side 314.
  • the third sub-radiator 103 is arranged opposite to the first sub-radiator 101 and along the The third sub-radiator 103 is located outside the fourth side 84 (for example, the middle part) of the reference ground system GND and extends along the fourth side 84.
  • the third sub-radiator 103 The radiator 103 can be integrated on the fourth side 314 .
  • first sub-radiator 101 second sub-radiator 102 and third sub-radiator 103 may also be disposed in other positions.
  • the at least three first radiators 10 include a fourth sub-radiator 104 located between the first sub-radiator 101 and the second sub-radiator 102 .
  • the part of the fourth sub-radiator 104 close to the first sub-radiator 101 extends along the first direction
  • the part of the fourth sub-radiator 104 close to the second sub-radiator 102 extends along the first direction. extending in the second direction.
  • a part of the fourth sub-radiator 104 is arranged outside the second side 82 of the reference ground system GND and extends along the second side 82
  • another part of the fourth sub-radiator 104 is arranged on the second side 82 of the reference ground system GND.
  • the fourth sub-radiator 104 is integrated on the second side 312 , and another part of the fourth sub-radiator 104 is integrated on the third side 313 .
  • the fourth sub-radiator 104 is located between the first sub-radiator 101 and the third sub-radiator 103 , and is opposite to the second sub-radiator 102 .
  • the fourth sub-radiator 104 is disposed outside the first side 81 of the reference ground system GND and extends along the first side 81 .
  • the fourth sub-radiator 104 is integrated on the first side 311 .
  • the second radiator 20 includes a first coupling radiator 201 and a second coupling radiator 202 .
  • the first coupling radiator 201 is located between the first sub-radiator 101 and the second sub-radiator 102, the first coupling radiator 201 extends along the second direction and is connected to the second The sub-radiators 102 are coupled.
  • the first coupling radiator 201 is disposed outside the third side 83 and extends along the third side 83 , and is coupled with the second sub-radiator 102 .
  • the first coupling radiator 201 is integrated on the third side 313 .
  • the ground terminal of the first coupled radiator 201 may share the ground terminal of the fourth sub-radiator 104 .
  • the first coupling radiator 201 and the fourth sub-radiator 104 are independent of each other.
  • the second coupling radiator 202 is located on the side of the third sub-radiator 103 away from the second sub-radiator 102 , the second coupling radiator 102 extends along the first direction and is connected to the first sub-radiator 102 .
  • the three sub-radiators 103 are coupled.
  • the second coupling radiator 202 is disposed outside the fourth side 84 and extends along the fourth side 84 , and is coupled with the third sub-radiator 103 .
  • the second coupling radiator 202 is integrated on the second side 312 .
  • the second coupling radiator 202 can be arranged on the side of the third sub-radiator 103 close to the first side 81 , so that it is not easy to be blocked when the screen is held vertically.
  • the form of the second radiator 20 is not limited to the above-mentioned inverted-F antenna and T-shaped antenna, but may also be a loop antenna (LOOP antenna) and the like.
  • LOOP antenna loop antenna
  • the frequency bands supported by the first coupling radiator 201 and the second coupling radiator 202 in this application may be the same or different.
  • the first coupling radiator 201 and the second coupling radiator 202 are arranged on the third side 83 and the fourth side 84 respectively.
  • the first coupling radiator 201 is held, while the second coupling radiator 202 is not held; when the user holds the electronic device 1000 in a vertical screen, the first coupling radiator 201 Neither the second coupling radiator nor the second coupling radiator 202 can be handled easily. In this way, it is ensured that at least one of the first coupling radiator 201 and the second coupling radiator 202 has a good working environment under different user holding modes.
  • the second radiator 20 further includes a third coupling radiator 203 .
  • the third coupling radiator 203 is located at the end of the first sub-radiator 101 away from the second sub-radiator 102 , the third coupling radiator 203 extends along the first direction and is connected to the first The sub-radiators 101 are coupled.
  • the third coupling radiator 203 is disposed outside the second side 82 and extends along the second side 82 , and is coupled with the first sub-radiator 101 .
  • the third coupling radiator 203 is integrated on the second side 312 .
  • the third coupling radiator 203 is disposed on a side of the first sub-radiator 101 close to the first side 81.
  • the third coupling radiator 203 is used to support at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the antenna system 100 further includes a top radiator 204 .
  • the top radiator 204 is disposed opposite to the second sub-radiator 102 and extends along the second direction.
  • the top radiator 204 is disposed outside the first side 81 and extends along the first side 81 .
  • the top radiator 204 is integrated on the first side 311 .
  • the top radiator 204 is used to support at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the top radiator 204 may not be coupled with the first radiator 10 .
  • the top radiator 204 is not easy to be blocked when the screen is held vertically.
  • the antenna system 100 further includes a second detection module 90 , a plurality of second radio frequency modules 110 and at least one second control module 120 .
  • the second radio frequency module 110 includes at least one second radio frequency transceiving module 111 and at least one second radio frequency receiving module 112 .
  • the top radiator 204 and the first coupling radiator 201 , the second coupling radiator 202 , and the third coupling radiator 203 are all of the same type, for example, they are all in the MHB frequency band.
  • the top radiator can be denoted as the second radiator 20 not coupled with the first radiator 10 .
  • There are four second radiators 20 which are the first coupling radiator 201 , the second coupling radiator 202 , the third coupling radiator 203 , and the top radiator 204 .
  • the four second radiators 20 are respectively arranged on the first side 81, the second side 82, the third side 83 and the fourth side 84 of the reference ground system GND, so as to realize that the direction diagrams of the four second radiators 20 are complementary and ensure Under different holding gestures, the second radiator 20 is not blocked by the user's hand, which has a good working environment.
  • Three of the four second radiators 20 are coupled to the first radiator 10 and one is not coupled to the first radiator 10, wherein the second radiator 20 not coupled to the first radiator 10 is located at the first radiator 20 of the reference ground system GND.
  • the three second radiators 20 are respectively located on the second side 82 , the third side 83 and the fourth side 84 .
  • the number of the second radiator 20 may also be two, three, or more than four, etc., which is not specifically limited in this application.
  • the present application does not specifically limit the quantity and position of the second radiator 20 coupled with the first radiator 10 .
  • the present application does not specifically limit the number and positions of the second radiators 20 that are not coupled with the first radiator 10 .
  • Each of the four second radiators 20 is an antenna capable of transmitting and receiving. During operation, at least one of the four second radiators 20 is used to transmit at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals. All 20 can receive at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the second detection module 90 is used to detect the signal strength of a plurality of the second radiators 20, and determine at least one target second radiation according to the signal strengths of the plurality of second radiators 20. body 20a and at least one non-target second radiator 20b. Wherein, the signal strength of the target second radiator 20a is greater than the signal strength of the non-target second radiator 20b.
  • the second radiator 20 with the highest signal strength is the target second radiator 20a, and the remaining second radiators 20 are non-target second radiators 20b.
  • the second detection module 90 detects the signal strength of the second radiator 20 by detecting the signal receiving strength at the second radio frequency module 110 , so as to determine the working environment of the second radiator 20 .
  • the second radio frequency transceiver module 111 is used to receive and transmit at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the second radio frequency receiving module 112 It is used to receive at least one of mobile communication signals in the MHB frequency band, mobile communication signals in the UHB frequency band, Wi-Fi signals, and GNSS signals.
  • the second control module 120 is electrically connected to the second RF transceiver module 111 , the second RF receiver module 112 , the second detection module 90 and the plurality of second radiators 20 .
  • the second control module 120 is used to switch the electrical connection of the second radio frequency transceiver module 111 to the target second radiator after the second detection module 90 determines at least one target second radiator 20a. body 20a, and for switching the second radio frequency receiving module 112 to be electrically connected to the non-target second radiator 20b after the second detection module 90 determines at least one non-target second radiator 20b .
  • the second detection module 90 detects the signal reception strengths of multiple second radiators 20 at the second radio frequency module 110, and compares the magnitudes of multiple signal reception strengths to determine the one with the highest signal reception strength.
  • the second radiator 20 is the target second radiator 20a, and it is determined that the second radiator 20 with a lower signal receiving intensity is the non-target second radiator 20b, and the target second radiator 20a, the non-target second radiator 20b is sent to the controller in the form of an electrical signal, and the controller switches the third switch module to electrically connect the second radio frequency transceiver module 111 to the second radiator 20 with the highest signal strength, and to make the second radio frequency receiving module 112 electrically Connect to a second radiator 20 of other signal strength.
  • the second control module 120 can switch any one of the four second radiators 20 to be electrically connected to the second radio frequency transceiver module 111 .
  • the second control module 120 can switch any one of the four second radiators 20 to be electrically connected to the second radio frequency receiving module 112 .
  • the above process may be a real-time dynamic process. That is, the second detection module 90 detects the signal reception strength of multiple second radiators 20 in real time, and the controller adjusts the third switch module in real time to realize intelligent switching, so as to ensure that no matter how the working environment of multiple second radiators 20 changes ( Or how the hand-holding posture changes), the second radiator 20 with the best signal receiving strength can be used as the emitting radiator, and the other second radiators 20 can be used as the receiving radiator, so as to keep emitting radiation when different hand-holding postures
  • the body has better signal quality, improves the signal stability of the electronic device 1000, and improves user experience.
  • the settings and switching methods of the second radio frequency module 110 and the second control module 120 electrically connected to the second radiator 20 can refer to the first radio frequency module 50 and the first control module electrically connected to the first radiator 10. 60 and the switching method, which will not be described one by one here.
  • At least one second radiator 20 that supports other frequency bands (such as MHB frequency band, or UHB frequency band, or Wi-Fi signal, or GNSS signal) is set to couple with the first radiator 10, so, when supporting the above-mentioned MHB frequency band, or UHB frequency band, or Wi-Fi signal, or GNSS signal, and also save space on the electronic device 1000, so that three, four or more than four first radiators 10 can be set.
  • at least one first radiator 10 can be set as a transmitting antenna, and the first radio frequency transceiver module 52, the first radio frequency receiving module 51 and the plurality of first radiators 10 can be arranged independently.
  • the antenna system 100 can determine which first radiator 10 the first radio frequency transceiver module 52 is connected to according to the detected signal strengths of the plurality of first radiators 10, which facilitates intelligent selection of transmitting antennas under different holding gestures position to ensure high signal strength under different holding gestures; multiple transmitting antennas can be set in multiple first radiators 10, which is beneficial to increase antenna gain, expand coverage, and improve signal quality to support dual cards Configuration, etc.; multiple first radiators 10 can be used as receiving antennas, which is beneficial to increase the depth and breadth of signal coverage, and to improve the download speed.
  • the antenna system 100 provided in this embodiment can also realize 4*4 MIMO in the LB frequency band and 4*4 MIMO in the MHB frequency band, and can also realize smart antenna switching of 3 low-frequency radiators or smart antenna switching of 4 low-frequency radiators, and 3 mid-high frequency radiators. Smart antenna switching of radiators or smart antenna switching of 4 medium and high frequency radiators; it also realizes 1 transmission 4 reception, or 2 transmission 4 of 5G independent networking (SA) low-band search reference signal (Sounding Reference Signal, SRS) receive etc.
  • SA 5G independent networking
  • SRS Sounding Reference Signal

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线系统及电子设备,天线系统包括至少三个第一辐射体及至少一个第二辐射体,所述至少三个第一辐射体中至少一者能够发射预设低频信号,所有的所述第一辐射体皆至少能够接收预设低频信号,至少一个所述第二辐射体与至少一个所述第一辐射体之间通过耦合缝隙耦合,所述第二辐射体所支持的频段的最小值大于或等于所述预设低频信号的频段的最大值。本申请提供的天线系统及电子设备能够支持更多频段、提升低频覆盖广度与深度。

Description

天线系统及电子设备
本申请要求于2021年11月23日提交至中国专利局,申请号为202111398057.8,申请名称为“天线系统及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,具体涉及一种天线系统及电子设备。
背景技术
目前,低频信号在各个场所皆具有非常广泛的应用。例如,频段越低,覆盖范围越广。低频信号在覆盖农村、戈壁、山川、河流、森林等区域具有极大的潜力,也是城市5G覆盖的有力补充。而由于低频频率低,波长较长,所以对辐射体的有效电长度要求更高,在内部空间极其有限的电子设备中,为了支持更多频段,留给第一辐射体的空间有限,导致便携式电子设备内的第一辐射体的应用效率低。如何提供一种支持更多频段、提升低频覆盖广度与深度的天线系统,成为需要研究的重点。
发明内容
本申请提供一种支持更多频段、提升低频覆盖广度与深度的天线系统及电子设备。
第一方面,本申请实施例提供了一种天线系统,包括:
至少三个第一辐射体,所述至少三个第一辐射体中至少一者能够发射预设低频信号,所有的所述第一辐射体皆能够接收所述预设低频信号;以及
至少一个第二辐射体,至少一个所述第二辐射体与至少一个所述第一辐射体之间通过耦合缝隙耦合,所述第二辐射体所支持的频段的最小值大于或等于所述预设低频信号的频段的最大值。
第二方面,本申请实施例提供了一种电子设备,包括所述的天线系统。
本申请提供的天线系统,通过设置至少三个第一辐射体,及设置至少一个第二辐射体与第一辐射体耦合,其中,第二辐射体所支持的频段高于第一辐射体所支持的预设低频信号,第一辐射体与第二辐射体相互复用,且第一辐射体与第二辐射体支持的频段多,如此,实现了所支持的频段多、频带宽,且所需的辐射体长度相对较短,节省了电子设备上的空间,以腾出空间设置多个第一辐射体;至少一个第一辐射体能够发射预设低频信号,所有的第一辐射体皆至少能够接收预设低频信号,至少三个第一辐射体对于低频信号的接收增强,更利于提升低频覆盖广度与深度。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1提供的电子设备的结构分解示意图;
图3是本申请实施例提供的第一种天线系统的结构示意图;
图4是本申请实施例提供的第二种天线系统的结构示意图;
图5是本申请实施例提供的天线系统的第一种第一辐射体与第二辐射体相耦合的结构示意图;
图6是本申请实施例提供的天线系统的第二种第一辐射体与第二辐射体相耦合的结构示意图;
图7是本申请实施例提供的天线系统的第三种第一辐射体与第二辐射体相耦合的结构示意图;
图8是本申请提供的一种天线系统的布局的示意图;
图9是本申请提供的第一种至少两个第一辐射体的切换控制框图;
图10是图9所示的至少两个第一辐射体的一种切换控制方式的框图;
图11是本申请实施例提供的三个第一辐射体的第一种局部背部(即后盖所在侧)示意图;
图12是图11所示的三个第一辐射体的一种切换控制方式的框图;
图13是本申请实施例提供的三个第一辐射体的第二种局部背部示意图;
图14是本申请实施例提供的三个第一辐射体的第三种局部背部示意图;
图15是本申请实施例提供的四个第一辐射体的第一种局部背部示意图;
图16是本申请提供的第一种四个第一辐射体的切换控制框图;
图17是图16所示的四个第一辐射体的一种切换控制方式的框图;
图18是本申请实施例提供的四个第一辐射体的第二种局部背部示意图;
图19是本申请实施例提供的四个第一辐射体的第三种局部背部示意图;
图20是图19所示的四个第一辐射体的一种切换控制方式的框图一;
图21是图20所示的四个第一辐射体的一种切换控制方式的细节框图;
图22是本申请实施例提供的四个第一辐射体的第四种局部背部示意图;
图23是本申请实施例提供的四个第一辐射体的第五种局部背部示意图;
图24是本申请实施例提供的四个第一辐射体的第六种局部背部示意图;
图25是本申请实施例提供的四个第一辐射体的第七种局部背部示意图;
图26是本申请实施例提供的多个第一辐射体和多个第二辐射体的局部背部示意图;
图27是图26所示的四个第二辐射体的一种切换控制方式的框图一;
图28是图27所示的四个第二辐射体的一种切换控制方式的细节框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本申请中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本申请实施例提供的一种电子设备1000的结构示意图。所述电子设备1000包括天线系统100。所述天线系统100用于收发电磁波信号,以实现所述电子设备1000的通信功能。本申请对于所述天线系统100在所述电子设备1000上的位置不做具体的限定,图1只是一种示例。所述电子设备1000还包括相互盖合连接的显示屏200及壳体300。所述天线系统100可设于所述电子设备1000的壳体300内部、或部分与所述壳体300集成为一体、或部分设于所述壳体300外。图1中所述天线系统100的辐射体与所述壳体300集成为一体。当然,所述天线系统100还可以设于所述电子设备1000的可伸缩组件上,换言之,所述天线系统100的至少部分还能够随着所述电子设备1000的可伸缩组件伸出所述电子设备1000之外,及随着可伸缩组件缩回至所述电子设备1000内;或者,所述天线系统100的整体长度随着所述电子设备1000的可伸缩组件的伸长而伸长。
所述电子设备1000包括不限于为手机、电话、电视、平板电脑、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以所述电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以所述电子设备1000处于图1中的视角为参照,所述电子设备1000的宽度方向定义为X轴方向,所述电子设备1000的长度方向定义为Y轴方向,所述电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,所述壳体300包括边框310及后盖320。所述边框310内通过注塑形成中板330,所述中板330上形成多个用于安装各种电子器件的安装槽。所述中板330与所述边框310一起成为所述电子设备1000的中板330。所述显示屏200、所述中框340及所述后盖320盖合后在所述中框340的两侧皆形成收容空间。所述边框310的一侧(例如后侧)围接于所述后盖320的周沿,所述边框310的另一侧(例如前侧)围接于所述显示屏200的周沿。所述电子设备1000还包括设于收容空间内的电路板500、电池600、摄像头模组、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。可以理解地,上述对电子设备1000的介绍仅是所述天线系统100所应用的一种环境的说明,所述电子设备1000的具体结构不应当理解为对本申请提供的天线系统100的限定。
以下结合附图对于本申请提供的所述天线系统100的具体结构进行举例说明,当然,本申请提供的所述天线系统100包括但不限于以下的实施方式。
请参阅图3及图4,天线系统100包括至少三个第一辐射体10及至少一个第二辐射体20。
其中,所述至少三个第一辐射体10中至少一者能够发射预设低频信号。可以理解的,第一辐射体10为低频辐射体。所述预设低频信号用于与基站或其他终端建立通信连接。该预设低频信号包括但不限于为B5等。
其中,所有的所述第一辐射体10皆至少能够接收预设低频信号。具体的,每个第一辐射体10能够接 收预设低频信号,可选的,每个第一辐射体10在接收除了预设低频信号之外,还能够接收其他的低频信号。每个第一辐射体10所接收的低频信号的频段为低频信号段(例如小于1000MHz)中任意一个频段,包括但不限于为B5、N20、N5、N8、N28等。可以理解的,本申请所述的低频频段包括但不限于为5G移动通信信号或4G移动通信信号。对于第一辐射体10而言,可以是独立支持5G移动通信信号或4G移动通信信号,也可以是同时支持5G移动通信信号和4G移动通信信号的辐射体。
目前,低频信号在各个场所皆具有非常广泛的应用。例如,频段越低,覆盖范围越广。低频信号在覆盖农村、戈壁、山川、河流、森林等区域具有极大的潜力,也是城市5G覆盖的有力补充。农村、戈壁、山川、河流、森林等人烟相对稀少的区域,建立相对较多的基站数量的成本较高,提高电子设备1000对于低频信号的接收强度,以接收相对更远的基站的信号,成为研发的方向之一。
而由于第一辐射体10的长度相对较长,电子设备1000,特别是便携式电子设备1000中,既要确保其轻便性还要同时满足支持其他的频段,例如,支持MHB频段(中高频段)的移动通信信号、UHB频段(超高频段)的移动通信信号、Wi-Fi信号、GNSS信号等的功能,这些频段的支持也需要设置相应的辐射体,如此,导致电子设备1000中留给第一辐射体10的位置极其有限。有限的空间位置限制了第一辐射体10的数量,也限制了低频信号的接收能力,导致低频信号的覆盖深度和吞吐率皆有限,也限制了低频信号在农村、戈壁、山川、河流、森林等区域的应用。此外,由于便携式电子设备1000时常被用户握持,用户握持会降低辐射体的工作效率。在第一辐射体10原本数量就极其有限的情况下,还可能存在被用户握死的风险,如此,将导致便携式电子设备1000内的第一辐射体10的应用效率低。
本实施方式中,第一辐射体10的数量可以为三个、四个等。且设置至少一个所述第二辐射体20与至少一个所述第一辐射体10之间通过耦合缝隙13耦合。其中,所述第二辐射体20所支持的频段的最小值大于或等于所述预设低频信号的频段的最大值。所述第二辐射体20所支持的信号包括但不限于为MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。其中,所述第二辐射体20可支持MHB+UHB频段的移动通信信号。其中,GNSS全称为Global Navigation Satellite System,中文名称为全球导航卫星系统,GNSS包括全球性的全球定位系统(Global Positioning System,GPS)、北斗、全球卫星导航系统(Global Navigation Satellite System,GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system,Galileo)以及区域性导航系统等。
换言之,第二辐射体20可以为中频辐射体、高频辐射体、中高频辐射体、Wi-Fi辐射体或GNSS辐射体。其中,MHB频段为大于或等于1000MHz且小于3000MHz;UHB频段为大于或等于3000MHz且小于10000MHz。Wi-Fi信号包括但不限于Wi-Fi 2.4G频段(2.4~2.5GHz)、Wi-Fi 5G频段(5.15~5.85GHz)、Wi-Fi 6E频段。GNSS信号包括但不限于GPS-L1频段(1575GHz)、GPS-L5频段(1176GHz)。MHB+UHB频段为大于或等于1000MHz且小于10000MHz。
可选的,第二辐射体20的数量可以为一个、两个、三个、四个等。其中,一个第二辐射体20可以与一个第一辐射体10相耦合。当然,一个第二辐射体20还可以与两个第一辐射体10耦合。进一步地,两个第二辐射体20还可以与一个第一辐射体10相耦合。多个第二辐射体20中可以是部分的第二辐射体20与第一辐射体10相耦合,也可以是全部的第二辐射体20与第一辐射体10耦合。
请参阅图3,当所述第二辐射体20与所述第一辐射体10耦合设置时,所述第二辐射体20与所述第一辐射体10之间具有耦合缝隙13。例如,所述耦合缝隙13的宽度可以为0.5~2mm,但不限于此尺寸。所述第二辐射体20与所述第一辐射体10通过所述耦合缝隙13容性耦合。其中,“容性耦合”是指,所述第二辐射体20与所述第一辐射体10之间产生电场,所述第二辐射体20上的电信号能够通过电场传递至所述第一辐射体10,及所述第一辐射体10上的电信号能够通过电场传递至所述第二辐射体20,以使所述第一辐射体10与所述第二辐射体20即使在不直接接触或不直接连接的状态下也能够实现电信号导通,也可称为第二辐射体20与第一辐射体10共口径。
如此,第一辐射体10也能够用于支持MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者,或者说,第二辐射体20也能够支持低频频段。也就是说,第一辐射体10和第二辐射体20能够相互复用,如此,在有限的辐射体长度下,实现了所支持的频段多、频带宽,且所需的辐射体长度相对较短,节省了电子设备1000上的空间,以腾出空间设置多个第一辐射体10。
本实施方式中,所有的第一辐射体10皆能够接收低频信号。第一辐射体10的数量越多,对于低频信号的接收增强,更利于提升低频的覆盖广度和深度。再例如,多个第一辐射体10方向图皆朝向同一方向时,多个第一辐射体10的信号增益叠加,进而能够应用于农村、戈壁、山川、河流、森林等区域以连接到更远距离的天线基站,如此,可在人烟较少的区域设置相对较远距离的基站,提升低频覆盖广度;或者, 在电梯、地下车库、仓库等信号相对较弱的区域也能够具有较好的信号强度,提升覆盖深度,确保通讯质量。
此外,不同的第一辐射体10还可以朝向不同的方向,即至少两个第一辐射体10的方向图朝向不同,则至少两个第一辐射体10的方向图互补,以提高天线系统100对于低频信号的接收角度范围,提升低频覆盖广度。例如,当用户手握持具有该天线系统100的电子设备1000时,用户握死部分第一辐射体10,多支第一辐射体10之间可以相互切换,以切换至工作效率较高的第一辐射体10工作,以确保电子设备1000在握持状态也具有较高的工作效率。
请参阅图5,所述天线系统100还包括第一馈电系统30。所述第一馈电系统30电连接所述第二辐射体20。第一馈电系统30包括第一馈源31及第三匹配电路32(其中,第一匹配电路和第二匹配电路在后续进行说明)。第一馈源31电连接射频信号源。射频信号源包括但不限于射频收发模组、射频接收模组、射频发射模组等中的至少一者。本申请中,射频信号源用于接收或发射MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。
第三匹配电路32电连接于所述第二辐射体20与所述第一馈源31之间。第三匹配电路32包括但不限于电容器件、电感器件、开关调谐器件等形成的匹配电路。其中,第三匹配电路32用于调谐所电连接的第二辐射体20的阻抗,以使第二辐射体20对于所支持的频段具有较高的收发效率。第二辐射体20在第一馈电系统30的激励下产生谐振模式以支持所需支持的频段。例如,第二辐射体20用于支持MHB频段。其中,第二辐射体20在第一馈电系统30的激励下产生1/4波长模式、1/2波长模式、3/4波长模式、1个波长模式中的至少一者的谐振模式以支持MHB频段。其中,产生1/4波长模式、或1/2波长模式、或3/4波长模式、或1个波长模式的谐振模式的电流可以分布在第二辐射体20的局部或全部。可选的,第二辐射体20在大于或等于1000MHz且小于3000MHz频段内产生多个谐振模式,多个谐振模式可形成较大的支持带宽,进而实现对于1000MHz~3000MHz频段的全覆盖。其他的频段也如上述的实施方式进行支持,在此不再一一赘述。
此外,至少一个所述第一辐射体10还在所述第一馈电系统30的激励下产生1/4波长模式、1/2波长模式、3/4波长模式、1个波长模式中的至少一者的谐振模式。其中,产生1/4波长模式、或1/2波长模式、或3/4波长模式、或1个波长模式的谐振模式的电流可以分布在第一辐射体10的局部或全部。
换言之,所述第一馈电系统30不仅可以利用其直接电连接的第二辐射体20收发MHB频段,还能够复用原本用于支持低频信号的第一辐射体10收发MHB频段,如此,第二辐射体20的长度小于收发MHB频段的辐射体长度,可实现在支持多频段、超宽带的同时还能够减小辐射体的整体长度,如此,节省电子设备1000上的空间,利于电子设备1000上设置更多数量的第一辐射体10。
请参阅图5,所述天线系统100还包括第二馈电系统40。所述第二馈电系统40电连接所述第一辐射体10。第二馈电系统40包括第二馈源41及第四匹配电路42。第二馈源41电连接射频信号源。射频信号源包括但不限于射频收发模组、射频接收模组、射频发射模组等中的至少一者。本申请中,射频信号源用于接收或发射低频信号,具体频段为0~1000MHB,信号类型包括但不限于为4G移动通信信号、5G移动通信信号。
第四匹配电路42电连接于所述第一辐射体10与所述第二馈源41之间。第四匹配电路42包括但不限于电容器件、电感器件、开关调谐器件等形成的匹配电路。其中,第四匹配电路42用于调谐所电连接的第一辐射体10的阻抗,以使第一辐射体10对于所支持的频段具有较高的收发效率。第一辐射体10在第二馈电系统40的激励下产生谐振模式以支持低频频段。例如,第一辐射体10在第二馈电系统40的激励下产生1/4波长模式、1/2波长模式、3/4波长模式、1个波长模式中的至少一者的谐振模式以支持MHB频段。其中,产生1/4波长模式、或1/2波长模式、或3/4波长模式、或1个波长模式的谐振模式的电流可以分布在第一辐射体10的局部或全部。可选的,第一辐射体10在第二馈电系统40的激励下产生1/4波长模式的谐振模式,其中,1/4波长模式为基态,具有较高的辐射效率,且能够充分利用第一辐射体10上的全部长度。
此外,所述第二辐射体20还在所述第二馈电系统40的激励下产生1/4波长模式、1/2波长模式、3/4波长模式、1个波长模式中的至少一者的谐振模式。
其中,产生1/4波长模式、或1/2波长模式、或3/4波长模式、或1个波长模式的谐振模式的电流可以分布在第二辐射体20的局部或全部。
换言之,所述第二馈电系统40不仅可以利用其直接电连接的第一辐射体10收发低频频段,还能够复 用原本用于支持MHB频段的第二辐射体20收发低频频段,如此,实际收发低频频段的辐射体长度大于第一辐射体10的长度,可实现在支持多频段、超宽带的同时还能够减小辐射体的整体长度,如此,节省电子设备1000上的空间,利于电子设备1000上设置更多数量的第一辐射体10。
本申请对于第一辐射体10、第二辐射体20的材质、形状、构造不做具体的限定。在材质方面,所述第一辐射体10、第二辐射体20的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;石墨烯、或由石墨烯与其他材料结合形成的导电材料;氧化锡铟等氧化物导电材料;碳纳米管及聚合物形成混合材料等等。从构造方面,第一辐射体10、第二辐射体20包括但不限于金属边框310辐射体、内嵌在塑料边框310内的导电辐射体、成型于柔性电路板(Flexible Printed Circuit board,FPC)上的柔性电路板辐射体、通过激光直接成型(Laser Direct Structuring,LDS)的激光直接成型辐射体、通过印刷直接成型(Print Direct Structuring,PDS)的印刷直接成型辐射体、导电片辐射体等。从形状方面,所述第一辐射体10、所述第二辐射体20的形状皆包括但不限于条状、片状、杆状、涂层、薄膜等。当所述第一辐射体10及所述第二辐射体20皆呈条状时,本申请对于所述第一辐射体10、所述第二辐射体20的延伸轨迹不做限定,故所述第一辐射体10、所述第二辐射体20皆可呈直线、曲线、多段弯折等轨迹延伸。上述的延伸轨迹可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
本实施方式中,以第一辐射体10、第二辐射体20皆为导电边框辐射体为例进行举例说明。
请参阅图5,所述第二辐射体20具有第一接地端21和第一耦合端22,以及位于所述第一接地端21与所述第一耦合端22之间的第一馈电点A。所述第一馈电系统30电连接所述第一馈电点A。图5所示的所述第一接地端21和第一耦合端22为呈直线条形的所述第二辐射体20的相对两端,仅仅为一种示例,并不能对本申请提供的所述第二辐射体20的形状造成限定。在其他实施方式中,所述第二辐射体20也可以呈弯折状,所述第一接地端21和第一耦合端22可不沿直线方向相对,但第一接地端21和第一耦合端22分别为所述第二辐射体20的两个末端。
第一馈电系统30电连接所述第二辐射体20的第一馈电点A。可选的,第一馈电系统30可设于电子设备1000内的电路板上,通过导电弹片与第二辐射体20的第一馈电点A电连接。当然,在其他实施方式中,第一馈电系统30还可以通过导电卡合件、导电胶、导电焊接盘等方式与第二辐射体20的第一馈电点A电连接。
请参阅图5,所述第一辐射体10具有作用端11和第二耦合端12,以及位于所述作用端11与所述第二耦合端12之间的第二馈电点B。图5所示的所述作用端11和第二耦合端12为呈直线条形的所述第一辐射体10的相对两端,仅仅为一种示例,并不能对本申请提供的所述第一辐射体10的形状造成限定。在其他实施方式中,所述第一辐射体10也可以呈弯折状,作用端11和第二耦合端12可不沿直线方向相对,但作用端11和第二耦合端12分别为所述第一辐射体10的两个末端。
所述第二耦合端12与所述第一耦合端22之间为所述耦合缝隙13。当第二辐射体20、第一辐射体10集成于电子设备1000的边框310上时,所述第一辐射体10与所述第二辐射体20可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,所述第一辐射体10与所述第二辐射体20还可在延伸方向上错开设置,以形成避让空间。所述第二耦合端12与所述第一耦合端22相对且间隔设置。所述耦合缝隙13为所述第一辐射体10与所述第二辐射体20之间的断缝,例如,所述耦合缝隙13的宽度可以为0.5~2mm,但不限于此尺寸。所述第一辐射体10和所述第二辐射体20可看作为导电边框310被耦合缝隙13隔断而形成的两个部分。在边框310成型的过程中,会在耦合缝隙13中填充绝缘介质,以确保整个边框310的完整性和结构强度。
所述第二馈电系统40电连接所述第一辐射体10上的第二馈电点B。可选的,第二馈电系统40可设于电子设备1000内的电路板上,通过导电弹片与第一辐射体10的第二馈电点B电连接。当然,在其他实施方式中,第二馈电系统40还可以通过导电卡合件、导电胶、导电焊接盘等方式与第一辐射体10的第二馈电点B电连接。
请参阅图5,所述第一接地端21接地。可以理解的,本申请中所述的“接地”是指电连接参考地或者说电连接参考地系统GND。
具体的,所述第一接地端21电连接参考地系统GND,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。参考地系统GND可以为一个独立的整体结构,也可以是多个相互独立但相互电连接的结构。
可选的,所述天线系统100自身具有参考地系统GND。该参考地系统GND的具体形式包括但不限于 金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。当所述天线系统100设于所述电子设备1000内时,所述天线系统100的参考地系统GND电连接至所述电子设备1000的参考地。再可选的,所述天线系统100本身不具有参考地系统GND,所述天线系统100的所述第一接地端21通过直接电连接或通过导电件间接电连接至所述电子设备1000的参考地系统GND或所述电子设备1000内的电子器件的参考地系统GND。本实施例中,所述天线系统100设于所述电子设备1000,所述电子设备1000为手机,参考地系统GND为手机所述中板330的镁铝金属合金板。后续所述天线系统100的其他结构电连接参考地系统GND,可参考上述的任意一种电连接至参考地系统GND的实施方式。
本申请对于作用端11的设计包括但不限于以下的实施方式。
在第一种作用端11的实施方式中,请参阅图5,所述作用端11接地,即电连接参考地系统GND。作用端11也可以成为“接地端”。此时,第一辐射体10形成倒F天线。
第一辐射体10复用作为第一馈电系统30收发MHB频段的辐射体。举例而言,所述第一馈电系统30至少激励所述第二耦合端12与所述第二馈电点B之间的部分产生谐振。可选的,第一馈电系统30激励所述第二耦合端12与所述第二馈电点B之间的部分产生MHB频段对应的1/4波长模式的谐振模式。图5所示1/4波长模式的谐振电流(图5中虚线箭头所示)主要分布在所述第二耦合端12与所述第二馈电点B之间。当然,也可以有少部分的谐振电流分布在第二馈电点B与作用端11之间、或者分布在第二辐射体20上。可以理解的,上述的1/4波长模式只是第一馈电系统30收发MHB频段的其中一个谐振模式。
图5所示1/4波长模式的谐振电流的方向为从所述第二馈电点B流向所述第二耦合端12(即耦合缝隙13)。当然,谐振电流的方向还可以从所述第二耦合端12(即耦合缝隙13)流向所述第二馈电点B。
其中,从一种便于理解角度说明,1/4波长模式可理解为所述第二耦合端12与所述第二馈电点B之间的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为所述第二耦合端12与所述第二馈电点B之间的长度的限定。
通过对所述第二耦合端12与所述第二馈电点B之间的有效电长度进行设计,即对第二馈电点B的位置进行设计,以使所述第二耦合端12与所述第二馈电点B之间的有效电长度对应于所需支持所述MHB频段的1/4介质波长。其中,所述的“对应”可理解为所述第二耦合端12与所述第二馈电点B之间的有效电长度约为所需支持所述MHB频段的1/4介质波长。其中,1/4波长模式也可以称为基态,基态下具有较高的天线效率,进而提高对于所需支持所述MHB频段的收发效率。
需要说明的是,本申请所述第二耦合端12与所述第二馈电点B之间的有效电长度约为某一频段的某一介质波长,并不限定第二耦合端12与所述第二馈电点B之间的物理长度为该频段的该介质波长。因为可以在第二耦合端12与所述第二馈电点B之间电连接一些调谐器件,以调谐第二耦合端12与所述第二馈电点B之间的有效电长度,例如,通过设置电感、电容,以增加或减小第二耦合端12与所述第二馈电点B之间的有效电长度。
以上为第一辐射体10复用作为收发MHB频段的辐射体的一种具体举例,在其他实施方式中,通过对第二馈电点B的位置设计,还可以使第一馈电系统30激励所述第二耦合端12与所述第二馈电点B之间的部分产生MHB频段对应的1/2、3/4或1倍波长模式的谐振模式。
在第二种作用端11的实施方式中,请参阅图6,所述作用端11为自由端。即作用端11不电连接于参考地系统GND,也不会与其他的辐射体形成耦合。在电子设备1000的边框310上,作用端11可通过绝缘断缝与其他的辐射体进行隔开。此时,第一辐射体10形成T型天线。
当然,第一辐射体10的形式不限于上述的倒F天线、T型天线,还可以是回路天线(LOOP天线)等。
请参阅图6,所述第一辐射体10还可以具有位于所述第二馈电点B与所述第二耦合端12之间的第一匹配点D。
请参阅图6,所述天线系统100还包括第一匹配电路M1。所述第一匹配电路M1的一端电连接所述第一匹配点D,所述第一匹配电路M1的另一端接地。所述第一馈电系统30至少激励所述第二耦合端12与所述第一匹配点D之间的部分产生谐振。可选的,第一馈电系统30激励所述第二耦合端12与所述第一匹配点D之间的部分产生MHB频段对应的1/4波长模式的谐振模式。图6所示1/4波长模式的谐振电流(图6中虚线箭头所示)主要分布在所述第二耦合端12与所述第一匹配点D之间。当然,也可以有少部分的谐振电流分布在第一匹配点D与作用端11之间、或者分布在第二辐射体20上。可以理解的,上述的1/4波长模式只是第一馈电系统30收发MHB频段的其中一个谐振模式。
所述第一匹配电路M1包括电容器件、电感器件、开关调谐器件中的至少一者。可以理解的,第一匹配电路M1对MHB频段对应的1/4波长模式的谐振电流呈低阻抗状态,即可将MHB频段对应的1/4波长 模式的谐振电流回地,增加了MHB频段的谐振电流的路径,以支持MHB频段对应的1/4波长模式。
图6所示1/4波长模式的谐振电流的方向为从所述第一匹配点D流向所述第二耦合端12(即耦合缝隙13)。当然,谐振电流的方向还可以从所述第二耦合端12(即耦合缝隙13)流向所述第一匹配点D。
通过对所述第二耦合端12与所述第一匹配点D之间的有效电长度、第一匹配电路M1进行设计,以使支持所述MHB频段的1/4介质波长的谐振电流经第一匹配电路M1回地,以支持MHB频段对应的1/4波长模式。
以上为第一辐射体10复用作为第一馈电系统30收发MHB频段的辐射体的一种具体举例,在其他实施方式中,通过对第一匹配点D的位置设计,还可以使第一馈电系统30激励所述第二耦合端12与所述第一匹配点D之间的部分产生MHB频段对应的1/2、3/4或1倍波长模式的谐振模式。
以上为第一辐射体10复用为第一馈电系统30的辐射体,以下对第二辐射体20复用为第二馈电系统40的辐射体进行举例说明。
请参阅图7,所述第二辐射体20还具有位于所述第一接地端21与所述第一耦合端22之间的第二匹配点E。所述天线系统100还包括第二匹配电路M2。所述第二匹配电路M2包括电容器件。所述第二匹配电路M2的一端电连接所述第二匹配点E,所述第二匹配电路M2的另一端接地。所述第二馈电系统40至少用于激励所述第一耦合端22与所述第二匹配点E之间的部分产生谐振。可选的,第二馈电系统40激励所述第一耦合端22与所述第二匹配点E之间的部分产生低频频段对应的1/4波长模式的谐振模式。图7所示1/4波长模式的谐振电流(图7中虚线箭头所示)主要分布在所述第一耦合端22与所述第二匹配点E之间。当然,也可以有少部分的谐振电流分布在第二匹配点E与作用端11之间、或者分布在第一辐射体10上。可以理解的,上述的1/4波长模式只是第二馈电系统40收发低频频段的其中一个谐振模式。
由于低频频段需要相对较长的辐射体支持,而第二辐射体20的物理长度相对较短,故通过设置所述第二匹配电路M2包括电容器件。电容器件接地。电容器件将所述第一耦合端22与所述第二匹配点E之间的部分产生谐振的谐振频率向低偏移。例如,原本所述第一耦合端22与所述第二匹配点E之间的部分产生谐振的谐振频率为1500MHz,通过在第二匹配点E设置电容器件,电容器件将谐振频率从1500MHz调节至1000MHz附近,以实现第二辐射体20对于低频频段的支持。电容器件对上述低频频段对应的1/4波长模式的谐振电流呈低阻抗状态,即可将上述低频频段对应的1/4波长模式的谐振电流回地,增加了低频频段的谐振电流的路径,以支持低频频段对应的1/4波长模式。
图7所示1/4波长模式的谐振电流的方向为从所述第一耦合端22(即耦合缝隙13)流向所述第二匹配点E。当然,谐振电流的方向还可以从所述第二匹配点E流向所述第一耦合端22(即耦合缝隙13)。
通过对所述第一耦合端22与所述第二匹配点E之间的有效电长度、第二匹配电路M2进行设计,以使支持低频频段的1/4介质波长的谐振电流在第二辐射体20上经第二匹配电路M2回地,以支持低频频段对应的1/4波长模式,实现第二辐射体20对于低频频段的支持,进而实现第二辐射体20的复用。
以上为第二辐射体20复用作为第二馈电系统40收发低频频段的辐射体的一种具体举例。在其他实施方式中,通过对第二匹配点E的位置设计,还可以使第二馈电系统40激励所述第一耦合端22与所述第二匹配点E之间的部分产生低频频段对应的1/2、3/4或1倍波长模式的谐振模式。
以上为第一辐射体10与第二辐射体20的结构举例,以下对于本申请提供的天线系统100中至少三个第一辐射体10的工作状态进行举例。
在一般技术中,天线系统100的辐射系统会受到手握持的影响,例如,不同手握姿势时,会握住不同天线(即辐射体),导致该天线的辐射效率低,工作环境差。例如,图8中,竖握时天线ANT0有很大概率被握死,横握时天线ANT1有很大概率被握死。而用户的握持手势是不确定的,也就是说,电子设备1000中的天线可能会发生被握死的现象,而发射天线(发射天线为用于发射的辐射体)被握死的话将导致电子设备1000无法与基站进行连接或连接不良,即电子设备1000无信号或信号极弱,导致用户的体验。
本实施例中,请参阅图9,所述天线系统100还包括至少三个第一射频模组50、至少一个第一控制模组60及第一检测模组70。
请参阅图9,至少三个所述第一射频模组50中包括至少一个第一射频接收模组51和至少一个第一射频收发模组52。
所述第一射频收发模组52用于接收和发射低频信号。可以理解的,第一射频收发模组52集成有射频接收模组和射频发射模组。其中,射频接收模组电连接功率源。需要说明的是,射频接收模组和射频发射模组集成在一个芯片(即,第一射频收发模组52)中,以使该芯片具有接收和发射信息的作用。其中,第一射频收发模组52可同时实现射频信号的接收和发射(即FDD模式);也可以通过开关切换在第一时间 段内发射射频信号,及通过开关切换在第二时间内接收射频信号(即TDD模式)。第一射频收发模组52可在上述的两种模式下切换。
所述第一射频接收模组51用于接收低频信号,第一射频接收模组51能够接收任意频段的低频信号。
可选的,第一射频模组50的总数与第一辐射体10的总数量相同。
所述第一控制模组60电连接至少两个所述第一射频模组50、所述第一检测模组70及至少两个第一辐射体10。可以理解的,所述第一控制模组60通过第一馈电系统30的第一馈源31电连接第一辐射体10(结合参考图5及图9)。当第一辐射体10的数量为三个时,第一控制模组60可电连接两个、三个第一辐射体10。当第一辐射体10的数量为四个时,第一控制模组60可电连接两个、三个或四个第一辐射体10。
请参阅图10,所述第一检测模组70用于至少两个第一辐射体10(可能是两个、三个或四个)中确定出信号强度最高的第一辐射体10。可选的,所述第一检测模组70检测所述第一控制模组60所电连接的所述第一辐射体10的信号强度,并根据所述信号强度确定至少一个目标第一辐射体10a和至少一个非目标第一辐射体10b。其中,所述目标第一辐射体10a的信号强度大于所述非目标第一辐射体10b的信号强。进一步地,所述第一控制模组60所电连接的所述第一辐射体10中,信号强度最大的第一辐射体10为目标第一辐射体10a,剩下的第一辐射体10为非目标第一辐射体10b。可选的,第一检测模组70通过在第一射频模组50端检测信号接收强度以检测第一辐射体10的信号强度,进而确定第一辐射体10的工作环境是否良好。
请参阅图10,第一控制模组60包括第一开关模块61和控制所述第一开关模块61工作的控制器(未图示)。第一开关模块61的输入端电连接于上述的至少一个第一射频收发模组52、上述的至少一个第一射频接收模组51,第一开关模块61的输出端电连接于至少三个第一辐射体10。需要说明的是,上述对于第一开关模块61的输入端和输出端划分是射频信号从第一射频模组50至辐射体端的方向为参考进行描述,并不限定射频信号只能从第一射频模组50至辐射体端的方向进行传输,本申请中的射频信号还可以从辐射端至第一射频模组50的方向传输。
本申请对于第一开关模块61的具体结构不做限定,可选的,第一开关模块61具有至少两个输入端、至少两个输出端,即第一开关模块61需要实现至少两路的切换功能,第一开关模块61可以是一个开关元件,也可以是多个开关元件的组合形成,这些开关元件包括但不限于为DP4T(双刀4掷开关)、DPDT(双刀双掷开关)、SP4T(单刀4掷开关)、SPST(单刀双掷开关)、SPnT(单刀n掷开关)。比如,4个DPDT(双刀双掷开关)实现4P4T(4刀4掷开关)的功能。
请参阅图10,所述第一控制模组60用于在所述第一检测模组70确定所述目标第一辐射体10a之后,切换所述第一射频收发模组52电连接至所述目标第一辐射体10a。且所述第一控制模组60还用于在所述第一检测模组70确定所述非目标第一辐射体10b之后切换所述第一射频接收模组51电连接至所述非目标第一辐射体10b。
可选的,所述第一检测模组70通过在第一射频模组50端检测多个第一辐射体10的信号接收强度,并比较多个信号接收强度的大小,确定信号接收强度最大的第一辐射体10为目标第一辐射体10a,及确定信号接收强度较小的第一辐射体10为非目标第一辐射体10b,并将确定的目标第一辐射体10a、非目标第一辐射体10b的位置以电信号形式发送至控制器,控制器通过切换第一开关模块61,使第一射频收发模组52电连接至信号强度最高的第一辐射体10,及使第一射频收发模组52电连接至其他信号强度的第一辐射体10。
上述的过程可以是实时动态的过程。即第一检测模组70实时检测多个第一辐射体10的信号接收强度,控制器实时调节第一开关模块61,实现智能切换,以确保无论多个第一辐射体10的工作环境如何变化(或者手握姿势如何变化),都能够将信号接收强度最优的第一辐射体10作为发射辐射体,其他的第一辐射体10作为接收辐射体,以在不同的手握姿势时保持发射辐射体具有较好的信号质量,提高电子设备1000的信号稳定性,提高用户的使用体验。
本申请提供了多个不同工作模式的天线系统100的实施例,以实现在不同握持手势下皆能够具有较高的信号强度。
在第一种工作模式的天线系统100的实施例中,所述第一辐射体10的数量为三个。三个所述第一辐射体10中至少两者的辐射朝向不同。
本实施例中,请参阅图11,以三个第一辐射体10为导电边框辐射体为例。电子设备1000的边框310大致呈矩形。三个第一辐射体10中至少两者设于边框310的不同边,以实现三个第一辐射体10中的至少两者的辐射朝向不同。三个第一辐射体10中的至少两者的辐射朝向不同,一方面,以避免多个第一辐射 体10皆被相同的握持手势遮挡,增加在不同握持手势下皆有第一辐射体10未被握持的概率,以确保在不同握持手势下,皆可以切换到适合的工作环境的第一辐射体10作为目标第一辐射体10a;另一方面,可增加第一辐射体10的方向图的互补,以提高低频信号的覆盖角度。
请参阅图11,三个所述第一辐射体10分别记为第一子辐射体101、第二子辐射体102、第三子辐射体103。以电子设备1000的后盖320侧的视角为例,边框310包括依次设置的第一侧边311、第二侧边312、第三侧边313、第四侧边314。其中,第一侧边311为顶边,第二侧边312为朝向图11所示的边框310的视角的左手边,第三侧边313为底边,第四侧边314为朝向图11所示的边框310的视角的右手边。
三个所述第一辐射体10尽可能的排布在边框310的多侧,以在不同的方向辐射天线信号,还可以应对不同的握持手势。本实施方式以第一子辐射体101设于边框310的第二侧边312(例如,中间部分)、第二子辐射体102设于边框310的第三侧边313(即底边)、第三子辐射体103设于边框310的第四侧边314的中间位置为例进行举例说明,不限于此布局方式。如此布局,当用户横屏握持(用户朝向显示屏)时,第一子辐射体101和第三子辐射体103未被遮挡,可具有较高的信号强度;当用户竖屏握持(用户朝向显示屏)时,第二子辐射体102未被遮挡,可具有较高的信号强度。
请参阅图12,所述至少三个第一射频模组50包括两个所述第一射频收发模组52及一个所述第一射频接收模组51。两个第一射频收发模组52分别记为第一收发模组521和第二收发模组522。所述第一控制模组60电连接三个所述第一辐射体10、所述第一收发模组521、所述第二收发模组522及所述第一射频接收模组51。第一控制模组60控制三个第一辐射体10分别电连接所述第一收发模组521、所述第二收发模组522及所述第一射频接收模组51。
在图11中,3P3T表示三刀三掷可以任意切换的第一开关模块61,不限于此方式,后面进行具体详述。TX1/RX表示电连接一个第一射频收发模组52的接口,TX2/RX表示电连接另一个第一射频收发模组52的接口。RX表示电连接第一射频接收模组51的接口。PA-1表示电连接一个第一射频收发模组52的第一个功率源。PA-2表示电连接另一个第一射频收发模组52的第二个功率源。
所述第一检测模组70用于根据三个所述第一辐射体10的信号强度确定三个所述第一辐射体10中的两者为两个所述目标第一辐射体10a,另一者为所述非目标第一辐射体10b。
请参阅图12,所述第一控制模组60用于在所述第一检测模组70确定两个所述目标第一辐射体10a之后切换所述第一收发模组521电连接至两个所述目标第一辐射体10a中的一者、切换所述第二收发模组522电连接至两个所述目标第一辐射体10a中的另一者、及在所述第一检测模组70确定所述非目标第一辐射体10b之后切换所述第一射频接收模组51电连接至所述非目标第一辐射体10b。
换言之,所述第一控制模组60根据三个第一辐射体10的信号强度,实时切换三个第一辐射体10中信号强度较强的两个第一辐射体10进行接收和发射工作,另一个信号强度相对较弱的第一辐射体10进行接收工作。从功能上进行划分,工作时形成了两个发射天线和三个接收天线,利于支持LB频段+LB频段,即利于支持两个不同的低频频段。
本实施例中,将两个第一辐射体10作为可发射可接收的辐射体。将可发射的辐射体称为发射天线,发射天线的数量越多,天线增益叠加,覆盖范围(通信距离)扩大很多倍。当多个发射天线方向图叠加时,多个发射天线的信号增益叠加,进而能够应用于农村、戈壁、山川、河流、森林等区域以连接到更远距离的天线基站,如此,可在人烟较少的区域设置相对较远距离的基站,提升低频覆盖广度;或者,在电梯、地下车库、仓库等信号相对较弱的区域也能够具有较好的信号强度,提升覆盖深度,确保通讯质量。当多个发射天线的方向图互补时,多个发射天线可提高信号覆盖角度,利于接收到不同方向的基站信号。
此外,发射天线越多的话,两支发射天线可以分别支持4G移动通信信号和5G移动通信信号,利于实现4G-5G双连接(即4G-5G ENDC);或者,电子设备1000具有双卡配置时,一个SM卡需要一支发射天线支持5G移动通信信号,另一个SM卡需要另一支发射天线支持4G-5G ENDC移动通信信号等。
综上,多个发射天线利于增加天线增益、扩大覆盖范围、提升信号质量,以支持双卡配置等。
本实施方式中以两个第一辐射体10用于发射,在其他实施方式中,还可以以三个或三个以上的第一辐射体10用于发射,一支发射天线可支持4G-5G ENDC,其他支发射天线支持4G移动通信信号、或5G移动通信信号、或4G-5G ENDC移动通信信号等。
多个接收天线(接收天线为用于接收的辐射体)能够增加空间分集,提升电子设备1000的下载数据,提高电子设备1000的上网速度,提升用户体验。
可选的,请参阅图11及图12,当用户横屏握持时,第一检测模组70检测到第一子辐射体101和第三子辐射体103的信号强度相对较高,确定第一子辐射体101和第三子辐射体103为目标第一辐射体10a, 第二子辐射体102为非目标第一辐射体10b。控制器控制第一开关模块61切换第一收发模组521电连接至第一子辐射体101,及控制第一开关模块61切换第二收发模组522电连接至第三子辐射体103,及控制第一开关模块61切换第一射频接收模组51电连接至第二子辐射体102。
当用户竖屏握持(例如左手握持)时,第一检测模组70检测到第一子辐射体101、第二子辐射体102的信号强度相对较高,确定第一子辐射体101、第二子辐射体102为目标第一辐射体10a,第三子辐射体103为非目标第一辐射体10b。控制器控制第一开关模块61切换第一收发模组521电连接至第一子辐射体101,及控制第一开关模块61切换第二收发模组522电连接至第二子辐射体102,及控制第一开关模块61切换第一射频接收模组51电连接至第三子辐射体103。
以上第一检测模组70、第一控制模组60相配合以实现在不同的握持手势下的发射天线和接收天线的切换,以实现发射天线具有较好的信号强度,且由于发射天线同时能够实现接收,故天线系统100仍具有较好的信号收发能力。
本实施方式还能够以相对较少数量的第一辐射体10同时支持两个不同的低频频段,以下进行具体的说明。
可选的,所述第一收发模组521用于发射第一低频信号,所述第二收发模组522用于发射第二低频信号。第一低频信号和第二低频信号的频段不同,例如,第一低频信号为B20、N28中的一者,第二低频信号为B20、N28中的另一者。
所述第一控制模组60还用于在三个所述第一辐射体10中选择两者接收所述第一低频信号及选择另两者接收所述第二低频信号。例如,第一子辐射体101和第二子辐射体102支持B20的接收,第一子辐射体101和第三子辐射体103支持N28的接收,如此,实现了以三支第一辐射体10同时支持两个不同的低频频段,既实现了对于两个不同的低频频段的同时支持,还减少了第一辐射体10的数量,节省了所占据的空间,为电子设备1000设置其他的辐射体创造了空间条件。
对于本实施例提供的三个第一辐射体10而言,本申请对于第一控制模组60包括以下的设计:
本实施例提供的第一种第一控制模组60的实施方式中,请参阅图11,第一控制模组60包括三刀三掷可任意切换的第一开关模块61。即三个输入端的射频模组可以电连接至任意的第一辐射体10。
本申请还提供了第二种第一控制模组60的实施方式,请参阅图13,第一控制模组60包括双刀双掷可任意切换的第一开关模块61及一路射频模组与一路第一辐射体10固定电连接。即第一开关模块61的两个输入端的射频模组可以电连接至两个第一辐射体10中的任意一个。与第一辐射体10固定电连接的射频模组可以是第一收发模组521、或第二收发模组522、或第一射频接收模组51。其中,图13只是其中的一种实施方式。
当然,在本申请的其他实施方式中,每一路射频模组皆与一路第一辐射体10固定电连接。
本申请还提供了一种本实施方式的变形实施方式,请参阅图14,第一射频收发模组52的数量为一个,第一射频接收模组51的数量为2个。图14中的RX1表示电连接一个第一射频接收模组51的接口。图14中的RX2表示电连接另一个第一射频接收模组51的接口。图14中的TX1/RX表示电连接一个第一射频收发模组52的接口。第一控制模组60用于切换第一射频收发模组52电连接至三个第一辐射体10中信号强度相对较高的第一辐射体10,两个第一射频接收模组51电连接至三个第一辐射体10中两个强信号度相对较弱的第一辐射体10。在工作时,第一控制模组60还可控制第一射频收发模组52与一个第一射频接收模组51一起工作,以支持一个低频信号;或者,切换至第一射频收发模组52与另一个第一射频接收模组51一起工作,以支持一个低频信号。
在第二种工作模式的天线系统100的实施例中,请参阅图15,所述第一辐射体10的数量为四个。四个所述第一辐射体10中至少两者的辐射朝向不同。四个所述第一辐射体10中至少两者的辐射朝向不同的作用可参考第一种工作模式的天线系统100中三个所述第一辐射体10中至少两者的辐射朝向不同的作用,在此不再赘述。
请参阅图15,四个所述第一辐射体10分别记为第一子辐射体101、第二子辐射体102、第三子辐射体103及第四子辐射体104。
本实施方式以第一子辐射体101设于边框310的第二侧边312(例如,中间部分)、第二子辐射体102设于边框310的第三侧边313(即底边)、第三子辐射体103设于边框310的第四侧边314的中间位置、第四子辐射体104设于边框310的第二侧边312靠近第三侧边313的位置为例进行举例说明,不限于此布局方式。如此布局,当用户横屏握持时,第一子辐射体101和第三子辐射体103未被遮挡,可具有较高的信号强度;当用户竖屏握持时,第二子辐射体102未被遮挡,第四子辐射体104不易被遮挡,可具有较高的 信号强度。
请参阅图16,所述至少三个第一射频模组50包括至少一个所述第一射频收发模组52及至少两个所述第一射频接收模组51。至少一个所述第一控制模组60电连接至少两个所述第一辐射体10、至少一个所述第一射频收发模组52及至少一个所述第一射频接收模组51。
本实施方式中,所述至少三个第一射频模组50包括一个第一射频收发模组52及三个所述第一射频接收模组51。三个第一射频接收模组51分别为第一接收模组511、第二接收模组512和第三接收模组513。
图15中TX1/RX为电连接第一射频收发模组52的接口。RX1、RX2及RX3分别是电连接第一接收模组511、第二接收模组512和第三接收模组513的接口。4P4T为4进4出且可以任意切换的第一开关模块61。
所述第一检测模组70用于根据至少一个所述第一控制模组60所电连接的所述第一辐射体10的信号强度在四个所述第一辐射体10中确定一个所述目标第一辐射体10a和三个所述非目标第一辐射体10b。其中,至少一个所述第一控制模组60所电连接的所述第一辐射体10可以是两个、三个或四个第一辐射体10。
请参阅图17,所述第一控制模组60用于切换所述第一射频收发模组52电连接至所述目标第一辐射体10a,及控制三个所述第一射频接收模组51分别电连接至三个所述非目标第一辐射体10b。
对于本实施例提供的四个第一辐射体10、一个第一射频收发模组52及三个所述第一射频接收模组51而言,本申请对于第一控制模组60包括以下的设计:
本实施例提供的第一种第一控制模组60的实施方式中,请参阅图16,第一控制模组60包括四刀四掷且可任意切换的第一开关模块61,四个所述第一辐射体10皆电连接所述第一开关模块61的输出端。所述第一射频收发模组52可电连接至任意一个第一辐射体10。
所述第一控制模组60电连接四个所述第一辐射体10、所述第一射频收发模组52、所述第一接收模组511、所述第二接收模组512及所述第三接收模组513。
所述第一检测模组70用于根据四个所述第一辐射体10的信号强度确定四个所述第一辐射体10中的一者为所述目标第一辐射体10a,另三者为三个所述非目标第一辐射体10b。
所述第一控制模组60用于在所述第一检测模组70确定所述目标第一辐射体10a之后切换所述第一射频收发模组52电连接至所述目标第一辐射体10a,及在所述第一检测模组70确定三个所述非目标第一辐射体10b之后切换所述第一接收模组511、所述第二接收模组512及所述第三接收模组513分别电连接至三个所述非目标第一辐射体10b。
换言之,所述第一控制模组60根据四个第一辐射体10的信号强度,实时切换四个第一辐射体10中信号强度较强的一个第一辐射体10进行接收和发射工作,另三个信号强度相对较弱的第一辐射体10进行接收工作。
多个接收天线能够提升电子设备1000的下载数据,提高电子设备1000的上网速度,提升用户体验。
可选的,请参阅图15及图16,当用户横屏握持时,第一检测模组70检测到第一子辐射体101的信号强度相对较高,确定第一子辐射体101为目标第一辐射体10a,其他的第一辐射体10为非目标第一辐射体10b。控制器控制第一开关模块61切换第一射频收发模组52电连接至第一子辐射体101,及控制第一开关模块61切换第一接收模组511、第二接收模组512和第三接收模组513分别电连接第二子辐射体102、第三子辐射体103、第四子辐射体104。
请参阅图15及图16,当用户竖屏握持(例如右手握持)时,第一检测模组70检测到第三子辐射体103的信号强度相对较高,确定第三子辐射体103为目标第一辐射体10a,其他的第一辐射体10为非目标第一辐射体10b。控制器控制第一开关模块61切换第一射频收发模组52电连接至第三子辐射体103,及控制第一开关模块61切换第一接收模组511、第二接收模组512和第三接收模组513分别电连接第二子辐射体102、第一子辐射体101、第四子辐射体104。
以上第一检测模组70、第一控制模组60相配合以实现在不同的握持手势下的发射天线和接收天线的切换,以实现发射天线具有较好的信号强度,且由于发射天线同时能够实现接收,故天线系统100仍具有较好的信号收发能力。第一控制模组60能够切换第一射频收发模组52电连接至四个第一辐射体10中的任意一个,那么每个第一辐射体10皆能够支持信号发射和接收,如此,实现了低频段的4*4多进多出(Multiple input Multiple output,MIMO),低频信号可以为5G或4G信号,即利于实现包括5G独立组网(SA)或非独立组网(NSA)低频段的4*4MIMO,利于提升天线信号的深度覆盖、增加吞吐量和提升下载速度,还实现5G独立组网(SA)低频段探照参考信号(Sounding Reference Signal,SRS)的1发射4接收。
本申请还提供了第二种第一控制模组60的实施方式,请参阅图18,第一控制模组60包括三刀三掷且可任意切换的第一开关模块61,三个所述第一辐射体10电连接所述第一开关模块61,另一个所述第一辐射体10电连接所述第一射频接收模组51或所述第一射频收发模组52。即第一开关模块61的三个输入端的第一射频模组50可以电连接至三个第一辐射体10中的任意一个。与第一辐射体10固定电连接的第一射频模组50可以是第一射频收发模组52、或第一接收模组511、或第二接收模组512、或第三接收模组513。
换言之,所述第一控制模组60根据三个第一辐射体10的信号强度,实时切换三个第一辐射体10中信号强度较强的一个第一辐射体10进行接收和发射工作,另两个个信号强度相对较弱的第一辐射体10进行接收工作。
多个接收天线能够提升电子设备1000的下载数据,提高电子设备1000的上网速度,提升用户体验。
第一控制模组60未电连接的第一辐射体10固定连接一个第一射频模组50。包括以下实施方式:
请参阅图18,三个所述第一辐射体10电连接所述第一开关模块61,另一个所述第一辐射体10电连接所述第一射频接收模组51。图18中RX4是电连接第一射频接收模组51的接口。未电连接第一控制模组60的第一辐射体10用于接收低频信号。如此,本实施方式中,四支第一辐射体10在工作时一支发射天线以及四支接收天线。其中,一支发射天线可以在第一子辐射体101、第二子辐射体102、第三子辐射体103中任意切换。三支接收天线可以在第一子辐射体101、第二子辐射体102、第三子辐射体103中任意切换,而另一支接收天线为固定天线。
本实施方式中,未电连接第一控制模组60的第一辐射体10位于边框310的第二侧边312靠近第三侧边313的位置。边框310的第二侧边312靠近第三侧边313的位置容易在握持时发生遮挡,所以在边框310的第二侧边312靠近第三侧边313的位置不设置发射天线,在其他相对不易被握持遮挡的位置切换发射天线,可相对提高发射天线的辐射效率。相较于四个输入输出的开关模块,减少了控制端数量,节省成本。
当然,在其他实施方式中,固定天线还可以为设于在第二侧边312其他位置的第一辐射体10,设置在第一侧边311的第一辐射体10,设置在第三侧边313的第一辐射体10,以及设置在第四侧边314的第一辐射体10。
本申请还提供了第三种第一控制模组60的实施方式,所述第一控制模组60的数量为两个。每个所述第一控制模组60包括双刀双掷且任意切换的第一开关模块61。四个所述第一辐射体10中的两者电连接一个所述第一控制模组60,四个所述第一辐射体10中的另两者电连接另一个所述第一控制模组60。
当然,在本申请的其他实施方式中,每一路第一射频模组50皆与一路第一辐射体10固定电连接。
在第三种工作模式的天线系统100的实施例中,请参阅图19,本实施例与第二种工作模式的天线系统100的实施例大致相同,所述第一辐射体10的数量为四个,四个所述第一辐射体10中至少两者的辐射朝向不同。四个所述第一辐射体10分别记为第一子辐射体101、第二子辐射体102、第三子辐射体103及第四子辐射体104。本实施方式以第一子辐射体101设于边框310的第二侧边312的中间部分、第二子辐射体102设于边框310的第三侧边313(即底边)、第三子辐射体103设于边框310的第四侧边314的中间位置、第四子辐射体104设于边框310的第二侧边312靠近第三侧边313的位置为例进行举例说明,不限于此布局方式。
本实施例与第二种工作模式的天线系统100的实施例不同主要在于:
请参阅图20及图21,所述至少三个第一射频模组50包括两个所述第一射频收发模组52及两个所述第一射频接收模组51。
所述第一检测模组70用于根据至少一个所述第一控制模组60所电连接的所述第一辐射体10的信号强度在四个所述第一辐射体10中确定两个所述目标第一辐射体10a和两个所述非目标第一辐射体10b。
所述第一控制模组60用于切换两个所述第一射频收发模组52分别电连接至两个所述目标第一辐射体10a,及切换两个所述第一射频接收模组51分别电连接至两个所述非目标第一辐射体10b。
两个第一射频接收模组51分别为第一接收模组511和第二接收模组512。第一射频收发模组52的数量为两个。两个第一射频收发模组52分别为第一收发模组521和第二收发模组522。
图19中TX1/RX为电连接一个第一收发模组521的接口。TX2/RX为电连接另一个第二收发模组522的接口。RX1及RX2分别是电连接第一接收模组511及第二接收模组512的接口。4P4T为4进4出且可以任意切换的第一开关模块61。
对于本实施例提供的四个第一辐射体10、两个第一射频收发模组52及两个所述第一射频接收模组51而言,本申请对于第一控制模组60包括以下的设计:
本实施例提供的第一种第一控制模组60的实施方式中,请参阅图20及图21,第一控制模组60包括四刀四掷且可任意切换的第一开关模块61,四个所述第一辐射体10皆电连接所述第一开关模块61的输出端。所述第一射频收发模组52可电连接至任意一个第一辐射体10。
所述第一控制模组60电连接四个所述第一辐射体10、所述第一接收模组511、所述第二接收模组512、所述第一收发模组521和所述第二收发模组522。
所述第一检测模组70用于根据四个所述第一辐射体10的信号强度确定四个所述第一辐射体10中的两者分别为两个所述目标第一辐射体10a,另两者分别为两个所述非目标第一辐射体10b。
所述第一控制模组60用于在所述第一检测模组70确定两个所述目标第一辐射体10a之后切换所述第一收发模组521和所述第二收发模组522分别电连接至两个所述目标第一辐射体10a,及在所述第一检测模组70确定两个所述非目标第一辐射体10b之后切换所述第一接收模组511和所述第二接收模组512分别电连接至两个所述非目标第一辐射体10b。在功能上,实现两个第一辐射体10发射和四个第一辐射体10接收。
换言之,所述第一控制模组60根据四个第一辐射体10的信号强度,实时切换四个第一辐射体10中信号强度较强的两个第一辐射体10进行接收和发射工作,另两个信号强度相对较弱的第一辐射体10进行接收工作。
多个接收天线能够提升电子设备1000的下载数据,提高电子设备1000的上网速度,提升用户体验。
本实施例提供的第二种第一控制模组60的实施方式,请参阅图22,所述第一控制模组60的数量为两个,每个所述第一控制模组60包括双刀双掷且任意切换的开关模块,四个所述第一辐射体10中的两者电连接一个所述第一控制模组60,四个所述第一辐射体10中的另两者电连接另一个所述第一控制模组60。两个第一控制模组60分别为相互独立的第一开关模块61和第二开关模块62。第一开关模块61为双刀双掷可任意切换的开关。第二开关模块62为双刀双掷可任意切换的开关。即双开关模块实现4天线切换。
第一开关模块61的两个输入端可以在第一收发模组521、第一接收模组511、第二收发模组522和第二接收模组512中任意的两者。第一开关模块61的两个输出端可以在第一子辐射体101、第二子辐射体102、第三子辐射体103和第四子辐射体104中任意的两者。
举例而言,请参阅图22,第一开关模块61的两个输入端分别电连接第一收发模组521(图22中TX1/RX为电连接第一收发模组521的接口)和第一接收模组511(图22中RX1为电连接第一接收模组511的接口);第一开关模块61的两个输出端分别电连接第一子辐射体101和第四子辐射体104。第二开关模块62的两个输入端分别电连接第二收发模组522(图22中TX2/RX为电连接第二收发模组522的接口)和第二接收模组512(图22中RX2为电连接第二接收模组512的接口);第二开关模块62的两个输出端分别电连接第二子辐射体102和第三子辐射体103。可选的,第一开关模块61和第二开关模块62皆为双刀双掷开关。
由于第一子辐射体101、第四子辐射体104设于边框310的整体左侧(以图22为参考),第二子辐射体102、第三子辐射体103靠近于边框310的整体右侧,通过设置第一子辐射体101、第四子辐射体104中的一者为发射天线,第二子辐射体102、第三子辐射体103中的一者为发射天线,如此,两个发射天线的方向图互补,以提高天线系统100的信号覆盖广度。
此外,在研发过程中发现,第一子辐射体101容易激励起参考地系统GND的横向电流(沿第一侧边311的方向),第四子辐射体104容易激励起参考地系统GND的纵向电流(沿第四侧边314的方向),第一子辐射体101在参考地系统GND上激励起的电流模式与第四子辐射体104在参考地系统GND上激励起的电流模式不同,则第一子辐射体101和第四子辐射体104的方向图不同,如此实现第一子辐射体101的方向图和第四子辐射体104的方向图至少部分互补,如此,提高天线系统100的覆盖广度。相应地,第三子辐射体103容易激励起参考地系统GND的横向电流,第二子辐射体102容易激励起参考地系统GND的纵向电流,第三子辐射体103在参考地系统GND上激励起的电流模式与第二子辐射体102在参考地系统GND上激励起的电流模式不同,则第二子辐射体102和第三子辐射体103的方向图不同,如此实现第二子辐射体102的方向图和第三子辐射体103的方向图至少部分互补,如此,提高天线系统100的覆盖广度。
再举例而言,在其他的实施方式中,请参阅图23,第一开关模块61的两个输入端分别电连接第一收发模组521(图23中TX1/RX为电连接第一收发模组521的接口)和第一接收模组511(图23中RX1为电连接第一接收模组511的接口);第一开关模块61的两个输出端分别电连接第一子辐射体101和第二子辐射体102。第二开关模块62的两个输入端分别电连接第二收发模组522(图23中TX2/RX为电连接第二收发模组522的接口)和第二接收模组512(图23中TX2/RX为电连接第二接收模组512的接口);第 二开关模块62的两个输出端分别电连接第三子辐射体103和第四子辐射体104。
由于第一子辐射体101容易在参考地系统GND上激励起横向电流,第二子辐射体102容易在参考地系统GND上激励起纵向电流,而且第一子辐射体101与的第二子辐射体102呈对角设置。第一子辐射体101的方向图与的第二子辐射体102的方向图互补,以提高天线系统100的覆盖广度;相应地,第三子辐射体103容易在参考地系统GND上激励起横向电流,第四子辐射体104容易在参考地系统GND上激励起纵向电流,而且第三子辐射体103与的第四子辐射体104呈对角设置。第三子辐射体103的方向图与的第四子辐射体104的方向图互补,以提高天线系统100的覆盖广度。
当然,在其他实施方式中,第一开关模块61的两个输入端分别电连接第一收发模组521和第一接收模组511;第二开关模块62的两个输入端分别电连接第二收发模组522和第二接收模组512;第一开关模块61的两个输出端分别电连接第一子辐射体101和第三子辐射体103。第二开关模块62的两个输出端分别电连接第二子辐射体102和第四子辐射体104。
本申请还提供了第三种第一控制模组60的实施方式,请参阅图24,所述第一控制模组60包括三刀三掷且任意切换的第一开关模块61,三个所述第一辐射体10电连接所述第一开关模块61,另一个所述第一辐射体10电连接所述第一射频接收模组51或所述第一射频收发模组52。
即第一开关模块61的三个输入端的第一射频模组50可以电连接至三个第一辐射体10中的任意一个。与第一辐射体10固定电连接的第一射频模组50可以是第一收发模组521、或第二收发模组522、或第一接收模组511、或第二接收模组512。
换言之,所述第一控制模组60根据三个第一辐射体10的信号强度,实时切换三个第一辐射体10中信号强度较强的一个第一辐射体10进行接收和发射工作,另两个个信号强度相对较弱的第一辐射体10进行接收工作。
多个接收天线能够提升电子设备1000的下载数据,提高电子设备1000的上网速度,提升用户体验。
第一控制模组60未电连接的第一辐射体10固定连接一个第一射频模组50。包括以下实施方式:
请参阅图25,三个所述第一辐射体10电连接所述第一开关模块61,另一个所述第一辐射体10电连接所述第一射频收发模组52。未电连接第一控制模组60的第一辐射体10用于发射和接收低频信号。如此,本实施方式中,四支第一辐射体10在工作时两支发射天线以及四支接收天线。其中,一支发射天线可以在第一、第二、第三子辐射体103中任意切换。另一支发射天线为固定天线。三支接收天线可以在第一子辐射体101、第二子辐射体102、第三子辐射体103中任意切换,而另一支接收天线为固定天线。
本实施方式中,未电连接第一控制模组60的第一辐射体10位于边框310的第二侧边312靠近第三侧边313的位置,当然,在其他实施方式中,固定天线还可以为设于在第二侧边312其他位置的第一辐射体10,设置在第一侧边311的第一辐射体10,设置在第三侧边313的第一辐射体10,以及设置在第四侧边314的第一辐射体10。
当然,在本申请的其他实施方式中,每一路第一射频模组50皆与一路第一辐射体10固定电连接。
本实施例提供的四个第一辐射体10中,其中两个作为发射天线及四个皆作为接收天线,相较于第一种工作模式提供的天线系统100,接收天线的数量增加,以实现4*4MIMO,实现了4*4多进多出(4*4多MIMO),利于天线信号的深度覆盖、增加吞吐量和提升下载速度;相较于第二种工作模式提供的天线系统100,发射天线的数量增加,利于增加天线增益、扩大覆盖范围、提升信号质量,以支持双卡配置等,还实现5G独立组网(SA)低频段探照参考信号(Sounding Reference Signal,SRS)的2发射4接收。
请参阅图3及图4,所述电子设备1000还包括参考地系统GND。所述至少三个第一辐射体10依次排列呈环形环绕于所述参考地系统GND的外围设置。
可选的,以所述参考地系统GND大致呈矩形为例进行举例说明,当然,本申请并不限定该参考地系统GND的形状。所述参考地系统GND包括依次连接的第一边81、第二边82、第三边83及第四边84。结合参考图11,其中,参考地系统GND的第一边81与边框310的第一侧边311相对设置。参考地系统GND的第二边82与边框310的第二侧边312相对设置。参考地系统GND的第三边83与边框310的第三侧边313相对设置。参考地系统GND的第四边84与边框310的第四侧边314相对设置。
所述至少三个第一辐射体10分别朝向至少三侧设置。可选的,所述至少三个第一辐射体10设于所述参考地系统GND的至少三边。例如,当第一辐射体10的数量为三个时,三个第一辐射体10分别设于参考地系统GND的第二边82、第三边83及第四边84。当第一辐射体10的数量为四个时,四个第一辐射体10分别设于第二边82、第三边83及第四边84;或者,分别设于第一边81、第二边82、第三边83及第四边84。
朝向同一侧设置的多个所述第一辐射体10中,至少两个所述第一辐射体10的谐振模式不同。换言之,在设于所述参考地系统GND同一边的多个所述第一辐射体10中,至少两个所述第一辐射体10的谐振模式不同。例如,两个第一辐射体10皆设于第二边82时,这两个第一辐射体10的谐振模式不同,例如,一者为1/4波长模式,另一者为1/2波长模式,如此,这两个第一辐射体10的电流模式不同,方向图不同,利于这两个第一辐射体10的方向图互补,利于提升天线系统100的覆盖广度。
所述第一边81的长度小于所述第二边82的长度。即第一边81为短边,第三边83为短边;第二边82为长边,第四边84为长边。
可选的,所述至少三个第一辐射体10包括依次排列呈环形的第一子辐射体101、第二子辐射体102及第三子辐射体103。所述第一子辐射体101沿第一方向延伸。其中,第一方向为第二边82所延伸方向。可选的,所述第一子辐射体101设于所述参考地系统GND的第二边82(例如,中间部分)的外侧且沿第二边82延伸。可选的地,第一子辐射体101可集成于第二侧边312。所述第二子辐射体102相对靠近所述第一子辐射体101沿第二方向延伸,所述第二方向与所述第一方向相交(相交角度为(0~90°])。可选的,第一方向垂直第二方向。所述第二子辐射体102相对远离所述第一子辐射体101的部分沿所述第一方向延伸。可选的,所述第二子辐射体102的一部分设于所述参考地系统GND的第三边83外且沿第三边83延伸,所述第二子辐射体102的另一部分设于所述第四边84外且沿第四边84延伸。可选的地,第二子辐射体102可集成于第三侧边313和第四侧边314。所述第三子辐射体103与所述第一子辐射体101相对设置且沿所述第一方向延伸。所述第三子辐射体103设于所述参考地系统GND的第四边84(例如,中间部分)外且沿第四边84延伸。可选的地,第三子辐射体103可集成于第四侧边314。
当然,上述的第一子辐射体101、第二子辐射体102及第三子辐射体103还可以设于其他的位置。
请参阅图3,所述至少三个第一辐射体10包括位于所述第一子辐射体101与所述第二子辐射体102之间的第四子辐射体104。所述第四子辐射体104靠近于所述第一子辐射体101的部分沿所述第一方向延伸,所述第四子辐射体104靠近于所述第二子辐射体102的部分沿所述第二方向延伸。可选的,所述第四子辐射体104的一部分设于所述参考地系统GND的第二边82外且沿第二边82延伸,所述第四子辐射体104的另一部分设于所述参考地系统GND的第三边83外且沿第三边83延伸。可选的地,所述第四子辐射体104的一部分集成于第二侧边312,所述第四子辐射体104的另一部分集成于第三侧边313。或者,所述第四子辐射体104位于所述第一子辐射体101与所述第三子辐射体103之间,且与所述第二子辐射体102相对设置。可选的,所述第四子辐射体104设于所述参考地系统GND的第一边81外且沿第一边81延伸。可选的地,所述第四子辐射体104集成于第一侧边311。
请参阅图3及图4,所述第二辐射体20包括第一耦合辐射体201和第二耦合辐射体202。所述第一耦合辐射体201位于所述第一子辐射体101与所述第二子辐射体102之间,所述第一耦合辐射体201沿所述第二方向延伸且与所述第二子辐射体102耦合。可选的,所述第一耦合辐射体201设于所述第三边83外且沿第三边83延伸,且与所述第二子辐射体102耦合。可选的地,所述第一耦合辐射体201集成于第三侧边313。可选的,当第四子辐射体104设于第二边82靠近第三边83的位置时,第一耦合辐射体201的接地端可与第四子辐射体104的接地端共用。第一耦合辐射体201与第四子辐射体104相互独立。所述第二耦合辐射体202位于所述第三子辐射体103远离所述第二子辐射体102的一侧,所述第二耦合辐射体102沿所述第一方向延伸且与所述第三子辐射体103耦合。可选的,所述第二耦合辐射体202设于所述第四边84外且沿第四边84延伸,且与所述第三子辐射体103耦合。可选的地,所述第二耦合辐射体202集成于第二侧边312。所述第二耦合辐射体202可设于第三子辐射体103靠近第一边81的一侧,利于竖屏握持时不易被遮挡。
第二辐射体20的形式不限于上述的倒F天线、T型天线,还可以是回路天线(LOOP天线)等。
本申请中的第一耦合辐射体201和第二耦合辐射体202所支持的频段可以相同或不同。本实施方式通过设置第一耦合辐射体201和第二耦合辐射体202分别设于第三边83和第四边84。在用户横屏握持电子设备1000时,第一耦合辐射体201被握持,而第二耦合辐射体202未被握持;在用户竖屏握持电子设备1000时,第一耦合辐射体201和第二耦合辐射体202皆不易被握持。如此,确保在不同用户握持方式下,第一耦合辐射体201和第二耦合辐射体202至少一者的工作环境良好。
请参阅图26,所述第二辐射体20还包括第三耦合辐射体203。所述第三耦合辐射体203位于所述第一子辐射体101远离所述第二子辐射体102的一端,所述第三耦合辐射体203沿所述第一方向延伸且与所述第一子辐射体101耦合。可选的,所述第三耦合辐射体203设于所述第二边82外且沿所述第二边82延伸,且与所述第一子辐射体101耦合。可选的地,所述第三耦合辐射体203集成于第二侧边312。第三耦 合辐射体203设于所述第一子辐射体101靠近第一边81的一侧。第三耦合辐射体203用于支持MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。
请参阅图26,所述天线系统100还包括顶部辐射体204。所述顶部辐射体204与所述第二子辐射体102相对设置,且沿所述第二方向延伸。可选的,所述顶部辐射体204设于所述第一边81外且沿第一边81延伸。可选的地,顶部辐射体204集成于第一侧边311。所述顶部辐射体204用于支持MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。顶部辐射体204可不与第一辐射体10相耦合。该顶部辐射体204利于竖屏握持时不易被遮挡。
请参阅图27,所述天线系统100还包括第二检测模组90、多个第二射频模组110及至少一个第二控制模组120。所述第二射频模组110包括至少一个第二射频收发模组111及至少一个第二射频接收模组112。
可选的,当顶部辐射体204与第一耦合辐射体201、第二耦合辐射体202、第三耦合辐射体203所支持的频段皆为同一类,例如皆为MHB频段。可将顶部辐射体记为未与第一辐射体10耦合的第二辐射体20。第二辐射体20的数量为四个,分别为第一耦合辐射体201、第二耦合辐射体202、第三耦合辐射体203、顶部辐射体204。
四个第二辐射体20分别设于参考地系统GND的第一边81、第二边82、第三边83及第四边84,以实现四个第二辐射体20的方向图互补且确保在不同的握持手势下皆具有第二辐射体20未被用户手部遮挡,具有良好的工作环境。四个第二辐射体20中三个与第一辐射体10耦合一个未与第一辐射体10耦合,其中,未与第一辐射体10耦合的第二辐射体20位于参考地系统GND的第一边81,三个第二辐射体20分别位于第二边82、第三边83及第四边84。当然,第二辐射体20的数量还可以为两个、三个、或者四个以上等,本申请对此不做具体的限定。同样的,本申请对于与第一辐射体10耦合的第二辐射体20的数量和位置也不做具体的限定。本申请对于未与第一辐射体10耦合的第二辐射体20的数量和位置也不做具体的限定。
四个第二辐射体20中每个第二辐射体20皆为即可发射又可接收的天线。在工作时,四个第二辐射体20中至少一个用于发射MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者,四个第二辐射体20中皆可接收MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。
请参阅图28,所述第二检测模组90用于检测多个所述第二辐射体20的信号强度,并根据多个所述第二辐射体20的信号强度确定至少一个目标第二辐射体20a和至少一个非目标第二辐射体20b。其中,所述目标第二辐射体20a的信号强度大于所述非目标第二辐射体20b的信号强度。
进一步地,四个第二辐射体20中,信号强度最大的第二辐射体20为目标第二辐射体20a,剩下的第二辐射体20为非目标第二辐射体20b。可选的,第二检测模组90通过在第二射频模组110端检测信号接收强度以检测第二辐射体20的信号强度,进而确定第二辐射体20的工作环境。
所述第二射频收发模组111用于接收和发射MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者,所述第二射频接收模组112用于接收中MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。
所述第二控制模组120电连接所述第二射频收发模组111、所述第二射频接收模组112、所述第二检测模组90及多个所述第二辐射体20。所述第二控制模组120用于在所述第二检测模组90确定至少一个所述目标第二辐射体20a之后切换所述第二射频收发模组111电连接至所述目标第二辐射体20a,及用于在所述第二检测模组90确定至少一个所述非目标第二辐射体20b之后切换所述第二射频接收模组112电连接至所述非目标第二辐射体20b。
可选的,所述第二检测模组90通过在第二射频模组110端检测多个第二辐射体20的信号接收强度,并比较多个信号接收强度的大小,确定信号接收强度最大的第二辐射体20为目标第二辐射体20a,及确定信号接收强度较小的第二辐射体20为非目标第二辐射体20b,并将目标第二辐射体20a、非目标第二辐射体20b以电信号形式发送至控制器,控制器通过切换第三开关模块,使第二射频收发模组111电连接至信号强度最高的第二辐射体20,及使第二射频接收模组112电连接至其他信号强度的第二辐射体20。
可选的,第二控制模组120可切换四个第二辐射体20中的任意一个第二辐射体20电连接至第二射频收发模组111。第二控制模组120可切换四个第二辐射体20中的任意一个第二辐射体20电连接至第二射频接收模组112。
上述的过程可以是实时动态的过程。即第二检测模组90实时检测多个第二辐射体20的信号接收强度,控制器实时调节第三开关模块,实现智能切换,以确保无论多个第二辐射体20的工作环境如何变化(或 者手握姿势如何变化),都能够将信号接收强度最优的第二辐射体20作为发射辐射体,其他的第二辐射体20作为接收辐射体,以在不同的手握姿势时保持发射辐射体具有较好的信号质量,提高电子设备1000的信号稳定性,提高用户的使用体验。
第二辐射体20所电连接的第二射频模组110、第二控制模组120的设置以及切换方式可以参考第一辐射体10所电连接的第一射频模组50、第一控制模组60以及切换方式,在此不再一一赘述。
本申请中由于设置支持其他频段(例如MHB频段、或UHB频段、或Wi-Fi信号、或GNSS信号)的至少一个第二辐射体20与第一辐射体10耦合,如此,在支持上述的MHB频段、或UHB频段、或Wi-Fi信号、或GNSS信号的同时,还节省了电子设备1000上的空间,如此可设置三个、四个或四个以上的第一辐射体10。三个或四个第一辐射体10中可设置至少一个第一辐射体10为发射天线,且设置第一射频收发模组52、第一射频接收模组51与多个第一辐射体10非固定电连接,而是通过开关模块实现输入端的第一射频收发模组52、第一射频接收模组51皆可以与任意一个第一辐射体10电连接,如此,在用户不同的握持手势下,天线系统100可以根据检测到的多个第一辐射体10的信号强度来确定第一射频收发模组52连接哪一个第一辐射体10,利于在不同的握持手势下实现智能选择发射天线的位置,确保在不同的握持手势下皆较高的信号强度;多个第一辐射体10中可设置多个发射天线,利于增加天线增益、扩大覆盖范围、提升信号质量,以支持双卡配置等;多个第一辐射体10皆能够作为接收天线,利于增加信号覆盖深度和广度,利于提升下载速度。本实施方式提供的天线系统100还可以实现LB频段4*4MIMO,MHB频段4*4MIMO,还能够实现3个低频辐射体的智能天线切换或4个低频辐射体的智能天线切换,3个中高频辐射体的智能天线切换或4个中高频辐射体的智能天线切换;还实现5G独立组网(SA)低频段探照参考信号(Sounding Reference Signal,SRS)的1发射4接收、或2发射4接收等。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (22)

  1. 一种天线系统,包括:
    至少三个第一辐射体,所述至少三个第一辐射体中至少一者能够发射预设低频信号,所有的所述第一辐射体皆至少能够接收所述预设低频信号;以及
    至少一个第二辐射体,至少一个所述第二辐射体与至少一个所述第一辐射体之间通过耦合缝隙耦合,所述第二辐射体所支持的频段的最小值大于或等于所述预设低频信号的频段的最大值。
  2. 如权利要求1所述的天线系统,所述天线系统还包括第一馈电系统,所述第一馈电系统电连接所述第二辐射体,至少一个所述第一辐射体在所述第一馈电系统的激励下产生1/4波长模式、1/2波长模式、3/4波长模式、1个波长模式中的至少一者的谐振模式。
  3. 如权利要求2所述的天线系统,所述天线系统还包括第二馈电系统,所述第二馈电系统电连接所述第一辐射体,所述第二辐射体在所述第二馈电系统的激励下产生1/4波长模式、1/2波长模式、3/4波长模式、1个波长模式中的至少一者的谐振模式。
  4. 如权利要求3所述的天线系统,所述第二辐射体具有第一接地端和第一耦合端,以及位于所述第一接地端与所述第一耦合端之间的第一馈电点;所述第一馈电系统电连接所述第一馈电点;
    所述第一辐射体具有作用端和第二耦合端,以及位于所述作用端与所述第二耦合端之间的第二馈电点;所述第二耦合端与所述第一耦合端之间为所述耦合缝隙,所述第二馈电系统电连接所述第二馈电点。
  5. 如权利要求4所述的天线系统,所述作用端接地;所述第一馈电系统至少激励所述第二耦合端与所述第二馈电点之间的部分产生谐振。
  6. 如权利要求4所述的天线系统,所述作用端为自由端,所述第一辐射体还具有位于所述第二馈电点与所述第二耦合端之间的第一匹配点;所述天线系统还包括第一匹配电路,所述第一匹配电路包括电容器件、电感器件、开关调谐器件中的至少一者,所述第一匹配电路的一端电连接所述第一匹配点,所述第一匹配电路的另一端接地;所述第一馈电系统至少激励所述第二耦合端与所述第一匹配点之间的部分产生谐振。
  7. 如权利要求4所述的天线系统,所述第二辐射体还具有位于所述第一接地端与所述第一耦合端之间的第二匹配点;所述天线系统还包括第二匹配电路,所述第二匹配电路包括电容器件,所述第二匹配电路的一端电连接所述第二匹配点,所述第二匹配电路的另一端接地;所述第二馈电系统至少用于激励所述第一耦合端与所述第二匹配点之间的部分产生谐振。
  8. 如权利要求1~7任意一项所述的天线系统,所述天线系统还包括:
    至少三个第一射频模组,至少三个所述第一射频模组中包括至少一个第一射频接收模组和至少一个第一射频收发模组;
    至少一个第一控制模组,所述第一控制模组电连接至少两个所述第一射频模组及至少两个所述第一辐射体;及
    第一检测模组,所述第一检测模组用于检测至少一个所述第一控制模组所电连接的所述第一辐射体的信号强度,并根据所述信号强度确定至少一个目标第一辐射体和至少一个非目标第一辐射体,其中,所述目标第一辐射体的信号强度大于所述非目标第一辐射体的信号强;所述第一控制模组用于切换所述第一射频收发模组电连接至所述目标第一辐射体,及用于切换所述第一射频接收模组电连接至所述非目标第一辐射体。
  9. 如权利要求8所述的天线系统,所述第一辐射体的数量为三个,三个所述第一辐射体中至少两者的辐射朝向不同;
    所述至少三个第一射频模组包括两个所述第一射频收发模组及一个所述第一射频接收模组,所述第一控制模组电连接三个所述第一辐射体、一个所述第一射频收发模组及两个所述第一射频接收模组;
    所述第一检测模组用于根据三个所述第一辐射体的信号强度确定三个所述第一辐射体中的两者为两个所述目标第一辐射体,另一者为所述非目标第一辐射体;
    所述第一控制模组用于切换一个所述第一射频收发模组电连接至两个所述目标第一辐射体中的一者、切换另一个所述第一射频收发模组电连接至两个所述目标第一辐射体中的另一者、及切换所述第一射频接收模组电连接至所述非目标第一辐射体。
  10. 如权利要求9所述的天线系统,两个所述第一射频收发模组用于分别发射第一低频信号和发射第二 低频信号;
    所述第一控制模组还用于在三个所述第一辐射体中选择两者接收所述第一低频信号及选择另两者接收所述第二低频信号。
  11. 如权利要求8所述的天线系统,所述第一辐射体的数量为四个,四个所述第一辐射体中至少两者的辐射朝向不同;
    所述至少三个第一射频模组包括至少一个所述第一射频收发模组及至少两个所述第一射频接收模组,至少一个所述第一控制模组电连接至少两个所述第一辐射体、至少一个所述第一射频收发模组及至少一个所述第一射频接收模组。
  12. 如权利要求11所述的天线系统,所述至少三个第一射频模组包括一个所述第一射频收发模组及三个所述第一射频接收模组;
    所述第一检测模组用于根据至少一个所述第一控制模组所电连接的所述第一辐射体的信号强度在四个所述第一辐射体中确定一个所述目标第一辐射体和三个所述非目标第一辐射体;
    所述第一控制模组用于切换所述第一射频收发模组电连接至所述目标第一辐射体,及控制三个所述第一射频接收模组分别电连接至三个所述非目标第一辐射体。
  13. 如权利要求11所述的天线系统,所述至少三个第一射频模组包括两个所述第一射频收发模组及两个所述第一射频接收模组;所述第一检测模组用于根据至少一个所述第一控制模组所电连接的所述第一辐射体的信号强度在四个所述第一辐射体中确定两个所述目标第一辐射体和两个所述非目标第一辐射体;
    所述第一控制模组用于切换两个所述第一射频收发模组分别电连接至两个所述目标第一辐射体,及切换两个所述第一射频接收模组分别电连接至两个所述非目标第一辐射体。
  14. 如权利要求11或12所述的天线系统,所述第一控制模组包括四刀四掷的开关模块,四个所述第一辐射体皆电连接所述开关模块;或,所述第一控制模组包括三刀三掷的开关模块,三个所述第一辐射体电连接所述开关模块,另一个所述第一辐射体电连接所述第一射频接收模组或所述第一射频收发模组;或,所述第一控制模组的数量为两个,每个所述第一控制模组包括双刀双掷的开关模块,四个所述第一辐射体中的两者电连接一个所述第一控制模组,四个所述第一辐射体中的另两者电连接另一个所述第一控制模组。
  15. 如权利要求1所述的天线系统,所述第二辐射体所支持的信号包括MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。
  16. 如权利要求1~7、9~13、15任意一项所述的天线系统,所述至少三个第一辐射体分别朝向至少三侧设置;朝向同一侧设置的多个所述第一辐射体中,至少两个所述第一辐射体的谐振模式不同。
  17. 如权利要求16所述的天线系统,所述至少三个第一辐射体包括依次排列呈环形的第一子辐射体、第二子辐射体及第三子辐射体,所述第一子辐射体沿第一方向延伸,所述第二子辐射体相对靠近所述第一子辐射体的部分沿第二方向延伸,所述第二方向与所述第一方向相交,所述第二子辐射体相对远离所述第一子辐射体的部分沿所述第一方向延伸,所述第三子辐射体与所述第一子辐射体相对设置且沿所述第一方向延伸。
  18. 如权利要求17所述的天线系统,所述至少三个第一辐射体包括位于所述第一子辐射体与所述第二子辐射体之间的第四子辐射体,所述第四子辐射体靠近于所述第一子辐射体的部分沿所述第一方向延伸,所述第四子辐射体靠近于所述第二子辐射体的部分沿所述第二方向延伸;或者,所述第四子辐射体位于所述第一子辐射体与所述第三子辐射体之间,且与所述第二子辐射体相对设置。
  19. 如权利要求17或18所述的天线系统,所述第二辐射体包括第一耦合辐射体和第二耦合辐射体,所述第一耦合辐射体位于所述第一子辐射体与所述第二子辐射体之间,所述第一耦合辐射体沿所述第二方向延伸且与所述第二子辐射体耦合;所述第二耦合辐射体位于所述第三子辐射体远离所述第二子辐射体的一侧,所述第二耦合辐射体沿所述第一方向延伸且与所述第三子辐射体耦合。
  20. 如权利要求19所述的天线系统,所述第二辐射体还包括第三耦合辐射体,所述第三耦合辐射体位于所述第一子辐射体远离所述第二子辐射体的一端,所述第三耦合辐射体沿所述第一方向延伸且与所述第一子辐射体耦合;所述天线系统还包括顶部辐射体,所述顶部辐射体与所述第二子辐射体相对设置,且沿所述第二方向延伸,所述顶部辐射体用于支持MHB频段的移动通信信号、UHB频段的移动通信信号、Wi-Fi信号、GNSS信号中的至少一者。
  21. 如权利要求1~7、9~13、15、17、18、20任意一项所述的天线系统,所述天线系统还包括第二检测模组、多个第二射频模组、及至少一个第二控制模组;所述第二射频模组包括至少一个第二射频收发模组 及至少一个第二射频接收模组;
    所述第二辐射体的数量为多个,所述第二检测模组用于检测多个所述第二辐射体的信号强度,并根据多个所述第二辐射体的信号强度确定至少一个目标第二辐射体和至少一个非目标第二辐射体,其中,所述目标第二辐射体的信号强度大于所述非目标第二辐射体的信号强度;
    所述第二控制模组电连接所述第二射频收发模组、所述第二射频接收模组、所述第二检测模组及多个所述第二辐射体,所述第二控制模组用于切换所述第二射频收发模组电连接至所述目标第二辐射体,及用于切换所述第二射频接收模组电连接至所述非目标第二辐射体。
  22. 一种电子设备,包括如权利要求1~21任意一项所述的天线系统。
PCT/CN2022/114125 2021-11-23 2022-08-23 天线系统及电子设备 WO2023093149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111398057.8A CN116154454A (zh) 2021-11-23 2021-11-23 天线系统及电子设备
CN202111398057.8 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023093149A1 true WO2023093149A1 (zh) 2023-06-01

Family

ID=86372424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114125 WO2023093149A1 (zh) 2021-11-23 2022-08-23 天线系统及电子设备

Country Status (2)

Country Link
CN (1) CN116154454A (zh)
WO (1) WO2023093149A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120319909A1 (en) * 2010-04-23 2012-12-20 Stefan Irmscher Antenna devices and portable electronic devices comprising such antenna devices
CN109450477A (zh) * 2018-10-31 2019-03-08 北京小米移动软件有限公司 天线结构及电子设备的信号接收方法、装置、电子设备
CN111628298A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 共体天线及电子设备
CN111884672A (zh) * 2020-08-31 2020-11-03 维沃移动通信有限公司 天线选择方法、装置和电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112768900A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线系统及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120319909A1 (en) * 2010-04-23 2012-12-20 Stefan Irmscher Antenna devices and portable electronic devices comprising such antenna devices
CN109450477A (zh) * 2018-10-31 2019-03-08 北京小米移动软件有限公司 天线结构及电子设备的信号接收方法、装置、电子设备
CN111628298A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 共体天线及电子设备
CN111884672A (zh) * 2020-08-31 2020-11-03 维沃移动通信有限公司 天线选择方法、装置和电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112768900A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线系统及电子设备

Also Published As

Publication number Publication date
CN116154454A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
KR101547746B1 (ko) 섀시 여기 안테나 컴포넌트, 안테나 장치 및 이에 대한 모바일 통신 디바이스
US10219389B2 (en) Electronic device having millimeter wave antennas
US7821470B2 (en) Antenna arrangement
US20150061952A1 (en) Broadband Antenna
CA2914269A1 (en) Multiple-antenna system and mobile terminal
US11355853B2 (en) Antenna structure and wireless communication device using the same
CN103428314A (zh) 一种调整移动终端辐射方向的方法及移动终端
WO2020134870A1 (zh) 天线组件及移动终端
WO2023155593A1 (zh) 电子设备
EP2645603B1 (en) Wireless security device
EP4283782A1 (en) Antenna and communication device
US11791540B2 (en) Signal feeding assembly, antenna module and electronic equipment
WO2022068367A1 (zh) 天线组件及电子设备
US11342653B2 (en) Antenna structure and wireless communication device using same
CN114336009A (zh) 电子设备
EP2375488B1 (en) Planar antenna and handheld device
WO2023093149A1 (zh) 天线系统及电子设备
JP4118064B2 (ja) アンテナ装置
US11631943B2 (en) Antenna structure and wireless communication device using same
CN114566802A (zh) 电子设备及其控制方法
CN116666966A (zh) 电子设备及其控制方法
WO2023109439A1 (zh) 天线组件、电子设备及其控制方法
US20220407224A1 (en) Wireless radiation module and electronic device using the same
CN218976682U (zh) 电子设备
US20220399645A1 (en) Antenna structure and electronic device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897244

Country of ref document: EP

Kind code of ref document: A1