WO2023093135A1 - 电子墨水屏及显示装置 - Google Patents

电子墨水屏及显示装置 Download PDF

Info

Publication number
WO2023093135A1
WO2023093135A1 PCT/CN2022/112207 CN2022112207W WO2023093135A1 WO 2023093135 A1 WO2023093135 A1 WO 2023093135A1 CN 2022112207 W CN2022112207 W CN 2022112207W WO 2023093135 A1 WO2023093135 A1 WO 2023093135A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
electrode
layer
electric field
electronic ink
Prior art date
Application number
PCT/CN2022/112207
Other languages
English (en)
French (fr)
Other versions
WO2023093135A9 (zh
Inventor
蔡佩芝
田正
李鑫
贺海明
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/569,022 priority Critical patent/US20240280876A1/en
Priority to EP22897230.3A priority patent/EP4328668A1/en
Publication of WO2023093135A1 publication Critical patent/WO2023093135A1/zh
Publication of WO2023093135A9 publication Critical patent/WO2023093135A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16762Electrodes having three or more electrodes per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the common electronic ink screen is composed of two substrates, and an electronic ink layer composed of numerous microcapsule structures is arranged between the two substrates.
  • the electronic ink layer is composed of many black ink particles with positive charges and negatively charged ink particles.
  • Many white ink particles are sealed in a liquid microcapsule structure. Because ink particles of different colors move in different directions due to different applied electric fields, the ink particles of different colors are arranged in an orderly manner, so that the electronic ink screen presents a black and white visual effect.
  • the charges of the black ink particles and the white ink particles are different, and the two will interfere with each other when moving, resulting in a slower refresh rate of the electronic ink screen, resulting in a longer response time of the electronic ink screen.
  • the embodiment of the present application provides an electronic ink screen, the electronic ink screen at least includes: a first conductive substrate, an ink display layer and a second conductive substrate; the ink display layer is located on the first conductive substrate. between the substrate and the second conductive substrate, and the second conductive substrate is located above the first conductive substrate; the ink display layer has a plurality of mutually independent ink storage cavities, and the ink storage cavities A plurality of ink particles of the same color are arranged inside, and the ink particles are used to display the first color; it also includes: a functional layer; the functional layer is used to display the second color; and the functional layer is located in the ink display layer A side away from the second conductive substrate.
  • a functional layer is provided on the side of the ink display layer away from the second conductive substrate.
  • a plurality of ink particles in each ink containing cavity move to Close to the inner top wall or inner bottom wall of the ink accommodating cavity
  • the color displayed on the electronic ink screen at this time is the color (ie, the first color) presented by the ink particles in the ink accommodating cavity
  • the color displayed on the electronic ink screen at this time is the color produced by the functional layer (ie the second color)
  • the electric field in the parallel direction and the electric field in the vertical direction a plurality of ink particles in each ink accommodating cavity are scattered in the ink accommodating cavity, and the color displayed on the electronic ink screen is between the first color and the second color.
  • the electronic ink screen displays a gray state. Therefore, in the embodiment of the present application, it is only necessary to arrange multiple ink particles of the same color in each ink storage cavity, and by applying electric fields in different directions, the electronic ink screen can be made to display different colors, avoiding the conventional technology.
  • the problem of motion interference caused by the mutual switching of ink particles of two different colors can improve the refresh rate of the electronic ink screen, thereby shortening the response time of the electronic ink screen.
  • the electrode layer includes: at least one electrode group; each ink containing chamber corresponds to one electrode group; the electrode group includes: a first electrode and a second electrode; The first electrode and the second electrode are oppositely arranged along the thickness direction perpendicular to the electronic ink screen; the driving layer provides a voltage for the electrode layer, so that the electrode layer and the second electrode An electric field in the vertical direction is formed between the conductive substrates, and an electric field in the horizontal direction is formed between the first electrode and the second electrode; the electric field in the vertical direction is used to control the movement of the ink particles in the ink container The chamber moves vertically, and the electric field in the horizontal direction is used to control the ink particles to move horizontally in the ink accommodating chamber.
  • the drive layer provides voltages for the first electrode and the second electrode at the same time, so that a potential difference can be formed between the first electrode and the second electrode and the second conductive substrate to form a vertical direction between the electrode layer and the second conductive substrate. the electric field.
  • each of the ink containing chambers corresponds to a driving switch; the driving switch provides a voltage for the first electrode, or the driving switch provides a voltage for the second electrode.
  • each of the ink containing chambers corresponds to two drive switches; one of the two drive switches provides a voltage for the first electrode, and one of the two drive switches The other one supplies a voltage to the second electrode.
  • the electronic ink screen can be made to display different colors, which avoids two different colors in the prior art.
  • the problem of motion interference caused by the mutual switching of ink particles can improve the refresh rate of the electronic ink screen, thereby shortening the response time of the electronic ink screen.
  • the material used for the black matrix layer is any one or more of chrome or black resin.
  • the electronic ink screen displays black; in the second driving state, an electric field in a vertical direction is formed between the electrode layer and the second conductive substrate, and the white ink particles move to close to the ink container. placed on the inner top wall or inner bottom wall of the cavity, the electronic ink screen displays white; in the third driving state, an electric field in the horizontal direction is formed between the first electrode and the second electrode, and the electrode layer An electric field in a vertical direction is formed between the second conductive substrate, the white ink particles are scattered in the ink accommodating cavity, and the electronic ink screen displays a gray state.
  • the black matrix layer is located between the electrode layer and the driving layer.
  • the functional layer is a reflective metal layer;
  • the ink particles are black ink particles.
  • the electronic ink screen can be displayed in different colors, avoiding the need for two different colors in the prior art.
  • the problem of motion interference caused by the mutual switching of ink particles can improve the refresh rate of the electronic ink screen, thereby shortening the response time of the electronic ink screen.
  • the electronic ink screen displays white; in the second driving state, an electric field in a vertical direction is formed between the electrode layer and the second conductive substrate, and the black ink particles move to close to the ink container.
  • An electric field in a vertical direction is formed between the second conductive substrate, the black ink particles are scattered in the ink accommodating cavity, and the electronic ink screen displays a gray state.
  • the reflective metal layer is located between the electrode layer and the driving layer.
  • the functional layer is a display screen.
  • the display screen is an organic light emitting diode display screen or a liquid crystal display screen.
  • the ink particles are white ink particles; the display screen is in a black state.
  • a black organic light-emitting diode display or liquid crystal display on the side of the ink display layer away from the second conductive substrate, when an electric field in a parallel direction is applied, a plurality of white inks in each ink storage cavity The particles move close to the inner wall of the ink accommodating cavity.
  • the color displayed on the electronic ink screen is the color displayed on the organic light-emitting diode display or liquid crystal display, that is, the electronic ink screen is in a black state; when the vertical direction is applied When the electric field is applied, the multiple white ink particles in each ink storage cavity move to the inner top wall or inner bottom wall close to the ink storage cavity, and the color displayed on the electronic ink screen at this time is the color presented by the white ink particles. That is, the electronic ink screen is in a white state; when the electric field in the parallel direction and the electric field in the vertical direction are applied at the same time, a plurality of white ink particles in each ink storage cavity are scattered in the ink storage cavity, and the electronic ink screen is now in a white state.
  • the electronic ink screen can be made to display different colors, which avoids two different colors in the prior art.
  • the problem of motion interference caused by the mutual switching of ink particles can improve the refresh rate of the electronic ink screen, thereby shortening the response time of the electronic ink screen.
  • the electronic ink screen displays black; in the second driving state, an electric field in a vertical direction is formed between the electrode layer and the second conductive substrate, and the white ink particles move to close to the ink container. placed on the inner top wall or inner bottom wall of the cavity, the electronic ink screen displays white; in the third driving state, an electric field in the horizontal direction is formed between the first electrode and the second electrode, and the electrode layer An electric field in a vertical direction is formed between the second conductive substrate, the white ink particles are scattered in the ink accommodating cavity, and the electronic ink screen displays a gray state.
  • the ink particles are black ink particles; and the display screen is in a display state.
  • an organic light-emitting diode display or a liquid crystal display in a display state on the side of the ink display layer away from the second conductive substrate, when an electric field in a parallel direction is applied, a plurality of black inks in each ink storage cavity The particles move close to the inner wall of the ink accommodating cavity.
  • the color displayed on the electronic ink screen is the color displayed on the organic light-emitting diode display screen or the liquid crystal display screen, that is, the electronic ink screen is in a display state (such as a white state); when When an electric field in the vertical direction is applied, multiple black ink particles in each ink accommodating cavity move to the inner top wall or inner bottom wall close to the ink accommodating cavity, and the color displayed on the electronic ink screen at this time is black ink particles
  • the presented color that is, the electronic ink screen is in a black state; when the electric field in the parallel direction and the electric field in the vertical direction are applied at the same time, a plurality of black ink particles in each ink containing cavity are scattered in the ink containing cavity, At this time, the electronic ink screen displays a gray state.
  • the electronic ink screen can be displayed in different colors, avoiding the need for two different colors in the prior art.
  • the problem of motion interference caused by the mutual switching of ink particles can improve the refresh rate of the electronic ink screen, thereby shortening the response time of the electronic ink screen.
  • the electronic ink screen displays white; in the second driving state, an electric field in a vertical direction is formed between the electrode layer and the second conductive substrate, and the black ink particles move to close to the ink container.
  • An electric field in a vertical direction is formed between the second conductive substrate, the black ink particles are scattered in the ink accommodating cavity, and the electronic ink screen displays a gray state.
  • the ink display layer includes: a plurality of microcapsule structures, and an inner space of each microcapsule structure is formed as the ink accommodating cavity.
  • the ink display layer includes: a plurality of microcup structures, and an inner space of each microcup structure is formed as the ink accommodating cavity.
  • an electrophoretic base liquid is further arranged in the ink accommodation cavity, and the ink particles move in the electrophoretic base liquid.
  • the second conductive substrate and the electrode layer are made of indium tin oxide.
  • the driving switch is a thin film transistor.
  • an embodiment of the present application provides a display device, at least including: any one of the electronic ink screens described above.
  • the display device provided by the embodiment of the present application includes an ink display screen.
  • the electronic ink screen is provided with a functional layer on the side of the ink display layer away from the second conductive substrate.
  • each ink The multiple ink particles in the accommodating cavity move to the inner top wall or the inner bottom wall of the ink accommodating cavity, and the color displayed on the electronic ink screen at this time is the color presented by the ink particles in the ink accommodating cavity (that is, the first One color);
  • an electric field in a parallel direction is applied, a plurality of ink particles in each ink accommodating cavity move to the inner wall close to the ink accommodating cavity, and the color displayed on the electronic ink screen at this time is produced by the functional layer color (i.e.
  • the electronic ink screen displays a gray state. Therefore, in the embodiment of the present application, it is only necessary to arrange multiple ink particles of the same color in each ink storage cavity, and by applying electric fields in different directions, the electronic ink screen can be made to display different colors, avoiding the conventional technology.
  • the problem of motion interference caused by the mutual switching of ink particles of two different colors can improve the refresh rate of the electronic ink screen, thereby shortening the response time of the electronic ink screen.
  • FIG. 1 is a schematic structural diagram of an electronic ink screen in the prior art
  • Fig. 3 is a schematic structural diagram of an electronic ink screen provided by an embodiment of the present application.
  • FIG. 4A is a schematic diagram of the structure when the white ink particles in the electronic ink screen shown in FIG. 2 move to the inner wall of the ink accommodating cavity;
  • FIG. 4B is a schematic diagram of the structure when the white ink particles in the electronic ink screen shown in FIG. 2 move close to the inner top wall of the ink accommodating chamber;
  • Fig. 5 is a schematic structural diagram of an electronic ink screen provided by an embodiment of the present application.
  • Fig. 7 is a top view of the black matrix layer in the electronic ink screen provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of display states of different grayscales of an electronic ink screen provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic ink screen provided by an embodiment of the present application.
  • FIG. 11A is a schematic diagram of the structure of the white ink particles in the electronic ink screen shown in FIG. 10 when they move close to the inner wall of the ink accommodating cavity;
  • FIG. 11B is a schematic diagram of the structure when the white ink particles in the electronic ink screen shown in FIG. 10 move close to the inner top wall of the ink accommodating cavity;
  • FIG. 11C is a schematic diagram of the structure of the electronic ink screen shown in FIG. 10 when the white ink particles are dispersed in the ink storage chamber;
  • Fig. 12 is a top view of a black matrix layer in an electronic ink screen provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of an electronic ink screen provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of an electronic ink screen provided by an embodiment of the present application.
  • 15A is a schematic structural view of the white ink particles in the electronic ink screen shown in FIG. 14 when they move close to the inner wall of the ink accommodating chamber;
  • 15B is a schematic structural diagram of the white ink particles in the electronic ink screen shown in FIG. 14 when they move close to the inner top wall of the ink accommodating cavity;
  • FIG. 15C is a schematic structural diagram of the electronic ink screen shown in FIG. 14 when the white ink particles are dispersed in the ink storage chamber;
  • Fig. 16 is a schematic structural diagram of an electronic ink screen provided by an embodiment of the present application.
  • FIG. 17A is a schematic diagram of the structure of the white ink particles in the electronic ink screen shown in FIG. 16 when they move close to the inner wall of the ink accommodating chamber;
  • FIG. 17B is a schematic diagram of the structure when the white ink particles in the electronic ink screen shown in FIG. 16 move close to the inner top wall of the ink accommodating cavity;
  • FIG. 17C is a schematic diagram of the structure of the electronic ink screen shown in FIG. 16 when the white ink particles are dispersed in the ink accommodating cavity.
  • 100-electronic ink screen 110-first conductive substrate; 111-drive layer;
  • 1211-electrophoretic base fluid 1221-white ink particles; 1222-black ink particles;
  • D1-first gray state D2-second gray state; D3-third gray state;
  • electrophoretic display technology cholesteric liquid crystal technology
  • electrowetting technology rotating ball technology
  • electrochromic technology electrochromic technology
  • micro-electromechanical technology electrophoretic display technology has the advantages of wide viewing angle, high contrast, high reflectivity, etc., and has become the most mature electronic ink screen technology at present, and black and white electrophoretic display technology has achieved mass production.
  • the existing electronic ink screen is a kind of bistable display screen.
  • the drive circuit does not consume power, but when the picture is refreshed, the drive circuit consumes a certain amount of power.
  • a common electronic ink screen is composed of two substrates 210, and an electronic ink composed of numerous microcapsule structures 123 is arranged between the two substrates 210.
  • the electronic ink is composed of positively charged Many black ink particles 1222 and many negatively charged white ink particles 1221 are sealed in the liquid microcapsule structure 123 inside. Because ink particles of different colors move in different directions due to different applied electric fields, the ink particles of different colors are arranged in an orderly manner, thus presenting a black and white visual effect.
  • the embodiment of the present application provides a new electronic ink screen 100 to solve the above technical problems.
  • the electronic ink screen 100 provided in the embodiment of the present application can be applied to the solution of the microcapsule structure 123 (see FIG. 2 ), and can also be applied to the solution of the microcup structure 124 (see FIG. 3 ).
  • the example does not limit this.
  • the ink display layer may include a plurality of microcup structures 124, wherein the inner space of each microcup structure 124 is formed as an ink accommodating cavity 121 , a plurality of white ink particles 1221 are disposed in each ink accommodating chamber 121 .
  • an embodiment of the present application provides an electronic ink screen 100, which may at least include a stacked arrangement: a first conductive substrate 110, an ink display layer, and a second conductive substrate 130, wherein the ink display layer The layer is located between the first conductive substrate 110 and the second conductive substrate 130 , and the second conductive substrate 130 is located above the first conductive substrate 110 .
  • the electronic ink screen 100 The displayed color is the color (namely the first color) presented by the ink particles in the ink containing chamber 121 .
  • the color displayed on the electronic ink screen 100 is the color produced by the functional layer. (i.e. the second color).
  • the electronic ink screen 100 can be displayed in different colors, avoiding the present situation.
  • ink particles of two different colors are switched to each other to cause motion interference, and the refresh rate of the electronic ink screen 100 can be improved, thereby shortening the response time of the electronic ink screen 100 .
  • the functional layer may be a black matrix layer 140
  • the ink particles may be white ink particles 1221 .
  • the embodiment of the present application only a plurality of white ink particles 1221 need to be arranged in each ink containing cavity 121, and by applying electric fields in different directions, the electronic ink screen 100 can be displayed in different colors, avoiding the present situation.
  • black particles and white particles have different charges, and they will interfere with each other when they move. Therefore, the embodiment of the present application can increase the refresh rate of the electronic ink screen 100, thereby significantly shortening the response of the electronic ink screen 100. time.
  • the electric field in the vertical direction is used to control the movement of the white ink particles 1221 in the vertical direction in the ink accommodating chamber 121
  • the electric field in the horizontal direction is used to control the movement of the white ink particles 1221 in the horizontal direction in the ink accommodating chamber 121. sports.
  • the drive layer 111 alone provides a voltage for the first electrode 1121, which can cause a potential difference to be formed between the first electrode 1121 and the second conductive substrate 130, so as to form a vertical electric field between the electrode group 112 and the second conductive substrate 130.
  • the driving layer 111 alone provides a voltage for the second electrode 1122, which can cause a potential difference to be formed between the second electrode 1122 and the second conductive substrate 130, so as to form a vertical electric field between the electrode group 112 and the second conductive substrate 130 .
  • the driving layer 111 provides voltages for the first electrode 1121 and the second electrode 1122 at the same time, so that a potential difference is formed between the first electrode 1121 and the second conductive substrate 130 and between the second electrode 1122 and the second conductive substrate 130, so that An electric field in a vertical direction is formed between the electrode group 112 and the second conductive substrate 130 .
  • the first electrode 1121 and the second electrode 1122 are arranged opposite to each other along the thickness direction perpendicular to the electronic ink screen 100 , that is, the first electrode 1121 and the second electrode 1122 are arranged opposite to each other in the horizontal direction.
  • the driving layer 111 when the driving layer 111 provides a voltage for the electrode group 112, for example, the driving layer 111 alone provides a voltage for the first electrode 1121, a potential difference can be formed between the first electrode 1121 and the second electrode 1122, so as to generate a voltage between the first electrode 1121 and the second electrode 1122.
  • An electric field in the horizontal direction is formed between the second electrodes 1122 .
  • the driving layer 111 alone provides voltage for the second electrode 1122 , which can form a potential difference between the first electrode 1121 and the second electrode 1122 to form a horizontal electric field between the first electrode 1121 and the second electrode 1122 .
  • the voltage value can be flexibly adjusted according to the actual distance between the first electrode 1121 and the second conductive substrate 130 and the actual distance between the first electrode 1121 and the second electrode 1122, so that only the electrode group 112 An electric field in a vertical direction is formed between the second conductive substrate 130 , or an electric field in a horizontal direction is only formed between the first electrode 1121 and the second electrode 1122 .
  • the distance between the first electrode 1121 and the second conductive substrate 130 is relatively large, and the distance between the first electrode 1121 and the second electrode 1122 is relatively small.
  • the first electrode 1121 When a small voltage is supplied, an electric field in a horizontal direction is formed between the first electrode 1121 and the second electrode 1122 .
  • an electric field in a vertical direction is formed between the electrode group 112 and the second conductive substrate 130 .
  • the positive and negative polarities of the voltage provided by the driving layer 111 to the electrode group 112 will also affect the actual movement state of the white ink particles 1221 .
  • the white ink particles 1221 carry negative charges.
  • the vertical electric field formed between the electrode group 112 and the second conductive substrate 130 when the voltage provided by the driving layer 111 to the electrode group 112 is a positive voltage, the potential value of the electrode group 112 is greater than that of the second conductive substrate 130 In this way, a potential difference is formed between the electrode group 112 and the second conductive substrate 130, and an electric field in a vertical direction is formed between the electrode group 112 and the second conductive substrate 130, and the electric field starts from the electrode group 112 toward the second The direction (ie from bottom to top) of the conductive substrate 130 is extended. Since the white ink particles 1221 carry negative charges, the white ink particles 1221 will move to the inner bottom wall 1232 of the ink accommodating cavity 121 , and the electronic ink screen 100 is in a white state at this time.
  • the potential value of the electrode group 112 is smaller than the potential value of the second conductive substrate 130, so that a potential difference is formed between the electrode group 112 and the second conductive substrate 130, and the electrodes A vertical electric field is formed between the group 112 and the second conductive substrate 130 , and the electric field is generated by extending from the second conductive substrate 130 toward the electrode group 112 (ie, from top to bottom). Since the white ink particles 1221 carry negative charges, the white ink particles 1221 will move to the inner top wall 1231 of the ink accommodating chamber 121 , and the electronic ink screen 100 is also in a white state at this time.
  • the electric field in the horizontal direction formed between the first electrode 1121 and the second electrode 1122 when the voltage provided by the driving layer 111 to the first electrode 1121 is a positive voltage, the potential value of the first electrode 1121 is greater than that of the second electrode 1121. In this way, a potential difference is formed between the first electrode 1121 and the second electrode 1122, and an electric field in a horizontal direction is formed between the first electrode 1121 and the second electrode 1122.
  • the electric field starts from the first electrode 1121 and moves toward The direction (ie, from left to right) of the second electrode 1122 is extended. Since the white ink particles 1221 carry negative charges, the white ink particles 1221 will move to the left side wall of the ink accommodating cavity 121 , and the electronic ink screen 100 is in a black state at this time.
  • the potential value of the first electrode 1121 is smaller than the potential value of the second electrode 1122, so that a potential difference is formed between the first electrode 1121 and the second electrode 1122, A horizontal electric field is formed between the first electrode 1121 and the second electrode 1122 , and the electric field is generated by extending from the second electrode 1122 toward the first electrode 1121 (ie, from right to left). Since the white ink particles 1221 carry negative charges, the white ink particles 1221 will move to the right side wall of the ink accommodating cavity 121 , and the electronic ink screen 100 is also in a black state at this time.
  • the driving layer 111 may include: a substrate layer 1111 and at least one driving switch 1112, wherein at least one driving switch 1112 is located on the substrate layer 1111, and at least one driving switch 1112 is used to provide the electrode group 112 with Voltage.
  • the driving switch 1112 may be a thin film transistor (Thin Film Transistor, TFT).
  • Thin-film transistors mean that each liquid crystal pixel on a liquid crystal display is driven by a thin-film transistor integrated behind it. Thus, high-speed, high-brightness and high-contrast display screen information can be achieved.
  • the specific implementation of at least one driving switch 1112 for supplying voltage to the electrode group 112 includes the following two possible implementations:
  • a possible implementation is as follows: as shown in FIG. 2, the number of driving switches 1112 corresponding to each microcapsule structure 123 is one, and the driving switches 1112 provide voltage for the first electrode 1121, or, the driving switches 1112 are The second electrode 1122 provides a voltage.
  • the driving switch 1112 alone provides voltage for the first electrode 1121 , which can form a potential difference between the first electrode 1121 and the second electrode 1122 to form a horizontal electric field between the first electrode 1121 and the second electrode 1122 .
  • the driving switch 1112 alone provides a voltage for the second electrode 1122, which can also form a potential difference between the first electrode 1121 and the second electrode 1122, so as to form an electric field in the horizontal direction between the first electrode 1121 and the second electrode 1122 .
  • the number of drive switches 1112 corresponding to each microcapsule structure 123 is two, and one of the two drive switches 1112 provides a voltage for the first electrode 1121 , the other of the two driving switches 1112 supplies a voltage to the second electrode 1122 .
  • the turned on drive switch 1112 can provide a voltage for the first electrode 1121 alone, which can make a potential difference between the first electrode 1121 and the second electrode 1122, so as to generate a voltage between the first electrode 1121 and the second electrode 1121.
  • An electric field in the horizontal direction is formed between the electrodes 1122 .
  • the turned-on drive switch 1112 can provide a voltage for the second electrode 1122 alone, which can cause a potential difference to be formed between the first electrode 1121 and the second electrode 1122 to form a horizontal direction between the first electrode 1121 and the second electrode 1122. electric field.
  • the two driving switches 1112 When the two driving switches 1112 are turned on at the same time, the two driving switches 1112 can respectively provide voltages of different magnitudes to the first electrode 1121 and the second electrode 1122, so that a potential difference can be formed between the first electrode 1121 and the second electrode 1122, A horizontal electric field is formed between the first electrode 1121 and the second electrode 1122 .
  • the driving layer 111 in the first driving state, that is, the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and the first electrode 1121 A horizontal electric field can be formed between the second electrode 1122 and the white ink particles 1221 move to the inner wall of the ink accommodating cavity 121 , and the electronic ink screen 100 displays black.
  • the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and a vertical gap is formed between the electrode group 112 and the second conductive substrate 130.
  • the white ink particles 1221 move to the inner top wall 1231 or the inner bottom wall 1232 of the ink accommodating cavity 121 , and the electronic ink screen 100 displays white at this time.
  • the driving layer 111 provides a voltage to the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and an electric field in a horizontal direction is formed between the first electrode 1121 and the second electrode 1122 , and a vertical electric field is formed between the electrode group 112 and the second conductive substrate 130 , the white ink particles 1221 are scattered in the ink accommodating cavity 121 , and the electronic ink screen 100 displays a gray state.
  • the black matrix layer 140 may be located between the ink display layer and the first conductive substrate 110 (see FIG. 2 ). Alternatively, as shown in FIG. 6 , the black matrix layer 140 may also be located between the electrode layer and the driving layer 111 .
  • An electrode lead (not shown in the figure) is connected between the electrode group 112 and the driving layer 111 , and the driving layer 111 provides a driving voltage for the electrode group 112 through the electrode lead.
  • the black matrix layer 140 may also be located on the side of the first conductive substrate 110 away from the second conductive substrate 130 , which is not limited in this embodiment of the present application.
  • the electronic ink screen 100 when the electronic ink screen 100 displays a gray state, it may be in various gray levels. Specifically, the electric field intensity can be adjusted according to the quantitative control of the applied voltage, so that the electronic ink screen 100 can display gray states of different shades. Exemplarily, FIG. 9 shows three different gray levels (namely, the first gray state D1, the second gray state D2 and the third gray state D3). As shown in FIG. 9 , from left to right, the gray color displayed on the electronic ink screen 100 becomes darker and darker.
  • the embodiment of the present application also provides an electronic ink screen 100 with another structure. Compared with the second embodiment, the difference between the second embodiment and the second embodiment lies in that the specific materials of the functional layers are different.
  • the functional layer may be a reflective metal layer 150
  • the ink particles may be black ink particles 1222 .
  • the ink screen 100 displays a gray state.
  • the reflective metal layer 150 may be located between the electrode layer and the driving layer 111 (see FIG. 10 ).
  • An electrode lead (not shown in the figure) is connected between the electrode group 112 and the driving layer 111 , and the driving layer 111 provides a driving voltage for the electrode group 112 through the electrode lead.
  • the reflective metal layer 150 may also be located on the side of the first conductive substrate 110 away from the second conductive substrate 130 , which is not limited in this embodiment of the present application.
  • the reflective metal layer 150 may be made of aluminum or silver.
  • the driving layer 111 in the first driving state, that is, the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and the first electrode 1121 A horizontal electric field can be formed between the second electrode 1122 and the black ink particles 1222 move to the inner wall of the ink accommodating cavity 121 , and the electronic ink screen 100 displays white.
  • the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and a vertical gap is formed between the electrode group 112 and the second conductive substrate 130.
  • the black ink particles 1222 move to the inner top wall 1231 or the inner bottom wall 1232 of the ink accommodating cavity 121 , and the electronic ink screen 100 displays black.
  • the driving layer 111 provides a voltage to the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and an electric field in a horizontal direction is formed between the first electrode 1121 and the second electrode 1122 , and a vertical electric field is formed between the electrode group 112 and the second conductive substrate 130 , the black ink particles 1222 are scattered in the ink accommodating cavity 121 , and the electronic ink screen 100 displays a gray state.
  • the embodiment of the present application also provides an electronic ink screen 100 with another structure.
  • the third embodiment is different in that the specific materials of the functional layers are different.
  • the functional layer may be a display screen 160 .
  • the display screen 160 may be an organic light-emitting diode display 160 (Organic Light-Emitting Diode, OLED) or a liquid crystal display 160 (Liquid Crystal Display, LCD).
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the ink particles may be white ink particles 1221 , and the display screen 160 may be in a black state.
  • the color displayed on the electronic ink screen 100 is the color displayed on the OLED display 160 or the liquid crystal display 160 , that is, the electronic ink screen 100 is in a black state.
  • each ink accommodating chamber 121 moves to the inner top wall 1231 or the inner bottom wall 1232 close to the ink accommodating chamber 121, for example, in FIG. 15B , each A plurality of white ink particles 1221 in the ink containing chambers 121 move close to the inner top wall 1231 of the ink containing chambers 121 .
  • the color displayed on the electronic ink screen 100 is the color displayed by the white ink particles 1221 , that is, the electronic ink screen 100 is in a white state.
  • the ink screen 100 displays a gray state.
  • the electronic ink screen 100 can be displayed in different colors, avoiding the two states in the prior art.
  • the problem of movement interference caused by the mutual switching of ink particles of different colors can improve the refresh rate of the electronic ink screen 100, thereby shortening the response time of the electronic ink screen 100.
  • the display screen 160 may be located on the side of the first conductive substrate 110 away from the ink display layer.
  • the driving layer 111 in the first driving state, that is, the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and the first electrode 1121 and the second electrode 1122 A horizontal electric field is formed between the two electrodes 1122 , the white ink particles 1221 move close to the inner wall of the ink accommodating cavity 121 , and the electronic ink screen 100 displays black.
  • the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and a vertical gap is formed between the electrode group 112 and the second conductive substrate 130.
  • the electric field causes the white ink particles 1221 to move close to the inner top wall 1231 or the inner bottom wall 1232 of the ink accommodating chamber 121 , and the electronic ink screen 100 displays white.
  • the driving layer 111 provides a voltage to the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and an electric field in a horizontal direction is formed between the first electrode 1121 and the second electrode 1122 , and a vertical electric field is formed between the electrode group 112 and the second conductive substrate 130 , the white ink particles 1221 are scattered in the ink accommodating cavity 121 , and the electronic ink screen 100 displays a gray state.
  • the embodiment of the present application also provides an electronic ink screen 100 with another structure.
  • the difference between the fourth embodiment and the third embodiment is that when the functional layer is the display screen 160, the display state of the display screen 160 is different. same.
  • the ink particles may be black ink particles 1222 , and the display screen 160 may be in a display state.
  • the color displayed on the electronic ink screen 100 is the color displayed on the OLED display 160 or the liquid crystal display 160 , that is, the electronic ink screen 100 is in a display state (for example, a white state).
  • the color displayed on the electronic ink screen 100 is the color displayed by the black ink particles 1222 , that is, the electronic ink screen 100 is in a black state.
  • the ink screen 100 displays a gray state.
  • the electronic ink screen 100 can display different colors, which avoids two black ink particles 1222 in the prior art.
  • the problem of movement interference caused by the mutual switching of ink particles of different colors can improve the refresh rate of the electronic ink screen 100, thereby shortening the response time of the electronic ink screen 100.
  • the driving layer 111 in the first driving state, that is, the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and the first electrode 1121 and the second electrode 1122 A horizontal electric field is formed between the two electrodes 1122 , the black ink particles 1222 move close to the inner wall of the ink accommodating chamber 121 , and the electronic ink screen 100 displays white.
  • the driving layer 111 provides a voltage for the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and a vertical gap is formed between the electrode group 112 and the second conductive substrate 130.
  • the black ink particles 1222 move to the inner top wall 1231 or the inner bottom wall 1232 of the ink accommodating cavity 121 , and the electronic ink screen 100 displays black.
  • the driving layer 111 provides a voltage to the electrode group 112 (at least one of the first electrode 1121 and the second electrode 1122), and an electric field in a horizontal direction is formed between the first electrode 1121 and the second electrode 1122 , and a vertical electric field is formed between the electrode group 112 and the second conductive substrate 130 , the black ink particles 1222 are scattered in the ink accommodating cavity 121 , and the electronic ink screen 100 displays a gray state.
  • the electronic ink screen 100 can only support simple colors and gray scales, for example, it can only display black and white, and cannot display very rich colors, resulting in poor user experience.
  • the display color of the display screen 160 can be designed as various colors, such as light yellow, light blue or light green, etc., to expand the display color of the ink display screen 160. area.
  • the display states of the ink display layer and the display screen 160 for example, OLED or LCD
  • the overall transmittance of the electronic ink screen 100 can be significantly improved, especially can reduce the The influence of the small microcapsule structure 123 on the normal display of the display screen 160 (such as OLED or LCD).
  • the embodiment of the present application provides a display device, and the display device may at least include: the electronic ink screen 100 in any of the above embodiments.
  • the display device can be electronic tags, e-books, wearable devices (such as watches), e-readers, navigators, electronic photo frames, home appliances (such as alarm clocks with double-sided display or transparent display), supermarkets, etc.
  • the embodiment of the present application does not limit the specific application scenarios of the ink display screen 160 .
  • the display device provided by the embodiment of the present application may include an ink display screen 160.
  • the electronic ink screen 100 is provided with a functional layer on the side of the ink display layer away from the second conductive substrate 130.
  • a plurality of ink particles in each ink accommodating cavity 121 moves to the inner wall of the ink accommodating cavity 121, and the color displayed on the electronic ink screen 100 at this time is the color produced by the functional layer.
  • the multiple ink particles in each ink accommodating chamber 121 move to the inner top wall 1231 or inner bottom wall 1232 close to the ink accommodating chamber 121.
  • the color displayed on the electronic ink screen 100 is the color of the ink accommodating chamber 121.
  • the ink screen 100 displays a gray state. Therefore, in the embodiment of the present application, it is only necessary to arrange multiple ink particles of the same color in each ink containing cavity 121, and by applying electric fields in different directions, the electronic ink screen 100 can be displayed in different colors, avoiding the present situation. There is a problem in the technology that ink particles of two different colors are switched to each other to cause motion interference, and the refresh rate of the electronic ink screen 100 can be improved, thereby shortening the response time of the electronic ink screen 100 .
  • the display device also has the advantage of low power consumption compared with liquid crystal display devices, OLED display devices and the like in the prior art.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a An indirect connection through an intermediary may be an internal communication between two elements or an interaction relationship between two elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例提供一种电子墨水屏及显示装置,该电子墨水屏至少包括层叠设置的:第一导电基板、墨水显示层以及第二导电基板;墨水显示层位于第一导电基板和第二导电基板之间,且第二导电基板位于第一导电基板的上方;墨水显示层具有多个相互独立的墨水容置腔,墨水容置腔内设置有同一颜色的多个墨水粒子,墨水粒子用于显示第一颜色;还包括:功能层;功能层用于显示第二颜色;且功能层位于墨水显示层背离第二导电基板的一侧。本申请实施例能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。

Description

电子墨水屏及显示装置
本申请要求于2021年11月24日提交中国专利局、申请号为202111408661.4,申请名称为“电子墨水屏及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子纸显示技术领域,特别涉及一种电子墨水屏及显示装置。
背景技术
目前常见的电子墨水屏是由两片基板组成,两片基板之间设置有一种由无数微胶囊结构组成的电子墨水层,其中,电子墨水层是由带正电的许多黑色墨水粒子和带负电的许多白色墨水粒子密封于内部呈液态的微胶囊结构内形成。由于不同颜色的墨水粒子会因施加电场的不同,而朝不同的方向运动,使得不同颜色的墨水粒子有序排列,从而电子墨水屏呈现出黑白分明的可视化效果。
然而,上述方案中,黑色墨水粒子和白色墨水粒子所带电荷不同,两者运动时会相互干扰,导致电子墨水屏的刷新速度较慢,从而导致电子墨水屏的响应时间较长。
发明内容
本申请实施例提供一种电子墨水屏及显示装置,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
第一方面,本申请实施例提供一种电子墨水屏,该电子墨水屏至少包括层叠设置的:第一导电基板、墨水显示层以及第二导电基板;所述墨水显示层位于所述第一导电基板和所述第二导电基板之间,且所述第二导电基板位于所述第一导电基板的上方;所述墨水显示层具有多个相互独立的墨水容置腔,所述墨水容置腔内设置有同一颜色的多个墨水粒子,所述墨水粒子用于显示第一颜色;还包括:功能层;所述功能层用于显示第二颜色;且所述功能层位于所述墨水显示层背离所述第二导电基板的一侧。
本申请实施例提供的电子墨水屏,通过在墨水显示层背离第二导电基板的一侧设置功能层,当施加竖直方向的电场时,每个墨水容置腔内的多个墨水粒子移动至靠近墨水容置腔的内顶壁或者内底壁,此时电子墨水屏所显示的颜色为墨水容置腔内的墨水粒子所呈现的颜色(即第一颜色);当施加平行方向的电场时,每个墨水容置腔内的多个墨水粒子移动至靠近墨水容置腔的内侧壁,此时电子墨水屏所显示的颜色为功能层所产生的颜色(即第二颜色);当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔内的多个墨水粒子在墨水容置腔内分散设置,此时电子墨水屏所显示的颜色介于第一颜色和第二颜色之间,即电子墨水屏显示灰态。因而,本申请实施例仅需在每个墨水容置腔内设置同一种颜色的多个墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒 子相互切换产生运动干扰的问题,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
在一种可能的实现方式中,所述第一导电基板包括:驱动层以及电极层;所述驱动层为所述电极层提供电压,以形成竖直方向的电场和水平方向的电场。
在一种可能的实现方式中,所述电极层包括:至少一个电极组;每个所述墨水容置腔对应一个所述电极组;所述电极组包括:第一电极以及第二电极;所述第一电极和所述第二电极在沿着垂直于所述电子墨水屏的厚度方向上相对设置;所述驱动层为所述电极层提供电压,以使所述电极层与所述第二导电基板之间形成竖直方向的电场,所述第一电极和所述第二电极之间形成水平方向的电场;所述竖直方向的电场用于控制所述墨水粒子在所述墨水容置腔内进行竖直方向的运动,所述水平方向的电场用于控制所述墨水粒子在所述墨水容置腔内进行水平方向的运动。
驱动层为电极层提供电压,能够使得电极层与第二导电基板之间形成电势差,以在电极层与第二导电基板之间形成竖直方向的电场。例如,驱动层单独为第一电极提供电压,能够使得第一电极与第二导电基板之间形成电势差,以在电极层与第二导电基板之间形成竖直方向的电场。或者,驱动层单独为第二电极提供电压,能够使得第二电极与第二导电基板之间形成电势差,以在电极层与第二导电基板之间形成竖直方向的电场。或者,驱动层同时为第一电极和第二电极提供电压,能够使得第一电极以及第二电极与第二导电基板之间形成电势差,以在电极层与第二导电基板之间形成竖直方向的电场。
第一电极和第二电极在沿着垂直于电子墨水屏的厚度方向上相对设置,即第一电极和第二电极在水平方向上相对设置。当驱动层为电极层提供电压,例如,驱动层单独为第一电极提供电压,能够使得第一电极与第二电极之间形成电势差,以在第一电极和第二电极之间形成水平方向的电场。或者,驱动层单独为第二电极提供电压,能够使得第一电极与第二电极之间形成电势差,以在第一电极和第二电极之间形成水平方向的电场。或者,驱动层同时为第一电极和第二电极提供不同大小的电压,能够使得第一电极与第二电极之间形成电势差,以在第一电极和第二电极之间形成水平方向的电场。
在一种可能的实现方式中,所述驱动层包括:衬底层以及位于所述衬底层上的至少一个驱动开关;所述至少一个驱动开关为所述电极层提供电压。
在一种可能的实现方式中,每个所述墨水容置腔对应一个驱动开关;所述驱动开关为所述第一电极提供电压,或者,所述驱动开关为所述第二电极提供电压。
在一种可能的实现方式中,每个所述墨水容置腔对应两个驱动开关;两个所述驱动开关中的其中一者为所述第一电极提供电压,两个所述驱动开关中的另一者为所述第二电极提供电压。
在一种可能的实现方式中,所述功能层为黑色矩阵层;所述墨水粒子为白色墨水粒子。通过在墨水显示层背离所述第二导电基板的一侧设置黑色矩阵层,当施加平行方向的电场时,每个墨水容置腔内的多个白色墨水粒子移动至靠近墨水容置腔的内侧壁,此时电子墨水屏所显示的颜色为黑色矩阵层的颜色,即电子墨水屏呈黑态;当施加竖直方向的电场时,每个墨水容置腔内的多个白色墨水粒子移动至靠近墨水容置腔 的内顶壁或者内底壁,此时电子墨水屏所显示的颜色为白色墨水粒子所呈现的颜色,即电子墨水屏呈白态;当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔内的多个白色墨水粒子在墨水容置腔内分散设置,此时电子墨水屏显示灰态。也就是说,仅需在每个墨水容置腔内设置多个白色墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
在一种可能的实现方式中,所述黑色矩阵层所采用的材料为铬或黑色树酯中的任意一种或多种。
在一种可能的实现方式中,在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示黑色;在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏显示白色;在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
在一种可能的实现方式中,所述黑色矩阵层位于所述墨水显示层和所述第一导电基板之间。
在一种可能的实现方式中,所述黑色矩阵层位于所述电极层和所述驱动层之间。
在一种可能的实现方式中,所述功能层为反射金属层;所述墨水粒子为黑色墨水粒子。通过在墨水显示层背离所述第二导电基板的一侧设置反射金属层,当施加平行方向的电场时,每个墨水容置腔内的多个黑色墨水粒子移动至靠近墨水容置腔的内侧壁,此时太阳光向下照射时被反射金属层反射,电子墨水屏所显示的颜色为白色,即电子墨水屏呈白态;当施加竖直方向的电场时,每个墨水容置腔内的多个黑色墨水粒子移动至靠近墨水容置腔的内顶壁或者内底壁,此时电子墨水屏所显示的颜色为黑色墨水粒子所呈现的颜色,即电子墨水屏呈黑态;当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔内的多个黑色墨水粒子在墨水容置腔内分散设置,此时电子墨水屏显示灰态。也就是说,仅需在每个墨水容置腔内设置多个黑色墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
在一种可能的实现方式中,所述反射金属层所采用的材料为铝或银。
在一种可能的实现方式中,在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示白色;在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏显示黑色;在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
在一种可能的实现方式中,所述反射金属层位于所述电极层和所述驱动层之间。
在一种可能的实现方式中,所述功能层为显示屏。
在一种可能的实现方式中,所述显示屏为有机发光二极管显示屏或者液晶显示屏。
在一种可能的实现方式中,所述墨水粒子为白色墨水粒子;所述显示屏呈黑态。通过在墨水显示层背离所述第二导电基板的一侧设置呈黑态的有机发光二极管显示屏或者液晶显示屏,当施加平行方向的电场时,每个墨水容置腔内的多个白色墨水粒子移动至靠近墨水容置腔的内侧壁,此时电子墨水屏所显示的颜色为有机发光二极管显示屏或者液晶显示屏所显示的颜色,即电子墨水屏呈黑态;当施加竖直方向的电场时,每个墨水容置腔内的多个白色墨水粒子移动至靠近墨水容置腔的内顶壁或者内底壁,此时电子墨水屏所显示的颜色为白色墨水粒子所呈现的颜色,即电子墨水屏呈白态;当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔内的多个白色墨水粒子在墨水容置腔内分散设置,此时电子墨水屏显示灰态。也就是说,仅需在每个墨水容置腔内设置多个白色墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
在一种可能的实现方式中,在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示黑色;在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏显示白色;在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
在一种可能的实现方式中,所述墨水粒子为黑色墨水粒子;所述显示屏呈显示态下。通过在墨水显示层背离所述第二导电基板的一侧设置呈显示态的有机发光二极管显示屏或者液晶显示屏,当施加平行方向的电场时,每个墨水容置腔内的多个黑色墨水粒子移动至靠近墨水容置腔的内侧壁,此时电子墨水屏所显示的颜色为有机发光二极管显示屏或者液晶显示屏所显示的颜色,即电子墨水屏呈显示态(例如白态);当施加竖直方向的电场时,每个墨水容置腔内的多个黑色墨水粒子移动至靠近墨水容置腔的内顶壁或者内底壁,此时电子墨水屏所显示的颜色为黑色墨水粒子所呈现的颜色,即电子墨水屏呈黑态;当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔内的多个黑色墨水粒子在墨水容置腔内分散设置,此时电子墨水屏显示灰态。也就是说,仅需在每个墨水容置腔内设置多个黑色墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
在一种可能的实现方式中,在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示白色;在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底 壁,所述电子墨水屏显示黑色;在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
在一种可能的实现方式中,所述显示屏位于所述第一导电基板背离所述墨水显示层的一侧。
在一种可能的实现方式中,所述墨水显示层包括:多个微胶囊结构,每个所述微胶囊结构的内部空间形成为所述墨水容置腔。
在一种可能的实现方式中,所述墨水显示层包括:多个微杯结构,每个所述微杯结构的内部空间形成为所述墨水容置腔。
在一种可能的实现方式中,所述墨水容置腔内还设置有电泳基液,所述墨水粒子在所述电泳基液中移动。
在一种可能的实现方式中,所述第二导电基板和所述电极层的材质为氧化铟锡。
在一种可能的实现方式中,所述驱动开关为薄膜晶体管。
第二方面,本申请实施例提供一种显示装置,至少包括:上述任一所述的电子墨水屏。
本申请实施例提供的显示装置,该显示装置包括墨水显示屏,该电子墨水屏通过在墨水显示层背离第二导电基板的一侧设置功能层,当施加竖直方向的电场时,每个墨水容置腔内的多个墨水粒子移动至靠近墨水容置腔的内顶壁或者内底壁,此时电子墨水屏所显示的颜色为墨水容置腔内的墨水粒子所呈现的颜色(即第一颜色);当施加平行方向的电场时,每个墨水容置腔内的多个墨水粒子移动至靠近墨水容置腔的内侧壁,此时电子墨水屏所显示的颜色为功能层所产生的颜色(即第二颜色);当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔内的多个墨水粒子在墨水容置腔内分散设置,此时电子墨水屏所显示的颜色介于第一颜色和第二颜色之间,即电子墨水屏显示灰态。因而,本申请实施例仅需在每个墨水容置腔内设置同一种颜色的多个墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏的刷新速度,从而能够缩短电子墨水屏的响应时间。
附图说明
图1为现有技术中的电子墨水屏的结构示意图;
图2为本申请一实施例提供的电子墨水屏的结构示意图;
图3为本申请一实施例提供的电子墨水屏的结构示意图;
图4A为图2所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内侧壁时的结构示意图;
图4B为图2所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内顶壁时的结构示意图;
图4C为图2所示的电子墨水屏中白色墨水粒子在墨水容置腔内分散设置时的结构示意图;
图5为本申请一实施例提供的电子墨水屏的结构示意图;
图6为本申请一实施例提供的电子墨水屏的结构示意图;
图7为本申请一实施例提供的电子墨水屏中黑色矩阵层的俯视图;
图8为本申请一实施例提供的电子墨水屏的结构示意图;
图9为本申请一实施例提供的电子墨水屏的不同灰度的显示状态示意图;
图10为本申请一实施例提供的电子墨水屏的结构示意图;
图11A为图10所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内侧壁时的结构示意图;
图11B为图10所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内顶壁时的结构示意图;
图11C为图10所示的电子墨水屏中白色墨水粒子在墨水容置腔内分散设置时的结构示意图;
图12为本申请一实施例提供的电子墨水屏中黑色矩阵层的俯视图;
图13为本申请一实施例提供的电子墨水屏的结构示意图;
图14为本申请一实施例提供的电子墨水屏的结构示意图;
图15A为图14所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内侧壁时的结构示意图;
图15B为图14所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内顶壁时的结构示意图;
图15C为图14所示的电子墨水屏中白色墨水粒子在墨水容置腔内分散设置时的结构示意图;
图16为本申请一实施例提供的电子墨水屏的结构示意图;
图17A为图16所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内侧壁时的结构示意图;
图17B为图16所示的电子墨水屏中白色墨水粒子移动至靠近墨水容置腔的内顶壁时的结构示意图;
图17C为图16所示的电子墨水屏中白色墨水粒子在墨水容置腔内分散设置时的结构示意图。
附图标记说明:
100-电子墨水屏;           110-第一导电基板;         111-驱动层;
1111-衬底层;              1112-驱动开关;            112-电极组;
1121-第一电极;            1122-第二电极;            121-墨水容置腔;
1211-电泳基液;           1221-白色墨水粒子;         1222-黑色墨水粒子;
123-微胶囊结构;           1231-内顶壁;              1232-内底壁;
1233-内左侧壁;            1234-内右侧壁;            124-微杯结构;
130-第二导电基板;         140-黑色矩阵层;           141-第一通孔;
150-反射金属层;           151-第二通孔;             160-显示屏;
D1-第一灰态;              D2-第二灰态;              D3-第三灰态;
210-基板。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。
目前电子墨水屏技术的研究主要分为电泳显示技术、胆固醇液晶技术、电湿润技术、旋转球技术和电致变色技术和微机电技术等。其中,电泳显示技术具有广视角、高对比度、高反射率等优点,成为目前最为成熟的电子墨水屏技术,而黑白电泳显示技术更已实现量产化。
现有的电子墨水屏为一种双稳态显示屏,当其画面静态显示时,该驱动电路不消耗电量,当其画面刷新时,该驱动电路会消耗一定的电量。如图1所示,相关技术中,常见的电子墨水屏是由两片基板210组成,两片基板210之间设置有一种由无数微胶囊结构123组成的电子墨水,电子墨水是由带正电的许多黑色墨水粒子1222和带负电的许多白色墨水粒子1221密封于内部呈液态的微胶囊结构123内形成。由于不同颜色的墨水粒子会因施加电场的不同,而朝不同的方向运动,使得不同颜色的墨水粒子有序排列,从而呈现出黑白分明的可视化效果。
然而,同一个微胶囊结构123内存在黑色和白色两种墨水粒子,由于黑色墨水粒子1222和白色墨水粒子1221所带电荷不同,两者在内部呈液态的微胶囊结构123内运动时会相互干扰,导致电子墨水屏的刷新速度较慢,从而导致电子墨水屏的响应时间较长。
基于此,如图2和图3所示,本申请实施例提供一种新的电子墨水屏100,用于解决上述技术问题。其中,本申请实施例提供的电子墨水屏100可以适用于微胶囊结构123(参见图2所示)的方案,也可以适用于微杯结构124(参见图3所示)的方案,本申请实施例对此并不加以限定。
需要说明的是,当电子墨水屏100适用于微胶囊结构123的方案时,参见图2所示,墨水显示层可以包括多个微胶囊结构123,其中,每个微胶囊结构123的内部空间形成为墨水容置腔121,每个墨水容置腔121内设置有多个白色墨水粒子1221。当电子墨水屏100适用于微杯结构124的方案时,参见图3所示,墨水显示层可以包括多个微杯结构124,其中,每个微杯结构124的内部空间形成为墨水容置腔121,每个墨水容置腔121内设置有多个白色墨水粒子1221。
为了简化说明和便于理解,本申请的后续实施例中均以电子墨水屏100采用微胶囊结构123来进行说明。当然,本申请实施例不限于应用于微胶囊结构123的方案,同样可以应用于微杯结构124或其它任意结构的方案。
下面结合附图,以不同的实施例为例,对电子墨水屏100的具体结构进行详细说明。
实施例一
参照图2所示,本申请实施例提供一种电子墨水屏100,该电子墨水屏100至少可以包括层叠设置的:第一导电基板110、墨水显示层以及第二导电基板130,其中,墨水显示层位于第一导电基板110和第二导电基板130之间,且第二导电基板130位于第一导电基板110的上方。
其中,第二导电基板130的材质可以为氧化铟锡(Indium tin oxide,ITO)。氧化 铟锡具有很好的导电性和透明性。
继续参照图2所示,墨水显示层可以具有多个相互独立的墨水容置腔121,墨水容置腔121内设置有同一颜色的多个墨水粒子,墨水粒子用于显示第一颜色。具体地,每个墨水容置腔121内可以设置有多个黑色墨水粒子1222,或者,每个墨水容置腔121内可以设置有多个白色墨水粒子1221(参见图2所示)。
可以理解的是,墨水容置腔121内还可以设置有电泳基液1211,电泳基液1211呈透明态,墨水粒子(例如图2中的白色墨水粒子)在电泳基液1211中自由移动。
在本申请实施例中,电子墨水屏100还可以包括:功能层,其中,功能层用于显示第二颜色,而且,功能层可以位于墨水显示层背离第二导电基板130的一侧。
这样,当施加竖直方向的电场时,每个墨水容置腔121内的多个墨水粒子移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,此时电子墨水屏100所显示的颜色为墨水容置腔121内的墨水粒子所呈现的颜色(即第一颜色)。当施加平行方向的电场时,每个墨水容置腔121内的多个墨水粒子移动至靠近墨水容置腔121的内侧壁,此时电子墨水屏100所显示的颜色为功能层所产生的颜色(即第二颜色)。当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔121内的多个墨水粒子在墨水容置腔121内分散设置,此时电子墨水屏100所显示的颜色介于第一颜色和第二颜色之间,即电子墨水屏100显示灰态。
因而,本申请实施例仅需在每个墨水容置腔121内设置同一种颜色的多个墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏100呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏100的刷新速度,从而能够缩短电子墨水屏100的响应时间。
如图2所示,在本申请实施例中,功能层可以为黑色矩阵层140,墨水粒子可以为白色墨水粒子1221。
这样,当施加平行方向的电场时,每个墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内侧壁(例如内前侧壁、内后侧壁、内左侧壁1233、或者内右侧壁1234),例如,图4A中,墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内左侧壁1233。此时,太阳光穿过微胶囊结构123向下照射,被黑色矩阵层140吸收,电子墨水屏100所显示的颜色为黑色矩阵层140的颜色,即电子墨水屏100呈黑态。
当施加竖直方向的电场时,每个墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,例如,图4B中,墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231。此时,太阳光穿过微胶囊结构123向下照射,被白色墨水粒子1221反射,电子墨水屏100所显示的颜色为白色墨水粒子1221所呈现的颜色,即电子墨水屏100呈白态。
当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔121内的多个白色墨水粒子1221在墨水容置腔121内分散设置(参见图4C所示),此时电子墨水屏100显示灰态。
也就是说,本申请实施例仅需在每个墨水容置腔121内设置多个白色墨水粒子1221,通过施加不同方向的电场,即可使得电子墨水屏100呈现不同颜色的状态,避 免了现有技术中黑色粒子和白色粒子所带电荷不同,两者运动时会相互产生运动干扰的问题,因而本申请实施例能够提升电子墨水屏100的刷新速度,从而能够显著缩短电子墨水屏100的响应时间。
另外,现有技术中,当需要切换显示画面时,比如从黑色切换到白色,由于部分黑色粒子来不及运动而残留在画面中,与白色粒子混在一起,从而导致残影的发生,并影响画面对比度。本申请实施例仅需在每个墨水容置腔121内设置多个白色墨水粒子1221,避免了两种不同颜色的墨水粒子相互切换的问题,因而能够避免残影的发生,有助于提升电子墨水屏100的画面对比度,优化用户的体验效果。
需要说明的是,黑色矩阵是一种吸光材料,黑色矩阵(Black Matrix,BM)层所采用的材料可以为铬(Cr、Crox)或黑色树酯(Black Resin)中的任意一种或多种。
另外,如图2所示,在本申请实施例中,第一导电基板110可以包括:驱动层111以及电极层,其中,驱动层111为电极层提供电压,以形成竖直方向的电场和水平方向的电场。其中,电极层的材质可以为氧化铟锡。氧化铟锡作为透明电极材质使用,其光透过率可以在90%以上。
具体地,电极层可以包括:至少一个电极组112,每个墨水容置腔121对应一个电极组112。例如,图2中的三个墨水容置腔121分别对应有电极组112。其中,每个电极组112可以包括:第一电极1121以及第二电极1122,第一电极1121和第二电极1122在沿着垂直于电子墨水屏100的厚度方向上相对设置,驱动层111为电极组112提供电压,以使电极组112与第二导电基板130之间形成竖直方向的电场,第一电极1121和第二电极1122之间形成水平方向的电场。其中,竖直方向的电场用于控制白色墨水粒子1221在墨水容置腔121内进行竖直方向的运动,水平方向的电场用于控制白色墨水粒子1221在墨水容置腔121内进行水平方向的运动。
可以理解的是,驱动层111为电极组112提供电压,能够使得电极组112与第二导电基板130之间形成电势差,以在电极组112与第二导电基板130之间形成竖直方向的电场。
例如,驱动层111单独为第一电极1121提供电压,能够使得第一电极1121与第二导电基板130之间形成电势差,以在电极组112与第二导电基板130之间形成竖直方向的电场。或者,驱动层111单独为第二电极1122提供电压,能够使得第二电极1122与第二导电基板130之间形成电势差,以在电极组112与第二导电基板130之间形成竖直方向的电场。或者,驱动层111同时为第一电极1121和第二电极1122提供电压,能够使得第一电极1121与第二导电基板130之间以及第二电极1122与第二导电基板130之间形成电势差,以在电极组112与第二导电基板130之间形成竖直方向的电场。
另外,需要说明的是,以驱动层111同时为第一电极1121和第二电极1122提供电压,使得白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232为例,当需要白色墨水粒子1221全部位于靠近墨水容置腔1021的内顶壁1231或者内底壁1232时,即电子墨水屏100呈纯黑态时,第一电极1121和第二电极1122所被施加的电压可以相同。当不需要白色墨水粒子1221全部位于靠近墨水容置腔1021的内顶壁1231或者内底壁1232时,例如部分白色墨水粒子1221可以位于墨水容置腔 1021的中部、中上部或中下部,第一电极1121和第二电极1122所被施加的电压可以不相同。
在本申请实施例中,第一电极1121和第二电极1122在沿着垂直于电子墨水屏100的厚度方向上相对设置,即第一电极1121和第二电极1122在水平方向上相对设置。
这样,当驱动层111为电极组112提供电压,例如,驱动层111单独为第一电极1121提供电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。或者,驱动层111单独为第二电极1122提供电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。或者,驱动层111同时为第一电极1121和第二电极1122提供不同大小的电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。
需要说明的是,一般地,当驱动层111单独为第一电极1121提供电压时,能够使得第一电极1121与第二导电基板130之间形成电势差,以在电极组112与第二导电基板130之间形成竖直方向的电场,也能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。此时,可以根据第一电极1121与第二导电基板130之间的实际距离以及第一电极1121与第二电极1122之间的实际距离,灵活调整电压值的大小,以使得仅在电极组112与第二导电基板130之间形成竖直方向的电场,或者,仅在第一电极1121和第二电极1122之间形成水平方向的电场。
例如,图2中,第一电极1121与第二导电基板130之间的距离相对较大,第一电极1121与第二电极1122之间的距离相对较小,此时,当对第一电极1121提供较小的电压时,在第一电极1121和第二电极1122之间形成水平方向的电场。当对第一电极1121提供较大的电压时,在电极组112与第二导电基板130之间形成竖直方向的电场。
另外,在本申请实施例中,驱动层111为电极组112所提供的电压的正负极性对白色墨水粒子1221的实际运动状态也会产生影响。
可以理解的是,白色墨水粒子1221携带负电荷。以电极组112与第二导电基板130之间形成竖直方向的电场为例,当驱动层111为电极组112所提供的电压为正电压时,电极组112的电势值大于第二导电基板130的电势值,这样,电极组112与第二导电基板130之间形成电势差,电极组112与第二导电基板130之间形成竖直方向的电场,该电场是从电极组112出发,朝向第二导电基板130的方向(即从下至上)延伸产生的。由于白色墨水粒子1221携带负电荷,白色墨水粒子1221会移动至靠近墨水容置腔121的内底壁1232,此时电子墨水屏100呈白态。
当驱动层111为电极组112所提供的电压为负电压时,电极组112的电势值小于第二导电基板130的电势值,这样,电极组112与第二导电基板130之间形成电势差,电极组112与第二导电基板130之间形成竖直方向的电场,该电场是从第二导电基板130出发,朝向电极组112的方向(即从上至下)延伸产生的。由于白色墨水粒子1221携带负电荷,白色墨水粒子1221会移动至靠近墨水容置腔121的内顶壁1231,此时电子墨水屏100同样呈白态。
另外,以第一电极1121与第二电极1122之间形成水平方向的电场为例,当驱动层111为第一电极1121所提供的电压为正电压时,第一电极1121的电势值大于第二电极1122的电势值,这样,第一电极1121与第二电极1122之间形成电势差,第一电极1121与第二电极1122之间形成水平方向的电场,该电场是从第一电极1121出发,朝向第二电极1122的方向(即从左至右)延伸产生的。由于白色墨水粒子1221携带负电荷,白色墨水粒子1221会移动至靠近墨水容置腔121的左侧壁,此时电子墨水屏100呈黑态。
当驱动层111为第一电极1121所提供的电压为负电压时,第一电极1121的电势值小于第二电极1122的电势值,这样,第一电极1121与第二电极1122之间形成电势差,第一电极1121与第二电极1122之间形成水平方向的电场,该电场是从第二电极1122出发,朝向第一电极1121的方向(即从右至左)延伸产生的。由于白色墨水粒子1221携带负电荷,白色墨水粒子1221会移动至靠近墨水容置腔121的右侧壁,此时电子墨水屏100同样呈黑态。
继续参照图2所示,驱动层111可以包括:衬底层1111以及至少一个驱动开关1112,其中,至少一个驱动开关1112位于衬底层1111上,而且,至少一个驱动开关1112用于为电极组112提供电压。
在一些实施例中,驱动开关1112可以为薄膜晶体管(Thin Film Transistor,TFT)。薄膜晶体管是指液晶显示器上的每一液晶像素点都是由集成在其后的薄膜晶体管来驱动。从而可以做到高速度高亮度高对比度显示屏幕信息。
另外,需要说明的是,在本申请实施例中,至少一个驱动开关1112为电极组112提供电压时的具体实现方式包括以下两种可能的实现方式:
一种可能的实现方式为:参见图2所示,每个微胶囊结构123所对应的驱动开关1112的数量为一个,该驱动开关1112为第一电极1121提供电压,或者,该驱动开关1112为第二电极1122提供电压。该驱动开关1112单独为第一电极1121提供电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。或者,该驱动开关1112单独为第二电极1122提供电压,同样能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。
另一种可能的实现方式为:参见图5所示,每个微胶囊结构123所对应的驱动开关1112的数量为两个,两个驱动开关1112中的其中一者为第一电极1121提供电压,两个驱动开关1112中的另一者为第二电极1122提供电压。这样,当开启一个驱动开关1112时,开启的驱动开关1112可以单独为第一电极1121提供电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。或者,开启的驱动开关1112可以单独为第二电极1122提供电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。
当两个驱动开关1112同时开启时,该两个驱动开关1112可以分别为第一电极1121和第二电极1122提供不同大小的电压,能够使得第一电极1121与第二电极1122之间形成电势差,以在第一电极1121和第二电极1122之间形成水平方向的电场。
可以理解的是,在本申请实施例中,在第一驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间可以形成水平方向的电场,此时白色墨水粒子1221移动至靠近墨水容置腔121的内侧壁,电子墨水屏100显示黑色。在第二驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,电极组112与第二导电基板130之间形成竖直方向的电场,白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,此时电子墨水屏100显示白色。在第三驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间形成水平方向的电场,且电极组112与第二导电基板130之间形成竖直方向的电场,白色墨水粒子1221在墨水容置腔121内分散设置,电子墨水屏100显示灰态。
在本申请实施例中,黑色矩阵层140可以位于墨水显示层和第一导电基板110之间(参见图2所示)。或者,如图6所示,黑色矩阵层140也可以位于电极层和驱动层111之间。电极组112和驱动层111之间连接有电极引线(图中未示出),驱动层111通过电极引线为电极组112提供驱动电压。此时,一般需要在黑色矩阵层140上开设第一通孔141(参见图7所示),以便于电极引线穿过黑色矩阵层140上的第一通孔141实现驱动层111为电极组112提供驱动电压。
当然,在其它的一些实施例中,如图8所示,黑色矩阵层140也可以位于第一导电基板110背离第二导电基板130的一侧,本申请实施例对此并不加以限定。
另外,需要说明的是,在本申请实施例中,电子墨水屏100显示灰态时可能是呈多种不同形态的灰度。具体地,可以根据对施加电压的量化控制,实现对电场强度的大小调节,从而使得电子墨水屏100显示不同深浅的灰态。示例性地,图9示出了三种不同形态的灰度(即第一灰态D1、第二灰态D2和第三灰态D3)。如图9所示,从左至右,电子墨水屏100所显示的灰态颜色越来越深。
实施例二
本申请实施例还提供另一种结构的电子墨水屏100,实施例二与实施例二相比,两者的区别之处在于,功能层的具体材料并不相同。
参照图10所示,在本申请实施例中,功能层可以为反射金属层150,墨水粒子可以为黑色墨水粒子1222。
这样,当施加平行方向的电场时,每个墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内侧壁,例如,图11A中,墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内左侧壁1233。此时,太阳光穿过微胶囊结构123向下照射时,被反射金属层150反射,电子墨水屏100所显示的颜色为白色,即电子墨水屏100呈白态。
当施加竖直方向的电场时,每个墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,例如,图11B中,墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内顶壁1231。此时,太阳光穿过微胶囊结构123向下照射,被黑色墨水粒子1222吸收,电子墨水屏100 所显示的颜色为黑色墨水粒子1222所呈现的颜色,即电子墨水屏100呈黑态。
当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔121内的多个黑色墨水粒子1222在墨水容置腔121内分散设置(参见图11C所示),此时电子墨水屏100显示灰态。
也就是说,本申请实施例仅需在每个墨水容置腔121内设置多个黑色墨水粒子1222,通过施加不同方向的电场,即可使得电子墨水屏100呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏100的刷新速度,从而能够缩短电子墨水屏100的响应时间。
在本申请实施例中,反射金属层150可以位于电极层和驱动层111之间(参见图10所示)。电极组112和驱动层111之间连接有电极引线(图中未示出),驱动层111通过电极引线为电极组112提供驱动电压。此时,一般需要在反射金属层150上开设第二通孔151(参见图12所示),以便于电极引线穿过反射金属层150上的第二通孔151实现驱动层111为电极组112提供驱动电压。
当然,在其它的一些实施例中,如图13所示,反射金属层150也可以位于第一导电基板110背离第二导电基板130的一侧,本申请实施例对此并不加以限定。
需要说明的是,反射金属层150所采用的材料可以为铝或银。
可以理解的是,在本申请实施例中,在第一驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间可以形成水平方向的电场,此时黑色墨水粒子1222移动至靠近墨水容置腔121的内侧壁,电子墨水屏100显示白色。在第二驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,电极组112与第二导电基板130之间形成竖直方向的电场,此时黑色墨水粒子1222移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,电子墨水屏100显示黑色。在第三驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间形成水平方向的电场,且电极组112与第二导电基板130之间形成竖直方向的电场,黑色墨水粒子1222在墨水容置腔121内分散设置,电子墨水屏100显示灰态。
其它技术特征与实施例一相同,并能达到相同的技术效果,在此不再一一赘述。
实施例三
本申请实施例还提供另一种结构的电子墨水屏100,实施例三与实施例一和实施例二相比,三者的区别之处在于,功能层的具体材料并不相同。
参照图14所示,在本申请实施例中,功能层可以为显示屏160。具体地,显示屏160可以为有机发光二极管显示屏160(Organic Light-Emitting Diode,OLED)或者液晶显示屏160(Liquid Crystal Display,LCD)。
需要说明的是,如图14所示,在本申请实施例中,墨水粒子可以为白色墨水粒子1221,显示屏160可以呈黑态。
这样,当施加平行方向的电场时,每个墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内侧壁,例如,图15A中,墨水容置腔121内的多个白 色墨水粒子1221移动至靠近墨水容置腔121的内左侧壁1233。此时电子墨水屏100所显示的颜色为有机发光二极管显示屏160或者液晶显示屏160所显示的颜色,即电子墨水屏100呈黑态。
当施加竖直方向的电场时,每个墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,例如,图15B中,每个墨水容置腔121内的多个白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231。此时电子墨水屏100所显示的颜色为白色墨水粒子1221所呈现的颜色,即电子墨水屏100呈白态。
当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔121内的多个白色墨水粒子1221在墨水容置腔121内分散设置(参见图15C所示),此时电子墨水屏100显示灰态。
也就是说,仅需在每个墨水容置腔121内设置多个白色墨水粒子1221,通过施加不同方向的电场,即可使得电子墨水屏100呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏100的刷新速度,从而能够缩短电子墨水屏100的响应时间。
需要说明的是,在一些实施例中,如图14所示,显示屏160可以位于第一导电基板110背离墨水显示层的一侧。
具体地,在本申请实施例中,在第一驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间形成水平方向的电场,白色墨水粒子1221移动至靠近墨水容置腔121的内侧壁,电子墨水屏100显示黑色。在第二驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,电极组112与第二导电基板130之间形成竖直方向的电场,白色墨水粒子1221移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,电子墨水屏100显示白色。在第三驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间形成水平方向的电场,且电极组112与第二导电基板130之间形成竖直方向的电场,白色墨水粒子1221在墨水容置腔121内分散设置,电子墨水屏100显示灰态。
其它技术特征与实施例一和实施例二相同,并能达到相同的技术效果,在此不再一一赘述。
实施例四
本申请实施例还提供另一种结构的电子墨水屏100,实施例四与实施例三相比,两者的区别之处在于,功能层为显示屏160时,显示屏160的显示状态并不相同。
参照图16所示,在本申请实施例中,墨水粒子可以为黑色墨水粒子1222,显示屏160可以呈显示态。
这样,当施加平行方向的电场时,每个墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内侧壁,例如,图17A中,墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内左侧壁1233。此时电子墨水屏100 所显示的颜色为有机发光二极管显示屏160或者液晶显示屏160所显示的颜色,即电子墨水屏100呈显示态(例如白态)。
当施加竖直方向的电场时,每个墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,例如,图17B中,墨水容置腔121内的多个黑色墨水粒子1222移动至靠近墨水容置腔121的内顶壁1231。此时电子墨水屏100所显示的颜色为黑色墨水粒子1222所呈现的颜色,即电子墨水屏100呈黑态。
当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔121内的多个黑色墨水粒子1222在墨水容置腔121内分散设置(参见图17C所示),此时电子墨水屏100显示灰态。
也就是说,仅需在每个墨水容置腔121内设置多个黑色墨水粒子1222,通过施加不同方向的电场,即可使得电子墨水屏100呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏100的刷新速度,从而能够缩短电子墨水屏100的响应时间。
具体地,在本申请实施例中,在第一驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间形成水平方向的电场,黑色墨水粒子1222移动至靠近墨水容置腔121的内侧壁,电子墨水屏100显示白色。在第二驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,电极组112与第二导电基板130之间形成竖直方向的电场,黑色墨水粒子1222移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,电子墨水屏100显示黑色。在第三驱动状态下,即驱动层111为电极组112(第一电极1121和第二电极1122中的至少一者)提供电压,第一电极1121和第二电极1122之间形成水平方向的电场,且电极组112与第二导电基板130之间形成竖直方向的电场,黑色墨水粒子1222在墨水容置腔121内分散设置,电子墨水屏100显示灰态。
另外,相关技术中,电子墨水屏100只能够支持简单的颜色和灰度,例如只能显示黑白两色,无法做到非常丰富的色彩显示,导致用户体验较差。而本申请实施例中,显示屏160为显示态时,可以将显示屏160的显示颜色设计为各种不同的颜色,例如浅黄、浅蓝或浅绿等,以扩大墨水显示屏160的显示色域。另外,通过灵活切换墨水显示层和显示屏160(例如OLED或LCD)的显示状态,有助于墨水显示屏160达到全色域的显示效果。
而且,由于每个墨水容置腔121内仅设置同一种颜色的多个墨水粒子,在电子墨水屏100显示透态时,电子墨水屏100的整体透过率能够得到显著提升,尤其是可以减小微胶囊结构123对显示屏160(例如OLED或LCD)正常显示时的影响。
其它技术特征与实施例一、实施例二以及实施例三相同,并能达到相同的技术效果,在此不再一一赘述。
实施例五
在上述实施例一、实施例二、实施例三或实施例四的基础上,本申请实施例提供 一种显示装置,该显示装置至少可以包括:上述任一实施例中的电子墨水屏100。
需要说明的是,该显示装置可以是电子标签、电子书、可穿戴设备(例如手表)、电子阅读器、导航仪、电子相框、家居电器(例如双面显示或透明显示的闹钟)、商超市场的广告牌等各类具有显示功能的产品或部件,本申请实施例对墨水显示屏160的具体应用场景并不加以限定。
本申请实施例提供的显示装置,该显示装置可以包括墨水显示屏160,该电子墨水屏100通过在墨水显示层背离第二导电基板130的一侧设置功能层,当施加平行方向的电场时,每个墨水容置腔121内的多个墨水粒子移动至靠近墨水容置腔121的内侧壁,此时电子墨水屏100所显示的颜色为功能层所产生的颜色,当施加竖直方向的电场时,每个墨水容置腔121内的多个墨水粒子移动至靠近墨水容置腔121的内顶壁1231或者内底壁1232,此时电子墨水屏100所显示的颜色为墨水容置腔121内的墨水粒子所呈现的颜色,当同时施加平行方向的电场和竖直方向的电场时,每个墨水容置腔121内的多个墨水粒子在墨水容置腔121内分散设置,此时电子墨水屏100显示灰态。因而,本申请实施例仅需在每个墨水容置腔121内设置同一种颜色的多个墨水粒子,通过施加不同方向的电场,即可使得电子墨水屏100呈现不同颜色的状态,避免了现有技术中两种不同颜色的墨水粒子相互切换产生运动干扰的问题,能够提升电子墨水屏100的刷新速度,从而能够缩短电子墨水屏100的响应时间。
另外,该显示装置相对于现有技术中的液晶显示装置、OLED显示装置等还具有低功耗的优点。
其它技术特征与实施例一、实施例二、实施例三以及实施例四相同,并能达到相同的技术效果,在此不再一一赘述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“可以包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制,尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术 人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (22)

  1. 一种电子墨水屏,其特征在于,至少包括层叠设置的:
    第一导电基板、墨水显示层以及第二导电基板;
    所述墨水显示层位于所述第一导电基板和所述第二导电基板之间,且所述第二导电基板位于所述第一导电基板的上方;
    所述墨水显示层具有多个相互独立的墨水容置腔,所述墨水容置腔内设置有同一颜色的多个墨水粒子,所述墨水粒子用于显示第一颜色;
    还包括:功能层;所述功能层用于显示第二颜色;且所述功能层位于所述墨水显示层背离所述第二导电基板的一侧。
  2. 根据权利要求1所述的电子墨水屏,其特征在于,所述第一导电基板包括:驱动层以及电极层;
    所述电极层包括:至少一个电极组;每个所述墨水容置腔对应一个所述电极组;
    所述电极组包括:第一电极以及第二电极;所述第一电极和所述第二电极在沿着垂直于所述电子墨水屏的厚度方向上相对设置;
    所述驱动层为所述电极层提供电压,以使所述电极层与所述第二导电基板之间形成竖直方向的电场,所述第一电极和所述第二电极之间形成水平方向的电场;
    所述竖直方向的电场用于控制所述墨水粒子在所述墨水容置腔内进行竖直方向的运动,所述水平方向的电场用于控制所述墨水粒子在所述墨水容置腔内进行水平方向的运动。
  3. 根据权利要求2所述的电子墨水屏,其特征在于,所述驱动层包括:衬底层以及位于所述衬底层上的至少一个驱动开关;
    所述至少一个驱动开关为所述电极层提供电压。
  4. 根据权利要求3所述的电子墨水屏,其特征在于,每个所述墨水容置腔对应一个驱动开关;
    所述驱动开关为所述第一电极提供电压,或者,所述驱动开关为所述第二电极提供电压。
  5. 根据权利要求3所述的电子墨水屏,其特征在于,每个所述墨水容置腔对应两个驱动开关;
    两个所述驱动开关中的其中一者为所述第一电极提供电压,两个所述驱动开关中的另一者为所述第二电极提供电压。
  6. 根据权利要求2-5任一所述的电子墨水屏,其特征在于,所述功能层为黑色矩阵层;所述墨水粒子为白色墨水粒子。
  7. 根据权利要求6所述的电子墨水屏,其特征在于,
    在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示黑色;
    在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏显示白色;
    在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
  8. 根据权利要求6或7所述的电子墨水屏,其特征在于,所述黑色矩阵层位于所述墨水显示层和所述第一导电基板之间。
  9. 根据权利要求6或7所述的电子墨水屏,其特征在于,所述黑色矩阵层位于所述电极层和所述驱动层之间。
  10. 根据权利要求2-5任一所述的电子墨水屏,其特征在于,所述功能层为反射金属层;所述墨水粒子为黑色墨水粒子。
  11. 根据权利要求10任一所述的电子墨水屏,其特征在于,
    在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示白色;
    在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏显示黑色;
    在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
  12. 根据权利要求10或11所述的电子墨水屏,其特征在于,所述反射金属层位于所述电极层和所述驱动层之间。
  13. 根据权利要求2-5任一所述的电子墨水屏,其特征在于,所述功能层为显示屏。
  14. 根据权利要求13所述的电子墨水屏,其特征在于,所述墨水粒子为白色墨水粒子;所述显示屏呈黑态。
  15. 根据权利要求14所述的电子墨水屏,其特征在于,
    在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示黑色;
    在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏显示白色;
    在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述白色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
  16. 根据权利要求13所述的电子墨水屏,其特征在于,所述墨水粒子为黑色墨水粒子;所述显示屏呈显示态。
  17. 根据权利要求16所述的电子墨水屏,其特征在于,
    在第一驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内侧壁,所述电子墨水屏显示白色;
    在第二驱动状态下,所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子移动至靠近所述墨水容置腔的内顶壁或者内底壁,所述电子墨水屏 显示黑色;
    在第三驱动状态下,所述第一电极和所述第二电极之间形成水平方向的电场,且所述电极层与所述第二导电基板之间形成竖直方向的电场,所述黑色墨水粒子在所述墨水容置腔内分散设置,所述电子墨水屏显示灰态。
  18. 根据权利要求13-17任一所述的电子墨水屏,其特征在于,所述显示屏位于所述第一导电基板背离所述墨水显示层的一侧。
  19. 根据权利要求1-18任一所述的电子墨水屏,其特征在于,所述墨水显示层包括:多个微胶囊结构,每个所述微胶囊结构的内部空间形成为所述墨水容置腔。
  20. 根据权利要求1-18任一所述的电子墨水屏,其特征在于,所述墨水显示层包括:多个微杯结构,每个所述微杯结构的内部空间形成为所述墨水容置腔。
  21. 根据权利要求1-20任一所述的电子墨水屏,其特征在于,所述墨水容置腔内还设置有电泳基液,所述墨水粒子在所述电泳基液中移动。
  22. 一种显示装置,其特征在于,至少包括:上述权利要求1-21任一所述的电子墨水屏。
PCT/CN2022/112207 2021-11-24 2022-08-12 电子墨水屏及显示装置 WO2023093135A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/569,022 US20240280876A1 (en) 2021-11-24 2022-08-12 Electronic Ink Screen and Display Apparatus
EP22897230.3A EP4328668A1 (en) 2021-11-24 2022-08-12 Electronic ink screen and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111408661.4 2021-11-24
CN202111408661.4A CN115047686B (zh) 2021-11-24 2021-11-24 电子墨水屏及显示装置

Publications (2)

Publication Number Publication Date
WO2023093135A1 true WO2023093135A1 (zh) 2023-06-01
WO2023093135A9 WO2023093135A9 (zh) 2023-09-21

Family

ID=83156262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112207 WO2023093135A1 (zh) 2021-11-24 2022-08-12 电子墨水屏及显示装置

Country Status (4)

Country Link
US (1) US20240280876A1 (zh)
EP (1) EP4328668A1 (zh)
CN (1) CN115047686B (zh)
WO (1) WO2023093135A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116794895B (zh) * 2023-08-28 2023-11-28 苏州华星光电技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353701A (zh) * 2013-07-22 2013-10-16 京东方科技集团股份有限公司 一种显示面板、显示装置、显示面板制作方法及显示方法
US20140085705A1 (en) * 2012-09-24 2014-03-27 Electronics And Telecommunications Research Institute Color electronic paper display and method of fabricating the same
CN106773016A (zh) * 2017-01-03 2017-05-31 京东方科技集团股份有限公司 一种显示面板及其刷屏方法
CN110967889A (zh) * 2019-12-23 2020-04-07 Tcl华星光电技术有限公司 显示面板
CN113156732A (zh) * 2021-05-31 2021-07-23 京东方科技集团股份有限公司 反射式显示面板及其制备方法、及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145547B2 (en) * 2002-10-18 2006-12-05 Koninklijke Philips Electronics N.V. Electrophoretic display device
EP1779174A4 (en) * 2004-07-27 2010-05-05 E Ink Corp ELECTROOPTICAL DISPLAYS
KR101437164B1 (ko) * 2007-12-20 2014-09-03 삼성전자주식회사 전기영동 표시 소자 및 그 구동 방법
WO2012074792A1 (en) * 2010-11-30 2012-06-07 E Ink Corporation Multi-color electrophoretic displays
CN103576405A (zh) * 2012-08-09 2014-02-12 余志刚 电子墨水纸与液晶显示器混合使用的显示装置
CN105652552A (zh) * 2015-12-30 2016-06-08 联想(北京)有限公司 一种电子墨水屏和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140085705A1 (en) * 2012-09-24 2014-03-27 Electronics And Telecommunications Research Institute Color electronic paper display and method of fabricating the same
CN103353701A (zh) * 2013-07-22 2013-10-16 京东方科技集团股份有限公司 一种显示面板、显示装置、显示面板制作方法及显示方法
CN106773016A (zh) * 2017-01-03 2017-05-31 京东方科技集团股份有限公司 一种显示面板及其刷屏方法
CN110967889A (zh) * 2019-12-23 2020-04-07 Tcl华星光电技术有限公司 显示面板
CN113156732A (zh) * 2021-05-31 2021-07-23 京东方科技集团股份有限公司 反射式显示面板及其制备方法、及显示装置

Also Published As

Publication number Publication date
CN115047686A (zh) 2022-09-13
EP4328668A1 (en) 2024-02-28
WO2023093135A9 (zh) 2023-09-21
CN115047686B (zh) 2023-05-09
US20240280876A1 (en) 2024-08-22

Similar Documents

Publication Publication Date Title
Bai et al. Review of paper-like display technologies (invited review)
US10825405B2 (en) Electro-optic displays
Amundson Electrophoretic imaging films for electronic paper displays
US9454058B2 (en) Color electrophoretic display panel and fabricating method thereof, and display device
WO2015018153A1 (zh) 显示面板及其驱动方法、显示装置
CN104834146A (zh) 一种显示器件、其制作方法、其驱动方法及显示装置
CN109920831B (zh) 一种显示面板及其驱动方法、显示装置
CN102289127B (zh) 显示装置及其制造方法
JP2013174927A (ja) 電子光学式ディスプレイにおけるエッジ効果を低減する方法
KR20070047597A (ko) 전기변색소자의 전극구조
WO2021016930A1 (zh) 一种电子纸、显示装置和驱动方法
US20130162511A1 (en) Electronic paper display device
WO2023093135A1 (zh) 电子墨水屏及显示装置
JP2021530739A (ja) 電気光学ディスプレイおよび駆動方法
JP2004341156A (ja) ディスプレイ装置
CN206249825U (zh) 显示面板及显示装置
TWI823426B (zh) 用於驅動電光顯示器的方法及設備
TWI795933B (zh) 電光顯示器及用於驅動此電光顯示器之方法
US11404013B2 (en) Electro-optic displays with resistors for discharging remnant charges
US10139698B2 (en) Electrophoretic display and driving method thereof
KR20110075186A (ko) 전기영동 표시장치
TWI815577B (zh) 具有用於釋放殘留電壓之歐姆導電儲存電容器的電光顯示器
US12067927B2 (en) Display apparatus and mobile terminal
CN201681234U (zh) 一种电子阅读显示器
KR102406708B1 (ko) 평판 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022897230

Country of ref document: EP

Ref document number: 22897230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897230

Country of ref document: EP

Effective date: 20231123

WWE Wipo information: entry into national phase

Ref document number: 18569022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE