WO2021016930A1 - 一种电子纸、显示装置和驱动方法 - Google Patents

一种电子纸、显示装置和驱动方法 Download PDF

Info

Publication number
WO2021016930A1
WO2021016930A1 PCT/CN2019/098650 CN2019098650W WO2021016930A1 WO 2021016930 A1 WO2021016930 A1 WO 2021016930A1 CN 2019098650 W CN2019098650 W CN 2019098650W WO 2021016930 A1 WO2021016930 A1 WO 2021016930A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup structure
cup
dye particles
charged dye
driving
Prior art date
Application number
PCT/CN2019/098650
Other languages
English (en)
French (fr)
Inventor
王哲
马青青
田超
许睿
王敏
王天娇
张燕
田海洋
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/956,974 priority Critical patent/US11740531B2/en
Priority to PCT/CN2019/098650 priority patent/WO2021016930A1/zh
Priority to CN201980001209.0A priority patent/CN110300924B/zh
Publication of WO2021016930A1 publication Critical patent/WO2021016930A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16766Electrodes for active matrices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an electronic paper, a display device and a driving method.
  • the prior art electronic paper display technology mainly uses electrophoretic display (Electrophoretic Display, EPD) principle to drive two different electrical dye particles to move back and forth to present the color of the particles on the display side. After the power is off, the particles can maintain their position and show a "steady state". Among the more common ones are black (positive electricity), white (negative electricity) and red (positive electricity) three-color heteroelectricity mixed display products.
  • EPD Electrophoretic Display
  • the heteroelectric dye particles are distributed in the same microcup/microcapsule, there is a built-in attraction electric field formed by positive and negative particles, which inevitably reduces the display effect and requires high driving requirements.
  • traditional dual-electricity EPD display products mainly have the following shortcomings: First, the picture purity is maintained (for example, the white picture gradually forms a white picture mixed with red due to the attraction of the lower layer of heteroelectric red particles), which often needs to be refreshed every day, which violates The original intention of the “steady-state” design of electronic paper products; secondly, long driving time and high power consumption are required for screen refreshing. This is because electronic paper with heteroelectric particles needs to be fully activated when the screen is refreshed.
  • the moving distance of the activated particles is the height of the microcup, but the increase in the electrophoretic distance will inevitably extend the driving time, which is aimed at balancing the long-term reverse and activation process of the built-in electric field, which increases the screen refresh time and power consumption; third , The utilization rate of particles is low, and only the particles on the display side (top of the cup) are used when displaying, and the particles on the back display side (bottom of the cup) are completely ineffective (the utilization rate of particles is only 50%).
  • traditional electronic paper has the problems of poor image purity retention, long drive time required for image refresh, high power consumption, and low particle utilization.
  • the embodiments of the present disclosure provide an electronic paper, which includes:
  • a first driving backplane having a plurality of first half-cup structures, and each of the first half-cup structures has a single-electricity charged dye particle;
  • the second driving backplane has a plurality of second half-cup structures, each of the second half-cup structures has a single electrical charged dye particle; the second driving backplane has all One side of the second half-cup structure is opposite to the side of the first drive back plate having the first half-cup structure, and a first half-cup structure is opposite to the second half-cup structure.
  • the cup structure constitutes a microcup structure, and the first half-cup structure and the second half-cup structure in the same microcup structure have the opposite electrical properties of the charged dye particles; wherein,
  • the cross-sectional area of the second half-cup structure gradually decreases; when the first drive backplane points to the second drive backplane In the direction of the plate, the cross-sectional area of the first half-cup structure gradually decreases.
  • it further includes: an electrode plate layer located between the first half-cup structure and the second half-cup structure; the electrode plate layer includes two opposite transparent insulating plate layers and A transparent electrode layer located between the two transparent insulating plate layers.
  • the transparent electrode layer has a whole-layer structure.
  • the shape of the first half-cup structure and the second half-cup structure is a prism frustum shape or a truncated frustum shape, and the first half-cup structure and the second half-cup structure are The orthographic projections of the first driving backplane overlap each other.
  • the cross-sectional shape of the first half-cup structure and the second half-cup structure parallel to the first driving back plate are both regular hexagons or circular;
  • the distance between two points is not more than 15 microns, the distance between two opposite sides in the largest section of a regular hexagon is 130 microns to 150 microns, and the distance between the diameters in the largest section of a circle is 130 microns to 150 microns .
  • the height of the first half-cup structure and the second half-cup structure is 60 to 70 microns.
  • the charged dye particles in the first half-cup structures have the same electrical properties
  • the charged dye particles in the second half-cup structures have the same electrical properties.
  • a surface of the first driving backplane facing away from the second driving backplane is a display surface
  • the charged dye particles of a single charge possessed by each of the first half-cup structures are charged dye particles of two colors with different charge-to-mass ratios.
  • each of the second half-cup structures has the charged dye particles of one color, and the color of the charged dye particles in the second half-cup structure is the same as that of the first half-cup structure.
  • the colors of the charged dye particles in the cup structure are different.
  • a reflective layer is further provided on a side of the second drive backplane facing away from the first drive backplane, and the color of the reflective layer is the same as that of the first half-cup structure and the The colors of the charged dye particles in the second half-cup structure are all different.
  • the two charged dye particles in each of the first half-cup structures are respectively: positively charged red charged dye particles and positively charged black charged dye particles, the black charged dye particles
  • the charge-to-mass ratio of the particles is greater than the charge-to-mass ratio of the red charged dye particles;
  • the charged dye particles in each second half-cup structure are negatively charged white charged dye particles, and the color of the reflective layer is yellow.
  • the first driving backplane and the second driving backplane both include: a transparent base substrate, and a plurality of pixel circuits located on the transparent base substrate, one pixel The circuit correspondingly drives the microcup structure, wherein the pixel circuit of the first driving backplane is located between the transparent base substrate of the first driving backplane and the first half-cup structure, The pixel circuit of the second driving backplane is located between the transparent base substrate of the second driving backplane and the second half-cup structure.
  • each of the pixel circuits includes: a first electrode layer, a gate insulating layer, an active layer, a source and drain layer, a passivation layer, and a pixel on the transparent base substrate in sequence.
  • Electrode layer wherein, the first electrode layer includes a gate electrode and a common electrode spaced apart from each other, the source and drain electrode layer includes a source electrode and a drain electrode, and the pixel electrode layer passes through a through hole penetrating the passivation layer and The drain is electrically connected; there is an overlap area between the orthographic projection of the pixel electrode layer on the transparent substrate and the orthographic projection of the microcup structure on the transparent substrate, and the pixel electrode layer is in the There is an overlap area between the orthographic projection of the transparent base substrate and the orthographic projection of the common electrode on the transparent base substrate;
  • the pixel electrode layer and the common electrode of the first driving backplane are configured to form a first storage capacitor during display, so as to maintain the stability of the voltage of the pixel electrode layer of the first driving backplane;
  • the pixel electrode layer and the common electrode of the second driving backplane are configured to form a second storage capacitor during display, so as to maintain the stability of the voltage of the pixel electrode layer of the second driving backplane.
  • the pixel electrode layer and the common electrode are made of transparent conductive material.
  • an embodiment of the present disclosure further provides a display device, which includes the electronic paper provided in the embodiment of the present disclosure.
  • the embodiments of the present disclosure further provide a driving method of the electronic paper as provided in the embodiments of the present disclosure, wherein the driving method includes:
  • a voltage is applied to the first driving circuit and the second driving circuit to form a first electric field, and the first electric field controls the direction of the charged dye particles in the first half-cup structure Move away from the second half-cup structure, and control the charged dye particles in the second half-cup structure to move away from the first half-cup structure to pass through the first half-cup structure To display the charged dye particles;
  • a voltage is applied to the first driving circuit and the second driving circuit to form a second electric field, and the second electric field controls the direction of the charged dye particles in the first half-cup structure
  • the direction of the second half-cup structure moves, and the charged dye particles in the second half-cup structure move in a direction away from the first half-cup structure to pass all of the second half-cup structure.
  • the charged dye particles are displayed.
  • the charged dye particles with a single charge of each of the first half-cup structures are charged dye particles of two colors with different charge-to-mass ratios, and in the first display mode Next, display by the charged dye particles with a large charge-to-mass ratio in the first half-cup structure;
  • the driving method further includes:
  • the first driving circuit and the second driving circuit are applied with a voltage of the first duration to form a third electric field, and then the first driving circuit and the second driving circuit are applied Another voltage for the second duration is applied to form a fourth electric field, and the third electric field and the fourth electric field are formed repeatedly until the charged dye particles in the first half-cup structure have a smaller charge-to-mass ratio Move to the side of the charged dye particles with a larger charge-to-mass ratio facing the first driving back plate to display by the charged dye particles with a smaller charge-to-mass ratio in the first half-cup structure;
  • the direction of the electric field of the third electric field is opposite to that of the first electric field
  • the direction of the electric field of the fourth electric field is opposite to that of the third electric field
  • the electric field intensity of the third electric field is greater than that of the fourth electric field.
  • the first duration is less than the second duration.
  • a side of the second driving backplane facing away from the first driving backplane is further provided with a reflective layer having a preset color
  • the driving method further includes:
  • a voltage is applied to the first driving circuit and the second driving circuit to form a fifth electric field, and the fifth electric field controls the aggregation of the charged dye particles in the first half-cup structure
  • the charged dye particles in the second half-cup structure are controlled to gather at the end face position facing the first half-cup structure to pass through the reflective layer To display.
  • the driving method further includes:
  • the electric field intensity of the fifth electric field is adjusted and controlled, and the fifth electric field of different electric field intensity controls the aggregation of the charged dye particles in the first half-cup structure and the second half-cup structure
  • the density is different to control the reflectivity of the reflective layer to be different.
  • FIG. 1 is a schematic structural diagram of an electronic paper provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of an electronic paper provided with an electrode plate layer provided by an embodiment of the disclosure
  • FIG. 3 is a schematic structural diagram of an electronic paper provided with a reflective layer provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of an enlarged structure of a microcup structure provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the arrangement structure of a plurality of microcup structures provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the structure of the first driving backplane and the second driving backplane provided by the embodiments of the disclosure;
  • FIG. 7 is a schematic top view of a part of the first driving backplane provided by the embodiments of the disclosure.
  • FIG. 8 is a schematic structural diagram of a specific electronic paper provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic structural diagram of electronic paper when displaying a black screen provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a three-dimensional structure of electronic paper when displaying a black screen provided by an embodiment of the disclosure
  • FIG. 11 is a schematic structural diagram of electronic paper when displaying red color according to an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the three-dimensional structure of the electronic paper when displaying red color according to an embodiment of the disclosure
  • FIG. 13 is a schematic structural diagram of electronic paper when displaying white color according to an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of a three-dimensional structure of electronic paper when displaying white color according to an embodiment of the disclosure.
  • 15 is a schematic diagram of the structure of electronic paper when displaying yellow color according to an embodiment of the disclosure.
  • 16 is a schematic diagram of the three-dimensional structure of the electronic paper when displaying yellow color according to an embodiment of the disclosure
  • FIG. 17 is a schematic structural diagram of electronic paper when displaying sub-yellow color according to an embodiment of the disclosure.
  • 18 is a schematic diagram of a three-dimensional structure of electronic paper when displaying sub-yellow color according to an embodiment of the disclosure
  • FIG. 19 is a schematic diagram of another driving scheme provided by an embodiment of the disclosure.
  • the embodiment of the present disclosure provides an electronic paper, as shown in FIG. 1, including:
  • the first driving backplane 1 has a plurality of first half-cup structures 11, and each first half-cup structure 11 has a single-electricity charged dye particle 4;
  • the second driving backplane 2 has a plurality of second half-cup structures 21, each of the second half-cup structures 21 has a single-electric charged dye particle 4; the second driving backplane 2 has a first One side of the two half-cup structure 21 is opposite to the side of the first drive back plate 1 having the first half-cup structure 11, that is, for example, as shown in FIG.
  • the second drive back plate 2 has a second half One side of the cup structure 21 is the upper side of the second drive back plate 2, and the side of the first drive back plate 1 with the first half-cup structure 11 is the lower side of the first drive back plate 2, then the first drive
  • the lower side of the first drive back plate 1 and the upper side of the second drive back plate 2 are opposed to each other, and when they are aligned, the first half cup structure 11 and the second half-cup structure 21 are aligned one by one.
  • a first half-cup structure 11 and an opposite second half-cup structure 21 form a microcup structure 3, and the first half of the same microcup structure 3
  • the electrical properties of the charged dye particles in the half-cup structure 11 and the second half-cup structure 21 are opposite. For example, for the same microcup structure 3, if the electrical properties of the charged dye particles in the first half-cup structure 11 are positive, then, The chargeability of the charged dye particles in the second half-cup structure 21 is negative; if the chargeability of the charged dye particles in the first half-cup structure 11 is negative, then the chargeability of the charged dye particles in the second half-cup structure 21 The sex is positive, the first half-cup structure 11 and the second half-cup structure 21 are not connected to each other; wherein,
  • the cross-sectional area of the second half-cup structure 21 gradually decreases; in the direction from the first driving backplane 1 to the second driving backplane 2, the first The cross-sectional area of the half-cup structure 11 gradually decreases. For example, as shown in FIG.
  • the end surface of the first half-cup structure 11 and the second half-cup structure 21 is taken as the first half-cup structure cup top 111
  • the end surface of the half-cup structure 11 farther from the second half-cup structure 21 is used as the first half-cup structure cup bottom 112
  • the end surface area of the first half-cup structure cup top 111 is smaller than the end surface of the first half-cup structure cup bottom 112 Area, that is, as shown in Fig.
  • the first half-cup structure has a large upper and a smaller shape; similarly, the end surface of the second half-cup structure 21 that is close to the first half-cup structure 11 serves as the second half-cup structure cup top 211 , The end surface of the second half-cup structure 21 farther from the first half-cup structure 11 is used as the second half-cup structure cup bottom 212, then the end surface area of the second half-cup structure cup top 211 is smaller than the second half-cup structure cup bottom The end surface area of 212, that is, as shown in FIG.
  • the second half-cup structure 21 has a small upper and a large shape, and is symmetrical to the first half-cup structure 11, wherein the first half-cup structure cup top 111 is closed, and the second half-cup structure
  • the cup top 211 of the half-cup structure is closed, that is, the first half-cup structure 11 and the second half-cup structure 21 are independent closed structures, and the charged dye particles 4 of the two do not migrate mutually, that is, the first half-cup structure 11
  • the charged dye particles 4 in the second half-cup structure 21 do not migrate to the second half-cup structure 21, and the charged dye particles 4 in the second half-cup structure 21 do not migrate to the first half-cup structure 11.
  • the electronic paper provided by the embodiment of the present disclosure includes two driving backplanes, wherein the first driving backplane 1 is provided with a plurality of first half-cup structures 11, and the second driving backplane 2 is provided with a plurality of second half-cup structures 21. Both the first half-cup structure 11 and the second half-cup structure 21 are provided with only one type of charged dye particles 4 with a single electrical property, and then the charged dye particles 4 with different electrical properties can be separated and placed separately, respectively.
  • the first half-cup structure 11 and the second half-cup structure 21 are in a shape with a gradually reduced cross-sectional area, and when driving the display, if the first driving backplane 1 is away from the second By driving one side of the back plate 2 as the display surface, the charged dye particles 4 in the first half-cup structure 11 can be moved to the side close to the display surface by applying an electric field, so that the charged dye particles in the second half-cup structure 21 4 is moved to the side away from the display surface, the charged dye particles in the first microcup structure 11 can be displayed; similarly, the electric field can also be adjusted to make the first half-cup structure 11 of the first drive back plate 1
  • the charged dye particles in the second half-cup structure 21 move to a position close to the second
  • the charged dye particles 4 of the second half-cup structure 21 can be transparent, and the charged dye particles of the second half-cup structure 21 can be seen through the first half-cup structure 11, so that the charged dye particles of the second half-cup structure 21 can also be displayed , Enriching the types of colors displayed by electronic paper and improving the display utilization of charged dye particles.
  • the embodiments of the present disclosure can realize a multi-gray-scale four-color complex picture, and the charged dye particles are all limited in the half-cup structure, which is bistable and has lower power consumption .
  • the electronic paper of the embodiment of the present disclosure further includes: an electrode plate layer 5 located between the first half-cup structure 11 and the second half-cup structure 21; the electrode plate layer 5 includes opposite Two transparent insulating plate layers 51 and a transparent electrode layer 52 located between the two transparent insulating plate layers 51.
  • the electronic paper further includes an electrode plate layer 5, and the electrode plate layer 5 includes two transparent insulating plate layers 51 and a transparent electrode layer 52 located therein, and the electrode plate layer 5 cooperates with the first driving back plate 1 And the second driving backplane 2 can form different electric fields at the position where the microcup structure 3 is located.
  • the second drive back plate 2 points to the electric field in the direction of the middle electrode plate layer 5, thereby enabling individual control of the charged dye particles 4 in the first half-cup structure 11 and the second half-cup structure 21.
  • the transparent insulating layer 51 provided on both sides of the transparent electrode layer 52, on the one hand, can support the transparent electrode layer 52, on the other hand, the charged dye particles 4 in the first half-cup structure 11 gather in When the charged dye particles in the second half-cup structure 21 gather at the top 111 position of the first half-cup structure cup top 211, even if the electrical polarity of the two charged dye particles 4 is opposite, and the distance Closer, it will not form a capacitor and discharge.
  • the transparent electrode layer 52 may be a whole-layer structure, that is, the transparent electrode layers between the microcup structures 3 are connected to each other, which is convenient for manufacturing. Specifically, the transparent electrode layers of each microcup structure 3 can also be made independent of each other, and each microcup structure 3 can be controlled separately.
  • the material of the transparent electrode layer 52 may specifically be indium tin oxide. Indium tin oxide is a commonly used transparent electrode material, and its light transmittance is often above 90%, which is beneficial to the side of the electrode plate layer 5 facing away from the display surface. Display of charged dye particles 4.
  • the electrical properties of the charged dye particles 4 in the first half-cup structures 11 are the same. Specifically, it may be the electrical properties of the charged dye particles 4 in all the first half-cup structures 11 of the first driving backplane. The same electrical properties; the electrical properties of the charged dye particles 4 in the multiple second half-cup structures 21 are the same. Specifically, the electrical properties of the charged dye particles 4 in all the second half-cup structures 21 of the second driving backplane are the same. . In the embodiment of the present invention, the charged dye particles 4 in the first half-cup structures 11 have the same electrical properties, and the charged dye particles 4 in the second half-cup structures 21 have the same electrical properties. Make.
  • the side of the first driving backplane 1 facing away from the second driving backplane 2 is the display surface; the single-charged dye particles 4 of each first half-cup structure 11 are two different charge-to-mass ratios. Charged dye particles of two colors, that is, each first half-cup structure 11 has two colors of charged dye particles 4, and the charge to mass ratios of the two colors of charged dye particles 4 are different.
  • the first half-cup structure 11 when the side of the first driving backplane 1 facing away from the second driving backplane 2 is used as the display surface, the first half-cup structure 11 may specifically be provided with charged dye particles 4 of two colors, The charge-to-mass ratio of the charged dye particles 4 is different, and the charge-to-mass ratio of the charged dye particles 4 is different, under the same electric field, will cause different electrophoretic mobility, and then the electric field intensity and direction can be controlled to achieve the two different The distribution position of the charged dye particles 4 of the color is controlled, so that the first half-cup structure 11 can display two different colors.
  • the first half-cup structure 11 may also be provided with one kind of dyed charged dye particles 4 or more than two kinds of charged dye particles 4, but the charged dye particles 4 of one color can display fewer colors , And more colors of charged dye particles 4 will increase the driving complexity, driving time and driving power consumption of electronic paper.
  • each second half-cup structure 21 has charged dye particles 4 of one color, and the color of the charged dye particles 4 in the second half-cup structure 21 is the same as that of the charged dye particles 4 in the first half-cup structure 11 The colors are different.
  • the second half-cup structure 21 is a half-cup structure farther from the display surface, only one color of the charged dye particles 4 is arranged in the second half-cup structure 21 to avoid the second half-cup structure 21 When charged dye particles of multiple colors are set, there will be a problem of impure display colors.
  • the second half-cup structure 21 is provided with charged dye particles of two colors, when the charged dye particles of both colors move to the side away from the display surface, if the charged dye particles 4 of one color are located in the other On the side of the charged dye particles 4 closer to the display surface, when viewed from the display surface, the charged dye particles 4 located closer to the display surface will be seen first, but at the same time due to the cross-sectional area under the second half-cup structure 21 If it is larger, the human eye will also see the charged dye particles 4 that are separated from the display surface far away, which will make the displayed picture impure.
  • the side of the second driving backplane 2 facing away from the first driving backplane 1 is further provided with a reflective layer 22, the color of the reflective layer 22 and the first half cup structure 11 and the second The colors of the charged dye particles 4 in the half-cup structure 21 are all different.
  • the side of the second driving back plate 2 away from the first driving back plate 1 is further provided with a reflective layer 22 of a preset color, and the charged dye particles in the first half-cup structure 11 gather in the first half-cup
  • the color of the reflective layer 22 can be displayed, which further increases the displayable color of the electronic paper.
  • the reflective layer 22 may specifically be a stacked color layer and a light reflective layer, wherein the color layer is located on the side of the light reflective layer facing the microcup structure.
  • the setting of the reflective layer can not increase the driving complexity (depending on the number of charged dye particles). Compared with the traditional electronic paper can only display three monotonous and easily disturbed ink colors, the color appearance is better. , The optical stability is better.
  • the two charged dye particles in each first half-cup structure 11 are: positively charged red charged dye particles 41 and positively charged black charged dye particles 42 ,
  • the charge-to-mass ratio of the black charged dye particles 42 is greater than the charge-to-mass ratio of the red charged dye particles 41;
  • the charged dye particles 4 in each second half-cup structure 21 are negatively charged white charged dye particles 43, and the color of the reflective layer 22 is yellow.
  • the two charged dye particles 4 in each first half-cup structure 11 are respectively: positively charged red charged dye particles 41 and positively charged black charged dye particles 42, and black charged dye particles 42
  • the charge-to-mass ratio is greater than that of the red charged dye particles 43; the charged dye particles 4 in each second half-cup structure 21 are negatively charged white charged dye particles 43, and the color of the reflective layer 22 is yellow.
  • the structure 11 is the upper cup, and the second half-cup structure 22 is the lower cup, which can realize the three-state four-color complex display of "upper cup positive black/red + bottom cup negative white + one reflective layer color (multi-brightness)" .
  • the charge-to-mass ratio and particle size of the black charged dye particles 42 and the red charged dye particles 41 are different (according to the required electrophoretic mobility difference ratio, the mobility of the black charged dye particles 42 is generally The larger the red charged dye particle 41, the smaller the mobility, that is, the black charged dye particle 42 has a slightly larger charge-to-mass ratio, and the red charged dye particle 41 has a slightly smaller charge-to-mass ratio.
  • the charge-mass ratio determines the mobility ratio. Therefore, the black charged dye particle The particles 42 are sensitive to high pressure, and the red charged dye particles 41 are sensitive to low pressure.
  • the charge-to-mass ratio of the white charged dye particles 43 and the black charged dye particles 42 can be set to be substantially the same.
  • the shapes of the first half-cup structure 11 and the second half-cup structure 21 are prism frustum or truncated cone-shaped, and the first half-cup structure 11 and the second half-cup structure 21 are on the front side of the first driving back plate 1 The projections overlap each other.
  • the first half-cup structure 11 and the second half-cup structure 21 are both regular hexagons or circles along the cross-sectional shape parallel to the first driving back plate, that is, the first half-cup
  • the cross-sectional shape of the structure 11 and the second half-cup structure 21 parallel to the first driving backplane are both regular hexagons, or the first half-cup structure 11 and the second half-cup structure 21 are parallel to the first driving backplane.
  • the cross-sectional shape is circular; the distance d1 between any two points in the smallest cross-section is less than 15 microns.
  • the distance d2 between two opposite sides in the largest cross-section of the regular hexagon is 130 microns To 150 microns; when the cross section is circular, the distance d2 of the diameter in the largest section of the circle is 130 to 150 microns.
  • the cross-sectional shapes of the first half-cup structure 11 and the second half-cup structure 21 are both regular hexagons or circles; the distance d1 between any two points in the smallest cross-section is less than 15 microns, because the 15 microns
  • the size is the limit range invisible to the naked eye.
  • the micro-cup structure 3 As a whole exhibits a transparent light-transmitting state. If the second driving backplane 2 faces away from the first driving backplane 1
  • the reflective layer 22 can further realize the color of the reflective layer 22.
  • the distance between two opposite sides in the largest section of a regular hexagon is 130 to 150 microns, and the distance between the diameters in the largest section of a circle is 130 to 150 microns.
  • the pixel density of electronic paper (pixels per inch) , PPI) ⁇ 169 (in fact, PPI is about 200), that is, the size of each pixel is relatively large, so that the size of the pixel electrode can be substantially equal to the size of the largest end surface of the first microcup structure.
  • PPI pixel density of electronic paper
  • One pixel electrode drives one microcup structure, and the display uniformity of the one microcup structure is better.
  • the problem of poor display uniformity can be avoided, and the display uniformity can be improved.
  • Horizontal optical quality on the other hand, due to process limitations, the size of the maximum cross-section of the microcup structure 3 cannot be reduced indefinitely.
  • the current process can achieve a columnar structure with a maximum distance of 100 microns in the cross section and a height of 8 to 100 microns.
  • the distance d2 between two opposite side lengths in the largest cross-section is 130 micrometers to 150 micrometers, which is also a size range achievable by the process.
  • the technical feasibility of the micro-cup structure with a small cup top size can be ensured by reducing the height of the half-cup structure accordingly.
  • the height d31 of the first half-cup structure is 60 to 70 microns
  • the height d32 of the second half-cup structure is 60 to 70 microns.
  • the height of the first half-cup structure and the second half-cup structure are equal.
  • the charged dye particles 4 effectively exhibit insufficient movement distance (for example, the first half-cup structure 11 has two Charged dye particles 4 of different colors, when driving the display of charged dye particles with a relatively small charge in the first half-cup structure 11, the charged dye particles 4 with a large charge-to-mass ratio and the charged dye particles 4 with a small charge-to-mass ratio need to be displayed In multiple reciprocating motions, a position difference is formed.
  • the effective movement distance is too short, it may not be possible to layer the two-color charged dye particles 4 in space), which increases the difficulty of driving; on the other hand, if the first half-cup structure If the height of the 11 and the second half cup structure 21 is too large, the electric field force may be small and the screen refreshing time will be longer.
  • the charged dye particles 4 are respectively arranged in the upper and lower half-cup structures according to the electrical properties, so that the movement of the hetero-charged charged dye particles 4 is independent of each other, and the heights of the respective half-cup structures are required. Significant reduction can effectively shorten the driving time and reduce power consumption.
  • the distance d4 between adjacent first half-cup structures 11 at the largest cross-sectional position is not greater than 15 microns, that is, for example, the first half-cup structure cup bottom 111 is a regular hexagon, and Two adjacent regular hexagonal first half cup structure cup bottoms 111 are placed in parallel with one of their sides, then one first half cup structure cup bottom 111 and the other adjacent first half cup structure cup bottom 111
  • the distance d4 between two adjacent parallel sides is not more than 15 microns.
  • the distance d5 between the adjacent first half-cup structures 11 at the minimum cross-sectional position is 130 micrometers to 150 micrometers.
  • the vertical distance d6 between the minimum cross section of the first half cup structure 11 and the opposite minimum cross section of the second half cup structure 21 may be 50 ⁇ m to 60 ⁇ m, and the height of the entire microcup structure 3 may be 190 ⁇ m to 200 ⁇ m. Micrometers.
  • the vertical distance between the smallest cross-section of the first half-cup structure 11 and the smallest cross-section of the opposite second half-cup structure 12 is 50 microns to 55 microns, and the thickness of the electrode plate layer 5 can be 50 microns to 55 microns.
  • the transparent electrode layer may be 10 ⁇ m to 20 ⁇ m, and the thickness of the transparent insulating plate layer may be 15 ⁇ m to 25 ⁇ m.
  • the height d3 of the first half-cup structure 11 and the second half-cup structure 21 may both be 70 microns, and the minimum cross-section of the first half-cup structure 11 and the minimum cross-section of the opposite second half-cup structure 21
  • the vertical spacing d6 is 55 microns, and the height of the entire microcup can be specifically 195 microns.
  • the vertical distance between the smallest cross-section of the first half-cup structure 11 and the smallest cross-section of the opposite second half-cup structure 12 is 55 microns
  • a 55-micron thick electrode plate layer 5 and a 55-micron thick electrode plate can be provided
  • Layer 5 can be formed by filling a 15-micron transparent electrode layer (specifically, thin indium tin oxide) between two upper and lower transparent insulating plate layers (specifically, a PET base layer) each having a thickness of 20 micrometers.
  • both the first driving backplane and the second driving backplane include: a transparent base substrate, and a plurality of pixel circuits located on the transparent base substrate, one pixel circuit correspondingly drives a microcup structure, where the first The pixel circuit of the driving backplane is located between the transparent base substrate of the first driving backplane and the first half-cup structure, and the pixel circuit of the second driving backplane is located between the transparent base substrate and the second half-cup of the second driving backplane Structure between.
  • each pixel circuit includes: a first electrode layer, a gate insulating layer, an active layer, a source and drain layer, a passivation layer, and a pixel electrode layer on the transparent substrate in sequence;
  • the first electrode layer includes a gate electrode and a common electrode spaced apart from each other, the source and drain layer includes a source electrode and a drain electrode, and the pixel electrode layer is electrically connected to the drain electrode through a through hole penetrating the passivation layer;
  • the pixel electrode layer is on the transparent substrate There is an overlap area between the orthographic projection of the substrate and the orthographic projection of the microcup structure on the transparent substrate, and there is an overlap region between the orthographic projection of the pixel electrode layer on the transparent substrate and the orthographic projection of the common electrode on the transparent substrate;
  • the pixel electrode layer and the common electrode of the first driving backplane are configured to form a first storage capacitor during display, so as to maintain the stability of the voltage of the pixel electrode layer of the first driving backplane;
  • the pixel electrode layer and the common electrode of the second driving backplane are configured to form a second storage capacitor during display, so as to maintain the stability of the voltage of the pixel electrode layer of the second driving backplane.
  • both the first driving backplane and the second driving backplane include: a transparent base substrate 100, and a plurality of pixel circuits on the transparent base substrate 100, one pixel circuit correspondingly drives a microcup structure, wherein, The pixel circuit of the first driving backplane is located between the transparent base substrate of the first driving backplane and the first half-cup structure, and the pixel circuit of the second driving backplane is located between the transparent base substrate of the second driving backplane and the second Between half a cup structure.
  • each pixel circuit includes: a first electrode layer on the transparent base substrate 100, a gate insulating layer 142, an active layer 143, a source and drain layer, a passivation layer 103, and a pixel electrode layer 102 in sequence; among them,
  • the first electrode layer includes a gate 141 and a common electrode 101 spaced apart from each other.
  • the source and drain layer includes a source 144 and a drain 145.
  • the pixel electrode layer 102 is electrically connected to the drain 145 through a through hole penetrating the passivation layer 103; the pixel There is an overlap area between the orthographic projection of the electrode layer 102 on the transparent substrate 100 and the orthographic projection of the microcup structure on the transparent substrate 100.
  • the orthographic projection of the pixel electrode layer 102 on the transparent substrate 100 and the common electrode 101 on the transparent substrate has an overlapping area; when the pixel electrode layer 102 of the first driving backplane 1 and the pixel electrode layer 102 of the second driving backplane 2 are configured to display, the charged dye particles 4 are loaded and controlled by the thin film transistor 104 Moving voltage; the pixel electrode layer 102 and the common electrode 101 of the first driving backplane 1 are configured to form a first storage capacitor Cst1 during display to maintain the stability of the voltage of the pixel electrode layer 102 of the first driving backplane 1; The pixel electrode layer 102 and the common electrode 101 of the second driving backplane 2 are configured to form a second storage capacitor Cst2 during display to maintain the voltage of the pixel electrode layer 102 of the second driving backplane 2 to stabilize.
  • the first driving backplane 1 and the second driving backplane 2 are both provided with a pixel electrode layer 102 and a common electrode 101, and then each driving backplane can realize active address driving, respectively driving the first driving backplane at the same time.
  • the heteroelectrically charged dye particles 4 in the half-cup structure 11 and the second half-cup structure 21 are less difficult to drive (compared to the traditional heteroelectric particles that need to be mixed simultaneously). Both single-layer drive and double-layer drive can be performed in accordance with the traditional drive mode, which increases the selectivity of the drive mode.
  • the gate 141, the gate insulating layer 142, the active layer 143, the source 144, and the drain 145 constitute the thin film transistor 104, and the thin film transistor 104 may specifically have a double gate structure.
  • the material of the pixel electrode layer 102 and the common electrode 101 are both transparent conductive materials, specifically indium tin oxide (ITO), aluminum-doped zinc oxide (AZO) silver wire ink, silver wire, conductive material Polymer materials or metal nanowires. Since the light transmittance of ITO can reach more than 90%, more specifically, the pixel electrode layer 102 and the common electrode 101 are made of ITO to meet the transparency of the first driving backplane 1 and the second driving backplane 2. .
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • both the first driving backplane 1 and the second driving backplane 2 further include: a gate line 146 and a data line 147.
  • metals such as Mo/Al can still be used to form the thin film transistor 104 because the size of the thin film transistor 104 is small (generally on the order of tens of microns) , Does not affect the overall transmittance of reflected light.
  • only the TFT can be made of metals such as Mo/Al for gate, source/drain, and other structural parts can be made of transparent materials.
  • each of the first half-cup structure 11 and the second half-cup structure 12 has only a single kind of charged dye particles 4, compared with the traditional dual-electricity electronic paper display product, its storage capacitor ,
  • the thin film transistor 104 requires lower requirements, so the TFT part can be made smaller, which is more conducive to the overall light transmittance of the first driving backplane and the second driving backplane.
  • the thin film transistor 104 in the embodiment of the present disclosure has a double gate structure, the channel width W can be 22 microns, and the channel length can be (4.5+4.5) microns, that is, 9 microns, because the total size of the thin film transistor 104 can be It is made smaller, so the thin film transistor 104 will not be seen by human eyes, and the light transmittance can be guaranteed.
  • the thin film transistor 104 in the embodiment of the present disclosure can also be made of transparent material.
  • a transparent filling layer 9 may also be provided between adjacent microcup structures 3, and a transparent electrophoresis solution 10 may also be provided in the first half-cup structure 11 and the second half-cup structure 21.
  • the surface of the charged dye particles 4 may also be coated with a surface stabilizer to prevent the three charged dye particles 4 from repelling each other. Two of these aggregates, that is, surface stabilizers that prevent charged dye particles from gathering and dispersing due to interaction (single charge preventing self-dispersion).
  • the side of the first driving backplane 1 facing away from the second driving backplane 2 may also be specifically provided with an optical adhesive layer 13 (OCA), and a protective layer 14 on the side of the optical adhesive layer 13 facing away from the second driving backplane 1.
  • OCA optical adhesive layer 13
  • the first driving backplane 1 and the second driving backplane 2 may also be provided with a control chip IC 8 and a flexible circuit board 7, and the first driving backplane 1 and the second driving backplane 2 can be sealed by frame glue 6. .
  • embodiments of the present disclosure also provide a display device, which includes the electronic paper as provided in the embodiments of the present disclosure.
  • the embodiments of the present disclosure also provide a method for driving electronic paper as provided by the embodiments of the present disclosure, wherein the driving method includes:
  • Step S101 In the first display mode, apply voltage to the first driving circuit and the second driving circuit to form a first electric field.
  • the first electric field controls the charged dye particles in the first half-cup structure to move away from the second half-cup structure.
  • Directional movement controls the charged dye particles in the second half-cup structure to move away from the first half-cup structure, so as to display by the charged dye particles in the first half-cup structure.
  • Step S102 In the second display mode, apply voltage to the first driving circuit and the second driving circuit to form a second electric field, and the second electric field controls the direction of the charged dye particles in the first half-cup structure toward the second half-cup structure Moving, the charged dye particles in the second half-cup structure move in a direction away from the first half-cup structure to display by the charged dye particles in the second half-cup structure.
  • each first half-cup structure has two kinds of charged dye particles, and the charge-to-mass ratios of the two charged dye particles are different.
  • the first half-cup structure has a larger charge-to-mass ratio.
  • Dye particles display; the driving method of the embodiment of the present disclosure further includes:
  • Step S103 In the third display mode, load the first driving circuit and the second driving circuit with a voltage of the first duration to form a third electric field, and then load the first driving circuit and the second driving circuit with the second duration of voltage. Another voltage forms the fourth electric field, and the third electric field and the fourth electric field are formed repeatedly until the charged dye particles with a small charge-to-mass ratio in the first half-cup structure move to the first side of the charged dye particles with a large charge-to-mass ratio.
  • the charged dye particles with a small charge-to-mass ratio are closer to the first driving backplane to pass the charge-to-mass ratio in the first half-cup structure Small charged dye particles for display;
  • the electric field directions of the third electric field and the first electric field are opposite, the electric field directions of the fourth electric field and the third electric field are opposite, the electric field intensity of the third electric field is greater than the electric field intensity of the fourth electric field, and the first duration is less than the second duration.
  • the side of the second driving backplane facing away from the first driving backplane is further provided with a reflective layer with a preset color; the driving method of the embodiment of the present disclosure further includes:
  • the fourth display mode voltage is applied to the first driving circuit and the second driving circuit to form a fifth electric field.
  • the fifth electric field controls the charged dye particles in the first half-cup structure to gather at the end surface facing the second half-cup structure That is, taking the microcup structure 3 on the far right side of FIG. 1 as an example, the charged dye particles 4 in the first half-cup structure 11 gather on the top 111 of the first half-cup structure, and control the charged in the second half-cup structure
  • the dye particles are gathered at the position facing the end surface of the first half-cup structure to be displayed through the reflective layer, that is, taking the microcup structure 3 on the far right side of FIG. 1 as an example, the charged dye particles 4 in the second half-cup structure 21 Gather on the top 211 of the second half cup structure.
  • the driving method of the embodiment of the present disclosure further includes:
  • the electric field intensity of the fifth electric field is adjusted and controlled.
  • the fifth electric field of different electric field intensity controls the concentration of the charged dye particles in the first half-cup structure and the second half-cup structure to control the density of the reflective layer.
  • the reflectivity is different.
  • the side of the first drive back plate 1 facing away from the second drive back plate 2 is used as the display surface, the first half-cup structure is the upper half, and the second half-cup structure is the lower half.
  • the driving principle in the embodiments of the present disclosure is specifically described as follows:
  • the second driving backplane 2 below provides positive high voltage (+15V) to the pixel electrode layer
  • the first driving backplane 1 above provides 0V for the pixel electrode layer.
  • the Vcom voltage forms the first electric field.
  • the first electric field line is vertically upward.
  • the positively charged black charged dye particles 42 and the red charged dye particles 41 move toward the display surface (the bottom of the upper cup) under the force of the electric field.
  • the black charged dye particles 42 Due to the difference in the mobility of the black charged dye particles 42 and the red charged dye particles 41, the black charged dye particles 42 are more sensitive to high voltage, so the black charged dye particles 42 migrate to it faster by applying a suitable voltage time (about 80ms).
  • the display layer can make the display layer appear black as a whole, and the voltage is removed after the driving is completed. Due to the steady state of the ink, the particles can still maintain the display characteristics after the power is off. At this time, since the red charged dye particles 41 and the black charged dye particles 42 repel with each other, the image retention characteristics will not be reduced due to the built-in attraction electric field. At this time, the white charged dye particles 43 in the lower half of the cup move to the back display side electrode (the bottom of the lower cup).
  • the second driving backplane 2 below first provides negative voltage (-15V) to its pixel electrode layer for a short time ( 10ms), the black charged dye particles 42 and red charged dye particles 41 in the upper half of the cup simultaneously move to the middle electrode plate layer 5 and cause delamination, and the upper first driving back plate 1 provides 0V to its pixel electrode layer.
  • the Vcom voltage As shown in Figures 11 and 12, according to the difference in mobility of the black charged dye particles 42 and the red charged dye particles 41, the second driving backplane 2 below first provides negative voltage (-15V) to its pixel electrode layer for a short time ( 10ms), the black charged dye particles 42 and red charged dye particles 41 in the upper half of the cup simultaneously move to the middle electrode plate layer 5 and cause delamination, and the upper first driving back plate 1 provides 0V to its pixel electrode layer.
  • the Vcom voltage As shown in Figures 11 and 12, according to the difference in mobility of the black charged dye particles 42 and the red charged dye particles 41, the second driving backplane 2 below first provides negative voltage (-15
  • the second driving backplane 2 below provides a low positive voltage (about +6V) to its pixel electrode layer for a long time (90ms), then the black charged dye particles 42 and the red charged dye particles 41 go back (display surface) Migration, cycling for multiple cycles (about 4), can complete the display of the red charged dye particles 41.
  • a low positive voltage about +6V
  • the black charged dye particles 42 and the red charged dye particles 41 go back (display surface) Migration, cycling for multiple cycles (about 4), can complete the display of the red charged dye particles 41.
  • the lower second driving backplane 2 provides positive high voltage (+15V) to its pixel electrode layer
  • the upper first driving backplane 1 provides positive voltage to its pixel electrode layer.
  • High voltage (+15V) Due to the existence of the electrode plate layer 5 in the middle, the direction of the electric field lines in the upper half of the cup is downward, and the direction of the electric field lines in the lower half of the cup is upward. Therefore, in the upper half of the cup, the positively charged black charged dye particles 42 and the red charged dye particles 41 are subjected to the electric field force to move toward the electrode plate layer 5 in the middle, and gather here.
  • the size of the position is 15 microns.
  • the "invisibility" of the ink in the upper half of the cup is realized; the negatively charged white particles move to the side far away from the display surface (the bottom of the lower cup) under the force of the electric field. Since the upper half of the cup is already transparent at this time, it will appear on the display side. It presents the color of white particles covering the bottom of the lower cup.
  • the second driving backplane 2 below provides the pixel electrode layer with a negative high voltage (-20V) for a long time (500ms), then the upper and lower half
  • the black charged dye particles 42, the red charged dye particles 41, and the white charged dye particles 43 in the cup all migrate to the middle electrode plate layer 5 and gather here.
  • the upper and lower half cups of charged dye particles are all gathered at about 15 microns It can’t move into the opposite cup without moving into the opposite cup, and there is no particle coverage in the vertical direction, so the whole cup is transparent (that is, the particles in the upper and lower half of the cup are “invisible”).
  • the reflective layer When the reflective layer is mounted, it will appear The brightest reflective layer color, that is, bright yellow. Due to the steady state, the particles still gather around 15 microns invisible to human eyes after power off, so the color of the reflective layer can be maintained.
  • the middle electrode plate layer 5 since the middle electrode plate layer 5 includes the upper and lower non-dielectric PET carriers with a thickness of 20 microns, the positive and negative charged dye particles in the upper and lower halves are relatively close in space, but they do not form a capacitance. And discharge.
  • the second driving backplane 2 below provides the pixel electrode layer with 2 levels of negative high voltage (-18V) for a short time (450ms), then the black charged dye particles in the upper and lower halves 42.
  • the red charged dye particles 41 and the white charged dye particles 43 still migrate around the middle electrode plate layer 5 respectively, but the concentration density is large as in the previous case, so the light transmittance will be reduced to a certain extent.
  • different negative high pressure levels the lower the level, the smaller the negative pressure amplitude
  • driving time different transparency, that is, the color effect of the reflective layer of different chromaticities: bright yellow ⁇ secondary bright yellow ⁇ dark yellow.
  • the present disclosure designs three different levels of transparent (reflective layer) color states, and their driving sequence is: A. Bright yellow (first negative high voltage -20V, 500ms); B. Second bright Yellow (secondary high voltage -18V, 450ms); C. Dark yellow (third negative high voltage -16V, 250ms).
  • the multi-transparency driving method of the present disclosure is designed only for the reflective layer being yellow. When other reflective layers of different colors are mounted, the actual driving voltage amplitude and time need to be adjusted accordingly.
  • the above solutions of the present disclosure mainly adopt the method of electrode driving of the second driving backplane.
  • the electrode driving of the upper first driving backplane or the common driving scheme of the dual driving backplanes can also be adopted.
  • the upper Vcom constant voltage signal + lower positive voltage signal can be replaced with “up negative voltage signal + lower Vcom constant voltage signal”
  • the "up Vcom constant voltage signal + lower negative signal” when driving the color of the reflective layer
  • the “voltage signal” can be replaced with “upper positive voltage signal+lower Vcom signal”.
  • Fig. 19 which increases the selectivity of the driving scheme.
  • the charged dye particles of different electrical properties are spatially divided (ie, positively charged black and red are in the upper half of the cup, and negatively charged white is in the lower half of the cup). Therefore, the traditional electronic paper display products of "heteroelectric mixed dyed particles" can effectively avoid the complicated driving process, poor retention characteristics, and poor optical stability caused by the mutual attraction of positive and negative particles of the built-in electric field.
  • driving compared to the three necessary stages of traditional electronic paper display products: reverse driving (2360ms), activation (6560ms), and writing (6760ms)
  • the electronic paper provided by the embodiments of the present disclosure only contains two Two stages: activation (820ms), write (512ms).
  • the total refresh time is only 1.32s, which is 14.36s (91.58%) shorter than the 15.68s of the traditional three-color EPD.
  • the total refresh time is only 1.32s, which is 14.36s (91.58%) shorter than the 15.68s of the traditional three-color EPD.
  • due to the steady state and better optical stability it does not need to be refreshed every day, and the overall power consumption is greatly reduced compared to traditional dual-electricity electronic paper display products.
  • the significant reduction in refresh time is due to the spatial separation of the heteroelectrically charged dye particles, which greatly shortens the distance required for driving reverse, activation, and writing (because the internal Into a couple, etc.). Since the refresh time is positively correlated with the electrophoretic distance, the refresh time is greatly shortened.
  • each PET insulating layer is respectively: 7.5 micron thick indium tin oxide film is formed in a 20 micron thick transparent PET substrate, and then two PET insulating sheets The layers are laminated with the opposite sides of the indium tin oxide film, so as to form a transparent electrode plate layer of indium tin oxide film with a total thickness of 55 microns and protected by upper and lower rigid PET.
  • the structure of the present invention may not be equipped with a reflective layer, and the transparent state may be displayed in this case.
  • the transparent substrate can be "wedge hollowed out", and then the ink material can be injected into the wedge-shaped microcup structure cavity through a dripping process (One Drop Filling, ODF) in. Since it is necessary to add a transparent electrode layer to the microcup structure, the ODF double-layer box-to-box method can also be used to make the microcup structure.
  • ODF One Drop Filling
  • the embodiments of the present disclosure can be widely used in the electronic shelf label (Electronic Shelf Label, ESL) product field, replacing the traditional slow response and low light stability "heteroelectric hybrid particles" electronic paper display products, and can be extended to smart homes and vehicles , Signs and other fields.
  • ESL Electronic Shelf Label
  • the electronic paper provided by the embodiments of the present disclosure includes two driving backplanes, wherein the first driving backplane is provided with multiple first half-cup structures, and the second driving backplane is provided with multiple
  • the second half-cup structure, the first half-cup structure and the second half-cup structure are all equipped with a single type of charged dye particles, so that charged dye particles of different electrical properties can be separated and placed in separate cups, respectively.
  • the distance necessary to drive the movement of the charged dye particles greatly shortens the driving time of the screen refresh, reduces the power consumption, and avoids the poor retention of the display screen purity when the oppositely charged dye particles are mixed together, and the driving time required for the screen refresh is longer and The problem of large power consumption;
  • the first half-cup structure and the second half-cup structure are shapes with a gradually decreasing cross-sectional area, and when driving the display, if the first driving backplane is away from the second driving backplane One side is used as the display surface, the charged dye particles in the first half-cup structure can be moved to the side close to the display surface by applying an electric field, and the charged dye particles in the second half-cup structure are moved to the side away from the display surface.
  • the charged dye particles in the first microcup structure can be displayed; similarly, the electric field can also be adjusted so that the charged dye particles in the first half-cup structure of the first driving back plate move closer to the second half-cup structure Position (that is, the top position of the first half-cup structure), the charged dye particles in the second half-cup structure move to the side away from the display surface, because the first half-cup structure is at this position (ie , The cross-sectional area of the first half-cup structure at the top of the cup) is small, so that the human eye cannot see the charged dye particles at the first half-cup structure.
  • Position that is, the top position of the first half-cup structure
  • the charged dye particles in the second half-cup structure move to the side away from the display surface, because the first half-cup structure is at this position (ie , The cross-sectional area of the first half-cup structure at the top of the cup) is small, so that the human eye cannot see the charged dye particles at the first half-cup structure.
  • the transparent state can be achieved, and the first half-cup structure can be seen through
  • the charged dye particles of the second half-cup structure can further realize the display of the charged dye particles of the second half-cup structure, which enriches the types of colors displayed by the electronic paper and improves the display utilization rate of the charged dye particles.
  • the embodiment of the present disclosure is equipped with a transparent drive backplane and uses electrophoresis drive and a specific-shaped microcup structure. Therefore, it can achieve a complex picture with multiple gray levels and four colors, and the charged dye particles are limited to The half-cup structure is bistable and consumes less power.

Abstract

一种电子纸、显示装置和驱动方法。第一驱动背板(1)具有多个第一半杯结构(11),每一第一半杯结构(11)内具有单一电性的带电染料粒子(4)。第二驱动背板(2)具有多个第二半杯结构(21),每一第二半杯结构(21)内具有单一电性的带电染料粒子(4)。一第一半杯结构(11)与相对的一第二半杯结构(21)构成一微杯结构(3),同一微杯结构(3)内第一半杯结构(11)与第二半杯结构(21)具有的带电染料粒子(4)的电性相反。在由第二驱动背板(2)指向第一驱动背板(1)的方向,第二半杯结构(21)的截面面积逐渐减小;在由第一驱动背板(1)指向第二驱动背板(2)的方向,第一半杯结构(11)的截面面积逐渐减小。

Description

一种电子纸、显示装置和驱动方法 技术领域
本公开涉及显示技术领域,尤其涉及一种电子纸、显示装置和驱动方法。
背景技术
现有技术的电子纸显示技术,主要利用电泳显示(Electrophoretic Display,EPD)原理,通过驱动两种不同电性染色微粒往返运动,在显示侧呈现微粒颜色。断电后,微粒能保持所在位置表现出“稳态”。其中比较常见的有黑(正电)、白(负电)红(正电)三色异电性混合显示产品。但现有技术的电子纸,由于异电性染色微粒分布于同微杯/微囊内,存在由正负粒子形成的内建吸引电场,不可避免地会削减显示效果,且驱动要求较高。
具体的,传统双电性EPD显示产品主要存在以下缺陷:第一,画面纯度保持缺陷(例如白色画面由于下层异电性红色微粒吸引逐渐形成白中掺红画面),往往需要每天刷新,这违背了电子纸产品“稳态”的设计初衷;第二,画面刷新时所需驱动时间长、功耗大,这是由于异电性微粒的电子纸,画面刷新时需要充分激活,因此需要保持足够的激活微粒运动的距离,即微杯高度,但电泳距离增加会不可避免延长驱动时间,其针对平衡内建电场的长时间反向及激活过程,又增加了画面刷新时间与功耗;第三,微粒呈显利用率低,呈显时只利用了显示侧(杯顶)的微粒,背显侧(杯底)微粒完全无法起到呈显效果(微粒呈显利用率只有50%)。归根结底,传统的电子纸存在画面纯度保持性差,画面刷新所需驱动时间长,功耗大,以及微粒呈显利用率低的问题。
发明内容
本公开实施例提供一种电子纸,其中,包括:
第一驱动背板,所述第一驱动背板具有多个第一半杯结构,各所述第一半杯结构内具有单一电性的带电染料粒子;
第二驱动背板,所述第二驱动背板具有多个第二半杯结构,各所述第二半杯结构内具有单一电性的带电染料粒子;所述第二驱动背板的具有所述第二半杯结构的一侧与所述第一驱动背板的具有所述第一半杯结构的一侧相向而置,一所述第一半杯结构与相对的一所述第二半杯结构构成一微杯结构,同一所述微杯结构内的所述第一半杯结构与所述第二半杯结构具有的带电染料粒子的电性相反;其中,
在由所述第二驱动背板指向所述第一驱动背板的方向,所述第二半杯结构的截面面积逐渐减小;在由所述第一驱动背板指向所述第二驱动背板的方向,所述第一半杯结构的截面面积逐渐减小。
在一种可能的实施方式中,还包括:位于所述第一半杯结构与所述第二半杯结构之间的电极板层;所述电极板层包括相对的两个透明绝缘板层和位于两个所述透明绝缘板层之间的透明电极层。
在一种可能的实施方式中,所述透明电极层为一整层结构。
在一种可能的实施方式中,所述第一半杯结构和所述第二半杯结构的形状为棱台形或圆台形,且所述第一半杯结构和所述第二半杯结构在所述第一驱动背板的正投影相互重叠。
在一种可能的实施方式中,所述第一半杯结构和所述第二半杯结构沿平行于所述第一驱动背板的截面形状均为正六边形或圆形;最小截面内任意两点之间的距离不大于15微米,正六边形的最大截面内相对的两个边之间的距离为130微米至150微米,圆形的最大截面内的直径的距离为130微米至150微米。
在一种可能的实施方式中,所述第一半杯结构和所述第二半杯结构的高度为60微米至70微米。
在一种可能的实施方式中,所述多个第一半杯结构内的所述带电染料粒子的电性相同,所述多个第二半杯结构内的所述带电染料粒子的电性相同。
在一种可能的实施方式中,所述第一驱动背板的背离所述第二驱动背板的一面为显示面;
各所述第一半杯结构分别具有的单一电性的所述带电染料粒子为不同荷质比的两种颜色的带电染料粒子。
在一种可能的实施方式中,各所述第二半杯结构具有一种颜色的所述带电染料粒子,所述第二半杯结构内的所述带电染料粒子的颜色与所述第一半杯结构内的所述带电染料粒子的颜色不同。
在一种可能的实施方式中,所述第二驱动背板的背离所述第一驱动背板的一面还设置有反射层,所述反射层的颜色与所述第一半杯结构和所述第二半杯结构内的所述带电染料粒子的颜色均不同。
在一种可能的实施方式中,各所述第一半杯结构内的两种带电染料粒子分别为:带正电的红色带电染料粒子和带正电的黑色带电染料粒子,所述黑色带电染料粒子的荷质比大于所述红色带电染料粒子的荷质比;各所述第二半杯结构内的所述带电染料粒子为带负电的白色带电染料粒子,所述反射层的颜色为黄色。
在一种可能的实施方式中,所述第一驱动背板和所述第二驱动背板均包括:透明衬底基板,以及位于所述透明衬底基板的多个像素电路,一所述像素电路对应驱动一所述微杯结构,其中,所述第一驱动背板的所述像素电路位于所述第一驱动背板的所述透明衬底基板与所述第一半杯结构之间,所述第二驱动背板的所述像素电路位于所述第二驱动背板的所述透明衬底基板与所述第二半杯结构之间。
在一种可能的实施方式中,各所述像素电路包括:依次位于所述透明衬底基板的第一电极层,栅极绝缘层,有源层,源漏极层,钝化层,以及像素电极层;其中,所述第一电极层包括相互间隔的栅极和公共电极,所述源漏极层包括源极和漏极,所述像素电极层通过贯穿所述钝化层的通孔与所述漏极电连接;所述像素电极层在所述透明衬底基板的正投影与所述微杯结构在所述透明衬底基板的正投影存在交叠区域,所述像素电极层在所述透明衬底基板的正投影与所述公共电极在所述透明衬底基板的正投影存在交叠区域;
所述第一驱动背板的所述像素电极层以及所述第二驱动背板的所述像素 电极层被配置为显示时,加载控制所述带电染料粒子移动的电压;
所述第一驱动背板的所述像素电极层和所述公共电极被配置为在显示时,形成第一存储电容,以维持所述第一驱动背板的所述像素电极层电压的稳定;
所述第二驱动背板的所述像素电极层和所述公共电极被配置为在显示时,形成第二存储电容,以维持所述第二驱动背板的所述像素电极层电压的稳定。
在一种可能的实施方式中,所述像素电极层以及所述公共电极的材质为透明导电材料。
基于同一发明构思,本公开实施例还提供一种显示装置,其中,包括如本公开实施例所提供的所述电子纸。
基于同一发明构思,本公开实施例还提供一种如本公开实施例提供的所述电子纸的驱动方法,其中,所述驱动方法包括:
在第一显示模式下,向所述第一驱动电路和所述第二驱动电路加载电压,形成第一电场,所述第一电场控制所述第一半杯结构内的所述带电染料粒子向远离所述第二半杯结构的方向移动,控制所述第二半杯结构内的所述带电染料粒子向远离所述第一半杯结构的方向移动,以通过所述第一半杯结构内的所述带电染料粒子进行显示;
在第二显示模式下,向所述第一驱动电路和所述第二驱动电路加载电压,形成第二电场,所述第二电场控制所述第一半杯结构内的所述带电染料粒子向所述第二半杯结构的方向移动,所述第二半杯结构内的所述带电染料粒子向远离所述第一半杯结构的方向移动,以通过所述第二半杯结构内的所述带电染料粒子进行显示。
在一种可能的实施方式中,各所述第一半杯结构分别具有的单一电性的所述带电染料粒子为不同荷质比的两种颜色的带电染料粒子,在所述第一显示模式下,通过所述第一半杯结构内的荷质比大的所述带电染料粒子进行显示;
所述驱动方法还包括:
在第三显示模式下,向所述第一驱动电路和所述第二驱动电路加载第一 时长的电压,形成第三电场,之后,再向所述第一驱动电路和所述第二驱动电路加载第二时长的另一电压,形成第四电场,循环形成多次所述第三电场和所述第四电场,直至所述第一半杯结构内的荷质比小的所述带电染料粒子移动到荷质比大的所述带电染料粒子的面向所述第一驱动背板的一侧,以通过所述第一半杯结构内的荷质比小的所述带电染料粒子进行显示;
其中,所述第三电场与所述第一电场的电场方向相反,所述第四电场与所述第三电场的电场方向相反,所述第三电场的电场强度大于所述第四电场的电场强度,所述第一时长小于所述第二时长。
在一种可能的实施方式中,所述第二驱动背板的背离所述第一驱动背板的一面还设置有具有预设颜色的反射层;
所述驱动方法还包括:
在第四显示模式下,向所述第一驱动电路和所述第二驱动电路加载电压,形成第五电场,所述第五电场控制所述第一半杯结构内的所述带电染料粒子聚集在面向所述第二半杯结构的端面位置处,控制所述第二半杯结构内的所述带电染料粒子聚集在面向所述第一半杯结构的端面位置处,以通过所述反射层进行显示。
在一种可能的实施方式中,所述驱动方法还包括:
在第四显示模式下,调节控制所述第五电场的电场强度,不同电场强度的第五电场控制所述第一半杯结构以及所述第二半杯结构内的所述带电染料粒子的聚集密度不同,以控制所述反射层的反射率不同。
附图说明
图1为本公开实施例提供的一种电子纸的结构示意图;
图2为本公开实施例提供的设置有电极板层的电子纸的结构示意图;
图3为本公开实施例提供的设置有反射层的电子纸的结构示意图;
图4为本公开实施例提供的一种微杯结构的放大结构示意图;
图5为本公开实施例提供的多个微杯结构的排布结构示意图;
图6为本公开实施例提供的第一驱动背板和第二驱动背板的结构示意图;
图7为本公开实施例提供的部分第一驱动背板的俯视结构示意图;
图8为本公开实施例提供的一种具体的电子纸的结构示意图;
图9为本公开实施例提供的显示黑色画面时的电子纸的结构示意图;
图10为本公开实施例提供的显示黑色画面时的电子纸的立体结构示意图;
图11为本公开实施例提供的显示红色时的电子纸的结构示意图;
图12为本公开实施例提供的显示红色时的电子纸的立体结构示意图;
图13为本公开实施例提供的显示白色时的电子纸的结构示意图;
图14为本公开实施例提供的显示白色时的电子纸的立体结构示意图;
图15为本公开实施例提供的显示黄色时的电子纸的结构示意图;
图16为本公开实施例提供的显示黄色时的电子纸的立体结构示意图;
图17为本公开实施例提供的显示次黄色时的电子纸的结构示意图;
图18为本公开实施例提供的显示次黄色时的电子纸的立体结构示意图;
图19为本公开实施例提供的其它驱动方案的示意图。
具体实施方式
下面结合说明书附图对本申请实施例的实现过程进行详细说明。需要注意的是,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
本公开实施例提供一种电子纸,参见图1所示,包括:
第一驱动背板1,第一驱动背板1具有多个第一半杯结构11,各第一半杯结构11内具有单一电性的带电染料粒子4;
第二驱动背板2,第二驱动背板2具有多个第二半杯结构21,各第二半杯结构21内具有单一电性的带电染料粒子4;第二驱动背板2的具有第二半杯结构21的一侧与第一驱动背板1的具有第一半杯结构11的一侧相向而置,即,例如,如图1所示,第二驱动背板2具有第二半杯结构21的一侧为第二 驱动背板2的上侧,第一驱动背板1的具有第一半杯结构11的一侧为第一驱动背板2的下侧,则,第一驱动背板1与第二驱动背板2对合时,是第一驱动背板1的下侧与第二驱动背板2的上侧进行相向对合,且对合时,以第一半杯结构11与第二半杯结构21进行一一相正对进行对合,一第一半杯结构11与相对的一第二半杯结构21构成一微杯结构3,同一微杯结构3内的第一半杯结构11与第二半杯结构21具有的带电染料粒子的电性相反,例如,同一微杯结构3,若第一半杯结构11内的带电染料粒子为电性为正,则,第二半杯结构21内的带电染料粒子的电性为负;若第一半杯结构11内的带电染料粒子为电性为负,则,第二半杯结构21内的带电染料粒子的电性为正,第一半杯结构11与第二半杯结构21之间彼此不连通;其中,
在由第二驱动背板2指向第一驱动背板1的方向,第二半杯结构21的截面面积逐渐减小;在由第一驱动背板1指向第二驱动背板2的方向,第一半杯结构11的截面面积逐渐减小,例如,如图1所示,以第一半杯结构11的与第二半杯结构21相近的端面作为第一半杯结构杯顶111,第一半杯结构11的与第二半杯结构21较远的端面作为第一半杯结构杯底112,则,第一半杯结构杯顶111的端面面积小于第一半杯结构杯底112的端面面积,即,如图1所示,第一半杯结构为上大下小形状;同样,第二半杯结构21的与第一半杯结构11相近的端面作为第二半杯结构杯顶211,第二半杯结构21的与第一半杯结构11较远的端面作为第二半杯结构杯底212,则,第二半杯结构杯顶211的端面面积小于第二半杯结构杯底212的端面面积,即,如图1所示,第二半杯结构21为上小下大形状,与第一半杯结构11相互对称,其中,第一半杯结构杯顶111闭合,第二半杯结构杯顶211闭合,即,第一半杯结构11以及第二半杯结构21均为独立的闭合结构,二者的带电染料粒子4不进行相互迁移,即,第一半杯结构11的带电染料粒子4不迁移至第二半杯结构21,第二半杯结构21的带电染料粒子4不迁移至第一半杯结构11。
本公开实施例提供的电子纸,包括两个驱动背板,其中,第一驱动背板1设置有多个第一半杯结构11,第二驱动背板2设置有多个第二半杯结构21, 第一半杯结构11以及第二半杯结构21均只设置一种单一电性的带电染料粒子4,进而可以将不同电性的带电染料粒子4进行分杯隔离放置,分别减小了驱动带电染料粒子4运动的必须距离,大幅缩短画面刷新的驱动时间,降低功耗,避免异性带电染料粒子4混合一起时,导致的显示画面纯度保持性差,以及画面刷新时所需驱动时间较长以及功耗较大的问题;另外,第一半杯结构11以及第二半杯结构21均为截面面积逐渐减小的形状,进而在驱动显示时,若第一驱动背板1的背离第二驱动背板2的一面作为显示面,则可以通过施加电场,使第一半杯结构11内的带电染料粒子4移动到靠近显示面的一侧,使第二半杯结构21内的带电染料粒子4向远离显示面的一侧移动,则可以实现使第一微杯结构11内的带电染料粒子进行显示;同样,也可以通过调整电场,使第一驱动背板1的第一半杯结构11内的带电染料粒子移动到靠近第二半杯结构21的位置处(即,第一半杯结构杯顶111位置处),使第二半杯结构21内的带电染料粒子4向远离显示面的一侧方向移动,由于第一半杯结构11在该位置处(即,第一半杯结构杯顶111位置处)的截面面积较小,进而人眼无法看见第一半杯结构11该位置处的带电染料粒子4,能实现透明态,可以透过第一半杯结构11,看见第二半杯结构21的带电染料粒子,进而可以实现使第二半杯结构21的带电染料粒子也进行显示,丰富了电子纸显示的颜色种类并提高了带电染料粒子的呈显利用率。相比于不设截面面积变化的微杯结构的电子纸,本公开实施例可实现多灰阶四色复杂画面,带电染料粒子均限制在半杯结构内,为双稳态,功耗更低。
在具体实施时,参见图2所示,本公开实施例的电子纸还包括:位于第一半杯结构11与第二半杯结构21之间的电极板层5;电极板层5包括相对的两个透明绝缘板层51和位于两个透明绝缘板层51之间的透明电极层52。本公开实施例中,电子纸还包括电极板层5,而电极板层5包括两透明的绝缘板层51以及位置其中的透明电极层52,则该电极板层5配合第一驱动背板1以及第二驱动背板2,可以在微杯结构3所在的位置处形成不同的电场,例如,可以形成由第一驱动背板1指向电极板层5方向的电场,同时,也可以形成 由第二驱动背板2指向中间电极板层5方向的电场,进而可以实现对第一半杯结构11以及第二半杯结构21内的带电染料粒子4的单独控制。而透明电极层52两侧设置的透明绝缘层板层51,一方面可以对透明电极层52起到承载的作用,另一方面,在第一半杯结11构内的带电染料粒子4聚集在第一半杯结构杯顶111位置处,第二半杯结构21内的带电染料粒子聚集在第二半杯结构杯顶211位置处时,即使两种带电染料粒子4的电极性相反,且距离较近,也并不会形成电容并放电。
具体的,透明电极层52为可以为一整层结构,即,各个微杯结构3之间的透明电极层互相连通,方便制作。具体的,也可以使各个微杯结构3的透明电极层相互独立,对各个微杯结构3进行分别控制。透明电极层52的材质具体可以为氧化铟锡,氧化铟锡是目前常用的透明电极材质,其光透过率往往在90%以上,有利于对位于电极板层5的背离显示面一侧的带电染料粒子4的显示。
在具体实施时,多个第一半杯结构11内的带电染料粒子4的电性相同,具体的,可以是第一驱动背板的所有第一半杯结构11内的带电染料粒子4的电性相同;多个第二半杯结构21内的带电染料粒子4的电性相同,具体的,可以是第二驱动背板的所有第二半杯结构21内的带电染料粒子4的电性相同。本发明实施例中,多个第一半杯结构11内的带电染料粒子4电性相同,多个第二半杯结构21内的带电染料粒子4的电性也相同,进而制作时,可以方便制作。
在具体实施时,第一驱动背板1的背离第二驱动背板2的一面为显示面;各第一半杯结构11分别具有的单一电性的带电染料粒子4为不同荷质比的两种颜色的带电染料粒子,即,各第一半杯结构11具有两种颜色的带电染料粒子4,两种颜色的带电染料粒子4的荷质比不同。本发明实施例中,在第一驱动背板1的背离第二驱动背板2的一面作为显示面时,第一半杯结构11具体可以设置两种颜色的带电染料粒子4,两种颜色的带电染料粒子4的荷质比不同,而带电染料粒子4荷质比的不同,在相同电场下,会导致电泳迁移率的 不同,进而可以通过电场强度以及方向的控制,可以实现对两种不同颜色的带电染料粒子4的分布位置进行控制,进而可以使第一半杯结构11显示两种不同的颜色。当然,第一半杯结构11也可以设置一种染色的带电染料粒子4或多于两种的更多种颜色的带电染料粒子4,但一种颜色的带电染料粒子4可显示的颜色较少,而更多种颜色的带电染料粒子4,会增加电子纸的驱动复杂性以及驱动时长和驱动功耗。
在具体实施时,各第二半杯结构21具有一种颜色的带电染料粒子4,第二半杯结构21内的带电染料粒子4的颜色与第一半杯结构11内的带电染料粒子4的颜色不同。本发明实施例中,由于第二半杯结构21为与显示面较远的半杯结构,则第二半杯结构21内仅设置一种颜色的带电染料粒子4,避免第二半杯结构21设置多种颜色的带电染料粒子时,会存在显示颜色不纯的问题。例如,若第二半杯结构21设置两种颜色的带电染料粒子,则在两种颜色的带电染料粒子均向远离显示面的一侧移动时,若一种颜色的带电染料粒子4位于另一种带电染料粒子4的更靠近显示面的一侧,则由显示面观看时,则会先看到位于更靠近显示面的带电染料粒子4,但同时由于第二半杯结构21下方的截面面积较大,人眼也会看到部分离显示面较远的带电染料粒子4,进而会使显示的画面不纯。
在具体实施时,参见图3所示,第二驱动背板2的背离第一驱动背板1的一面还设置有具有反射层22,反射层22的颜色与第一半杯结构11和第二半杯结构21内的带电染料粒子4的颜色均不同。本发明实施例中,第二驱动背板2的远离第一驱动背板1的一面还设置有预设颜色的反射层22,在第一半杯结构11的带电染料粒子聚集在第一半杯结构杯顶111,以及第二半杯结构21内的带电染料粒子聚集在第二半杯结构杯顶211时,则可以显示反射层22的颜色,进一步增加电子纸的可显示的颜色。反射层22具体可以为叠层设置的颜色层和反光层,其中,颜色层位于反光层的面向微杯结构的一面。反射层的设置,可以在不增加驱动复杂度(取决于带电染料粒子种数)的前提下,相比于传统电子纸只能显示三种单调且易受干扰的墨水颜色,色彩形貌 更佳,光学稳定性更好。
在具体实施时,结合图1-图3所示,各第一半杯结构11内的两种带电染料粒子分别为:带正电的红色带电染料粒子41和带正电的黑色带电染料粒子42,黑色带电染料粒子42的荷质比大于红色带电染料粒子41的荷质比;各第二半杯结构21内的带电染料粒子4为带负电的白色带电染料粒子43,反射层22的颜色为黄色。本公开实施例中,各第一半杯结构11内的两种带电染料粒子4分别为:带正电的红色带电染料粒子41和带正电的黑色带电染料粒子42,黑色带电染料粒子42的荷质比大于红色带电染料粒子43的荷质比;各第二半杯结构21内的带电染料粒子4为带负电的白色带电染料粒子43,反射层22的颜色为黄色,将第一半杯结构11为上杯,第二半杯结构22作为下杯,则可实现“上杯正黑/红+下杯负白+一种反射层颜色(多亮度)”的三态四色复杂画面显示。第一半杯结构11中,黑色带电染料粒子42与红色带电染料粒子41的荷质比及粒径大小均不同(按照所需电泳迁移率差值配比,一般将黑色带电染料粒子42迁移率做大,红色带电染料粒子41迁移率做小,即黑色带电染料粒子42荷质比略大,红色带电染料粒子41荷质比略小,其荷质比决定迁移率比值。从而,黑色带电染料粒子42对高压敏感,红色带电染料粒子41对低压敏感。第二半杯结构21中,白色带电染料粒子43与黑色带电染料粒子42荷质比可以设置为基本一致。
在具体实施时,第一半杯结构11和第二半杯结构21的形状为棱台形或圆台型,且第一半杯结构11和第二半杯结构21在第一驱动背板1的正投影相互重叠。
在具体实施时,参见图4所示,第一半杯结构11和第二半杯结构21沿平行于第一驱动背板的截面形状均为正六边形或圆形,即,第一半杯结构11和第二半杯结构21沿平行于第一驱动背板的截面形状均为正六边形,或者,第一半杯结构11和第二半杯结构21沿平行于第一驱动背板的截面形状均为圆形;最小截面内任意两点之间的距离d1小于15微米,当截面为正六边形时,正六边形的最大截面内相对的两个边之间的距离d2为130微米至150微 米;当截面为圆形时,圆形的最大截面内的直径的距离d2为130微米至150微米。本公开实施例中,第一半杯结构11和第二半杯结构21的截面形状均为正六边形或圆形;最小截面内任意两点之间的距离d1小于15微米,由于15微米的尺寸为人肉眼不可见的极限范围,当驱动带电染料粒子4聚集到杯顶位置处时,即,第一半杯结构11内的带电染料粒子4位于第一半杯结构杯顶111,第二半杯结构21内的带电染料粒子4位于第二半杯结构杯顶211时,微杯结构3整体表现出透明的透光态,若第二驱动背板2背离第一驱动背板1的一面搭配反射层22,进而可以实现反射层22颜色呈显。正六边形的最大截面内相对的两个边之间的距离为130微米至150微米,圆形的最大截面内的直径的距离为130微米至150微米,在电子纸的像素密度(pixels per inch,PPI)<169时(事实上PPI为200左右也可以),即,每一像素的尺寸相对较大,可以使像素电极的尺寸与第一微杯结构的最大的端面的尺寸基本相等,可以实现一个像素电极驱动一个微杯结构,该一个微杯结构的显示均一性较好,避免多个像素电极驱动一个微杯结构时,会造成显示均一性不佳的问题,可以提高显示面内的横向光学品质;但另一面,由于工艺限制,微杯结构3最大截面的尺寸也不能无限缩小,目前工艺能实现制作截面内最大距离为100微米,高8微米至100微米的柱型结构,因此,最大截面内相对的两个边长之间的距离d2为130微米至150微米也为工艺可实现的一个尺寸范围。另外,若PPI更高,工艺上可通过相应减小半杯结构高度,来保证小杯顶尺寸的微杯结构在工艺上的可行性。
在具体实施时,第一半杯结构的高度d31为60微米至70微米,第二半杯结构的高度d32为60微米至70微米。具体的,第一半杯结构和第二半杯结构的高度相等。本公开实施例中,一方面,若第一半杯结构11和第二半杯结构21的高度太小,则带电染料粒子4有效呈显运动距离不够(如第一半杯结构11内具有两种不同颜色的带电染料粒子4,驱动第一半杯结构11内荷质比较小的带电染料粒子显示时,需要使荷质比大的带电染料粒子4和荷质比小的带电染料粒子4在多次往返运动中,形成位置差,若有效运动距离太短, 则可能无法将两种颜色的带电染料粒子4进行空间位置分层),增加驱动难度;另一方面,若第一半杯结构11和第二半杯结构21的高度太大,则可能电场力较小,画面刷新时间较长。另外,本公开实施例中,通过按电性将带电染料粒子4分别设置于上、下两个半杯结构中,使异电性带电染料粒子4运动相互独立,各自所需半杯结构的高度大幅减小,可以有效缩短驱动时长,以及降低功耗。
具体的,参见图5所示,相邻第一半杯结构11的在最大截面位置处的间距d4不大于15微米,即,如,第一半杯结构杯底111均为正六边形,且相邻的两个正六边形的第一半杯结构杯底111以各自其中的一个边平行放置,则一个第一半杯结构杯底111与相邻的另一个第一半杯结构杯底111的相近的两个平行边的间距d4不大于15微米。相邻第一半杯结构11的在最小截面位置处的间距d5为130微米至150微米。
第一半杯结构11的最小截面与相对的第二半杯结构21的最小截面之间的竖向间距d6可以为50微米至60微米,整个微杯结构3的高度具体可以为190微米至200微米。第一半杯结构11的最小截面与相对的第二半杯结构12的最小截面之间的竖向间距为50微米至55微米,电极板层5的厚度可以为50微米至55微米,其中的透明电极层具体可以为10微米至20微米,透明绝缘板层的厚度可以为15微米至25微米。更为具体的,第一半杯结构11以及第二半杯结构21的高度d3可以均为70微米,第一半杯结构11的最小截面与相对的第二半杯结构21的最小截面之间的竖向间距d6为55微米,整个微杯高度具体可以为195微米。其中,第一半杯结构11的最小截面与相对的第二半杯结构12的最小截面之间的竖向间距为55微米,可以设置55微米厚的电极板层5,55微米厚的电极板层5,具体可用整层15微米的透明电极层(具体可以为薄氧化铟锡)填充在两个厚均为20微米的上下透明绝缘板层(具体可以为PET基体层)之间形成。
在具体实施时,第一驱动背板和第二驱动背板均包括:透明衬底基板,以及位于透明衬底基板的多个像素电路,一像素电路对应驱动一微杯结构, 其中,第一驱动背板的像素电路位于第一驱动背板的透明衬底基板与第一半杯结构之间,第二驱动背板的像素电路位于第二驱动背板的透明衬底基板与第二半杯结构之间。
在一种可能的实施方式中,各像素电路包括:依次位于透明衬底基板的第一电极层,栅极绝缘层,有源层,源漏极层,钝化层,以及像素电极层;其中,第一电极层包括相互间隔的栅极和公共电极,源漏极层包括源极和漏极,像素电极层通过贯穿钝化层的通孔与漏极电连接;像素电极层在透明衬底基板的正投影与微杯结构在透明衬底基板的正投影存在交叠区域,像素电极层在透明衬底基板的正投影与公共电极在透明衬底基板的正投影存在交叠区域;
第一驱动背板的像素电极层以及第二驱动背板的像素电极层被配置为显示时,加载控制带电染料粒子移动的电压;
第一驱动背板的像素电极层和公共电极被配置为在显示时,形成第一存储电容,以维持第一驱动背板的像素电极层电压的稳定;
第二驱动背板的像素电极层和公共电极被配置为在显示时,形成第二存储电容,以维持第二驱动背板的像素电极层电压的稳定。
在具体实施时,参见图6和图7所示,其中,图6为第一驱动背板和第二驱动背板的剖视结构示意图,图7为第一驱动背板或第二驱动背板的俯视结构示意图,第一驱动背板和第二驱动背板均包括:透明衬底基板100,以及位于透明衬底基板100的多个像素电路,一像素电路对应驱动一微杯结构,其中,第一驱动背板的像素电路位于第一驱动背板的透明衬底基板与第一半杯结构之间,第二驱动背板的像素电路位于第二驱动背板的透明衬底基板与第二半杯结构之间。
具体的,各像素电路包括:依次位于透明衬底基板100的第一电极层,栅极绝缘层142,有源层143,源漏极层,钝化层103,以及像素电极层102;其中,第一电极层包括相互间隔的栅极141和公共电极101,源漏极层包括源 极144和漏极145,像素电极层102通过贯穿钝化层103的通孔与漏极145电连接;像素电极层102在透明衬底基板100的正投影与微杯结构在透明衬底基板100的正投影存在交叠区域,像素电极层102在透明衬底基板100的正投影与公共电极101在透明衬底基板100的正投影存在交叠区域;第一驱动背板1的像素电极层102以及第二驱动背板2的像素电极层102被配置为显示时,通过薄膜晶体管104加载控制带电染料粒子4移动的电压;第一驱动背板1的像素电极层102和公共电极101被配置为在显示时,形成第一存储电容Cst1,以维持第一驱动背板1的像素电极层102电压的稳定;第二驱动背板2的像素电极层102和公共电极101被配置为在显示时,形成第二存储电容Cst2,以维持第二驱动背板2的像素电极层102电压的稳定。本公开实施例中,第一驱动背板1和第二驱动背板2均设置有像素电极层102和公共电极101,进而每一驱动背板都可实现有源选址驱动,分别同时驱动第一半杯结构11、第二半杯结构21中的异电性带电染料粒子4,驱动难度更低(相比于传统需同时驱动混合的异电性微粒)。既可按照传统驱动方式单层驱动,又可进行双层驱动,增加驱动方式选择性。
其中,栅极141、栅极绝缘层142、有源层143、源极144、漏极145构成薄膜晶体管104,该薄膜晶体管104具体可以为双栅极结构。
在具体实施时,像素电极层102与公共电极101的材质均为透明导电材料,具体可以为氧化铟锡(Indium Tin Oxide,ITO)、掺铝氧化锌(AZO)银丝墨、银丝、导电性高分子材料或金属纳米线。由于ITO的光透过率可以达到90%以上,更为具体的,像素电极层102与公共电极101的材质均为ITO,以满足第一驱动背板1以及第二驱动背板2的透明性。
在具体实施时,结合图7所示,第一驱动背板1和第二驱动背板2还均包括:栅线146,以及数据线147。对于第一驱动背板1以及第二驱动背板2的薄膜晶体管104,则仍采用Mo/Al等金属,仍可使用原工艺形成,由于薄膜晶体管104尺寸较小(一般几十微米量级),不影响反射光的整体透过性。本公开实施例中,可仅TFT使用Mo/Al等金属进行栅、源/漏极的制作,其它 结构部分均可以采用透明材质制作。另外,本公开实施例中,由于每个第一半杯结构11以及第二半杯结构12,仅有单种带电染料粒子4,因此相比于传统双电性电子纸显示产品,其存储电容、薄膜晶体管104要求更低,所以TFT部分可制作更小,这样更利于第一驱动背板以及第二驱动背板整体的光透性。具体的,本公开实施例中的薄膜晶体管104为双栅极结构,沟道宽度W可以为22微米,沟道长度可以为(4.5+4.5)微米,即9微米,由于薄膜晶体管104总尺寸可以做的较小,因此薄膜晶体管104不会被人眼看到,能保证光透性。另外,若材料稳定性、阻抗稳定,本公开实施例中的薄膜晶体管104也可使用透明材质。
具体的,参见图8所示,相邻微杯结构3之间还可以设置有透明填充层9,第一半杯结构11,以及第二半杯结构21内还可以设置有透明电泳液10,第一微杯结构11内设置有三种或三种以上的带电染料粒子4时,带电染料粒子4的表面还可以涂覆有表面稳定剂,防止三种带电染料粒子4之间相互排斥时,使其中的两种聚集,即,防止带电染料粒子因相互作用导致聚散(单电性防自散)的表面稳定剂。第一驱动背板1的背离第二驱动背板2的一面具体还可以设置有光学胶层13(OCA),以及位于光学胶层13的背离第二驱动背板1一面的保护层14。第一驱动背板1以及第二驱动背板2上还可以均设置有控制芯片IC 8以及柔性电路板7,第一驱动背板1与第二驱动背板2具体可以通过边框胶6进行密封。
基于同一发明构思,本公开实施例还提供一种显示装置,其中,包括如本公开实施例提供的电子纸。
基于同一发明构思,本公开实施例还提供一种如本公开实施例所提供的电子纸的驱动方法,其中,驱动方法包括:
步骤S101、在第一显示模式下,向第一驱动电路和第二驱动电路加载电压,形成第一电场,第一电场控制第一半杯结构内的带电染料粒子向远离第二半杯结构的方向移动,控制第二半杯结构内的带电染料粒子向远离第一半杯结构的方向移动,以通过第一半杯结构内的带电染料粒子进行显示。
步骤S102、在第二显示模式下,向第一驱动电路和第二驱动电路加载电压,形成第二电场,第二电场控制第一半杯结构内的带电染料粒子向第二半杯结构的方向移动,第二半杯结构内的带电染料粒子向远离第一半杯结构的方向移动,以通过第二半杯结构内的带电染料粒子进行显示。
在具体实施时,各第一半杯结构具有两种带电染料粒子,两种带电染料粒子的荷质比不同,在第一显示模式下,通过第一半杯结构内的荷质比大的带电染料粒子进行显示;本公开实施例的驱动方法还包括:
步骤S103、在第三显示模式下,向第一驱动电路和第二驱动电路加载第一时长的电压,形成第三电场,之后,再向第一驱动电路和第二驱动电路加载第二时长的另一电压,形成第四电场,循环形成多次第三电场和第四电场,直至第一半杯结构内的荷质比小的带电染料粒子移动到荷质比大的带电染料粒子的面向第一驱动背板的一侧,即,相比于荷质比大的带电染料粒子,荷质比小的带电染料粒子更靠近第一驱动背板,以通过第一半杯结构内的荷质比小的带电染料粒子进行显示;
其中,第三电场与第一电场的电场方向相反,第四电场与第三电场的电场方向相反,第三电场的电场强度大于第四电场的电场强度,第一时长小于第二时长。
在具体实施时,第二驱动背板的背离第一驱动背板的一面还设置有具有预设颜色的反射层;本公开实施例的驱动方法还包括:
在第四显示模式下,向第一驱动电路和第二驱动电路加载电压,形成第五电场,第五电场控制第一半杯结构内的带电染料粒子聚集在面向第二半杯结构的端面位置处,即,以图1最右侧的微杯结构3为例,第一半杯结构11内的带电染料粒子4聚集在第一半杯结构杯顶111,控制第二半杯结构内的带电染料粒子聚集在面向第一半杯结构的端面位置处,以通过反射层进行显示,即,以图1最右侧的微杯结构3为例,第二半杯结构21内的带电染料粒子4聚集在第二半杯结构杯顶211。
在具体实施时,本公开实施例的驱动方法还包括:
在第四显示模式下,调节控制第五电场的电场强度,不同电场强度的第五电场控制第一半杯结构以及第二半杯结构内的带电染料粒子的聚集密度不同,以控制反射层的反射率不同。
以下结合图9-图18所示,以第一驱动背板1的背离第二驱动背板2的一面为显示面,第一半杯结构为上半杯,第二半杯结构为下半杯,为例,对本公开实施例中的驱动原理进行具体说明如下:
若需显示墨水态(上半杯呈显)黑色,则:
如图9和图10所示,欲呈显黑色,下方的第二驱动背板2给像素电极层提供正高压(+15V),上方的第一驱动背板1给其像素电极层提供0V的Vcom电压,形成第一电场,此时第一电场线竖直向上,上半杯中,正电黑色带电染料粒子42、红色带电染料粒子41受电场力作用向显示面(上层杯底)泳动,由于黑色带电染料粒子42、红色带电染料粒子41迁移率差异,黑色带电染料粒子42对高压更敏感,因此黑色带电染料粒子42更快迁移到上面,通过施加合适的电压时间(80ms左右)即可使显示层整体呈现黑色,驱动完成后去掉电压,由于墨水的稳态,微粒在断电后仍能维持显示特性。此时,由于同电性红色带电染料粒子41与黑色带电染料粒子42相斥,不会因内建吸引电场作用造成画面保持特性的降低。此时,下半杯中白色带电染料粒子43运动到背显侧电极(下层杯底)。
若需显示墨水态(上半杯呈显)红色,则:
如图11和图12所示,根据黑色带电染料粒子42、红色带电染料粒子41迁移率差异,下方的第二驱动背板2先给其像素电极层提供负压(-15V)较短时间(10ms)左右,则上半杯中的黑色带电染料粒子42、红色带电染料粒子41同时向中间的电极板层5移动并造成分层,上方的第一驱动背板1给其像素电极层提供0V的Vcom电压。然后,下方的第二驱动背板2给其像素电极层提供低正压(+6V左右)较长时间(90ms)左右,则黑色带电染料粒子 42、红色带电染料粒子41往回(显示面)迁移,循环多周期(4个左右),即可完成红色带电染料粒子41的显示。稳态、无削弱性内建电场,画面保持特性好。
若需显示墨水态(下半杯呈显),白色,则:
如图13和图14所示,欲呈显白色,下方的第二驱动背板2给其像素电极层提供正高压(+15V),上方的第一驱动背板1给其像素电极层提供正高压(+15V)。由于中间的电极板层5存在,此时上半杯电场线方向向下,下半杯电场线方向向上。因此,上半杯中,正电黑色带电染料粒子42、红色带电染料粒子41受电场力作用向中间的电极板层5泳动,并聚集于此,由于该位置处的尺寸15微米人肉眼不可见,因此实现了上半杯中墨水的“隐形”;负电白色微粒受电场力作用向远离显示面的一侧(下层杯底)运动,由于此时上半杯已经透明,则在显示侧会呈现覆盖下层杯底的白色微粒颜色。
若需显示透明(反射层颜色)态,亮黄,则:
如图15和图16所示,欲呈现反射层的黄色,下方的第二驱动背板2给其像素电极层提供1级负高压(-20V)较长时间(500ms),则上、下半杯中的黑色带电染料粒子42、红色带电染料粒子41、白色带电染料粒子43全部向中间的电极板层5泳动,并聚集于此,上、下半杯带电染料粒子全部聚集于15微米左右的位置周围而不能运动到对杯中,并且周边竖直方向无微粒覆盖,因此实现整杯透明态(即上、下半杯中微粒均“隐形”),搭载反射层时,则会呈显最亮的反射层颜色,即,亮黄色。由于稳态,断电后微粒仍聚集在人眼不可见的15微米左右的周围,因此能保持反射层颜色。在这种显示状态下,由于中间的电极板层5包括上下各20微米厚的非介电PET载体存在,上下半杯中的正负带电染料粒子虽然空间距离较近,但并不会形成电容并放电。
若需显示多透明度(反射层颜色色度)态,暗黄,则:
如图17-图18所示,下方的第二驱动背板2给其像素电极层提供2级负高压(-18V)略短时间(450ms),则上、下半杯中的黑色带电染料粒子42、红色带电染料粒子41、白色带电染料粒子43仍分别泳动至中间的电极板层5周围,但没上一情况聚集密度大,因此会一定程度削弱透光率。通过控制不同的负高压等级(等级越低负压幅值越小)及驱动时间,能达到不同透明度,即不同色度的反射层颜色效果:亮黄→次亮黄→暗黄。根据墨水特性以及ITO的透光率,本公开设计3种不同程度的透明(反射层)颜色态,其驱动依次为:A.亮黄(一级负高压-20V,500ms);B.次亮黄(二级副高压-18V,450ms);C.暗黄(三级负高压-16V,250ms)。本公开的多透明度驱动方式设计仅针对反射层为黄色,搭载其他不同颜色反射层时,驱动实际电压幅值、时间需要相应调整。
本公开的以上方案主要采用第二驱动背板的电极驱动的方式。实际也可采用上方的第一驱动背板的电极驱动或双驱动背板共同驱动的方案。例如驱动黑/红时的时上Vcom恒压信号+下正压信号”可替换为“上负压信号+下Vcom恒压信号”,驱动反射层颜色时的“上Vcom恒压信号+下负压信号”可替换为“上正压信号+下Vcom信号”,具体其它的可替代方案可以如图19所示,增加了驱动方案的选择性。
综上,本公开实施例中,由于通过微杯结构设计,对不同电性的带电染料粒子进行了空间上的工艺分割(即正电黑、红在上半杯,负电白在下半杯),因此,能有效避免“异电性混合染色微粒”的传统电子纸显示产品由于内建电场正负粒子相互吸引导致的驱动过程复杂、保持特性差、光学稳定性差等缺陷。具体的,驱动方面,相比于传统电子纸显示产品必须的三个阶段:反向驱动(2360ms)、激活(6560ms)、写入(6760ms),本公开实施例提供的电子纸,仅包含两个阶段:激活(820ms)、写入(512ms)。总刷新时间仅需1.32s,比传统三色EPD的15.68s缩短14.36s(91.58%)之多。另外,由于稳态,光学稳定性更好,不用每天刷新,整体功耗也比传统双电性电子 纸显示产品大幅减小。需要说明的是,刷新时间的大幅缩短,是因为通过异电性带电染料粒子的空间分离,使其驱动的反向、激活、写入所需距离都大幅缩短(因为避免了驱动过程中的内部成耦等)。由于刷新时间与电泳距离正相关,因此使刷新时间大幅缩短。工艺方面,由于微杯结构杯中的中部位置较窄,常规的隔垫物(PS)工艺等难以对应,因此可以在第一半杯结构与第二半杯结构之间增加透明绝缘板层。实现方式为形成两个PET绝缘板层,每一个PET绝缘板层的制作过程分别为:将7.5微米厚的氧化铟锡薄膜在20微米厚的透明PET基材中形成,然后两个PET绝缘板层以氧化铟锡薄膜相对的面正对贴合,这样整体形成共55微米厚并有上下硬性PET保护的氧化铟锡薄膜透明电极板层。结构方面,区别于传统电子纸显示产品的“上纸膜、下有源背板”,本公开实施例中,由于搭载反射层,要求反射层以上所有主体结构必须为透明材质,上、下有源层必须整体为透明态,这样能更好的区分本公开实施例的三态:上/下半杯墨水态以及透明(反射层颜色)态。另外,本发明结构也可不搭载反射层,此时可以显示透明态。对于本公开实施例中的微杯结构的制作,可通过对透明基体进行“楔形挖空”方式,然后通过滴注工艺(One Drop Filling,ODF)将墨水材质注入到楔形的微杯结构腔体中。由于需要在微杯结构中增加一层透明电极层,因此微杯结构制作也可采用ODF的双层对盒方式。
本公开实施例可广泛应用于电子货架标签(Electronic Shelf Label,ESL)产品领域,取代传统慢响应低光稳的“异电性混合微粒”的电子纸显示产品,又可延伸到智能家居、车载、标牌等领域。
本申请实施例有益效果如下:本公开实施例提供的电子纸,包括两个驱动背板,其中,第一驱动背板设置有多个第一半杯结构,第二驱动背板设置有多个第二半杯结构,第一半杯结构以及第二半杯结构均只设置一种单一电性的带电染料粒子,进而可以将不同电性的带电染料粒子进行分杯隔离放置,分别减小了其驱动带电染料粒子运动的必须距离,大幅缩短画面刷新的驱动时间,降低功耗,避免异性带电染料粒子混合一起时,导致的显示画面纯度 保持性差,以及画面刷新时所需驱动时间较长以及功耗较大的问题;另外,第一半杯结构以及第二半杯结构均为截面面积逐渐减小的形状,进而在驱动显示时,若第一驱动背板的背离第二驱动背板的一面作为显示面,则可以通过施加电场,使第一半杯结构内的带电染料粒子移动到靠近显示面的一侧,使第二半杯结构内的带电染料粒子向远离显示面的一侧移动,则可以实现使第一微杯结构内的带电染料粒子进行显示;同样,也可以调整电场,使第一驱动背板的第一半杯结构内的带电染料粒子移动到靠近第二半杯结构的位置处(即,第一半杯结构杯顶位置处),使第二半杯结构内的带电染料粒子向远离显示面的一侧方向移动,由于第一半杯结构在该位置处(即,第一半杯结构杯顶位置处)的截面面积较小,进而人眼无法看见第一半杯结构该位置处的带电染料粒子,能实现透明态,可以透过第一半杯结构,看见第二半杯结构的带电染料粒子,进而可以实现使第二半杯结构的带电染料粒子也进行显示,丰富了电子纸显示的颜色种类并提高了带电染料粒子的呈显利用率。相比于不设微杯结构的电子纸,本公开实施例搭配透明驱动背板并使用电泳驱动及特定形状的微杯结构,因此可实现多灰阶四色复杂画面,带电染料粒子均限制在半杯结构内,为双稳态,功耗更低。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种电子纸,其中,包括:
    第一驱动背板,所述第一驱动背板具有多个第一半杯结构,各所述第一半杯结构内具有单一电性的带电染料粒子;
    第二驱动背板,所述第二驱动背板具有多个第二半杯结构,各所述第二半杯结构内具有单一电性的带电染料粒子;
    所述第二驱动背板的具有所述第二半杯结构的一侧与所述第一驱动背板的具有所述第一半杯结构的一侧相向而置,一所述第一半杯结构与相对的一所述第二半杯结构构成一微杯结构,同一所述微杯结构内的所述第一半杯结构与所述第二半杯结构具有的带电染料粒子的电性相反;其中,
    在由所述第二驱动背板指向所述第一驱动背板的方向,所述第二半杯结构的截面面积逐渐减小;在由所述第一驱动背板指向所述第二驱动背板的方向,所述第一半杯结构的截面面积逐渐减小。
  2. 如权利要求1所述的电子纸,其中,还包括:位于所述第一半杯结构与所述第二半杯结构之间的电极板层;所述电极板层包括相对的两个透明绝缘板层和位于两个所述透明绝缘板层之间的透明电极层。
  3. 如权利要求2所述的电子纸,其中,所述透明电极层为一整层结构。
  4. 如权利要求1-3任一项所述的电子纸,其中,所述第一半杯结构和所述第二半杯结构的形状均为棱台形,或者,所述第一半杯结构和所述第二半杯结构形状均为圆台形;
    且所述第一半杯结构和所述第二半杯结构在所述第一驱动背板的正投影重叠。
  5. 如权利要求4所述的电子纸,其中,所述第一半杯结构和所述第二半杯结构沿平行于所述第一驱动背板的截面形状均为正六边形或圆形;最小截面内任意两点之间的距离不大于15微米,正六边形的最大截面内相对的两个边之间的距离为130微米至150微米,圆形的最大截面内的直径的距离为130 微米至150微米。
  6. 如权利要求4所述的电子纸,其中,所述第一半杯结构和所述第二半杯结构的高度均为60微米至70微米。
  7. 如权利要求6所述的电子纸,其中,所述第一半杯结构和所述第二半杯的高度相同。
  8. 如权利要求2所述的电子纸,其中,所述多个第一半杯结构内的所述带电染料粒子的电性相同,所述多个第二半杯结构内的所述带电染料粒子的电性相同。
  9. 如权利要求8所述的电子纸,其中,所述第一驱动背板的背离所述第二驱动背板的一面为显示面;
    各所述第一半杯结构分别具有的单一电性的所述带电染料粒子为不同荷质比的两种颜色的带电染料粒子。
  10. 如权利要求9所述的电子纸,其中,各所述第二半杯结构具有一种颜色的所述带电染料粒子,所述第二半杯结构内的所述带电染料粒子的颜色与所述第一半杯结构内的所述带电染料粒子的颜色不同。
  11. 如权利要求10所述的电子纸,其中,所述第二驱动背板的背离所述第一驱动背板的一面还设置有反射层,所述反射层的颜色与所述第一半杯结构和所述第二半杯结构内的所述带电染料粒子的颜色均不同。
  12. 如权利要求11所述的电子纸,其中,各所述第一半杯结构内的两种带电染料粒子分别为:带正电的红色带电染料粒子和带正电的黑色带电染料粒子,所述黑色带电染料粒子的荷质比大于所述红色带电染料粒子的荷质比;各所述第二半杯结构内的所述带电染料粒子为带负电的白色带电染料粒子,所述反射层的颜色为黄色。
  13. 如权利要求1所述的电子纸,其中,所述第一驱动背板和所述第二驱动背板均包括:透明衬底基板,以及位于所述透明衬底基板的多个像素电路,一所述像素电路对应驱动一所述微杯结构,其中,所述第一驱动背板的所述像素电路位于所述第一驱动背板的所述透明衬底基板与所述第一半杯结 构之间,所述第二驱动背板的所述像素电路位于所述第二驱动背板的所述透明衬底基板与所述第二半杯结构之间。
  14. 如权利要求13所述的电子纸,其中,
    各所述像素电路包括:依次位于所述透明衬底基板的第一电极层,栅极绝缘层,有源层,源漏极层,钝化层,以及像素电极层;其中,所述第一电极层包括相互间隔的栅极和公共电极,所述源漏极层包括源极和漏极,所述像素电极层通过贯穿所述钝化层的通孔与所述漏极电连接;所述像素电极层在所述透明衬底基板的正投影与所述微杯结构在所述透明衬底基板的正投影存在交叠区域,所述像素电极层在所述透明衬底基板的正投影与所述公共电极在所述透明衬底基板的正投影存在交叠区域;
    所述第一驱动背板的所述像素电极层以及所述第二驱动背板的所述像素电极层被配置为显示时,加载控制所述带电染料粒子移动的电压;
    所述第一驱动背板的所述像素电极层和所述公共电极被配置为在显示时,形成第一存储电容,以维持所述第一驱动背板的所述像素电极层电压的稳定;
    所述第二驱动背板的所述像素电极层和所述公共电极被配置为在显示时,形成第二存储电容,以维持所述第二驱动背板的所述像素电极层电压的稳定。
  15. 如权利要求14所述的电子纸,其中,所述像素电极层以及所述公共电极的材质为透明导电材料。
  16. 一种显示装置,其中,包括如权利要求1-15任一项所述的电子纸。
  17. 一种如权利要求1-15任一项所述的电子纸的驱动方法,其中,所述驱动方法包括:
    在第一显示模式下,向所述第一驱动电路和所述第二驱动电路加载电压,形成第一电场,所述第一电场控制所述第一半杯结构内的所述带电染料粒子向远离所述第二半杯结构的方向移动,控制所述第二半杯结构内的所述带电染料粒子向远离所述第一半杯结构的方向移动,以通过所述第一半杯结构内的所述带电染料粒子进行显示;
    在第二显示模式下,向所述第一驱动电路和所述第二驱动电路加载电压, 形成第二电场,所述第二电场控制所述第一半杯结构内的所述带电染料粒子向所述第二半杯结构的方向移动,所述第二半杯结构内的所述带电染料粒子向远离所述第一半杯结构的方向移动,以通过所述第二半杯结构内的所述带电染料粒子进行显示。
  18. 如权利要求17所述的驱动方法,其中,各所述第一半杯结构分别具有的单一电性的所述带电染料粒子为不同荷质比的两种颜色的带电染料粒子,在所述第一显示模式下,通过所述第一半杯结构内的荷质比大的所述带电染料粒子进行显示;
    所述驱动方法还包括:
    在第三显示模式下,向所述第一驱动电路和所述第二驱动电路加载第一时长的电压,形成第三电场,之后,再向所述第一驱动电路和所述第二驱动电路加载第二时长的另一电压,形成第四电场,循环形成多次所述第三电场和所述第四电场,直至所述第一半杯结构内的荷质比小的所述带电染料粒子移动到荷质比大的所述带电染料粒子的面向所述第一驱动背板的一侧,以通过所述第一半杯结构内的荷质比小的所述带电染料粒子进行显示;
    其中,所述第三电场与所述第一电场的电场方向相反,所述第四电场与所述第三电场的电场方向相反,所述第三电场的电场强度大于所述第四电场的电场强度,所述第一时长小于所述第二时长。
  19. 如权利要求18所述的驱动方法,其中,所述第二驱动背板的背离所述第一驱动背板的一面还设置有具有预设颜色的反射层;
    所述驱动方法还包括:
    在第四显示模式下,向所述第一驱动电路和所述第二驱动电路加载电压,形成第五电场,所述第五电场控制所述第一半杯结构内的所述带电染料粒子聚集在面向所述第二半杯结构的端面位置处,控制所述第二半杯结构内的所述带电染料粒子聚集在面向所述第一半杯结构的端面位置处,以通过所述反射层进行显示。
  20. 如权利要求19所述的驱动方法,其中,所述驱动方法还包括:
    在第四显示模式下,调节控制所述第五电场的电场强度,不同电场强度的第五电场控制所述第一半杯结构以及所述第二半杯结构内的所述带电染料粒子的聚集密度不同,以控制所述反射层的反射率不同。
PCT/CN2019/098650 2019-07-31 2019-07-31 一种电子纸、显示装置和驱动方法 WO2021016930A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/956,974 US11740531B2 (en) 2019-07-31 2019-07-31 Electronic paper, display device, and driving method
PCT/CN2019/098650 WO2021016930A1 (zh) 2019-07-31 2019-07-31 一种电子纸、显示装置和驱动方法
CN201980001209.0A CN110300924B (zh) 2019-07-31 2019-07-31 一种电子纸、显示装置和驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098650 WO2021016930A1 (zh) 2019-07-31 2019-07-31 一种电子纸、显示装置和驱动方法

Publications (1)

Publication Number Publication Date
WO2021016930A1 true WO2021016930A1 (zh) 2021-02-04

Family

ID=68033049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098650 WO2021016930A1 (zh) 2019-07-31 2019-07-31 一种电子纸、显示装置和驱动方法

Country Status (3)

Country Link
US (1) US11740531B2 (zh)
CN (1) CN110300924B (zh)
WO (1) WO2021016930A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824806B (zh) * 2019-11-28 2023-06-23 京东方科技集团股份有限公司 电子墨水屏及显示装置
CN113835276A (zh) * 2021-10-09 2021-12-24 珠海读书郎软件科技有限公司 一种专用颜色电子墨水屏及实现方法
CN113777855A (zh) * 2021-10-09 2021-12-10 珠海读书郎软件科技有限公司 一种四色专用颜色电子墨水屏
CN113777854A (zh) * 2021-10-09 2021-12-10 珠海读书郎软件科技有限公司 一种实现三种专用颜色的电子墨水屏
WO2023092309A1 (zh) * 2021-11-23 2023-06-01 京东方科技集团股份有限公司 电子纸显示装置及其驱动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172798B1 (en) * 1998-04-27 2001-01-09 E Ink Corporation Shutter mode microencapsulated electrophoretic display
CN101158795A (zh) * 2007-11-20 2008-04-09 北京派瑞根科技开发有限公司 改良电泳显示器及其制备方法
TW201140214A (en) * 2010-05-06 2011-11-16 Au Optronics Corp Display device
CN103180781A (zh) * 2010-05-21 2013-06-26 伊英克公司 多色彩电光显示器
CN108139645A (zh) * 2015-10-12 2018-06-08 伊英克加利福尼亚有限责任公司 电泳显示装置
CN109613772A (zh) * 2019-01-03 2019-04-12 京东方科技集团股份有限公司 显示基板及其制造方法、修复方法、显示装置
CN109656076A (zh) * 2019-01-22 2019-04-19 京东方科技集团股份有限公司 电泳显示器件及其驱动方法、电泳显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516173B2 (ja) * 2009-10-14 2014-06-11 セイコーエプソン株式会社 表示シート、表示装置および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172798B1 (en) * 1998-04-27 2001-01-09 E Ink Corporation Shutter mode microencapsulated electrophoretic display
CN101158795A (zh) * 2007-11-20 2008-04-09 北京派瑞根科技开发有限公司 改良电泳显示器及其制备方法
TW201140214A (en) * 2010-05-06 2011-11-16 Au Optronics Corp Display device
CN103180781A (zh) * 2010-05-21 2013-06-26 伊英克公司 多色彩电光显示器
CN108139645A (zh) * 2015-10-12 2018-06-08 伊英克加利福尼亚有限责任公司 电泳显示装置
CN109613772A (zh) * 2019-01-03 2019-04-12 京东方科技集团股份有限公司 显示基板及其制造方法、修复方法、显示装置
CN109656076A (zh) * 2019-01-22 2019-04-19 京东方科技集团股份有限公司 电泳显示器件及其驱动方法、电泳显示装置

Also Published As

Publication number Publication date
CN110300924A (zh) 2019-10-01
US20230152656A1 (en) 2023-05-18
US11740531B2 (en) 2023-08-29
CN110300924B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2021016930A1 (zh) 一种电子纸、显示装置和驱动方法
KR101232146B1 (ko) 전기영동 표시장치
US10037735B2 (en) Active matrix display with dual driving modes
Amundson Electrophoretic imaging films for electronic paper displays
CN110520791B (zh) 显示基板及其驱动方法、显示装置
TWI439989B (zh) 電泳顯示裝置及其驅動方法
US10901288B2 (en) Display device and driving method
CN101782707B (zh) 彩色电泳式显示装置的像素结构与子像素结构
CN109656076A (zh) 电泳显示器件及其驱动方法、电泳显示装置
CN102799035A (zh) 一种阵列基板、液晶面板和显示装置
TWI702456B (zh) 驅動電光顯示器之方法
WO2023093135A1 (zh) 电子墨水屏及显示装置
TWI817894B (zh) 用於先進彩色電泳顯示器之改良式驅動電壓及具有改良式驅動電壓的顯示器
KR101865803B1 (ko) 전기 영동 표시 장치 및 이의 구동 방법
US8054534B2 (en) Electrophoretic display
JP5304556B2 (ja) 電気泳動表示装置及びその駆動方法
CN202383397U (zh) 双面显示电子纸及电子纸显示器
JP2017194609A (ja) 電気泳動表示装置及び駆動方法
JP2005084343A (ja) 電気泳動表示装置および電子機器
CN216561324U (zh) 墨水屏模组、显示模组和显示装置
US10139698B2 (en) Electrophoretic display and driving method thereof
WO2023092309A1 (zh) 电子纸显示装置及其驱动方法
KR20110025538A (ko) 전기영동표시장치 및 그 제조방법
CN103186006A (zh) 双面显示电子纸及电子纸显示器
KR101373880B1 (ko) 전계 구동 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940162

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19940162

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19940162

Country of ref document: EP

Kind code of ref document: A1