WO2023092970A1 - 图像扫描系统和扫描方法 - Google Patents

图像扫描系统和扫描方法 Download PDF

Info

Publication number
WO2023092970A1
WO2023092970A1 PCT/CN2022/095049 CN2022095049W WO2023092970A1 WO 2023092970 A1 WO2023092970 A1 WO 2023092970A1 CN 2022095049 W CN2022095049 W CN 2022095049W WO 2023092970 A1 WO2023092970 A1 WO 2023092970A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
image
scanning system
sensor
signal
Prior art date
Application number
PCT/CN2022/095049
Other languages
English (en)
French (fr)
Inventor
姜利
韩晓伟
戴朋飞
Original Assignee
威海华菱光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海华菱光电股份有限公司 filed Critical 威海华菱光电股份有限公司
Publication of WO2023092970A1 publication Critical patent/WO2023092970A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00519Constructional details not otherwise provided for, e.g. housings, covers
    • H04N1/00522Reducing apparatus footprint, e.g. wall-mounted or vertically arranged apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa

Definitions

  • the present application relates to the technical field of sensing equipment, in particular, to an image scanning system and a scanning method.
  • the current image scanning system for industrial inspection is mainly composed of the following parts, which are composed of light source, lens, industrial camera, image acquisition card, and host computer.
  • the transmitted light through the detected object enters the industrial camera through the lens.
  • the industrial camera converts the received optical signal into an electrical signal, and converts the continuous analog electrical signal into a discrete digital signal through analog-to-digital conversion. After digital processing, it passes a specific
  • the interface transmits the image signal to the image acquisition card through the cable, and the acquisition card performs buffering and image preprocessing on the received image signal, and then uploads it to the host computer, which performs image processing and outputs the discrimination results.
  • each angle or each light source is equipped with an industrial camera, and each industrial camera transmits the collected image signals to the respective connected Image acquisition card, the images collected by all image acquisition cards are uploaded to the host computer, and the host computer performs image processing and output of discrimination results.
  • the structures of multiple lenses and multiple industrial cameras are expensive and bulky.
  • the image scanning system in the prior art has the problem of large volume.
  • the main purpose of the present application is to provide an image scanning system and a scanning method to solve the problem of large volume of image scanning systems in the prior art.
  • an image scanning system including: multiple light source assemblies, the angles between the multiple light source assemblies and the object to be scanned are different; sensors, and the multiple light source assemblies are connected to the sensor Electrical connection, the sensor controls the light-emitting process of multiple light source components; image acquisition structure, the image acquisition structure is electrically connected to the sensor, and the image acquisition structure is used to receive the signal from the sensor; the upper computer, the upper computer is electrically connected to the image acquisition structure, the upper The computer is used to receive the signal from the image acquisition structure, and display the scanned image of each light source component.
  • At least two light source assemblies among the plurality of light source assemblies are located on both sides of the object to be scanned.
  • the illumination direction of the light source assembly located on the side of the scanned object close to the sensor is set obliquely relative to the scanned object; the illumination direction of the light source assembly located on the side of the scanned object away from the sensor is perpendicular to the scanned object .
  • the senor is located on one side of the object to be scanned, and the sensor includes: a frame, the frame has an accommodation space and a light inlet communicating with the accommodation space; a lens, the lens is arranged in the frame, and the object of the lens The side faces the light inlet to receive the information light after the light source component scans the object to be scanned.
  • the senor further includes: a power supply module; a photoelectric conversion module, the photoelectric conversion module is electrically connected to the power supply module, the photoelectric conversion module is located on the image side of the lens, and converts the information light emitted by the lens into an electrical signal a signal processing module, the signal processing module is electrically connected to the power supply module, and is used to receive electrical signals and distinguish and transmit the electrical signals corresponding to each light source component to the image acquisition structure.
  • the photoelectric conversion module is arranged on the power module.
  • the signal processing module includes: a digital processing unit, which is used to receive electrical signals and convert the electrical signals into discrete signals, and to calibrate the discrete signals of each light source assembly; interface, each light source The discrete signals of the components are transmitted to the image acquisition structure through different interfaces respectively.
  • the senor further includes a light source control unit, which is electrically connected to the light source components, and the light source control unit controls the light-emitting time of each light source component, so that multiple light source components realize time-sharing light emission.
  • the image scanning system further includes a driving component, which is drivingly connected to the light source component and electrically connected to the light source control unit.
  • the light source control unit controls the driving position and driving power of the driving component to adjust each light source The position of the components and the angle at which the scanned object is illuminated.
  • a scanning method is provided.
  • the above-mentioned image scanning system scans using the scanning method.
  • the scanning method includes: Step S10: acquiring the light source control unit of the image scanning system, and the light source control unit controls multiple Each light source assembly emits light in time intervals to alternately light up and irradiate the scanned object in the scanning cycle; step S20: acquire the photoelectric conversion module of the image scanning system, and the photoelectric conversion module receives the time-division information light transmitted or reflected by the scanned object, and Convert the information light into an electrical signal;
  • step S30 acquire the digital processing unit of the image scanning system, the digital processing unit receives the electrical signal and converts the electrical signal into a discrete signal, and marks the discrete signals of different light source components, and the marked The discrete signal is transmitted to the image acquisition structure of the image scanning system; step S40: obtain the host computer of the image scanning system, the host computer receives the marked discrete signal transmitted by the image acquisition structure, and synthesizes the same marked
  • the image scanning system includes a sensor, an image acquisition structure, a host computer and multiple light source components, and the angles between the multiple light source components and the object to be scanned are different; the multiple light source components are electrically connected to the sensor, and the sensor Control the light-emitting process of multiple light source components; the image acquisition structure is electrically connected to the sensor, and the image acquisition structure is used to receive the signal from the sensor; the upper computer is electrically connected to the image acquisition structure, and the upper computer is used to receive the signal from the image acquisition structure , and display the images scanned by each light source component.
  • multiple light source components are electrically connected to the sensor, so that one sensor can collect scanning information illuminated by multiple light source components, which greatly reduces the volume of the image scanning system and saves the production cost of the image scanning system.
  • one sensor corresponds to multiple light source components, and the image acquisition structure, host computer and sensors are arranged in one-to-one correspondence, which effectively reduces the volume of the image scanning system.
  • FIG. 1 shows a schematic structural diagram of an image scanning system in an optional embodiment of the present application
  • Fig. 2 shows a schematic structural view of the sensor in Fig. 1;
  • Fig. 3 shows a schematic diagram of the time-sharing control of multiple light source assemblies by the sensor in Fig. 1, the generation of image analog signals, and the digital processing of the collected data of each light source assembly by the digital processing unit;
  • Fig. 4 shows a schematic diagram of decomposing and synthesizing image digital signals of multiple light source components with data marks by the image processing unit in the host computer in Fig. 1;
  • FIG. 5 shows a flowchart of the scanning method of the present application.
  • orientation words such as “upper, lower, top, bottom” are generally used for the directions shown in the drawings, or for the parts themselves in the vertical, In terms of vertical or gravitational direction; similarly, for the convenience of understanding and description, “inside and outside” refer to inside and outside relative to the outline of each component itself, but the above orientation words are not used to limit the present application.
  • the present application provides an image scanning system and a scanning method.
  • the image scanning system includes a sensor 30, an image acquisition structure 40, a host computer 50 and a plurality of light source components, the angles between the multiple light source components and the scanned object 20 are different; the multiple light source components are all It is electrically connected to the sensor 30, and the sensor 30 controls the light-emitting process of multiple light source components; the image acquisition structure 40 is electrically connected to the sensor 30, and the image acquisition structure 40 is used to receive the signal transmitted by the sensor 30; the host computer 50 is electrically connected to the image acquisition structure 40 connected, the host computer 50 is used to receive the signal from the image acquisition structure 40, and display the scanned image of each light source assembly.
  • multiple light source components are electrically connected to the sensor 30, so that one sensor 30 can collect scanning information illuminated by multiple light source components, which greatly reduces the volume of the image scanning system and saves the production cost of the image scanning system.
  • one sensor 30 corresponds to multiple light source components, and the image acquisition structure 40, the host computer 50 and the sensors 30 are set in one-to-one correspondence, which effectively reduces the volume of the image scanning system.
  • the time-sharing control of the light source components by the sensor 30 enables multiple light source components to emit light at different times, so as to irradiate the scanned object 20 at different times, so that when the sensor 30 collects scanning information All the information collected is the scanning information illuminated by a single light source component, so that the image acquisition structure 40 and the host computer 50 can generate scanned images under the individual light source components after the image scanning system completes the scan, so as to clearly extract the defect features of defective products , to ensure multi-angle imaging.
  • the sensor 30 can collect the transmitted light of the scanned object 20 as scanning information, and can also collect the reflected light of the scanned object 20 As scanning information, the diversity of scanning information is greatly increased.
  • the scanned object 20 reflects light into the sensor 30, and at this time the sensor 30 collects the reflected light of the scanned object 20 .
  • the scanned object 20 projects light into the sensor, and what the sensor 30 collects is the transmitted light of the scanned object 20. Light. In this way, multi-angle analysis can be performed on the scanned object 20 .
  • the irradiation direction of the light source assembly located on the side of the scanned object 20 close to the sensor 30 is set obliquely relative to the scanned object 20 . If the irradiation direction of the light source assembly on the side of the scanned object 20 close to the sensor 30 is perpendicular to the scanned object 20, the reflected light is less and the collected information is incomplete. However, the oblique setting allows a part of the light to be reflected by the scanning object 20, and then the reflected light will enter the sensor 30, which can ensure that the collected information is relatively complete.
  • the illumination direction of the light source assembly located on the side of the scanned object 20 away from the sensor 30 is perpendicular to the scanned object 20 . Since the light source assembly located on the side of the scanned object 20 away from the sensor 30 is collected by the sensor 30 as transmitted light, the irradiation direction of the light source assembly located on the side of the scanned object 20 away from the sensor 30 is set perpendicular to the scanned object 20 , can ensure the maximum efficiency of the transmitted light, and at the same time, the light source assembly located on the side of the scanned object 20 away from the sensor 30 is directly opposite to the sensor 30, so as to ensure that the transmitted light directly enters the sensor 30, and ensures the information received by the sensor 30 integrity.
  • the irradiation direction of the light source assembly positioned at the side of the scanned object 20 away from the sensor 30 is perpendicular to the scanned object 20, which will not affect the scanned object 20.
  • the sensor 30 has an effect.
  • the sensor 30 is located on one side of the scanned object 20, the sensor 30 includes a frame body 31 and a lens 32, the frame body 31 has an accommodation space and a light inlet communicating with the accommodation space; the lens 32 is arranged on Inside the frame 31 , the object side of the lens 32 faces the light inlet to receive the information light after the light source assembly scans the scanned object 20 .
  • the setting of the frame body 31 can provide support for the lens 32 to ensure that the lens 32 can be stably accommodated in the frame body 31 .
  • the arrangement of the lens 32 can transmit the scanned image and at the same time image the image on the subsequent structure.
  • the sensor 30 also includes a power supply module 33, a photoelectric conversion module 34 and a signal processing module 35, the photoelectric conversion module 34 is electrically connected to the power supply module 33, the photoelectric conversion module 34 is located at the image side of the lens 32, and will pass through the lens The information light emitted by 32 is converted into an electrical signal; the signal processing module 35 is electrically connected to the power module 33 for receiving the electrical signal and separately transmitting the electrical signal corresponding to each light source component to the image acquisition structure 40 .
  • the power supply module 33 supplies power to the photoelectric conversion module 34 and the signal processing module 35 to ensure stable operation of the photoelectric conversion module 34 and the signal processing module 35 .
  • the photoelectric conversion module 34 can receive the light emitted by the lens 32 and convert the optical signal into a continuous electrical signal.
  • the signal processing module 35 calibrates the light that belongs to the same light source assembly, and then transmits the calibrated signal to the image acquisition structure 40, and the image acquisition structure 40 transmits the signal to the host computer 50, and the host computer 50 performs a process on the signals with the same label. Synthesized to form scanning information under the irradiation of the corresponding light source components.
  • the photoelectric conversion module 34 is disposed on the power module 33 .
  • the power module 33 is a circuit board.
  • the photoelectric conversion module 34 is arranged on the power module 33 to ensure the stability of the position of the photoelectric conversion module 34 and ensure that the power module 33 supplies power to the photoelectric conversion module 34 stably.
  • the digital processing unit 351, the interface 352, and the light source control unit 36 are arranged on the circuit board.
  • the signal processing module 35 includes a digital processing unit 351 and an interface 352, and the digital processing unit 351 is used to receive electrical signals and convert the electrical signals into discrete signals, and to calibrate the discrete signals of each light source assembly; each light source The discrete signals of the components are respectively transmitted to the image acquisition structure 40 via different interfaces 352 .
  • the digital processing unit 351 can convert the continuous electrical signal generated by the photoelectric conversion module 34 into a discrete signal, and at the same time calibrate the discrete signal, calibrate the same mark for the discrete signal of the same light source component, and calibrate different marks for the discrete signal of different light source components .
  • the sensor 30 also includes a light source control unit 36 , which is electrically connected to the light source components.
  • the light source control unit 36 controls the lighting time of each light source component, so that multiple light source components realize time-sharing lighting.
  • the setting of the light source control unit 36 can realize the control of the light source components, to control the light-emitting time of each light source component, so that multiple light source components emit light in sequence, and realize time-sharing control.
  • the discrete signal is calibrated to distinguish the signal corresponding to each light source component.
  • the image scanning system further includes a driving assembly, which is drivingly connected to the light source assembly and electrically connected to the light source control unit 36.
  • the light source control unit 36 controls the driving position and driving power of the driving assembly to adjust the position of each light source assembly and the angle at which the scanned object 20 is irradiated.
  • the driving component is connected with the light source component to drive the light source component to move, thereby changing the position and irradiation angle of the light source component.
  • the light source control unit 36 is electrically connected with the driving components to control the driving power and working time of the driving components, and then adjust the position of each light source component and the angle at which the scanned object 20 is irradiated.
  • the above-mentioned image scanning system uses a scanning method to scan.
  • the scanning method includes: Step S10: Acquire the light source control unit 36 of the image scanning system, and the light source control unit 36 controls a plurality of light source components of the image scanning system to emit light in time intervals to In the scanning cycle, the object 20 to be scanned is alternately illuminated and irradiated; step S20: obtain the photoelectric conversion module 34 of the image scanning system, the photoelectric conversion module 34 receives the information light transmitted or reflected by the scanned object 20, and transmits the information light Convert into electrical signals; step S30: acquire the digital processing unit 351 of the image scanning system, the digital processing unit 351 receives the electrical signals and converts the electrical signals into discrete signals, and marks the discrete signals of different light source components, and the marked discrete The signal is transmitted to the image acquisition structure 40 of the image scanning system; step S40: obtain the upper computer 50 of the image scanning system, the upper computer 50 receives the marked discrete signal transmitted by the image
  • the light source control unit 36 is electrically connected to a plurality of light source components, and controls the plurality of light source components to illuminate the object 20 to be scanned at different angles and directions in time-sharing.
  • Time-division enters the sensor 30, and after passing through the lens 32, the photoelectric conversion module 34 in the sensor 30 converts the received optical signals of different light source components into analog electrical signals in time-division.
  • the digital processing unit 351 of the sensor 30 converts the continuous analog electrical signal into a discrete digital signal through analog-to-digital conversion, calibrates the digital signals of different light source components, and adds data marks.
  • the image digital signal of each light source assembly calibrated by the digital processing unit 351 is transmitted to the image acquisition structure 40 through the specific interface 352 via the cable 70 .
  • the image acquisition structure 40 performs buffering and image preprocessing on the received image digital signal, it is uploaded to the host computer 50, and the image processing unit 51 in the host computer 50 decomposes and synthesizes various light source data with data marks, and then Perform result discrimination output.
  • the light source control unit 36 of the sensor 30 performs time-sharing control on a plurality of light source assemblies as shown in FIG. 3 .
  • T1, T2, T3 (the first scanning period) T4, T5, T6 (the second scanning period) in the line scanning period line pulse are intercepted for illustration.
  • the time-sharing control pulse of the first light source assembly 11 is 211_LED_ON
  • the time-sharing control pulse of the second light source assembly 12 is 212_LED_ON
  • the time-sharing control pulse of the third light source assembly 13 is 213_LED_ON
  • the time-sharing control pulses 211_LED_ON, 212_LED_ON, 213_LED_ON time-sharing controls the light source components to turn on alternately in the row cycle T1, T2, T3, T4, T5, T6.
  • the lighting time of the first light source component 11 in the T1 row cycle is t1, and in the T4 row cycle
  • the lighting time is t4;
  • the lighting time of the second light source assembly 12 in the T2 row cycle is t2, and the lighting time in the T5 row cycle is t5;
  • the lighting time of the third light source assembly 13 in the T3 row cycle is t6; as shown in Figure 1, the first light source assembly 11 and the second light source assembly 12 reflect and illuminate the object from the front at different angles, and the third light source assembly
  • the light source assembly 13 illuminates the detected object through transmission. In this way, different angles, different directions, and different exposure brightnesses of the object 20 to be scanned are illuminated with different light rays.
  • the image light signals generated after the plurality of light source components irradiate the detected object sequentially are sequentially converted into image analog signals 211_A, 212_A, 213_A by the photoelectric conversion module 34 as shown in FIG. 3 .
  • the optical signal of the first light source assembly 11 is converted into the image analog signal A1 within the time t1
  • the optical signal of the second light source assembly 12 is converted into the image analog signal A2 within the time t2
  • the optical signal of the third light source assembly 13 is converted into the image analog signal A2 within the time t3.
  • the optical signal of the first light source assembly 11 is converted into an image analog signal A4 within t4
  • the optical signal of the second light source assembly 12 within t5 is converted into an image analog signal A5.
  • the optical signal of the third light source assembly 13 is converted into an image analog signal A6 within the time t6, thus realizing the time-division conversion of the optical signals of multiple light source assemblies into an image analog signal.
  • the digital processing unit 351 of the sensor 30 performs analog-to-digital conversion on the image analog signals 211_A, 212_A, and 213_A of each light source assembly, converts the continuous analog electrical signal into a discrete digital signal, and performs digital conversion on the digital signals of different light source assemblies. Calibrate, add data flags, and generate digital signals 211_D, 212_D, and 213_D. Data flag 1 is added to the image digital signal of the first light source assembly 11, data flag 2 is added to the image digital signal of the second light source assembly 12, and data flag 3 is added to the image digital signal of the third light source assembly 13.
  • the image digital signals generated by the first light source assembly 11 during the lighting time of t1 and t4 are respectively D1 and D4, and the first data flags of D1 and D4 are both 1.
  • the image digital signals generated by the second light source assembly 12 during the lighting time of t2 and t5 are respectively D2 and D5, and the first bit data flags of D2 and D5 are both 2.
  • the image digital signals generated by the third light source assembly 13 during the lighting time of t3 and t6 are respectively D3 and D6, and the first data flags of D3 and D6 are both 3.
  • the sensor 30 transmits the multi-light source component image digital signals 211_D, 212_D, 213_D generated by the digital processing unit 351 to the image acquisition structure 40 through the interface 352 via the cable 70 .
  • the number of the cable 70 and the image acquisition structure 40 is one respectively.
  • the image acquisition structure 40 uploads the received image digital signals 211_D, 212_D, and 213_D of the multi-light source components to the host computer 50 after buffering and image preprocessing, and the image processing unit 51 in the host computer 50 processes the belt as shown in FIG.
  • the data of various light source components with data marks are decomposed and synthesized.
  • the data flags of D1, D4...Dn in the image digital data 211_D of the first light source assembly 11 are all 1, and the data flags of D2, D5...Dn+1 in the image digital data 212_D of the second light source assembly 12 Both are 2, and the data marks of D3, D6...Dn+2 in the image digital data 213_D of the third light source assembly 13 are all 3, and the data with the data mark 1 is synthesized into one image by the host computer 50
  • the host computer separately discriminates and displays the results of the entire image data generated by each light source component, thus completing an image scanning system for industrial inspection in this embodiment to perform different angles, different directions, and different exposures of the detected object with different light rays.
  • This application overcomes the problem that multiple industrial cameras, multiple lenses, multiple image acquisition cards and multiple host computers need to be configured when the existing image scanning system for industrial inspection scans multiple angles and multiple light source components, and reduces industrial
  • the cost and volume of the image scanning system for inspection can expand the application field of the image scanning system for industrial inspection.
  • the aforementioned sensor 30 is a contact image sensor.
  • This application only solves the problem that multiple industrial cameras, multiple lenses, multiple image acquisition cards and multiple host computers are required when the image scanning system for industrial inspection scans multiple light sources.
  • the increase in the number of interfaces, the number of acquisition cards, and the number of host computers caused by the increase in the efficiency is not within the scope of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

本申请提供了一种图像扫描系统和扫描方法。图像扫描系统包括:多个光源组件,多个光源组件与被扫描物之间的角度不同;传感器,多个光源组件均与传感器电连接,传感器控制多个光源组件的发光过程;图像采集结构,图像采集结构与传感器电连接,图像采集结构用于接收传感器传出的信号;上位机,上位机与图像采集结构电连接,上位机用于接收图像采集结构传出的信号,并对各个光源组件扫描的图像进行显示。本申请解决了现有技术中图像扫描系统存在体积大的问题。

Description

图像扫描系统和扫描方法 技术领域
本申请涉及传感设备技术领域,具体而言,涉及一种图像扫描系统和扫描方法。
背景技术
目前的工业检测用图像扫描系统主要由以下部分组成,由光源、透镜、工业摄像机、图像采集卡、上位机组成,光源发出的光照射到被检测物上,被检测物上产生的反射光或者透过被检测物的透射光通过透镜进入工业摄像机内,工业摄像机将接收到的光信号转换成电信号,并通过模数转换将连续模拟电信号转换成离散数字信号,经过数字处理通过特定的接口,经由电缆将图像信号传送给图像采集卡,采集卡对接收到的图像信号进行缓存和图像预处理后,上传至上位机,由上位机进行图像处理及判别结果输出。
在实际扫描应用中,对于被检测物的瑕疵点需要用不同光线下进行不同角度、不同方向、不同曝光亮度的打光方式,充分提取出不良品的瑕疵特征,让成像更加清晰,更加明显。但使用现有的工业检测用图像扫描系统进行多角度或者多光源扫描时,每个角度或者每个光源都分别配置一台工业摄像机,每个工业摄像机将采集到的图像信号传送给各自相连的图像采集卡,所有图像采集卡采集到的图像上传至上位机,由上位机进行图像处理及判别结果输出。而这种多个透镜和多个工业摄像机的结构成本高、体积大。
也就是说,现有技术中图像扫描系统存在体积大的问题。
申请内容
本申请的主要目的在于提供一种图像扫描系统和扫描方法,以解决现有技术中图像扫描系统存在体积大的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种图像扫描系统,包括:多个光源组件,多个光源组件与被扫描物之间的角度不同;传感器,多个光源组件均与传感器电连接,传感器控制多个光源组件的发光过程;图像采集结构,图像采集结构与传感器电连接,图像采集结构用于接收传感器传出的信号;上位机,上位机与图像采集结构电连接,上位机用于接收图像采集结构传出的信号,并对各个光源组件扫描的图像进行显示。
在本申请的一个实施例中,多个光源组件中至少两个光源组件位于被扫描物的两侧。
在本申请的一个实施例中,位于被扫描物靠近传感器一侧的光源组件的照射方向相对于被扫描物倾斜设置;位于被扫描物远离传感器一侧的光源组件的照射方向与被扫描物垂直。
在本申请的一个实施例中,传感器位于被扫描物的一侧,传感器包括:框体,框体具有容纳空间和与容纳空间连通的进光口;透镜,透镜设置在框体内,透镜的物侧面朝向进光口以接收光源组件扫描被扫描物后的信息光。
在本申请的一个实施例中,传感器还包括:电源模块;光电转换模块,光电转换模块与电源模块电连接,光电转换模块位于透镜的像侧,并将经透镜射出的信息光转换成电信号;信号处理模块,信号处理模块与电源模块电连接,用于接收电信号并将各个光源组件对应的电信号区分开传输给图像采集结构。
在本申请的一个实施例中,光电转换模块设置在电源模块上。
在本申请的一个实施例中,信号处理模块包括:数字处理单元,数字处理单元用于接收电信号并将电信号转换成离散信号,并对各个光源组件的离散信号进行标定;接口,各个光源组件的离散信号分别通过不同的接口传输给图像采集结构。
在本申请的一个实施例中,传感器还包括光源控制单元,光源控制单元与光源组件电连接,光源控制单元控制各个光源组件的发光时间,以使得多个光源组件实现分时发光。
在本申请的一个实施例中,图像扫描系统还包括驱动组件,驱动组件与光源组件驱动连接,且与光源控制单元电连接,光源控制单元控制驱动组件的驱动位置和驱动功率,以调整各个光源组件的位置和照射被扫描物的角度。
根据本申请的另一方面,提供了一种扫描方法,上述的图像扫描系统采用扫描方法扫描,扫描方法包括:步骤S10:获取图像扫描系统的光源控制单元,光源控制单元控制图像扫描系统的多个光源组件分时段发光以在扫描周期内依次交替点亮照射被扫描物;步骤S20:获取图像扫描系统的光电转换模块,光电转换模块接收被扫描物透射或反射的分时段的信息光,并将信息光转换成电信号;步骤S30:获取图像扫描系统的数字处理单元,数字处理单元接收电信号并将电信号转换成离散信号,并对不同光源组件的离散信号进行标记,将被标记的离散信号传输给图像扫描系统的图像采集结构;步骤S40:获取图像扫描系统的上位机,上位机接收图像采集结构传输来的被标记的离散信号,并将相同具有标记的离散信号合成为扫描图像,以形成各个光源组件的扫描图像。
应用本申请的技术方案,图像扫描系统包括传感器、图像采集结构、上位机和多个光源组件,多个光源组件与被扫描物之间的角度不同;多个光源组件均与传感器电连接,传感器控制多个光源组件的发光过程;图像采集结构与传感器电连接,图像采集结构用于接收传感器传出的信号;上位机与图像采集结构电连接,上位机用于接收图像采集结构传出的信号,并对各个光源组件扫描的图像进行显示。
通过将多个光源组件与被扫描物之间的角度设置成不同,能够实现被扫描物的瑕疵点在不同光线下进行不同角度、不同方向、不同曝光亮度的多种情况下的扫描,以充分提取不良品的瑕疵特征,让成像更加清晰,更加明显。而多个光源组件均与传感器电连接,能够实现一个传感器能够采集多个光源组件照射下的扫描信息,大大减少了图像扫描系统的体积,节 约了图像扫描系统的制作成本。在本申请中一个传感器对应多个光源组件,且图像采集结构、上位机与传感器一一对应设置,有效减少了图像扫描系统的体积。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请的一个可选实施例的图像扫描系统的结构示意图;
图2示出了图1中传感器的结构示意图;
图3示出了图1中传感器对多个光源组件进行分时控制、图像模拟信号生成及数字处理单元对采集到的各光源组件的数据进行数字处理的示意图;
图4示出了图1中上位机内图像处理单元对带有数据标志的多个光源组件的图像数字信号进行分解合成的示意图;
图5示出了本申请的扫描方法的流程图。
其中,上述附图包括以下附图标记:
11、第一个光源组件;12、第二个光源组件;13、第三个光源组件;20、被扫描物;30、传感器;31、框体;32、透镜;33、电源模块;34、光电转换模块;35、信号处理模块;351、数字处理单元;352、接口;36、光源控制单元;40、图像采集结构;50、上位机;51、图像处理单元;60、电缆。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本申请中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本申请。
为了解决现有技术中图像扫描系统存在体积大的问题,本申请提供了一种图像扫描系统和扫描方法。
如图1至图5所示,图像扫描系统包括传感器30、图像采集结构40、上位机50和多个光源组件,多个光源组件与被扫描物20之间的角度不同;多个光源组件均与传感器30电连 接,传感器30控制多个光源组件的发光过程;图像采集结构40与传感器30电连接,图像采集结构40用于接收传感器30传出的信号;上位机50与图像采集结构40电连接,上位机50用于接收图像采集结构40传出的信号,并对各个光源组件扫描的图像进行显示。
通过将多个光源组件与被扫描物20之间的角度设置成不同的,能够实现被扫描物20的瑕疵点在不同光线下进行不同角度、不同方向、不同曝光亮度的多种情况下的扫描,以充分提取不良品的瑕疵特征,让成像更加清晰,更加明显。而多个光源组件均与传感器30电连接,能够实现一个传感器30能够采集多个光源组件照射下的扫描信息,大大减少了图像扫描系统的体积,节约了图像扫描系统的制作成本。在本申请中一个传感器30对应多个光源组件,且图像采集结构40、上位机50与传感器30一一对应设置,有效减少了图像扫描系统的体积。
需要说明的是,通过传感器30对光源组件的分时控制,以使得多个光源组件在不同的时间发光,以在不同的时间对被扫描物20进行照射,以使得传感器30在采集扫描信息时采集的都是单个光源组件照射下的扫描信息,以便于图像扫描系统完成扫描后图像采集结构40、上位机50生成各个光源组件单独照射下的扫描图像,以便于清楚的提取不良品的瑕疵特征,保证多角度成像。
如图1所示,多个光源组件中至少两个光源组件位于被扫描物20的两侧。通过将多个光源组件中的至少两个分别设置在被扫描物20的两侧,使得传感器30能够采集到被扫描物20的透射光作为扫描信息,也可以采集到被扫描物20的反射光作为扫描信息,大大增加了扫描信息的多样性。
在图1所示的具体实施例中,位于传感器30与被扫描物20之间的光源组件在照射到被扫描物20上后,被扫描物20将光线反射到传感器30中,而此时传感器30采集到的是被扫描物20的反射光。位于被扫描物20远离传感器30的一侧的光源组件在照射到被扫描物20上后,被扫描物20将光线投射到传感器中,而此时传感器30采集到的是被扫描物20的透射光。这样就能够对被扫描物20进行多角度分析。
如图1所示,位于被扫描物20靠近传感器30一侧的光源组件的照射方向相对于被扫描物20倾斜设置。若位于被扫描物20靠近传感器30一侧的光源组件的照射方向相对于被扫描物20垂直的话,被反射的光比较少,采集的信息不完全。而采用倾斜设置使得一部分光能够被扫描物20反射,然后被反射的光会进入到传感器30中,能够保证采集的信息比较完整。
如图1所示,位于被扫描物20远离传感器30一侧的光源组件的照射方向与被扫描物20垂直。由于位于被扫描物20远离传感器30一侧的光源组件被传感器30采集的是透射光,而将位于被扫描物20远离传感器30一侧的光源组件的照射方向与被扫描物20设置呈垂直的,能够保证最大效率的透射光,而同时位于被扫描物20远离传感器30一侧的光源组件与传感器30正对设置,以保证透射光直接射入到传感器30中,保证了传感器30接收信息的完整性。
由于位于被扫描物20远离传感器30一侧的光源组件不会遮挡传感器30接收光线,所以将位于被扫描物20远离传感器30一侧的光源组件的照射方向与被扫描物20垂直,不会对传感器30产生影响。
如图1和图2所示,传感器30位于被扫描物20的一侧,传感器30包括框体31和透镜32,框体31具有容纳空间和与容纳空间连通的进光口;透镜32设置在框体31内,透镜32的物侧面朝向进光口以接收光源组件扫描被扫描物20后的信息光。框体31的设置能够为透镜32提供支撑,保证透镜32能够稳定容置在框体31内。而透镜32的设置能够将扫描的图像进行传输,同时将图像成像到后续的结构上。
如图2所示,传感器30还包括电源模块33、光电转换模块34和信号处理模块35,光电转换模块34与电源模块33电连接,光电转换模块34位于透镜32的像侧,并将经透镜32射出的信息光转换成电信号;信号处理模块35与电源模块33电连接,用于接收电信号并将各个光源组件对应的电信号分开传输给图像采集结构40。电源模块33为光电转换模块34、信号处理模块35供电,以保证光电转换模块34、信号处理模块35稳定工作。而光电转换模块34能够将透镜32射出的光接收,并将光信号转换成连续的电信号。信号处理模块35将属于同一光源组件发出的光进行标定,然后将标定的信号传出给图像采集结构40,图像采集结构40将信号传输给上位机50,上位机50对具有相同标记的信号进行合成,形成对应的光源组件照射下的扫描信息。
具体的,光电转换模块34设置在电源模块33上。电源模块33是电路板,将光电转换模块34设置在电源模块33上,能够保证光电转换模块34位置的稳定性,同时保证电源模块33稳定为光电转换模块34供电。
具体的,数字处理单元351、接口352、光源控制单元36设置在电路板上。
如图2所示,信号处理模块35包括数字处理单元351和接口352,数字处理单元351用于接收电信号并将电信号转换成离散信号,并对各个光源组件的离散信号进行标定;各个光源组件的离散信号分别通过不同的接口352传输给图像采集结构40。数字处理单元351能够将光电转换模块34生成的连续的电信号转换成离散信号,同时对离散信号进行标定,对于同一光源组件的离散信号标定同一标记,而不同光源组件的离散信号标定不同的标记。
如图2所示,传感器30还包括光源控制单元36,光源控制单元36与光源组件电连接,光源控制单元36控制各个光源组件的发光时间,以使得多个光源组件实现分时发光。光源控制单元36的设置能够光源组件实现控制,以控制各个光源组件的发光时间,以使得多个光源组件顺次发光,实现分时控制,而通过对光源组件发光的分时控制,可以对各个离散信号进行标定,以区分各个光源组件对应的信号。
可选地,图像扫描系统还包括驱动组件,驱动组件与光源组件驱动连接,且与光源控制单元36电连接,光源控制单元36控制驱动组件的驱动位置和驱动功率,以调整各个光源组件的位置和照射被扫描物20的角度。驱动组件与光源组件连接,以驱动光源组件运动,进而改变光源组件的位置和照射角度。而光源控制单元36与驱动组件电连接,以控制驱动组件的驱动功率和工作时间,进而调整各个光源组件的位置和照射被扫描物20的角度。
上述的图像扫描系统采用扫描方法扫描,如图5所示,扫描方法包括:步骤S10:获取图像扫描系统的光源控制单元36,光源控制单元36控制图像扫描系统的多个光源组件分时段发 光以在扫描周期内依次交替点亮照射被扫描物20;步骤S20:获取图像扫描系统的光电转换模块34,光电转换模块34接收被扫描物20透射或反射的分时段的信息光,并将信息光转换成电信号;步骤S30:获取图像扫描系统的数字处理单元351,数字处理单元351接收电信号并将电信号转换成离散信号,并对不同光源组件的离散信号进行标记,将被标记的离散信号传输给图像扫描系统的图像采集结构40;步骤S40:获取图像扫描系统的上位机50,上位机50接收图像采集结构40传输来的被标记的离散信号,并将相同具有标记的离散信号合成为扫描图像,以形成各个光源组件的扫描图像。
在图1所示的具体实施例中,光源组件为三个、一个传感器30、一个电缆60、一个图像采集结构40和一个上位机50组成。光源控制单元36与多个光源组件电气相连,控制多个光源组件呈不同角度、不同方向对被扫描物20进行分时打光,不同角度不同方向的光经过被扫描物20反射和透射后,分时进入到传感器30,经过透镜32后,传感器30内的光电转换模块34将接收到的不同光源组件的光信号分时转换成模拟电信号。传感器30的数字处理单元351通过模数转换将连续模拟电信号转换成离散数字信号,并对不同光源组件的数字信号进行标定,追加数据标志。经过数字处理单元351进行标定后的每种光源组件的图像数字信号通过特定的接口352,经由电缆70传送给图像采集结构40。图像采集结构40对接收到的图像数字信号进行缓存和图像预处理后,上传至上位机50,由上位机50内图像处理单元51对带有数据标志的各种光源数据进行分解合成后,再进行结果判别输出。
对本申请进行详细说明,传感器30的光源控制单元36对多个光源组件如图3所示进行分时控制。为了简化说明,仅截取行扫描周期line pulse中的两个行扫描周期T1、T2、T3(第一个扫描周期)T4、T5、T6(第二个扫描周期)进行说明。第一个光源组件11的分时控制脉冲为211_LED_ON,第二个光源组件12的分时控制脉冲为212_LED_ON,第三个光源组件13的分时控制脉冲为213_LED_ON,分时控制脉冲211_LED_ON、212_LED_ON、213_LED_ON分时控制光源组件在行周期T1、T2、T3、T4、T5、T6内依次交替点亮,第一个光源组件11在T1行周期内的点亮时间为t1,在T4行周期内的点亮时间为t4;第二个光源组件12在T2行周期内的点亮时间为t2,在T5行周期内的点亮时间为t5;第三个光源组件13在T3行周期内的点亮时间为t3,在T6行周期内的点亮时间为t6;如图1所示第一个光源组件11和第二个光源组件12呈不同角度对被检测物进行正面反射打光,第三个光源组件13对被检测物进行对面透射打光。从而实现了对被扫描物20用不同光线进行不同角度、不同方向、不同曝光亮度的打光方式。
多个光源组件依次照射到被检测物后的产生的图像光信号,如图3所示由光电转换模块34依次转换成图像模拟信号211_A、212_A、213_A。第一个光源组件11在t1时间内的光信号转换成图像模拟信号A1,第二个光源组件12在t2时间内的光信号转换成图像模拟信号A2,第三个光源组件13在t3时间内的光信号转换成图像模拟信号A3,第一个光源组件11在t4时间内的光信号转换成图像模拟信号A4,第二个光源组件12在t5时间内的光信号转换成图像模拟信号A5,第三个光源组件13在t6时间内的光信号转换成图像模拟信号A6,如此实现了多个光源组件的光信号分时转换成了图像模拟信号。
如图3所示传感器30的数字处理单元351对各光源组件的图像模拟信号211_A、212_A、213_A进行模数转换,将连续模拟电信号转换成离散数字信号,并对不同光源组件的数字信号进行标定,追加数据标志,生成数字信号211_D、212_D、213_D。对第一个光源组件11的图像数字信号追加数据标志1,对第二个光源组件12的图像数字信号追加数据标志2,对第三个光源组件13的图像数字信号追加数据标志3。第一个光源组件11在t1和t4照亮时间内产生的图像数字信号分别为D1和D4,D1和D4的第一位数据标志都为1。第二个光源组件12在t2和t5照亮时间内产生的图像数字信号分别为D2和D5,D2和D5的第一位数据标志都为2。第三个光源组件13在t3和t6照亮时间内产生的图像数字信号分别为D3和D6,D3和D6的第一位数据标志都为3。传感器30将数字处理单元351生成的多光源组件图像数字信号211_D、212_D、213_D通过接口352,经由电缆70传送给图像采集结构40。电缆70和图像采集结构40的数量分别为1个。
图像采集结构40将接收到的多光源组件图像数字信号211_D、212_D、213_D,进行缓存和图像预处理后,上传至上位机50,由上位机50内图像处理单元51按照图4所示对带有数据标志的各种光源组件数据进行分解合成。第一个光源组件11的图像数字数据211_D中的D1、D4……Dn的数据标志都为1,第二个光源组件12的图像数字数据212_D中的D2、D5……Dn+1的数据标志都为2,第三个光源组件13的图像数字数据213_D中的D3、D6……Dn+2的数据标志都为3,由上位机50将带有数据标志1的数据合成1幅图像为第一个光源组件11的图像;将带有数据标志2的数据合成1幅图像为第二个光源组件12的图像;将带有数据标志3的数据合成1幅图像为第三个光源组件13的图像。上位机对各光源组件生成的整幅图像数据进行分别判别和结果显示,从而完成了本实施例中一种工业检测用图像扫描系统对被检测物用不同光线进行不同角度、不同方向、不同曝光亮度打光方式的图像扫描与判别。
本申请克服了现有工业检测用图像扫描系统进行多个角度和多种光源组件扫描时,需要配置多个工业摄像机、多个透镜和多个图像采集卡及多个上位机的问题,降低工业检测用的图像扫描系统的成本和体积,拓广工业检测用的图像扫描系统的使用领域。
需要说明的是,上述的传感器30为接触式图像传感器。
本申请只解决工业检测用图像扫描系统进行多种光源扫描时需要多个工业相机、多个透镜和多个图像采集卡及多个上位机的问题,对于因为被检测物扫描长度增加和扫描分辨率提高而引起的接口数量、采集卡数量和上位机数量增加问题,不在本申请的解决范围之内。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种图像扫描系统,其特征在于,包括:
    多个光源组件,多个所述光源组件与被扫描物(20)之间的角度不同;
    传感器(30),多个所述光源组件均与所述传感器(30)电连接,所述传感器(30)控制多个所述光源组件的发光过程;
    图像采集结构(40),所述图像采集结构(40)与所述传感器(30)通过电缆(60)连接,所述图像采集结构(40)用于接收所述传感器(30)传出的信号;
    上位机(50),所述上位机(50)与所述图像采集结构(40)电连接,所述上位机(50)用于接收所述图像采集结构(40)传出的信号,并对各个所述光源组件扫描的图像进行显示。
  2. 根据权利要求1所述的图像扫描系统,其特征在于,多个所述光源组件中至少两个所述光源组件位于所述被扫描物(20)的两侧。
  3. 根据权利要求2所述的图像扫描系统,其特征在于,
    位于所述被扫描物(20)靠近所述传感器(30)一侧的所述光源组件的照射方向相对于所述被扫描物(20)倾斜设置;
    位于所述被扫描物(20)远离所述传感器(30)一侧的所述光源组件的照射方向与所述被扫描物(20)垂直。
  4. 根据权利要求1所述的图像扫描系统,其特征在于,所述传感器(30)位于所述被扫描物(20)的一侧,所述传感器(30)包括:
    框体(31),所述框体(31)具有容纳空间和与所述容纳空间连通的进光口;
    透镜(32),所述透镜(32)设置在所述框体(31)内,所述透镜(32)的物侧面朝向所述进光口以接收所述光源组件扫描所述被扫描物(20)后的信息光。
  5. 根据权利要求4所述的图像扫描系统,其特征在于,所述传感器(30)还包括:
    电源模块(33);
    光电转换模块(34),所述光电转换模块(34)与所述电源模块(33)电连接,所述光电转换模块(34)位于所述透镜(32)的像侧,并将经所述透镜(32)射出的信息光转换成电信号;
    信号处理模块(35),所述信号处理模块(35)与所述电源模块(33)电连接,用于接收所述电信号并将各个所述光源组件对应的电信号区分开传输给所述图像采集结构(40)。
  6. 根据权利要求5所述的图像扫描系统,其特征在于,所述光电转换模块(34)设置在所述电源模块(33)上。
  7. 根据权利要求5所述的图像扫描系统,其特征在于,所述信号处理模块(35)包括:
    数字处理单元(351),所述数字处理单元(351)用于接收所述电信号并将所述电信号转换成离散信号,并对各个所述光源组件的离散信号进行标定;
    接口(352),各个所述光源组件的离散信号分别通过不同的所述接口(352)传输给所述图像采集结构(40)。
  8. 根据权利要求5所述的图像扫描系统,其特征在于,所述传感器(30)还包括光源控制单元(36),所述光源控制单元(36)与所述光源组件电连接,所述光源控制单元(36)控制各个所述光源组件的发光时间,以使得多个所述光源组件实现分时发光。
  9. 根据权利要求8所述的图像扫描系统,其特征在于,所述图像扫描系统还包括驱动组件,所述驱动组件与所述光源组件驱动连接,且与所述光源控制单元(36)电连接,所述光源控制单元(36)控制所述驱动组件的驱动位置和驱动功率,以调整各个所述光源组件的位置和照射所述被扫描物(20)的角度。
  10. 一种扫描方法,其特征在于,权利要求1至9中任一项所述的图像扫描系统采用所述扫描方法扫描,所述扫描方法包括:
    步骤S10:获取所述图像扫描系统的光源控制单元(36),所述光源控制单元(36)控制所述图像扫描系统的多个光源组件分时段发光以在扫描周期内依次交替点亮照射被扫描物(20);
    步骤S20:获取所述图像扫描系统的光电转换模块(34),所述光电转换模块(34)接收所述被扫描物(20)透射或反射的分时段的信息光,并将所述信息光转换成电信号;
    步骤S30:获取所述图像扫描系统的数字处理单元(351),所述数字处理单元(351)接收所述电信号并将所述电信号转换成离散信号,并对不同光源组件的所述离散信号进行标记,将被标记的所述离散信号传输给所述图像扫描系统的图像采集结构(40);
    步骤S40:获取所述图像扫描系统的上位机(50),所述上位机(50)接收所述图像采集结构(40)传输来的被标记的所述离散信号,并将相同具有标记的所述离散信号合成为扫描图像,以形成各个所述光源组件的扫描图像。
PCT/CN2022/095049 2021-11-24 2022-05-25 图像扫描系统和扫描方法 WO2023092970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111408936.4 2021-11-24
CN202111408936.4A CN113973159A (zh) 2021-11-24 2021-11-24 图像扫描系统和扫描方法

Publications (1)

Publication Number Publication Date
WO2023092970A1 true WO2023092970A1 (zh) 2023-06-01

Family

ID=79590264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095049 WO2023092970A1 (zh) 2021-11-24 2022-05-25 图像扫描系统和扫描方法

Country Status (2)

Country Link
CN (1) CN113973159A (zh)
WO (1) WO2023092970A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973159A (zh) * 2021-11-24 2022-01-25 威海华菱光电股份有限公司 图像扫描系统和扫描方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737525A (zh) * 2012-10-18 2015-06-24 三菱电机株式会社 图像传感器及图像传感器装置
CN209764751U (zh) * 2019-04-12 2019-12-10 北京深度奇点科技有限公司 表面缺陷检测系统
CN111007075A (zh) * 2020-01-03 2020-04-14 佛亚智能装备(苏州)有限公司 一种多角度切换光源对发动机精密件表面缺陷的拍摄方法
CN111398300A (zh) * 2020-05-14 2020-07-10 深圳新视智科技术有限公司 玻璃盖板缺陷检测的成像方法
CN213126185U (zh) * 2020-09-30 2021-05-04 威海华菱光电股份有限公司 图像传感器
CN113973159A (zh) * 2021-11-24 2022-01-25 威海华菱光电股份有限公司 图像扫描系统和扫描方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246958B1 (ko) * 2011-05-20 2013-03-25 주식회사 에이치비테크놀러지 멀티라인센서 카메라와 다중조명을 사용한 시편 고속검사장치
CN103884650B (zh) * 2014-03-28 2016-08-24 北京大恒图像视觉有限公司 一种多光源线阵成像系统及方法
CN105628204B (zh) * 2016-03-02 2017-09-15 安徽农业大学 一种自动调节的高光谱成像系统及成像方法
CN108240990A (zh) * 2018-03-22 2018-07-03 深圳市永光神目科技有限公司 一种焊锡缺陷检测系统
CN109670464A (zh) * 2018-12-24 2019-04-23 欣辰卓锐(苏州)智能装备有限公司 一种可自动调节光强度的视觉检测系统
CN216565270U (zh) * 2021-11-24 2022-05-17 威海华菱光电股份有限公司 图像扫描系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737525A (zh) * 2012-10-18 2015-06-24 三菱电机株式会社 图像传感器及图像传感器装置
CN209764751U (zh) * 2019-04-12 2019-12-10 北京深度奇点科技有限公司 表面缺陷检测系统
CN111007075A (zh) * 2020-01-03 2020-04-14 佛亚智能装备(苏州)有限公司 一种多角度切换光源对发动机精密件表面缺陷的拍摄方法
CN111398300A (zh) * 2020-05-14 2020-07-10 深圳新视智科技术有限公司 玻璃盖板缺陷检测的成像方法
CN213126185U (zh) * 2020-09-30 2021-05-04 威海华菱光电股份有限公司 图像传感器
CN113973159A (zh) * 2021-11-24 2022-01-25 威海华菱光电股份有限公司 图像扫描系统和扫描方法

Also Published As

Publication number Publication date
CN113973159A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN216565270U (zh) 图像扫描系统
JP3129245B2 (ja) 撮像装置
ES2669278T3 (es) Procedimiento y dispositivo para el análisis óptico de un PCB
WO2023092970A1 (zh) 图像扫描系统和扫描方法
JP5424659B2 (ja) 被検査体の検査装置
JP2009042089A (ja) 基板外観検査装置
CN109804238A (zh) 光学检查装置
US6987571B2 (en) Sensor head, luminance distribution measurement apparatus having the sensor head, and unevenness inspection/evaluation apparatus
CN106641847A (zh) 一种led多光谱足迹痕迹勘查光源
US5047846A (en) Image processing equipment with light source synchronized to blanking interval of video camera
CN101425282A (zh) 显示装置、显示控制方法和电子设备
CN1688877A (zh) 形成穿透和/或反射图像的高处理量检测系统及其方法
JP7055320B2 (ja) 照明装置
CN212845064U (zh) 一种图纹照明检测系统
TWI579588B (zh) 顯微鏡監控裝置及其系統
CN110017970A (zh) 激光巴条检测系统
CN210119337U (zh) 激光巴条检测系统
CN114390152A (zh) 检测微小凹凸的接触式图像传感器及应用
JP2929701B2 (ja) 表面性状観測装置
KR20120025644A (ko) Led어레이 검사장치
CN209850942U (zh) 机器人视觉检测定位设备
KR102284121B1 (ko) 디스플레이 검사용 스마트 비전 검사 모듈
TWI290223B (en) Adjustable light sources for image forming apparatus
KR20090080407A (ko) 평판 디스플레이 장치의 패널 검사 장치
CN220383113U (zh) 扫描装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897069

Country of ref document: EP

Kind code of ref document: A1