WO2023092962A1 - 一种飞机座舱加温系统 - Google Patents

一种飞机座舱加温系统 Download PDF

Info

Publication number
WO2023092962A1
WO2023092962A1 PCT/CN2022/093792 CN2022093792W WO2023092962A1 WO 2023092962 A1 WO2023092962 A1 WO 2023092962A1 CN 2022093792 W CN2022093792 W CN 2022093792W WO 2023092962 A1 WO2023092962 A1 WO 2023092962A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
refrigerant
heat exchanger
oil
outlet
Prior art date
Application number
PCT/CN2022/093792
Other languages
English (en)
French (fr)
Inventor
许玉
王佳乐
李玲
夏文庆
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2023092962A1 publication Critical patent/WO2023092962A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the invention relates to the technical field of aircraft cabins, in particular to an aircraft cabin heating system.
  • Aircraft will experience a variety of atmospheric environments during takeoff, cruising, and landing stages, especially the drastic changes in temperature and pressure.
  • the commonly used cabin heating methods mainly include engine bleed air, engine exhaust gas, fuel combustion, and electric heating.
  • the engine bleed air system is adopted by most aircraft due to its simple and reliable advantages. Gas will cause a large loss of engine power and thrust, affect flight power, and then increase the compensatory loss of aircraft fuel and generate more carbon emissions. Therefore, it is urgent to develop a new aircraft cabin heating system to solve the problem without affecting engine power. while reducing the problem of compensatory loss of fuel oil.
  • the purpose of the present invention is to provide an aircraft cockpit heating system, which can reduce aircraft fuel consumption, improve fuel utilization rate and reduce carbon emissions.
  • the present invention provides the following scheme:
  • An aircraft cabin heating system comprising: a lubricating oil system and an evaporative cycle refrigeration system; the evaporative cycle refrigeration system includes: a heat exchanger and a refrigerant-lubricating oil heat exchanger;
  • the heat exchanger is arranged in the cabin; the inlet of the heat exchanger communicates with the refrigerant outlet of the refrigerant-lubricating oil heat exchanger; the refrigerant inlet of the refrigerant-lubricating oil heat exchanger communicates with the heat exchanger
  • the outlet of the refrigerant-lubricating oil heat exchanger is connected with the oil outlet of the lubricating oil system; the oil inlet of the lubricating oil system is connected with the outlet of the refrigerant-lubricating oil heat exchanger
  • the oil port is connected.
  • the high-temperature lubricating oil in the lubricating oil system enters the refrigerant-lubricating oil heat exchanger, and the refrigerant is in the refrigerant-lubricating oil heat exchanger.
  • the oil generates heat exchange to form a high-temperature refrigerant; the high-temperature refrigerant enters the heat exchanger and transfers heat to the cabin to heat up the cabin.
  • the evaporative cycle refrigeration system further includes: a compressor, the inlet of the compressor communicates with the refrigerant outlet of the refrigerant-lubricating oil heat exchanger, and the inlet of the heat exchanger communicates with the outlet of the compressor. Export connection.
  • the evaporative cycle refrigeration system further includes: an evaporator, the refrigerant inlet of the evaporator communicates with the outlet of the heat exchanger, and the refrigerant outlet of the evaporator communicates with the refrigerant-lubricating oil heat exchanger The refrigerant inlet is connected, so that the system can also use the heat of the ambient air to heat when the ambient air temperature is high.
  • the evaporative cycle refrigeration system further includes: an expansion valve; the refrigerant inlet of the evaporator communicates with the outlet of the heat exchanger through the expansion valve.
  • the lubricating oil system includes: a lubricating oil tank and an engine gear box; the oil inlet of the refrigerant-lubricating oil heat exchanger communicates with the oil outlet of the engine gear box, and the oil inlet of the engine gear box
  • the oil port communicates with the oil outlet of the lubricating oil tank, and the oil inlet of the lubricating oil tank communicates with the oil outlet of the refrigerant-lubricating oil heat exchanger.
  • the lubricating oil system further includes: a lubricating oil radiator; the oil inlet of the lubricating oil radiator communicates with the oil outlet of the engine gearbox; the oil outlets of the lubricating oil radiator respectively It communicates with the oil inlet of the lubricating oil tank and the oil inlet of the refrigerant-lubricating oil heat exchanger.
  • the lubricating oil system further includes: a lubricating oil pump; the oil outlet of the lubricating oil radiator communicates with the oil inlet of the lubricating oil tank through the lubricating oil pump.
  • the lubricating oil system further includes: a bypass valve; the oil inlet of the refrigerant-lubricating oil heat exchanger communicates with the oil outlet of the engine gearbox through the bypass valve.
  • the evaporative cycle refrigeration system further includes: an air heater; the air inlet end of the air heater communicates with the outside of the cabin; the air outlet end of the air heater is connected with the inlet end of the evaporator; The gas outlet of the evaporator communicates with the outside of the cabin.
  • the present invention discloses the following technical effects: the inlet of the heat exchanger of the present invention communicates with the refrigerant outlet of the refrigerant-lubricating oil heat exchanger; The outlet of the refrigerant-lubricating oil heat exchanger is connected with the oil outlet of the lubricating oil system; the oil inlet of the lubricating oil system is connected with the oil outlet of the refrigerant-lubricating oil heat exchanger.
  • the high-temperature lubricating oil in the lubricating oil system enters the refrigerant-lubricating oil heat exchanger, and the refrigerant generates heat exchange with the high-temperature lubricating oil in the refrigerant-lubricating oil heat exchanger to form a high-temperature refrigerant; the high-temperature refrigerant enters the heat exchanger to dissipate heat Transfer to the cockpit to heat up the cockpit, and use the high-temperature lubricating oil in the lubricating oil system to heat the cockpit, which can reduce the fuel consumption of the aircraft and improve the fuel utilization rate.
  • Fig. 1 is the connection diagram of the aircraft cabin heating system provided by the embodiment of the present invention.
  • Fig. 2 is the connection diagram of the experimental system provided by the embodiment of the present invention.
  • Fig. 3 is a pressure-enthalpy diagram of a refrigerant circuit provided by an embodiment of the present invention.
  • the aviation industry accounts for about 11% of the total carbon emissions of the transportation industry.
  • the carbon emissions of the aviation industry mainly come from the burning of aviation fuel.
  • airlines consumed 36.89 million tons of fuel in 2019, equivalent to 116 million tons of carbon emissions, accounting for 97% of the industry's total emissions.
  • How to reduce aircraft fuel consumption and improve fuel utilization efficiency has become a difficult problem that the aviation industry must solve to achieve the development goal of "carbon peaking and carbon neutrality".
  • the cooling and heating functions of the aircraft cockpit are realized by two independent systems, which cannot share a set of air pipelines, and the system integration is relatively low, which increases the volume and weight of the system, and increases the fuel compensation loss. Therefore, if a new cooling and heating system is developed, it is necessary to understand the main existing cooling methods of the aircraft, namely the Air Cycle System (ACS) and the Vapor Cycle System (VCS). With the increase of on-board electronic equipment, the increase of heat load and the improvement of occupants' comfort requirements, ACS has gradually been unable to meet the cooling demand, and the efficient cooling capacity of VCS has emerged. At the same time, compared with ACS, VCS has significant advantages such as high coefficient of performance (COP), no engine bleed air and small compensatory loss.
  • COP coefficient of performance
  • the current airborne VCS is a single-system system with only cooling function. If it can be transformed into a dual-system system with both cooling and heating functions, it is expected to solve the above problems.
  • the dual-system VCS when the dual-system VCS operates in the heating mode, it has certain requirements on the ambient temperature. When the ambient temperature is low, the COP of the system is very low, and only a small amount of heat can be extracted from the ambient air for cabin heating. temperature, and cannot even extract heat from the ambient air. If there is a heat source whose temperature is relatively high in various environments in which the aircraft operates, then the dual-system VCS will be able to provide a continuous flow of hot air to the cabin in heating mode to achieve reliable heating of the cabin.
  • Lubricating oil used for engine gearbox and hydraulic system lubrication, radar and other high-power electronic equipment and engine exhaust gas on the aircraft can be used.
  • Lubricating oil as one of these heat sources, has the advantages of greater heat and higher temperature, and requires less modification to the aircraft and higher utilization efficiency.
  • the Lubricating Oil System (LOS) and VCS of the aircraft are independent subsystems, and the performance research of the two is often analyzed separately, and there are relatively few coupling studies. But in fact, the two are closely linked in the need and use of calories and energy. Therefore, continuing to conduct separate analysis is not in line with the design idea of aircraft comprehensive thermal management, and is not conducive to the efficient use of energy and the comprehensive optimization of airborne systems.
  • the main function of LOS is to lubricate the moving parts in the main reducer of the engine, and transfer the heat generated by the friction of the bearings and moving pairs, as well as the heat from the engine through conduction and heat radiation, so as to keep the temperature of the reducer and the engine at the working level. within range.
  • lubricating oil is a kind of brine, and the heat it absorbs should be the waste heat that needs to be discharged from the aircraft.
  • the heat source of the dual-system VCS heating cockpit can not only couple LOS and VCS, but also solve the problem of cockpit heating.
  • the present invention proposes a new type of aircraft cockpit heating system based on the dual-carbon target and the design idea of aircraft comprehensive thermal management, which couples the airborne dual-system VCS and LOS.
  • the oil waste heat is transferred to the cockpit air, which can avoid the condition of bleed air from the engine, realize efficient heating of the cockpit, can efficiently recover the waste heat of the lubricating oil, reduce the fuel consumption and carbon emissions of the aircraft cockpit heating system, and significantly reduce the aircraft's Fuel consumption.
  • the upper part of the old scheme is the original cockpit heating process. From Figure 1, it can be seen that the original cockpit heating mainly depends on the bleed air from the aircraft engine, which leads to the loss of engine thrust, which in turn causes aircraft fuel consumption. Compensatory losses increase, resulting in more carbon emissions.
  • the new scheme at the dotted line in the figure below is the working process of the aircraft cabin heating system provided by the present invention.
  • the aircraft cabin 1 heating system of the present invention includes : lubricating oil system LOS and evaporative cycle refrigeration system VCS;
  • the evaporative cycle refrigeration system includes: a heat exchanger 2 and a refrigerant-lubricating oil heat exchanger 3; the heat exchanger 2 is arranged in the cabin 1; the heat exchange The inlet of the device 2 communicates with the refrigerant outlet of the refrigerant-lubricating oil heat exchanger 3; the refrigerant inlet of the refrigerant-lubricating oil heat exchanger 3 communicates with the outlet of the heat exchanger 2, and the refrigerant-lubricating oil The oil inlet of the heat exchanger 3 communicates with the oil outlet of the lubricating oil system; the oil inlet of the lubricating oil system communicates with the oil outlet of the refrigerant-lubricating oil heat exchanger 3, when the cabin 1 When the temperature needs to be raised, the high-temperature lubricating oil in the lubricating oil system enters the refrig
  • the evaporative cycle refrigeration system further includes: a compressor 5, the inlet of the compressor 5 communicates with the refrigerant outlet of the refrigerant-lubricating oil heat exchanger 3, and the heat exchanger The inlet of 2 communicates with the outlet of said compressor 5.
  • a heat pump cycle of compression, condensation (heat release), expansion and evaporation (heat absorption) is realized.
  • the evaporative cycle refrigeration system further includes: an evaporator 4, the refrigerant inlet of the evaporator 4 communicates with the outlet of the heat exchanger 2, and the refrigerant outlet of the evaporator 4 communicates with the outlet of the heat exchanger 2.
  • the refrigerant inlet of the refrigerant-lubricating oil heat exchanger 3 is connected.
  • the evaporative cycle refrigeration system further includes: an expansion valve 6 ; the refrigerant inlet of the evaporator 4 communicates with the outlet of the heat exchanger 2 through the expansion valve 6 .
  • the lubricating oil system includes: a lubricating oil tank 8 and an engine gearbox 10; the oil inlet of the refrigerant-lubricating oil heat exchanger 3 and the oil outlet of the engine gearbox 10
  • the oil inlet of the engine gearbox 10 communicates with the oil outlet of the lubricating oil tank 8
  • the oil inlet of the lubricating oil tank 8 communicates with the oil outlet of the refrigerant-lubricating oil heat exchanger 3 .
  • the lubricating oil system also includes: a lubricating oil radiator 7; the oil inlet of the lubricating oil radiator 7 communicates with the oil outlet of the engine gearbox 10; The oil outlet of the oil radiator 7 communicates with the oil inlet of the lubricating oil tank 8 and the oil inlet of the refrigerant-lubricating oil heat exchanger 3 respectively.
  • a lubricating oil radiator 7 When the cabin 1 needs to cool down, the lubricating oil will not flow into the VCS. At this moment, after the lubricating oil is heated by the engine gearbox 10, it needs to be cooled by the lubricating oil radiator 7 and then flow back to the oil tank.
  • the lubricating oil system further includes: a lubricating oil pump 9; the oil outlet of the lubricating oil radiator 7 communicates with the oil inlet of the lubricating oil tank 8 through the lubricating oil pump 9, Driven by the lubricating oil pump 9, it is heated by the engine gearbox 10 and enters the lubricating oil radiator 7 to be cooled, and then part of the lubricating oil is further cooled in the refrigerant-lubricating oil heat exchanger 3, and the heat is transferred to the VCS.
  • a lubricating oil pump 9 the oil outlet of the lubricating oil radiator 7 communicates with the oil inlet of the lubricating oil tank 8 through the lubricating oil pump 9, Driven by the lubricating oil pump 9, it is heated by the engine gearbox 10 and enters the lubricating oil radiator 7 to be cooled, and then part of the lubricating oil is further cooled in the refrigerant-lubricating oil heat exchanger 3, and the heat is transferred to the VCS
  • the lubricating oil system further includes: a bypass valve 11; the oil inlet of the refrigerant-lubricating oil heat exchanger 3 and the oil outlet of the engine gearbox 10 pass through the The bypass valve 11 is connected.
  • the bypass valve 11 is opened to let the high-temperature lubricating oil flow into the VCS.
  • the heat exchanger 2 in the VCS is a condenser, which realizes the transfer of energy from the lubricating oil to the refrigerant, and finally passes through The condenser transfers heat to the air in the cabin 1 to warm the cabin 1.
  • the bypass valve 11 When the cabin 1 needs to be cooled, the bypass valve 11 is closed so that the lubricating oil cannot flow into the VCS, and the refrigerant flows into the heat exchanger 2 to cool the cabin 1. At this time the heat exchanger 2 is an evaporator.
  • the evaporative cycle refrigeration system further includes: an air heater; the air inlet end of the air heater communicates with the outside of the cabin; the air outlet end of the air heater communicates with the evaporator 4 The air intake end of the evaporator 4 is connected with the outside of the cabin.
  • the embodiment of the present invention constructs a LOSVCS ground simulation experiment system.
  • the LOSVCS ground simulation experiment system is mainly composed of the Environmental Simulation System (ESS), VCS, LOS and Data Acquisition and Control System (DACS).
  • the ESS is mainly composed of environment simulation cabin and cockpit 1.
  • the environmental simulation cabin can provide an atmospheric environment under a set temperature and pressure, and multiple temperature and pressure measurement points are set in the environmental simulation cabin and the cockpit 1 for real-time monitoring.
  • the LOS of the LOSVCS ground simulation experiment system is mainly composed of the lubricating oil tank 8, the lubricating oil pump 9, the lubricating oil flow meter 13, and the heater 15 (because it is impossible to directly use the engine when doing the experiment, so the heater 15 can only be used to heat the lubricating oil to simulate the actual situation, in practical applications, it is composed of lubricating oil to cool the gearbox), and is coupled with the VCS through the refrigerant-lubricating oil heat exchanger 3.
  • the lubricating oil is pumped out from the oil tank, heated to a specified temperature by the heater 15, and finally enters the refrigerant-lubricating oil heat exchanger 3 to transfer heat to the refrigerant.
  • LOS is not working, there is no heat exchange between oil and refrigerant.
  • VCS LOSVCS ground simulation experiment system
  • VCS is mainly composed of compressor 5 , heat exchanger 2 , refrigerant flow meter 14 , capillary tube 12 and evaporator 4 .
  • the heat exchanger 2 is set in the cockpit 1, and the rest of the equipment is set in the environmental simulation cabin.
  • the heat exchanger 2 is a condenser, and the two-phase refrigerant (refrigerant) passes through the evaporator 4 and the refrigerant-oil heat exchanger 3, absorbs heat from the air or oil and turns into a gaseous state, and then passes through Compressor 5 turns into high-temperature and high-pressure gas, and finally transfers heat (heat absorbed from the heat source and compressor 5 to perform work) to the air in the cabin 1 through the condenser.
  • refrigerant refrigerant
  • VCS When VCS is in cooling mode, LOS is off, dual-mode VCS is the same as single-mode VCS, opposite to heating mode, at this time, the condenser in cabin 1 becomes evaporator 4, which absorbs cabin 1 air heat, and then passes through the exhaust cabin outside.
  • DACS is mainly composed of temperature sensor T, pressure sensor P, lubricating oil flow meter 13, refrigerant flow meter 14, data acquisition module and so on.
  • the sensor T measures the temperature of the oil inlet and outlet of the refrigerant-lubricating oil heat exchanger 3 and the lubricating oil tank 8, and uses the lubricating oil flow meter 13 and the refrigerant flow meter 14 to measure the flow of the refrigerant and lubricating oil.
  • thermodynamic process of the refrigerant circuit of LOSVCS is shown in Figure 3.
  • a to B, B to C, C to D, and D to A correspond to the compression, condensation, throttling and evaporation processes of the refrigerant, respectively.
  • the thermodynamic states of the refrigerant at state points 2a, 2b, and 4a are saturated vapor, saturated liquid, and saturated vapor, respectively.
  • the novel aircraft cockpit heating system proposed by the present invention is highly efficient and energy-saving, and does not need to bleed air from the engine, it is estimated that at least 5% of the fuel consumption can be reduced.
  • the present invention can also consider recovering waste heat from other heat sources on the aircraft, such as waste heat from electronic equipment and engine exhaust.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)

Abstract

一种飞机座舱加温系统,包括滑油系统和蒸发循环制冷系统;所述蒸发循环制冷系统包括:热交换器(2)和冷媒-滑油换热器(3);所述热交换器设置在座舱内(1);所述热交换器的入口与所述冷媒-滑油换热器的冷媒出口连通;所述冷媒-滑油换热器的冷媒入口与所述热交换器的出口连通,所述冷媒-滑油换热器的进油口与所述滑油系统的出油口连通;所述滑油系统的进油口与所述冷媒-滑油换热器的出油口连通。该系统可以减少飞机燃油的消耗,提高燃油利用率,减少碳排放。

Description

一种飞机座舱加温系统
本申请要求于2021年11月23日提交中国专利局、申请号为2021113939982、发明名称为“一种飞机座舱加温系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及飞机座舱技术领域,特别是涉及一种飞机座舱加温系统。
背景技术
飞机在起飞、巡航和降落等阶段会经历各种各样的大气环境,尤其是温度和压力的变化较为剧烈。为了在高空或者地面冷天等低温条件下为飞机座舱提供适宜的温度,保障乘员的舒适性,需要对飞机座舱进行加温。目前,常用的座舱加温方式主要有发动机引气、发动机废气、燃料燃烧以及电加热等,其中,发动机引气系统凭借其简单可靠的优势而被大多数飞机所采用,然而,从飞机发动机引气会造成发动机功率和推力大幅度损失,影响飞行动力,继而造成飞机燃油代偿损失增大,产生更多的碳排放,因此,亟需开展新型飞机座舱加温系统,解决在不影响发动机动力的同时减少燃油代偿损失的难题。
发明内容
本发明的目的是提供一种飞机座舱加温系统,可以减少飞机燃油的消耗提高燃油利用率减少碳排放。
为实现上述目的,本发明提供了如下方案:
一种飞机座舱加温系统,包括:滑油系统和蒸发循环制冷系统;所述蒸发循环制冷系统包括:热交换器和冷媒-滑油换热器;
所述热交换器设置在座舱内;所述热交换器的入口与所述冷媒-滑油换热器的冷媒出口连通;所述冷媒-滑油换热器的冷媒入口与所述热交换器的出口连通,所述冷媒-滑油换热器的进油口与所述滑油系统的出油口连通;所述滑油系统的进油口与所述冷媒-滑油换热器的出油口连通,当所述座舱需要升温时,所述滑油系统内的高温滑油进入所述冷媒-滑油换热器,冷媒在所述冷媒-滑油换热器内与所述高温滑油产生热交换形成高温冷媒;所述高温冷媒进入热交换器内将热量传递给所述座舱使所述座舱 升温。
可选的,所述蒸发循环制冷系统还包括:压缩机,所述压缩机的入口与所述冷媒-滑油换热器的冷媒出口连通,所述热交换器的入口与所述压缩机的出口连通。
可选的,所述蒸发循环制冷系统还包括:蒸发器,所述蒸发器的冷媒入口与所述热交换器的出口连通,所述蒸发器的冷媒出口与所述冷媒-滑油换热器的冷媒入口连通,使系统在环境空气温度较高时也可以利用环境空气热量加热。
可选的,所述蒸发循环制冷系统还包括:膨胀阀;所述蒸发器的冷媒入口与所述热交换器的出口通过所述膨胀阀连通。
可选的,所述滑油系统包括:滑油箱和发动机齿轮箱;所述冷媒-滑油换热器的进油口与所述发动机齿轮箱的出油口连通,所述发动机齿轮箱的进油口与所述滑油箱的出油口连通,所述滑油箱的进油口与所述冷媒-滑油换热器的出油口连通。
可选的,所述滑油系统还包括:滑油散热器;所述滑油散热器的进油口与所述发动机齿轮箱的出油口连通;所述滑油散热器的出油口分别与所述滑油箱的进油口和所述冷媒-滑油换热器的进油口连通。
可选的,所述滑油系统还包括:滑油泵;所述滑油散热器的出油口通过所述滑油泵与所述滑油箱的进油口连通。
可选的,所述滑油系统还包括:旁通阀;所述冷媒-滑油换热器的进油口与所述发动机齿轮箱的出油口通过所述旁通阀连通。
可选的,所述蒸发循环制冷系统还包括:空气加热器;所述空气加热器的进气端与舱外连通;所述空气加热器的出气端与所述蒸发器的进气端相连;所述蒸发器的出气端与舱外连通。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明热交换器的入口与冷媒-滑油换热器的冷媒出口连通;冷媒-滑油换热器的冷媒入口与热交换器的出口连通,冷媒-滑油换热器的进油口与滑油系统的出油口连通;滑油系统的进油口与冷媒-滑油换热器的出油口连通,当座舱需要升温时,滑油系统内的高温滑油进入冷媒-滑油换热器,冷媒在冷媒-滑油换热器内与高温滑油产生热交换形成高温冷媒;高温冷媒进入 热交换器内将热量传递给座舱使座舱升温,利用滑油系统内的高温滑油对座舱加热,可以减少飞机燃油的消耗提高燃油利用率。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的飞机座舱加温系统的连接关系图;
图2为本发明实施例提供的实验系统的连接关系图;
图3为本发明实施例提供的制冷剂回路压焓图。
符号说明:
1-座舱、2-热交换器、3-冷媒-滑油换热器、4-蒸发器、5-压缩机、6-膨胀阀、7-滑油散热器、8-滑油箱、9-滑油泵、10-发动机齿轮箱、11-旁通阀、12-毛细管、13-滑油流量计、14-冷媒流量计、15-加热器、T-温度传感器、P-压力传感器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
航空业约占交通运输业碳排放总量的11%,目前航空业的碳排放主要来自航空燃油的燃烧。例如,2019年航空公司燃油消耗3689万吨,折算碳排放1.16亿吨,占到行业排放总量的97%。如何降低飞机燃油消耗、提高燃油利用效率,已成为航空业实现“碳达峰、碳中和”发展目标必须解决的难题。
此外,目前飞机座舱的制冷和加温功能通过两个独立系统实现,不能共享一套空气管路,系统集成度相对较低,使得系统的体积和重量变大,燃油代偿损失也增大,因此如果开发新的制冷和加温系统,需要了解飞机现有的主要制冷方式,即空气循环制冷系统(Air Cycle System,ACS)和蒸发循环制冷系统(Vapor Cycle System,VCS)。随着机载电子设备增多、热负荷增大及乘员对舒适度要求的提高,ACS已经逐步难以满足冷却需求,VCS的高效制冷能力得以显现。与此同时,相比于ACS,VCS具有性能系数(COP)高、无发动机引气和代偿损失小等显著优点。但是,目前机载VCS均是仅有制冷功能的单制式系统。如果可以将其改造为同时具有制冷和加温功能的双制式系统,则有望解决上述难题。然而,双制式VCS以加温即制热模式运行时,对环境温度有着一定的要求,当环境温度较低时,系统的COP很低,且只能从环境空气中提取少量热量用于座舱加温,甚至不能从环境空气中提取到热量。如果有一种热源,其温度在飞机运行的各种环境下均较高,那么双制式VCS将能在制热模式下为座舱提供源源不断的热空气,实现对座舱的可靠加温。可以利用飞机上用于发动机齿轮箱和液压系统润滑的滑油、雷达等高功率电子设备以及发动机排放尾气等。滑油作为这些热源中的一种,具有热量较大且温度较高的优点,且对飞机的改动更小、利用效率也更高。目前,飞机的滑油系统(Lubricating Oil System,LOS)和VCS是独立的子系统,两者的性能研究也往往是单独分析,耦合研究相对较少。但事实上,两者在热量和能量的需求和使用上紧密关联。因而,继续进行单独分析已经不符合飞行器综合热管理的设计思路,不利于能量的高效利用和机载系统的综合优化。 LOS的主要功能是对发动机主减速器内运动部件进行润滑,并对轴承、运动副摩擦生热以及经过传导和热辐射从发动机而来的热量进行转移,保持减速器和发动机温度均在工作允许范围之内。从传统的角度看,滑油是一种载冷剂,其吸收的热量应该是需排出飞机的废热,而从飞行器综合热管理的设计角度出发,由于滑油温度高、热量大,以其为双制VCS加温座舱的热源,不仅可以耦合LOS和VCS,还可以解决座舱加温的难题。
因此,本发明基于双碳目标和飞行器综合热管理的设计思想,提出了一种新型飞机座舱加温系统,耦合关联了机载双制VCS和LOS,VCS从LOS提取热量,通过热泵循环提取滑油余热传递给座舱空气,可避免从发动机引气的条件下,实现对座舱的高效加温,可以高效回收滑油废热、降低飞机座舱加温系统的燃油消耗和碳排放,显著降低了飞机的燃油消耗。
如图1所示,上部分旧方案为原有的座舱加温过程,从图1可以看出原有的座舱加温主要依赖于从飞机发动机的引气,导致发动机推力损失,继而造成飞机燃油代偿损失增大,产生更多的碳排放,下图虚线处的新方案为本发明提供的飞机座舱加温系统的工作过程,如图1所示,本发明的飞机座舱1加温系统包括:滑油系统LOS和蒸发循环制冷系统VCS;所述蒸发循环制冷系统包括:热交换器2和冷媒-滑油换热器3;所述热交换器2设置在座舱1内;所述热交换器2的入口与所述冷媒-滑油换热器3的冷媒出口连通;所述冷媒-滑油换热器3的冷媒入口与所述热交换器2的出口连通,所述冷媒-滑油换热器3的进油口与所述滑油系统的出油口连通;所述滑油系统的进油口与所述冷媒-滑油换热器3的出油口连通,当所述座舱1需要升温时,所述滑油系统内的高温滑油进入所述冷媒-滑油换热器3,冷媒在所述冷媒-滑油换热器3内与所述高温滑油产生热交换形成高温冷媒;所述高温冷媒进入热交换器2内将热量传递给所述座舱1使所述座舱1升温,热交换后的滑油进入滑油系统。
作为一种可选的实施方式,所述蒸发循环制冷系统还包括:压缩机5,所述压缩机5的入口与所述冷媒-滑油换热器3的冷媒出口连通,所述热 交换器2的入口与所述压缩机5的出口连通。在压缩机5的推动下,实现压缩、冷凝(放热)、膨胀和蒸发(吸热)的热泵循环。
作为一种可选的实施方式,所述蒸发循环制冷系统还包括:蒸发器4,所述蒸发器4的冷媒入口与所述热交换器2的出口连通,所述蒸发器4的冷媒出口与所述冷媒-滑油换热器3的冷媒入口连通。
作为一种可选的实施方式,所述蒸发循环制冷系统还包括:膨胀阀6;所述蒸发器4的冷媒入口与所述热交换器2的出口通过所述膨胀阀6连通。
作为一种可选的实施方式,所述滑油系统包括:滑油箱8和发动机齿轮箱10;所述冷媒-滑油换热器3的进油口与所述发动机齿轮箱10的出油口连通,所述发动机齿轮箱10的进油口与所述滑油箱8的出油口连通,所述滑油箱8的进油口与所述冷媒-滑油换热器3的出油口连通。
作为一种可选的实施方式,所述滑油系统还包括:滑油散热器7;所述滑油散热器7的进油口与所述发动机齿轮箱10的出油口连通;所述滑油散热器7的出油口分别与所述滑油箱8的进油口和所述冷媒-滑油换热器3的进油口连通,当座舱1需要降温时,滑油不会在流入VCS,此时发动机齿轮箱10将滑油加热后,需要经过滑油散热器7冷却再流回油箱。
作为一种可选的实施方式,所述滑油系统还包括:滑油泵9;所述滑油散热器7的出油口通过所述滑油泵9与所述滑油箱8的进油口连通,在滑油泵9的推动下,被发动机齿轮箱10加温后进入滑油散热器7被冷却,随后部分滑油在冷媒-滑油换热器3中被进一步冷却,将热量传递给VCS。
作为一种可选的实施方式,所述滑油系统还包括:旁通阀11;所述冷媒-滑油换热器3的进油口与所述发动机齿轮箱10的出油口通过所述旁通阀11连通,当座舱1需要升温时将旁通阀11打开让高温滑油流入VCS,此时VCS中的热交换器2为冷凝器,实现能量从滑油到冷媒的转移,最后通过冷凝器将热量传递至座舱1空气,实现座舱1加温,当座舱1需要降温时关闭旁通阀11,使得滑油不能流入VCS,冷媒流入热交换器2,对座舱1进行降温,此时的热交换器2为蒸发器。
作为一种可选的实施方式,所述蒸发循环制冷系统还包括:空气加热器;所述空气加热器的进气端与舱外连通;所述空气加热器的出气端与所 述蒸发器4的进气端相连;所述蒸发器4的出气端与舱外连通。
为验证上述实施例提出的飞机座舱加温系统(LOSVCS)的性能,本发明实施例构建了LOSVCS地面模拟实验系统。
如图2所示,LOSVCS地面模拟实验系统主要由环境模拟系统(ESS)、VCS、LOS和数据采集与控制系统(DACS)组成。
ESS主要由环境模拟舱和座舱1组成。环境模拟舱可以提供设定温度和压力下的大气环境,环境模拟舱与座舱1中设置有多个温度和压力测量点进行实时监测。
LOSVCS地面模拟实验系统的LOS主要由滑油箱8、滑油泵9、滑油流量计13、加热器15(因为做实验的时候不可能直接用发动机,所以只能用加热器15加热滑油模拟实际情况,实际应用中是用滑油冷却齿轮箱)组成,并通过冷媒-滑油换热器3与VCS耦合。当LOS工作时,滑油从油箱内泵出,经加热器15加热至指定温度,最后进入冷媒-滑油换热器3将热量传递冷媒。当LOS不工作时,滑油和冷媒之间无热量交换。
LOSVCS地面模拟实验系统VCS主要由压缩机5、热交换器2、冷媒流量计14、毛细管12和蒸发器4组成。热交换器2设置在座舱1内,其余设备均设置在环境模拟舱内。当VCS处于热泵模式时,热交换器2为冷凝器,两相制冷剂(冷媒)通过蒸发器4和冷媒-滑油换热器3,从空气或滑油中吸收热量变成气态,然后通过压缩机5变成高温高压气体,最后通过冷凝器将热量(从热源吸收的热量和压缩机5做功)传递给座舱1内空气。当VCS处于制冷模式时,LOS关闭,双模VCS与单模VCS相同,与制热模式相反,此时座舱1内的冷凝器变成了蒸发器4,吸收座舱1空气热量,然后通过排出舱外。
DACS主要由温度传感器T、压力传感器P、滑油流量计13、冷媒流量计14、数据采集模块等组成。使用温度传感T、压力传感器P测量压缩机进口和出口、热交换器2出口、蒸发器4进口、冷媒-滑油换热器3冷媒进口以及环境模拟舱和座舱的温度和压力,使用温度传感器T测量冷媒-滑油换热器3滑油进口和出口、滑油箱8的温度,使用滑油流量计13和冷媒流量计14测量冷媒和滑油的流量。
LOSVCS的冷媒回路的热力过程如图3所示,A到B、B到C、C到D、D到A分别对应冷媒的压缩、冷凝、节流和蒸发过程。制冷剂在状态点2a、2b和4a的热力学状态分别为饱和蒸汽、饱和液体和饱和蒸汽。
本发明的技术效果
(1)基于双碳目标设计,无需从发动机引气,减少了发动机的功率损失,减少了飞行中的燃油消耗,从而降低了碳排放。
(2)引入了飞行器综合热管理的设计理念,进一步提高了飞机系统的能量利用效率,同样有利于减少碳排放。
(3)将VCS和LOS耦合关联,回收滑油热量用于座舱加温,性能实验和热力学分析表明LOSVCS可行、可靠、高效且节能。
(4)由于本发明提出的新型飞机座舱加温系统高效节能、无需从发动机引气,因而估算至少可以减少5%的燃油消耗。
(5)本发明还可以考虑对飞机上的其他热源进行余热回收,如电子设备的废热和发动机尾气等。
(6)也可以探究回收热量的其他利用方式,如用于座舱玻璃的加温和防冰除雾以及废水管路的加温防冻等。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种飞机座舱加温系统,其特征在于,包括:滑油系统和蒸发循环制冷系统;所述蒸发循环制冷系统包括:热交换器和冷媒-滑油换热器;
    所述热交换器设置在座舱内;所述热交换器的入口与所述冷媒-滑油换热器的冷媒出口连通;所述冷媒-滑油换热器的冷媒入口与所述热交换器的出口连通,所述冷媒-滑油换热器的进油口与所述滑油系统的出油口连通;所述滑油系统的进油口与所述冷媒-滑油换热器的出油口连通,当所述座舱需要升温时,所述滑油系统内的高温滑油进入所述冷媒-滑油换热器,冷媒在所述冷媒-滑油换热器内与所述高温滑油产生热交换形成高温冷媒;所述高温冷媒进入热交换器内将热量传递给所述座舱使所述座舱升温。
  2. 根据权利要求1所述的一种飞机座舱加温系统,其特征在于,所述蒸发循环制冷系统还包括:压缩机,所述压缩机的入口与所述冷媒-滑油换热器的冷媒出口连通,所述热交换器的入口与所述压缩机的出口连通。
  3. 根据权利要求2所述的一种飞机座舱加温系统,其特征在于,所述蒸发循环制冷系统还包括:蒸发器,所述蒸发器的冷媒入口与所述热交换器的出口连通,所述蒸发器的冷媒出口与所述冷媒-滑油换热器的冷媒入口连通。
  4. 根据权利要求3所述的一种飞机座舱加温系统,其特征在于,所述蒸发循环制冷系统还包括:膨胀阀;所述蒸发器的冷媒入口与所述热交换器的出口通过所述膨胀阀连通。
  5. 根据权利要求1所述的一种飞机座舱加温系统,其特征在于,所述滑油系统包括:滑油箱和发动机齿轮箱;所述冷媒-滑油换热器的进油口与所述发动机齿轮箱的出油口连通,所述发动机齿轮箱的进油口与所述滑油箱的出油口连通,所述滑油箱的进油口与所述冷媒-滑油换热器的出油口连通。
  6. 根据权利要求5所述的一种飞机座舱加温系统,其特征在于,所述滑油系统还包括:滑油散热器;所述滑油散热器的进油口与所述发动机齿轮箱的出油口连通;所述滑油散热器的出油口分别与所述滑油箱的进油口和所述冷媒-滑油换热器的进油口连通。
  7. 根据权利要求6所述的一种飞机座舱加温系统,其特征在于,所述滑油系统还包括:滑油泵;所述滑油散热器的出油口通过所述滑油泵与所述滑油箱的进油口连通。
  8. 根据权利要求5所述的一种飞机座舱加温系统,其特征在于,所述滑油系统还包括:旁通阀;所述冷媒-滑油换热器的进油口与所述发动机齿轮箱的出油口通过所述旁通阀连通。
  9. 根据权利要求3所述的一种飞机座舱加温系统,其特征在于,所述蒸发循环制冷系统还包括:空气加热器;所述空气加热器的进气端与舱外连通;所述空气加热器的出气端与所述蒸发器的进气端相连;所述蒸发器的出气端与舱外连通。
PCT/CN2022/093792 2021-11-23 2022-05-19 一种飞机座舱加温系统 WO2023092962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111393998.2 2021-11-23
CN202111393998.2A CN113859549A (zh) 2021-11-23 2021-11-23 一种飞机座舱加温系统

Publications (1)

Publication Number Publication Date
WO2023092962A1 true WO2023092962A1 (zh) 2023-06-01

Family

ID=78985187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093792 WO2023092962A1 (zh) 2021-11-23 2022-05-19 一种飞机座舱加温系统

Country Status (2)

Country Link
CN (1) CN113859549A (zh)
WO (1) WO2023092962A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117905585A (zh) * 2024-03-19 2024-04-19 中国航发沈阳发动机研究所 飞机机载电子设备冷却介质及发动机内轴承滑油冷却系统
CN117905586A (zh) * 2024-03-19 2024-04-19 中国航发沈阳发动机研究所 一种航空发动机涡轮支撑轴承用润滑油冷却系统及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113859549A (zh) * 2021-11-23 2021-12-31 南京航空航天大学 一种飞机座舱加温系统
CN114906332B (zh) * 2022-05-18 2024-05-07 南京航空航天大学 一种机载泵驱能量利用系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882132A2 (en) * 2005-05-18 2008-01-30 E.I. du Pont de Nemours & Company Hybrid vapor compression-absorption cycle
CN111268140A (zh) * 2020-02-10 2020-06-12 南京航空航天大学 一种飞机绿色环控系统
CN112693617A (zh) * 2019-10-22 2021-04-23 南京航空航天大学 一种燃油热沉复合模态泵驱两相流冷却系统及方法
CN113859549A (zh) * 2021-11-23 2021-12-31 南京航空航天大学 一种飞机座舱加温系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572328A1 (en) * 2018-05-24 2019-11-27 Rolls-Royce plc Aircraft environmental control system
CN110435897B (zh) * 2019-07-09 2023-01-17 沈阳航空航天大学 一种新型的军用直升机滑油源热泵型空调系统
CN111023614A (zh) * 2019-12-17 2020-04-17 沈阳航空航天大学 一种直升机滑油源直驱热泵型空调系统
CN112407294B (zh) * 2020-10-30 2022-11-22 哈尔滨飞机工业集团有限责任公司 一种滑油散热座舱加温系统及方法
CN113184196A (zh) * 2021-05-14 2021-07-30 南京航空航天大学 一种固定翼飞机综合环控系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882132A2 (en) * 2005-05-18 2008-01-30 E.I. du Pont de Nemours & Company Hybrid vapor compression-absorption cycle
CN112693617A (zh) * 2019-10-22 2021-04-23 南京航空航天大学 一种燃油热沉复合模态泵驱两相流冷却系统及方法
CN111268140A (zh) * 2020-02-10 2020-06-12 南京航空航天大学 一种飞机绿色环控系统
CN113859549A (zh) * 2021-11-23 2021-12-31 南京航空航天大学 一种飞机座舱加温系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117905585A (zh) * 2024-03-19 2024-04-19 中国航发沈阳发动机研究所 飞机机载电子设备冷却介质及发动机内轴承滑油冷却系统
CN117905586A (zh) * 2024-03-19 2024-04-19 中国航发沈阳发动机研究所 一种航空发动机涡轮支撑轴承用润滑油冷却系统及其方法
CN117905586B (zh) * 2024-03-19 2024-05-17 中国航发沈阳发动机研究所 一种航空发动机涡轮支撑轴承用润滑油冷却系统及其方法
CN117905585B (zh) * 2024-03-19 2024-06-07 中国航发沈阳发动机研究所 飞机机载电子设备冷却介质及发动机内轴承滑油冷却系统

Also Published As

Publication number Publication date
CN113859549A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023092962A1 (zh) 一种飞机座舱加温系统
CN111017235B (zh) 一种能量优化的飞机机电系统热管理方法
CN110901925B (zh) 一种直升机多舱双制式环境控制系统
CN107521698B (zh) 一种环控系统余热制冷装置
CN111268140B (zh) 一种飞机绿色环控系统
CN103847968B (zh) 一种利用机载废热的新型机翼防冰系统
CN104850153B (zh) 一种平流层飞艇电子设备舱温度控制系统及控制方法
CN101590913A (zh) 采用环路热管的民机防冰除冰方法
CN102381479A (zh) 一种无冲压进气道的综合环控/液冷热能管理系统
CN102390538A (zh) 一种无冲压进气道综合环控/液冷热能管理系统
EP2881328B1 (en) Aircraft fuel system with heating of stored fuel
CN103786886A (zh) 一种用于飞机机翼的防除冰系统
CN103344031B (zh) 一种废热回收的冷暖空调系统
CN103334820B (zh) 一种汽车发动机的热控制系统及热控制方法
WO2021073186A1 (zh) 基于压缩机中间补气技术的直升机多舱双制式空调系统
CN102390536A (zh) 一种三轮升压式制冷和液体冷却综合热能管理系统
CN102390537A (zh) 一种环控系统和液冷系统综合热能管理系统
CN209634735U (zh) 一种飞机综合式制冷装置
Xu et al. A novel system for aircraft cabin heating based on a vapor compression system and heat recovery from engine lubricating oil
CN109367801B (zh) 一种基于飞机液压系统及微型蒸发式制冷循环的分布式飞机热管理系统和方法
CN109751799A (zh) 复合式冷热源空调系统及控温方法
CN114180079B (zh) 基于燃油综合热管理的机载油箱惰化方法
CN104632462A (zh) 新型车辆动力/冷热供能系统及其工作方法
CN203068708U (zh) 直通进风复合式节能飞机地面空调机组
CN105620757A (zh) 一种适于高超声速飞行器的综合热管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897061

Country of ref document: EP

Kind code of ref document: A1