WO2021073186A1 - 基于压缩机中间补气技术的直升机多舱双制式空调系统 - Google Patents

基于压缩机中间补气技术的直升机多舱双制式空调系统 Download PDF

Info

Publication number
WO2021073186A1
WO2021073186A1 PCT/CN2020/103171 CN2020103171W WO2021073186A1 WO 2021073186 A1 WO2021073186 A1 WO 2021073186A1 CN 2020103171 W CN2020103171 W CN 2020103171W WO 2021073186 A1 WO2021073186 A1 WO 2021073186A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
cooled heat
compressor
control valve
Prior art date
Application number
PCT/CN2020/103171
Other languages
English (en)
French (fr)
Inventor
冯诗愚
彭孝天
高秀峰
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2021073186A1 publication Critical patent/WO2021073186A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0648Environmental Control Systems with energy recovery means, e.g. using turbines

Definitions

  • the invention belongs to the technical field of aviation systems, and relates to a helicopter air-conditioning system, in particular to a helicopter multi-cabin dual-standard air-conditioning system based on compressor intermediate air supplement technology.
  • a helicopter is an aircraft that is powered by a turboshaft engine in the form of a rotating output shaft and directly drives the rotor through a mechanical transmission system to generate lift and propulsion. It can complete a variety of flight actions that cannot be completed by conventional fixed-wing aircraft, such as vertical take-off and landing, hovering in the air, rotating in place and flying in multiple directions. In addition, when the engine is stopped, it can also use the rotor rotation characteristics to achieve a safe landing, so it is very safe to use. In addition, it combines the advantages of ground transportation vehicles and fixed-wing aircraft. It can be used for military purposes such as transportation of soldier equipment, ground attack, anti-tank, fire support, search and rescue, and it can also be used in transportation, patrol, tourism, and ambulance. It is a typical dual-use product for military and civilian use in many civilian fields, and it has been used more and more widely in recent years.
  • helicopters Like fixed-wing aircraft, helicopters also need to fly in harsh weather conditions with high temperatures and high humidity. In order to ensure the normal physiological needs of the aircrew, improve the comfort of the occupants, and the normal operation of the electronic equipment in the cabin, the helicopter needs to be equipped with an air conditioning system.
  • an air conditioning system In order to ensure the normal physiological needs of the aircrew, improve the comfort of the occupants, and the normal operation of the electronic equipment in the cabin, the helicopter needs to be equipped with an air conditioning system.
  • a large number of high-power and highly integrated avionics are used. These devices emit a lot of heat when they work. Therefore, to ensure the normal operation of electronic equipment, the heat must be dissipated in time. . At the same time, personnel have higher and higher expectations for the comfort of helicopter cockpits. All this means that modern advanced high-performance helicopters have higher and higher requirements for air conditioning systems.
  • the refrigeration cycle system mainly includes an evaporation cycle system and an air circulation system.
  • the air circulation system of engine bleed air was a solution commonly used in the environment control system of fixed-wing aircraft, and it was also lighter than the evaporative circulation system. Therefore, when developing a helicopter environmental control system, people usually consider using an air circulation system.
  • the air cycle refrigeration system has a large compensation loss and low efficiency. With the continuous development of airborne evaporative cycle refrigeration technology in recent years, the problems of refrigerant leakage and poor reliability of the evaporative cycle system have been better solved.
  • the evaporative cycle refrigeration solution is more suitable for helicopters on board due to its large refrigeration capacity and high efficiency. Cooling System.
  • most of the current helicopters use engine bleed air to achieve heating, which will obviously increase the compensation loss of the refrigeration cycle system.
  • Current helicopters do not need to be pressurized due to their low flight altitude and the cockpit is not closed.
  • the solution to the cockpit pressurization in fixed-wing aircraft is mainly an air circulation system, but the air circulation system needs to extract a large amount of engine bleed air, which consumes a lot of engines. power.
  • the development of helicopters towards high speed, high altitude and high maneuverability will inevitably develop non-engine bleed air pressurization technology.
  • the technical problem to be solved by the present invention is to provide a helicopter multi-cabin dual-standard air-conditioning system based on compressor intermediate air supplement technology in view of the defects involved in the background art.
  • the present invention provides the following solutions:
  • a helicopter multi-cabin dual-standard air conditioning system based on compressor intermediate air supplement technology, including four-way reversing valve, compressor, first air-cooled heat exchanger, first fan, plate heat exchanger, lubricating oil pump, first Control valve, first restrictor, second air-cooled heat exchanger, second fan, second control valve, third control valve, second restrictor, fourth control valve, third air-cooled heat exchanger, The third fan, electric compressor and exhaust valve;
  • the four-way reversing valve includes first to fourth ports for conducting the first port and the second port, the third port and the fourth port, or the first port and the third port,
  • the second interface and the fourth interface are connected;
  • the compressor includes a low-pressure suction inlet, a medium-pressure suction inlet, and an exhaust port;
  • the plate heat exchanger includes a refrigerant channel and a lubricating oil channel;
  • the first port of the four-way reversing valve is connected to one end of the third air-cooled heat exchanger through a pipe, and the second port of the four-way reversing valve is connected to the low-pressure suction inlet of the compressor through a pipe Connected, the third port of the four-way reversing valve is connected to the exhaust port of the compressor through a pipe, and the fourth port of the four-way reversing valve is connected to one end of the third control valve through a pipe, One end of the first air-cooled heat exchanger is connected;
  • the intermediate pressure suction inlet of the compressor is connected to one end of the second control valve through a pipeline;
  • the other end of the first air-cooled heat exchanger is connected to one end of the refrigerant channel of the plate heat exchanger through a pipe;
  • the first fan is arranged at the first air-cooled heat exchanger to strengthen the outside Heat exchange between ambient air and the refrigerant in the first air-cooled heat exchanger;
  • the other end of the refrigerant passage of the plate heat exchanger is respectively connected to one end of the first control valve and one end of the second throttle through a pipe; one end of the lubricating oil passage of the plate heat exchanger passes through a pipe Sequentially connected to the oil pump, the gear box of the helicopter engine, and the other end of the oil passage of the plate heat exchanger;
  • the other end of the first control valve is connected to one end of the first restrictor and one end of the fourth control valve through a pipe;
  • the other end of the first throttle is connected to one end of the second air-cooled heat exchanger through a pipe;
  • the second air-cooled heat exchanger is arranged in the electronic equipment compartment, and its other end is connected to the other end of the second control valve and the other end of the third control valve through a pipe; the second fan is arranged At the second air-cooled heat exchanger, used to strengthen the heat exchange between the air in the electronic equipment cabin and the refrigerant in the second air-cooled heat exchanger;
  • the other end of the second throttle is connected to the other end of the fourth control valve and the other end of the third air-cooled heat exchanger through a pipe;
  • the third air-cooled heat exchanger is arranged in the cockpit of the helicopter; the third fan is arranged at the third air-cooled heat exchanger, and is used to strengthen the air in the cabin and the third air-cooled exchange The heat exchange of the refrigerant in the heat exchanger;
  • the electric compressor is used to compress the ambient bleed air of the helicopter to a preset first pressure threshold and then discharge it into the cockpit;
  • the exhaust valve is connected to the cockpit, and is used to open when the pressure in the cockpit is greater than a preset second pressure value, and discharge the air in the cockpit to the outside of the aircraft.
  • the present invention discloses the following technical effects:
  • compressor intermediate air supplement high temperature refrigeration technology ie compressor intermediate air supplement technology
  • Figure 1 is a schematic diagram of the refrigeration mode of a helicopter multi-cabin dual-standard air conditioning system based on compressor intermediate air supplement technology
  • Figure 2 is a schematic diagram of the heating mode of a helicopter multi-cabin dual-standard air-conditioning system based on compressor intermediate air supplement technology.
  • the purpose of the present invention is to provide a helicopter multi-cabin dual-standard air conditioning system based on compressor intermediate air supplement technology, which can integrate refrigeration system, heating system and non-engine bleed air cabin pressurization system, and can realize electronic equipment cabin cooling and The conversion of cockpit cooling and heating improves the maneuverability of the helicopter.
  • the multi-cabin includes the cockpit of the helicopter and the electronic equipment compartment, and the dual system is a refrigeration system and a heating system.
  • the present invention discloses a helicopter multi-cabin dual-standard air-conditioning system based on compressor intermediate air supplement technology, which includes a four-way reversing valve 1, a compressor 2, a first air-cooled heat exchanger 3, and a second air-cooled heat exchanger.
  • a fan 4 plate heat exchanger 5, oil pump 6, first control valve 7, first throttle 8, second air-cooled heat exchanger 9, second fan 10, second control valve 11, third control The valve 12, the second throttle 13, the fourth control valve 14, the third air-cooled heat exchanger 15, the third fan 16, the electric compressor 17, and the exhaust valve 18.
  • the four-way reversing valve 1 includes a first port to a fourth port.
  • the four-way reversing valve 1 is used to make the first port and the second port conductive, and the third port and the fourth port are conductive; or the first port Conduction with the third interface, and conduction with the second interface and the fourth interface.
  • the ports 1234 of the four-way reversing valve 1 in Figure 1 correspond to the first port to the fourth port respectively.
  • the compressor 2 includes a low-pressure suction inlet, a medium-pressure suction inlet, and an exhaust port.
  • the plate heat exchanger 5 includes a refrigerant passage and a lubricating oil passage.
  • the first port 1 of the four-way reversing valve 1 is connected to one end of the third air-cooled heat exchanger 15 through a pipe, and the second port 2 of the four-way reversing valve 1 is connected to the low-pressure suction inlet of the compressor 2 through a pipe.
  • the third port 3 of the four-way reversing valve 1 is connected to the exhaust port of the compressor 2 through a pipe, and the fourth port 4 of the four-way reversing valve 1 is connected to one end of the third control valve 12 through a pipe and the first air-cooled One end of the heat exchanger 3 is connected.
  • the intermediate pressure suction inlet of the compressor 2 is connected to one end of the second control valve 11 through a pipe.
  • the other end of the first air-cooled heat exchanger 3 is connected to one end of the refrigerant passage of the plate heat exchanger 5 through a pipe.
  • the first fan 4 is arranged at the first air-cooled heat exchanger 3.
  • the first fan 4 is used to strengthen the heat exchange between the ambient air and the refrigerant in the first air-cooled heat exchanger 3.
  • the first fan 4 can be specifically arranged at the first air-cooled heat exchanger 3. One side of the air-cooled heat exchanger 3.
  • the other end of the refrigerant passage of the plate heat exchanger 5 is respectively connected to one end of the first control valve 7 and one end of the second throttle 13 through a pipe.
  • One end of the lubricating oil passage of the plate heat exchanger 5 is connected to the lubricating oil pump 6, the gear box of the helicopter engine, and the other end of the lubricating oil passage of the plate heat exchanger 5 through a pipeline.
  • the flow direction of the engine lubricating oil is from the plate heat exchange After one end of the lubricating oil passage of the heat exchanger 5 flows out, it passes through the lubricating oil pump 6 and the gear box of the helicopter engine in turn, and then flows back to the plate heat exchanger through the other end of the lubricating oil passage of the plate heat exchanger 5 to realize the heat circulation of the lubricating oil .
  • the other end of the first control valve 7 is connected to one end of the first restrictor 8 and one end of the fourth control valve 14 through pipes, respectively.
  • the other end of the first throttle 8 is connected to one end of the second air-cooled heat exchanger 9 through a pipe.
  • the second air-cooled heat exchanger 9 is arranged in the electronic equipment compartment of the helicopter, and the other end of the second air-cooled heat exchanger 9 is connected to the other end of the second control valve 11 and the other end of the third control valve 12 through a pipe. .
  • the second fan 10 is arranged at the second air-cooled heat exchanger 9.
  • the second fan 10 is used to strengthen the heat exchange between the air in the electronic equipment compartment and the refrigerant in the second air-cooled heat exchanger 9.
  • the second fan 10 can be specifically set On the side of the second air-cooled heat exchanger 9.
  • the other end of the second throttle 13 is connected to the other end of the fourth control valve 14 and the other end of the third air-cooled heat exchanger 15 through a pipe.
  • the third air-cooled heat exchanger 15 is arranged in the cockpit of the helicopter.
  • the third fan 16 is arranged at the third air-cooled heat exchanger 15.
  • the third fan 16 is used to strengthen the heat exchange between the air in the cabin and the refrigerant in the third air-cooled heat exchanger 15.
  • the third fan 16 can be specifically arranged at the third air-cooled heat exchanger.
  • the electric compressor 17 is used to compress the ambient bleed air of the helicopter to a preset first pressure threshold and then discharge it to the cockpit.
  • the electric compressor 17 is specifically used to introduce and compress air in the atmospheric environment to a preset first pressure threshold and then discharge it to the cabin.
  • the exhaust valve 18 is connected to the cockpit, and is used to open when the pressure in the cockpit is greater than the preset second pressure value, and discharge the air in the cockpit to the outside of the aircraft.
  • Fig. 1 is the working process of the refrigeration mode of the present invention, which is specifically as follows:
  • the first port 1 is connected to the second port 2, and the third port 3 is connected to the fourth port 4; the first control valve 7, the second control valve 11, and the first The throttle 8 and the second throttle 13 are opened, the third control valve 12 and the fourth control valve 14 are closed, and the compressor 2, the first fan 4, the second fan 10, the third fan 16 and the electric compressor 17 work ,
  • the oil pump 6 does not work.
  • the third air-cooled heat exchanger 15 is an evaporator
  • the second air-cooled heat exchanger 9 is an evaporator
  • the first air-cooled heat exchanger 3 is a condenser.
  • the first air-cooled heat exchanger 3, the plate heat exchanger 5, the second air-cooled heat exchanger 9, the third air-cooled heat exchanger 15 and the exhaust valve 18 are all in working state.
  • the heat exchanger is a static device, and its passage is always open; the exhaust valve belongs to the cabin pressurization system, and the cabin pressurization system is opened in both the cooling mode and the heating mode.
  • the refrigerant of the third air-cooled heat exchanger 15 flows into the four-way reversing valve 1 through the first port 1 of the four-way reversing valve 1, and then reversing by the four-way.
  • the second port 2 of valve 1 flows out and enters the low-pressure suction port of compressor 2.
  • the refrigerant is compressed by compressor 2 at the intermediate pressure suction port of compressor 2 and the second air-cooled
  • the refrigerant of the heat exchanger 9 is merged to control the state of the refrigerant of the second air-cooled heat exchanger 9, which can effectively reduce the superheat of the mixed refrigerant, so that the compressor discharge temperature is still in the compressor when the ambient temperature is high. Ensure the normal operation of the helicopter's multi-cabin dual-standard air-conditioning system within the scope of operating conditions.
  • the refrigerant that merges with the refrigerant of the second air-cooled heat exchanger 9 is compressed again by the compressor 2, and flows into the third port 3 of the four-way reversing valve 1 through the exhaust port of the compressor 2, and the exhaust of the compressor 2 After the refrigerant from the port flows into the third port 3 of the four-way reversing valve 1, it flows out of the fourth port 4 of the four-way reversing valve 1, and then flows into the first air-cooled heat exchanger 3. In 3, the heat is transferred to the outside air heat sink.
  • the refrigerant at the outlet of the first air-cooled heat exchanger 3 is divided into two paths, the first path of which is throttled in the first throttle 8 and flows into the second air-cooled heat exchanger 9 and in the second air-cooled heat exchanger 9 After absorbing the heat of the air in the electronic equipment compartment, the air in the electronic equipment compartment is used as a cold source to absorb the heat load of the electronic equipment compartment, and the second fan 10 is used as the power to return to the second air-cooled heat exchanger 9 for recirculation; After the second path is throttled in the second throttle 13, it flows into the third air-cooled heat exchanger 15.
  • the third air-cooled heat exchanger 15 absorbs the heat of the cabin air, and the cabin air is used as a cold source to absorb the cabin air After the thermal load, the third fan 16 is used as power to return to the third air-cooled heat exchanger 15 for recirculation.
  • the two refrigerants absorb heat and then flow back to the compressor respectively to realize the refrigeration cycle.
  • the cabin pressurization system of non-engine bleed air is mainly composed of an electric compressor 17, an exhaust valve 18 and a cabin pressure regulator.
  • the cabin pressurization system draws air from the ambient air through the electric compressor 17 and pressurizes it. After it merges with the circulating air at the cabin return air, it flows through the third air-cooled heat exchanger 15 through the third fan 16 and then passes through the third air-cooled heat exchanger 15.
  • the pressure regulator exhausts all or part of the pressurized air from the exhaust valve 18 to the outside of the cabin.
  • Ambient bleed air or ambient air bleed is the electric compressor 17 to introduce air in the atmospheric environment.
  • the cabin pressure system determines the cabin pressure corresponding to the cabin height according to the flight altitude (or called the cabin height).
  • the cabin pressure regulator determines the cabin pressure corresponding to the cabin height according to the cabin pressure system, and the whole or part of the cabin pressure is determined by the exhaust valve 18.
  • the pressurized air is discharged to the outside of the cabin to adjust the current cabin pressure, so that the current cabin pressure is consistent with the cabin pressure corresponding to the cabin height.
  • Fig. 2 is the working flow of the heating mode of the present invention.
  • the difference from the cooling mode is that the flow direction of the refrigerant is different.
  • the third air-cooled heat exchanger 15 is a condenser
  • the first air-cooled heat exchanger 3 For the evaporator, the available heat sources of the helicopter multi-cabin dual-standard air-conditioning system include: outside air, electronic equipment heat dissipation and lubricating oil heat.
  • the specific process of heating mode is as follows:
  • the four-way reversing valve 1 In the heating mode, the four-way reversing valve 1 is energized, and the working mode of the four-way reversing valve 1 is switched, the fourth port is connected to the second port, and the third port is connected to the first port.
  • the heating process can be divided into three modes:
  • the refrigerant only needs to absorb the heat of the electronic equipment cabin in the second air-cooled heat exchanger 9 and transfer the heat to the cabin in the third air-cooled heat exchanger 15 through the refrigeration cycle.
  • the first throttle 8, the third control valve 12, and the fourth control valve 14 are opened, the first control valve 7, the second control valve 11, and the second throttle 13 are closed, the compressor 2, the second fan 10.
  • the third fan 16 and the electric compressor 17 are working, and the first fan 4 and the oil pump 6 are not working.
  • the first air-cooled heat exchanger 3, the plate heat exchanger 5, the second air-cooled heat exchanger 9, the third air-cooled heat exchanger 15 and the exhaust valve 18 are all in working state.
  • the refrigerant of the second air-cooled heat exchanger 9 flows through the third control valve 12, it flows into the four-way reversing valve 1 from the fourth port of the four-way reversing valve 1, and flows out from the second port of the four-way reversing valve 1. Then it enters the low-pressure suction port of compressor 2. After being compressed by compressor 2, the refrigerant flows into the third port of four-way reversing valve 1 through the exhaust port of compressor 2, and then from the first port of four-way reversing valve 1. The interface flows out to the third air-cooled heat exchanger 15, and the heat is transferred to the cabin air in the third air-cooled heat exchanger 15. The heated refrigerant flows through the fourth control valve 14 and is connected in the first throttle 8. After the flow, it flows back to the second air-cooled heat exchanger 9 to realize the heating cycle.
  • the refrigerant absorbs the heat of the ambient air in the first air-cooled heat exchanger 3, and absorbs the heat of the electronic equipment cabin in the second air-cooled heat exchanger 9, through the refrigeration cycle, in the second air-cooled heat exchanger 9
  • the three-air-cooled heat exchanger 15 transfers heat to the cabin.
  • the first throttle 8, the second throttle 13, the second control valve 11, and the fourth control valve 14 are opened, the first control valve 7 and the third control valve 12 are closed, the compressor 2, the first fan 4.
  • the second fan 10, the third fan 16 and the electric compressor 17 work, but the oil pump 6 does not work.
  • the first air-cooled heat exchanger 3, the plate heat exchanger 5, the second air-cooled heat exchanger 9, the third air-cooled heat exchanger 15 and the exhaust valve 18 are all in working state.
  • the refrigerant of the first air-cooled heat exchanger 3 flows into the four-way reversing valve 1 from the fourth port of the four-way reversing valve 1, and flows out of the second port of the four-way reversing valve 1, and then enters the low-pressure suction of the compressor 2.
  • the air port adopts the compressor intermediate air supplement technology.
  • the refrigerant is compressed at the intermediate pressure suction port of the compressor 2 and merges with the refrigerant of the second air-cooled heat exchanger 9 to control the refrigerant state of the second air-cooled heat exchanger 9 , Can effectively reduce the superheat of the mixed refrigerant, make the compressor's exhaust temperature still be in the operating range of the compressor when the ambient temperature is high, and ensure the normal operation of the helicopter multi-cabin dual-standard air-conditioning system.
  • the refrigerant that merges with the refrigerant of the second air-cooled heat exchanger 9 is compressed again by the compressor 2 and flows into the third port of the four-way reversing valve 1 through the exhaust port of the compressor 2, and the exhaust port of the compressor 2 After the refrigerant flows into the third port of the four-way reversing valve 1, it flows out of the first port of the four-way reversing valve 1 to the third air-cooled heat exchanger 15, where the heat is transferred to The air in the cockpit is then divided into two paths at the outlet of the third air-cooled heat exchanger 15. The first path is throttled in the first throttle 8, and then flows into the second air-cooled heat exchanger 9.
  • the air-cooled heat exchanger 9 absorbs the heat of the air in the electronic equipment compartment, and the air in the electronic equipment compartment is used as a cold source to absorb the heat load of the electronic equipment compartment, and then the second fan 10 is used as the power to return to the second air-cooled heat exchanger 9 to perform Recirculation; after the second path is throttled in the second throttle 13, it flows into the first air-cooled heat exchanger 3, and absorbs the heat of the ambient air in the first air-cooled heat exchanger 3.
  • the ambient air is
  • the first fan 4 provides power to enter the first air-cooled heat exchanger 3; the heating cycle is realized.
  • the oil pump 6 When the ambient temperature is low, the energy efficiency of the heating cycle is relatively small.
  • the oil pump 6 is started, the oil heat cycle is turned on, and the refrigerant absorbs the heat of the ambient air in the first air-cooled heat exchanger 3, and then the heat in the plate heat exchanger 5 absorbs the heat of the lubricating oil, absorbs the heat of the electronic equipment cabin in the second air-cooled heat exchanger 9, and transfers the heat to the cabin in the third air-cooled heat exchanger 15 through the evaporative circulation system.
  • the first throttle 8, the second throttle 13, the second control valve 11, and the fourth control valve 14 are opened, the first control valve 7 and the third control valve 12 are closed, the compressor 2, the first fan 4.
  • the second fan 10, the third fan 16, the electric compressor 17, and the lubricating oil pump 6 work.
  • the first air-cooled heat exchanger 3, the plate heat exchanger 5, the second air-cooled heat exchanger 9, the third air-cooled heat exchanger 15 and the exhaust valve 18 are all in working state.
  • the refrigerant of the first air-cooled heat exchanger 3 flows into the four-way reversing valve 1 from the fourth port of the four-way reversing valve 1, and flows out of the second port of the four-way reversing valve 1, and then enters the low-pressure suction of the compressor 2.
  • the air port adopts the compressor intermediate air supplement technology.
  • the refrigerant is compressed at the intermediate pressure suction port of the compressor 2 and merges with the refrigerant of the second air-cooled heat exchanger 9 to control the refrigerant state of the second air-cooled heat exchanger 9 , Can effectively reduce the superheat of the mixed refrigerant, make the compressor's exhaust temperature still be in the operating range of the compressor when the ambient temperature is high, and ensure the normal operation of the helicopter multi-cabin dual-standard air-conditioning system.
  • the refrigerant that merges with the refrigerant of the second air-cooled heat exchanger 9 is compressed again by the compressor 2 and flows into the third port of the four-way reversing valve 1 through the exhaust port of the compressor 2, and the exhaust port of the compressor 2 After the refrigerant flows into the third port of the four-way reversing valve 1, it flows out of the first port of the four-way reversing valve 1 to the third air-cooled heat exchanger 15, where the heat is transferred to The air in the cockpit is then divided into two paths at the outlet of the third air-cooled heat exchanger 15. The first path is throttled in the first throttle 8, and then flows into the second air-cooled heat exchanger 9.
  • the air-cooled heat exchanger 9 absorbs the heat of the air in the electronic equipment compartment, and the air in the electronic equipment compartment is used as a cold source to absorb the heat load of the electronic equipment compartment, and then the second fan 10 is used as the power to return to the second air-cooled heat exchanger 9 to perform Recirculation; after the second path is throttled in the second throttle 13, it flows into the plate heat exchanger 5, absorbs the heat of the lubricating oil in the plate heat exchanger 5, and then flows into the first air-cooled heat exchanger 3.
  • the first air-cooled heat exchanger 3 absorbs the heat of the external ambient air, and the external ambient air is powered by the first fan 4 to enter the first air-cooled heat exchanger 3; a heating cycle is realized.
  • the cabin pressurization system of non-engine bleed air is mainly composed of an electric compressor 17, an exhaust valve 18 and a cabin pressure regulator.
  • the electric compressor 17 bleeds air from the ambient air and pressurizes it, and circulates the bad air at the cockpit return air.
  • the third fan 16 flows through the third air-cooled heat exchanger 15, and then the cabin pressure regulator is used to set the cabin height according to the cabin pressure system, and the exhaust valve 18 exhausts all or part of the pressurized air to Outside the cabin.
  • Ambient bleed air or ambient air bleed is the electric compressor 17 to introduce air in the atmospheric environment.
  • the cabin pressure system determines the cabin pressure corresponding to the cabin height according to the flight altitude (or called the cabin height).
  • the cabin pressure regulator determines the cabin pressure corresponding to the cabin height according to the cabin pressure system, and the whole or part of the cabin pressure is determined by the exhaust valve 18.
  • the pressurized air is discharged to the outside of the cabin to adjust the current cabin pressure, so that the current cabin pressure is consistent with the cabin pressure corresponding to the cabin height.
  • the present invention provides a helicopter multi-cabin dual-standard air-conditioning system based on compressor intermediate air supplement technology, which can integrate refrigeration system, heating system and non-engine bleed air cabin pressurization system, and can realize electronic equipment cabin refrigeration and cabin refrigeration, Heating conversion;
  • the helicopter multi-cabin dual-standard air conditioning system of the present invention is equivalent to an environmental control system, which can realize temperature and pressure adjustment in the cockpit, reduce the influence of the existing environmental control system on the power source, and improve the maneuverability of the helicopter performance.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种基于压缩机中间补气技术的直升机多舱双制式空调系统,包含四通换向阀(1)、压缩机(2)、第一风冷换热器(3)、第一风机(4)、板式换热器(5)、滑油泵(6)、第一控制阀(7)、第一节流器(8)、第二风冷换热器(9)、第二风机(10)、第二控制阀(11)、第三控制阀(12)、第二节流器(13)、第四控制阀(14)、第三风冷换热器(15)、第三风机(16)、电动压气机(17)和排气活门(18);电动压气机(17)、排气活门(18)和座舱压力调节器组成非发动机引气的座舱增压系统。制冷模式时,第三风冷换热器(15)为蒸发器,第二风冷换热器(9)为蒸发器,第一风冷换热器(3)为冷凝器;制热模式时,第三风冷换热器(15)为冷凝器,第一风冷换热器(3)为蒸发器,空调系统可利用的热源包括:舱外空气、电子设备散热和滑油热量。利用压缩机中间补气高温制冷技术,使压缩机排气温度降低,保证环境控制系统可在全天候、宽工况的环境下有效运行。

Description

基于压缩机中间补气技术的直升机多舱双制式空调系统
本申请要求于2019年10月16日提交中国专利局、申请号为201910981721.8、发明名称为“基于压缩机中间补气技术的直升机多舱双制式空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于航空系统技术领域,涉及一种直升机空调系统,特别涉及一种基于压缩机中间补气技术的直升机多舱双制式空调系统。
背景技术
直升机是依靠由涡轴发动机以旋转输出轴的形式提供动力并通过机械传动系统直接驱动旋翼产生升力和推进力的航空器。它能完成垂直起落、空中悬停、原地旋转和多方向飞行等多种常规固定翼飞机无法完成的飞行动作。此外发动机停车时它还能利用旋翼自转特性实现安全降落,因此使用起来非常安全。另外,它综合了地面运输工具和固定翼飞机的优点,既可以用于运输士兵装备、对地攻击、反坦克、火力支援和搜索救援等军事目的,还可应用在运输、巡逻、旅游和救护等多个民用领域,是典型的军民两用产品,近年来应用越来越广泛。
同固定翼飞机一样,直升机也需要在高温、高湿的恶劣气候条件下飞行。为保证空勤人员正常生理需求,提高乘员乘座的舒适性,以及舱内电子设备的正常工作,直升机需要配置空气调节系统。特别是现代军民用直升机,为提高本机的性能,大量采用大功率和高集成度航空电子设备,这些设备工作时要放出大量热量,所以要保证电子设备正常工作,必须及时将这些热量散发出去。同时,人员对直升机座舱乘座舒适性的期望也越来越高,所有这些意味着现代先进高性能直升机对空调系统的要求越来越高。
从20世纪60年代开始在直升机上安装制冷循环系统,该制冷循环系统主要包括蒸发循环系统和空气循环系统。当时发动机引气的空气循环系统是固定翼飞机环控系统普遍采用的解决方案,重量也比蒸发循环系统轻。 因此,在研制直升机环控系统时,人们通常考虑采用空气循环系统。但是相对于蒸发制冷循环,空气循环制冷系统的代偿损失大、效率低。随着机载蒸发循环制冷技术近年来的不断发展,蒸发循环系统冷媒泄漏和可靠性较差等问题得到了较好解决,蒸发循环制冷方案以其制冷量大和效率高等优势更适用于直升机机载制冷系统。除此之外,目前的直升机大多利用发动机引气来实现制热,这明显会增加制冷循环系统的代偿损失。目前的直升机由于飞行高度低,座舱不密闭,不需要座舱增压,而固定翼飞机中解决座舱增压的方案主要是空气循环系统,但该空气循环系统需要提取大量发动机引气,消耗大量发动机功率。而未来直升机向着高速、高空及高机动性发展,必然要开发非发动机引气的增压技术。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供了一种基于压缩机中间补气技术的直升机多舱双制式空调系统。
为实现所述目的,本发明提供了如下方案:
一种基于压缩机中间补气技术的直升机多舱双制式空调系统,包含四通换向阀、压缩机、第一风冷换热器、第一风机、板式换热器、滑油泵、第一控制阀、第一节流器、第二风冷换热器、第二风机、第二控制阀、第三控制阀、第二节流器、第四控制阀、第三风冷换热器、第三风机、电动压气机和排气活门;
所述四通换向阀包含第一至第四接口,用于使得第一接口和第二接口导通、第三接口和第四接口导通,或使得第一接口和第三接口导通、第二接口和第四接口导通;所述压缩机包含低压吸气入口、中压吸气入口和排气口;所述板式换热器包含冷媒通道和滑油通道;
所述四通换向阀的第一接口通过管道和所述第三风冷换热器的一端连接,所述四通换向阀的第二接口通过管道和所述压缩机的低压吸气入口连接,所述四通换向阀的第三接口通过管道和所述压缩机的排气口连接,所述四通换向阀的第四接口通过管道分别和所述第三控制阀的一端、所述第一风冷换热器的一端连接;
所述压缩机的中压吸气入口通过管道和所述第二控制阀的一端连接;
所述第一风冷换热器的另一端通过管道和所述板式换热器的冷媒通道的一端连接;所述第一风机设置在所述第一风冷换热器处,用于强化外界环境空气与所述第一风冷换热器中冷媒的换热;
所述板式换热器的冷媒通道的另一端通过管道分别和所述第一控制阀的一端、所述第二节流器的一端连接;所述板式换热器的滑油通道的一端通过管道依次连接至所述滑油泵、直升机发动机的齿轮箱、所述板式换热器的滑油通道的另一端;
所述第一控制阀的另一端通过管道分别和所述第一节流器的一端、所述第四控制阀的一端连接;
所述第一节流器的另一端通过管道与所述第二风冷换热器的一端连接;
所述第二风冷换热器设置在电子设备舱中,其另一端通过管道分别和所述第二控制阀的另一端、所述第三控制阀的另一端连接;所述第二风机设置在所述第二风冷换热器处,用于强化所述电子设备舱内空气与所述第二风冷换热器中冷媒的换热;
所述第二节流器的另一端通过管道分别和所述第四控制阀的另一端、所述第三风冷换热器的另一端连接;
所述第三风冷换热器设置在直升机的座舱内;所述第三风机设置在所述第三风冷换热器处,用于强化所述座舱内空气与所述第三风冷换热器中冷媒的换热;
所述电动压气机用于将直升机的环境引气压缩至预设的第一压力阈值后、排至座舱;
所述排气活门连接在所述座舱上,用于在所述座舱内压力大于预设的第二压力值时打开,并将所述座舱内的空气排至机外。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
1.综合了制冷系统、制热系统及增压系统,可以实现电子设备舱制冷及座舱制冷、制热的转换,并包含非发动机引气的座舱增压系统,降低了环境控制系统对动力源的影响,提高直升机的机动性能;
2.回收利用滑油热量和电子设备散热量,实现全机能量实时综合管理;
3.利用压缩机中间补气高温制冷技术(即压缩机中间补气技术),使压缩机排气温度降低,实现高温环境下制冷系统的正常工作,保证环境控制系统可在全天候、宽工况的环境下有效运行。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种基于压缩机中间补气技术的直升机多舱双制式空调系统制冷模式示意图;
图2为一种基于压缩机中间补气技术的直升机多舱双制式空调系统制热模式示意图。
符号说明:1-四通换向阀,2-压缩机,3-第一风冷换热器,4-第一风机,5-板式换热器,6-滑油泵,7-第一控制阀,8-第一节流器,9-第二风冷换热器,10-第二风机,11-第二控制阀,12-第三控制阀,13-第二节流器,14-第四控制阀,15-第三风冷换热器,16-第三风机,17-电动压气机,18-排气活门。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种基于压缩机中间补气技术的直升机多舱双制式空调系统,能够综合制冷系统、制热系统及非发动机引气的座舱增压系统,可以实现电子设备舱制冷及座舱制冷、制热的转换,提高直升机的机动性能。多舱包括直升机的座舱和电子设备舱,双制为制冷系统和制热系统。
为使本发明的所述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明公开了一种基于压缩机中间补气技术的直升机多舱双制式空调系统,包含四通换向阀1、压缩机2、第一风冷换热器3、第一风机4、板式换热器5、滑油泵6、第一控制阀7、第一节流器8、第二风冷换热器9、第二风机10、第二控制阀11、第三控制阀12、第二节流器13、第四控制阀14、第三风冷换热器15、第三风机16、电动压气机17和排气活门18。
四通换向阀1包含第一接口至第四接口,四通换向阀1用于使得第一接口和第二接口导通,以及第三接口和第四接口导通;或使得第一接口和第三接口导通,以及第二接口和第四接口导通。图1中四通换向阀1的接口①②③④分别对应表示第一接口至第四接口。压缩机2包含低压吸气入口、中压吸气入口和排气口。板式换热器5包含冷媒通道和滑油通道。
四通换向阀1的第一接口①通过管道和第三风冷换热器15的一端连接,四通换向阀1的第二接口②通过管道和压缩机2的低压吸气入口连接,四通换向阀1的第三接口③通过管道和压缩机2的排气口连接,四通换向阀1的第四接口④通过管道分别和第三控制阀12的一端、第一风冷换热器3的一端连接。
压缩机2的中压吸气入口通过管道和第二控制阀11的一端连接。
第一风冷换热器3的另一端通过管道和板式换热器5的冷媒通道的一端连接。第一风机4设置在第一风冷换热器3处,第一风机4用于强化外界环境空气与第一风冷换热器3中冷媒的换热,第一风机4具体可设置在第一风冷换热器3的一侧。
板式换热器5的冷媒通道的另一端通过管道分别和第一控制阀7的一端、第二节流器13的一端连接。板式换热器5的滑油通道的一端通过管道依次连接至滑油泵6、直升机的发动机的齿轮箱、板式换热器5的滑油通道的另一端,发动机滑油的流向为从板式换热器5的滑油通道的一端流出后,依次经过滑油泵6和直升机的发动机的齿轮箱后,经板式换热器5的滑油通道的另一端流回板式换热器,实现滑油热循环。
第一控制阀7的另一端通过管道分别和第一节流器8的一端、第四控 制阀14的一端连接。
第一节流器8的另一端通过管道与第二风冷换热器9的一端连接。
第二风冷换热器9设置在直升机的电子设备舱中,第二风冷换热器9的另一端通过管道分别和第二控制阀11的另一端、第三控制阀12的另一端连接。第二风机10设置在第二风冷换热器9处,第二风机10用于强化电子设备舱内空气与第二风冷换热器9中冷媒的换热,第二风机10具体可设置在第二风冷换热器9的一侧。
第二节流器13的另一端通过管道分别和第四控制阀14的另一端、第三风冷换热器15的另一端连接。
第三风冷换热器15设置在直升机的座舱内。第三风机16设置在第三风冷换热器15处,第三风机16用于强化座舱内空气与第三风冷换热器15中冷媒的换热,第三风机16具体可设置在第三风冷换热器15的一侧。
电动压气机17用于将直升机的环境引气压缩至预设的第一压力阈值后排至座舱。电动压气机17具体用于将大气环境中的空气引入并压缩至预设的第一压力阈值后排至座舱。
排气活门18连接在座舱上,用于在座舱内压力大于预设的第二压力值时打开,并将座舱内的空气排至机外。
图1为本发明制冷模式的工作流程,具体如下:
1)制冷过程
制冷模式时,四通换向阀1中,第一接口①与第二接口②导通,第三接口③与第四接口④导通;第一控制阀7、第二控制阀11、第一节流器8和第二节流器13打开,第三控制阀12和第四控制阀14关闭,压缩机2、第一风机4、第二风机10、第三风机16和电动压气机17工作,滑油泵6不工作。制冷模式时,第三风冷换热器15为蒸发器,第二风冷换热器9为蒸发器,第一风冷换热器3为冷凝器。第一风冷换热器3、板式换热器5、第二风冷换热器9、第三风冷换热器15和排气活门18均处于工作状态。换热器为静设备,其通道始终打开;排气活门属于座舱增压系统,座舱增压系统在制冷模式和制热模式下均开启。
设置座舱的蒸发温度低于电子设备舱的蒸发温度,第三风冷换热器15的冷媒由四通换向阀1的第一接口①流入四通换向阀1后,由四通换 向阀1的第二接口②流出,并进入压缩机2的低压吸气口,采用压缩机中间补气技术,冷媒经压缩机2压缩后在压缩机2的中压吸气口与第二风冷换热器9的冷媒汇合,控制第二风冷换热器9的冷媒状态,可有效降低混合后冷媒的过热度,使压缩机的排气温度在环境温度较高时,仍处于压缩机可运行工况范围内,保证直升机多舱双制式空调系统的正常工作。
与第二风冷换热器9的冷媒汇合后的冷媒经压缩机2再次压缩后,通过压缩机2的排气口流入四通换向阀1的第三接口③,压缩机2的排气口的冷媒流入四通换向阀1的第三接口③后,由四通换向阀1的第四接口④流出后流入至第一风冷换热器3,在第一风冷换热器3中将热量传给外界空气热沉。
第一风冷换热器3出口的冷媒分成两路,其第一路在第一节流器8中节流后,流入第二风冷换热器9,在第二风冷换热器9中吸收电子设备舱内空气的热量,电子设备舱内空气作为冷源吸收电子设备舱的热负荷后,由第二风机10作为动力回到第二风冷换热器9进行再循环;其第二路在第二节流器13中节流后,流入第三风冷换热器15,在第三风冷换热器15中吸收座舱内空气的热量,座舱内空气作为冷源吸收座舱的热负荷后,由第三风机16作为动力回到第三风冷换热器15进行再循环。
两路冷媒吸热后再分别流回压缩机,实现制冷循环。
2)座舱增压过程
非发动机引气的座舱增压系统主要由电动压气机17、排气活门18和座舱压力调节器组成。座舱增压系统通过电动压气机17从环境空气引气并增压,在座舱回气处与循坏空气汇合后,通过第三风机16流过第三风冷换热器15后,再由座舱压力调节器依据座舱压力制度,由排气活门18将全部或部分增压空气排至舱外。环境引气或环境空气引气为电动压气机17将大气环境中的空气引入。座舱压力制度根据飞行高度(或者叫座舱高度)确定与座舱高度对应的舱内压力,座舱压力调节器根据座舱压力制度确定的与座舱高度对应的舱内压力,通过排气活门18将全部或部分增压空气排至舱外来调节当前的舱内压力,使当前的舱内压力与座舱高度对应的舱内压力保持一致。
图2为本发明制热模式的工作流程,与制冷模式不同的是,冷媒的流 动方向不同,制热模式时,第三风冷换热器15为冷凝器,第一风冷换热器3为蒸发器,直升机多舱双制式空调系统可利用的热源包括:舱外空气、电子设备散热和滑油热量。制热模式的具体流程如下:
1)制热过程
制热模式时,四通换向阀1通电,且四通换向阀1的工作模式切换,第四接口与第二接口导通,第三接口与第一接口导通。制热过程可分为三种模式:
a.如座舱加热量需求较小,冷媒仅需在第二风冷换热器9中吸收电子设备舱的热量,通过制冷循环,在第三风冷换热器15中将热量传给座舱。
此时,第一节流器8、第三控制阀12和第四控制阀14打开,第一控制阀7、第二控制阀11和第二节流器13关闭,压缩机2、第二风机10、第三风机16和电动压气机17工作,第一风机4和滑油泵6不工作。第一风冷换热器3、板式换热器5、第二风冷换热器9、第三风冷换热器15和排气活门18均处于工作状态。
第二风冷换热器9的冷媒流经第三控制阀12后,由四通换向阀1的第四接口流入四通换向阀1,由四通换向阀1的第二接口流出后进入压缩机2的低压吸气口,经压缩机2压缩后,冷媒通过压缩机2的排气口流入四通换向阀1的第三接口,再由四通换向阀1的第一接口流出至第三风冷换热器15,在第三风冷换热器15中将热量传给座舱空气,升温后的冷媒流经第四控制阀14,在第一节流器8中节流后,流回第二风冷换热器9,实现制热循环。
b.如座舱加热量需求较大,冷媒在第一风冷换热器3中吸收环境空气的热量,在第二风冷换热器9中吸收电子设备舱的热量,通过制冷循环,在第三风冷换热器15中将热量传给座舱。
此时,第一节流器8、第二节流器13、第二控制阀11和第四控制阀14打开,第一控制阀7和第三控制阀12关闭,压缩机2、第一风机4、第二风机10、第三风机16和电动压气机17工作,滑油泵6不工作。第一风冷换热器3、板式换热器5、第二风冷换热器9、第三风冷换热器15和排气活门18均处于工作状态。
第一风冷换热器3的冷媒由四通换向阀1的第四接口流入四通换向阀1后,由四通换向阀1的第二接口流出后进入压缩机2的低压吸气口,采用压缩机中间补气技术,冷媒经压缩后在压缩机2的中压吸气口与第二风冷换热器9的冷媒汇合,控制第二风冷换热器9的冷媒状态,可有效降低混合后冷媒的过热度,使压缩机的排气温度在环境温度较高时,仍处于压缩机可运行工况范围内,保证直升机多舱双制式空调系统正常工作。
与第二风冷换热器9的冷媒汇合后的冷媒经压缩机2再次压缩后经压缩机2的排气口流入四通换向阀1的第三接口,压缩机2的排气口的冷媒流入四通换向阀1的第三接口后,由四通换向阀1的第一接口流出至第三风冷换热器15,在第三风冷换热器15中将热量传给座舱内的空气,然后在第三风冷换热器15的出口分成两路,其第一路在第一节流器8中节流后,流入第二风冷换热器9,在第二风冷换热器9中吸收电子设备舱空气的热量,电子设备舱内空气作为冷源吸收电子设备舱的热负荷后,由第二风机10作为动力回到第二风冷换热器9进行再循环;其第二路在第二节流器13中节流后,流入第一风冷换热器3,在第一风冷换热器3中吸收外界环境空气的热量,外界环境空气由第一风机4提供动力进入第一风冷换热器3;实现制热循环。
c.当环境温度较低时,制热循环的能效比较小,启动滑油泵6,滑油热循环开启,冷媒在第一风冷换热器3中吸收环境空气的热量,在板式换热器5中吸收滑油的热量,在第二风冷换热器9中吸收电子设备舱的热量,通过蒸发循环系统,在第三风冷换热器15中将热量传给座舱。
此时,第一节流器8、第二节流器13、第二控制阀11和第四控制阀14打开,第一控制阀7和第三控制阀12关闭,压缩机2、第一风机4、第二风机10、第三风机16、电动压气机17和滑油泵6工作。第一风冷换热器3、板式换热器5、第二风冷换热器9、第三风冷换热器15和排气活门18均处于工作状态。
第一风冷换热器3的冷媒由四通换向阀1的第四接口流入四通换向阀1后,由四通换向阀1的第二接口流出后进入压缩机2的低压吸气口,采用压缩机中间补气技术,冷媒经压缩后在压缩机2的中压吸气口与第二风冷换热器9的冷媒汇合,控制第二风冷换热器9的冷媒状态,可有效降低 混合后冷媒的过热度,使压缩机的排气温度在环境温度较高时,仍处于压缩机可运行工况范围内,保证直升机多舱双制式空调系统正常工作。
与第二风冷换热器9的冷媒汇合后的冷媒经压缩机2再次压缩后经压缩机2的排气口流入四通换向阀1的第三接口,压缩机2的排气口的冷媒流入四通换向阀1的第三接口后,由四通换向阀1的第一接口流出至第三风冷换热器15,在第三风冷换热器15中将热量传给座舱内的空气,然后在第三风冷换热器15的出口分成两路,其第一路在第一节流器8中节流后,流入第二风冷换热器9,在第二风冷换热器9中吸收电子设备舱空气的热量,电子设备舱内空气作为冷源吸收电子设备舱的热负荷后,由第二风机10作为动力回到第二风冷换热器9进行再循环;其第二路在第二节流器13中节流后,流入板式换热器5,在板式换热器5中吸收滑油的热量,再流入第一风冷换热器3,在第一风冷换热器3中吸收外界环境空气的热量,外界环境空气由第一风机4提供动力进入第一风冷换热器3;实现制热循环。
2)座舱增压过程
非发动机引气的座舱增压系统主要由电动压气机17、排气活门18和座舱压力调节器组成,通过电动压气机17从环境空气引气并增压,在座舱回气处与循坏空气汇合后,通过第三风机16流过第三风冷换热器15后,再由座舱压力调节器依据座舱压力制度设定的座舱高度,由排气活门18将全部或部分增压空气排至舱外。环境引气或环境空气引气为电动压气机17将大气环境中的空气引入。座舱压力制度根据飞行高度(或者叫座舱高度)确定与座舱高度对应的舱内压力,座舱压力调节器根据座舱压力制度确定的与座舱高度对应的舱内压力,通过排气活门18将全部或部分增压空气排至舱外来调节当前的舱内压力,使当前的舱内压力与座舱高度对应的舱内压力保持一致。
本发明提供一种基于压缩机中间补气技术的直升机多舱双制式空调系统,能够综合制冷系统、制热系统及非发动机引气的座舱增压系统,可以实现电子设备舱制冷及座舱制冷、制热的转换;本发明的直升机多舱双制式空调系统相当于环境控制系统,可以实现座舱内的温度调节和压力调节,降低了现有环境控制系统对动力源的影响,提高了直升机的机动性能。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (1)

  1. 基于压缩机中间补气技术的直升机多舱双制式空调系统,其特征在于,包含四通换向阀、压缩机、第一风冷换热器、第一风机、板式换热器、滑油泵、第一控制阀、第一节流器、第二风冷换热器、第二风机、第二控制阀、第三控制阀、第二节流器、第四控制阀、第三风冷换热器、第三风机、电动压气机和排气活门;
    所述四通换向阀包含第一至第四接口,用于使得第一接口和第二接口导通、第三接口和第四接口导通,或使得第一接口和第三接口导通、第二接口和第四接口导通;所述压缩机包含低压吸气入口、中压吸气入口和排气口;所述板式换热器包含冷媒通道和滑油通道;
    所述四通换向阀的第一接口通过管道和所述第三风冷换热器的一端连接,所述四通换向阀的第二接口通过管道和所述压缩机的低压吸气入口连接,所述四通换向阀的第三接口通过管道和所述压缩机的排气口连接,所述四通换向阀的第四接口通过管道分别和所述第三控制阀的一端、所述第一风冷换热器的一端连接;
    所述压缩机的中压吸气入口通过管道和所述第二控制阀的一端连接;
    所述第一风冷换热器的另一端通过管道和所述板式换热器的冷媒通道的一端连接;所述第一风机设置在所述第一风冷换热器处,用于强化外界环境空气与所述第一风冷换热器中冷媒的换热;
    所述板式换热器的冷媒通道的另一端通过管道分别和所述第一控制阀的一端、所述第二节流器的一端连接;所述板式换热器的滑油通道的一端通过管道依次连接至所述滑油泵、直升机发动机的齿轮箱、所述板式换热器的滑油通道的另一端;
    所述第一控制阀的另一端通过管道分别和所述第一节流器的一端、所述第四控制阀的一端连接;
    所述第一节流器的另一端通过管道与所述第二风冷换热器的一端连接;
    所述第二风冷换热器设置在电子设备舱中,其另一端通过管道分别和所述第二控制阀的另一端、所述第三控制阀的另一端连接;所述第二风机设置在所述第二风冷换热器处,用于强化所述电子设备舱内空气与所述第二风冷换热器中冷媒的换热;
    所述第二节流器的另一端通过管道分别和所述第四控制阀的另一端、所述第三风冷换热器的另一端连接;
    所述第三风冷换热器设置在直升机的座舱内;所述第三风机设置在所述第三风冷换热器处,用于强化所述座舱内空气与所述第三风冷换热器中冷媒的换热;
    所述电动压气机用于将直升机的环境引气压缩至预设的第一压力阈值后、排至座舱;
    所述排气活门连接在所述座舱上,用于在所述座舱内压力大于预设的第二压力值时打开,并将所述座舱内的空气排至机外。
PCT/CN2020/103171 2019-10-16 2020-07-21 基于压缩机中间补气技术的直升机多舱双制式空调系统 WO2021073186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910981721.8 2019-10-16
CN201910981721.8A CN110920902B (zh) 2019-10-16 2019-10-16 基于压缩机中间补气技术的直升机多舱双制式空调系统

Publications (1)

Publication Number Publication Date
WO2021073186A1 true WO2021073186A1 (zh) 2021-04-22

Family

ID=69848964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103171 WO2021073186A1 (zh) 2019-10-16 2020-07-21 基于压缩机中间补气技术的直升机多舱双制式空调系统

Country Status (2)

Country Link
CN (1) CN110920902B (zh)
WO (1) WO2021073186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788148A (zh) * 2021-08-24 2021-12-14 中国航空工业集团公司金城南京机电液压工程研究中心 一种滑油废热源的直接换热式热泵空调系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920902B (zh) * 2019-10-16 2022-05-03 南京航空航天大学 基于压缩机中间补气技术的直升机多舱双制式空调系统
CN112407294B (zh) * 2020-10-30 2022-11-22 哈尔滨飞机工业集团有限责任公司 一种滑油散热座舱加温系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301607A1 (en) * 1987-07-20 1989-02-01 The Boeing Company Method and apparatus for controlling the concentration of carbon dioxide in an aircraft cabin
CN101148197A (zh) * 2007-10-26 2008-03-26 北京航空航天大学 一种应用于客机的座舱环境控制系统
CN103010466A (zh) * 2012-11-27 2013-04-03 北京航空航天大学 双级压缩空气循环制冷系统
CN207299601U (zh) * 2017-07-31 2018-05-01 苏州新同创汽车空调有限公司 一种汽车用补气增焓空调
CN109367791A (zh) * 2018-10-18 2019-02-22 中国航空工业集团公司金城南京机电液压工程研究中心 一种多电飞机电动环境控制系统
EP3466816A1 (fr) * 2017-10-05 2019-04-10 Liebherr-Aerospace Toulouse SAS Module autonome de récupération d énergie d'une cabine d'un aéronef et procédé correspondant
CN110920902A (zh) * 2019-10-16 2020-03-27 南京航空航天大学 基于压缩机中间补气技术的直升机多舱双制式空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381479B (zh) * 2011-09-14 2014-07-09 中国航空工业集团公司西安飞机设计研究所 一种无冲压进气道的综合环控/液冷热能管理系统
CN102390538A (zh) * 2011-09-14 2012-03-28 中国航空工业集团公司西安飞机设计研究所 一种无冲压进气道综合环控/液冷热能管理系统
BR102016011964B1 (pt) * 2016-05-25 2022-12-27 Hamilton Sundstrand Corporation Pacote de sistema de controle ambiental
FR3068005B1 (fr) * 2017-06-23 2019-07-26 Liebherr-Aerospace Toulouse Systeme et procede de controle environnemental d'une cabine d'un aeronef et aeronef equipe d'un tel systeme de controle
CN109533343A (zh) * 2018-11-15 2019-03-29 中国直升机设计研究所 一种直升机引气控制系统
CN109334997A (zh) * 2018-11-15 2019-02-15 中国直升机设计研究所 一种直升机环控控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301607A1 (en) * 1987-07-20 1989-02-01 The Boeing Company Method and apparatus for controlling the concentration of carbon dioxide in an aircraft cabin
CN101148197A (zh) * 2007-10-26 2008-03-26 北京航空航天大学 一种应用于客机的座舱环境控制系统
CN103010466A (zh) * 2012-11-27 2013-04-03 北京航空航天大学 双级压缩空气循环制冷系统
CN207299601U (zh) * 2017-07-31 2018-05-01 苏州新同创汽车空调有限公司 一种汽车用补气增焓空调
EP3466816A1 (fr) * 2017-10-05 2019-04-10 Liebherr-Aerospace Toulouse SAS Module autonome de récupération d énergie d'une cabine d'un aéronef et procédé correspondant
CN109367791A (zh) * 2018-10-18 2019-02-22 中国航空工业集团公司金城南京机电液压工程研究中心 一种多电飞机电动环境控制系统
CN110920902A (zh) * 2019-10-16 2020-03-27 南京航空航天大学 基于压缩机中间补气技术的直升机多舱双制式空调系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAO HUANG, ZHIMIN HUA WU: "Performance Characteristics of Scroll Refrigeration Compressor Through Compensating Vapor in the Course of Compression", FLUID MACHINERY, vol. 30, no. 04, 1 April 2002 (2002-04-01), pages 11 - 13+7, XP055801227 *
LI, RIHUA: "Study on Influence on Screw Chiller Performance Through Compensating Vapor in the Course of Compression", ELECTRICAL APPLIANCES, 1 August 2015 (2015-08-01), pages 71 - 73+87, XP055801223, [retrieved on 20210504] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788148A (zh) * 2021-08-24 2021-12-14 中国航空工业集团公司金城南京机电液压工程研究中心 一种滑油废热源的直接换热式热泵空调系统

Also Published As

Publication number Publication date
CN110920902A (zh) 2020-03-27
CN110920902B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN110901925B (zh) 一种直升机多舱双制式环境控制系统
WO2021073186A1 (zh) 基于压缩机中间补气技术的直升机多舱双制式空调系统
EP3363739B1 (en) Reverse air cycle machine (racm) thermal management systems and methods
CN111017235B (zh) 一种能量优化的飞机机电系统热管理方法
CN108438233B (zh) 一种直升机空调系统
US6457318B1 (en) Recirculating regenerative air cycle
CN109367791B (zh) 一种多电飞机电动环境控制系统
CN106697297B (zh) 一种可同时提供液冷与风冷的环控系统
CN102381479B (zh) 一种无冲压进气道的综合环控/液冷热能管理系统
WO2023092962A1 (zh) 一种飞机座舱加温系统
CN112918682B (zh) 基于舱室不同压力的四轮高压除水环控系统及工作方法
CN113184196A (zh) 一种固定翼飞机综合环控系统
CN103256742B (zh) 电动分体式四轮高压除水空气循环制冷系统
CN103612760B (zh) 一种主动回收冷量的闭式空气制冷循环装置
CN1078558C (zh) 充分利用能源的空气循环式飞机环境控制系统
CN108216642A (zh) 一种应用于机载吊舱的中间再热式涡轮冷却器系统
CN107521700A (zh) 一种综合式座舱空气再循环系统
CN108088105A (zh) 一种电子设备吊舱环境控制系统
CN111372432A (zh) 一种高集成度空地两用吊舱环控供液系统
CN209326131U (zh) 一种轻型直升机用具有发电机散热功能的机载环控设备
CN108438232B (zh) 一种空调分布在短翼内的直升机
CN103612761A (zh) 一种被动吸收冷量的开式空气制冷循环装置
CN109334996A (zh) 一种直升机制冷系统
CN210258851U (zh) 使用燃油冷却的轻型飞机集中式冷却系统
CN113247269A (zh) 基于物联网的航空器热管理装置及其监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876084

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20876084

Country of ref document: EP

Kind code of ref document: A1