WO2023092867A1 - 分布式天线系统的光纤检测方法、控制模块和计算机介质 - Google Patents

分布式天线系统的光纤检测方法、控制模块和计算机介质 Download PDF

Info

Publication number
WO2023092867A1
WO2023092867A1 PCT/CN2022/076748 CN2022076748W WO2023092867A1 WO 2023092867 A1 WO2023092867 A1 WO 2023092867A1 CN 2022076748 W CN2022076748 W CN 2022076748W WO 2023092867 A1 WO2023092867 A1 WO 2023092867A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
relay device
port
optical port
antenna system
Prior art date
Application number
PCT/CN2022/076748
Other languages
English (en)
French (fr)
Inventor
徐仁贞
朱博韬
范存孝
王秀萍
Original Assignee
普罗斯通信技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普罗斯通信技术(苏州)有限公司 filed Critical 普罗斯通信技术(苏州)有限公司
Publication of WO2023092867A1 publication Critical patent/WO2023092867A1/zh
Priority to US18/350,343 priority Critical patent/US20240031021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure generally relates to the communication field, and more specifically, relates to an optical fiber detection method of a distributed antenna system, a control module, and a computer-readable storage medium.
  • the base station In many cases, such as in buildings, tunnels, large public places, stadiums, etc., the base station cannot provide a large enough signal coverage, or the user density exceeds the range that the base station can usually handle. In these situations, the base station's signal coverage for these areas can be expanded or enhanced by installing a Distributed Antenna System (DAS).
  • DAS Distributed Antenna System
  • mmWave millimeter wave of 5G has low penetration in space transmission and is susceptible to interference, so the demand for the deployment of distributed antenna systems has further increased.
  • FIG. 1 shows a schematic structural diagram of a distributed antenna system 100 .
  • the distributed antenna system 100 has a multi-level architecture, which may include a near-end device 10 and a plurality of relay devices 20 (shown schematically as relay devices 20-1, 20- 2, ... 20-m, wherein m is an integer greater than 1) and a plurality of remote devices 30 (shown schematically as remote devices 30-1, 30-2, ... 30-n in FIG. 1 , wherein n is an integer greater than 1, and n is greater than or equal to m).
  • relay devices 20 shown schematically as relay devices 20-1, 20- 2, ... 20-m, wherein m is an integer greater than 1
  • remote devices 30 shown schematically as remote devices 30-1, 30-2, ... 30-n in FIG. 1 , wherein n is an integer greater than 1, and n is greater than or equal to m).
  • the near-end device 10 may acquire a radio frequency signal from a signal source such as a base station, and transmit the acquired radio frequency signal to the remote device 30 through the relay device 20 .
  • the remote device 30 is located in a place where signal coverage needs to be expanded or enhanced, so as to directly communicate with the user's mobile terminal.
  • the near-end device 10 may be connected to the relay device 20 through an optical fiber, and the relay device 20 may be connected to the remote device 30 through an optical fiber. Therefore, fiber damage will cause communication interruption and abnormal RF signals. Since the near-end device 10, the relay device 20, and the remote device 30 are usually located in different physical locations or difficult-to-reach locations, it is very difficult and time-consuming to manually detect the entire optical fiber link, and it is impossible to detect the entire optical fiber link when there is a connection error in the optical fiber. Pinpoint and correct connection errors.
  • the present disclosure provides a fiber detection method for distributed antennas, in which the upper-level equipment can detect the optical fiber connection information between it and the connected lower-level equipment, and based on the corresponding Determine whether the fiber connection status is normal or not according to the predetermined fiber connection relationship in the working mode.
  • a method for detecting an optical fiber in a distributed antenna system includes a near-end device, a relay device, and a remote device, wherein the near-end device uses one or more A group of first optical channels is connected to a plurality of relay devices, and each relay device is connected to a plurality of remote devices through one or more groups of second optical channels, and the optical fiber detection method includes: at the near-end device , to send a test mode switch command to all relay devices to order all relay devices to switch to test mode; in the test mode, send a first optical switch control command, the first optical switch control command is used for command reception All relay devices that receive the first optical switch control command switch to a group of first optical channels; acquire fiber connection information between the near-end devices and relay devices under all first optical channels; and based on all first optical channels
  • the fiber connection information between the near-end device and the relay device under an optical channel and the working mode of the distributed antenna system determine the fiber connection status of the distributed antenna system.
  • a control module including: at least one processor; and at least one memory, the at least one memory is coupled to the at least one processor and stores information used by the at least one processor Processor-executable instructions that, when executed by the at least one processor, cause the control module to perform the steps of the method as described above.
  • a computer-readable storage medium on which computer program code is stored, and the computer program code executes the above-mentioned method when executed by a processor.
  • the fiber connection information between the upper and lower devices of the distributed antenna system can be automatically determined, and whether the fiber connection status is normal can be determined based on the fiber connection information and the predetermined fiber connection relationship in the corresponding working mode.
  • Fig. 1 shows a schematic structural diagram of a distributed antenna system.
  • Fig. 2 shows a schematic diagram of the structure and connection relationship of a distributed antenna system in a working mode according to some embodiments of the present disclosure.
  • Fig. 3 shows a schematic diagram of the structure and connection relationship of a distributed antenna system in another working mode according to some embodiments of the present disclosure.
  • Fig. 4 shows a schematic diagram of the structure and connection relationship of a distributed antenna system in still another working mode according to some embodiments of the present disclosure.
  • Fig. 5 shows a flowchart of a method for detecting an optical fiber used in a distributed antenna system according to some embodiments of the present disclosure.
  • Fig. 6 shows a further flowchart of the block of obtaining fiber connection information according to some embodiments of the present disclosure.
  • FIG. 7 shows a further flow diagram of the block of obtaining fiber connection status according to some embodiments of the present disclosure.
  • Fig. 8 shows a flow chart of an optical fiber detection method for a distributed antenna system according to some other embodiments of the present disclosure.
  • Fig. 9 shows a further flowchart of the block of obtaining fiber connection information according to some embodiments of the present disclosure.
  • FIG. 10 shows a further flow diagram of the block of obtaining fiber connection status according to some embodiments of the present disclosure.
  • Fig. 11 shows a schematic structural diagram of a control module according to some embodiments of the present disclosure.
  • the term “comprise” and its variants mean open inclusion, ie “including but not limited to”.
  • the term “or” means “and/or” unless otherwise stated.
  • the term “based on” means “based at least in part on”.
  • the terms “one embodiment” and “some embodiments” mean “at least one example embodiment.”
  • the term “another embodiment” means “at least one further embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object.
  • the distributed antenna system 100 may include one near-end device 10 , multiple relay devices 20 and multiple remote devices 30 .
  • the near-end device 10 may include a first number of first optical modules 110 , and each first optical module 110 has a second number of first optical ports 120 .
  • first optical modules 110-A, 110-B, 110-C, and 110-D are exemplarily shown in FIGS.
  • first optical ports 120 are exemplarily shown, that is, the first optical module 110-A includes eight first optical ports 120-1 to 120-8, and the first optical module 110-B includes eight first optical ports 120-9 to 120-16, the first optical module 110-C includes 8 first optical ports 120-17 to 120-24, and the first optical module 110-D includes 8 first optical ports 120-25 to 120-32.
  • each relay device 20 may include a third number of second optical modules 210 , and each second optical module 210 has a second optical port 220 .
  • a first optical port 120 of each first optical module 110 of the near-end device 10 may be connected to a second optical port 220 of a second optical module 210 of a relay device 20 through an optical fiber.
  • FIG. 4 exemplarily show four second optical modules 210-A, 210-B, 210-C, and 210-D for the relay device 20, and for each second optical module 210
  • One second optical port 220 is exemplarily shown, that is, the second optical port 220-A of the second optical module 210-A, the second optical port 220-B of the second optical module 210-B, the second optical port The second optical port 220-C of the module 210-C and the second optical port 220-D of the second optical module 210-D; FIG.
  • connection between the first optical port 120 of the near-end device 10 and the second optical port 220 of the relay device 20 can also be directly described as the connection between the first optical port 120 of the near-end device 10 and the relay device 20 The connection of the second optical module 210 .
  • each relay device 20 may further include a fourth number of third optical modules 230 , and each third optical module 230 has a fifth number of third optical ports 240 .
  • each third optical module 230 has a fifth number of third optical ports 240 .
  • four third optical modules 230-K, 230-L, 230-M, and 230-N are exemplarily shown in FIG. 2 to FIG.
  • Each second optical module 210 of the relay device 20 can be connected to a third optical module 230 in various ways, so as to input the output signal of the second optical module 210 to the third optical module 230 , which will not be described in detail herein.
  • Each remote device 30 may include a sixth number of fourth optical modules 310 , and each fourth optical module 310 may have a fourth optical port 320 .
  • a third optical port 240 of a third optical module 230 of each relay device 20 may be connected to a fourth optical port 320 of a fourth optical module 310 of a remote device 30 through an optical fiber.
  • four fourth optical modules 310-K, 310-L, 310-M, and 310-N are exemplarily shown for each remote device 30 in FIGS.
  • the module 310 exemplarily shows one fourth optical port 320, that is, the fourth optical port 320-K of the fourth optical module 310-K, the fourth optical port 320-L of the fourth optical module 310-L, the fourth The fourth optical port 320-M of the four optical module 310-M and the fourth optical port 320-N of the fourth optical module 310-N.
  • the connection between the third optical port 240 of the relay device 20 and the fourth optical port 320 of the remote device 30 can also be directly described as the third optical port of the relay device 20 240 is connected to the fourth optical module 310 of the remote device 30 .
  • the distributed antenna system 100 may have various structures, such as the number of optical ports included in each third optical module, the number of fourth optical modules included in each remote device 30, and the like.
  • the distributed antenna system 100 can work in multiple working modes. In different working modes, different corresponding relationships (ie connection relationships) are pre-configured for the first optical port of the first optical module of the near-end device 10 and the second optical port of the second optical module of the relay device 20 . In addition, in different working modes, different corresponding relationships (that is, connection relationships) are pre-configured for the third optical port of the third optical module of the relay device 20 and the fourth optical port of the fourth optical module of the remote device 30. ). In this paper, the corresponding optical ports of the upper and lower devices are connected in a one-to-one manner through optical fibers.
  • Fig. 2 shows a schematic diagram of the structure and connection relationship of the distributed antenna system 100 in a working mode according to some embodiments of the present disclosure.
  • the working mode shown in FIG. 2 is 4T4R (that is, 4 transmission and 4 reception) mode, that is, the upper and lower devices of the distributed antenna system 100 are respectively connected by 4 optical fibers to form 4 physical optical fiber links.
  • each first optical module 110 of the near-end device 10 has a first optical port 120 connected to a second optical port 220 of a relay device 20 - 1 .
  • connection between the first optical port 120 of the first optical module 110 of the near-end device 10 and the second optical port 220 of the second optical module 210 of another relay device 20 (for example, the relay device 20-2)
  • the relationship can be shown in Table 2 below:
  • the number of relay devices 20 that can be connected to the near-end device 10 of the distributed antenna system 100 is equal to the number of first optical ports 120 included in the first optical module 110 .
  • the first optical module 110 uses 1*8 first optical ports 120 (that is, each first optical module 110 has 8 first optical ports 120)
  • the near-end device 10 can communicate with at most 8 The relay device 20 is connected.
  • the third optical module 230 (for example, the third optical module 230-K) of the relay device 20
  • the connection relationship between the optical port 240 and the fourth optical port 320 of the fourth optical module 310 of the remote device 30 (for example, the remote device 30-1) can be shown in Table 3 below:
  • each third optical module 230 of the relay device 20-1 has a third optical port 240 connected to a fourth optical port 320 of a remote device 30-1. Therefore, in this case, the maximum number of remote devices 30 that can be connected to each relay device 20 is equal to the number of third optical ports 240 in each third optical module 230 .
  • the third optical port 240 of the third optical module 230 of the relay device 20-1 is connected to the fourth optical port 320 of the fourth optical module 310 of another remote device 30 (such as the remote device 30-2).
  • the connection relationship can be shown in Table 4 below:
  • the number of remote devices 30 that can be connected to each relay device 20 of the distributed antenna system 100 is equal to the number of third optical ports 240 included in the third optical module 230 .
  • the relay device 20 can be connected with 8 remote devices 30 at most.
  • a near-end device 10 of the distributed antenna system 100 can be connected to a second number of relay devices 20 at most, and each relay device 20 can be connected to a fifth number of remote devices 30 at most. connected.
  • each first optical module 110 has 8 optical ports (that is, the second number is 8)
  • each third optical module 230 has 8 optical ports (that is, the fifth number is 8)
  • the distribution The number ratio of the near-end device 10, the relay device 20 and the remote device 30 supported by the antenna system 100 can be up to 1:8:64.
  • the distributed antenna system 100 supports the number ratio of the near-end device 10 , the relay device 20 and the remote device 30 up to 1:8:48.
  • the adjacent level devices of the distributed antenna system 100 can be connected by 4 optical fibers, so that 4 radio frequency signals (such as radio frequency signals from the base station to the user's mobile terminal, or vice versa) can be transmitted. .
  • radio frequency signals are also referred to as communication signals.
  • one of them may be selected to transmit the detection signal. For example, as shown in FIG. 2, the connection between the first optical port 120-1 of the first optical module 110 of the near-end device 10 and the second optical module 210 of the relay device 20 (for example, the relay device 20-1) can be selected.
  • the link of the second optical port 220-A is used to transmit the detection signal, and the link is also referred to as the main link A or the first main link hereinafter.
  • the link from the first optical port 120-9 of the first optical module 110 of the near-end device 10 to the second optical port 220-B of the second optical module 210 of the relay device 20-1 can also be selected as a backup link to transmit the detection signal when the primary link A is not connected or disconnected, and the backup link is also referred to as backup link B or the first backup link hereinafter.
  • the third optical port 240-1 of the third optical module 230 of the relay device 20 (for example, the relay device 20-1) can be selected to connect to the fourth optical port 240-1 of the remote device 30 (for example, the remote device 30-1).
  • the link of the fourth optical port 320-K of the module 310 is used as the main link, called the main link K or the second main link, and the third optical port 240 of the third optical module 230 of the relay device 20-1 is selected. -9
  • the link to the fourth optical port 320-L of the fourth optical module 310 of the remote device 30-1 is used as a backup link, and is called a backup link L or a second backup link.
  • each optical port (including each first optical port, second optical port, and third optical port optical port and the fourth optical port) are respectively configured with optical switches to enable or disable the sending or receiving of the corresponding optical ports.
  • the optical switch may be an optical receiving switch or an optical emitting switch.
  • the optical receiving switch is used to control whether the corresponding optical port can receive signals
  • the optical sending switch is used to control whether the corresponding optical port can send signals.
  • an optical receiving switch is used as an example of an optical switch for each optical port. At present, the implementation of the optical receiving switch is simpler and lower in cost than the optical emitting switch, however, this disclosure is not limited thereto.
  • the detection signal can have a different carrier frequency from the communication signal, so an additional frequency shift keying (FSK) function can be implemented on a conventional optical switch to switch the signal reception and demodulation of the optical port to a different carrier frequency. Therefore, in this paper, the optical switch is also referred to as an FSK switch or an optical switch with an FSK function.
  • FSK frequency shift keying
  • only one FSK switch can be set in the remote device 30 to switch on the fourth Switch between the optical ports 320-K and 320-L, so as to realize switching between the main link K and the backup link L.
  • the optical fiber connecting the near-end device 10 and the relay device 20 is also referred to as the first optical fiber or the first optical channel
  • the optical fiber connecting the relay device 20 and the remote device 30 is referred to as the second optical fiber or the second optical channel. light channel.
  • the first optical port 120 of the near-end device 10 and the second optical port 220 of the relay device 20 have a predetermined connection relationship
  • the relay device The third optical port 240 of 20 has a predetermined connection relationship with the fourth optical port 320 of the remote device 30 .
  • the first optical channels among the multiple relay devices 20 respectively connected to one first optical module 110 of the near-end device 10 are also divided into a group of first optical channels.
  • the second optical channels respectively connected to one third optical module 230 of one relay device 20 (eg, relay device 20 - 1 ) among the plurality of remote devices 30 may be divided into a group of second optical channels.
  • Fig. 3 shows a schematic diagram of the structure and connection relationship of the distributed antenna system 100 in another working mode according to some embodiments of the present disclosure.
  • the working mode shown in FIG. 3 is 2T2R (ie, 2 transmit 2 receive) mode, that is, the upper and lower devices of the distributed antenna system 100 are respectively connected by two optical fibers to form two physical optical fiber links.
  • the difference between the distributed antenna system 100 shown in FIG. 3 and the distributed antenna system 100 shown in FIG. 2 mainly lies in the number of optical fibers (ie, optical paths) connecting devices of adjacent stages.
  • the relay device 20 is shown in FIG. 3 as including two second optical modules 210, those skilled in the art can understand that the relay device 20 in FIG. Two optical modules 210 .
  • adjacent devices of the distributed antenna system 100 can be connected through two optical fibers, so two channels of radio frequency signals, that is, communication signals, can be transmitted.
  • two channels of radio frequency signals that is, communication signals
  • one of them can be selected as the main link for transmitting detection signals, and the other as a backup link for transmitting detection signals.
  • the connection between the first optical port 120-1 of the first optical module 110 of the near-end device 10 and the second optical module 210 of the relay device 20 (for example, the relay device 20-1) can be selected.
  • the link of the second optical port 220-A is used as the main link, called the main link A or the first main link, and the third optical port 240-9 of the third optical module 230 of the relay device 20-1 is selected
  • the link to the fourth optical port 320-L of the fourth optical module 310 of the remote device 30-1 is used as a backup link, which is called a backup link L or a second backup link.
  • Fig. 4 shows a schematic diagram of the structure and connection relationship of the distributed antenna system 100 in still another working mode according to some embodiments of the present disclosure.
  • the working mode shown in FIG. 4 is 1T1R (ie, 1 transmit 1 receive) mode, that is, the upper and lower devices of the distributed antenna system 100 are connected through one optical fiber to form one physical optical fiber link.
  • this working mode is also referred to as a single-channel transceiver mode, and the working mode of multiple optical fibers (for example, as shown in FIG. 2 and FIG. 3 ) is called a multi-channel transceiver mode.
  • the adjacent devices of the distributed antenna system 100 are only connected by one optical fiber, so only one radio frequency signal, that is, a communication signal, can be transmitted.
  • the link can be used to transmit detection signals. Different from the working modes shown in Figures 2 and 3, there is no backup link in this single-channel transceiver mode.
  • each first optical module 110 may have 6 or 4 first optical ports 120
  • the third optical module 230 may have 6 or 4 third optical ports 240 and so on.
  • the same distributed antenna system 100 may work in different working modes with different connection relationships.
  • the relay device 20 may also include four second optical modules 210-A, 210-B, 210-C, and 210-D as shown in FIG.
  • two second optical modules for example, second optical modules 210-A and 210- B
  • the two first optical modules 110 such as the first optical modules 110-A and 110-B
  • the other two second optical modules such as the second optical modules 210-C and 210- D
  • each optical port of each optical module of the upper-level device and the lower-level equipment are pre-configured with predetermined The connection relationship (correspondence relationship) is enough.
  • FIG. 2 to FIG. 4 only show that the near-end device 10 is connected to two relay devices 20-1 and 20-2 for the purpose of illustration, and one relay device 20 (such as the relay device 20-1) Connected to two remote devices 30-1 and 30-2.
  • the near-end device 10 can be connected to more relay devices 20
  • one relay device 20 can be connected to more remote devices 30 .
  • the first carrier frequency can be used to transmit detection signals between the near-end device 10 and the relay device 20, for example, the transmission of the first optical switch control command, the first detection message, the relay Identification information of the device 20, etc.
  • the first carrier frequency may be, for example, a 433MHz carrier frequency.
  • a second carrier frequency different from the first carrier frequency may be used between the relay device 20 and the remote device 30 to transmit the detection signal, for example, to transmit the second optical switch control command, the second detection message, the remote device 30 identification information, etc.
  • the second carrier frequency may be, for example, a 315MHz carrier frequency.
  • optical fiber link ie, the first optical channel
  • fiber link ie, the second optical channel
  • each control module can be configured at the near-end device 10, each relay device 20, and each remote device 30, or corresponding control modules can be configured at each optical port of each device A module, such as the control module 1100 described below in conjunction with FIG. 11 , performs the fiber inspection function described herein.
  • each control module may be a hardware circuit or a chip capable of implementing various operations of the methods 500 and 800 described below in conjunction with FIGS. 5 to 10 .
  • FIG. 5 shows a flowchart of a fiber detection method 500 for the distributed antenna system 100 according to some embodiments of the present disclosure.
  • the working mode shown in FIG. 500 can be applied in various working modes.
  • the optical fiber detection method 500 can be used to detect the status of the optical fiber connection between adjacent level devices of the distributed antenna system 100 (such as between the near-end device 10 and the relay device 20 ).
  • the near-end device 10 sends a test mode switching command to all relay devices 20 to command all relay devices 20 to switch to the test mode.
  • the near-end device 10 may send a first optical switch control command.
  • the first optical switch control command is used to instruct all relay devices 20 that receive the first optical switch control command to switch to a group of first optical channels.
  • the first optical switch control command may instruct these relay devices 20 to switch to a group of first optical channels A.
  • the near-end device 10 can measure the connection between the first optical port 120-1 of the near-end device 10 and the second optical port 220-A of the relay device 20-1, and the first optical port 220-A of the near-end device 10 The connection between the first optical port 120-2 and the second optical port 220-A of the relay device 20-2, etc.
  • the relay device 20 can determine the second optical channel corresponding to the first optical channel in the group of first optical channels. Whether the alarm state of the optical module 210 is normal. If it is determined that the alarm state of the second optical module 210 corresponding to the first optical channel is normal, that is, it is determined that the first optical channel is connected normally, then the relay device 20 opens the optical switch of the second optical module 210 and turns off Optical switches of other second optical modules 210 are switched to the first optical channel. On the contrary, if it is determined that the alarm state of the second optical module 210 corresponding to the first optical channel is abnormal, the relay device 20 does not switch to the first optical channel. In this way, it is possible to prevent the relay device 20 from switching to the optical channel where the optical fiber connection fails.
  • the near-end device 10 obtains the fiber connection information of the near-end device 10 and the relay device 20 under all first optical channels.
  • FIG. 6 shows a further flowchart of block 530 of obtaining fiber connection information according to some embodiments of the present disclosure.
  • the near-end device 10 may turn off the optical switches of all first optical ports 120, and then turn on the optical switches of each first optical port 120 in turn at block 534, and pass the An optical port 120 sends a first detection packet.
  • the first detection message is used to instruct the relay device 20 that has received the first detection message to send the identification information of the relay device 20 to the local device 10 .
  • the near-end device 10 does not send the first detection packet on every first optical port 120, but only sends the first detection packet on the first optical port 120 whose alarm state is normal.
  • the near-end device 10 can determine whether the alarm state of a first optical port 120 is normal; if it is determined that the alarm state of the first optical port 120 is abnormal, skip the first optical port 120; If the alarm status of the port 120 is normal, the first detection message is sent through the first optical port 120.
  • block 534 may not be executed one by one for the first optical ports 120, but all the first optical ports 120 are divided into multiple first optical port groups according to the working mode of the distributed antenna system 100, and then sequentially Turn on the optical switch of each first optical port group, and send the first detection message through the first optical port group.
  • the first optical ports 120 connected to the same relay device 20 may be divided into a first optical port group based on the working mode of the distributed antenna system 100 .
  • the first optical ports 120-1, 120-9, 120-17 and 120-25 connected to the relay device 20-1 can be It is divided into one first optical port group, and the first optical ports 120-2, 120-10, 120-18, and 120-26 connected to the relay device 20-2 are divided into another first optical port group.
  • the relay device 20 that has received the first detection packet may send its identification information to the near-end device 10 through the corresponding first optical channel.
  • each relay device 20 that receives the first detection message can send its own identification through the group of first optical channels corresponding to the first optical port group information.
  • the near-end device 10 may acquire the identification information of the relay device 20 returned from each first optical port 120 .
  • the near-end device 10 may store the returned identification information of the relay device 20 in association with the first optical port 120 as a link between the near-end device 10 and the relay device 20 under the group of first optical channels. fiber connection information.
  • the near-end device 10 determines the distributed antenna system 100's Fiber connection status.
  • FIG. 7 shows a further flowchart of block 540 of obtaining fiber connection status according to some embodiments of the present disclosure.
  • the near-end device 10 may divide all first optical ports 120 of the near-end device 10 into multiple first optical port groups based on the working mode of the distributed antenna system 100 .
  • the first optical ports 120 connected to the same relay device 20 may be divided into a first optical port group based on the working mode of the distributed antenna system 100 .
  • the first optical ports 120-1, 120-9, 120-17 and 120-25 connected to the relay device 20-1 can be It is divided into one first optical port group, and the first optical ports 120-2, 120-10, 120-18, and 120-26 connected to the relay device 20-2 are divided into another first optical port group.
  • the near-end device 10 may determine the relay device corresponding to the first optical port in each first optical port group based on the fiber connection information of the near-end device 10 and the relay device 20 under all first optical channels Whether it is the same relay device.
  • the near-end device 10 can acquire the fiber connection information of the near-end device 10 and the relay device 20 under all first optical channels.
  • the fiber connection information may include a correspondence between each first optical port 120 of the near-end device 10 and identification information of each relay device 20 . Therefore, in block 544, the near-end device can determine the identification information of the relay device 20 corresponding to each first optical port 120 based on the fiber connection information, and determine the identification information of the relay device 20 based on the first optical port group determined in block 542. Whether all the first optical ports in the first optical port group correspond to the same relay device.
  • the relay devices corresponding to these first optical ports are The relay device 20-1 may determine that all first optical ports in the first optical port group correspond to the same relay device. Conversely, it may be determined that the relay devices corresponding to the first optical ports in the first optical port group are not the same relay device.
  • the near-end device 10 may further determine that the first optical port 120 in the first optical port group Whether the optical ports respectively correspond to different first optical channels of the same relay device.
  • the near-end device 10 may further determine that these Whether the first optical ports 120-1, 120-9, 120-17, and 120-25 respectively correspond to different first optical channels of the relay device 20-1, for example, whether they respectively correspond to each first optical channel of the relay device 20-1 - Optical channels A, B, C and D.
  • the near-end device 10 may determine that the optical fiber connection status of the distributed antenna system 100 is normal .
  • the near-end device 10 may determine that the optical fiber connection status of the distributed antenna system 100 is abnormal (not shown in the figure).
  • the near-end device 10 can determine whether the fiber connection status of the distributed antenna system 100 is normal, more specifically, whether the connection status between the near-end device 10 and the relay device 20 is normal.
  • each relay device 20 may also determine whether the connection status between it and the corresponding remote device 30 is normal in a manner similar to the method 500 described above.
  • FIG. 8 shows a flow chart of an optical fiber detection method 800 for the distributed antenna system 100 according to other embodiments of the present disclosure.
  • the working mode shown in FIG. 800 can be applied in various working modes.
  • the optical fiber detection method 800 can be used to detect the status of the optical fiber connection between adjacent level devices of the distributed antenna system 100 (such as between the relay device 20 and the remote device 30 ).
  • the optical fiber detection method 800 can be combined with the optical fiber detection method 500 to detect the fiber connection status of the entire distributed antenna system 100 , and can also be implemented independently to realize the detection of a part of the fiber connection status of the distributed antenna system 100 .
  • a relay device 20 may send a second optical switch control command to all remote devices 30 connected to it.
  • the second optical switch control command is used to instruct all remote devices 30 to switch to a group of second optical channels.
  • the second optical switch control command may instruct all remote devices 30 to switch to a group of second optical channels K.
  • the relay device 20-1 can measure the connection between the third optical port 230-1 of the relay device 20 and the fourth optical port 320-K of the remote device 30-1, and the relay device 20 The connection between the third optical port 230-2 of -1 and the fourth optical port 320-K of the remote device 30-2...
  • the remote device 30 can determine the Whether the alarm state of the fourth optical module 310 is normal. If it is determined that the alarm state of the fourth optical module 310 corresponding to the second optical channel is normal, that is, it is determined that the connection of the second optical channel is normal, then the remote device 30 opens the optical switch of the fourth optical module 310 and turns off The optical switches of other fourth optical modules 310 are switched to the second optical channel. On the contrary, if it is determined that the alarm state of the fourth optical module 310 corresponding to the second optical channel is abnormal, the remote device 30 does not switch to the second optical channel. In this way, it is possible to prevent the remote device 30 from switching to the optical channel where the optical fiber connection fails.
  • the relay device 20-1 obtains the fiber connection information of the relay device 20-1 and the remote device 30 under all second optical channels.
  • FIG. 9 shows a further flowchart of block 820 of obtaining fiber connection information according to some embodiments of the present disclosure.
  • the relay device 20-1 may turn off the optical switches of all third optical ports 240, and then turn on the optical switches of each third optical port 240 in turn in block 824, and pass The third optical port 240 sends the second detection packet.
  • the second detection message is used to instruct the remote device 30 receiving the second detection message to send the identification information of the remote device 30 to the relay device 20-1.
  • the relay device 20-1 does not send the second detection packet on every third optical port 240, but only sends the second detection packet on the third optical port 240 whose alarm state is normal.
  • the relay device 20-1 can determine whether the alarm state of a third optical port 240 is normal; if it is determined that the alarm state of the third optical port 240 is abnormal, skip the third optical port 240; If the alarm status of the three optical ports 240 is normal, the second detection message is sent through the third optical port 240 .
  • block 824 may not be executed one by one for the third optical ports 240, but all the third optical ports 240 are divided into multiple third optical port groups according to the working mode of the distributed antenna system 100, and then sequentially Turn on the optical switch of each third optical port group, and send the third detection message through the third optical port group.
  • the third optical ports 240 connected to the same remote device 30 may be divided into a third optical port group based on the working mode of the distributed antenna system 100 .
  • the third optical ports 240-1, 240-9, 240-17 and 240-25 connected to the remote device 30-1 can be Divide into a third optical port group, and divide the third optical ports 240-2, 240-10, 240-18, and 240-26 connected to the remote device 30-2 into another third optical port group.
  • the remote device 30 that has received the second detection packet may send its identification information to the relay device 20-1 through the corresponding second optical channel.
  • each remote device 30 that receives the second detection message can send its own identification through the group of second optical channels corresponding to the third optical port group information.
  • the relay device 20 - 1 may acquire the identification information of the remote device 30 returned from each third optical port 240 .
  • the relay device 20-1 may store the returned identification information of the remote device 30 in association with the third optical port 240 as the relay device 20-1 and Fiber connection information of the remote device 30.
  • only one FSK switch is set in the remote device 30 to switch between the fourth optical ports 320-K and 320-L, so as to realize the main link K and the backup link L switch between.
  • the fourth optical ports 320-M and 320-N cannot perform optical receiving control through the FSK switch, it is difficult to determine the fourth optical port of the remote device 30.
  • Optical fiber connection information between the ports 320-M and 320-N and the third optical port 240 of the relay device 20 since the fourth optical ports 320-M and 320-N cannot perform optical receiving control through the FSK switch, it is difficult to determine the fourth optical port of the remote device 30.
  • the remote device 30 can turn off the digital-to-analog converters of the fourth optical ports 320 (such as the fourth optical ports 320-M and 320-N) that are not configured with FSK switches, so that these fourth optical ports The light emitting power of port 320 becomes very low.
  • the third optical ports 240 connected to the fourth optical ports on the relay device 20 will generate an optical receiving alarm signal. In this way, the fiber connection information between the fourth optical port 320 not configured with an FSK switch and the third optical port 240 of the relay device 20 can be determined.
  • the relay device 20-1 determines the distributed Fiber connection status of the antenna system 100 .
  • FIG. 10 shows a further flowchart of block 830 of obtaining fiber connection status according to some embodiments of the present disclosure.
  • the relay device 20-1 may divide all third optical ports 240 of the relay device 20-1 into multiple third optical ports based on the working mode of the distributed antenna system 100 Group.
  • the third optical ports 240 connected to the same remote device 30 may be divided into a third optical port group based on the working mode of the distributed antenna system 100 .
  • the third optical ports 240-1, 240-9, 240-17 and 240-25 connected to the remote device 30-1 can be Divide into a third optical port group, and divide the third optical ports 240-2, 240-10, 240-18, and 240-26 connected to the remote device 30-2 into another third optical port group.
  • the relay device 20-1 may determine, based on the fiber connection information of the relay device 20-1 and the remote device 30 under all second optical channels, which third optical port in each third optical port group corresponds to Whether the remote device of the device is the same remote device.
  • the relay device 20-1 can acquire the fiber connection information of the relay device 20-1 and the remote device 30 under all the first optical channels.
  • the optical fiber connection information may include a correspondence between each third optical port 240 of the relay device 20 - 1 and identification information of each remote device 30 . Therefore, in block 824, the relay device 20-1 can determine the identification information of the remote device 30 corresponding to each third optical port 240 based on the fiber connection information, and based on the third optical port group determined in block 832 to determine whether all the third optical ports in the third optical port group correspond to the same remote device.
  • the remote devices corresponding to these third optical ports are The remote device 30-1 may determine that all third optical ports in the third optical port group correspond to the same remote device. Conversely, it may be determined that the remote devices corresponding to the third optical ports in the third optical port group are not the same remote device.
  • the relay device 20-1 may further determine that the remote device in the third optical port group Whether the third optical ports respectively correspond to different second optical channels of the same remote device. For example, assuming that it is determined in block 834 that the third optical ports 240-1, 240-9, 240-17, and 240-25 all correspond to the remote device 30-1, then in block 836, the relay device 20-1 may Further determine whether these third optical ports 240-1, 240-9, 240-17, and 240-25 respectively correspond to different second optical channels of the remote device 30-1, for example, whether they respectively correspond to the remote device 30-1 Each of the second optical channels K, L, M and N.
  • the relay device 20-1 may determine the optical fiber connection of the distributed antenna system 100 The status is normal.
  • the relay device 20-1 may determine that the optical fiber connection status of the distributed antenna system 100 is abnormal (not shown in the figure).
  • the distributed antenna system 100 (for example, each control module 1100 therein) can automatically refresh the topology map of the distributed antenna system by turning on all optical switches, and display it on The web terminal, so that the operation and maintenance personnel can conveniently monitor the fiber connection status.
  • Fig. 11 shows a schematic structural diagram of a control module 1100 according to some embodiments of the present disclosure.
  • the control module 1100 may be implemented in any one of the near-end device 10, the relay device 20 and the remote device 30.
  • the control module 1100 may include one or more processing units 1110 .
  • the processing unit 1110 controls the operations and functions of the control module 1100 .
  • processing unit 1110 may perform various operations by means of instructions 1130 stored in one or more memory units 1120 coupled thereto.
  • Storage unit 1120 may be of any suitable type suitable for the local technical environment and may be implemented using any suitable data storage technology, including but not limited to semiconductor-based storage devices, magnetic storage devices and systems, optical storage devices and systems. Although only one processing unit 1110 and one storage unit 1120 are shown in FIG. 11 , there may be more physically different processing units 1110 and storage units 1120 in the control module 1100 .
  • the processing unit 1110 may be of any suitable type suitable for the local technical environment, and may include, but is not limited to, a microprocessor, a digital signal processor (DSP), a field programmable gate array (FPGA), and the like.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing unit 1110 can be configured (eg, configured by the instructions 1130 in the storage unit 1120) to implement at least one of the above references to FIGS. 5 to 10 .
  • the functions described in this disclosure may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • the various components of the interconnection device disclosed herein can be implemented using discrete hardware components, or integrated on one hardware component.
  • a general purpose processor digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components or for
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供了一种分布式天线系统的光纤检测方法、控制模块和计算机可读存储介质。所述光纤检测方法包括:在所述近端设备处,向所有中继设备发送测试模式切换命令,以命令所有中继设备切换到测试模式;在所述测试模式下,发送第一光开关控制命令,所述第一光开关控制命令用于命令接收到所述第一光开关控制命令的所有中继设备切换到一组第一光通道;获取所有第一光通道下所述近端设备和中继设备之间的光纤连接信息;以及基于所有第一光通道下所述近端设备和中继设备之间的光纤连接信息和所述分布式天线系统的工作模式,确定所述分布式天线系统的光纤连接状态。

Description

分布式天线系统的光纤检测方法、控制模块和计算机介质 技术领域
本公开概括而言涉及通信领域,更具体地,涉及一种分布式天线系统的光纤检测方法、控制模块和计算机可读存储介质。
背景技术
在许多情况下,例如在建筑物、隧道、大型公共场所、体育场等,基站无法提供足够大的信号覆盖范围,或者用户密度超出了一般情况下基站能够应对的范围。在这些情形中,可以通过安装分布式天线系统(DAS)来扩大或增强基站对这些区域的信号覆盖。尤其是,随着第五代移动通信技术(5G)的普及,5G的毫米波(mmWave)在空间传输中穿透性低并且易受干扰,因此对分布式天线系统的部署需求进一步上升。
分布式天线系统通常包括多个空间分离的天线节点或组件,通过各种信号传输介质将来自信号源的信号逐级传输到远端。图1示出了一种分布式天线系统100的结构示意图。如图1中所示,分布式天线系统100具有多级架构,其可以包括一个近端设备10、多个中继设备20(图1中示意性地显示为中继设备20-1、20-2、……20-m,其中m为大于1的整数)和多个远端设备30(图1中示意性地显示为远端设备30-1、30-2、……30-n,其中n为大于1的整数,并且n大于或等于m)。近端设备10例如可以从基站等信号源获取射频信号,并且通过中继设备20将获取的射频信号传输给远端设备30。远端设备30位于需要扩大或增强信号覆盖的场所,以直接与用户的移动终端进行通信。
近端设备10可以通过光纤与中继设备20相连,中继设备20又可以通过光纤与远端设备30相连。因此,光纤损坏将导致通信中断、射频信号异常。由于近端设备10、中继设备20和远端设备30通常位于不同的物理位置或者难以到达的位置,因此通过人工来检测整个光纤链路非常困难且耗时,在光纤出现连接错误时也无法准确定位和纠正连接错误。
发明内容
为了解决分布式天线系统难以进行光纤检测的问题,本公开提供了一种用于分布式天线的光纤检测方法,其中上级设备能够检测其与相连的下级设备之间的光纤连接信息,并且基于相应的工作模式下的预定光纤连接关系来确定光纤连接状态是否正常。
根据本公开的一个方面,提供了一种分布式天线系统的光纤检测方法,所述分布式天线系统包括近端设备、中继设备和远端设备,其中所述近端设备通过一组或多组第一光通道与多个中继设备相连,每个中继设备通过一组或多组第二光通道与多个远端设备相连,所述光纤检测方法包括:在所述近端设备处,向所有中继设备发送测试模式切换命令,以命令所有中继设备切换到测试模式;在所述测试模式下,发送第一光开关控制命令,所述第一光开关控制命令用于命令接收到所述第一光开关控制命令的所有中继设备切换到一组第一光通道;获取所有第一光通道下所述近端设备和中继设备之间的光纤连接信息;以及基于所有第一光通道下所述近端设备和中继设备之间的光纤连接信息和所述分布式天线系统的工作模式,确定所述分布式天线系统的光纤连接状态。
根据本公开的另一个方面,提供了一种控制模块,包括:至少一个处理器;以及至少一个存储器,所述至少一个存储器被耦合到所述至少一个处理器并且存储用于由所述至少一个处理器执行的指令,所述指令当由所述至少一个处理器执行时,使得所述控制模块执行如上所述的方法的步骤。
根据本公开的再一个方面,提供了一种计算机可读存储介质,其上存储有计算机程序代码,所述计算机程序代码在被处理器运行时执行如上所述的方法。
利用本公开的方案,能够自动确定分布式天线系统的上下级设备之间的光纤连接信息,并且能够基于该光纤连接信息和相应工作模式下的预定光纤连接关系来确定光纤连接状态是否正常。
附图说明
通过参考下列附图所给出的本公开的具体实施方式的描述,将更好地理解本公开,并且本公开的其他目的、细节、特点和优点将变得更加显而易见。
图1示出了一种分布式天线系统的结构示意图。
图2示出了根据本公开一些实施例的在一种工作模式下分布式天线系统的结构和连接关系示意图。
图3示出了根据本公开一些实施例的在另一种工作模式下分布式天线系统的结构和连接关系示意图。
图4示出了根据本公开一些实施例的在又一种工作模式下分布式天线系统的结构和连接关系示意图。
图5示出了根据本公开一些实施例的用于分布式天线系统的光纤检测方法的流程图。
图6示出了根据本公开一些实施例的获取光纤连接信息的方框的进一步流程图。
图7示出了根据本公开一些实施例的获取光纤连接状态的方框的进一步流程图。
图8示出了根据本公开另一些实施例的用于分布式天线系统的光纤检测方法的流程图。
图9示出了根据本公开一些实施例的获取光纤连接信息的方框的进一步流程图。
图10示出了根据本公开一些实施例的获取光纤连接状态的方框的进一步流程图。
图11示出了根据本公开一些实施例的控制模块的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一些实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。
如图1中所示,分布式天线系统100中可以包括一个近端设备10、多个中继设备20和多个远端设备30。其中,近端设备10可以包括第一数量个第一光模块110,每个第一光模块110具有第二数量个第一光口120。例如,图2至图4中为近端设备 10示例性地示出了4个第一光模块110-A、110-B、110-C和110-D,并且为每个第一光模块110示例性地示出了8个第一光口120,即第一光模块110-A包括8个第一光口120-1至120-8,第一光模块110-B包括8个第一光口120-9至120-16,第一光模块110-C包括8个第一光口120-17至120-24,以及第一光模块110-D包括8个第一光口120-25至120-32。
此外,每个中继设备20可以包括第三数量个第二光模块210,每个第二光模块210具有一个第二光口220。近端设备10的每个第一光模块110的一个第一光口120可以通过光纤与一个中继设备20的一个第二光模块210的第二光口220相连。例如,图2和图4中为中继设备20示例性地示出了4个第二光模块210-A、210-B、210-C和210-D,并且为每个第二光模块210示例性地示出了1个第二光口220,即第二光模块210-A的第二光口220-A、第二光模块210-B的第二光口220-B、第二光模块210-C的第二光口220-C和第二光模块210-D的第二光口220-D;图3中为中继设备20示例性地示出了2个第二光模块210-A、210-B,并且为每个第二光模块210示例性地示出了1个第二光口220,即第二光模块210-A的第二光口220-A、第二光模块210-B的第二光口220-B。在这种情况下,近端设备10的第一光口120与中继设备20的第二光口220的连接也可以直接描述为近端设备10的第一光口120与中继设备20的第二光模块210的连接。
此外,每个中继设备20还可以包括第四数量个第三光模块230,每个第三光模块230具有第五数量个第三光口240。例如,图2至图4中为中继设备20示例性地示出了4个第三光模块230-K、230-L、230-M和230-N,并且为每个第三光模块230示例性地示出了8个第三光口240,即第三光模块230-K包括8个第三光口240-1至240-8,第三光模块230-L包括8个第三光口240-9至240-16,第三光模块230-M包括8个第三光口240-17至240-24,以及第三光模块230-N包括8个第三光口240-25至240-32。中继设备20的每个第二光模块210可以通过各种方式与一个第三光模块230相连,以将第二光模块210的输出信号输入给第三光模块230,本文不对此详细阐述。
每个远端设备30可以包括第六数量个第四光模块310,并且每个第四光模块310可以具有一个第四光口320。每个中继设备20的一个第三光模块230的一个第三光口240可通过光纤与一个远端设备30的一个第四光模块310的第四光口320相连。例如,图2至图4中为每个远端设备30示例性地示出了4个第四光模块310-K、310-L、310-M和310-N,并且为每个第四光模块310示例性地示出了1个第四光口320,即第四光模块310-K的第四光口320-K、第四光模块310-L的第四光口320-L、第四光模块310-M的第四光口320-M和第四光模块310-N的第四光口320-N。在这种情况下,在下面的描述中,也可以将中继设备20的第三光口240与远端设备30的第四光口320的连接直接描述为中继设备20的第三光口240与远端设备30的第四光模块310的连接。
取决于近端设备10所包含的第一光模块的数量、每个第一光模块所包含的第一光口的数量、每个中继设备20所包含的第二光模块和第三光模块的数量、每个第三光模块所包含的第三光口的数量、每个远端设备30所包含的第四光模块的数量等,分布式天线系统100可以具有多种结构。
此外,分布式天线系统100可以工作于多种工作模式。在不同的工作模式下,为近端设备10的第一光模块的第一光口与中继设备20的第二光模块的第二光口预先配置了不同的对应关系(即连接关系)。此外,在不同的工作模式下,为中继设备20的第三光模块的第三光口与远端设备30的第四光模块的第四光口预先配置了不同的对应关系(即连接关系)。在本文中,上下级设备的对应光口之间通过光纤以一对 一的方式相连。
图2示出了根据本公开一些实施例的在一种工作模式下分布式天线系统100的结构和连接关系示意图。图2中所示的工作模式为4T4R(即4发4收)模式,即,分布式天线系统100的上下级设备之间分别通过4条光纤相连,以形成4路物理的光纤链路。
如图2中所示,假设近端设备10的第一光模块110的第一光口120与中继设备20(例如中继设备20-1)的第二光模块210的第二光口220的连接关系如下表1所示:
表1
Figure PCTCN2022076748-appb-000001
也就是说,近端设备10的每个第一光模块110有一个第一光口120与一个中继设备20-1的一个第二光口220相连。
此外,例如,近端设备10的第一光模块110的第一光口120与另一中继设备20(例如中继设备20-2)的第二光模块210的第二光口220的连接关系可以如下表2所示:
表2
Figure PCTCN2022076748-appb-000002
在这种情况下,分布式天线系统100的近端设备10可以连接的中继设备20的数量等于第一光模块110所包含的第一光口120的数量。例如,在第一光模块110使用1*8的第一光口120的情况下(即每个第一光模块110具有8个第一光口120),近端设备10最多可以与8个中继设备20相连。
类似地,如图2中所示,对于每个中继设备20(例如中继设备20-1),中继设备20的第三光模块230(例如第三光模块230-K)的第三光口240与远端设备30(例如远端设备30-1)的第四光模块310的第四光口320的连接关系可以如下表3所示:
表3
Figure PCTCN2022076748-appb-000003
也就是说,中继设备20-1的每个第三光模块230有一个第三光口240与一个远端设备30-1的一个第四光口320相连。因此,在这种情况下,每个中继设备20最多可以连接的远端设备30的数量等于每个第三光模块230中的第三光口240的数量。
此外,例如,中继设备20-1的第三光模块230的第三光口240与另一远端设备30(例如远端设备30-2)的第四光模块310的第四光口320的连接关系可以如下表4 所示:
表4
Figure PCTCN2022076748-appb-000004
在这种情况下,分布式天线系统100的每个中继设备20可以连接的远端设备30的数量等于第三光模块230所包含的第三光口240的数量。例如,如图2中所示,在第三光模块230使用1*8的第三光口240的情况下(即每个第三光模块230具有8个第三光口240),中继设备20最多可以与8个远端设备30相连。
因此,在这种工作模式下,分布式天线系统100的一个近端设备10最多可以与第二数量个中继设备20相连,每个中继设备20最多可以与第五数量个远端设备30相连。例如,在每个第一光模块110具有8个光口(即第二数量为8),并且每个第三光模块230具有8个光口(即第五数量为8)的情况下,分布式天线系统100所支持的近端设备10、中继设备20和远端设备30的数量比最多可达1:8:64。又例如,在每个第一光模块110具有8个光口(即第二数量为8),并且每个第三光模块230具有6个光口(即第五数量为6)的情况下,分布式天线系统100所支持的近端设备10、中继设备20和远端设备30的数量比最多可达1:8:48。
在图2所示的工作模式下,分布式天线系统100的相邻级设备可以通过4条光纤相连,因此可以传输4路射频信号(例如从基站到用户的移动终端的射频信号,或者反之)。在本文中,这样的射频信号也被称为通信信号。另一方面,为了检测系统100的各级设备之间的光纤连接状态,可以选择其中的1路来传输检测信号。例如,如图2中所示,可以选择近端设备10的第一光模块110的第一光口120-1到中继设备20(例如中继设备20-1)的第二光模块210的第二光口220-A的链路来传输该检测信号,以下也将该链路称为主链路A或者第一主链路。此外,还可以选择近端设备10的第一光模块110的第一光口120-9到中继设备20-1的第二光模块210的第二光口220-B的链路来作为备份链路,以在主链路A未连接或者断开时传输该检测信号,以下也将该备份链路称为备份链路B或者第一备份链路。类似地,可以选择中继设备20(例如中继设备20-1)的第三光模块230的第三光口240-1到远端设备30(例如远端设备30-1)的第四光模块310的第四光口320-K的链路作为主链路,称为主链路K或者第二主链路,选择中继设备20-1的第三光模块230的第三光口240-9到远端设备30-1的第四光模块310的第四光口320-L的链路作为备份链路,称为备份链路L或者第二备份链路。
为了控制各个光模块以及每个光模块的光口对检测信号的收发,在分布式光纤系统100中,可以为每个光口(包括每个第一光口、第二光口、第三光口和第四光口)分别配置光开关以使能或者禁能对应的光口的发送或接收。光开关可以是光收开关或者光发开关。光收开关用于控制对应的光口是否可接收信号,光发开关用于控制对应的光口是否可发送信号。在本公开的以下描述中,使用光收开关作为每个光口的光开关的实例。当前,光收开关相对于光发开关来说实现更为简单且成本更低,然而,本公开并不对此进行限制。检测信号可以与通信信号具有不同的载波频率,因此可以在常规的光开关上实现额外的频移键控(FSK)功能来将光口的信号接收和解调切换到不同的载波频率,因此,在本文中也将光开关称为FSK开关或者具有FSK功能的光开关。
此外,在一些实现中,考虑到检测信号仅通过主链路K或者备份链路L传输,并且远端设备30需要尽量小型化,可以在远端设备30中仅设置一个FSK开关以在第四光口320-K和320-L之间切换,从而实现主链路K和备份链路L之间的切换。
在本文中,也将连接近端设备10和中继设备20的光纤称为第一光纤或者第一光通道,将连接中继设备20和远端设备30的光纤称为第二光纤或者第二光通道。如图2以及表1至表4中所示,在该工作模式下,近端设备10的第一光口120和中继设备20的第二光口220有预先确定的连接关系,中继设备20的第三光口240与远端设备30的第四光口320有预先确定的连接关系。根据该工作模式下的预先确定的连接关系,也将多个中继设备20中分别与近端设备10的一个第一光模块110相连的第一光通道划分为一组第一光通道。
类似地,可以将多个远端设备30中分别与一个中继设备20(如中继设备20-1)的一个第三光模块230相连的第二光通道划分为一组第二光通道。
图3示出了根据本公开一些实施例的在另一种工作模式下分布式天线系统100的结构和连接关系示意图。图3中所示的工作模式为2T2R(即2发2收)模式,即,分布式天线系统100的上下级设备之间分别通过2条光纤相连,以形成2路物理的光纤链路。注意,图3所示的分布式天线系统100与图2所示的分布式天线系统100的不同之处主要在于连接相邻级设备的光纤(即光路)数量不同。虽然图3中将中继设备20显示为包含2个第二光模块210,但是本领域技术可以理解,图3中的中继设备20可以包含与图2中的中继设备20相同数量的第二光模块210。
在图3所示的工作模式下,分布式天线系统100的相邻级设备可以通过2条光纤相连,因此可以传输2路射频信号,即通信信号。另一方面,与图2类似,为了检测系统100的各级设备之间的光纤连接状态,可以选择其中的1路作为传输检测信号的主链路,另一路作为传输检测信号的备份链路。例如,如图3中所示,可以选择近端设备10的第一光模块110的第一光口120-1到中继设备20(例如中继设备20-1)的第二光模块210的第二光口220-A的链路来作为主链路,称为主链路A或者第一主链路,选择中继设备20-1的第三光模块230的第三光口240-9到远端设备30-1的第四光模块310的第四光口320-L的链路来作为备份链路,称为备份链路L或者第二备份链路。
图4示出了根据本公开一些实施例的在又一种工作模式下分布式天线系统100的结构和连接关系示意图。图4中所示的工作模式为1T1R(即1发1收)模式,即,分布式天线系统100的上下级设备之间通过1条光纤相连,以形成1路物理的光纤链路。在本文中,也将这种工作模式称为单路收发模式,而将多根光纤(例如,如图2和图3所示)的工作模式称为多路收发模式。
在图4所示的工作模式下,分布式天线系统100的相邻级设备仅通过1条光纤相连,因此仅可以传输1路射频信号,即通信信号。此外,与图2和图3类似,为了检测系统100的各级设备之间的光纤连接状态,可以利用该链路来传输检测信号。与图2和图3所示的工作模式不同,这种单路收发模式不存在备份链路。
注意,图2至图4中所示的各个设备中的光模块的数量和/或光模块的光口的数量仅仅是示例性的。取决于应用需求或者成本等考虑,不同的分布式天线系统100中的各级设备中的光模块的数量和/或每个光模块的光口的数量可以不同。例如,在一些实施例中,每个第一光模块110可以具有6个或者4个第一光口120,和/或第三光模块230可以具有6个或者4个第三光口240等。在一些实施例中,同一分布式天线系统100可以以不同的连接关系工作于不同工作模式下。例如,在图3所示的分布式天线系统100中,中继设备20也可以如图2所示的包含4个第二光模块210-A、210-B、210-C和210-D,但是在其工作于2T2R模式时,4个第二光模块210-A、210-B、 210-C和210-D中的两个第二光模块(例如第二光模块210-A和210-B)与近端设备10的两个第一光模块110(例如第一光模块110-A和110-B)相连,另外两个第二光模块(例如第二光模块210-C和210-D)与近端设备10的另外两个第一光模块110(例如第一光模块110-C和110-D)相连。
注意,上述的图2至图4和表1至表4示例性地将上一级设备的每个光模块的第一个光口与第一个下一级设备相连,第二个光口与第二个下一级设备相连,即,按照光口的顺序依次和不同的下一级设备相连。然而,本领域技术人员可以理解,本公开并不局限于此,在每种工作模式下,只要预先为上一级设备的每个光模块的每个光口与下一级设备预先配置预定的连接关系(对应关系)即可。
此外,图2至图4中仅出于示例的目的示出了近端设备10与两个中继设备20-1和20-2相连,一个中继设备20(如中继设备20-1)与两个远端设备30-1和30-2相连。事实上,在所示的各种工作模式下,近端设备10可以与更多的中继设备20相连,并且一个中继设备20可以与更多的远端设备30相连。
在分布式天线系统100中,近端设备10和中继设备20之间可以使用第一载波频率传输检测信号,例如传输如下所述的第一光开关控制命令、第一检测报文、中继设备20的标识信息等。第一载波频率例如可以是433MHz载波频率。中继设备20和远端设备30之间可以使用不同于第一载波频率的第二载波频率传输检测信号,例如传输如下所述的第二光开关控制命令、第二检测报文、远端设备30的标识信息等。第二载波频率例如可以是315MHz载波频率。通过在近端设备10与中继设备20之间的光纤链路(即第一光通道)上和中继设备20与远端设备30之间的光纤链路(即第二光通道)上使用不同的载波频率进行检测信号的传输,能够有效避免这两个光纤链路之间的信号干扰。
如前所述,由于近端设备10、中继设备20和远端设备30通常位于不同的物理位置等原因,难以对各种工作模式下分布式天线系统100的光纤连接状态进行自动检测。为此,在根据本公开的方案中,可以在近端设备10、各个中继设备20和各个远端设备30处配置相应的控制模块,或者,在各个设备的各个光口处配置相应的控制模块,例如下面结合图11所述的控制模块1100,来执行本文所述的光纤检测功能。这里,每个控制模块可以是能够实现如下结合图5至图10所述的方法500和800的各种操作的硬件电路或者芯片等。
图5示出了根据本公开一些实施例的用于分布式天线系统100的光纤检测方法500的流程图。在图5所示的光纤检测方法500中,以图2所示的工作模式为例进行描述,然而本领域技术人员可以理解,本公开并不局限于此,结合图5所描述的光纤检测方法500可以应用于各种工作模式。光纤检测方法500可以用于检测分布式天线系统100的相邻级设备之间(如近端设备10和中继设备20之间)的光纤连接状态。
如图5中所示,在方框510,近端设备10向所有中继设备20发送测试模式切换命令,以命令所有中继设备20切换到测试模式。
在方框520,在测试模式下,近端设备10可以发送第一光开关控制命令。该第一光开关控制命令用于命令接收到该第一光开关控制命令的所有中继设备20切换到一组第一光通道。例如,该第一光开关控制命令可以命令这些中继设备20切换到一组第一光通道A。在这种情况下,近端设备10可以测量近端设备10的第一光口120-1与中继设备20-1的第二光口220-A之间的连接,近端设备10的第一光口120-2与中继设备20-2的第二光口220-A之间的连接等。
在每个中继设备20处,如果接收到近端设备10的第一光开关控制命令,该中继设备20可以确定与该组第一光通道中的一个第一光通道相对应的第二光模块210的告警状态是否正常。如果确定与该第一光通道相对应的第二光模块210的告警状态 正常,即,确定该第一光通道连接正常,则该中继设备20打开该第二光模块210的光开关并且关闭其他第二光模块210的光开关以切换到该第一光通道。相反,如果确定与该第一光通道相对应的第二光模块210的告警状态异常,该中继设备20不切换到该第一光通道。通过这种方式,能够防止中继设备20切换到光纤连接故障的光通道。
在方框530,近端设备10获取所有第一光通道下近端设备10和中继设备20的光纤连接信息。
图6示出了根据本公开一些实施例的获取光纤连接信息的方框530的进一步流程图。
如图6中所示,在方框532,近端设备10可以关闭所有第一光口120的光开关,然后在方框534依次打开每个第一光口120的光开关,并且通过该第一光口120发送第一检测报文。这里,第一检测报文用于指示接收到该第一检测报文的中继设备20向近端设备10发送该中继设备20的标识信息。
在一些实施例中,近端设备10不在每个第一光口120都发送第一检测报文,而是只在告警状态正常的第一光口120发送第一检测报文。
具体地,近端设备10可以确定一个第一光口120的告警状态是否正常;如果确定该第一光口120的告警状态异常,则跳过该第一光口120,如果确定该第一光口120的告警状态正常,则通过该第一光口120发送该第一检测报文。
在另一些实施例中,可以不逐个第一光口120执行方框534,而是根据分布式天线系统100的工作模式将所有第一光口120划分为多个第一光口组,然后依次打开每个第一光口组的光开关,并且通过该第一光口组发送该第一检测报文。在一些实施例中,可以基于分布式天线系统100的工作模式将与同一中继设备20连接的第一光口120划分为一个第一光口组。例如,在如图2和表1至表4所示的4T4R工作模式下,可以将与中继设备20-1相连的第一光口120-1、120-9、120-17和120-25划分为一个第一光口组,将与中继设备20-2相连的第一光口120-2、120-10、120-18和120-26划分为另一个第一光口组。
接收到该第一检测报文的中继设备20可以将其标识信息通过对应的第一光通道发送给近端设备10。在通过第一光口组发送第一检测报文的情况下,接收到第一检测报文的各个中继设备20可以通过与第一光口组对应的该组第一光通道发送各自的标识信息。
在方框536,近端设备10可以获取从每个第一光口120返回的中继设备20的标识信息。
在方框538,近端设备10可以将所返回的中继设备20的标识信息和该第一光口120相关联地存储作为该组第一光通道下该近端设备10和中继设备20的光纤连接信息。
继续图5,在方框540,近端设备10基于所有第一光通道下近端设备10和中继设备20的光纤连接信息和分布式天线系统100的工作模式,确定分布式天线系统100的光纤连接状态。
图7示出了根据本公开一些实施例的获取光纤连接状态的方框540的进一步流程图。
如图7中所示,在方框542,近端设备10可以基于分布式天线系统100的工作模式将近端设备10的所有第一光口120划分为多个第一光口组。在一些实施例中,可以基于分布式天线系统100的工作模式将与同一中继设备20连接的第一光口120划分为一个第一光口组。例如,在如图2和表1至表4所示的4T4R工作模式下,可以将与中继设备20-1相连的第一光口120-1、120-9、120-17和120-25划分为一个第 一光口组,将与中继设备20-2相连的第一光口120-2、120-10、120-18和120-26划分为另一个第一光口组。
在方框544,近端设备10可以基于所有第一光通道下近端设备10和中继设备20的光纤连接信息确定每个第一光口组中的第一光口所对应的中继设备是否是同一中继设备。
如上所述,在方框530中,近端设备10能够获取所有第一光通道下近端设备10和中继设备20的光纤连接信息。该光纤连接信息可以包括近端设备10的每个第一光口120与每个中继设备20的标识信息之间的对应关系。因此,在方框544,近端设备能够基于该光纤连接信息确定每个第一光口120对应的中继设备20的标识信息,并且基于方框542中确定的第一光口组来确定该第一光口组中的所有第一光口是否都对应于同一中继设备。例如,如上所述,假设对于由第一光口120-1、120-9、120-17和120-25组成的第一光口组来说,这些第一光口对应的中继设备都是中继设备20-1,则可以确定该第一光口组中的所有第一光口都对应于同一中继设备。反之,可以确定该第一光口组中的第一光口对应的中继设备不是同一中继设备。
如果确定一个第一光口组中的第一光口120所对应的中继设备是同一中继设备,则在方框546,近端设备10可以进一步确定该第一光口组中的第一光口是否分别对应于同一中继设备的不同第一光通道。例如,假设在方框544确定第一光口120-1、120-9、120-17和120-25都对应于中继设备20-1,在方框546,近端设备10可以进一步确定这些第一光口120-1、120-9、120-17和120-25是否分别对应于中继设备20-1的不同第一光通道,例如是否分别对应于中继设备20-1的各个第一光通道A、B、C和D。
如果确定该第一光口组中的第一光口分别对应于同一中继设备的不同第一光通道,则在方框548,近端设备10可以确定分布式天线系统100的光纤连接状态正常。
另一方面,如果在方框544确定一个第一光口组中的第一光口所对应的中继设备不是同一中继设备或者在方框546确定第一光口组中的第一光口不是分别对应于该同一中继设备的不同第一光通道,则近端设备10可以确定分布式天线系统100的光纤连接状态异常(图中未示出)。
利用上述光纤检测方法500,近端设备10能够确定分布式天线系统100的光纤连接状态是否正常,更具体地,能够确定近端设备10和中继设备20之间的连接状态是否正常。
在另一些实施例中,每个中继设备20还可以按照与上述方法500类似的方式来确定其与对应的远端设备30之间的连接状态是否正常。
图8示出了根据本公开另一些实施例的用于分布式天线系统100的光纤检测方法800的流程图。在图8所示的光纤检测方法800中,以图2所示的工作模式为例进行描述,然而本领域技术人员可以理解,本公开并不局限于此,结合图8所描述的光纤检测方法800可以应用于各种工作模式。光纤检测方法800可以用于检测分布式天线系统100的相邻级设备之间(如中继设备20和远端设备30之间)的光纤连接状态。光纤检测方法800可以和光纤检测方法500结合以实现对整个分布式天线系统100的光纤连接状态的检测,也可以单独实现以实现对分布式天线系统100的部分光纤连接状态的检测。
如图8中所示,在方框810,一个中继设备20(例如中继设备20-1)可以向与其相连的所有远端设备30发送第二光开关控制命令。该第二光开关控制命令用于命令所有远端设备30切换到一组第二光通道。例如,该第二光开关控制命令可以命令所有远端设备30切换到一组第二光通道K。在这种情况下,中继设备20-1可以测量中继设备20的第三光口230-1与远端设备30-1的第四光口320-K之间的连接,中继 设备20-1的第三光口230-2与远端设备30-2的第四光口320-K之间的连接……
在每个远端设备30处,如果接收到中继设备20-1的第二光开关控制命令,该远端设备30可以确定与该组第二光通道中的一个第二光通道相对应的第四光模块310的告警状态是否正常。如果确定与该第二光通道相对应的第四光模块310的告警状态正常,即,确定该第二光通道连接正常,则该远端设备30打开该第四光模块310的光开关并且关闭其他第四光模块310的光开关以切换到该第二光通道。相反,如果确定与该第二光通道相对应的第四光模块310的告警状态异常,该远端设备30不切换到该第二光通道。通过这种方式,能够防止远端设备30切换到光纤连接故障的光通道。
在方框820,中继设备20-1获取所有第二光通道下中继设备20-1和远端设备30的光纤连接信息。
图9示出了根据本公开一些实施例的获取光纤连接信息的方框820的进一步流程图。
如图9中所示,在方框822,中继设备20-1可以关闭所有第三光口240的光开关,然后在方框824依次打开每个第三光口240的光开关,并且通过该第三光口240发送第二检测报文。这里,第二检测报文用于指示接收到该第二检测报文的远端设备30向中继设备20-1发送该远端设备30的标识信息。
在一些实施例中,中继设备20-1不在每个第三光口240都发送第二检测报文,而是只在告警状态正常的第三光口240发送第二检测报文。
具体地,中继设备20-1可以确定一个第三光口240的告警状态是否正常;如果确定该第三光口240的告警状态异常,则跳过该第三光口240,如果确定该第三光口240的告警状态正常,则通过该第三光口240发送该第二检测报文。
在另一些实施例中,可以不逐个第三光口240执行方框824,而是根据分布式天线系统100的工作模式将所有第三光口240划分为多个第三光口组,然后依次打开每个第三光口组的光开关,并且通过该第三光口组发送该第三检测报文。在一些实施例中,可以基于分布式天线系统100的工作模式将与同一远端设备30连接的第三光口240划分为一个第三光口组。例如,在如图2和表1至表4所示的4T4R工作模式下,可以将与远端设备30-1相连的第三光口240-1、240-9、240-17和240-25划分为一个第三光口组,将与远端设备30-2相连的第三光口240-2、240-10、240-18和240-26划分为另一个第三光口组。
接收到该第二检测报文的远端设备30可以将其标识信息通过对应的第二光通道发送给中继设备20-1。在通过第三光口组发送第二检测报文的情况下,接收到第二检测报文的各个远端设备30可以通过与第三光口组对应的该组第二光通道发送各自的标识信息。
在方框826,中继设备20-1可以获取从每个第三光口240返回的远端设备30的标识信息。
在方框828,中继设备20-1可以将所返回的远端设备30的标识信息和该第三光口240相关联地存储作为该组第二光通道下该中继设备20-1和远端设备30的光纤连接信息。
在一些情况下,如前所述,在远端设备30中仅设置了一个FSK开关以在第四光口320-K和320-L之间切换,从而实现主链路K和备份链路L之间的切换。在这种情况下,对于如图2所示的4T4R工作模式,由于第四光口320-M和320-N无法通过FSK开关来进行光收控制,因此难以确定远端设备30的第四光口320-M和320-N与中继设备20的第三光口240之间的光纤连接信息。为此,在一些实施例中,远端设备30可以关闭未配置FSK开关的第四光口320(如第四光口320-M和320-N)的 数模转换器以使得这些第四光口320的光发功率变得很低。此时,中继设备20上与这些第四光口相连的第三光口240上将产生光收告警信号。通过这种方式,可以确定未配置FSK开关的第四光口320与中继设备20的第三光口240之间的光纤连接信息。
继续图8,在方框830,中继设备20-1基于所有第二光通道下中继设备20-1和远端设备30的光纤连接信息和分布式天线系统100的工作模式,确定分布式天线系统100的光纤连接状态。
图10示出了根据本公开一些实施例的获取光纤连接状态的方框830的进一步流程图。
如图10中所示,在方框832,中继设备20-1可以基于分布式天线系统100的工作模式将中继设备20-1的所有第三光口240划分为多个第三光口组。在一些实施例中,可以基于分布式天线系统100的工作模式将与同一远端设备30连接的第三光口240划分为一个第三光口组。例如,在如图2和表1至表4所示的4T4R工作模式下,可以将与远端设备30-1相连的第三光口240-1、240-9、240-17和240-25划分为一个第三光口组,将与远端设备30-2相连的第三光口240-2、240-10、240-18和240-26划分为另一个第三光口组。
在方框834,中继设备20-1可以基于所有第二光通道下中继设备20-1和远端设备30的光纤连接信息确定每个第三光口组中的第三光口所对应的远端设备是否是同一远端设备。
如上所述,在方框820中,中继设备20-1能够获取所有第一光通道下中继设备20-1和远端设备30的光纤连接信息。该光纤连接信息可以包括中继设备20-1的每个第三光口240与每个远端设备30的标识信息之间的对应关系。因此,在方框824,中继设备20-1能够基于该光纤连接信息确定每个第三光口240对应的远端设备30的标识信息,并且基于方框832中确定的第三光口组来确定该第三光口组中的所有第三光口是否都对应于同一远端设备。例如,如上所述,假设对于由第三光口240-1、240-9、240-17和240-25组成的第三光口组来说,这些第三光口对应的远端设备都是远端设备30-1,则可以确定该第三光口组中的所有第三光口都对应于同一远端设备。反之,可以确定该第三光口组中的第三光口对应的远端设备不是同一远端设备。
如果确定一个第三光口组中的第三光口240所对应的远端设备是同一远端设备,则在方框836,中继设备20-1可以进一步确定该第三光口组中的第三光口是否分别对应于同一远端设备的不同第二光通道。例如,假设在方框834确定第三光口240-1、240-9、240-17和240-25都对应于远端设备30-1,则在方框836,中继设备20-1可以进一步确定这些第三光口240-1、240-9、240-17和240-25是否分别对应于远端设备30-1的不同第二光通道,例如是否分别对应于远端设备30-1的各个第二光通道K、L、M和N。
如果确定该第三光口组中的第三光口分别对应于同一远端设备的不同第二光通道,则在方框838,中继设备20-1可以确定分布式天线系统100的光纤连接状态正常。
另一方面,如果在方框834确定一个第三光口组中的第三光口所对应的远端设备不是同一远端设备或者在方框836确定第三光口组中的第三光口不是分别对应于该同一远端设备的不同第二光通道,则中继设备20-1可以确定分布式天线系统100的光纤连接状态异常(图中未示出)。
此外,在方法500和/或方法800执行完成之后,分布式天线系统100(例如其中的各个控制模块1100)能够通过打开所有光开关来自动刷新分布式天线系统的拓扑图,并将其显示在web端,以便于运维人员能够方便地监控光纤连接状态。
图11示出了根据本公开一些实施例的控制模块1100的结构示意图。控制模块 1100可以实现在所述近端设备10、中继设备20和远端设备30中的任一个中。
如图11中所示,控制模块1100可以包括一个或多个处理单元1110。处理单元1110控制控制模块1100的操作和功能。例如,在某些实施例中,处理单元1110可以借助于与其耦合的一个或多个存储单元1120中所存储的指令1130来执行各种操作。存储单元1120可以是适用于本地技术环境的任何合适的类型,并且可以利用任何合适的数据存储技术来实现,包括但不限于基于半导体的存储器件、磁存储器件和系统、光存储器件和系统。尽管图11中仅仅示出了一个处理单元1110和一个存储单元1120,但是在控制模块1100中可以有更多个物理不同的处理单元1110和存储单元1120。
处理单元1110可以是适用于本地技术环境的任何合适的类型,并且可以包括但不限于微处理器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)等。
当控制模块1100用来执行根据本公开所述的方案时,处理单元1110可被配置(例如,由存储单元1120中的指令1130来配置)以实现上文参考图5至图10中的至少一个描述的方法或步骤。上文参考图5至图10所描述的所有特征均适用于控制模块1100,在此不再赘述。
本领域技术人员可以理解,这里所描述的方法步骤不仅仅局限于附图中所示例性示出的顺序,而是可以按照任何其他可行的顺序来执行。
在一个或多个示例性设计中,可以用硬件、软件、固件或它们的任意组合来实现本公开所述的功能。例如,如果用软件来实现,则可以将所述功能作为一个或多个指令或代码存储在计算机可读介质上,或者作为计算机可读介质上的一个或多个指令或代码来传输。
本文公开的互连设备的各个组成部分可以使用分立硬件组件来实现,也可以集成地实现在一个硬件组件上。例如,可以用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或用于执行本文所述的功能的任意组合来实现或执行结合本公开所描述的各种示例性的逻辑块、模块和电路。
本领域普通技术人员还应当理解,结合本公开的实施例描述的各种示例性的逻辑块、模块、电路和算法步骤可以实现成电子硬件、计算机软件或二者的组合。
本公开的以上描述用于使本领域的任何普通技术人员能够实现或使用本公开。对于本领域普通技术人员来说,本公开的各种修改都是显而易见的,并且本文定义的一般性原理也可以在不脱离本公开的精神和保护范围的情况下应用于其它变形。因此,本公开并不限于本文所述的实例和设计,而是与本文公开的原理和新颖性特性的最广范围相一致。

Claims (19)

  1. 一种分布式天线系统的光纤检测方法,所述分布式天线系统包括近端设备、中继设备和远端设备,其中所述近端设备通过一组或多组第一光通道与多个中继设备相连,每个中继设备通过一组或多组第二光通道与多个远端设备相连,所述光纤检测方法包括:
    在所述近端设备处,向所有中继设备发送测试模式切换命令,以命令所有中继设备切换到测试模式;
    在所述测试模式下,发送第一光开关控制命令,所述第一光开关控制命令用于命令接收到所述第一光开关控制命令的所有中继设备切换到一组第一光通道;
    获取所有第一光通道下所述近端设备和中继设备之间的光纤连接信息;以及
    基于所有第一光通道下所述近端设备和中继设备之间的光纤连接信息和所述分布式天线系统的工作模式,确定所述分布式天线系统的光纤连接状态。
  2. 如权利要求1所述的光纤检测方法,其中获取所有第一光通道下所述近端设备和中继设备之间的光纤连接信息包括:
    关闭所有第一光口的光开关;
    依次打开每个第一光口的光开关,并且通过所述第一光口发送第一检测报文;
    获取从每个第一光口返回的中继设备的标识信息;以及
    将所返回的中继设备的标识信息和所述第一光口相关联地存储作为该组第一光通道下所述近端设备和中继设备之间的光纤连接信息。
  3. 如权利要求2所述的光纤检测方法,其中依次打开每个第一光口的光开关,并且通过所述第一光口发送第一检测报文包括:
    确定每个第一光口的告警状态是否正常;
    响应于确定所述第一光口的告警状态异常,跳过所述第一光口;以及
    响应于确定所述第一光口的告警状态正常,通过所述第一光口发送所述第一检测报文。
  4. 如权利要求2所述的光纤检测方法,其中依次打开每个第一光口的光开关,并且通过所述第一光口发送第一检测报文包括:
    基于所述分布式天线系统的工作模式将所述近端设备的所有第一光口划分为多个第一光口组;以及
    依次打开每个第一光口组的光开关,通过所述第一光口组发送所述第一检测报文。
  5. 如权利要求1所述的光纤检测方法,其中确定所述分布式天线系统的光纤连接状态包括:
    基于所述分布式天线系统的工作模式将所述近端设备的所有第一光口划分为多个第一光口组;
    基于所有第一光通道下所述近端设备和中继设备的光纤连接信息确定每个第一光口组中的第一光口所对应的中继设备是否是同一中继设备;
    响应于确定一个第一光口组中的第一光口所对应的中继设备是同一中继设备,确定所述第一光口组中的第一光口是否分别对应于所述同一中继设备的不同第一光通道;以及
    响应于确定所述第一光口组中的第一光口分别对应于所述同一中继设备的不同第一光通道,确定所述分布式天线系统的光纤连接状态正常。
  6. 如权利要求5所述的光纤检测方法,还包括:
    响应于确定一个第一光口组中的第一光口所对应的中继设备不是同一中继设备或者响应于确定所述第一光口组中的第一光口不是分别对应于所述同一中继设备的不同第一光通道,确定所述分布式天线系统的光纤连接状态异常。
  7. 如权利要求1所述的光纤检测方法,还包括,在每个中继设备处:
    响应于接收到来自所述近端设备的第一光开关控制命令,确定与该组第一光通道中的一个第一光通道相对应的第二光模块的告警状态是否正常;
    响应于确定与所述第一光通道相对应的第二光模块的告警状态正常,打开所述第二光模块的光开关并且关闭其他第二光模块的光开关以切换到所述第一光通道;以及
    响应于确定与所述第一光通道相对应的第二光模块的告警状态异常,不切换到所述第一光通道。
  8. 如权利要求1所述的光纤检测方法,还包括,在每个中继设备处:
    向与所述中继设备相连的所有远端设备发送第二光开关控制命令,所述第二光开关控制命令用于命令所述所有远端设备切换到一组第二光通道;
    获取所有第二光通道下所述中继设备和所述远端设备之间的光纤连接信息;以及
    基于所有第二光通道下所述中继设备和所述远端设备之间的光纤连接信息和所述分布式天线系统的工作模式,确定所述分布式天线系统的光纤连接状态。
  9. 如权利要求8所述的光纤检测方法,其中获取所有第二光通道下所述中继设备和所述远端设备之间的光纤连接信息包括:
    关闭所有第三光口的光开关;
    依次打开每个第三光口的光开关,通过所述第三光口发送第二检测报文;
    获取从每个第三光口返回的远端设备的标识信息;以及
    将所返回的远端设备的标识信息和所述第三光口相关联地存储作为该组第二光通道下所述中继设备和所述远端设备之间的光纤连接信息。
  10. 如权利要求9所述的光纤检测方法,其中依次打开每个第三光口的光开关,通过所述第三光口发送第二检测报文包括:
    确定每个第三光口的告警状态是否正常;
    响应于确定所述第三光口的告警状态异常,跳过所述第三光口;以及
    响应于确定所述第三光口的告警状态正常,通过所述第三光口发送所述第二检测报文。
  11. 如权利要求9所述的光纤检测方法,其中依次打开每个第三光口的光开关,通过所述第三光口发送第二检测报文包括:
    基于所述分布式天线系统的工作模式将所述中继设备的所有第三光口划分为多个第三光口组;以及
    依次打开每个第三光口组的光开关,通过所述第三光口组发送所述第二检测报文。
  12. 如权利要求8所述的光纤检测方法,其中获取所有第二光通道下所述中继设备和所述远端设备之间的光纤连接信息包括:
    在所述远端设备中仅设置了一个FSK开关以在所述远端设备的两个第四光口之间切换的情况下,检测所述中继设备的第三光口的光收告警信号以确定所述远端设备的未配置FSK开关的第四光口与所述中继设备的第三光口之间的光纤连接信息,其中所述远端设备的未配置FSK开关的第四光口的数模转换器被关闭。
  13. 如权利要求8所述的光纤检测方法,其中确定所述分布式天线系统的光纤连接状态包括:
    基于所述分布式天线系统的工作模式将所述中继设备的所有第三光口划分为多个第三光口组;
    基于所有第二光通道下所述中继设备和所述远端设备之间的光纤连接信息确定每个第三光口组中的第三光口所对应的远端设备是否是同一远端设备;
    响应于确定一个第三光口组中的第三光口所对应的远端设备是同一远端设备,确定所述第三光口组中的第三光口是否分别对应于所述同一远端设备的不同第二光通道;以及
    响应于确定所述第一光口组中的第一光口分别对应于所述同一中继设备的不同第二光通道,确定所述分布式天线系统的光纤连接状态正常。
  14. 如权利要求13所述的光纤检测方法,还包括:
    响应于确定一个第三光口组中的第三光口所对应的远端设备不是同一远端设备或者响应于确定所述第三光口组中的第三光口不是分别对应于所述同一远端设备的不同第二光通道,确定所述分布式天线系统的光纤连接状态异常。
  15. 如权利要求8所述的光纤检测方法,还包括,在每个远端设备处:
    响应于接收到来自所述中继设备的第二光开关控制命令,确定与该组第二光通道中的一个第二光通道相对应的第四光模块的告警状态是否正常;
    响应于确定与所述第二光通道相对应的第四光模块的告警状态正常,打开所述第四光模块的光开关并且关闭其他第四光模块的光开关以切换到所述第二光通道;以及
    响应于确定与所述第二光通道相对应的第四光模块的告警状态异常,不切换到所述第二光通道。
  16. 如权利要求1所述的光纤检测方法,还包括:
    在确定了所述分布式天线系统的光纤连接状态之后,打开所有光开关以更新所述分布式天线系统的拓扑图。
  17. 如权利要求1所述的光纤检测方法,其中
    所述第一光通道使用第一载波频率;以及
    所述第二光通道使用不同于所述第一载波频率的第二载波频率。
  18. 一种控制模块,包括:
    至少一个处理器;以及
    至少一个存储器,所述至少一个存储器被耦合到所述至少一个处理器并且存储用于由所述至少一个处理器执行的指令,所述指令当由所述至少一个处理器执行时,使得所述控制模块执行根据权利要求1至17中任一项所述的方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序代码,所述计算机程序代码在被处理器运行时执行如权利要求1至17中任一项所述的方法。
PCT/CN2022/076748 2021-11-23 2022-02-18 分布式天线系统的光纤检测方法、控制模块和计算机介质 WO2023092867A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/350,343 US20240031021A1 (en) 2021-11-23 2023-07-11 Optical fiber detection method, control module and computer medium of distributed antenna system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111395869.7 2021-11-23
CN202111395869.7A CN114095082B (zh) 2021-11-23 2021-11-23 分布式天线系统的光纤检测方法、控制模块和计算机介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/350,343 Continuation US20240031021A1 (en) 2021-11-23 2023-07-11 Optical fiber detection method, control module and computer medium of distributed antenna system

Publications (1)

Publication Number Publication Date
WO2023092867A1 true WO2023092867A1 (zh) 2023-06-01

Family

ID=80303281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076748 WO2023092867A1 (zh) 2021-11-23 2022-02-18 分布式天线系统的光纤检测方法、控制模块和计算机介质

Country Status (3)

Country Link
US (1) US20240031021A1 (zh)
CN (1) CN114095082B (zh)
WO (1) WO2023092867A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394698A (zh) * 2011-10-26 2012-03-28 奥维通信股份有限公司 集成覆盖天线的模拟光纤直放站分布系统
CN103023561A (zh) * 2012-12-24 2013-04-03 索尔思光电(成都)有限公司 一种光模块测试中光纤自动耦合配对系统
CN103795573A (zh) * 2014-01-26 2014-05-14 深圳市华普特科技有限公司 一种网络拓扑生成方法、装置及系统
CN106792796A (zh) * 2016-11-21 2017-05-31 京信通信技术(广州)有限公司 分布式天线系统及其信号连接检测方法和装置
CN107493135A (zh) * 2016-06-12 2017-12-19 中兴通讯股份有限公司 光纤跳线的配对系统、设备、方法及装置
CN109698871A (zh) * 2018-12-20 2019-04-30 京信通信系统(中国)有限公司 一种光纤分布式接入系统及其管理方法
US20200213880A1 (en) * 2018-12-31 2020-07-02 Ricardo Matias De Goycoechea Intelligent distributed antenna system monitoring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457537B2 (en) * 2005-10-06 2008-11-25 Technology Thesaurus Corp. Optical telecommunication system with automatic channel switching
CN101925079A (zh) * 2010-06-23 2010-12-22 京信通信系统(中国)有限公司 射频拉远系统及对其在网的中继端进行备份切换的装置
CN103597807B (zh) * 2010-09-14 2015-09-30 大理系统有限公司 远程可重新配置的分布式天线系统和方法
CN104504414A (zh) * 2014-11-28 2015-04-08 北京邮电大学 一种天线分集的射频切换装置及分布式rfid系统
CN106100746B (zh) * 2016-04-25 2018-05-15 海普林科技(武汉)有限公司 一种用于otdr光纤检测的测试波中继设备及其控制方法
US9917638B1 (en) * 2016-10-04 2018-03-13 Optical Zonu Corporation Antenna status and propagation management over fiber optic transport
CN109804655B (zh) * 2016-10-11 2021-02-09 华为技术有限公司 射频网络中信号传输的方法、射频系统和检测设备
CN207573367U (zh) * 2017-12-22 2018-07-03 北京吉视汇通科技有限责任公司 一种中继设备及多媒体数据传输系统
US10727955B2 (en) * 2018-11-29 2020-07-28 At&T Intellectual Property I, L.P. Method and apparatus for power delivery to waveguide systems
CN113395108B (zh) * 2020-03-12 2022-12-27 华为技术有限公司 故障处理的方法、装置以及系统
CN113660713A (zh) * 2020-05-12 2021-11-16 大唐移动通信设备有限公司 一种有源天线处理单元、工作状态的切换方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394698A (zh) * 2011-10-26 2012-03-28 奥维通信股份有限公司 集成覆盖天线的模拟光纤直放站分布系统
CN103023561A (zh) * 2012-12-24 2013-04-03 索尔思光电(成都)有限公司 一种光模块测试中光纤自动耦合配对系统
CN103795573A (zh) * 2014-01-26 2014-05-14 深圳市华普特科技有限公司 一种网络拓扑生成方法、装置及系统
CN107493135A (zh) * 2016-06-12 2017-12-19 中兴通讯股份有限公司 光纤跳线的配对系统、设备、方法及装置
CN106792796A (zh) * 2016-11-21 2017-05-31 京信通信技术(广州)有限公司 分布式天线系统及其信号连接检测方法和装置
CN109698871A (zh) * 2018-12-20 2019-04-30 京信通信系统(中国)有限公司 一种光纤分布式接入系统及其管理方法
US20200213880A1 (en) * 2018-12-31 2020-07-02 Ricardo Matias De Goycoechea Intelligent distributed antenna system monitoring

Also Published As

Publication number Publication date
US20240031021A1 (en) 2024-01-25
CN114095082A (zh) 2022-02-25
CN114095082B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US5084869A (en) Base station for mobile radio telecommunications systems
CN101159933B (zh) 分体式基站系统及其组网方法和基带单元
CN100426897C (zh) 分体式基站系统及其组网方法和基带单元
KR100693772B1 (ko) Ad-hoc 무선 통신 시스템
EP1747690B1 (en) System and method for aggregating multiple radio interfaces into a single logical bridge interface
CN101277484B (zh) 分体式基站系统及其组网方法和基带单元
US11696212B2 (en) Beacon and method for setting up and for maintaining a network
WO2009068592A1 (en) A method and apparatus for autonomous port role assignments in master-slave networks
US20230336245A1 (en) Monitoring method, control module and computer medium of distributed antenna system
KR100266538B1 (ko) 복수개의 네트웍 상태 관리방법
WO2023092867A1 (zh) 分布式天线系统的光纤检测方法、控制模块和计算机介质
EP1199816A1 (en) Radio base station and method of preventing failure of radio function
WO2022179105A1 (zh) 一种多路服务器及多路服务器信号互联系统
WO2009005630A1 (en) Wireless communication device including a standby radio
CN102611502B (zh) 环网配置方法和装置
US20010015979A1 (en) Ring transmission system and method of controlling squelch in ring transmission system
KR0168805B1 (ko) 셀룰라 기지국에서 유지보수를 위한 송수신기 절체장치 및 방법
CN101355469B (zh) 网络地址的处理方法与路由节点
WO2022030950A1 (en) Methods and equipments for locking transmission state
JP2001128227A (ja) 移動体通信システム
CN201008157Y (zh) 在无线通信系统中用于传送及接收一管理帧的网点
CN110167038B (zh) 在移动无线电站中进行拓扑确定的方法和移动无线电站
CN100433575C (zh) 一种基站反向链路的冗余备份系统及射频切换装置
JP3637320B2 (ja) 無線通信機器、無線通信システムおよび情報処理システムの機器構成方法
US7508838B2 (en) Ethernet port apparatus supporting multiple physical media, media managing method therefor, and switching system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896970

Country of ref document: EP

Kind code of ref document: A1