WO2023092828A1 - 一种无线通信信息传送方法和设备 - Google Patents

一种无线通信信息传送方法和设备 Download PDF

Info

Publication number
WO2023092828A1
WO2023092828A1 PCT/CN2022/070411 CN2022070411W WO2023092828A1 WO 2023092828 A1 WO2023092828 A1 WO 2023092828A1 CN 2022070411 W CN2022070411 W CN 2022070411W WO 2023092828 A1 WO2023092828 A1 WO 2023092828A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user equipment
network device
control information
intermediate device
Prior art date
Application number
PCT/CN2022/070411
Other languages
English (en)
French (fr)
Inventor
王志勤
闫志宇
杜滢
沈霞
焦慧颖
刘慧�
宋国超
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2023092828A1 publication Critical patent/WO2023092828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the technical field of mobile communication, in particular to a method and device for transmitting communication information in a wireless communication system with an intermediate device node.
  • RIS Reconfigurable Intelligent Surface
  • RIS is an artificial electromagnetic surface structure with programmable electromagnetic properties.
  • RIS is usually composed of a large number of well-designed electromagnetic unit arrangements.
  • control signals to the adjustable elements on the electromagnetic units, the electromagnetic properties of these electromagnetic units can be dynamically controlled, and then the active intelligence of space electromagnetic waves can be realized in a programmable way.
  • Controlled to form an electromagnetic field with controllable parameters such as amplitude, phase, polarization and frequency.
  • the wireless environment is an uncontrollable factor, and its uncontrollability usually has a negative effect on communication efficiency and will reduce service quality.
  • deploy RIS on the surface of various objects in the wireless transmission environment reduce the uncontrollability of traditional wireless channels, and build an intelligent programmable wireless environment.
  • an intermediate device node with RIS is set between the network device gNB and the user equipment UE.
  • RIS can actively enrich the channel scattering conditions and enhance the multiplexing gain of the wireless communication system; on the other hand, RIS can be used in three-dimensional space It realizes signal propagation direction control and in-phase superposition, increases received signal strength, and improves transmission performance between communication devices.
  • Low cost, low energy consumption, programmable, and easy deployment enable RIS to be used in the evolution of future communication systems to enhance network coverage and capacity, provide virtual line-of-sight links, eliminate local coverage holes, serve cell edge users, and solve inter-cell Co-channel interference, etc., and then realize an intelligent and reconfigurable wireless environment.
  • the user equipment sends status information to the network equipment for channel characteristics between the network equipment and the user equipment.
  • the signal received by the receiving end includes both the signal directly transmitted by the network device to the user device and the signal reflected by the RIS, so the channel state between the network device and the user device is the result of the combination of the two , the amount of feedback of channel state information will be very large.
  • the amount of channel state information feedback usually increases in proportion to the number of antennas in the base station and the number of reflection units in the RIS.
  • the RIS transmits signals to serve multiple user equipments, if each user equipment feeds back the state information of the composite channel, it will bring user equipment feedback and information transmission burden, and the system efficiency will be low.
  • the sending device cannot determine the channel characteristic H between the network device and the intermediate device, nor can it determine the channel characteristic h between the intermediate device and the user equipment, so it cannot know the deployment position of the RIS, the phase shift matrix ⁇ , and the equivalent
  • the influence of amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, and frequency offset on the composite channel makes it impossible to optimize parameters such as RIS deployment location, density, RIS form, and regulation/cooperation relationship.
  • the present application proposes a wireless communication information transmission method and device to solve the problems of large channel state feedback information, low system efficiency, and difficulty in optimizing the deployment of user equipment with RIS in a mobile communication system with intermediate equipment.
  • the present application provides a method for transmitting wireless communication information.
  • the wireless communication system includes network equipment, intermediate equipment, and user equipment, and a signal generated by the network equipment is received by the user equipment after passing through the intermediate equipment;
  • the wireless communication system includes at least one of the following information transmissions: transmitting first downlink control information and/or first uplink control information between the network device and the intermediate device; transmitting second downlink control information between the intermediate device and the user equipment information and/or second uplink control information; transmitting third downlink control information and/or third uplink control information between the network device and the user equipment; the method specifically includes:
  • the downlink indication information includes: first information for indicating the configuration parameters of the intermediate device, and third information for indicating the channel characteristic H between the network device and the intermediate device;
  • the uplink indication information includes: second information used to indicate the channel characteristic h between the intermediate device and the user equipment;
  • the downlink indication information is at least one of the first downlink control information, the second downlink control information, and the third downlink control information; the uplink indication information is the first uplink control information, the second uplink control information, the third At least one of uplink control information.
  • the configuration parameters are used to determine at least one of the following: phase shift matrix, equivalent amplitude reflection factor, power adjustment coefficient, polarization factor, and frequency offset.
  • the configuration parameters include resource indications for distinguishing multiple intermediate devices.
  • the channel characteristic H from the intermediate device to the network device is measured according to the preset reference signal sent by the intermediate device to the network device, or, according to the preset reference signal sent by the network device to the intermediate device
  • the preset reference signal measures the channel characteristic H between the network device and the intermediate device.
  • the wireless communication information transmission method described in any one embodiment of the first aspect of the present application is used for a network device, and includes the following steps:
  • the network device sends the first downlink control information and/or third downlink control information, including the first information
  • the network device receives the first uplink control information and/or the third uplink control information, including the second information.
  • the channel characteristic H between the network device and the intermediate device is measured according to a preset reference signal sent by the network device to the intermediate device; the network device receives the first uplink control information and /or the third uplink control information, which includes the third information.
  • the network device sends the first downlink control information and /or the third downlink control information, which includes the third information.
  • the channel characteristic H between the network device and the intermediate device, and the channel characteristic h between the intermediate device and the user equipment is determined.
  • the wireless communication information transmission method described in any one embodiment of the first aspect of the present application is used for an intermediate device, and includes the following steps:
  • the intermediate device sends the second downlink control information, which includes the first information
  • the intermediate device receives the second uplink control information, which includes the second information.
  • the channel characteristic H between the network device and the intermediate device is measured according to the preset reference signal sent by the network device to the intermediate device; the intermediate device sends the first uplink control information and /or the second downlink control information, which includes the third information.
  • the intermediate device receives the first downlink control information and Send the third downlink control information, which includes third information.
  • the wireless communication information transmission method described in any one embodiment of the first aspect of the present application is used for user equipment, and includes the following steps:
  • the user equipment receives the second downlink control information or the third downlink control information, where any downlink control information includes the first information and/or third information;
  • the user equipment sends the second uplink control information or the third uplink control information, wherein any uplink control information includes the second information.
  • the user equipment in response to the second downlink control information including the third information, the user equipment sends the third uplink control information including the third information.
  • the user equipment calculates the channel characteristic h between the intermediate device and the user equipment according to the signal received by the user equipment, configuration parameters, and the channel characteristic H between the network device and the intermediate device, or calculates the channel characteristic h between the intermediate device and the user equipment according to the signal received by the user equipment, configuration parameters parameter, the channel characteristic H between the network device and the intermediate device, the channel characteristic g between the network device and the user equipment, and calculate the channel characteristic h between the intermediate device and the user equipment.
  • the present application proposes a communication device as a network device for implementing the method described in any embodiment of the network device in the first aspect of the present application.
  • the communication device includes at least one module, and each of the modules is used for at least one of the following functions: sending the first downlink control signaling, sending the third downlink control information, receiving the first uplink control signal command, receive the third uplink control information, determine the first information, determine the second information, and determine the third information.
  • the present application proposes a communication device as an intermediate device, configured to implement the method described in any embodiment of the intermediate device in the first aspect of the present application.
  • the communication device includes at least one module, and each of the modules is used for at least one of the following functions: receiving the first downlink control signaling, receiving the second uplink control signaling, sending the first uplink control signaling signaling, sending the second downlink control signaling, determining the first information, determining the second information, and determining the third information.
  • the present application provides a communication device, which is used as a user equipment, to implement the method described in any embodiment of the user equipment in the first aspect of the present application.
  • the communication device includes at least one module, and each of the modules is used for at least one of the following functions: receiving the second downlink control signaling, receiving the third downlink control signaling, and sending the second uplink control signaling order, send the third uplink control signaling, determine the first information, determine the second information, and determine the third information.
  • the present application also proposes a communication device, including: a memory, a processor, and a computer program stored in the memory and operable on the processor, when the computer program is executed by the processor Implement the steps of the method described in any one of the embodiments of the present application.
  • the present application also proposes a computer-readable medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any embodiment of the present application are implemented. .
  • the present application further proposes a mobile communication system, including the communication device described in any one of the second, third, and fourth aspects of the present application.
  • This application protects the configuration information between the sending end and the receiving end, and the channel state information fed back by the receiving end, enabling the channel characteristic H between the sending end and the RIS, the channel characteristic h between the RIS and the receiving end, and the channel characteristic h between the sending end and the receiving end. Independent measurement process of direct channel characteristic g between peers.
  • the solution of the present application avoids the problems of feedback burden brought by each user equipment feeding back a composite channel and low system efficiency.
  • the solution of this application can enable the sending end to train different RIS deployment positions, phase shift matrix ⁇ , and equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, frequency offset, etc. Update and optimize the RIS deployment and parameters based on the influence of the channel characteristic H between RIS and RIS, the channel characteristic h between RIS and the receiving end, network efficiency, and interference conditions.
  • Figure 1 is a RIS-assisted communication system model
  • Fig. 2 is a communication system model including multiple RIS devices
  • Fig. 3 is the flow chart of the embodiment of the application method
  • Figure 4 is a schematic diagram of RIS parameter configuration
  • FIG. 5 is a flow chart of an embodiment of the method of the present application applied to a network device
  • FIG. 6 is a flow chart of an embodiment of the method of the present application used in an intermediate device
  • FIG. 7 is a flowchart of an embodiment of the application method applied to a user equipment
  • FIG. 8 is a schematic diagram of an embodiment of a network device
  • Fig. 9 is a schematic diagram of an embodiment of an intermediate device
  • Fig. 10 is a schematic diagram of an embodiment of a user equipment
  • FIG. 11 is a schematic diagram of another embodiment of the network device of the present invention.
  • Fig. 12 is a schematic diagram of another embodiment of the intermediate device of the present invention.
  • Fig. 13 is a schematic diagram of another embodiment of the user equipment of the present invention.
  • Fig. 1 is the communication system model assisted by RIS.
  • RIS participates in the deployment need to jointly optimize and control RIS parameters, accurately control the wireless propagation environment as needed, and build a wireless intelligent environment that can be precisely controlled.
  • Figure 1 it is a three-node communication system, which consists of a transmitter, a receiver and RIS with large-scale electromagnetic units.
  • the wireless signal is sent from the transmitter, and the coherent combination of their respective scattered signals is created by controlling the reflection unit of the RIS to introduce appropriate amplitude, phase shift, etc., thereby forming a signal converged at the receiver.
  • the output signal of one reflection unit is Where ⁇ n is the amplitude reflection factor of the nth reflection unit, ⁇ n is the phase reflection factor of the nth reflection unit, and x n is the incident signal of the nth reflection unit.
  • the equivalent power adjustment coefficient is ⁇ . In this way, after the signal s sent by the sending end passes through N reflection units, the signal y received by the receiving end is:
  • the equivalent channel characteristic h ⁇ H from the transmitting end to the receiving end through the RIS is the product of the channel characteristic h between the RIS and the receiving end, the adjustable phase shift matrix ⁇ of the RIS, and the channel characteristic H between the sending end and the RIS, and g is the receiving end and the transmitting end
  • n0 is Gaussian white noise.
  • RIS Ribonuclear Recommendation
  • the usual optimization process takes the natural channel and business demand distribution as the basic input to design the initial RIS deployment topology. Then, based on the adaptive wireless transmission control performance of RIS, further iteratively optimize the deployment topology of RIS, thereby constructing an intelligent and controllable wireless environment, achieving a balance between complexity, cost and performance, and outputting RIS deployment location, density, RIS form, Parameters such as regulation/collaboration relationship.
  • the channel characteristic H between the terminal and the RIS, and the channel characteristic h between the RIS and the receiving terminal are used to update and optimize the deployment of the RIS.
  • the sending end usually obtains the composite channel through the channel state information fed back by the receiving device.
  • the amount of channel state information feedback will be very large.
  • the feedback amount of channel state information usually increases in proportion to the number of antennas of the base station and the number of reflection units of the RIS.
  • the RIS transmits signals to serve multiple user equipments, if each user equipment feeds back the overall characteristics of the composite channel, it will bring a large feedback burden to the user equipments, and the system efficiency will be low.
  • the sending device cannot determine the channel characteristics H and h, so it cannot determine the RIS deployment position, phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient, polarization factor, frequency offset, etc.
  • the RIS deployment position phase shift matrix ⁇
  • equivalent amplitude reflection factor ⁇ power adjustment coefficient
  • polarization factor polarization factor
  • Figure 2 is a communication system model including multiple RIS facilities.
  • the intermediate device may feed back the channel characteristic H between the sending end and the RIS to the network device, or the intermediate device may send a signal to one or a part of the multiple user equipments
  • the channel characteristic H the user equipment(s) forwards the channel characteristic H between the sender and the RIS to the network device.
  • UEs 1-3 all receive reflected signals from the same RIS-1.
  • H 1 and h 11 may be fed back by UE 1 .
  • Other user equipments only need to feed back the characteristics of the channel between the RIS and the user equipment, and the characteristics of the direct channel between the sending end and the receiving end. For example, UE 2 feeds back h 12 , and UE 3 feeds back h 13 . In this way, the amount of feedback from the user equipment is reduced and the overall efficiency of the system is improved.
  • This application mainly discloses and protects the configuration information between the sending end and the receiving end, enabling the channel characteristic H between the sending end and the RIS, the channel characteristic h between the RIS and the receiving end, and the direct channel characteristic g between the sending end and the receiving end independent measurement process.
  • the sending end takes the network device gNB as an example
  • the receiving end takes the user equipment UE (or terminal equipment) as an example.
  • This application also refers to the control node of the RIS device as an intermediate device, and the intermediate device may also be referred to as RIS.
  • the sending end can be trained to obtain different RIS deployment positions, phase shift matrix ⁇ , and equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, frequency offset and other effects on the relationship between the sending end and RIS.
  • Fig. 3 is a flowchart of an embodiment of the method of the present application.
  • An embodiment of the present application is a method for transmitting wireless communication information.
  • the wireless communication system includes network equipment, intermediate equipment, and user equipment, and the signal generated by the network equipment is received by the user equipment after passing through the intermediate equipment; the wireless communication In the system, the first downlink control information and/or the first uplink control information is transmitted between the network device and the intermediate device; the second downlink control information and/or the second uplink control information is transmitted between the intermediate device and the user equipment; Transmitting the third downlink control information and/or the third uplink control information between the network device and the user equipment; the method specifically includes:
  • Step 101 Transmit downlink indication information, the downlink indication information including: first information for indicating configuration parameters of the intermediate device, and third information for indicating channel characteristic H between the network device and the intermediate device.
  • the method for the user equipment UE to obtain H is as follows: 1 After the network device obtains H, it notifies the user equipment of this information. 2 The user equipment obtains the measured H through the intermediate equipment with RIS.
  • the downlink indication information must be at least one of the first downlink control information, the second downlink control information, and the third downlink control information.
  • the configuration parameters are used to determine at least one of the following: phase shift matrix, equivalent amplitude reflection factor, power adjustment coefficient, polarization factor, and frequency offset.
  • the configuration parameters include resource indications for distinguishing multiple intermediate devices (as shown in FIG. 4 ).
  • Step 102 Determine the channel characteristic h between the intermediate device and the user equipment according to the first information and the third information, and generate second information.
  • the user equipment determines h: the signal s sent by the network equipment reaches the intermediate equipment and is reflected and forwarded.
  • the forwarded information is
  • is a power adjustment coefficient of the signal s processed by the intermediate device through the wireless channel between the network device and the intermediate device relative to the signal s.
  • the user equipment determines the information forwarded via the intermediate device combined received signal
  • the direct channel characteristic g between the network device and the user equipment determines the channel characteristic h between the RIS and the user equipment.
  • the user equipment needs to determine ⁇ , ⁇ , H and g.
  • the network device sends configuration information notifications to the user equipment.
  • s is a reference signal preconfigured to the user equipment.
  • Step 103 Transmit uplink indication information, where the uplink indication information includes: second information used to indicate the channel characteristic h between the intermediate device and the user equipment.
  • the uplink indication information is at least one of the first uplink control information, the second uplink control information, and the third uplink control information.
  • Obtained by network equipment h acquired by user equipment feedback.
  • Step 104 according to the first information, the second information, and the third information, determine the characteristics of the composite channel between the network device and the user equipment.
  • the channel characteristic H from the intermediate device to the network device is measured according to the preset reference signal sent by the intermediate device to the network device, or, according to the preset reference signal sent by the network device to the intermediate device
  • the preset reference signal measures the channel characteristic H between the network device and the intermediate device. Therefore, the way for the network device to obtain H is as follows: 1 the network device obtains the measured H through the intermediate device; 2 the network device itself measures the signal sent by the intermediate device to obtain H. 3 The network device acquires part of the user equipment UE and forwards the H estimated from the intermediate device.
  • the intermediate device determines that H: is obtained by measuring the reference signal sent by the network device. After the measurement obtains H, the intermediate device can send the H information. Specifically, it may be sent by broadcast, which is convenient for the network device and the user equipment connected to it to receive. It may also be sent to the representative of the user equipment, which is sent to the network device by the representative of the user equipment, and then forwarded to other user equipment by the network device.
  • the network device obtains the parameters required for calculating the composite channel feature, so in step 104, the composite channel feature can be determined according to the method of formula (1).
  • Step 105 Determine optimized configuration parameters according to the characteristics of the composite channel.
  • FIG. 4 is a schematic diagram of RIS parameter configuration.
  • the user equipment measures the received signal resources of the information forwarded by each RIS, and the user equipment The resources for measuring the received signal of the information forwarded via each RIS need to be orthogonal.
  • information forwarded via RIS-1 is The signal received at the receiver
  • the information forwarded via RIS-2 is The signal received at the receiver
  • the configuration parameters about RIS-1 configured by the network device to the user equipment include the indication of resources applicable to the measurement
  • the configuration parameters about RIS-2 include a resource indication to which the measurement resource is applicable.
  • the configuration parameters of RIS-2 correspond to the transparent transmission status of RIS-2.
  • the configuration parameters of RIS-1 correspond to the transparent transmission status of RIS-1.
  • the transmission state here corresponds to the closed state of the intermediate device, and signal transmission via the intermediate device can be regarded as not changing the air transmission characteristics.
  • the configuration parameters of the intermediate device should include a resource indicator applicable to the measurement resource. Include the resources for which these configuration resources take effect in the configuration parameters for RIS-1.
  • the RIS-1 should be in a non-working state, such as a transparent transmission state. However, for the user equipment not measuring the channel between the RIS-2 and the user equipment, the RIS-1 may be in the reflective state.
  • the configuration parameters corresponding to RIS-1 include a first configuration parameter and an applicable time of the first configuration parameter within a range of t1 , a second configuration parameter and an applicable time of the second configuration parameter within a range of t2 .
  • the first configuration parameters include at least one of RIS-1 phase shift matrix ⁇ 1 , equivalent amplitude reflection factor ⁇ 1 , equivalent power adjustment coefficient ⁇ 1 , polarization factor, frequency offset, and the like.
  • the applicable time of the second configuration parameter corresponds to the transparent transmission state of the RIS-1.
  • the configuration parameters corresponding to RIS-2 include a third configuration parameter and an applicable time of the third configuration parameter within a range of t3 , a fourth configuration parameter and an applicable time of the fourth configuration parameter within a range of t4 .
  • the third configuration parameter includes at least one of RIS-2 phase shift matrix ⁇ 2 , equivalent amplitude reflection factor ⁇ 2 , equivalent power adjustment coefficient ⁇ 2 , polarization factor, frequency offset, and the like.
  • the applicable time of the fourth configuration parameter corresponds to the transparent transmission state of the RIS-2. Further, the measurement resources used to measure the channel state information between RIS- 1 and the user equipment are configured within the range of t1, and the measurement resources used to measure the channel state information between the RIS-2 and the user equipment are configured within the range of t3 .
  • the network device can ensure that the user equipment obtains the information forwarded by RIS-1.
  • Received signal at user equipment end and forwarded via RIS-2 Received signal at user equipment end Within the intersection time range of t2 and t4 , the user equipment can measure the direct channel state information g between the network equipment and the user equipment by receiving the signal.
  • the user equipment can then calculate the channel h 1 between the RIS-1 and the user equipment according to y 1 , ⁇ 1 , ⁇ 1 , H 1 , g, and s 1 .
  • the channel h 2 between the RIS-2 and the user equipment is calculated according to y 2 , ⁇ 2 , ⁇ 2 , H 2 , g, and s 2 .
  • FIG. 5 is a flow chart of an embodiment of the method of the present application applied to a network device.
  • the wireless communication information transmission method described in any one embodiment of the first aspect of the present application is used for a network device, and includes the following steps:
  • Step 201 the network device sends the first downlink control information and/or the third downlink control information, including the first information.
  • Sending the first information is used to determine at least one of the following configuration parameters of at least one intermediate device: phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient, polarization factor, and frequency offset.
  • the network device sends the configuration parameters of the intermediate device, which are used to determine the phase shift matrix, equivalent amplitude reflection factor, power adjustment coefficient, polarization factor, frequency offset and target power control parameters of the received signal of the intermediate device for the incident signal.
  • the user equipment can determine the information forwarded by the intermediate device according to the configuration information, and then determine the channel state information h between the intermediate device and the user equipment according to the received signal and the information forwarded by the intermediate device.
  • phase shift matrix ⁇ phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, frequency offset, etc.
  • the at least one configuration parameter includes a resource indication of a transparent transmission state.
  • the network device sends the configuration parameters of each intermediate device. Taking the two intermediate devices RIS-1 and RIS-2 in the network shown in Figure 2 as an example, the network device sends the configuration parameters of RIS-1 and RIS-2 to determine the RIS -1 For at least one of the phase shift matrix ⁇ 1 of the incident signal, equivalent amplitude reflection factor ⁇ 1 , equivalent power adjustment coefficient ⁇ 1 , polarization factor, frequency offset, etc.; determine the phase of RIS-2 for the incident signal At least one of shift matrix ⁇ 2 , equivalent amplitude reflection factor ⁇ 2 , equivalent power adjustment coefficient ⁇ 2 , polarization factor, frequency offset, etc.
  • the network device sends the configuration parameters of two intermediate devices, RIS-1 and RIS-2, so that the user equipment can determine that the information s 1 sent by the network device is forwarded by RIS-1 as It is determined that the information s 2 sent by the network device is forwarded by RIS-2 as
  • the received signal arriving at the user equipment is After forwarding via RIS-2
  • the received signal arriving at the user equipment is
  • each intermediate device corresponds to the phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, and frequency
  • At least one item such as offset has two cases of reflection and transparent transmission as an example.
  • the network device sends first information for determining at least one configuration parameter of at least one intermediate device.
  • the at least one configuration parameter includes a resource indication applicable to measurement resources on the RIS node.
  • the first configuration parameter set of the RIS node is suitable for measurement resources
  • the second configuration parameter set of the RIS node is suitable for non-measurement resources
  • the RIS node is in a silent state (transparent transmission state) on these resources, which is convenient for the user equipment to measure other RIS nodes and the channel state information between the network device and the user equipment, and the direct channel state information g between the network device and the user equipment.
  • Step 202 Send third information, which is used to carry and determine a second type of channel state information, where the second type of channel state information corresponds to channel characteristics between the network device and the at least one intermediate device.
  • the user equipment In order for the user equipment to calculate the channel h 1 between the RIS-1 and the user equipment according to y 1 , ⁇ 1 , ⁇ 1 , H 1 , g, and s 1 . Calculate the channel h 2 between the RIS-2 and the user equipment according to y 2 , ⁇ 2 , ⁇ 2 , H 2 , g, and s 2 .
  • the user equipment needs to acquire the channel H 1 between the network equipment and RIS-1, and the channel H 1 between the network equipment and RIS-2.
  • One possible manner is that the network device sends H 1 and H 2 to the user equipment. There are three ways for the network device to obtain H 1 and H 2 , such as steps 202A-C:
  • Step 202A the network device directly acquires H and sends the third information.
  • the network device Measuring a channel characteristic H from the intermediate device to the network device according to a preset reference signal sent by the intermediate device to the network device; the network device sends the first downlink control information and/or The third downlink control information includes the third information.
  • the network device itself acquires H. It is assumed that the channel condition between the network device and the RIS satisfies the mutuality condition.
  • the network device can measure the channel from the RIS to the network device according to the preset reference signal sent by the RIS, and use it as a channel between the network device and the RIS, and send the channel state information to the user equipment.
  • the network device receives the third information from the first uplink control information and acquires H.
  • the network device receives the first uplink control information, which includes the first uplink control information Three information.
  • the network device obtains H from the RIS.
  • the RIS measures the channel from the network device to the RIS according to the preset reference signal sent by the receiving network device, and sends the channel state information to the network device.
  • the channel state information sent by the RIS may also be sent to the network equipment and the user equipment at the same time.
  • the network device receives third information from the third uplink control information and acquires H.
  • the network device receives the third uplink control information, which includes the third uplink control information Three information.
  • the network device acquires H from the primary user equipment.
  • the RIS may send the channel characteristic H between the transmitting end and the RIS to one or a part of the multiple user equipments, and the channel characteristic H between the transmitting end and the RIS may be transmitted by this (some) user equipments.
  • the channel characteristic H is forwarded to the network device.
  • step 202 if the network device sends the third information to the user equipment, it may be in a broadcast manner, so that the receiving user equipment can separately calculate the channel between the RIS and the user equipment.
  • the problems of feedback burden and system inefficiency caused by each user equipment feeding back the composite channel are avoided.
  • Step 203 the network device receives the first uplink control information and/or the third uplink control information, including the second information.
  • the user equipment determines the channel state information between the intermediate device and the user equipment, it feeds back the channel state information to the network device as the second information, which can be directly sent to the network device through the third uplink control information, or can be sent to the network device through the intermediate
  • the device conveys the information and sends it to the network device through the second uplink control information and the first uplink control information.
  • the network device acquires the second information, which is used to determine the first type of channel state information, where the first type of channel state information corresponds to the channel characteristic h between the at least one intermediate device and the user equipment.
  • Step 204 the network device determines the composite channel state between the network device and the user equipment according to the configuration parameters, the channel characteristic H between the network device and the intermediate device, and the channel characteristic h between the intermediate device and the user equipment.
  • Step 205 the network device determines optimized configuration parameters according to the characteristics of the composite channel.
  • the network device can be trained to obtain the RIS deployment position of different intermediate devices, the phase shift matrix ⁇ , the equivalent amplitude reflection factor ⁇ , the power adjustment coefficient ⁇ , the polarization factor, and the frequency offset.
  • steps 203, 204, and 205 are optional steps in this embodiment.
  • the network device may acquire the second information in other ways.
  • the network device can use other methods to determine the composite channel state between the network device and the user equipment according to the obtained parameters such as the channel characteristic H between the network device and the intermediate device, the channel characteristic h between the intermediate device and the user equipment, etc. , and or update optimized RIS deployments and parameters.
  • FIG. 6 is a flow chart of an embodiment of the method of the present application applied to an intermediate device.
  • the wireless communication information transmission method described in any one embodiment of the first aspect of the present application is used for an intermediate device, and includes the following steps:
  • Step 301 the intermediate device receives and/or sends the second downlink control information, which includes the first information.
  • Obtaining the first information is used to determine at least one of the following configuration parameters: phase shift matrix ⁇ , and equivalent amplitude reflection factor ⁇ (including that of each array element), power adjustment coefficient ⁇ , polarization factor, frequency offset, etc. at least one item.
  • the intermediate device can acquire the configuration parameters of the transmitting intermediate device of the network device, which are used to determine the phase shift matrix, equivalent amplitude reflection factor, power adjustment coefficient, polarization factor, frequency offset and The target power control parameter of the received signal. Adjust the reflection state of itself to the received signal.
  • the intermediate device in order to enable the sending end to obtain at least one function of RIS different phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, frequency offset, etc. Influenced by performance, network efficiency, and interference conditions, to update and optimize RIS deployment and parameters, it is necessary to obtain at least one function such as multiple phase shift matrices ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, and frequency offset Channel status information under .
  • the intermediate device may receive two or more configuration parameters: at least one item such as a phase shift matrix ⁇ , an equivalent amplitude reflection factor ⁇ , a power adjustment coefficient ⁇ , a polarization factor, and a frequency offset.
  • the at least one configuration parameter includes a resource indication of a transparent transmission state.
  • the network device sends first information for determining at least one configuration parameter of at least one intermediate device.
  • the at least one configuration parameter includes a resource indication applicable to measurement resources on the RIS node.
  • the first configuration parameter set of RIS nodes is suitable for measurement resources
  • the second configuration parameter set of RIS nodes is suitable for non-measurement resources.
  • RIS nodes are in a silent state (transparent transmission state) on these resources, which is convenient for user equipment to measure other RIS nodes and the channel state information between the network device and the user equipment, and the direct channel state information g between the network device and the user equipment.
  • Step 302 the intermediate device receives the second uplink control information, which includes the second information.
  • Step 303 the intermediate device determines and sends the channel characteristic H between the network device and the RIS.
  • Step 303A the intermediate device obtains H, generates third information and sends it to the user equipment and/or network equipment
  • the intermediate device measures the channel characteristic H from the network device to the intermediate device according to the preset reference signal sent by the network device to the intermediate device; the intermediate device sends the first uplink control information and/or the second uplink control information 2.
  • Downlink control information which includes third information.
  • the channel H between the network device and the RIS is measured according to the preset reference signal sent by the receiving network device, and the channel state information is sent to the network device through the first uplink control information.
  • the channel state information sent by the RIS may also be sent to the network device and the user equipment through the first uplink control information and the second downlink control information at the same time.
  • the intermediate device receives the third information and forwards it to the user equipment.
  • the network device measures the channel characteristic H from the intermediate device to the network device according to the preset reference signal sent by the intermediate device to the network device; the intermediate device receives the first downlink control information and Send the third downlink control information, which includes third information.
  • steps 302 and 303 are optional steps in this embodiment.
  • the intermediate device receives the second uplink control information, obtains the second information and sends the information to the network device, as an alternative, the terminal device may also send the second information to the network through the third uplink control information equipment.
  • the channel characteristic H between the network device and the RIS may also be sent by the network device.
  • FIG. 7 is a flow chart of an embodiment of a method of the present application applied to a user equipment.
  • the wireless communication information transmission method described in any one embodiment of the first aspect of the present application is used for a user equipment, and includes the following steps:
  • Step 401 the user equipment receives the second downlink control information or the third downlink control information, wherein any downlink control information includes the first information;
  • the user equipment obtains first information, which is used to determine at least one of the following configuration parameters: phase shift matrix ⁇ , and equivalent amplitude reflection factor ⁇ (including each array element), power adjustment coefficient ⁇ , pole At least one item such as a conversion factor and a frequency offset.
  • the at least one configuration parameter includes a resource indication of a transparent transmission state.
  • Step 402 the user equipment receives the second downlink control information or the third downlink control information, wherein any downlink control information includes the third information.
  • the user equipment acquires third information, which is used to determine a second type of channel state information, where the second type of channel state information corresponds to a channel between the network device and the at least one intermediate device.
  • the user equipment can calculate the channel h 1 between RIS-1 and the user equipment according to y 1 , ⁇ 1 , ⁇ 1 , H 1 , g, and s 1 , and calculate the channel h 1 between RIS-1 and the user equipment according to y 2 , ⁇ 2 , ⁇ 2 , H 2 , g, s 2 calculate the channel h 2 between the RIS-2 and the user equipment.
  • the user equipment needs to acquire the channel H 1 between the network equipment and RIS-1, and the channel H 1 between the network equipment and RIS-2.
  • One possible manner is that the network device sends H 1 and H 2 to the user equipment.
  • H 1 and H 2 There are three ways for the user equipment to obtain H 1 and H 2 : corresponding to step 202A, the user equipment obtains directly from the network device; corresponding to step 303A, the user equipment obtains directly from the intermediate device; corresponding to step 303B, the intermediate device forwards The third information of the device.
  • Step 403 the user equipment sends the second uplink control information or the third uplink control information, wherein any uplink control information includes the second information.
  • the user equipment calculates the channel characteristic h between the intermediate device and the user equipment according to the signal received by the user equipment, configuration parameters, and the channel characteristic H between the network device and the intermediate device, or calculates the channel characteristic h between the intermediate device and the user equipment according to the signal received by the user equipment, configuration parameters parameters, the channel characteristic H between the network device and the intermediate device, and the channel characteristic g between the network device and the user equipment, calculate the channel characteristic h between the intermediate device and the user equipment, and generate the second information accordingly.
  • the second information sent by the user equipment is used to determine the first type of channel state information, where the first type of channel state information corresponds to channel characteristics between at least one intermediate device and the user equipment.
  • Step 404 Preferably, in response to the second downlink control information including the third information, the user equipment sends the third uplink control information, including the third information.
  • the user equipment sends a second type of channel state information, where the second type of channel state information corresponds to a channel between the network device and the at least one intermediate device.
  • step 402 after obtaining the channel state information of the second type from the RIS, the channel state information of the second type is sent, so that the network equipment can use the channel state information of the second type
  • the state information is forwarded to other user equipments.
  • other user equipments can complete the independent measurement process of the channel characteristic H between the RIS and the receiving end, and the direct channel g between the sending end and the receiving end.
  • it also reduces the feedback burden of other user equipments and improves the system efficiency.
  • Fig. 8 is a schematic diagram of an embodiment of a network device.
  • the present application proposes a communication device, used as a network device, for implementing the method described in any embodiment of the network device in the first aspect of the present application.
  • the communication device includes at least one module, and each of the modules is used for at least one of the following functions: sending the first downlink control signaling, sending the third downlink control information, receiving the first uplink control signal command, receive the third uplink control information, determine the first information, determine the second information, and determine the third information.
  • the network equipment is used for:
  • Sending the first information is used to determine at least one of the following configuration parameters of at least one intermediate device: at least one of the phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ , power adjustment coefficient ⁇ , polarization factor, frequency offset, etc.; preferably Preferably, the at least one configuration parameter includes a resource indication of a transparent transmission state.
  • the channel state information includes a first type of channel state information, and the first type of channel state information corresponds to a channel characteristic h between the at least one intermediate device and the user equipment.
  • Sending third information used to carry and determine a second type of channel state information, where the second type of channel state information corresponds to the channel characteristic H between the network device and the at least one intermediate device.
  • Obtaining the third information includes at least one of the following methods: the network device itself obtains H to generate the third information; the network device obtains the third information from the RIS; the network device obtains the third information from the primary user equipment.
  • a communication device 500 proposed in this application includes a network sending module 501 , a network determining module 502 , and a network receiving module 503 .
  • the network sending module is configured to send downlink indication information as first downlink control information and/or third downlink control information, which includes at least one of the following information: the first information and the third information.
  • the network sending module is further configured to send a preset reference signal used for measurement to an intermediate device.
  • the network determination module is configured to: determine the channel characteristic H according to the preset reference signal used for measurement sent by the intermediate device to the network device; determine H according to the received first uplink control information or the third uplink control information; according to the received first uplink control information
  • the uplink information or the third uplink control information determines h; determines the initial configuration parameters of the intermediate device, and determines further optimized configuration parameters of the intermediate device according to the optimization target. According to the configuration parameters, the channel characteristic H between the network device and the intermediate device, and the channel characteristic h between the intermediate device and the user equipment, the composite channel state between the network device and the user equipment is determined.
  • the network receiving module is configured to receive uplink indication information as first uplink control information and/or third uplink control information, which includes the second information, and further includes the third information.
  • the network receiving module is further configured to receive a preset reference signal used for measurement from an intermediate device.
  • the network device described in this application may be a base station device or a network-side processing device connected to the base station.
  • Fig. 9 is a schematic diagram of an embodiment of an intermediate device.
  • the present application proposes a communication device, as an intermediate device, configured to implement the method described in any embodiment of the intermediate device in the first aspect of the present application.
  • the communication device includes at least one module, and each of the modules is used for at least one of the following functions: receiving the first downlink control signaling, receiving the second uplink control signaling, sending the first uplink control signaling signaling, sending the second downlink control signaling, determining the first information, determining the second information, and determining the third information.
  • the intermediate device includes RIS, and RIS generally consists of multiple array elements.
  • the intermediate device is used for:
  • the first information is used to determine at least one of the following configuration parameters: at least one of the phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ (including that of each array element), power adjustment coefficient, polarization factor, frequency offset, etc. .
  • the at least one configuration parameter includes a resource indication of a transparent transmission state.
  • it is also used to determine and send the channel characteristic H between the network device and the RIS;
  • third information which is used to determine a second type of channel state information
  • the second type of channel state information corresponds to the channel characteristics between the at least one intermediate device and the user equipment h.
  • a kind of intermediate device 600 for controlling reflection unit (such as intelligent metasurface RIS 604) or other phase conversion devices proposed by the present application includes an intermediate sending module 601, an intermediate determining module 602, and an intermediate receiving module 603 .
  • the intermediate receiving module is configured to receive downlink indication information, as the first downlink control signaling, which includes the first information, and further preferably, also includes the third information; further, the intermediate receiving module also It is used for receiving uplink indication information, as the second uplink control signaling, including the second information.
  • the intermediate receiving module is further configured to receive a preset reference signal used for measurement from a network device.
  • the intermediate determination module is configured to determine the first beam to be accessed according to the information (such as first information) identifying the first beam in the first signal; and determine the operating parameters of the phase transformation device in the intermediate device according to the control information ; identifying first information; determining second information associated with the first information.
  • the intermediate determination module is further configured to: signal to determine the second beam, and further, when each second beam set corresponds to one first beam, once the second beam is determined, the corresponding first beam is determined, and the intermediate determination module can also be based on the The second signal of the second device defines the first beam.
  • the intermediate sending module is configured to send uplink indication information as first uplink control signaling, including the second information or the third information. It is also used to send downlink indication information, as second downlink control signaling, including the first information or the third information. In an embodiment of the present application, the intermediate sending module is further configured to send a preset reference signal used for measurement to the network device.
  • the intermediate device mentioned in this application may refer to a mobile terminal connected to an intelligent reflection surface or other phase conversion device or other devices dedicated to controlling the reflection unit or other phase conversion device.
  • Fig. 10 is a schematic diagram of an embodiment of a user equipment.
  • the present application proposes a communication device, as a user equipment, configured to implement the method described in any embodiment of the first aspect of the present application related to the user equipment.
  • the communication device includes at least one module, and each of the modules is used for at least one of the following functions: receiving the second downlink control signaling, receiving the third downlink control signaling, and sending the second uplink control signaling order, send the third uplink control signaling, determine the first information, determine the second information, and determine the third information.
  • the user equipment is configured to,
  • the first information is used to determine at least one of the following configuration parameters: phase shift matrix ⁇ , equivalent amplitude reflection factor ⁇ (including that of each array element), power adjustment coefficient ⁇ , polarization factor, frequency offset, etc. at least one item.
  • the at least one configuration parameter includes a resource indication of a transparent transmission state
  • the channel state information includes a first type of channel state information, and the first type of channel state information corresponds to a channel between the at least one intermediate device and the user equipment.
  • the user equipment directly obtains the third information from the network device, and the user equipment obtains the third information from the intermediate device.
  • a communication device 700 proposed in this application includes a user sending module 701 , a user determining module 702 , and a user receiving module 703 .
  • the user receiving module is configured to receive downlink indication information, as the second downlink control signaling, including the first information, and further, third information; and/or, the user receiving module is configured to receive downlink The indication information, as the third downlink control signaling, includes the first information and/or the third information.
  • the user determining module is configured to determine configuration parameters according to the first information, and determine the channel characteristic H according to the third information; and is also configured to determine the communication between the network device and the intermediate device according to the signal received by the user equipment, configuration parameters, and The channel characteristic H is calculated to obtain the channel characteristic h between the intermediate device and the user equipment; or, the channel characteristic g between the network device and the user equipment is calculated according to the received signal of the user equipment, the configuration parameters, the channel characteristic H between the network device and the intermediate device, and the channel characteristic g between the network device and the user equipment The channel characteristics between the intermediate device and the user equipment are obtained.
  • the user sending module is configured to send uplink indication information as second uplink control information or third uplink control information; when used as second uplink control information, the second information is included; when used as third uplink control information , including the second information or the third information.
  • the user equipment mentioned in this application may refer to mobile terminal equipment.
  • FIG. 11 shows a schematic structural diagram of a network device of the present invention.
  • the network device 800 includes a processor 801 , a wireless interface 802 , and a memory 803 .
  • the wireless interface may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the wireless interface realizes the communication function with the intermediate device, processes wireless signals through the receiving and transmitting means, and the data carried by the signals communicates with the memory or processor via the internal bus structure.
  • the memory 803 contains a computer program for executing any one embodiment of the present application related to the first device or the second device, and the computer program is run or changed on the processor 801 .
  • the bus system includes a data bus, a power bus, a control bus and a status signal bus, which will not be repeated here.
  • Fig. 12 is a block diagram of an intermediary device according to another embodiment of the present invention.
  • the middleware 900 includes at least one processor 901 , a memory 902 , a network interface 903 and at least one control interface 904 .
  • Various components in the middleware 900 are coupled together through a bus system.
  • a bus system is used to implement the connection communication between these components.
  • the bus system includes data bus, power bus, control bus and status signal bus.
  • the control interface 904 is used to connect the phase conversion device of the intermediate device (such as a metasurface device), convert the multiple sets of control parameters into the driving signal of each surface unit, and realize the adjustment of the reflection (or refraction) signal of the intermediate device.
  • the phase conversion device of the intermediate device such as a metasurface device
  • Fig. 13 is a block diagram of a user equipment of the present invention.
  • the user equipment A00 comprises at least one processor A01, a memory A02, a user interface A03 and at least one network interface A04.
  • Various components in the user equipment A00 are coupled together through a bus system.
  • a bus system is used to implement the connection communication between these components.
  • the bus system includes data bus, power bus, control bus and status signal bus.
  • the user interface A03 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball, a touch pad, or a touch screen.
  • the memory 902, A02 stores executable modules or data structures.
  • An operating system and application programs can be stored in the memory.
  • the operating system includes various system programs, such as framework layer, core library layer, driver layer, etc., for realizing various basic services and processing tasks based on hardware.
  • the application program includes various application programs, such as a media player, a browser, etc., and is used to implement various application services.
  • the memory 902 contains a computer program for executing any embodiment of the present application involving the intermediate device, or, the memory A02 contains executing any of the embodiments of the present application involving the first device or the second device A computer program that runs or changes on said processor 901, A01.
  • the memory 902, A02 includes a computer-readable storage medium, and the processor 901, A01 reads the information in the memory 902, A02, and completes the steps of the above method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 901, A01, each step of the method embodiment as described in any one of the foregoing embodiments is implemented.
  • the processor 901, A01 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the method of the present application may be completed by an integrated logic circuit of hardware in the processor 901, A01 or an instruction in the form of software.
  • the processors 901, A01 may be general-purpose processors, digital signal processors, application-specific integrated circuits, off-the-shelf programmable gate arrays or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • Various methods, steps and logic block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in the embodiments of the present invention may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • a device of the present application includes one or more processors (CPUs), input/output user interfaces, network interfaces and memory.
  • the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present application also proposes a computer-readable medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any one embodiment of the present application are implemented.
  • the memory 803, 902, and A02 of the present invention may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or Flash memory (flash RAM).
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • this application also proposes a mobile communication system, including at least one embodiment of any intermediate device in this application and/or at least one embodiment of any network device in this application. Further, the mobile communication system further includes at least one embodiment of any user equipment in the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信信息传送方法,所述无线通信系统中包含网络设备、中间设备和用户设备,所述网络设备生成的信号经所述中间设备后被用户设备接收;下行指示信息中包含:用于指示中间设备的配置参数的第一信息、用于指示网络设备和中间设备之间信道特性H的第三信息;上行指示信息中包含:用于指示中间设备和用户设备之间信道特性h的第二信息。本申请还包含实现所述方法的设备和系统。本申请解决有中间设备的移动通信系统中信道状态反馈信息大、系统效率低下、难以对带有RIS的用户设备部署进行优化的问题。

Description

一种无线通信信息传送方法和设备
本申请要求于2021年11月26日提交中国国家知识产权局、申请号为202111424934.4、发明名称为“一种无线通信信息传送方法和设备”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种带有中间设备节点的无线通信系统通信信息传输方法和设备。
背景技术
智能超表面(Reconfigurable Intelligent Surface,RIS)是一种具有可编程电磁特性的人工电磁表面结构。RIS通常由大量精心设计的电磁单元排列组成,通过给电磁单元上的可调元件施加控制信号,可以动态地控制这些电磁单元的电磁性质,进而实现以可编程的方式对空间电磁波进行主动的智能调控,形成幅度、相位、极化和频率等参数可控制的电磁场。
传统通信中无线环境是不可控因素,其不可控性通常对通信效率有负面作用,会降低服务质量。信号衰减限制了无线信号的传播距离,多径效应导致衰落现象,大型物体的反射和折射更是主要的不可控因素。而将RIS部署在无线传输环境中各类物体的表面,减小传统无线信道不可控性,构建智能可编程无线环境。在网络设备gNB和用户设备UE之间,设置带有RIS的中间设备节点,一方面,RIS可以主动地丰富信道散射条件,增强无线通信系统的复用增益;另一方面,RIS可以在三维空间中实现信号传播方向调控及同相位叠加,增大接收信号强度,提高通信设备之间的传输性能。低成本、低能耗、可编程、易部署特点使RIS在未来通信系统演进可以用于网络的覆盖增强和容量提升、提供虚拟视距链路、消除局部覆盖空洞、服务小区边缘用户、解决小区间同频干扰等,进而实现智能可重构的无线环境。
现有技术中,网络设备和用户设备之间的信道特性将由用户设备向网络设备发送状态信息。在有中间设备的情况下,接收端接收的信号既包含网络设备直接传送到用户设备的信号、也包含经RIS反射的信号,因此网络设备和用户设备之间的信道状态是二者复合的结果,信道状态信息的反馈量将非常大。以 下行信道估计为例,信道状态信息的反馈量通常随着基站天线数与RIS的反射单元数成比例增加。在RIS发射信号服务多个用户设备的情况,如果每个用户设备均反馈复合信道的状态信息,将带来用户设备反馈和信息传送负担,并且系统效率低下。
另一方面,发送设备不能确定网络设备与中间设备之间的信道特性H,也不能确定中间设备与用户设备之间的信道特性h,因而也无法知晓RIS部署位置、相移矩阵Φ以及等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等各自对复合信道的影响,进而无法完成RIS的部署位置、密度、RIS形态、调控/协作关系等参数的优化。
发明内容
本申请提出一种无线通信信息传送方法和设备,解决带有中间设备的移动通信系统中信道状态反馈信息大、系统效率低下、难以对带有RIS的用户设备部署进行优化的问题。
第一方面,本申请实施例一种无线通信信息传送方法,所述无线通信系统中包含网络设备、中间设备和用户设备,所述网络设备生成的信号经所述中间设备后被用户设备接收;所述无线通信系统包括以下至少一项信息传送:在网络设备和中间设备之间传送第一下行控制信息和/或第一上行控制信息;在中间设备和用户设备之间传送第二下行控制信息和/或第二上行控制信息;在网络设备和用户设备之间传送第三下行控制信息和/或第三上行控制信息;所述方法具体为:
下行指示信息中包含:用于指示中间设备的配置参数的第一信息、用于指示网络设备和中间设备之间信道特性H的第三信息;
上行指示信息中包含:用于指示中间设备和用户设备之间信道特性h的第二信息;
所述下行指示信息为第一下行控制信息、第二下行控制信息、第三下行控制信息中的至少一种;所述上行指示信息为第一上行控制信息、第二上行控制信息、第三上行控制信息中的至少一种。
优选地,所述配置参数用于确定以下至少一项:相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移。
优选地,所述配置参数包含区分多个中间设备的资源指示。
优选地,根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H,或者,根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H。
本申请第一方面任意一项实施例所述无线通信信息传送方法,用于网络设备,包含以下步骤:
网络设备发送所述第一下行控制信息和/或第三下行控制信息,其中包含所述第一信息;
网络设备接收所述第一上行控制信息和/或第三上行控制信息,其中包含所述第二信息。
优选地,根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;所述网络设备接收所述第一上行控制信息和/或第三上行控制信息,其中包含第三信息。
或者,根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H;所述网络设备发送所述第一下行控制信息和/或第三下行控制信息,其中包含第三信息。
进一步地,根据所述配置参数、网络设备和中间设备之间信道特性H、中间设备和用户设备之间信道特性h,确定网络设备和用户设备之间的复合信道状态。
本申请第一方面任意一项实施例所述无线通信信息传送方法,用于中间设备,包含以下步骤:
中间设备发送所述第二下行控制信息,其中包含所述第一信息;
中间设备接收所述第二上行控制信息,其中包含所述第二信息。
优选地,根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;所述中间设备发送所述第一上行控制信息和/或第二下行控制信息,其中包含第三信息。
或者,根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H;所述中间设备接收所述第一下行控制信息和发送所述第三下行控制信息,其中包含第三信息。
本申请第一方面任意一项实施例所述无线通信信息传送方法,用于用户设 备,包含以下步骤:
用户设备接收所述第二下行控制信息或所述第三下行控制信息,其中任一下行控制信息包含所述第一信息和/或第三信息;
用户设备发送所述第二上行控制信息或所述第三上行控制信息,其中任一上行控制信息包含所述第二信息。
优选地,响应于包含所述第三信息的所述第二下行控制信息,所述用户设备发送所述第三上行控制信息,包含所述第三信息。
优选地,所述用户设备,根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H,计算得到中间设备和用户设备之间信道特性h,或者,根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H、网络设备和用户设备之间的信道特性g,计算得到中间设备和用户设备之间信道特性h。
第二方面,本申请提出一种通信设备,作为网络设备,用于实现本申请第一方面有关网络设备的任意一项实施例所述方法。所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:发送所述第一下行控制信令、发送所述第三下行控制信息、接收所述第一上行控制信令、接收所述第三上行控制信息、确定所述第一信息、确定所述第二信息、确定所述第三信息。
第三方面,本申请提出一种通信设备,作为中间设备,用于实现本申请第一方面有关中间设备的任意一项实施例所述方法。所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:接收所述第一下行控制信令、接收所述第二上行控制信令、发送所述第一上行控制信令、发送所述第二下行控制信令、确定所述第一信息、确定所述第二信息、确定所述第三信息。
第四方面,本申请提出一种通信设备,作为用户设备,用于实现本申请第一方面有关用户设备的任意一项实施例所述方法。所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:接收所述第二下行控制信令、接收所述第三下行控制信令、发送所述第二上行控制信令、发送所述第三上行控制信令、确定所述第一信息、确定所述第二信息、确定所述第三信息。
第五方面,本申请还提出一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本申请任意一项实施例所述方法的步骤。
第六方面,本申请还提出一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如本申请任意一项实施例所述的方法的步骤。
第七方面,本申请还提出一种移动通信系统,包含本申请第二、三、四方面任意一项所述的通信设备。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本申请保护发送端和接收端之间的配置信息、以及接收端反馈的信道状态信息,使能发送端与RIS间信道特性H、RIS与接收端之间的信道特性h、以及发送端与接收端之间的直达信道特性g的独立测量过程。一方面,本申请的方案避免了每个用户设备反馈复合信道带来的反馈负担和系统效率低下的问题。另一方面,本申请的方案可以使发送端训练得到不同的RIS部署位置、相移矩阵Φ、以及等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等作用对发送端与RIS间信道特性H、RIS与接收端间信道特性h及网络效率、干扰条件等的影响,更新优化RIS部署和参数。
附图说明
图1为RIS辅助的通信系统模型;
图2为包含多个RIS设备的通信系统模型;
图3为本申请方法的实施例流程图;
图4为RIS参数配置示意图;
图5为本申请方法用于网络设备的实施例流程图;
图6为本申请方法用于中间设备的实施例流程图;
图7为本申请方法用于用户设备的实施例流程图;
图8为网络设备的实施例示意图;
图9是中间设备的实施例示意图;
图10是用户设备的实施例示意图;
图11为本发明的网络设备的另一实施例示意图;
图12是本发明的中间设备的另一实施例示意图;
图13是本发明的用户设备的另一实施例示意图。
具体实施方式
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为RIS辅助的通信系统模型。
RIS参加部署的场景需要联合优化调控RIS参数,按需精准调控无线传播环境,构建可以精确控制的无线智能环境。如图1所示是一个三节点通信系统,该系统由一个发射机,一个接收机和具有大规模电磁单元的RIS组成。无线信号从发射器发出,通过控制RIS的反射单元引入适当的幅度、相移等创建他们各自散射信号的相干组合,从而形成汇聚于接收机的信号。以RIS的反射单元的反射参数包括幅度、相移为例,假设RIS包括N个反射单元,一个反射单元的输出信号为
Figure PCTCN2022070411-appb-000001
其中Γ n为该第n个反射单元的幅度反射因子,θ n为该第n个反射单元的相位反射因子,x n为第n个反射单元的入射信号。发送端发送的信号s在经过N个反射单元后,等效功率调整系数是ρ。这样,发送端发送的信号s在经过N个反射单元后,接收端接收到的信号y为:
Figure PCTCN2022070411-appb-000002
从发射端经过RIS到达接收端的等效信道特性hΦH为RIS与接收端间信道特性h、RIS的可调相移矩阵Φ以及发送端与RIS间信道特性H的乘积,g为接收端和发射端之间的直达信道特性,n0为高斯白噪声。
用RIS辅助部署通信系统,需要优化RIS部署的拓扑结构和参数配置。通常的优化过程是以自然信道和业务需求分布作为基础输入,设计初始的RIS部署拓扑结构。然后,基于RIS的自适应无线传输调控性能,进一步迭代优化RIS的部署拓扑结构,从而构建智能可控无线环境,达到复杂度、成本及性能的平衡,从而输出RIS部署位置、密度、RIS形态、调控/协作关系等参数。在公式(1)的模型中,需要获取不同的RIS部署位置、相移矩阵Φ、以及等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项作用下的发送端与RIS间信道特性H、RIS与接收端间信道特性h,以更新优化RIS部署。然而,现有通信系统中通常发送端通过接收设备的反馈的信道状态信息获取的是复合信道
Figure PCTCN2022070411-appb-000003
的总特性,存在以下两方面问题:
一方面,如果接收端总是反馈复合信道的总特性,信道状态信息的反馈量将非常大。以下行信道估计为例,信道状态信息的反馈量通常随着基站天线数与RIS的反射单元数成比例增加。在RIS发射信号服务多个用户设备的情况,如果每个用户设备均反馈复合信道的总特性,将带来用户设备很大的反馈负担,并且系统效率低下。
另一方面,发送设备不能确定信道特性H与h,因而不能确定RIS部署位置、相移矩阵Φ、等效幅度反射因子Γ、功率调整系数、极化因子、频率偏移等各自对复合信道的影响,无法完成RIS的部署位置、密度、RIS形态、调控/协作关系等参数的优化。
图2为包含多个RIS设施的通信系统模型。
针对所述问题,RIS辅助部署通信系统中不仅要测量发送端与RIS共同服务下的复合信道特性
Figure PCTCN2022070411-appb-000004
还要确定发送端与RIS之间信道特性H、RIS与接收端之间信道特性h以及发送端与接收端之间的直达信道特性g。
本申请的技术方案中,在RIS发射信号服务多个用户设备的情况下,可由中间设备向网络设备反馈发送端与RIS间信道特性H,或者中间设备向多个用户设备中的一个或一部分发送信道特性H,这个(些)用户设备将发送端与RIS间信道特性H转发给网络设备,例如图2中,UE 1~3均接收来自同一个RIS-1的反射信号。可以由UE 1反馈H 1和h 11。其它用户设备仅反馈RIS与该用户设备间信道特性,以及发送端与接收端之间的直达信道特性即可。例如UE 2反馈h 12、UE 3反馈h 13。由此降低用户设备的反馈量以及提高系统的整体效率。
本申请主要公开和保护发送端和接收端之间的配置信息,使能发送端与RIS间信道特性H、RIS与接收端间信道特性h、以及发送端与接收端之间的直达信道特性g的独立测量过程。不失一般性,这里发送端以网络设备gNB为例,接收端以用户设备UE(或称终端设备)为例,本申请还将RIS装置的控制节点称为中间设备,中间设备也可简称为RIS。
本申请的方案中,发送端可以训练得到不同的RIS部署位置、相移矩阵Φ、以及等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等作用对发送端与RIS之间信道特性H、RIS与接收端之间信道特性h及网络效率、干扰条件等的影响,更新优化RIS部署和参数。
图3为本申请方法的实施例流程图。
本申请实施例一种无线通信信息传送方法,所述无线通信系统中包含网络设备、中间设备和用户设备,所述网络设备生成的信号经所述中间设备后被用户设备接收;所述无线通信系统中,在网络设备和中间设备之间传送第一下行控制信息和/或第一上行控制信息;在中间设备和用户设备之间传送第二下行 控制信息和/或第二上行控制信息;在网络设备和用户设备之间传送第三下行控制信息和/或第三上行控制信息;所述方法具体为:
步骤101、传送下行指示信息,所述下行指示信息中包含:用于指示中间设备的配置参数的第一信息、用于指示网络设备和中间设备之间信道特性H的第三信息。
用户设备UE获取H的方式为:①网络设备获取H后,将此信息通知给用户设备。②用户设备通过带有RIS的中间设备获取其测量得到的H。
因此,为使包含第三信息的所述下行指示信息到达用户设备,则所述下行指示信息必然为第一下行控制信息、第二下行控制信息、第三下行控制信息中的至少一种。
优选地,所述配置参数用于确定以下至少一项:相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移。优选地,所述配置参数包含区分多个中间设备的资源指示(如图4)。
步骤102、根据第一信息、第三信息确定中间设备和用户设备之间信道特性h,生成第二信息。
用户设备确定h:网络设备发送的信号s到达中间设备并反射转发,转发信息为
Figure PCTCN2022070411-appb-000005
其中,ρ是信号s经由网络设备与中间设备之间的无线信道与中间设备处理后的信号相对于信号s的功率调整系数。用户设备确定经由中间设备转发的信息
Figure PCTCN2022070411-appb-000006
结合接收的信号
Figure PCTCN2022070411-appb-000007
网络设备和用户设备之间的直达信道特性g确定RIS和用户设备之间的信道特性h。在此过程中,用户设备需要确定ρ、Φ、H和g。ρ、Φ由网络设备发送配置信息通知给用户设备。s是预配置给用户设备的参考信号。
步骤103、传送上行指示信息,所述上行指示信息中包含:用于指示中间设备和用户设备之间信道特性h的第二信息。
显然,为使用户设备生成的第二信息发送到网络设备,所述上行指示信息为第一上行控制信息、第二上行控制信息、第三上行控制信息中的至少一种。
网络设备获取h:由用户设备反馈获取。
步骤104、根据第一信息、第二信息、第三信息,确定网络设备和用户设备之间的复合信道特征。
优选地,根据所述中间设备向所述网络设备发送的预设参考信号测量从所 述中间设备到所述网络设备之间的信道特性H,或者,根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H。因此,网络设备获取H的方式为:①网络设备通过中间设备获取其测量得到的H;②网络设备自身测量由中间设备发送的信号获取H。③网络设备获取部分用户设备UE转发来自中间设备估算的H。
因此,中间设备确定H:通过网络设备发送的参考信号测量获得。测量获得H后,中间设备可发送该H信息。具体可以是广播发送,方便网络设备和与其连接的用户设备接收。也可以是发送给用户设备的代表,由所述用户设备的代表发送给网络设备,再由网络设备转发给其它用户设备。
在上述步骤中,网络设备获取了计算复合信道特征所需要的参数,因此在步骤104中可以按照公式(1)的方法确定复合信道特征。
步骤105、根据复合信道特征,确定优化的配置参数。
可以训练得到不同的中间设备的RIS部署位置、相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等作用对发送端与RIS之间信道特性H、RIS与接收端之间信道特性h及网络效率、干扰条件等的影响,更新优化RIS部署和参数。
图4为RIS参数配置示意图。
网络中可能存在多个RIS节点,当存在多个中间设备时,为了使用户设备可以测量各RIS与该用户设备之间的信道,用户设备测量各RIS转发的信息的接收信号资源,以及用户设备测量经由各RIS转发信息的接收信号的资源需要正交。例如,经由RIS-1转发的信息是
Figure PCTCN2022070411-appb-000008
在接收端接收的信号
Figure PCTCN2022070411-appb-000009
经由RIS-2转发的信息是
Figure PCTCN2022070411-appb-000010
在接收端接收的信号
Figure PCTCN2022070411-appb-000011
为了使用户设备可以分别确定与RIS-1、RIS-2之间的信道,网络设备配置给用户设备的关于RIS-1的配置参数中包括测量适用的资源指示、配置给用户设备的关于RIS-2的配置参数中包括测量资源适用的资源指示。例如在RIS-1的配置参数的测量资源上,RIS-2的配置参数对应RIS-2的透传状态。在RIS-2的配置参数的测量资源上,RIS-1的配置参数对应RIS-1的透传状态。需要说明的是,这里透射状态对应中间设备的关闭状态,信号传输经由中间设备的可以视为不改变空中传输特性。
为了使用户设备通过接收信号
Figure PCTCN2022070411-appb-000012
确定h 1,通过 接收信号
Figure PCTCN2022070411-appb-000013
确定h 2,y 1和y 2占用的资源应当是正交的。例如频域正交或者时域正交。相应地,中间设备的配置参数中应当包括测量资源适用的资源指示。在针对RIS-1的配置参数中包括这些配置资源生效的资源。对应于用户设备测量RIS-2与用户设备之间信道的资源,RIS-1应当处于不工作的状态,例如是透传状态。而对于用户设备非测量RIS-2与用户设备之间信道的资源,RIS-1可以处于反射状态。对应RIS-1的配置参数包括第一配置参数以及第一配置参数的适用时间位于t 1范围内、第二配置参数以及第二配置参数的适用时间位于t 2范围内。第一配置参数包括RIS-1的相移矩阵Φ 1、等效幅度反射因子Γ 1、等效功率调整系数ρ 1、极化因子、频偏移等中至少一项。第二配置参数的适用时间对应RIS-1的透传状态。对应RIS-2的配置参数包括第三配置参数以及第三配置参数的适用时间位于t 3范围内、第四配置参数以及第四配置参数的适用时间位于t 4范围内。第三配置参数包括RIS-2的相移矩阵Φ 2、等效幅度反射因子Γ 2、等效功率调整系数ρ 2、极化因子、频偏移等中至少一项。第四配置参数的适用时间对应RIS-2的透传状态。进一步地,在t 1范围内配置用于测量RIS-1和用户设备之间信道状态信息的测量资源,在t 3范围内配置用于测量RIS-2和用户设备之间信道状态信息的测量资源。
网络设备通过配置t 3在t 2范围内、t 1在t 4范围内,可保证用户设备获取到经RIS-1转发的
Figure PCTCN2022070411-appb-000014
在用户设备端的接收信号
Figure PCTCN2022070411-appb-000015
Figure PCTCN2022070411-appb-000016
和经RIS-2转发的
Figure PCTCN2022070411-appb-000017
在用户设备端的接收信号
Figure PCTCN2022070411-appb-000018
在t 2和t 4的交集时间范围内,用户设备可以通过接收信号测量到网络设备到用户设备之间的直达信道状态信息g。用户设备继而可以根据y 1、ρ 1、Φ 1、H 1、g、s 1推算出RIS-1和用户设备之间的信道h 1。同理根据y 2、ρ 2、Φ 2、H 2、g、s 2推算出RIS-2和用户设备之间的信道h 2
图5为本申请方法用于网络设备的实施例流程图。
本申请第一方面任意一项实施例所述无线通信信息传送方法,用于网络设备,包含以下步骤:
步骤201、网络设备发送所述第一下行控制信息和/或第三下行控制信息,其中包含所述第一信息。
发送第一信息,用于确定至少一个中间设备的以下至少一项配置参数:相移矩阵Φ、等效幅度反射因子Γ、功率调整系数、极化因子、频率偏移。
网络设备发送中间设备的配置参数,用于确定中间设备对入射信号的相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移和接收信号的目标功控参数。用户设备根据此配置信息可以确定经由中间设备转发后的信息,进而根据接收信号和中间设备转发后的信息确定中间设备和用户设备之间的信道状态信息h。
对于同一个中间设备,为使发送端可以训练得到RIS不同的相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项作用对接收端接收性能以及网络效率、干扰条件的影响,更新优化RIS部署和参数,需要获取多种相移矩阵Φ和等效幅度反射因子Γ、功率调整系数、极化因子、频率偏移作用下的信道状态信息,可以针对一个中间设备发送两项或以上的配置参数:相移矩阵Φ、等效幅度反射因子Γ、功率调整系数、极化因子、频率偏移。
优选地,所述至少一项配置参数包括透传状态的资源指示。
网络设备发送各中间设备的配置参数,以图2所示网络中有RIS-1和RIS-2两个中间设备为例,网络设备发送RIS-1和RIS-2的配置参数,用于确定RIS-1对入射信号的相移矩阵Φ 1、等效幅度反射因子Γ 1、等效功率调整系数ρ 1、极化因子、频偏移等中至少一项;确定RIS-2对入射信号的相移矩阵Φ 2、等效幅度反射因子Γ 2、等效功率调整系数ρ 2、极化因子、频偏移等中至少一项。
网络设备发送RIS-1和RIS-2两个中间设备的配置参数,便于用户设备确定网络设备发送的信息s 1经由RIS-1转发后为
Figure PCTCN2022070411-appb-000019
确定网络设备发送的信息s 2经由RIS-2转发后为
Figure PCTCN2022070411-appb-000020
经由RIS-1转发后的
Figure PCTCN2022070411-appb-000021
到达用户设备的接收信号为
Figure PCTCN2022070411-appb-000022
Figure PCTCN2022070411-appb-000023
经由RIS-2转发后的
Figure PCTCN2022070411-appb-000024
到达用户设备的接收信号为
Figure PCTCN2022070411-appb-000025
需要说明的是,以上以网络中有RIS-1和RIS-2两个中间设备,每个中间设备对应的相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项有反射和透传两种情况为例。事实上,在网络设备覆盖范围内多个RIS节点的反射信号有相互干扰的情况下,任意两个RIS节点用于测量的资源需保持正交才能满足用户设备测量RIS节点和用户设备之间信道状态信息的需求。因此,网络设备发送第一信息,用于确定至少一个中间设备的至 少一项配置参数。该至少一项配置参数包括RIS节点上测量资源适用的资源指示。例如RIS节点的第一配置参数集合适用于测量资源,RIS节点的第二配置参数集合适用于非测量资源,RIS节点在这些资源上处于静默状态(透传状态),方便用户设备测量其它RIS节点和用户设备之间的信道状态信息、以及网络设备与用户设备之间直达信道状态信息g。
步骤202、发送第三信息,用于携带确定第二类信道状态信息,所述第二类信道状态信息对应所述网络设备与所述至少一个中间设备之间的信道特性。
为了使用户设备可以根据y 1、ρ 1、Φ 1、H 1、g、s 1推算出RIS-1和用户设备之间的信道h 1。根据y 2、ρ 2、Φ 2、H 2、g、s 2推算出RIS-2和用户设备之间的信道h 2。用户设备需要获取网络设备与RIS-1之间的信道H 1、网络设备与RIS-2之间的信道H 1。一种可能的方式是网络设备向用户设备发送H 1、H 2。网络设备获取H 1、H 2的方式有三种,如步骤202A~C:
步骤202A、网络设备直接获取H并发送第三信息。
根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H;所述网络设备发送所述第一下行控制信息和/或第三下行控制信息,其中包含第三信息。
此时,网络设备自身获取H。假设网络设备和RIS之间的信道条件满足互异性条件。网络设备可以根据RIS发送的预设参考信号测量从RIS到网络设备之间的信道,以此作为网络设备和RIS之间信道,并将此信道状态信息发送给用户设备。
或者,步骤202B、网络设备自第一上行控制信息接收第三信息并获取H。
根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;所述网络设备接收所述第一上行控制信息,其中包含第三信息。
此时,网络设备从RIS获取H。RIS根据接收网络设备发送的预设参考信号测量从网络设备到RIS之间的信道,并将此信道状态信息发送给网络设备。RIS发送此信道状态信息也可以是同时发送给网络设备和用户设备。
或者,步骤202C、网络设备自第三上行控制信息接收第三信息并获取H。
根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;所述网络设备接收所述第三上行控制 信息,其中包含第三信息。
此时,网络设备从主用户设备获取H。在RIS发射信号服务多个用户设备的情况下,可由RIS向多个用户设备中的一个或一部分用户设备发送发送端与RIS间信道特性H,由这个(些)用户设备将发送端与RIS间信道特性H转发给网络设备。
需要说明的是,在步骤202中,如果网络设备将第三信息发送给用户设备,可以用广播方式,使接收用户设备可以单独推算出RIS和用户设备之间的信道。一方面,避免了每个用户设备反馈复合信道带来的反馈负担和系统效率低下的问题。另一方面,可以使发送端训练得到不同的RIS部署位置、相移矩阵Φ、、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项作用对发送端与RIS间信道H、RIS与接收端间信道特性h及网络效率、干扰条件等的影响,更新优化RIS部署和参数。
步骤203、网络设备接收所述第一上行控制信息和/或第三上行控制信息,其中包含所述第二信息。
此时,用户设备确定中间设备和用户设备之间的信道状态信息后,将此信道状态信息作为第二信息反馈给网络设备,可以通过第三上行控制信息直接发送到网络设备,也可以通过中间设备转达,经第二上行控制信息、第一上行控制信息送到网络设备。
网络设备获取第二信息,用于确定第一类信道状态信息,所述第一类信道状态信息对应所述至少一个中间设备与用户设备之间的信道特性h。
步骤204、网络设备根据所述配置参数、网络设备和中间设备之间信道特性H、中间设备和用户设备之间信道特性h,确定网络设备和用户设备之间的复合信道状态。
步骤205、网络设备根据复合信道特征,确定优化的配置参数。
本申请的方案中,网络设备可以训练得到不同的中间设备的RIS部署位置、相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等作用对发送端与RIS之间信道特性H、RIS与接收端之间信道特性h及网络效率、干扰条件等的影响,更新优化RIS部署和参数。
需要说明的是,步骤203、204、205均为本实施例的可选步骤。对于步骤203,网络设备可以通过其它方式获取第二信息。对于步骤204和205,网络 设备可以用其他方式根据获取的网络设备和中间设备之间信道特性H、中间设备和用户设备之间信道特性h等参数确定网络设备和用户设备之间的复合信道状态,和或更新优化RIS部署和参数。
图6为本申请方法用于中间设备的实施例流程图。
本申请第一方面任意一项实施例所述无线通信信息传送方法,用于中间设备,包含以下步骤:
步骤301、中间设备接收和/或发送所述第二下行控制信息,其中包含所述第一信息。
获取第一信息,用于确定以下至少一项配置参数:相移矩阵Φ、以及等效幅度反射因子Γ(包括每个阵元的)、功率调整系数ρ、极化因子、频率偏移等至少一项。
与步骤201对应,中间设备可以获取网络设备的发送中间设备的配置参数,用于确定中间设备对入射信号的相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移和接收信号的目标功控参数。调整自身对接收信号的反射状态。
对于同一个中间设备,为使发送端为了可以训练得到RIS不同的相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项作用对接收端接收性能以及网络效率、干扰条件的影响,更新优化RIS部署和参数,需要获取多种相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项作用下的信道状态信息。中间设备可以接收两项或以上的配置参数:相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项。
优选地,所述至少一项配置参数包括透传状态的资源指示。与步骤201的多RIS环境应用场景对应,在网络设备覆盖范围内多个RIS节点的反射信号有相互干扰的情况下,任意两个RIS节点用于测量的资源需保持正交才能满足用户设备测量RIS节点和用户设备之间信道状态信息的需求。因此,网络设备发送第一信息,用于确定至少一个中间设备的至少一项配置参数。该至少一项配置参数包括RIS节点上测量资源适用的资源指示。例如RIS节点的第一配置参数集合适用于测量资源,RIS节点的第二配置参数集合适用于非测量资源,RIS节点在这些资源上处于静默状态(透传状态),方便用户设备测量其它RIS 节点和用户设备之间的信道状态信息、以及网络设备与用户设备之间直达信道状态信息g。
根据所述第一信息确定中间设备对入射信号的相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移和接收信号的目标功控参数。调整自身对接收信号的反射状态。
步骤302、中间设备接收所述第二上行控制信息,其中包含所述第二信息。
获取第二信息,用于确定第一类信道状态信息,所述第二类信道状态信息对应所述至少一个中间设备与用户设备之间的信道。
步骤303、中间设备确定并发送网络设备与RIS之间的信道特性H。
步骤303A、中间设备获得H,生成第三信息并发送用户设备和/或网络设备
根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;所述中间设备发送所述第一上行控制信息和/或第二下行控制信息,其中包含第三信息。根据接收网络设备发送的预设参考信号测量从网络设备到RIS之间的信道H,并将此信道状态信息通过第一上行控制信息发送给网络设备。RIS发送此信道状态信息也可以是同时通过第一上行控制信息和第二下行控制信息发送给网络设备和用户设备。
或者,步骤303B、中间设备接收第三信息,并转发用户设备。
网络设备根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H;所述中间设备接收所述第一下行控制信息和发送所述第三下行控制信息,其中包含第三信息。
需要说明的是,步骤302、303均为本实施例的可选步骤。对于步骤302,中间设备接收所述第二上行控制信息,获取第二信息后将该信息发送欸网络设备,作为可替换方式,终端设备也可以通过第三上行控制信息将第二信息发送给网络设备。对于步骤303,作为可替换方式,网络设备与RIS之间的信道特性H也可以是网络设备发送的。
图7为本申请方法用于用户设备的实施例流程图。
本申请第一方面任意一项实施例所述无线通信信息传送方法,用于用户设备,包含以下步骤:
步骤401、用户设备接收所述第二下行控制信息或所述第三下行控制信息, 其中任一下行控制信息包含所述第一信息;
与步骤201、301对应,用户设备获取第一信息,用于确定以下至少一项配置参数:相移矩阵Φ、以及等效幅度反射因子Γ(包括每个阵元)、功率调整系数ρ、极化因子、频率偏移等至少一项。
与步骤201的多RIS环境应用场景对应,所述至少一项配置参数包括透传状态的资源指示。
步骤402、用户设备接收所述第二下行控制信息或所述第三下行控制信息,其中任一下行控制信息包含所述第三信息。
用户设备获取第三信息,用于确定第二类信道状态信息,所述第二类信道状态信息对应所述网络设备与所述至少一个中间设备之间的信道。
如图2的实施例,用户设备可以根据y 1、ρ 1、Φ 1、H 1、g、s 1推算出RIS-1和用户设备之间的信道h 1,根据y 2、ρ 2、Φ 2、H 2、g、s 2推算出RIS-2和用户设备之间的信道h 2。用户设备需要获取网络设备与RIS-1之间的信道H 1、网络设备与RIS-2之间的信道H 1。一种可能的方式是网络设备向用户设备发送H 1、H 2。用户设备获取H 1、H 2的方式有3种:与步骤202A对应,用户设备直接从网络设备获取;与步骤303A对应,用户设备从中间设备直接获取;与步骤303B对应,中间设备转发来自网络设备的第三信息。
步骤403、用户设备发送所述第二上行控制信息或所述第三上行控制信息,其中任一上行控制信息包含所述第二信息。
优选地,所述用户设备,根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H,计算得到中间设备和用户设备之间信道特性h,或者,根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H、网络设备和用户设备之间的信道特性g,计算得到中间设备和用户设备之间信道特性h,据此生成第二信息。
用户设备发送的第二信息,用于确定第一类信道状态信息,所述第一类信道状态信息对应至少一个中间设备与所述用户设备之间的信道特性。
步骤404、优选地,响应于包含所述第三信息的所述第二下行控制信息,所述用户设备发送所述第三上行控制信息,包含所述第三信息。
用户设备发送第二类信道状态信息,所述第二类信道状态信息对应所述网络设备与所述至少一个中间设备之间的信道。
与步骤202C、303A对应,对于主用户设备,在步骤402所述方式下,从RIS获取到第二类信道状态信息后,发送该第二类信道状态信息,便于网络设备将此第二类信道状态信息转发给其它用户设备。一方面可使其它用户设备完成RIS与接收端间信道特性H、以及发送端与接收端之间的直达信道g的独立测量过程。另一方面也降低了其它用户设备的反馈负担,提高了系统效率。
图8为网络设备的实施例示意图。
本申请提出一种通信设备,作为网络设备,用于实现本申请第一方面有关网络设备的任意一项实施例所述方法。所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:发送所述第一下行控制信令、发送所述第三下行控制信息、接收所述第一上行控制信令、接收所述第三上行控制信息、确定所述第一信息、确定所述第二信息、确定所述第三信息。
所述网络设备用于:
发送第一信息,用于确定至少一个中间设备的以下至少一项配置参数:相移矩阵Φ、等效幅度反射因子Γ、功率调整系数ρ、极化因子、频率偏移等至少一项;优选地,所述至少一项配置参数包括透传状态的资源指示。
获取第二信息,用于确定信道状态信息。所述信道状态信息包括第一类信道状态信息,所述第一类信道状态信息对应所述至少一个中间设备与用户设备之间的信道特性h。
发送第三信息,用于携带确定第二类信道状态信息,所述第二类信道状态信息对应所述网络设备与所述至少一个中间设备之间的信道特性H。
获取第三信息,包含以下至少一种方式:网络设备自身获取H,生成第三信息;网络设备从RIS获取第三信息;网络设备从主用户设备获取第三信息。
为实施上述技术方案,本申请提出的一种通信设备500,包含网络发送模块501、网络确定模块502、网络接收模块503。
所述网络发送模块,用于发送下行指示信息,作为第一下行控制信息和/或第三下行控制信息,其中包含以下至少一种信息:所述第一信息、所述第三信息。在本申请的一个实施例中,所述网络发送模块,还用于向中间设备发送测量所用预设参考信号。
所述网络确定模块,用于:根据中间设备向网络设备发送的测量所用预设参考信号确定信道特性H;根据接收的第一上行控制信息或第三上行控制信息 确定H;根据接收的第一上行信息或第三上行控制信息确定h;确定中间设备的初始的配置参数、及根据优化目标确定中间设备进一步优化的配置参数。根据所述配置参数、网络设备和中间设备之间信道特性H、中间设备和用户设备之间信道特性h,确定网络设备和用户设备之间的复合信道状态。
所述网络接收模块,用于接收上行指示信息,作为第一上行控制信息和/或第三上行控制信息,其中包含所述第二信息,进一步地还可包含所述的三信息。在本申请的一个实施例中,所述网络接收模块,还用于接收来自中间设备的测量所用预设参考信号。
实现所述网络发送模块、网络确定模块、网络接收模块功能的其他具体方法,如本申请各方法实施例所述,这里不再赘述。
本申请所述网络设备,可以是基站设备或连接于基站的网络侧处理设备。
图9是中间设备的实施例示意图。
本申请提出一种通信设备,作为中间设备,用于实现本申请第一方面有关中间设备的任意一项实施例所述方法。所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:接收所述第一下行控制信令、接收所述第二上行控制信令、发送所述第一上行控制信令、发送所述第二下行控制信令、确定所述第一信息、确定所述第二信息、确定所述第三信息。
所述中间设备包括RIS,RIS一般由多个阵元组成。
所述中间设备,用于:
获取第一信息,用于确定以下至少一项配置参数:相移矩阵Φ、等效幅度反射因子Γ(包括每个阵元的)、功率调整系数、极化因子、频率偏移等至少一项。优选地,所述至少一项配置参数包括透传状态的资源指示。
根据所述第一信息确定中间设备对入射信号的相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移和接收信号的目标功控参数,调整RIS对接收信号的反射状态。
在本申请的一个实施例中,还用于确定并发送网络设备与RIS之间的信道特性H;
在本申请的一个实施例中,还用于获取第三信息,用于确定第二类信道状态信息,所述第二类信道状态信息对应所述至少一个中间设备与用户设备之间的信道特性h。
为实施上述技术方案,本申请提出的一种用于控制反射单元(例如智能超表面RIS 604)或其他相位变换装置的中间设备600,包含中间发送模块601、中间确定模块602、中间接收模块603。
所述中间接收模块,用于接收下行指示信息,作为第一下行控制信令,包含所述第一信息,进一步优选地,还包含所述第三信息;进一步地,所述中间接收模块还用于接收上行指示信息,作为第二上行控制信令,包含所述第二信息。在本申请的一个实施例中,所述中间接收模块,还用于接受来自网络设备的测量所用预设参考信号。
所述中间确定模块,用于根据第一信号中标识所述第一波束的信息(例如第一信息),确定接入的第一波束;根据控制信息,确定中间设备中相位变换装置的工作参数;识别第一信息;确定与第一信息相关联的第二信息。在本申请的另一个实施例中,因来自第二设备的第二信号中包含对标识所述第二波束的信息的响应,所述中间确定模块,还用于根据来自第二设备的第二信号,确定第二波束,进一步地,当每1个第二波束集合对应于1个第一波束时,一旦确定第二波束则确定了对应的第一波束,所述中间确定模块还可根据来自第二设备的第二信号确定第一波束。
所述中间发送模块,用于发送上行指示信息,作为第一上行控制信令,包含所述第二信息或所述第三信息。还用于发送下行指示信息,作为第二下行控制信令,包含所述第一信息或所述第三信息。在本申请的一个实施例中,所述中间发送模块,还用于向网络设备发送测量所用预设参考信号。
本申请所述中间设备,可以指连接于智能反射面或其他相位变换装置的移动终端或其他专用于控制所述反射单元或其他相位变换装置的设备。
图10是用户设备的实施例示意图。
本申请提出一种通信设备,作为用户设备,用于实现本申请第一方面有关用户设备的任意一项实施例所述方法。所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:接收所述第二下行控制信令、接收所述第三下行控制信令、发送所述第二上行控制信令、发送所述第三上行控制信令、确定所述第一信息、确定所述第二信息、确定所述第三信息。
所述用户设备用于,
获取第一信息,用于确定以下至少一项配置参数:相移矩阵Φ、等效幅度 反射因子Γ(包括每个阵元的)、功率调整系数ρ、极化因子、频率偏移等至少一项。所述至少一项配置参数包括透传状态的资源指示
发送第二信息,用于确定中间设备和用户设备之间的信道状态信息。所述信道状态信息包括第一类信道状态信息,所述第一类信道状态信息对应所述至少一个中间设备与用户设备之间的信道。
获取第三信息,用于确定第二类信道状态信息,所述第二类信道状态信息对应所述网络设备与所述至少一个中间设备之间的信道特性。其中,用户设备从网络设备直接获取第三信息、用户设备从中间设备获取第三信息。
发送第二类信道状态信息,所述第二类信道状态信息对应所述网络设备与所述至少一个中间设备之间的信道特性。
为实施上述技术方案,本申请提出的一种通信设备700,包含用户发送模块701、用户确定模块702、用户接收模块703。
所述用户接收模块,用于接收下行指示信息,作为第二下行控制信令,包含所述第一信息,进一步地,还包含第三信息;且/或,所述用户接收模块用于接收下行指示信息,作为第三下行控制信令,包含所述第一信息和/或所述第三信息。
所述用户确定模块,用于根据所述第一信息确定配置参数、根据所述第三信息确定所述信道特性H;还用于根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H计算得到中间设备和用户设备之间信道特性h;或者,根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H、网络设备和用户设备之间的信道特性g计算得到中间设备和用户设备之间信道特性。
所述用户发送模块,用于发送上行指示信息,作为第二上行控制信息或第三上行控制信息;当作为第二上行控制信息时,包含所述第二信息;当作为第三上行控制信息时,包含所述第二信息或所述第三信息。
本申请所述用户设备,可以指移动终端设备。
图11示出了本发明的网络设备的结构示意图。如图所示,网络设备800包括处理器801、无线接口802、存储器803。其中,所述无线接口可以是多个组件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。所述无线接口实现和所述中间设备的通信功能,通过接收和发射装置 处理无线信号,其信号所承载的数据经由内部总线结构与所述存储器或处理器相通。所述存储器803包含执行本申请任意一个涉及第一设备或第二设备实施例的计算机程序,所述计算机程序在所述处理器801上运行或改变。当所述存储器、处理器、无线接口电路通过总线系统连接。总线系统包括数据总线、电源总线、控制总线和状态信号总线,这里不再赘述。
图12是本发明另一个实施例的中间设备的框图。中间设备900包括至少一个处理器901、存储器902、网络接口903和至少一个控制接口904。中间设备900中的各个组件通过总线系统耦合在一起。总线系统用于实现这些组件之间的连接通信。总线系统包括数据总线,电源总线、控制总线和状态信号总线。
控制接口904用于连接中间设备的相位变换装置(例如超表面装置),将所述多组控制参数转化为每个表面单元的驱动信号,实现中间设备的反射(或折射)信号调整。
图13是本发明的用户设备框图。
用户设备A00包括至少一个处理器A01、存储器A02、用户接口A03和至少一个网络接口A04。用户设备A00中的各个组件通过总线系统耦合在一起。总线系统用于实现这些组件之间的连接通信。总线系统包括数据总线,电源总线、控制总线和状态信号总线。
用户接口A03可以包括显示器、键盘或者点击设备,例如,鼠标、轨迹球、触感板或者触摸屏等。
存储器902,A02存储可执行模块或者数据结构。所述存储器中可存储操作系统和应用程序。其中,操作系统包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序包含各种应用程序,例如媒体播放器、浏览器等,用于实现各种应用业务。
在本发明实施例中,所述存储器902包含执行本申请任意一个涉及中间设备的实施例的计算机程序,或者,所述存储器A02包含执行本申请任意一个涉及第一设备或第二设备的实施例的计算机程序,所述计算机程序在所述处理器901,A01上运行或改变。
存储器902,A02中包含计算机可读存储介质,处理器901,A01读取存储器902,A02中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读 存储介质上存储有计算机程序,计算机程序被处理器901,A01执行时实现如上述任意一个实施例所述的方法实施例的各步骤。
处理器901,A01可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请方法的各步骤可以通过处理器901,A01中的硬件的集成逻辑电路或者软件形式的指令完成。所述处理器901,A01可以是通用处理器、数字信号处理器、专用集成电路、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。在一个典型的配置中,本申请的设备包括一个或多个处理器(CPU)、输入/输出用户接口、网络接口和存储器。
此外,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
因此,本申请还提出一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现本申请任意一项实施例所述的方法的步骤。例如,本发明的存储器803,902,A02可包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁 磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
基于图8~13的实施例,本申请还提出一种移动通信系统,包含至少1个本申请中任意一个中间设备的实施例和/或至少1个本申请中任意一个网络设备的实施例。进一步地,所述移动通信系统还包含至少1个本申请任意一个用户设备的实施例。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
还需要说明的是,本申请中的“第一”、“第二”、“第三”是为了区分同一名称的多个客体,不是用于限定顺序或大小。如非具体说明,没有其他特别的含义。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种无线通信信息传送方法,所述无线通信系统中包含网络设备、中间设备和用户设备,所述网络设备生成的信号经所述中间设备后被用户设备接收;所述无线通信系统包括以下至少一项信息传送:在网络设备和中间设备之间传送第一下行控制信息和/或第一上行控制信息;在中间设备和用户设备之间传送第二下行控制信息和/或第二上行控制信息;在网络设备和用户设备之间传送第三下行控制信息和/或第三上行控制信息;其特征在于,
    下行指示信息中包含:用于指示中间设备的配置参数的第一信息、用于指示网络设备和中间设备之间信道特性H的第三信息;
    上行指示信息中包含:用于指示中间设备和用户设备之间信道特性h的第二信息;
    所述下行指示信息为第一下行控制信息、第二下行控制信息、第三下行控制信息中的至少一种;所述上行指示信息为第一上行控制信息、第二上行控制信息、第三上行控制信息中的至少一种。
  2. 如权利要求1所述无线通信信息传送方法,其特征在于,
    所述配置参数用于确定以下至少一项:相移矩阵、等效幅度反射因子、功率调整系数、极化因子、频率偏移。
  3. 如权利要求1所述无线通信信息传送方法,其特征在于,
    所述配置参数包含区分多个中间设备的资源指示。
  4. 如权利要求1所述无线通信信息传送方法,其特征在于,
    根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H,或者
    根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H。
  5. 如权利要求1~4任意一项所述无线通信信息传送方法,用于网络设备,其特征在于,包含以下步骤:
    网络设备发送所述第一下行控制信息和/或第三下行控制信息,其中包含所述第一信息;
    网络设备接收所述第一上行控制信息和/或第三上行控制信息,其中包含所述第二信息。
  6. 如权利要求5所述无线通信信息传送方法,其特征在于,还包含以下步骤:
    根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;
    所述网络设备接收所述第一上行控制信息和/或第三上行控制信息,其中包含第三信息。
  7. 如权利要求5所述无线通信信息传送方法,其特征在于,还包含以下步骤:
    根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H;
    所述网络设备发送所述第一下行控制信息和/或第三下行控制信息,其中包含第三信息。
  8. 如权利要求6或7所述无线通信信息传送方法,其特征在于,
    根据所述配置参数、网络设备和中间设备之间信道特性H、中间设备和用户设备之间信道特性h,确定网络设备和用户设备之间的复合信道状态。
  9. 如权利要求1~4所述无线通信信息传送方法,用于中间设备,其特征在于,包含以下步骤:
    中间设备发送所述第二下行控制信息,其中包含所述第一信息;
    中间设备接收所述第二上行控制信息,其中包含所述第二信息。
  10. 如权利要求9所述无线通信信息传送方法,其特征在于,
    根据所述网络设备向所述中间设备发送的预设参考信号测量从所述网络设备到所述中间设备之间的信道特性H;
    所述中间设备发送所述第一上行控制信息和/或第二下行控制信息,其中包含第三信息。
  11. 如权利要求9所述无线通信信息传送方法,其特征在于,
    根据所述中间设备向所述网络设备发送的预设参考信号测量从所述中间设备到所述网络设备之间的信道特性H;
    所述中间设备接收所述第一下行控制信息和发送所述第三下行控制信息,其中包含第三信息。
  12. 如权利要求1~4所述无线通信信息传送方法,用于用户设备,其特征在于,
    用户设备接收所述第二下行控制信息或所述第三下行控制信息,其中任一下行控制信息包含所述第一信息和/或第三信息;
    用户设备发送所述第二上行控制信息或所述第三上行控制信息,其中任一上行控制信息包含所述第二信息。
  13. 如权利要求12所述无线通信信息传送方法,其特征在于,
    响应于包含所述第三信息的所述第二下行控制信息,所述用户设备发送所述第三上行控制信息,包含所述第三信息。
  14. 如权利要求12所述无线通信信息传送方法,其特征在于,
    根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H,计算得到中间设备和用户设备之间信道特性h,或者,
    根据用户设备接收信号、配置参数、网络设备和中间设备之间信道特性H、网络设备和用户设备之间的信道特性g,计算得到中间设备和用户设备之间信道特性h。
  15. 一种通信设备,用于实现权利要求1~8任意一项所述方法,其特征在于,所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:发送所述第一下行控制信令、发送所述第三下行控制信息、接收所述第一上行控制信令、接收所述第三上行控制信息、确定所述第一信息、确定所述第二信息、确定所述第三信息。
  16. 一种通信设备,用于实现权利要求1~4、9~11任意一项所述方法,其特征在于,所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:接收所述第一下行控制信令、接收所述第二上行控制信令、发送所述第一上行控制信令、发送所述第二下行控制信令、确定所述第一信息、确定所述第二信息、确定所述第三信息。
  17. 一种通信设备,用于实现权利要求1~4、12~14任意一项所述方法,其特征在于,所述通信设备中包含至少一个模块,每一个所述模块用于以下至少一个功能:接收所述第二下行控制信令、接收所述第三下行控制信令、发送所述第二上行控制信令、发送所述第三上行控制信令、确定所述第一信息、确定所述第二信息、确定所述第三信息。
  18. 一种通信设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1~14中任意一项所述方法的步骤。
  19. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1~14任意一项所述的方法的步骤。
  20. 一种无线通信系统,其特征在于,包含如权利要求16~18任意一项或多项所述的通信设备。
PCT/CN2022/070411 2021-11-26 2022-01-06 一种无线通信信息传送方法和设备 WO2023092828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111424934.4A CN114245391A (zh) 2021-11-26 2021-11-26 一种无线通信信息传送方法和设备
CN202111424934.4 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023092828A1 true WO2023092828A1 (zh) 2023-06-01

Family

ID=80751552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070411 WO2023092828A1 (zh) 2021-11-26 2022-01-06 一种无线通信信息传送方法和设备

Country Status (2)

Country Link
CN (1) CN114245391A (zh)
WO (1) WO2023092828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118042493A (zh) * 2024-04-11 2024-05-14 华东交通大学 基于反射元件的车联网感知通信计算联合优化方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216164A1 (zh) * 2022-05-11 2023-11-16 北京小米移动软件有限公司 一种智能超表面的预编码方法及装置
WO2023216165A1 (zh) * 2022-05-11 2023-11-16 北京小米移动软件有限公司 一种控制智能超表面ris发射参考信号的方法及装置
CN117580157A (zh) * 2022-08-05 2024-02-20 维沃移动通信有限公司 传输参数确定方法、装置、网络侧设备及介质
CN117998279A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种通信方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714895A (zh) * 2006-08-18 2010-05-26 富士通株式会社 通信系统
CN103563447A (zh) * 2011-06-14 2014-02-05 Sca艾普拉控股有限公司 无线通信系统和方法
US20160226709A1 (en) * 2015-01-29 2016-08-04 Telefonaktiebolaget L M Ericsson (Publ) Methods to signal current mimo rx antenna configuration status
WO2021155809A1 (zh) * 2020-02-06 2021-08-12 维沃移动通信有限公司 同步信号传输方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104365137B (zh) * 2012-11-09 2018-09-28 Lg电子株式会社 在无线通信系统中反馈信道状态信息的方法及其设备
CN108282212B (zh) * 2017-01-06 2022-06-14 华为技术有限公司 一种信道状态信息处理的方法、装置和系统
WO2018127181A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信号传输方法和装置
CN111817768B (zh) * 2020-06-03 2021-06-15 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
CN113497649B (zh) * 2021-06-24 2022-07-12 北京科技大学 基于智能反射平面的太赫兹无线通信网络资源管控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714895A (zh) * 2006-08-18 2010-05-26 富士通株式会社 通信系统
CN103563447A (zh) * 2011-06-14 2014-02-05 Sca艾普拉控股有限公司 无线通信系统和方法
US20160226709A1 (en) * 2015-01-29 2016-08-04 Telefonaktiebolaget L M Ericsson (Publ) Methods to signal current mimo rx antenna configuration status
WO2021155809A1 (zh) * 2020-02-06 2021-08-12 维沃移动通信有限公司 同步信号传输方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118042493A (zh) * 2024-04-11 2024-05-14 华东交通大学 基于反射元件的车联网感知通信计算联合优化方法

Also Published As

Publication number Publication date
CN114245391A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023092828A1 (zh) 一种无线通信信息传送方法和设备
Xie et al. Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming
US10645721B2 (en) Channel sounding for frequency division duplex system
Han et al. Backhaul-aware user association and resource allocation for energy-constrained HetNets
CN103907389B (zh) 协同多点系统中的链路自适应
CN104838712B (zh) 用于多用户全双工传输的干扰避免、信道探测和其它信令的系统和方法
WO2019158064A1 (zh) 传输探测参考信号的方法和装置
WO2017118337A1 (zh) 无线通信方法和无线通信设备
WO2023040231A1 (zh) 面向非对称毫米波大规模mimo的多用户上下行波束对准方法
US20140113643A1 (en) System and Method for Radio Access Virtualization
CN108462552A (zh) 一种多码字传输方法及装置
CN106465409A (zh) 用于调度无线设备间的通信以减少与多小区网络中全双工通信相关联的干扰的系统和方法
JP2016529808A (ja) 情報交換方法、基地局及び通信システム
CN104956604A (zh) 基于虚拟仰角端口的3d mimo csi 反馈
CN102742312A (zh) 无线通信系统中的方法和装置
WO2023024401A1 (zh) 一种波束管理方法和设备
JP2022531674A (ja) ビーム選択システムおよび方法
US20230223992A1 (en) Distributed coordinated downlink precoding for multi-cell mimo wireless network virtualization
CN102186212A (zh) 一种小区间协作调度方法、系统和用户设备
WO2021238609A1 (zh) 应用电磁超表面阵列的数据发送方法、装置及系统
WO2016206402A1 (zh) 一种传输信号的方法和装置
CN103945555A (zh) 多点协作传输下的资源调度方法和设备
Damodaran et al. Optimized and low-complexity power allocation and beamforming with full duplex in massive MIMO and small-cell networks
CN115802419A (zh) 基于irs辅助的d2d_mec系统的能效优化方法
KR20160133159A (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896933

Country of ref document: EP

Kind code of ref document: A1