WO2023092783A1 - Procédé de commande de hauteur variable adaptative floue de ventilateur capable de supprimer de multiples facteurs de perturbation - Google Patents

Procédé de commande de hauteur variable adaptative floue de ventilateur capable de supprimer de multiples facteurs de perturbation Download PDF

Info

Publication number
WO2023092783A1
WO2023092783A1 PCT/CN2021/140650 CN2021140650W WO2023092783A1 WO 2023092783 A1 WO2023092783 A1 WO 2023092783A1 CN 2021140650 W CN2021140650 W CN 2021140650W WO 2023092783 A1 WO2023092783 A1 WO 2023092783A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuzzy
wind turbine
transfer function
pitch control
adaptive
Prior art date
Application number
PCT/CN2021/140650
Other languages
English (en)
Chinese (zh)
Inventor
邵宜祥
刘剑
胡丽萍
过亮
方渊
Original Assignee
南瑞集团有限公司
国网湖北省电力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南瑞集团有限公司, 国网湖北省电力有限公司 filed Critical 南瑞集团有限公司
Publication of WO2023092783A1 publication Critical patent/WO2023092783A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of pitch control of wind turbines, in particular to a fuzzy self-adaptive pitch control method for wind turbines capable of suppressing multiple disturbance factors.
  • the pitch control strategy of traditional wind turbines only considers a single wind speed disturbance, and does not comprehensively consider the initial parameter errors caused by installation and manufacturing, and environmental changes during the operation of wind turbines (such as Turbulent wind speed, snow accumulation, frost accumulation, etc.) and wind turbine blade changes (such as blade bending, deformation, etc.) Balance, causing blade flapping vibrations and torque fluctuations.
  • the purpose of the present invention is to propose a fan fuzzy adaptive pitch control method that can suppress multiple disturbance factors, establish a closed-loop transfer function of the wind turbine pitch control system that takes into account multiple disturbance factors, and design a fuzzy adaptive PID algorithm based on
  • the advanced wind turbine pitch control method realizes adaptive and rapid response to disturbances caused by various factors, ensures that the pitch angle of wind turbines is properly adjusted, maintains system stability, and achieves optimal capture of wind energy.
  • the invention provides a fan fuzzy self-adaptive pitch control method capable of suppressing multiple disturbance factors, including:
  • fuzzy adaptive PID control parameters based on the closed-loop transfer function and fuzzy rules
  • the fuzzy adaptive PID control is used to adjust the pitch control system of the wind turbine considering multiple disturbance factors, and output the pitch angle of the wind turbine.
  • the disturbance factors include the blade change disturbance during the operation of the wind turbine, the initial parameter error disturbance of the wind turbine installation and the environment change disturbance during the operation of the wind turbine;
  • k 1 and k 2 are disturbance coefficients
  • k 3 , k 4 , k 5 are disturbance coefficients
  • D(s) D 1 (s)+D 2 (s)+D 3 (s)
  • K P , K I , K D are the adaptive parameters of the PID controller
  • G ⁇ is the transfer function of the pitch controller
  • G c is the transfer function of the pitch actuator
  • T ⁇ is the time constant
  • G p is the transfer function of the wind turbine
  • J is the moment of inertia
  • ⁇ V(s) V(s)-V 0 (s)
  • ⁇ (s) ⁇ (s)- ⁇ 0 (s)
  • V 0 is the initial wind speed
  • ⁇ (s) is the pitch angle
  • ⁇ 0 is the pitch angle at the working point of the wind turbine
  • ⁇ , ⁇ and ⁇ are all linear coefficients.
  • determining fuzzy adaptive PID control parameters based on the closed-loop transfer function and fuzzy rules includes:
  • the initial value of the parameters of the fuzzy adaptive PID control is adjusted
  • the fuzzy adaptive PI control parameters are obtained by combining the adjustment amount of the fuzzy adaptive PID controller parameters with the initial value of the parameters.
  • the reduced-order closed-loop transfer function is:
  • ⁇ (s) is the reduced-order closed-loop transfer function
  • is the damping ratio
  • ⁇ n is the natural frequency
  • ⁇ and ⁇ n are obtained from the dominant poles
  • the dominant pole is determined as follows:
  • the determination of the adjustment amount of fuzzy adaptive PID control parameters based on fuzzy rules includes:
  • Fuzzify the input quantity and use the Mamdani fuzzy reasoning method to obtain fuzzy subsets according to the preset fuzzy rules;
  • the output of the fuzzy controller is obtained by defuzzifying the fuzzy subset as the adjustment values ⁇ K P , ⁇ K I , ⁇ K D of the adaptive parameters of the PID controller.
  • the fuzzy controller adopts a two-dimensional fuzzy controller.
  • the fuzzy controller adopts a triangular membership function.
  • the output of the fuzzy controller is obtained by defuzzifying the fuzzy subsets using the center of gravity method.
  • the invention considers various disturbance factors in the control process of the wind turbine, establishes the closed-loop transfer function of the pitch control system of the wind turbine considering multi-factor disturbance, determines the fuzzy control rules, and realizes the self-adaptive and fast response to the disturbance caused by various factors, ensuring The pitch angle of the wind turbine is properly adjusted to maintain system stability and achieve optimal capture of wind energy.
  • the present invention applies the fuzzy control to the pitch control system.
  • the fuzzy control has robustness and strong self-adaptive ability, and can realize good control effect without establishing an accurate system dynamic model.
  • Fig. 1 is a schematic diagram of a fan fuzzy adaptive pitch control method capable of suppressing multiple disturbance factors of the present invention
  • Fig. 2 is a fuzzy control rule table preset in the present invention.
  • the present invention designs a wind turbine pitch control strategy based on the fuzzy self-adaptive PID algorithm by establishing a wind turbine pitch control system closed-loop transfer function that takes into account multi-factor disturbances, and realizes Adaptive and fast response to disturbances caused by various factors to ensure that the pitch angle of wind turbines is properly adjusted, maintain system stability, and achieve optimal capture of wind energy.
  • a fan fuzzy adaptive pitch control method capable of suppressing multiple disturbance factors, comprising:
  • the disturbance factors include blade change disturbances during wind turbine operation, wind turbine installation initial parameter error disturbances, and wind turbine environment change disturbances during operation;
  • the wind turbine pitch control system considering multiple disturbance factors is adjusted, and the pitch angle of the wind turbine is output.
  • Blade variation factors include blade bending, deformation, etc., and the disturbance can be approximately expressed by the transfer function D 1 (s) as:
  • k 1 and k 2 are the disturbance coefficients, and their values are taken according to the errors of wind turbine installation and manufacture, which are known quantities, and V(s) is the external wind speed.
  • the environmental changes during the operation of the wind turbine include turbulent wind speed, snow accumulation, frost accumulation, etc.
  • the disturbance can be expressed approximately by the transfer function D 3 (s) as:
  • k 3 , k 4 , k 5 are the disturbance coefficients, and their values are taken according to the changes of the operating environment, which are known quantities; V(s) is the external wind speed.
  • D(s) D 1 (s)+D 2 (s)+D 3 (s)
  • K P , K I , K D are the adaptive parameters of the PID controller
  • G ⁇ , G c , G p are the transfer functions of each part of the fan system
  • G ⁇ is the transfer function of the pitch controller
  • G c is the variable paddle actuator transfer function
  • T ⁇ is the time constant
  • the unit is s
  • G p is the transfer function of the wind turbine
  • J is the moment of inertia
  • ⁇ V(s) V(s)-V 0 (s)
  • ⁇ (s) ⁇ (s)- ⁇ 0 (s)
  • V 0 is the initial wind speed
  • ⁇ (s) is the pitch angle
  • ⁇ 0 is the pitch angle at the working point of the wind turbine
  • ⁇ , ⁇ and ⁇ are all linear coefficients.
  • p i is the quantity with respect to K P , K I , K D .
  • the second-order system obtained after order reduction has the following expression:
  • is the damping ratio
  • ⁇ n is the natural frequency
  • ⁇ and ⁇ n need to be obtained from the dominant poles, so ⁇ and ⁇ n are quantities related to K P , KI , and K D .
  • the fuzzy controller is used to determine the adjustment amount of the PID controller parameter based on the fuzzy rules, and the adjustment amount of the PID controller parameter output by the fuzzy controller and the adjusted initial parameter of the PID controller Combined to obtain the adaptive parameters K P , KI , K D of the PI controller.
  • the fuzzy controller adopts a two-dimensional fuzzy controller, and the difference e between the theoretical value ⁇ ref and the actual value of the wind turbine speed and its error variation ec are used as the input of the fuzzy controller, and ⁇ ref is the wind turbine
  • the speed given value is generally set as the rated value of the fan speed, and then the input quantity is fuzzified, and then the fuzzy subset is obtained by using Mamdani fuzzy inference method according to the corresponding fuzzy rules. See Figure 2 for the fuzzy control rules, and finally the fuzzy subset is solved Fuzzy obtains the output of the fuzzy controller, which is the adjustment of the parameters of the PID controller ⁇ K P , ⁇ K I , ⁇ K D .
  • the fuzzy controller adopts the triangular membership function, and determines the fuzzy control rules according to the adjustment requirements of the fan.
  • the input quantity of the fuzzy controller is converted into the corresponding fuzzy language variable value to realize fuzzification.
  • the output of the fuzzy controller is obtained by defuzzifying the fuzzy subset using the center of gravity method.
  • the adaptive parameters K P , K I , and K D of the PI controller can be obtained by integrating the output of the fuzzy controller and the initial parameters of the PID controller.
  • the calculation formula is as follows:
  • K P K P0 + ⁇ K P
  • K I K I0 + ⁇ K I
  • K D K D0 + ⁇ K D
  • ⁇ ref and ⁇ ref are the given value of the speed of the wind turbine and the given value of the pitch angle respectively.
  • the PID controller Based on the adaptive parameters K P , K I , K D of the PID controller, the PID controller is used to adjust the pitch control system of the wind turbine considering multiple disturbance factors, and the pitch angle of the wind turbine is output.
  • the wind turbine variable pitch control method proposed in the present invention comprehensively considers various disturbance factors in the control process of the wind turbine, and realizes the self-adaptive and rapid response to the disturbance caused by various factors, ensures that the pitch angle of the wind turbine is properly adjusted, and maintains system stability , to achieve optimal capture of wind energy.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un procédé de commande de pas variable adaptative floue de ventilateur capable de supprimer de multiples facteurs de perturbation. Le procédé considère de manière complète de multiples facteurs de perturbation communs dans le fonctionnement réel d'un générateur éolien, et les facteurs comprennent des erreurs de paramètre initiales pendant le montage et la fabrication du générateur éolien, des changements environnementaux pendant le fonctionnement du générateur éolien, des changements de pale du générateur éolien, etc ; une fonction de transfert en boucle fermée d'un système de commande de pas variable de générateur éolien tenant compte d'une perturbation à facteurs multiples est établie ; le système de commande de pas variable de générateur éolien tenant compte de multiples facteurs de perturbation est ajusté sur la base d'une commande PID adaptative floue ; et l'angle de pas du générateur éolien est délivré. Une réponse rapide adaptative à une perturbation provoquée par de multiples facteurs est obtenue, il est garanti que l'angle de pas du générateur éolien est correctement ajusté, la stabilité du système est maintenue, et une capture optimale de l'énergie éolienne est obtenue.
PCT/CN2021/140650 2021-11-23 2021-12-23 Procédé de commande de hauteur variable adaptative floue de ventilateur capable de supprimer de multiples facteurs de perturbation WO2023092783A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111396063.XA CN113883008B (zh) 2021-11-23 2021-11-23 一种可抑制多扰动因素的风机模糊自适应变桨距控制方法
CN202111396063.X 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023092783A1 true WO2023092783A1 (fr) 2023-06-01

Family

ID=79015526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140650 WO2023092783A1 (fr) 2021-11-23 2021-12-23 Procédé de commande de hauteur variable adaptative floue de ventilateur capable de supprimer de multiples facteurs de perturbation

Country Status (2)

Country Link
CN (1) CN113883008B (fr)
WO (1) WO2023092783A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116658364A (zh) * 2023-07-12 2023-08-29 三峡科技有限责任公司 风电机组极端阵风识别系统及极端阵风抑制超速控制系统
CN118008695A (zh) * 2024-04-08 2024-05-10 昆明理工大学 高原山地风电机组参与电网调频的先进模糊变桨控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097737B (zh) * 2022-08-24 2022-11-08 北京航空航天大学 一种可重入制造系统的多层级调控方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008584A1 (fr) * 1978-08-17 1980-03-05 United Technologies Corporation Système de multiréglage pour des turbines éoliennes
CN101498283A (zh) * 2008-02-01 2009-08-05 北京能高自动化技术有限公司 大型风力发电机组变桨距控制方法
KR20110024149A (ko) * 2009-09-01 2011-03-09 현대중공업 주식회사 풍력발전기의 개별 블레이드 피치 제어 방법 및 제어 시스템
CN102859184A (zh) * 2010-04-13 2013-01-02 歌美飒创新技术公司 用于风力涡轮机的监测方法
CN103016266A (zh) * 2013-01-11 2013-04-03 华北电力大学 模糊前馈与线性自抗扰结合的风电机组变桨距控制方法
CN104005909A (zh) * 2014-04-22 2014-08-27 重庆邮电大学 非线性前馈与模糊pid结合的风力发电机组变桨距控制方法
CN106870281A (zh) * 2017-04-06 2017-06-20 哈尔滨理工大学 一种基于模糊前馈和模糊‑pi的变桨距控制方法
CN108708822A (zh) * 2018-04-28 2018-10-26 山东中车风电有限公司 一种风力发电机组变桨自适应控制方法与系统
JP2020067023A (ja) * 2018-10-24 2020-04-30 株式会社日立製作所 風力発電システム
CN112901414A (zh) * 2021-01-28 2021-06-04 浙江运达风电股份有限公司 一种风力发电机组变桨系统辨识方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677167A3 (fr) * 2012-06-21 2015-02-11 MOOG GmbH Système de régulation d'incidence pour éolienne
CN102777320B (zh) * 2012-08-06 2014-04-02 国电联合动力技术有限公司 风力发电机组扭矩与变桨解耦控制的方法、控制器及系统
CN105221336A (zh) * 2015-11-09 2016-01-06 国电南瑞科技股份有限公司 基于鲁棒控制的风电机组独立变桨控制方法
CN110566406B (zh) * 2019-10-16 2020-08-04 上海海事大学 基于强化学习的风电机组实时变桨距鲁棒控制系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008584A1 (fr) * 1978-08-17 1980-03-05 United Technologies Corporation Système de multiréglage pour des turbines éoliennes
CN101498283A (zh) * 2008-02-01 2009-08-05 北京能高自动化技术有限公司 大型风力发电机组变桨距控制方法
KR20110024149A (ko) * 2009-09-01 2011-03-09 현대중공업 주식회사 풍력발전기의 개별 블레이드 피치 제어 방법 및 제어 시스템
CN102859184A (zh) * 2010-04-13 2013-01-02 歌美飒创新技术公司 用于风力涡轮机的监测方法
CN103016266A (zh) * 2013-01-11 2013-04-03 华北电力大学 模糊前馈与线性自抗扰结合的风电机组变桨距控制方法
CN104005909A (zh) * 2014-04-22 2014-08-27 重庆邮电大学 非线性前馈与模糊pid结合的风力发电机组变桨距控制方法
CN106870281A (zh) * 2017-04-06 2017-06-20 哈尔滨理工大学 一种基于模糊前馈和模糊‑pi的变桨距控制方法
CN108708822A (zh) * 2018-04-28 2018-10-26 山东中车风电有限公司 一种风力发电机组变桨自适应控制方法与系统
JP2020067023A (ja) * 2018-10-24 2020-04-30 株式会社日立製作所 風力発電システム
CN112901414A (zh) * 2021-01-28 2021-06-04 浙江运达风电股份有限公司 一种风力发电机组变桨系统辨识方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, GUIDONG: "Design And Research of Wind Power Generation Speed Controller Based on Fuzzy Control", DESIGN AND RESEARCH OF WIND POWER GENERATION SPEED CONTROLLER BASED ON FUZZY CONTROL, no. 03, 1 March 2016 (2016-03-01), CN, pages 1 - 79, XP009546496 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116658364A (zh) * 2023-07-12 2023-08-29 三峡科技有限责任公司 风电机组极端阵风识别系统及极端阵风抑制超速控制系统
CN118008695A (zh) * 2024-04-08 2024-05-10 昆明理工大学 高原山地风电机组参与电网调频的先进模糊变桨控制方法

Also Published As

Publication number Publication date
CN113883008B (zh) 2023-06-16
CN113883008A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2023092783A1 (fr) Procédé de commande de hauteur variable adaptative floue de ventilateur capable de supprimer de multiples facteurs de perturbation
Azizi et al. Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller
CN104976056B (zh) 用于风力涡轮的推力速度控制的系统和方法
CN104005909B (zh) 非线性前馈与模糊pid结合的风力发电机组变桨距控制方法
CN108488035B (zh) 永磁直驱风力发电机组失速和变桨混合控制方法
WO2021047192A1 (fr) Procédé et appareil de régulation active d'ensemble générateur éolien sur la base d'une mesure d'avance de la vitesse du vent
CN106998070B (zh) 一种双馈风电机组频率下垂系数修正方法及其控制系统
CN113518860A (zh) 用于运行风能设备的方法、调节器结构、风能设备和风电场
WO2024007465A1 (fr) Procédé et dispositif de modulation de fréquence à paramètre variable adaptative pour unité de stockage par pompage à vitesse variable à double alimentation
CN108717266B (zh) 风场风机功率基于扰动观测器的神经自适应跟踪控制方法
JP2002048050A (ja) 風力発電装置のピッチ角制御方法及びその装置
CN109787274B (zh) 一种虚拟同步控制方法及转子侧变频器控制器
Adegas et al. Structured control of LPV systems with application to wind turbines
CN114439692A (zh) 漂浮式海上风电机组永磁直驱风电系统变桨距控制方法
CN112343770B (zh) 一种基于观测器的风力发电机最佳转速有限时间跟踪控制方法
Yuan et al. Disturbance observer-based pitch control of wind turbines for enhanced speed regulation
CN104500338B (zh) 一种风力发电主动偏航变转速失速控制系统
CN116345486A (zh) 基于模型预测控制的风场内一次调频协调控制方法及装置
Lin et al. Asymptotic tracking control for wind turbines in variable speed mode
CN115573857A (zh) 基于时滞adrc的风电机组变桨距控制方法及控制装置
CN106952180B (zh) 一种建立双馈分布式风电系统低阶频率响应模型的方法
Evans et al. Computationally efficient model predictive control of complex wind turbine models
CN114876732A (zh) 一种风电机组变桨的控制方法及装置
CN110556873B (zh) 一种基于罚函数的vsg自适应转动惯量控制方法
Shao et al. The implementation of fuzzy PSO-PID adaptive controller in pitch regulation for wind turbines suppressing multi-factor disturbances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965502

Country of ref document: EP

Kind code of ref document: A1