WO2023092517A1 - 用于led显示屏的驱动装置、驱动方法及led显示屏 - Google Patents

用于led显示屏的驱动装置、驱动方法及led显示屏 Download PDF

Info

Publication number
WO2023092517A1
WO2023092517A1 PCT/CN2021/133769 CN2021133769W WO2023092517A1 WO 2023092517 A1 WO2023092517 A1 WO 2023092517A1 CN 2021133769 W CN2021133769 W CN 2021133769W WO 2023092517 A1 WO2023092517 A1 WO 2023092517A1
Authority
WO
WIPO (PCT)
Prior art keywords
led display
display screen
pixel circuit
emitting diode
temperature value
Prior art date
Application number
PCT/CN2021/133769
Other languages
English (en)
French (fr)
Inventor
罗琨
江从彪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/133769 priority Critical patent/WO2023092517A1/zh
Publication of WO2023092517A1 publication Critical patent/WO2023092517A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present application relates to the field of display technology, in particular to a driving device, a driving method and an LED display for a light-emitting diode (LED) display.
  • a driving device a driving method and an LED display for a light-emitting diode (LED) display.
  • LED light-emitting diode
  • the display screens used in display fields such as mobile phones, tablets, and televisions can be liquid crystal displays (LCD), organic light emitting diodes (Organic Light Emitting Diode, OLED) display screens, light emitting diodes (light emitting diode, LED) any one of the displays.
  • LCD liquid crystal displays
  • OLED Organic Light Emitting Diode
  • LED light emitting diodes
  • the greater the driving current value of the pixel circuit included in the display screen the greater the luminous intensity of the display screen, and thus the greater the luminous brightness of the display screen.
  • OLED display screen and LED display screen have the advantages of high display brightness and wide color gamut display.
  • the method for reducing the power consumption of the OLED display screen in the related art is to use the characteristics of the large variation range of the driving current value flowing through the pixel circuit in the OLED display screen and When the driving thin film transistor (DTFT) of the pixel circuit in the OLED display works in a saturated state, when the driving current value flowing through the pixel circuit in the OLED display is small, the display brightness of the OLED display is low.
  • DTFT driving thin film transistor
  • the voltage between the source and drain of the DTFT of the pixel circuit in the OLED display can be reduced to ensure that the DTFT is still working in a saturated state, that is, under the premise of ensuring the display brightness of the OLED display, the OLED display can be reduced.
  • the voltage between the internal working voltage VDD of the device in the pixel circuit and the common ground terminal voltage VSS of the pixel circuit can finally reduce the power consumption of the OLED display.
  • the LED display is different from the OLED display.
  • the color displayed by the LED display is related to the driving current flowing through the pixel circuit in the LED display.
  • the variation range of the driving current of the pixel circuit is small, that is, the variation range of the driving current value flowing through the pixel circuit in the LED display is relatively flat, and there is no excessive driving current value or too small driving current value, so the OLED display screen is reduced.
  • the power consumption scheme is not suitable for reducing the power consumption of the LED display. Therefore, a solution suitable for reducing the power consumption of the LED display screen is needed to reduce the power consumption of the LED display screen.
  • the present application provides a driving device, a driving method and an LED display for a light-emitting diode LED display, so as to reduce power consumption of the LED display.
  • the present application provides a driving device for an LED display
  • the driving device includes a temperature sensor, a control unit and a power supply unit
  • the light-emitting diode in the circuit provides a driving voltage
  • the temperature sensor is used to collect a first temperature value of the LED display screen, wherein the first temperature value represents an average temperature of at least one pixel circuit in the LED display screen.
  • temperature value the control unit, coupled to the power supply unit, is configured to control the power supply unit to dynamically adjust the driving voltage applied to the light emitting diode in each pixel circuit based on the first temperature value.
  • the first temperature value of the LED display screen is first collected by the temperature sensor, and the average temperature value of at least one pixel circuit in the LED display screen is represented by the first temperature value, and then in the control unit coupled to the power supply unit, According to the collected first temperature value of the LED display screen, the power supply unit is controlled to dynamically adjust the driving voltage applied to the light-emitting diode in each pixel circuit, and then it can be realized according to the current temperature value of the LED display screen within a certain period of time, The voltage value applied to each pixel circuit in the LED display screen is determined, and the purpose of adjusting the power consumption of the LED display screen is realized by dynamically adjusting the driving voltage on each pixel circuit.
  • each pixel circuit further includes: a current generating unit and a metal oxide semiconductor field effect transistor respectively connected in series with the light emitting diode; the current generating unit is used to provide a constant current for the pixel circuit ; The metal oxide semiconductor field effect transistor is used to control the light emitting diode to be on or off.
  • the constant current provided by the current generation unit for the pixel circuit ensures that the current value flowing through the pixel circuit is constant, and then after using the metal oxide semiconductor field effect transistor to control the light-emitting diode to be in the on state, by adjusting each pixel circuit
  • the driving voltage on the LED display can be adjusted to achieve the purpose of adjusting the power consumption of the LED display.
  • control unit is specifically configured to: determine the relationship between the first temperature value and the curve relationship between the preset temperature value and the working voltage of the light-emitting diode and the LED display screen.
  • a target operating voltage corresponding to the first light emitting diode in the first pixel circuit based on the target operating voltage, determine a driving voltage applied by the power supply unit to the first pixel circuit.
  • the working characteristics of the light-emitting diode in the pixel circuit of the LED display By using the working characteristics of the light-emitting diode in the pixel circuit of the LED display to analyze and count the curve relationship between the temperature value of the LED display and the working voltage of the light-emitting diode, and determine according to the first temperature value of the LED display collected by the temperature sensor and the above-mentioned analysis and statistics
  • the curve relationship between the temperature value and the operating voltage of the light-emitting diode is obtained to obtain the target operating voltage corresponding to the first light-emitting diode in the first pixel circuit in the LED display, so that the first pixel circuit determined according to the obtained target operating voltage
  • the driving voltage on the can be more accurate.
  • the curve relationship between the preset temperature value and the working voltage of the light emitting diode is a linear relationship.
  • the target operating voltage corresponding to the first light emitting diode in the first pixel circuit in the LED display screen can be more accurately obtained through the linear relationship between the temperature value and the operating voltage of the light emitting diode, so that the first determined according to the obtained target operating voltage
  • the driving voltage on a pixel circuit can be more accurate.
  • the metal oxide semiconductor field effect transistor when the metal oxide semiconductor field effect transistor is a hole type metal oxide semiconductor field effect transistor; the cathode of the first light emitting diode is connected to the power supply unit, and the first light emitting diode
  • the anode of the hole-type metal oxide semiconductor field effect transistor is connected to the source of the hole type metal oxide semiconductor field effect transistor; in another possible design, when the metal oxide semiconductor field effect transistor is an electron type metal oxide semiconductor field effect transistor;
  • the anode of the first light emitting diode is connected to the power supply unit, and the cathode of the first light emitting diode is connected to the drain of the electronic metal oxide semiconductor field effect transistor.
  • the control unit controls the power supply unit to dynamically adjust the driving voltage applied to the pixel circuit
  • the process is also different. Specifically, when the pixel circuit includes a hole-type metal-oxide-semiconductor field-effect transistor, the control unit determines the voltage of the first light-emitting diode applied by the power supply unit to the first pixel circuit based on the target operating voltage.
  • Driving voltage on the cathode when the pixel circuit includes an electronic metal oxide semiconductor field effect transistor, the control unit determines the first light emission applied by the power supply unit to the first pixel circuit based on the target operating voltage drive voltage on the anode of the diode. In this way, through the specific type of MOSFET included in the pixel circuit and the specific connection mode between the MOSFET and the light-emitting diode, the light emission from the power supply unit to each pixel circuit can be more accurately utilized. A drive voltage is applied to the anode or cathode of the diode.
  • the multiple temperature sensors are respectively arranged at different positions of the LED display screen.
  • the number of the plurality of temperature sensors is two, the two temperature sensors are respectively arranged at diagonal positions of the LED display screen; or, when the number of the plurality of temperature sensors is four, The four temperature sensors are respectively arranged at the four corners of the LED display screen.
  • the balanced temperature value of the LED display at the current moment can be more accurately determined through the first temperature values of the LED display collected by temperature sensors located at multiple different positions of the LED display.
  • the present application also provides an LED display screen, including a plurality of pixel circuits and a driving device for an LED display screen as in the above first aspect and any design thereof;
  • the pixel circuits are connected.
  • the present application provides a driving method for a light-emitting diode LED display, the method includes receiving a first temperature value of the LED display collected by a temperature sensor; wherein the first temperature value represents The average temperature value of at least one pixel circuit in the LED display screen; based on the first temperature value, the power supply unit is controlled to dynamically apply the driving voltage on the light-emitting diode in each pixel circuit in the LED display screen adjust.
  • each of the pixel circuits includes a light emitting diode; based on the first temperature value, the power supply unit is controlled to dynamically adjust the driving voltage applied to the light emitting diode in each pixel circuit , including: according to the first temperature value and the curve relationship between the preset temperature value and the operating voltage of the light emitting diode, determine the corresponding first light emitting diode in the first pixel circuit in the LED display screen A target operating voltage; based on the target operating voltage, determine a driving voltage applied by the power supply unit to the first pixel circuit.
  • the curve relationship between the preset temperature value and the working voltage of the light emitting diode is a linear relationship.
  • each of the pixel circuits further includes a hole-type metal-oxide-semiconductor field effect transistor; the cathode of the first light-emitting diode is connected to the power supply unit, and the anode of the first light-emitting diode is connected to the power supply unit.
  • the source of the hole-type metal-oxide-semiconductor field effect transistor; the determining the driving voltage applied by the power supply unit to the first pixel circuit based on the target operating voltage includes: based on the target operating voltage to determine the driving voltage applied by the power supply unit to the cathode of the first light emitting diode in the first pixel circuit.
  • each of the pixel circuits further includes an electronic metal-oxide-semiconductor field effect transistor; the anode of the first light-emitting diode is connected to the power supply unit, and the cathode of the first light-emitting diode is connected to the The drain of an electronic metal-oxide-semiconductor field effect transistor; the determining the driving voltage applied by the power supply unit to the first pixel circuit based on the target operating voltage includes: determining based on the target operating voltage The power supply unit applies a driving voltage to the anode of the first light emitting diode in the first pixel circuit.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions are executed, the method designed in any one of the above-mentioned third aspects can be be executed.
  • the present application provides a computer program product, the computer program product includes computer instructions, and when the computer instructions are executed, the method designed in any one of the above third aspects can be implemented.
  • Fig. 1 is a schematic diagram of the connection between a driving device for an LED display, an LED display and a signal driving device for an LED display provided by an embodiment of the present application;
  • Figure 1a is a schematic structural diagram of a circuit composed of a driving device for an LED display screen and a signal driving device for an LED display screen through a metal wire connecting a plurality of pixel circuits in an array provided by the embodiment of the present application;
  • FIG. 2 is a schematic diagram of the relationship between the operating voltage and the temperature value of the green LED provided by the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a pixel circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a timing signal and a PWM signal provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the percentage reduction of power consumption of the green LED display screen at different temperatures provided by the embodiment of the present application;
  • FIG. 6 is a schematic flowchart of a driving method for an LED display provided in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of determining a driving voltage applied to each pixel circuit provided by an embodiment of the present application.
  • the display screens used in display fields such as mobile phones, tablets, and televisions may be any one of LCD, OLED display, and LED display.
  • the greater the driving current value of the pixel circuit included in the display screen the greater the luminous intensity of the display screen, and thus the greater the luminous brightness of the display screen.
  • LCD organic light-emitting diode
  • OLED display screen and LED display screen have the advantages of high display brightness and wide color gamut display.
  • the method for reducing the power consumption of an OLED display is usually to use the characteristics of a large variation range of the driving current value flowing through the pixel circuit in the OLED display, which can be reduced by reducing and the voltage between the drain, thereby reducing the power consumption of the OLED display under the premise of ensuring the display brightness of the OLED display.
  • the LED display is different from the OLED display. The color displayed by the LED display is related to the driving current flowing through the pixel circuit in the LED display.
  • the change range of the driving current of the pixel circuit is small, and there is no excessive driving current value or too small driving current value flowing through the pixel circuit in the LED display screen, so the solution for reducing the power consumption of the OLED display screen is not suitable for reducing the power consumption of the LED display screen. screen power consumption. Therefore, a solution suitable for reducing the power consumption of the LED display screen is needed to reduce the power consumption of the LED display screen.
  • the embodiments of the present application provide a driving device, a driving method, and an LED display for a light-emitting diode (LED) display.
  • LED light-emitting diode
  • the LED display screen includes a plurality of pixel circuits arranged in rows and columns, such as pixel circuits 101, 102, ... pixel circuits 10n (n is a positive integer) on the same row (the pixel circuit 10n is not shown in FIG. 1 ). ), a plurality of pixel circuits are arranged in an array along the horizontal direction and vertical direction in the LED display screen, and Fig. 1 only shows a small part of the pixel circuits, wherein a plurality of black dots respectively represent a plurality of pixel circuits arranged in an array.
  • FIG. 1 a shows a schematic structural diagram of a circuit composed of a driving device for an LED display screen and a signal driving device for an LED display screen connected by a plurality of pixel circuits distributed in an array through metal wires.
  • the driving device for the LED display screen includes a temperature sensor (such as temperature sensor 201, temperature sensor 202 . . . temperature sensor 20m (m is a positive integer) as shown in FIG. 1 ), a control unit 301 and a power supply unit 401 .
  • the temperature sensor 201, the temperature sensor 202...the temperature sensor 20m and the power supply unit 401 are all connected to the control unit 301, and the power supply unit 401 is also respectively connected to the pixel circuit 101, the pixel circuit 102...the pixel circuit 10n and other pixels arranged in an array. circuits to their respective VDD and VSS connections.
  • the present application does not limit the specific number of temperature sensors, which may be one temperature sensor or multiple temperature sensors.
  • the first temperature value of the LED display screen collected by the temperature sensor may represent an average temperature value of at least one pixel circuit in the LED display screen. And, when there are multiple temperature sensors, the multiple temperature sensors are respectively arranged at different positions of the LED display screen to collect temperature values at different positions of the LED display screen respectively, and send the collected multiple temperature values to the LED display screen respectively.
  • control unit 301 When there are multiple temperature sensors, the multiple temperature sensors are respectively arranged at different positions of the LED display screen to collect temperature values at different positions of the LED display screen respectively, and send the collected multiple temperature values to the LED display screen respectively.
  • the two temperature sensors can be arranged on the diagonal positions of the LED display screen respectively; when the number of temperature sensors is four, the four temperature sensors can be respectively arranged on the LED display screen
  • N is a positive integer greater than 4
  • four of the temperature sensors can be set at the four corners of the LED display, and the remaining N-
  • the 4 temperature sensors are arranged according to the specified distance from the temperature sensor at any corner of the LED display. This is just an example to illustrate the number of temperature sensors for collecting the temperature of the LED display screen and the positional relationship of multiple temperature sensors. This application does not limit the specific positions of multiple temperature sensors, which can be adjusted according to actual applications.
  • the power supply unit 401 provides driving voltages for the light-emitting diodes in each pixel circuit in the LED display screen, and the control unit 301 controls the power supply unit 401 to apply to the light-emitting diodes in each pixel circuit based on the first temperature value collected by the temperature sensor.
  • the driving voltage is dynamically adjusted.
  • each pixel circuit includes a light emitting diode.
  • the pixel circuit 101 shown in FIG. 1 includes a light emitting diode 1011
  • the pixel circuit 102 includes a light emitting diode 1021 .
  • the control unit 301 can determine the target operating voltage corresponding to the first light emitting diode in the first pixel circuit in the LED display screen according to the first temperature value and the preset curve relationship between the temperature value and the operating voltage of the light emitting diode, and then Based on the target operating voltage obtained above, the driving voltage applied by the power supply unit 401 to the first pixel circuit is determined.
  • the preset curve relationship between the temperature value and the operating voltage of the light-emitting diode can be artificially analyzed and counted in advance on a large number of learned temperature values of the display screen and the operating voltage of the light-emitting diode in the pixel circuit.
  • a law is obtained, which is represented by a curve relationship.
  • the curve relationship between the preset temperature value and the operating voltage of the light emitting diode is a linear relationship.
  • the first pixel circuit may be any one of multiple pixel circuits in the LED display screen, for example, the first pixel circuit is the pixel circuit 101 in FIG. 1 .
  • the control unit 301 determines the first temperature value of the LED display screen according to the second temperature values collected by the multiple temperature sensors, and then uses the first temperature value and the preset temperature value to According to the curve relationship of the operating voltage, the target operating voltage corresponding to the first light-emitting diode in the first pixel circuit in the LED display screen is determined, and then based on the target operating voltage obtained above, the power supply unit 401 is applied to the first pixel circuit. driving voltage.
  • the first temperature value of the LED display is determined by any of the following methods:
  • the first temperature value A A1 of the LED display screen.
  • the second temperature value of the LED display screen collected by the temperature sensor 201 is B1
  • the second temperature value of the LED display screen collected by the temperature sensor 202 is B2
  • the temperature The sensor 20m collects the second temperature value of the LED display screen as Bm
  • the first temperature value of the LED display screen B (B1+B2+...+Bm)/m.
  • the temperature value obtained by weighting and summing the second temperature values respectively collected by a plurality of temperature sensors is used as the first temperature value.
  • the number of temperature sensors is m
  • the second temperature value of the LED display screen collected by the temperature sensor 201 is C1
  • the second temperature value of the LED display screen collected by the temperature sensor 202 is C2
  • the second temperature value of the LED display screen collected by the temperature sensor 20m is Cm
  • the weight value corresponding to the second temperature value C1 is 0.1
  • the weight value corresponding to the second temperature value C2 is 0.3
  • the weight value corresponding to the second temperature value Cm is is 0.1
  • the first temperature value C of the LED display screen C C1*0.1+C2*0.3+...+Cm*0.1, here the weight value corresponding to the second temperature value C1 collected by the temperature sensor 201, the temperature sensor 202 collected
  • control unit 301 can also use other ways to determine the first temperature value of the LED display screen, which is not specifically limited in this application.
  • the fitting degree R2 is 0.9549
  • the curve relationship is a linear relationship, which is only an example here, and the present application does not limit the specific curve relationship type.
  • the temperature of the green LED display screen increases by 1° C.
  • the operating voltage of the green LEDs decreases by 2.6 mV.
  • the target operating voltage of the green light emitting diode can be obtained according to the first temperature value and the curve relationship shown in FIG. 2 . Then, according to the difference between the target operating voltage of the green light emitting diode at the current moment and the target operating voltage of the green light emitting diode at the moment before the current moment, the driving voltage applied to the pixel circuit is determined.
  • each pixel circuit usually also includes a hole-type metal oxide semiconductor field effect transistor (Positive metal oxide semiconductor Field-Effect Transistor, PMOSFET), a storage unit and a current generating unit, as shown in the pixel circuit 101 shown in FIG.
  • PMOSFET hole-type metal oxide semiconductor field effect transistor
  • the pixel circuit 102 further includes a PMOSFET 1022 , a storage unit 1023 and a current generating unit 1024 .
  • the cathode of the light emitting diode 1011 is connected to the power supply unit 401 and ground, the anode of the light emitting diode 1011 is connected to the source of the PMOSFET 1012, the gate of the PMOSFET 1012 is connected to the storage unit 1013, and the drain of the PMOSFET 1012 is connected to the current generating unit 1014.
  • the current generating unit 1014 is also connected to the power supply unit 401.
  • the storage unit 1013 is used for storing a pulse width modulation (Pulse width modulation, PWM) signal for driving the pixel circuit
  • the current generating unit 1014 is used for generating a constant current by means of a current mirror to provide a constant current for the pixel circuit.
  • the current generating unit 1014 will generate a constant current I
  • the PMOSFET 1012 acts as a control switch of the pixel circuit 101 to control the constant current I to flow through the light emitting diode 1011
  • the duty cycle of the PWM signal stored in the storage unit 1013 is used to determine the turn-on and turn-off times of the PMOSFET 1012 .
  • the duty cycle of the PWM signal is larger, the brightness of the light emitting diode 1011 perceived by human eyes is greater, and at this time, the PMOSFET 1012 can be turned off to reduce the brightness of the light emitting diode 1011 .
  • the specific process of determining the PWM signal stored in the storage unit 1013 will be described in detail later, and will not be repeated here.
  • the difference between the target operating voltage Vled-1 of the light-emitting diode 1011 at the current moment and the target operating voltage Vled-2 of the light-emitting diode 1011 at the moment before the current moment can be used as the voltage that the driving voltage VSS needs to increase The size of the value.
  • the specific connection manners and circuit implementation principles of the pixel circuit 102 and other devices in the pixel circuit not shown in FIG. 1 reference may be made to the description of the above-mentioned pixel circuit 101 .
  • the connection modes of the MOSFETs and the light emitting diodes are different.
  • the connection mode of the NMOSFET and the light-emitting diode in the pixel circuit is the same as that of the pixel circuit described above.
  • the PMOSFETs and LEDs are connected differently. Taking the pixel circuit 101 as an example for illustration, as shown in FIG.
  • FIG. 3 it shows a schematic diagram of a specific connection structure of the pixel circuit 101 including an NMOSFET 1015 provided by an embodiment of the present application.
  • the anode of the light emitting diode 1011 is connected to the power supply unit 401
  • the cathode of the light emitting diode 1011 is connected to the drain of the NMOSFET 1015
  • the gate of the NMOSFET 1015 is connected to the storage unit 1013 (not shown in FIG. 3 )
  • the source of the NMOSFET 1015 is connected to the current generating unit 1014
  • the current generation unit 1014 is also connected to the power supply unit 401 .
  • the specific function implementation of the storage unit 1013 and the current generation unit 1014 here is the same as that of the storage unit 1013 and the current generation unit 1014 when the pixel circuit 101 includes the PMOSFET 1012 , and will not be repeated here.
  • V led VDD-V A-Node
  • the difference between the target operating voltage Vled-1 of the light-emitting diode 1011 at the current moment and the target operating voltage Vled-2 of the light-emitting diode 1011 at the moment before the current moment can be used as the voltage that the driving voltage VDD needs to reduce The size of the value.
  • the driving device for the LED display screen may further include a first storage unit 501 for storing the initial VDD and initial VSS applied to each pixel circuit by the power supply unit 401 .
  • the control unit 301 acquires the initial VDD and initial VSS on each pixel circuit stored in the first storage unit 501, it controls the power supply unit 401 to adjust the driving voltage applied to each pixel circuit to the initial VDD and initial VSS. VSS, then the LED display starts to display the image.
  • the constituent material of the PMOSFET when the pixel circuit includes a PMOSFET, the constituent material of the PMOSFET may be a silicon-type metal oxide semiconductor; when the pixel circuit includes an NMOSFET, the constituent material of the NMOSFET may be a silicon-type metal oxide semiconductor.
  • the light emitting diode included in the pixel circuit may also be a micro light emitting diode (Micro light emitting diode, Micro LED).
  • the combination of the pixel circuit and the driving device for the LED display can not only be used in scenarios such as TVs and notebooks with larger screens, but also can be applied in wearable enhanced display (augmented reality, AR) In scenes with smaller display screens, etc. For example, it is applied to scenes with smaller display screens such as watches, augmented reality display glasses, and virtual reality display glasses.
  • the signal driving device of the LED display screen includes a timing unit 601 and a second storage unit 701 .
  • the second storage unit 701 stores the image to be displayed on the LED display screen.
  • the timing unit 601 in the signal driving device of the LED display screen is also connected with the control unit 301 in the driving device of the LED display screen and the storage in each pixel circuit of the LED display screen. Units (such as storage unit 1013) are connected.
  • the second storage unit 701 in the signal driving device for the LED display screen is also connected to the control unit 301 in the driving device for the LED display screen.
  • the function realization of the control unit 301 in addition to the above-described functions in the driving device for the LED display screen, can also send timing signal instructions to the timing unit 601, and obtain the LED display screen stored in the second storage unit 701 After the image to be displayed, according to each pixel of the image to be displayed on the LED display screen stored in the second storage unit 701, a pixel data signal corresponding to each pixel is generated, and then generated in the timing unit 601 according to the timing signal instruction After receiving the timing signal, the control unit 301 performs calculations on the timing signal and the pixel data signal corresponding to each pixel according to the specified operation rules to obtain the PWM signal corresponding to the pixel circuit of each pixel. Wherein, each pixel circuit in the LED display screen shares the same set of timing signals generated by the timing unit 601 .
  • the designated operation rule may be an AND operation.
  • each pixel circuit After determining the PWM signal corresponding to each pixel circuit, each pixel circuit uses its corresponding PWM signal to adjust the turn-on and turn-off time of the metal oxide semiconductor field effect transistor contained in the pixel circuit, so that the light-emitting diode in the pixel circuit The light is emitted, and finally the image is displayed through the LED display.
  • control unit 301 can scan each pixel of the image to be displayed on the LED display screen stored in the second storage unit 701 line by line, that is, scan from left to right and from top to bottom pixel by pixel, and finally generate Each pixel corresponds to a pixel data signal.
  • the timing signal generated by the timing unit 601 is 4 bits, and is represented by pwm0 , pwm1 , pwm2 , and pwm3 .
  • the duty ratio of the timing signal of pwm0 is 1/16
  • the duty ratio of the timing signal of pwm1 is 2/16
  • the duty ratio of the timing signal of pwm2 is 4/16
  • the duty ratio of the timing signal of pwm3 is 8/16.
  • a pixel data signal is 0110
  • the pixel data signal and the 4-bit timing signal are AND-operated to obtain a PWM signal composed of pwm1 and pwm2, which is the PWM signal in FIG. 4 .
  • the 4-bit timing signal can display 15 gray-scale information, and can display 6 gray-scale information after being calculated with the pixel data signal.
  • both the timing signal and the pixel data signal may be 2-12 bits.
  • a green LED display screen containing a plurality of pixel circuits 101 as an example to illustrate how to reduce the power consumption of the green LED display screen when the green LED display screen displays images using the above-mentioned driving device for the LED display screen process.
  • VDD in each pixel circuit 101 is 1.1V
  • the initial voltage value of VSS is -2.6V
  • the metal oxide semiconductor field effect transistor included in each pixel circuit 101 is a PMOSFET.
  • the temperature value of the green LED display screen is -20°C
  • the green LED display is determined according to a rule obtained through big data analysis and statistics of a large number of learned display temperature values and the operating voltage of the light-emitting diodes in the pixel circuit in advance.
  • the operating voltage of the light LED is about 2.642V. It can be seen from Figure 2 that when the temperature of the green LED display screen increases by 1°C, the operating voltage of the green LED will decrease by 2.6mV. According to the above description, when the green LED display When the temperature value of the display screen increases by 1°C, increasing the VSS voltage value by 2.6mV can reduce the power consumption of the green LED display screen. As shown in Figure 5, when the temperature of the green LED display is 0°C, the power consumption of the green LED display can be reduced by 1.4%, and when the temperature of the green LED display is 20°C, the power consumption of the green LED display can be reduced.
  • the embodiment of the present application also provides a driving method for the LED display, which can be executed by the control unit 301 in FIG. 1 . As shown in Figure 6, the method includes the following steps:
  • control the power supply unit Based on the first temperature value, control the power supply unit to dynamically adjust the driving voltage applied to the light emitting diode in each pixel circuit in the LED display screen.
  • each pixel circuit includes a light-emitting diode, and according to the first temperature value and the preset temperature value and the working voltage of the light-emitting diode, the first light-emitting diode in the first pixel circuit in the LED display screen is determined to be Corresponding target operating voltage; based on the target operating voltage, determine the driving voltage applied by the power supply unit to the first pixel circuit.
  • the curve relationship between the preset temperature value and the working voltage of the light emitting diode is a linear relationship.
  • the power unit 401 outputs the driving voltage applied to the pixel circuit 101 according to the control code.
  • the driving voltage can be VDD or VSS in FIG. 1 .
  • the power supply unit 401 can be a power management integrated circuit (Power Management Integration Circuit, PMIC), and the corresponding relationship between the control code and the driving voltage can be determined by the specification of the PMIC.
  • PMIC Power Management Integration Circuit
  • the initial Code corresponding to the initial voltage value input to the PMIC can also be set.
  • Table 1 shows the LUT of the corresponding relationship between the control code and the driving voltage. The LUT is only for illustration. It should be understood that there may be other corresponding relationship between the control code and the driving voltage, which is not limited in this application.
  • the first temperature value can be determined according to the second temperature values respectively collected by the multiple temperature sensors. It is not limited to include the following three methods, that is to say, the present application may also include other methods of determining the first temperature value other than the following three methods, which are not exhaustive here:
  • Mode 3 The temperature value obtained by weighting and summing the second temperature values respectively collected by a plurality of temperature sensors is used as the first temperature value.
  • each pixel circuit further includes a hole-type metal-oxide-semiconductor field-effect transistor; the cathode of the first light-emitting diode is connected to the power supply unit, and the anode of the first light-emitting diode is connected to the hole-type metal-oxide-semiconductor field-effect transistor.
  • the source of the tube; based on the target operating voltage, determining the driving voltage applied by the power supply unit to the first pixel circuit includes: determining the driving voltage applied by the power supply unit to the cathode of the first light emitting diode in the first pixel circuit based on the target operating voltage driving voltage.
  • each pixel circuit also includes an electronic metal oxide semiconductor field effect transistor; the anode of the first light emitting diode is connected to the power supply unit, and the cathode of the first light emitting diode is connected to the electronic metal oxide semiconductor field effect transistor. Drain: determining the driving voltage applied by the power supply unit to the first pixel circuit based on the target operating voltage, including: determining the driving voltage applied by the power supply unit to the anode of the first light-emitting diode in the first pixel circuit based on the target operating voltage .
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When the computer instructions are executed, any design method of the above-mentioned LED display driving method can be executed. .
  • the embodiment of the present application also provides a computer program product, including computer instructions.
  • a computer program product including computer instructions.
  • any designed method of the above LED display driving method can be executed.
  • various aspects of the driving method for the LED display screen provided by the present application can also be realized in the form of a program product, which includes program code.
  • program code When the program code is run on the computer device or the circuit product, the program The code is used to make the computer device execute the steps in the driving method for the LED display screen described above in this specification.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种用于发光二极管LED显示屏的驱动方法、驱动装置及LED显示屏,以降低LED显示屏的功耗。驱动装置包括温度传感器(201…20m)、控制单元(301)和电源单元(401);电源单元(401),用于为LED显示屏中的各个像素电路(101…10n)中的发光二极管(1011,1021)提供驱动电压(VDD,VSS);温度传感器(201…20m),用于采集LED显示屏的第一温度值,其中,第一温度值表征了LED显示屏中至少一个像素电路(101…10n)的平均温度值;控制单元(301),耦合至电源单元(401),用于基于第一温度值,控制电源单元(401)对施加在每个像素电路(101…10n)中的发光二极管(1011,1021)上的驱动电压(VDD,VSS)进行动态调节。

Description

用于LED显示屏的驱动装置、驱动方法及LED显示屏 技术领域
本申请涉及显示技术领域,尤其涉及一种用于发光二极管LED显示屏的驱动装置、驱动方法及LED显示屏。
背景技术
目前,手机、平板、电视等显示领域采用的显示屏可以是液晶显示屏(Liquid crystal display,LCD)、有机发光二极管(Organic Light Emitting Diode,OLED)显示屏、发光二极管(light emitting diode,LED)显示屏中的任意一种。针对每种类型的显示屏来说,显示屏中包括的像素电路的驱动电流值越大时,显示屏的发光强度也会越大,进而使得显示屏的发光亮度也会越大。其中,OLED显示屏和LED显示屏相对LCD来说,具有显示亮度高、宽色域显示等优点。
由于降低显示屏的功耗可使得终端设备的续航时间变长,相关技术中针对OLED显示屏功耗降低的方法是:利用OLED显示屏中流经像素电路的驱动电流值变化范围较大的特性和OLED显示屏中像素电路的驱动薄膜晶体管(Driving thin film transistor,DTFT)工作在饱和状态的情况下,当OLED显示屏中流经像素电路的驱动电流值较小时会使得OLED显示屏的显示亮度较低,可以通过降低OLED显示屏中像素电路的DTFT的源极和漏极之间的电压,进而保证DTFT依然工作在饱和状态前提下,也即保证OLED显示屏的显示亮度前提下,降低OLED显示屏像素电路中器件内部的工作电压VDD和像素电路公共接地端电压VSS之间的电压,最终实现降低OLED显示屏的功耗。
但是,LED显示屏与OLED显示屏不同,LED显示屏显示的颜色与流经LED显示屏中像素电路的驱动电流大小相关,为了保证LED显示屏显示颜色的稳定性,一般流经LED显示屏中像素电路的驱动电流的变化范围较小,也即流经LED显示屏中像素电路的驱动电流值变化范围比较平缓,没有过大的驱动电流值或者过小的驱动电流值,因此降低OLED显示屏的功耗方案并不适用于降低LED显示屏的功耗。因此需要一种适用于降低LED显示屏的功耗方案,来实现降低LED显示屏的功耗。
发明内容
本申请提供一种用于发光二极管LED显示屏的驱动装置、驱动方法及LED显示屏,以便于降低LED显示屏的功耗。
第一方面,本申请提供了一种用于LED显示屏的驱动装置,所述驱动装置包括温度传感器、控制单元和电源单元;所述电源单元,用于为所述LED显示屏中的各个像素电路中的发光二极管提供驱动电压;所述温度传感器,用于采集所述LED显示屏的第一温度值,其中,所述第一温度值表征了所述LED显示屏中至少一个像素电路的平均温度值;所述控制单元,耦合至所述电源单元,用于基于所述第一温度值,控制所述电源单元对施加在每个像素电路中的发光二极管上的驱动电压进行动态调节。
本申请实施例中,首先通过温度传感器采集LED显示屏的第一温度值,通过第一温度值表征LED显示屏中至少一个像素电路的平均温度值,然后在耦合至电源单元的控制单元 中,按照采集到的LED显示屏的第一温度值,控制电源单元对施加在每个像素电路中的发光二极管上的驱动电压进行动态调节,进而可以实现根据LED显示屏当前一段时间内的温度值,确定向LED显示屏中的每个像素电路施加的电压值,通过动态调节每个像素电路上的驱动电压,实现调节LED显示屏功耗的目的。
一种可能的设计中,每个像素电路还包括:分别与所述发光二极管串联的电流生成单元和金属氧化物半导体场效应管;所述电流生成单元,用于为所述像素电路提供恒定电流;所述金属氧化物半导体场效应管,用于控制所述发光二极管处于导通或关闭状态。通过电流生成单元为像素电路提供的恒定电流,保证流经像素电路中的电流值恒定不变,进而在利用金属氧化物半导体场效应管控制发光二极管处于导通状态后,通过调节每个像素电路上的驱动电压,实现调节LED显示屏功耗的目的。
一种可能的设计中,所述控制单元具体用于:根据所述第一温度值以及预先设定的温度值与所述发光二极管的工作电压的曲线关系,确定与所述LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压;基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路上的驱动电压。
通过利用LED显示屏的像素电路中发光二极管的工作特性分析统计LED显示屏的温度值与发光二极管工作电压的曲线关系,并根据温度传感器采集的LED显示屏的第一温度值以及上述分析统计确定的温度值与发光二极管的工作电压的曲线关系,得到与LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压,以便于根据得到的目标工作电压确定的第一像素电路上的驱动电压可以更加准确。
一种可能的设计中,所述预先设定的温度值与所述发光二极管的工作电压的曲线关系为线性关系。通过温度值与发光二极管的工作电压的线性关系可以更准确的得到与LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压,以便于根据得到的目标工作电压确定的第一像素电路上的驱动电压可以更加准确。
一种可能的设计中,在所述金属氧化物半导体场效应管为空穴型金属氧化物半导体场效应管时;所述第一发光二极管的阴极连接所述电源单元,所述第一发光二极管的阳极连接所述空穴型金属氧化物半导体场效应管的源极;另一种可能的设计中,在所述金属氧化物半导体场效应管为电子型金属氧化物半导体场效应管时;所述第一发光二极管的阳极连接所述电源单元,所述第一发光二极管的阴极连接所述电子型金属氧化物半导体场效应管的漏极。
由于像素电路中包括的金属氧化物半导体场效应管类型不同时,金属氧化物半导体场效应管与发光二极管的连接方式不同,那么控制单元控制电源单元对施加在像素电路上的驱动电压进行动态调节的过程也不同。具体的,像素电路中包括空穴型金属氧化物半导体场效应管时,控制单元基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路中的所述第一发光二极管的阴极上的驱动电压;像素电路中包括电子型金属氧化物半导体场效应管时,控制单元基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路中的所述第一发光二极管的阳极上的驱动电压。这样,可以通过像素电路中包括的金属氧化物半导体场效应管的具体类型、以及金属氧化物半导体场效应管与发光二极管的具体连接方式,更准确的利用电源单元向每个像素电路中的发光二极管的阳极或者阴极施加驱动电压。
一种可能的设计中,所述温度传感器为多个,所述多个温度传感器分别设置于所述 LED显示屏的不同位置。在所述多个温度传感器的数量为两个时,所述两个温度传感器分别设置于所述LED显示屏的对角线位置;或者,在所述多个温度传感器的数量为四个时,所述四个温度传感器分别设置于所述LED显示屏的四个角的位置。通过位于LED显示屏多个不同位置处的温度传感器采集的LED显示屏的第一温度值,可以更准确确定当前时刻LED显示屏的均衡温度值。
第二方面,本申请还提供一种LED显示屏,包括多个像素电路和如上述第一方面及其任一设计中的用于LED显示屏的驱动装置;所述驱动装置分别与所述多个像素电路连接。
第三方面,本申请提供一种用于发光二极管LED显示屏的驱动方法,所述方法包括接收温度传感器采集的所述LED显示屏的第一温度值;其中,所述第一温度值表征了所述LED显示屏中至少一个像素电路的平均温度值;基于所述第一温度值,控制电源单元对施加在所述LED显示屏中的每个像素电路中的发光二极管上的驱动电压进行动态调节。
一种可能的设计中,每个所述像素电路包括发光二极管;所述基于所述第一温度值,控制所述电源单元对施加在每个像素电路中的发光二极管上的驱动电压进行动态调节,包括:根据所述第一温度值以及预先设定的温度值与所述发光二极管的工作电压的曲线关系,确定与所述LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压;基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路上的驱动电压。
一种可能的设计中,所述预先设定的温度值与所述发光二极管的工作电压的曲线关系为线性关系。
一种可能的设计中,每个所述像素电路还包括空穴型金属氧化物半导体场效应管;所述第一发光二极管的阴极连接所述电源单元,所述第一发光二极管的阳极连接所述空穴型金属氧化物半导体场效应管的源极;所述基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路上的驱动电压,包括:基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路中的所述第一发光二极管的阴极上的驱动电压。
一种可能的设计中,每个所述像素电路还包括电子型金属氧化物半导体场效应管;所述第一发光二极管的阳极连接所述电源单元,所述第一发光二极管的阴极连接所述电子型金属氧化物半导体场效应管的漏极;所述基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路上的驱动电压,包括:基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路中的所述第一发光二极管的阳极上的驱动电压。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令被执行时,可以使得所述上述第三方面中任一设计的方法被执行。
第五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令被执行时,可以实现上述第三方面中任一设计的方法。
上述第二方面至第五方面中任一方面中的任一可能设计可以达到的技术效果,请参照上述第一方面中的任一可能设计可以达到的技术效果描述,这里不再重复赘述。
附图说明
图1为本申请实施例提供的一种用于LED显示屏的驱动装置、LED显示屏和LED显示屏的信号驱动装置连接的结构示意图;
图1a为本申请实施例提供的呈阵列分布的多个像素电路通过金属导线连接由用于 LED显示屏的驱动装置、以及LED显示屏的信号驱动装置组成的电路的结构示意图;
图2为本申请实施例提供的绿光LED的工作电压与温度值的曲线关系示意图;
图3为本申请实施例提供的一种像素电路结构示意图;
图4为本申请实施例提供的时序信号和PWM信号示意图;
图5为本申请实施例提供的不同温度下绿光LED显示屏功耗降低百分比示意图;
图6为本申请实施例提供的一种用于LED显示屏的驱动方法流程示意图;
图7为本申请实施例提供的确定施加在每个像素电路上的驱动电压的流程示意图。
具体实施方式
目前,手机、平板、电视等显示领域采用的显示屏可以是LCD、OLED显示屏、LED显示屏中的任意一种。针对每种类型的显示屏来说,显示屏中包括的像素电路的驱动电流值越大时,显示屏的发光强度也会越大,进而使得显示屏的发光亮度也会越大。其中,OLED显示屏和LED显示屏相对LCD来说,具有显示亮度高、宽色域显示等优点。
如背景技术所描述,针对OLED显示屏功耗降低的方法通常是利用OLED显示屏中流经像素电路的驱动电流值变化范围较大的特性,可以通过降低OLED显示屏中像素电路的DTFT的源极和漏极之间的电压,进而保证OLED显示屏的显示亮度的前提下,降低OLED显示屏的功耗。但是,LED显示屏与OLED显示屏不同,LED显示屏显示的颜色与流经LED显示屏中像素电路的驱动电流大小相关,为了保证LED显示屏显示颜色的稳定性,一般流经LED显示屏中像素电路的驱动电流的变化范围较小,没有过大的驱动电流值或者过小的驱动电流值流经LED显示屏中像素电路,因此降低OLED显示屏的功耗方案并不适用于降低LED显示屏的功耗。因此需要一种适用于降低LED显示屏的功耗方案,来降低LED显示屏的功耗。
有鉴于此,本申请实施例提供一种用于发光二极管LED显示屏的驱动装置、驱动方法及LED显示屏。为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
需要说明的是,在本申请的描述中“至少两个”是指两个或多个,其中,多个是指两个以上。鉴于此,本申请实施例中也可以将“多个”理解为“至少三个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
如图1所示,示出了本申请实施例提供的一种用于LED显示屏的驱动装置、LED显示屏和LED显示屏的信号驱动装置连接的结构示意图。其中,LED显示屏包括多个行列排布的像素电路,比如包括处于同一行上的像素电路101、像素电路102……像素电路10n(n为正整数)(图1中未示出像素电路10n),多个像素电路在LED显示屏中沿水平方向和竖直方向呈阵列分布,图1仅示意出小部分像素电路,其中多个黑点分别表示呈阵列排布的多个像素电路。具体的如图1a所示,示出了呈阵列分布的多个像素电路通过金属导线连接由用于LED显示屏的驱动装置、以及LED显示屏的信号驱动装置组成的电路的结构示意图。用于LED显示屏的驱动装置包括温度传感器(如图1中示出的温度传感器201、 温度传感器202……温度传感器20m(m为正整数))、控制单元301和电源单元401。温度传感器201、温度传感器202……温度传感器20m和电源单元401均与控制单元301连接,电源单元401还分别与像素电路101、像素电路102……像素电路10n等多个呈阵列排布的像素电路各自对应的VDD和VSS连接。这里,本申请并不限定温度传感器的具体数量,可以是一个温度传感器,也可以是多个温度传感器。
温度传感器采集的LED显示屏的第一温度值可以表征LED显示屏中至少一个像素电路的平均温度值。并且,温度传感器为多个时,多个温度传感器分别设置于LED显示屏的不同位置,以分别用于采集LED显示屏不同位置处的温度值,并将采集到的多个温度值分别发送给控制单元301。示例性的,温度传感器的数量为两个时,两个温度传感器可以分别设置于LED显示屏的对角线位置,温度传感器的数量为四个时,四个温度传感器可以分别设置于LED显示屏的四个角的位置,温度传感器的数量为N个时(N为大于4的正整数),可以将其中的四个温度传感器分别设置于LED显示屏的四个角的位置,剩余的N-4个温度传感器按照与LED显示屏的任意一个角的温度传感器的指定间隔距离进行排列。在此仅是举例说明采集LED显示屏温度的温度传感器数量以及多个温度传感器的位置关系,本申请并不限定多个温度传感器的具体位置,可根据实际应用进行调整。
电源单元401为LED显示屏中的各个像素电路中的发光二极管提供驱动电压,控制单元301基于温度传感器采集的第一温度值,控制电源单元401对施加在每个像素电路中的发光二极管上的驱动电压进行动态调节。
通常每个像素电路都会包括一个发光二极管,如图1示出的像素电路101包括一个发光二极管1011,像素电路102包括一个发光二极管1021。控制单元301可以根据第一温度值以及预先设定的温度值与发光二极管的工作电压的曲线关系,确定与LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压,然后基于上述得到的目标工作电压,确定电源单元401施加在第一像素电路上的驱动电压。示例性的,预先设定的温度值与发光二极管的工作电压的曲线关系,可以是预先人为对大量学习到的显示屏的温度值和像素电路中的发光二极管的工作电压进行大数据分析和统计得到的一种规律,通过一种曲线关系来表征这种规律。例如,预先设定的温度值与发光二极管的工作电压的曲线关系为线性关系。这里,第一像素电路可以是LED显示屏中多个像素电路中的任意一个,例如第一像素电路是图1中的像素电路101。
当温度传感器为多个时,控制单元301根据多个温度传感器采集到的第二温度值确定LED显示屏的第一温度值,然后利用第一温度值以及预先设定的温度值与发光二极管的工作电压的曲线关系,确定与LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压,然后基于上述得到的目标工作电压,确定电源单元401施加在第一像素电路上的驱动电压。
具体的,当温度传感器为多个时,通过以下方式中的任意一种确定LED显示屏的第一温度值:
(1)、将多个温度传感器分别采集的第二温度值中最小的温度值作为第一温度值。例如,假设温度传感器的数量为m个,如图1所示,温度传感器201采集到LED显示屏的第二温度值为A1,温度传感器202采集到LED显示屏的第二温度值为A2,温度传感器20m采集到LED显示屏的第二温度值为Am,并且第二温度值A1为最小温度值,那么LED显示屏的第一温度值A=A1。
(2)、将多个温度传感器分别采集的第二温度值的平均值作为第一温度值。例如,假设温度传感器的数量为m个,如图1所示,温度传感器201采集到LED显示屏的第二温度值为B1,温度传感器202采集到LED显示屏的第二温度值为B2,温度传感器20m采集到LED显示屏的第二温度值为Bm,那么LED显示屏的第一温度值B=(B1+B2+……+Bm)/m。
(3)、将多个温度传感器分别采集的第二温度值加权求和后的温度值作为第一温度值。例如,依然假设温度传感器的数量为m个,如图1所示,温度传感器201采集到LED显示屏的第二温度值为C1,温度传感器202采集到LED显示屏的第二温度值为C2,温度传感器20m采集到LED显示屏的第二温度值为Cm,并且第二温度值C1对应的权重值为0.1,第二温度值C2对应的权重值为0.3,第二温度值Cm对应的权重值为0.1,那么LED显示屏的第一温度值C=C1*0.1+C2*0.3+……+Cm*0.1,这里温度传感器201采集的第二温度值C1对应的权重值、温度传感器202采集的第二温度值C2对应的权重值……温度传感器20m采集的第二温度值Cm对应的权重值之和为1。
除了上述三种可实现方式之外,控制单元301还可以采用其他方式确定LED显示屏的第一温度值,本申请这里不做具体限定。
由于发光二极管的工作电压会伴随LED显示屏的温度变化而发生变化,如图2所示,示出了本申请实施例提供的绿光LED的工作电压与温度值的曲线关系示意图,这个曲线关系就是预先人为对大量学习到的显示屏的温度值和像素电路中的发光二极管的工作电压进行大数据分析和统计得到的一种规律。根据图2可知,绿光LED的工作电压与温度值的曲线关系为y=-0.0026x+2.59,其中,x表示温度,y表示绿光LED的工作电压,并且绿光LED的工作电压与温度值的线性拟合关系中拟合度R 2为0.9549,该曲线关系为线性关系,在此仅是举例说明,本申请并不限定具体的曲线关系类型。示例性的,针对绿光LED来说,绿光LED显示屏的温度升高1℃,绿光LED的工作电压降低2.6mV。也即绿光LED显示屏亮度增大或者绿光LED显示屏的显示内容增多时,绿光LED显示屏的温度值会升高,对应的绿光LED显示屏的工作电压会降低。因此在确定绿光LED显示屏的第一温度值之后,根据第一温度值以及图2所示的曲线关系,就可以得到绿光发光二极管的目标工作电压。然后根据当前时刻绿光发光二极管的目标工作电压与当前时刻的前一时刻绿光发光二极管的目标工作电压的差值,确定施加在像素电路上的驱动电压。
具体的,每个像素电路通常还包括一个空穴型金属氧化物半导体场效应管(Positive metal oxide semiconductorField-Effect Transistor,PMOSFET)、存储单元和电流生成单元,如图1示出的像素电路101还包括一个PMOSFET1012、存储单元1013和电流生成单元1014,像素电路102还包括一个PMOSFET1022、存储单元1023和电流生成单元1024。
以像素电路101为例进行说明,发光二极管1011的阴极连接电源单元401以及连接地,发光二极管1011的阳极连接PMOSFET1012的源极,PMOSFET1012的栅极连接存储单元1013,PMOSFET1012的漏极连接电流生成单元1014,电流生成单元1014还连接电源单元401。其中,存储单元1013用于存储驱动像素电路的脉冲宽度调制(Pulse width modulation,PWM)信号,电流生成单元1014用于利用电流镜方式生成恒定电流,为像素电路提供恒定电流。在像素电路101中,当电源单元401对像素电路101施加指定电压值的电压后,电流生成单元1014会生成恒定电流I,PMOSFET1012作为像素电路101的控制开关,控制恒定电流I流经发光二极管1011,并且将存储单元1013中存储的PWM信号的占空比用 于确定PMOSFET1012的开启和关闭时间。例如,当PWM信号的占空比越大时,人眼感知到的发光二极管1011的亮度越大,这时可以让PMOSFET1012关闭,以降低发光二极管1011的亮度。这里,存储单元1013中存储的PWM信号的具体确定过程在后续详细描述,在此不再赘述。
针对像素电路101来说,假设电源单元401施加到像素电路101的电压分别为VDD和VSS,那么像素电路101的功率P=I×(VDD-VSS),又发光二极管1011的工作电压V led=V A-Node-VSS,因此像素电路101的功率还可以表示为P=I×(VDD+V led-V A-Node),在流经像素电路101中的电流I为恒定电流情况下,且V A-Node和VDD的数值保持不变,因此当V led数值变小(也即增大VSS)时,像素电路101的功率会变小。示例性的,可以将当前时刻发光二极管1011的目标工作电压V led-1与当前时刻的前一时刻发光二极管1011的目标工作电压V led-2的差值,作为驱动电压VSS需要增大的电压值的大小。这里,像素电路102以及图1未示出的其他的像素电路中器件的具体连接方式以及电路实现原理可参考上述像素电路101的描述。
本申请的一实施例中,当像素电路中包括的金属氧化物半导体场效应管类型不同时,金属氧化物半导体场效应管与发光二极管的连接方式是不同的。例如将每个像素电路中包括的PMOSFET替换为电子型金属氧化物半导体场效应管(Negative metal oxide semiconductorField-Effect Transistor,NMOSFET)时,像素电路中NMOSFET和发光二极管的连接方式与上述描述的像素电路中PMOSFET和发光二极管的连接方式不同。以像素电路101为例进行说明,如图3所示,示出了本申请一实施例提供的包含NMOSFET1015的像素电路101具体连接结构示意图。其中,发光二极管1011的阳极连接电源单元401,发光二极管1011的阴极连接NMOSFET1015的漏极,NMOSFET1015的栅极连接存储单元1013(图3中未示出),NMOSFET1015的源极连接电流生成单元1014,电流生成单元1014还连接电源单元401。这里的存储单元1013和电流生成单元1014的具体功能实现与像素电路101中包含PMOSFET1012时存储单元1013和电流生成单元1014的具体功能实现相同,在此不再赘述。
如图3所示,针对像素电路101来说,假设电源单元401施加到像素电路101的电压分别为VDD和VSS,那么像素电路101的功率P=I×(VDD-VSS),又发光二极管1011的工作电压V led=VDD-V A-Node,因此像素电路101的功率还可以表示为P=I×(V led+V A-Node-VSS),在流经像素电路101中的电流I为恒定电流情况下,且V A-Node和VSS的数值保持不变,因此当V led数值变小(也即减小VDD)时,像素电路101的功率会变小。示例性的,可以将当前时刻发光二极管1011的目标工作电压V led-1与当前时刻的前一时刻发光二极管1011的目标工作电压V led-2的差值,作为驱动电压VDD需要减小的电压值的大小。
本申请的一实施例中,如图1所示,用于LED显示屏的驱动装置还可以包括第一存储单元501,用于存储电源单元401施加到每个像素电路上的初始VDD和初始VSS。具体的,控制单元301在获取第一存储单元501中存储的每个像素电路上的初始VDD和初始VSS后,控制电源单元401将施加在每个像素电路上的驱动电压调整为初始VDD和初始VSS,然后LED显示屏开始显示图像。
本申请的一实施例中,像素电路中包含PMOSFET时,PMOSFET的组成材料可以是硅型金属氧化物半导体;像素电路中包含NMOSFET时,NMOSFET的组成材料可以是硅型金属氧化物半导体。另外,像素电路中包含的发光二极管还可以是微型发光二极管(Micro  light emitting diode,Micro LED)。当像素电路中包含一个Micro LED时,像素电路与用于LED显示屏的驱动装置结合除了应用在屏幕较大的电视、笔记本等场景中,还可以应用在穿戴式增强显示(augmented reality,AR)等较小显示屏幕的场景中。例如,应用在手表、增强现实显示眼镜、虚拟现实显示眼镜等较小显示屏幕的场景。
在介绍完本申请提供的用于LED显示屏的驱动装置的具体实施方式后,接下来介绍LED显示屏的信号驱动装置驱动LED显示屏显示图像的过程。
如图1所示,LED显示屏的信号驱动装置包括时序单元601和第二存储单元701。其中第二存储单元701中存储有LED显示屏的待显示图像。LED显示屏的信号驱动装置中的时序单元601除了连接第二存储单元701之外,还与用于LED显示屏的驱动装置中的控制单元301和LED显示屏中的每个像素电路中的存储单元(例如存储单元1013)连接。LED显示屏的信号驱动装置中的第二存储单元701还与用于LED显示屏的驱动装置中的控制单元301连接。
控制单元301的功能实现除了上面描述的在用于LED显示屏的驱动装置中的功能之外,还可以发送时序信号指令给时序单元601,并在获取第二存储单元701中存储的LED显示屏的待显示图像后,根据第二存储单元701中存储的LED显示屏的待显示图像的每个像素点,生成每个像素点分别对应的像素数据信号,然后在时序单元601根据时序信号指令生成时序信号后,控制单元301根据指定运算规则分别对时序信号和每个像素点对应的像素数据信号进行运算,得到每个像素点的像素电路对应的PWM信号。其中,LED显示屏中的每个像素电路共用同一组由时序单元601生成的时序信号。这里,指定运算规则可以是与运算。
在确定每个像素电路分别对应的PWM信号后,每个像素电路利用各自对应的PWM信号调节像素电路中包含的金属氧化物半导体场效应管的开启和关闭时间,进而使得像素电路中的发光二极管发光,最终通过LED显示屏显示图像。
其中,控制单元301可以对第二存储单元701中存储的LED显示屏的待显示图像的每个像素点进行逐行扫描,也即从左到右,从上到下逐个像素点扫描,最终生成每个像素点各自对应的像素数据信号。
如图4所示,假设时序单元601生成的时序信号为4bit,并且用pwm0、pwm1、pwm2、pwm3表示。其中,pwm0的时序信号占空比为1/16,pwm1的时序信号占空比为2/16,pwm2的时序信号占空比为4/16,pwm3的时序信号占空比为8/16。若一个像素数据信号为0110,则该像素数据信号与4bit的时序信号经过与运算后,得到的PWM信号由pwm1和pwm2组成,也即图4中的PWM信号。由图4可知,4bit的时序信号可以显示15个灰阶信息,经过与像素数据信号运算后可以显示6个灰阶信息。这里,时序信号和像素数据信号均可以是2~12bit。
示例性的,以绿光LED显示屏中包含多个像素电路101为例进行说明采用上述用于LED显示屏的驱动装置在绿光LED显示屏显示图像时,降低绿光LED显示屏功耗的过程。假设每个像素电路101中VDD为1.1V,VSS的初始电压值为-2.6V,并且每个像素电路101中包含的金属氧化物半导体场效应管为PMOSFET。绿光LED显示屏的温度值为-20℃时,根据预先人为对大量学习到的显示屏的温度值和像素电路中的发光二极管的工作电压进行大数据分析和统计得到的一种规律确定绿光LED的工作电压约为2.642V,由图2可知,绿光LED显示屏的温度值每升高1℃时,绿光LED的工作电压会降低2.6mV,那么 根据上面描述,当绿光LED显示屏的温度值升高1℃时,将VSS电压值对应的升高2.6mV可以降低绿光LED显示屏的功耗。如图5所示,当绿光LED显示屏的温度值为0℃时,可以降低绿光LED显示屏1.4%的功耗,当绿光LED显示屏的温度值为20℃时,可以降低绿光LED显示屏2.8%的功耗,当绿光LED显示屏的温度值为40℃时,可以降低绿光LED显示屏4.2%的功耗,当绿光LED显示屏的温度值为60℃时,可以降低绿光LED显示屏5.6%的功耗,当绿光LED显示屏的温度值为80℃时,可以降低绿光LED显示屏7.0%的功耗,当绿光LED显示屏的温度值为100℃时,可以降低绿光LED显示屏8.4%的功耗。
基于上述用于LED显示屏的驱动装置实施例,本申请实施例还提供一种用于LED显示屏的驱动方法,该方法可以由图1中的控制单元301执行。如图6所示,方法包括如下步骤:
S601,接收温度传感器采集的LED显示屏的第一温度值;其中,第一温度值表征了LED显示屏中至少一个像素电路的平均温度值;
S602,基于第一温度值,控制电源单元对施加在LED显示屏中的每个像素电路中的发光二极管上的驱动电压进行动态调节。
具体的,每个像素电路包括发光二极管,根据第一温度值以及预先设定的温度值与发光二极管的工作电压的曲线关系,确定与LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压;基于目标工作电压,确定电源单元施加在第一像素电路上的驱动电压。其中预先设定的温度值与发光二极管的工作电压的曲线关系为线性关系。
示例性的,如图7所示,假设在利用温度传感器确定LED显示屏的第一温度值T后,先基于第一温度值T以及预先设定的温度值与发光二极管的工作电压的曲线关系确定图1像素电路101中发光二极管1011的目标工作电压,然后根据当前时刻发光二极管1011的目标工作电压与当前时刻的前一时刻发光二极管1011的目标工作电压的差值,确定施加在像素电路101上的驱动电压,再利用预先构建的驱动电压与控制字节(Code)的对应关系查找表(Lookup table,LUT),确定驱动电压对应的控制Code,最后将驱动电压对应的控制Code输入到电源单元401中,以便于电源单元401根据控制Code输出施加在像素电路101上的驱动电压。这里驱动电压可以是图1中的VDD或者VSS。其中,电源单元401可以是电源管理集成电路(Power Management Integration Circuit,PMIC),控制Code和驱动电压之间的对应关系可以通过PMIC的规格确定。并且,还可以设置输入到PMIC的初始电压值对应的初始Code。表1示出了控制Code与驱动电压的对应关系的LUT,该LUT仅为示意,应理解还可以有其他的控制Code和驱动电压的对应关系,本申请不做限定。
表1
控制Code 驱动电压
00001 -4.0V
00100 -3.2V
01000 -2.4V
一种可能的设计中,步骤S601中若接收到多个温度传感器采集的LED显示屏的第二温度值,则根据多个温度传感器分别采集的第二温度值,确定第一温度值具体可以但不限于包括下述三种方式,也就是说本申请也还可以包括除下述三种方式之外的其它确定第一温度值的方式,这里不穷举:
方式一,将多个温度传感器分别采集的第二温度值中最小的温度值作为第一温度值;
方式二,将多个温度传感器分别采集的第二温度值的平均值作为第一温度值;
方式三,将多个温度传感器分别采集的第二温度值加权求和后的温度值作为第一温度值。
一种可能的设计中,每个像素电路还包括空穴型金属氧化物半导体场效应管;第一发光二极管的阴极连接电源单元,第一发光二极管的阳极连接空穴型金属氧化物半导体场效应管的源极;基于目标工作电压,确定电源单元施加在第一像素电路上的驱动电压,包括:基于目标工作电压,确定电源单元施加在第一像素电路中的第一发光二极管的阴极上的驱动电压。
一种可能的设计中,每个像素电路还包括电子型金属氧化物半导体场效应管;第一发光二极管的阳极连接电源单元,第一发光二极管的阴极连接电子型金属氧化物半导体场效应管的漏极;基于目标工作电压,确定电源单元施加在第一像素电路上的驱动电压,包括:基于目标工作电压,确定电源单元施加在第一像素电路中的第一发光二极管的阳极上的驱动电压。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,当计算机指令被执行时,可以使得上述用于LED显示屏的驱动方法的任一设计的方法被执行。
本申请实施例还提供一种计算机程序产品,包括计算机指令,当计算机指令被执行时,可以使得上述用于LED显示屏的驱动方法的任一设计的方法被执行。
也就是说,本申请提供的用于LED显示屏的驱动方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序代码在计算机设备上或电路产品上运行时,程序代码用于使计算机设备执行本说明书上述描述的用于LED显示屏的驱动方法中的步骤。
此外,尽管在附图中以特定顺序描述了本申请方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种用于发光二极管LED显示屏的驱动装置,其特征在于,所述驱动装置包括温度传感器、控制单元和电源单元;
    所述电源单元,用于为所述LED显示屏中的各个像素电路中的发光二极管提供驱动电压;
    所述温度传感器,用于采集所述LED显示屏的第一温度值,其中,所述第一温度值表征了所述LED显示屏中至少一个像素电路的平均温度值;
    所述控制单元,耦合至所述电源单元,用于基于所述第一温度值,控制所述电源单元对施加在每个像素电路中的发光二极管上的驱动电压进行动态调节。
  2. 如权利要求1所述的驱动装置,其特征在于,每个像素电路还包括:分别与所述发光二极管串联的电流生成单元和金属氧化物半导体场效应管;
    所述电流生成单元,用于为所述像素电路提供恒定电流;
    所述金属氧化物半导体场效应管,用于控制所述发光二极管处于导通或关闭状态。
  3. 如权利要求1-2任一所述的驱动装置,其特征在于,所述控制单元具体用于:
    根据所述第一温度值以及预先设定的温度值与所述发光二极管的工作电压的曲线关系,确定与所述LED显示屏中的第一像素电路中的第一发光二极管对应的目标工作电压;
    基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路上的驱动电压。
  4. 如权利要求3所述的驱动装置,其特征在于,所述预先设定的温度值与所述发光二极管的工作电压的曲线关系为线性关系。
  5. 如权利要求3-4任一所述的驱动装置,其特征在于,在所述金属氧化物半导体场效应管为空穴型金属氧化物半导体场效应管时;所述第一发光二极管的阴极连接所述电源单元,所述第一发光二极管的阳极连接所述空穴型金属氧化物半导体场效应管的源极;
    所述控制单元具体用于:
    基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路中的所述第一发光二极管的阴极上的驱动电压。
  6. 如权利要求3-4任一所述的驱动装置,其特征在于,在所述金属氧化物半导体场效应管为电子型金属氧化物半导体场效应管时;所述第一发光二极管的阳极连接所述电源单元,所述第一发光二极管的阴极连接所述电子型金属氧化物半导体场效应管的漏极;
    所述控制单元具体用于:
    基于所述目标工作电压,确定所述电源单元施加在所述第一像素电路中的所述第一发光二极管的阳极上的驱动电压。
  7. 如权利要求1-6任一所述的驱动装置,其特征在于,所述温度传感器为多个,所述多个温度传感器分别设置于所述LED显示屏的不同位置。
  8. 如权利要求7所述的驱动装置,其特征在于,在所述多个温度传感器的数量为两个时,所述两个温度传感器分别设置于所述LED显示屏的对角线位置;或者,
    在所述多个温度传感器的数量为四个时,所述四个温度传感器分别设置于所述LED显示屏的四个角的位置。
  9. 一种LED显示屏,其特征在于,包括:多个像素电路和如权利要求1-8任一所述的用于LED显示屏的驱动装置;所述驱动装置分别与所述多个像素电路连接。
  10. 一种用于发光二极管LED显示屏的驱动方法,其特征在于,所述方法包括:
    接收温度传感器采集的所述LED显示屏的第一温度值;其中,所述第一温度值表征了所述LED显示屏中至少一个像素电路的平均温度值;
    基于所述第一温度值,控制电源单元对施加在所述LED显示屏中的每个像素电路中的发光二极管上的驱动电压进行动态调节。
PCT/CN2021/133769 2021-11-27 2021-11-27 用于led显示屏的驱动装置、驱动方法及led显示屏 WO2023092517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133769 WO2023092517A1 (zh) 2021-11-27 2021-11-27 用于led显示屏的驱动装置、驱动方法及led显示屏

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133769 WO2023092517A1 (zh) 2021-11-27 2021-11-27 用于led显示屏的驱动装置、驱动方法及led显示屏

Publications (1)

Publication Number Publication Date
WO2023092517A1 true WO2023092517A1 (zh) 2023-06-01

Family

ID=86538734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133769 WO2023092517A1 (zh) 2021-11-27 2021-11-27 用于led显示屏的驱动装置、驱动方法及led显示屏

Country Status (1)

Country Link
WO (1) WO2023092517A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721943A (zh) * 2004-07-12 2006-01-18 索尼株式会社 显示单元与背光单元
KR20070035388A (ko) * 2005-09-27 2007-03-30 엘지전자 주식회사 전계발광소자의 전원전압 공급장치
KR20080004004A (ko) * 2006-07-04 2008-01-09 삼성전자주식회사 유기전계 발광표시장치
CN101405668A (zh) * 2005-08-11 2009-04-08 德克萨斯仪器股份有限公司 驱动发光二极管(led)的装置和方法
KR20130130434A (ko) * 2012-05-22 2013-12-02 엘지디스플레이 주식회사 백 라이트 유닛 및 이를 이용한 액정 표시장치
CN103927989A (zh) * 2014-04-21 2014-07-16 中国电子科技集团公司第五十五研究所 具有宽温亮度补偿功能的无源有机发光二极管显示装置及亮度补偿方法
CN107195273A (zh) * 2016-03-14 2017-09-22 上海和辉光电有限公司 一种oled显示器件及改善显示器件显示性能的方法
CN111445855A (zh) * 2020-05-11 2020-07-24 北京集创北方科技股份有限公司 驱动电路、显示装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721943A (zh) * 2004-07-12 2006-01-18 索尼株式会社 显示单元与背光单元
CN101405668A (zh) * 2005-08-11 2009-04-08 德克萨斯仪器股份有限公司 驱动发光二极管(led)的装置和方法
KR20070035388A (ko) * 2005-09-27 2007-03-30 엘지전자 주식회사 전계발광소자의 전원전압 공급장치
KR20080004004A (ko) * 2006-07-04 2008-01-09 삼성전자주식회사 유기전계 발광표시장치
KR20130130434A (ko) * 2012-05-22 2013-12-02 엘지디스플레이 주식회사 백 라이트 유닛 및 이를 이용한 액정 표시장치
CN103927989A (zh) * 2014-04-21 2014-07-16 中国电子科技集团公司第五十五研究所 具有宽温亮度补偿功能的无源有机发光二极管显示装置及亮度补偿方法
CN107195273A (zh) * 2016-03-14 2017-09-22 上海和辉光电有限公司 一种oled显示器件及改善显示器件显示性能的方法
CN111445855A (zh) * 2020-05-11 2020-07-24 北京集创北方科技股份有限公司 驱动电路、显示装置及电子设备

Similar Documents

Publication Publication Date Title
US11670247B2 (en) Display panel and method for driving the same, and display device
US10796641B2 (en) Pixel unit circuit, pixel circuit, driving method and display device
US11227544B2 (en) Pixel circuit, electroluminescent display panel, driving methods thereof, and display device
WO2022222134A1 (zh) 像素电路及其驱动方法、显示装置
US11676529B2 (en) Methods and apparatus for in-pixel driving of micro-LEDs
WO2016127639A1 (zh) 像素电路的驱动方法及其驱动装置
US9881554B2 (en) Driving method of pixel circuit and driving device thereof
CN108648690B (zh) 一种显示面板及显示装置
WO2022226951A1 (zh) 像素电路及其驱动方法、显示装置
JP2018536887A (ja) Amoled表示装置の駆動システム及び駆動方法
JP2005321786A (ja) 有機発光ディスプレイ及びその色ずれ補償方法
US8933923B2 (en) Display device and method for driving display device
TWI463463B (zh) 有機發光二極體顯示器及其運作方法
CN113140190B (zh) 背光驱动电路、控制方法和显示面板
KR20170132401A (ko) 표시 장치 및 이의 구동 방법
US11217147B2 (en) Display device and light-emitting control circuit thereof, driving method
US20180096654A1 (en) Pixel circuit, display panel and display device
WO2023011333A1 (zh) 像素驱动电路及其驱动方法、显示面板
WO2021077487A1 (zh) 像素单元及显示面板
WO2019205470A1 (zh) Amoled显示器的像素驱动系统及驱动方法
CN110534054B (zh) 显示驱动方法及装置、显示装置、存储介质、芯片
WO2022095044A1 (zh) 显示面板及其驱动方法、显示装置
CN213123730U (zh) 发光扫描信号线驱动电路、显示面板及电子设备
WO2023092517A1 (zh) 用于led显示屏的驱动装置、驱动方法及led显示屏
WO2021218500A1 (zh) 有机发光二极管驱动装置、控制方法和显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965250

Country of ref document: EP

Kind code of ref document: A1