WO2023092392A1 - Dispositif et procédé de positionnement expérimental de capteur de magnétomètre - Google Patents

Dispositif et procédé de positionnement expérimental de capteur de magnétomètre Download PDF

Info

Publication number
WO2023092392A1
WO2023092392A1 PCT/CN2021/133161 CN2021133161W WO2023092392A1 WO 2023092392 A1 WO2023092392 A1 WO 2023092392A1 CN 2021133161 W CN2021133161 W CN 2021133161W WO 2023092392 A1 WO2023092392 A1 WO 2023092392A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetometer sensor
magnetic
magnet
magnetic induction
sensor
Prior art date
Application number
PCT/CN2021/133161
Other languages
English (en)
Chinese (zh)
Inventor
孔平
吴韬
王士杰
周亮
张建青
周艳丽
陈立范
王宏杰
Original Assignee
上海健康医学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海健康医学院 filed Critical 上海健康医学院
Priority to PCT/CN2021/133161 priority Critical patent/WO2023092392A1/fr
Publication of WO2023092392A1 publication Critical patent/WO2023092392A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient

Definitions

  • the invention relates to the technical field of magnetometer sensors, in particular to a magnetometer sensor experiment positioning device and method.
  • Magnetic induction is often used to measure the changing strength and state of the magnetic field, which is related to the density, shape and space environment of magnetic substances.
  • the magnetic dipole model based on magnetic induction is widely used in the positioning of magnetic substances, such as in underwater navigation and positioning, underwater energy surveys, and miniature in vivo diagnostic devices.
  • the linear positioning algorithm of magnetic dipoles mainly uses multiple magnetometer sensors to locate magnetic substances, which are widely used in medical and other fields.
  • capsule endoscopes track small magnets through magnetometer sensor arrays to achieve positioning.
  • the existing positioning method realizes the positioning of the magnet through the magnetometer sensor group.
  • the circuit of this method is relatively complicated, and the requirements for the direction of the sensor are relatively high.
  • the object of the present invention is to provide a magnetometer sensor experiment positioning device and method, which realizes the positioning of the magnetometer sensor through magnets.
  • the present invention provides the following scheme:
  • a magnetometer sensor experiment positioning device comprising: accelerometer, magnet, magnetometer sensor, controller and computer;
  • the magnetometer sensor is used to collect the magnetic induction intensity at different positions around the magnet
  • the controller connected to the magnetic sensor, is used to transmit the magnetic induction to the computer through the USART serial port;
  • the computer is connected with the controller and the accelerometer, and is used to calculate the position coordinates of the magnetometer sensor according to the magnetic induction intensity and the horizontal acceleration measured by the accelerometer.
  • it also includes: a memory connected to the controller for storing the magnetic induction.
  • control switch is used to control the startup of the test positioning device
  • power module is used to provide power for the test positioning device
  • the present invention also provides an experimental positioning method for a magnetometer sensor, the experimental positioning method is applied to the above-mentioned experimental positioning device, including:
  • the magnetometer sensor is used to collect the magnetic induction intensity at different positions around the magnet;
  • the equation is constructed through the magnetic dipole model, and the magnetic moment parameter and the magnet position coordinates are calculated by using the least square method;
  • the actual position coordinates of the magnetometer sensor are determined based on the symmetrically distributed position coordinates and the three-axis magnetic induction intensity distribution tables at different positions.
  • the expression of the relationship between the magnetic induction intensity and the distance of the magnet is as follows:
  • the method further includes: calibrating the magnetometer sensor.
  • said correcting the magnetic sensor specifically includes:
  • the magnetometer sensor is calibrated using the calibration method
  • the invention discloses the following technical effects:
  • the invention uses the magnetic field generated by the magnet to locate the magnetometer sensor, which simplifies the circuit, and the slight change of the direction of the magnet will not have a big impact on the accuracy, so that the position coordinates of the magnetometer sensor can be accurately positioned.
  • Fig. 1 is the structural block diagram of the magnetometer sensor experiment positioning device of the embodiment of the present invention.
  • Fig. 2 is the flow chart of the magnetometer sensor experiment positioning method of the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an experimental positioning method for a magnetometer sensor according to an embodiment of the present invention.
  • the magnetometer sensor experiment positioning device includes: accelerometer 6, magnet 1, magnetometer sensor 2, controller 3, computer 4, memory 5, control switch and power supply module.
  • the magnetometer sensor 2 is used to collect the magnetic induction intensity at different positions around the magnet 1;
  • the controller 3 is connected with the magnetic sensor 2, and is used to transmit the magnetic induction intensity to the computer 4 through the USART serial port;
  • the computer 4 is connected with the controller 3 and the accelerometer 6, and is used to calculate the position coordinates of the magnetometer sensor 2 according to the magnetic induction intensity and the horizontal acceleration measured by the accelerometer 6.
  • the memory 5 is connected with the controller 3 for storing the magnetic induction.
  • the control switch is used to control the start of the test positioning device, and the power module is used to provide power for the test positioning device.
  • the power module is a button battery powered device.
  • the present invention also provides a magnetometer sensor experimental positioning method, the experimental positioning method is applied to the above-mentioned experimental positioning device, including:
  • Step 101 Using a magnet as a magnetic source, using a magnetometer sensor to collect magnetic induction intensities at different positions around the magnet.
  • Step 102 Based on the magnetic induction at different positions, an equation is constructed through a magnetic dipole model, and the magnetic moment parameter and magnet position coordinates are obtained by calculation using the least square method.
  • (B ix , B iy , B iz ) represents the three-axis magnetic induction at the i-th position
  • (xi , y i , z i ) represents the position coordinates of the i-th magnetic induction
  • (a, b, c ) represents the position coordinates of the magnet
  • (m, n, p) represent the magnetic moment parameters.
  • Step 103 Using the magnetometer sensor to randomly obtain the magnetic induction intensity of an unknown location.
  • Step 104 Construct an objective equation based on the magnetic induction at the unknown position, the magnetic moment parameter, and the position coordinates of the magnet.
  • B 6x , B 6y , and B 6z are the three-axis magnetic induction intensity obtained randomly, and their values are measured by the magnetometer sensor, and x, y, z are the position coordinates of the magnetometer sensor, which are the required unknowns .
  • Step 105 Solve the objective equation with the constraint condition of the distance relationship between the magnetic induction intensity and the magnet, and obtain the symmetrically distributed position coordinates of the magnetometer sensors.
  • the unknown coordinates (x, y, z) are constrained so that the obtained coordinates are closer to the actual coordinates.
  • the magnetic induction intensity and distance have the following relationship:
  • M is the magnetic moment of the magnet
  • r is the distance between the magnet and the detection position of the magnetometer
  • is the magnetization direction of the magnet and the magnetic force
  • of the sensor is known, from which the distance r can be calculated.
  • the initial position of the magnetometer sensor must be determined first, and the distance r can be calculated by the horizontal acceleration of the accelerometer and the initial position of the sensor.
  • the initial position of the magnetometer sensor In the three-dimensional space, the initial position of the magnetometer sensor must be determined first, that is, the initial angle ⁇ and the initial distance r are known, which are respectively expressed as the initial angle ⁇ c and the initial distance r c .
  • the magnet is located on the horizontal coordinate plane, and there is no negative value in the vertical direction of the three-dimensional space.
  • equation (8) By solving equation (8) with equation (9) as a constraint, two position coordinates can be calculated, which are symmetric with respect to the magnet.
  • Step 106 Based on the symmetrically distributed position coordinates and the three-axis magnetic induction intensity distribution table at different positions, determine the actual position coordinates of the magnetometer sensor.
  • the magnetic induction intensity distribution around the magnet is measured in advance, and a table of three-axis magnetic induction intensity distribution at different positions is obtained. This table contains the direction information of the three-axis magnetic induction intensity at different positions.
  • the general orientation of the magnetometer is first judged by the method of looking up the table, and then finally determined according to the calculated position coordinates to obtain the actual position of the magnetometer.
  • the magnetometer sensor Before using the magnetometer sensor to collect the magnetic induction intensities at five different positions around the permanent magnet, it also includes: calibrating the magnetic sensor.
  • the magnetometer sensor is compensated and calibrated.
  • the invention uses the magnetic field generated by the magnet to locate the magnetometer sensor, which simplifies the circuit, and the slight change of the direction of the magnet will not have a big impact on the accuracy, so that the position coordinates of the magnetometer sensor can be accurately positioned.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention concerne un dispositif et un procédé de positionnement expérimental de capteur de magnétomètre. Le dispositif comprend : un accéléromètre (6), un corps magnétique (1), un capteur de magnétomètre (2), un dispositif de commande (3) et un ordinateur (4) ; le capteur de magnétomètre (2) est utilisé pour collecter l'intensité d'induction magnétique à différentes positions autour du corps magnétique (1) ; le dispositif de commande (3) est relié au capteur de magnétomètre (2), et est utilisé pour transmettre l'intensité d'induction magnétique à l'ordinateur (4) au moyen d'un port série USART ; et l'ordinateur (4) est relié au dispositif de commande (3) et à l'accéléromètre (6), et est utilisé pour calculer les coordonnées de position du capteur de magnétomètre (2) selon l'intensité d'induction magnétique et l'accélération horizontale mesurée par l'accéléromètre (6). Le capteur de magnétomètre (2) est positionné au moyen d'un champ magnétique généré par le corps magnétique (1), le circuit est simplifié, et un petit changement dans le sens du corps magnétique (1) n'aurait pas d'effet majeur sur la précision, de telle sorte que les coordonnées de position du capteur de magnétomètre (2) peuvent être positionnées avec précision.
PCT/CN2021/133161 2021-11-25 2021-11-25 Dispositif et procédé de positionnement expérimental de capteur de magnétomètre WO2023092392A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133161 WO2023092392A1 (fr) 2021-11-25 2021-11-25 Dispositif et procédé de positionnement expérimental de capteur de magnétomètre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133161 WO2023092392A1 (fr) 2021-11-25 2021-11-25 Dispositif et procédé de positionnement expérimental de capteur de magnétomètre

Publications (1)

Publication Number Publication Date
WO2023092392A1 true WO2023092392A1 (fr) 2023-06-01

Family

ID=86538491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133161 WO2023092392A1 (fr) 2021-11-25 2021-11-25 Dispositif et procédé de positionnement expérimental de capteur de magnétomètre

Country Status (1)

Country Link
WO (1) WO2023092392A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116793199A (zh) * 2023-08-24 2023-09-22 四川普鑫物流自动化设备工程有限公司 一种集中式多层货架四向车定位系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762064A (en) * 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
CN101053517A (zh) * 2007-05-18 2007-10-17 深圳先进技术研究院 一种跟踪体内微型装置的方法及系统
CN101361660A (zh) * 2008-05-16 2009-02-11 深圳先进技术研究院 一种多磁性目标的定位方法及定位系统
CN104111063A (zh) * 2014-07-15 2014-10-22 江胜华 一种基于磁场的无线三维倾角传感器及其检测方法
CN104720805A (zh) * 2015-03-24 2015-06-24 上海交通大学 基于永磁体的动力胶囊实时定位方法
CN106323334A (zh) * 2015-06-25 2017-01-11 中国科学院上海高等研究院 一种基于粒子群优化的磁力计校准方法
CN108333551A (zh) * 2018-02-14 2018-07-27 中国科学院电子学研究所 一种磁力计的校正方法
CN112334736A (zh) * 2018-06-13 2021-02-05 西斯纳维 用于校准物体磁力计的方法
CN112494027A (zh) * 2020-11-25 2021-03-16 深圳市资福医疗技术有限公司 胃肠动力检查系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762064A (en) * 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
CN101053517A (zh) * 2007-05-18 2007-10-17 深圳先进技术研究院 一种跟踪体内微型装置的方法及系统
CN101361660A (zh) * 2008-05-16 2009-02-11 深圳先进技术研究院 一种多磁性目标的定位方法及定位系统
CN104111063A (zh) * 2014-07-15 2014-10-22 江胜华 一种基于磁场的无线三维倾角传感器及其检测方法
CN104720805A (zh) * 2015-03-24 2015-06-24 上海交通大学 基于永磁体的动力胶囊实时定位方法
CN106323334A (zh) * 2015-06-25 2017-01-11 中国科学院上海高等研究院 一种基于粒子群优化的磁力计校准方法
CN108333551A (zh) * 2018-02-14 2018-07-27 中国科学院电子学研究所 一种磁力计的校正方法
CN112334736A (zh) * 2018-06-13 2021-02-05 西斯纳维 用于校准物体磁力计的方法
CN112494027A (zh) * 2020-11-25 2021-03-16 深圳市资福医疗技术有限公司 胃肠动力检查系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116793199A (zh) * 2023-08-24 2023-09-22 四川普鑫物流自动化设备工程有限公司 一种集中式多层货架四向车定位系统及方法
CN116793199B (zh) * 2023-08-24 2023-11-24 四川普鑫物流自动化设备工程有限公司 一种集中式多层货架四向车定位系统及方法

Similar Documents

Publication Publication Date Title
CN109813336B (zh) 惯性测量单元标定方法
CN101361660B (zh) 一种多磁性目标的定位方法及定位系统
Su et al. Investigation of the relationship between tracking accuracy and tracking distance of a novel magnetic tracking system
CN205066775U (zh) 一种高精度运动轨迹检测装置
CN111060974B (zh) 一种用于水下铁磁性目标探测定位的磁力仪
US20120078562A1 (en) Geomagnetic sensing device
CN102818564A (zh) 一种三维电子罗盘的标定方法
Lee et al. Magnetic tensor sensor for gradient-based localization of ferrous object in geomagnetic field
CN105919595A (zh) 用于跟踪运动物体体内具有磁信号的微型装置的系统和方法
CN107390155B (zh) 一种磁传感器校准装置和方法
Dai et al. A three-axis magnetic sensor array system for permanent magnet tracking
WO2023092392A1 (fr) Dispositif et procédé de positionnement expérimental de capteur de magnétomètre
CN106290968A (zh) 一种大空间稳态流场三维测量系统及测量方法
CN112684511A (zh) 基于两点磁梯度全张量的线性定位方法
CN103955002B (zh) 基于磁异常一阶导数的磁偶极子目标位置测量方法
CN105629982B (zh) 基于光学位移传感的空间小磁体悬浮控制装置
CN113267817A (zh) 一种基于磁梯度张量的水下磁性物质的定位方法
EP3667248B1 (fr) Systèmes et procédés de détermination de position magnétique
JPH033190B2 (fr)
CN115728829A (zh) 一种基于磁梯度全张量的磁性目标定位方法
CN107515012B (zh) 基于单轴旋转机构的动态视觉测量系统校准装置及方法
CN107588715A (zh) 一种基于磁效应的空间位置检测装置及测量方法
CN114487968A (zh) 一种磁球校准方法和磁球校准装置
CN111830444B (zh) 从亥姆霍兹设备确定位置和取向的方法、系统与可读介质
RU138023U1 (ru) Устройство для калибровки трёхкомпонентного магнитометра

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE