WO2023092376A1 - 一种卫星通信方法、装置及卫星 - Google Patents

一种卫星通信方法、装置及卫星 Download PDF

Info

Publication number
WO2023092376A1
WO2023092376A1 PCT/CN2021/133072 CN2021133072W WO2023092376A1 WO 2023092376 A1 WO2023092376 A1 WO 2023092376A1 CN 2021133072 W CN2021133072 W CN 2021133072W WO 2023092376 A1 WO2023092376 A1 WO 2023092376A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
satellite
downlink
uplink
sub
Prior art date
Application number
PCT/CN2021/133072
Other languages
English (en)
French (fr)
Inventor
梅龙
陈敏敏
陈双明
林之楠
杨芸霞
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2021/133072 priority Critical patent/WO2023092376A1/zh
Publication of WO2023092376A1 publication Critical patent/WO2023092376A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Definitions

  • the present application relates to the technical field of low-orbit satellite communication, in particular to a satellite communication method and a satellite.
  • the embodiment of the present application provides a satellite communication method, device and satellite to achieve the purpose of improving the communication reliability of the satellite-terrestrial integrated system.
  • the technical solution is as follows:
  • a satellite communication method, applied to a satellite, the cell covered by the satellite includes a plurality of satellite terminals, the position range of at least one satellite terminal constitutes the range of a wave position in the cell covered by the satellite, through multiple The wave position completes the range coverage of the cell covered by the satellite, and the method includes:
  • the first-level beam includes a first-level uplink beam and a first-level downlink beam
  • the first-level downlink beam polls the wave position where the satellite terminal is located, transmit a downlink control message to the satellite terminal through the first-level downlink beam;
  • the first-level uplink beam polls the wave position where the satellite terminal is located, receive an uplink control message sent by the satellite terminal through the first-level uplink beam;
  • the satellite When the satellite terminal and the satellite have business data transmission, the satellite enables the second-level beam to cover the wave position where the satellite terminal is located, and transmits the business data, and the coverage of the second-level beam is smaller than the Coverage of a satellite cell; wherein, the second-level beam includes at least one second-level uplink beam and/or at least one second-level downlink beam.
  • the size and bandwidth of the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink beam are determined in the following manner:
  • the maximum SINR demodulation thresholds based on the signals to be received by the terminal on the first-level downlink beam and the second-level downlink beam, and the first-level uplink beam and the second-level downlink beam
  • the maximum SINR demodulation threshold value of the signal to be received by the satellite on the second-level uplink beam and determine the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the The size and bandwidth of the second level uplink beam, including:
  • the above-mentioned maximum SINR demodulation threshold value of the signal that the satellite needs to receive is input into the relational expression ⁇ P-10 ⁇ log10(TBW)- ⁇ TLS-Sti ⁇ SINR target to obtain the first-level downlink the size and bandwidth of the beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink beam;
  • the N is the number of wave positions covered by the first-level downlink beam, the second-level downlink beam, the first-level uplink beam or the second-level uplink beam
  • P represents the number of wave positions on the beam of the satellite
  • the maximum transmission power, the TWB represents the beam bandwidth, the TLS represents the loss during signal transmission, Sti represents the interference during signal transmission, and the SINR target represents the first-level downlink beam or the second-level downlink beam
  • the maximum SINR demodulation threshold value of the signal that the uplink terminal needs to receive, and the maximum SINR demodulation threshold value of the signal that the satellite needs to receive on the first-level uplink beam or the second-level uplink beam, ⁇ Indicates the variation of channel attenuation during spatial propagation.
  • transmitting downlink control information to the satellite terminal through the first-level downlink beam includes:
  • the downlink control information includes a plurality of sub-downlink control information, respectively determine the sub-dwelling time for the first-level downlink beam to transmit each sub-downlink control information in the sub-area
  • the sub-area is the The area covered by the first-level downlink beam dwelling once during polling, the sub-area includes at least one wave position, and the sum of multiple sub-dwelling times constitutes the first-level downlink beam. Dwell time in the area;
  • Each of the sub-downlink control information is transmitted to the satellite terminal on the first-level downlink beam within each of the sub-dwell times respectively.
  • the transmitting each of the sub-downlink control information to the satellite terminal on the first-level downlink beam within each of the sub-dwell times includes:
  • each of the sub-downlink control information into multiple segments to obtain a plurality of target sub-downlink control information, and transmit each of the sub-downlink control information to the satellite terminal on the first-level downlink beam within the sub-dwell time Target sub-downlink control information;
  • the respectively determining the sub-dwelling time of the first-level downlink beams in the sub-regions for transmitting each sub-downlink control information includes:
  • the receiving the uplink control information sent by the satellite terminal through the first level uplink beam includes:
  • the satellite uses the first-level beam to cover all wave positions of the satellite cell in a periodic polling manner, including:
  • the first level of downlink beam polling covers the wave position where the satellite terminal is located, and after the first set time after the dwell, the first level of uplink beam polling covers the wave position;
  • the first set time is the maximum interval before sending the uplink control message after the satellite terminal finishes receiving the downlink control message during the downlink synchronization process.
  • transmitting a downlink control message to the satellite terminal through the first-level downlink beam includes:
  • the satellite transmits different downlink control messages to the satellite terminal through the first-level downlink beam;
  • receiving the uplink control message sent by the satellite terminal through the first-level uplink beam includes:
  • the satellite receives different uplink control messages sent by the satellite terminal through the first-level uplink beam.
  • the method also includes:
  • the satellite transmits to the satellite terminal a control message carrying a paired second-level downlink beam ID and a second-level uplink beam ID so that the satellite terminal completes switching from the first-level beam to the second-level beam to perform service data transmission.
  • a satellite communication method, applied to a satellite terminal, the satellite cell where the satellite terminal is located includes a plurality of satellite terminals, the location range of at least one satellite terminal constitutes a wave position range in the satellite cell, and is completed through multiple wave positions For coverage of the satellite cell, the method includes:
  • the first-level downlink beam covers the wave position where the satellite terminal is located in a periodic polling manner, receive a downlink control message sent by the satellite;
  • the first-level downlink beam and the first-level uplink beam cover all wave positions of the satellite cell in a periodic polling manner, and the coverage ranges of the first-level downlink beam and the first-level uplink beam are less than the coverage area of the satellite cell;
  • the satellite terminal When the satellite terminal has service data to transmit, the satellite terminal switches from the first-level beam to the second-level beam to transmit the service data, and the coverage of the second-level beam is smaller than the coverage of the satellite cell.
  • receiving the downlink control message sent by the satellite includes:
  • sending an uplink control message to the satellite includes:
  • the satellite terminal switches from the first-level beam to the second-level beam to transmit the service data includes:
  • the satellite terminal When the satellite terminal has business data transmission, when the satellite terminal receives the last polling of the first-level downlink beam to the wave position where the satellite terminal is located, the satellite terminal sends the second-level beam ID. control message, and complete switching from the first-level downlink beam to the second-level beam according to the beam ID, and then transmit the service data on the second-level beam.
  • a satellite communication device applied to a satellite comprising:
  • a first coverage module configured to use a first-level beam to cover all wave positions of the satellite cell in a periodic polling manner, and the coverage of the first-level beam is smaller than the coverage of the satellite cell;
  • the first-level beam includes a first-level uplink beam and a first-level downlink beam
  • a first transmission module configured to transmit a downlink control message to the satellite terminal through the first-level downlink beam when the first-level downlink beam polls the wave position where the satellite terminal is located;
  • the first receiving module is configured to receive the uplink control message sent by the satellite terminal through the first-level uplink beam when the first-level uplink beam polls the wave position where the satellite terminal is located;
  • the second transmission module is configured to enable the satellite to enable a second-level beam to cover the wave position where the satellite terminal is located when the satellite terminal and the satellite have service data transmission, and transmit the service data, and the second The coverage of the primary beam is smaller than the coverage of the satellite cell; wherein, the secondary beam includes at least one secondary uplink beam and/or at least one secondary downlink beam.
  • a satellite communication device applied to a satellite terminal, the device includes:
  • the second receiving module is configured to receive the downlink control message sent by the satellite when the first level downlink beam covers the wave position where the satellite terminal is located in a periodic polling manner;
  • a sending module configured to send an uplink control message to the satellite when the first-level uplink beam covers the wave position where the satellite terminal is located in a periodic polling manner;
  • the first-level downlink beam and the first-level uplink beam cover all wave positions of the satellite cell in a periodic polling manner, and the coverage ranges of the first-level downlink beam and the first-level uplink beam are less than the coverage area of the satellite cell;
  • the third transmission module is configured to switch the satellite terminal from the first-level beam to the second-level beam to transmit the service data when the satellite terminal has service data to transmit, and the coverage of the second-level beam is smaller than the The coverage area of the satellite cell.
  • a satellite comprising: a processor, a memory, and a data bus, the processor and the memory communicating via the data bus;
  • the memory is used to store programs
  • the processor is configured to implement the steps of any one of the communication methods described above when executing the program.
  • a satellite-ground integrated communication method and device based on beam classification is proposed.
  • the first-level beam completes the system control function
  • the second-level beam completes the business data.
  • the transmission, and the improved message signal transmission method on all levels of beams to further enhance the signal receiving performance, and at the same time, through the design of time polling difference between uplink and downlink beams to reduce terminal access delay, on the one hand, it meets the requirements of satellite-ground integration
  • the signal receiving performance of the communication ensures the coverage of the ground wave position by the satellite and the reliability of the communication.
  • FIG. 1 is a schematic flow diagram of a satellite communication method provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of polling of a first-level downlink beam provided by the present application
  • FIG. 3 is a schematic flow diagram of transmitting downlink control information provided in Embodiment 2 of the present application.
  • FIG. 4 is a schematic diagram of a type of downlink control information transmitted by the first-level downlink beam provided by the present application
  • FIG. 5 is a schematic diagram of another downlink control information transmitted by the first-level downlink beam provided in the present application.
  • FIG. 6 is a schematic diagram of a kind of uplink control information transmitted by the first-stage uplink beam provided by the present application
  • FIG. 7 is a schematic flowchart of a satellite communication method provided in Embodiment 5 of the present application.
  • FIG. 8 is a schematic flowchart of a satellite communication method provided in Embodiment 6 of the present application.
  • FIG. 9 is a schematic structural diagram of a satellite communication device provided by the present application.
  • Fig. 1 it is a schematic flow diagram of a satellite communication method provided by Embodiment 1 of the present application.
  • the satellite communication method provided by the embodiment is applied to a satellite, and the cell covered by the satellite includes a plurality of satellite terminals, and at least one satellite terminal is located
  • the position range constitutes the range of one wave position in the cell covered by the satellite, and the range coverage of the cell covered by the satellite is completed through multiple wave positions.
  • the satellite includes a first order beam and a second order beam.
  • the first-level beam mainly completes system control functions, including terminal camping and initial access, time-frequency synchronization, user mobility management, etc.; the second-level beam mainly completes the transmission of business data.
  • the first-level beam may include: a first-level downlink beam and a first-level uplink beam; the second-level beam may include: at least one second-level downlink beam and at least one second-level uplink beam, and the first level
  • the downlink beam is used to transmit downlink control information
  • the first level uplink beam is used to transmit uplink control information
  • the second level downlink beam is used to transmit downlink service data
  • the second level uplink beam is used to transmit uplink service
  • the respective coverage areas of the first-level downlink beam, the first-level uplink beam, the second-level downlink beam, and the second-level uplink beam are smaller than the range including all wave positions of satellite cells.
  • the size and bandwidth of the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink beam may be determined in the following manner:
  • the process of obtaining the maximum SINR demodulation threshold value of the signal to be received by the terminal on the first-level downlink beam may include but not limited to: obtaining the signal transmitted on the first-level downlink beam The demodulation SINR threshold value of SSB, and the SIB1 (System Information Block1, system information block 1), Paging (paging), and Msg2 scheduled to be transmitted on the first-level downlink beam (that is, the base station receives the Msg1 message reply ACK) and Msg4 (that is, the RRC establishment or reconstruction command sent by the base station to the terminal) PDCCH (Physical Downlink Control Channel) and PDSCH (Physical Downlink Shared Channel) demodulation SINR threshold value;
  • SIB1 System Information Block1, system information block 1
  • Paging paging
  • Msg2 scheduled to be transmitted on the first-level downlink beam that is, the base station receives the Msg1 message reply ACK
  • Msg4 that is, the RRC establishment or reconstruction command sent by the
  • the maximum value of the PDSCH (Physical Downlink Shared Channel) demodulation SINR threshold value is used as the maximum SINR demodulation threshold value of the signal that the terminal needs to receive on the first-level downlink beam.
  • the process of obtaining the maximum SINR demodulation threshold value of the signal that the terminal needs to receive on the second-level downlink beam may include:
  • the PDSCH demodulation SINR threshold value of the minimum MCS available for downlink service data transmission is used as the maximum SINR demodulation threshold value of the signal that the terminal needs to receive on the second-level downlink beam.
  • the process of obtaining the maximum SINR demodulation threshold of the signal to be received by the satellite on the first-level uplink beam may include:
  • Msg1 is used to indicate open-loop power control, and the terminal gradually increases the power to send probes
  • schedule Msg3 that is, the RRC (Radio Resource Control layer, Radio Resource Control) sent by the terminal to establish request or reconstruction request
  • PUSCH Physical Uplink Shared Channel
  • the maximum value of the demodulation SINR threshold of Msg1 and the PUSCH demodulation SINR threshold of scheduling Msg3 is used as the maximum SINR demodulation threshold of the signal to be received by the satellite on the first-level uplink beam.
  • the process of obtaining the maximum SINR demodulation threshold of the signal to be received by the satellite on the second-level uplink beam may include:
  • the PUSCH demodulation SINR threshold value of the minimum MCS available for uplink service data transmission is used as the maximum SINR demodulation threshold value of the signal to be received by the satellite on the second level uplink beam.
  • the maximum SINR demodulation threshold value of the signal that the satellite needs to receive on the uplink beam determines the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink Beam size and bandwidth.
  • the maximum SINR demodulation thresholds based on the signals to be received by the terminal on the first-level downlink beam and the second-level downlink beam, and the first-level uplink beam and the second-level downlink beam
  • the maximum SINR demodulation threshold value of the signal that the satellite needs to receive on the second-level uplink beam determines the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the first-level uplink beam.
  • the size and bandwidth of the second level uplink beam may include:
  • the above-mentioned maximum SINR demodulation threshold value of the signal that the satellite needs to receive is input into the relational expression ⁇ P-10 ⁇ log10(TBW)- ⁇ TLS-Sti ⁇ SINR target to obtain the first-level downlink the size and bandwidth of the beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink beam;
  • the N is the number of wave positions covered by the first-level downlink beam, the second-level downlink beam, the first-level uplink beam or the second-level uplink beam
  • P represents the number of wave positions on the beam of the satellite
  • the maximum transmission power, the TWB represents the beam bandwidth, the TLS represents the loss during signal transmission, Sti represents the interference during signal transmission, and the SINR target represents the first-level downlink beam or the second-level downlink beam
  • the maximum SINR demodulation threshold value of the signal that the uplink terminal needs to receive, and the maximum SINR demodulation threshold value of the signal that the satellite needs to receive on the first-level uplink beam or the second-level uplink beam, ⁇ Indicates the variation of channel attenuation during spatial propagation.
  • the value range of ⁇ may be [0,1], where ⁇ may be dynamically adjusted according to channel quality.
  • the method may include but not limited to the following steps:
  • Step S11 using the first-level beam to cover all the wave positions of the satellite cell in a periodic polling manner, the coverage of the first-level beam is smaller than the coverage of the satellite cell, wherein the first-level beam includes The first level uplink beam and the first level downlink beam.
  • the first-level downlink beam covers all wave positions of the satellite cell in a periodic polling manner, the number of wave positions covered by the first-level downlink beam at a time is N1, and each dwell time is Tstop (expressed by the number of slots ), the polling time is (M represents the total coverage of a satellite cell, represented by wave positions).
  • N the number of wave positions covered by the first-level downlink beam at a time
  • Tstop the dwell time
  • M represents the total coverage of a satellite cell, represented by wave positions
  • the first-level uplink beams cover all wave positions of the satellite cell in a periodic polling manner, and the satellite receives uplink control information sent on each wave position through the first-level uplink beam polling. If the number of wave positions covered by the first-level uplink beam is represented by N3, and the dwell time of the first-level uplink beam is Tul (indicated by the number of slots), the polling time is
  • Step S12 when the first-level downlink beam polls the wave position where the satellite terminal is located, transmit a downlink control message to the satellite terminal through the first-level downlink beam.
  • transmitting the downlink control message to the satellite terminal through the first-level downlink beam may include:
  • the satellite transmits different downlink control messages to the satellite terminal through the first-level downlink beam.
  • the satellite terminal When the satellite terminal receives the downlink control information transmitted by the satellite through the first-level downlink beam, the satellite terminal can use the downlink control information to perform downlink synchronization.
  • Step S13 When the first-level uplink beam polls the wave position where the satellite terminal is located, receive the uplink control message sent by the satellite terminal through the first-level uplink beam.
  • receiving the uplink control message sent by the satellite terminal through the first-level uplink beam includes:
  • the satellite receives different uplink control messages sent by the satellite terminal through the first-level uplink beam.
  • the satellite When the satellite receives the uplink control information sent by the satellite terminal through the first-level uplink beam, the satellite can use the uplink control information to control the satellite terminal to complete uplink synchronization.
  • Step S14 When the satellite terminal and the satellite have business data transmission, the satellite enables the second-level beam to cover the wave position where the satellite terminal is located, and transmits the business data.
  • the coverage of the second-level beam is smaller than the coverage of the satellite cell.
  • the second-level beams include at least one second-level uplink beam and/or at least one second-level downlink beam.
  • the second-level uplink beam covers the wave position where the satellite terminal is located
  • the uplink service data transmitted by the satellite terminal is received on the second-level uplink beam
  • the second-level downlink beam covers the satellite terminal.
  • the downlink service data is transmitted to the satellite terminal on the second-level downlink beam.
  • the satellite closes the second-level beam at the wave position where the satellite terminal is located, that is, the second-level beam is scheduled by the satellite based on the terminal's transmission service, and the second-level beam is closed when the service ends. If there is business, the second-level beam is scheduled for the terminal to the wave position where the terminal is located, and the second-level beam can be switched between wave positions based on the downlink scheduling algorithm to the wave position where the satellite terminal is located.
  • the first-level beam completes the system control function
  • the second-level beam completes the transmission of business data.
  • the message signal transmission method further enhances the signal reception performance, and at the same time reduces the terminal access delay through the design of the uplink and downlink beam time polling difference.
  • it meets the signal reception performance of satellite-ground integrated communication, on the other hand, it ensures Satellite coverage of ground waves and reliability of communications.
  • FIG. 3 is a flow chart of transmitting downlink control information provided by Embodiment 2 of the present application.
  • This embodiment is mainly for the first level described in Embodiment 1
  • a detailed scheme for transmitting downlink control information to the satellite terminal through the first-level downlink beam as shown in Figure 3, this method may include but not Limited to the following steps:
  • Step S111 when the first-level downlink beam polls the wave position where the satellite terminal is located, and if the downlink control information includes a plurality of sub-downlink control information, respectively determine the location of the first-level downlink beam
  • the sub-area transmits the sub-dwelling time of each sub-downlink control information, the sub-area includes at least one wave position, and the sum of multiple sub-dwelling times constitutes the sub-dwelling time of the first-level downlink beam polling. Dwell time of the zone.
  • respectively determining the sub-dwelling time for the first-level downlink beam to transmit each sub-downlink control information in the sub-area may include but is not limited to:
  • the sub-dwelling time for the first-level downlink beam to transmit the sub-downlink control information in the sub-area can be increased to ensure that more time domain resources are used for transmission
  • the sub-downlink control information further ensures reliability of transmission of the sub-downlink control information.
  • the plurality of sub-downlink control information includes: SSB, SIB1, Paging and Msg, respectively determine the sub-dwelling time for the first-level downlink beam to transmit each sub-downlink control information in the sub-area, including :
  • Step S112 Transmit each of the sub-downlink control information to the satellite terminal on the first-level downlink beam within each of the sub-dwell times.
  • each sub-downlink control information is transmitted on the first-level downlink beam within each sub-dwell time Can include:
  • the Msg may include: Msg2 or Msg4.
  • Msg2 or Msg4 As shown in Figure 4, when the number of polling times of the first-level downlink beam is an even number, in each unit time of the first sub-dwell time (T1), multiple transmission times are transmitted on the first-level downlink beam.
  • the SSB within the second sub-dwell time (T2), transmit the SIB1 on the first-level downlink beam, within the third sub-dwell time (T3), transmit the SIB1 on the
  • the Paging is transmitted on the first-level downlink beam, and the Msg4 is transmitted on the first-level downlink beam within the fourth sub-dwell time (T4).
  • the SSB transmits the SIB1 on the first-level downlink beam during the second sub-dwell time, and transmits the SIB1 on the first-level downlink beam during the third sub-dwell time.
  • Paging transmitting the Msg2 on the first-level downlink beam during the fourth sub-dwell time.
  • the transmitting each of the sub-downlink control information to the satellite terminal on the first-level downlink beam within each of the sub-dwell times may include:
  • each of the sub-downlink control information includes: SSB, SIB1, Paging and Msg, respectively dividing each of the sub-downlink control information into multiple segments to obtain multiple target sub-downlink control information, which may include:
  • the transmitting the Paging on the first-level downlink beam within the third sub-dwell time includes:
  • the transmitting the Msg on the first-level downlink beam within the fourth sub-dwell time includes:
  • the Msg is divided into multiple segments to obtain multiple sub-Msgs, and each of the sub-Msgs is respectively transmitted on the first-level downlink beam during the fourth sub-dwell time.
  • the downlink control information is transmitted in segments on the first-level downlink beam, which can ensure the reliability of the transmission of the downlink control information.
  • each of the sub-downlink control information to the satellite terminal on the first-level downlink beam within each of the sub-dwell times may also include:
  • the sub-downlink control information is continuously transmitted to the satellite terminal multiple times on the first-level downlink beam Downlink control information may include:
  • the downlink control information is continuously transmitted multiple times on the first-level downlink beam, which can ensure the reliability of the downlink control information transmission.
  • S113 Receive multiple sub-uplink control information transmitted by the satellite terminal on the first-level uplink beam, where the multiple sub-uplink control information is obtained by dividing the uplink control information into multiple segments.
  • the reliability of the transmission of the uplink control information can be ensured by segmentally transmitting the uplink control information on the first-level uplink beam.
  • receiving the uplink control information sent by the satellite terminal through the first level uplink beam may also include:
  • S114 Receive, in the first-level uplink beam, the uplink control information continuously transmitted by the satellite terminal for multiple times.
  • the reliability of the transmission of the uplink control information can be guaranteed by continuously transmitting the uplink control information on the first-level uplink beam.
  • the uplink control information may include: Msg1 or Msg3.
  • receiving the uplink control information sent by the terminal in the target area on the first level uplink beam may include:
  • the sub-area includes at least one wave position , the sum of multiple sub-dwell times constitutes the dwell time for dwelling in the sub-area during polling of the first-stage uplink beam;
  • determining the fifth sub-dwell time of the first-level uplink beam in the sub-area for transmitting Msg1 and the sixth sub-dwell time of the first-level uplink beam in the sub-area for transmitting Msg3 may include:
  • Msg3 is not sent during the sixth sub-dwell time.
  • the Msg1 sent by the terminal in the target area is received on the first-level uplink beam
  • the sixth sub-dwell time (T6) receiving Msg3 sent by the satellite terminal on the first-level uplink beam.
  • the method may include But not limited to the following steps:
  • the first level of uplink beam polling covers the wave position where the satellite terminal is located, and after the first set time after the dwell ends, the first level of uplink beam polling covers the wave position ;
  • the first set time is the maximum interval before sending the uplink control message after the satellite terminal finishes receiving the downlink control message during the downlink synchronization process.
  • the first set time may be determined in the following manner:
  • Determining the polling time difference between the first-level downlink beam and the first-level uplink beam through S1151-S1153 can ensure that the time delay for uplink synchronization of the satellite terminal is minimized.
  • the method may include but is not limited to the following steps:
  • Step S21 the satellite uses the first-level beam to cover all the wave positions of the satellite cell in a periodic polling manner, and the coverage of the first-level beam is smaller than the coverage of the satellite cell, wherein the first The first-level beams include first-level uplink beams and first-level downlink beams.
  • the first-level downlink beam polls the wave position where the satellite terminal is located, transmit a downlink control message to the satellite terminal through the first-level downlink beam;
  • the uplink control message sent by the satellite terminal is received through the first-level uplink beam.
  • step S21 For the detailed process of step S21, refer to the relevant introduction of step S11 in Embodiment 1, and details are not repeated here.
  • Step S22 each time the first-level downlink beam polls the wave position where the satellite terminal is located, the satellite transmits different downlink control messages to the satellite terminal through the first-level downlink beam.
  • Step S23 each time the first-level uplink beam polls the wave position where the satellite terminal is located, the satellite receives different uplink control messages sent by the satellite terminal through the first-level uplink beam.
  • Step S24 when the first-level downlink beam polls the wave position where the satellite terminal is located, the satellite transmits to the satellite terminal a paired second-level downlink beam ID and a second-level uplink beam ID control message, so that the satellite terminal completes switching from the first-level beam to the second-level beam for service data transmission.
  • the satellite terminal may switch from the first-level beam to the second-level beam based on the second-level downlink beam ID and the second-level uplink beam ID in the control information.
  • the Msg4 transmitted by the satellite to the satellite terminal may carry the paired second-level sub-beam ID and the second-level uplink beam ID.
  • Step S25 When the satellite terminal and the satellite have business data transmission, the satellite enables the second-level beam to cover the wave position where the satellite terminal is located, and transmits the business data.
  • the coverage of the second-level beam is smaller than the coverage of the satellite cell; wherein, the second-level beam includes at least one second-level uplink beam and/or at least one second-level downlink beam.
  • step S25 For the detailed process of step S25, refer to the relevant introduction of step S14 in Embodiment 1, and details are not repeated here.
  • a satellite communication method is provided, which is applied to a satellite terminal.
  • the satellite cell where the satellite terminal is located includes multiple satellite terminals, and the location range where at least one satellite terminal is located constitutes the satellite cell.
  • Step S31 when the first-level downlink beam covers the wave position where the satellite terminal is located in a periodic polling manner, receiving a downlink control message sent by the satellite.
  • receiving the downlink control message sent by the satellite may include:
  • Step S32 when the first-level uplink beam covers the wave position where the satellite terminal is located in a periodic polling manner, send an uplink control message to the satellite.
  • the first-level downlink beam and the first-level uplink beam cover all wave positions of the satellite cell in a periodic polling manner, and the coverage ranges of the first-level downlink beam and the first-level uplink beam are less than The coverage area of the satellite cell.
  • sending an uplink control message to the satellite may include:
  • Step S33 when the satellite terminal has service data to transmit, the satellite terminal switches from the first-level beam to the second-level beam to transmit the service data, and the coverage of the second-level beam is smaller than the coverage of the satellite cell scope.
  • the first-level beams include the above-mentioned first-level downlink beams and/or the above-mentioned first-level uplink beams;
  • the second-level beams may include at least one second-level uplink beam and/or at least one second-level downlink beam.
  • the satellite terminal when the satellite terminal has service data transmission, the satellite terminal switches from the first-level beam to the second-level beam to transmit the service data, which may include:
  • the satellite terminal When the satellite terminal has business data transmission, when the satellite terminal receives the last polling of the first-level downlink beam to the wave position where the satellite terminal is located, the satellite terminal sends the second-level beam ID. control message, and complete switching from the first-level downlink beam to the second-level beam according to the beam ID, and then transmit the service data on the second-level beam.
  • the satellite terminal polls the first-level uplink beam for the first time to the location where the satellite terminal is located.
  • the satellite terminal sends a Msg1 message to the satellite according to the random access related configuration parameters carried in the SIB1 message, and receives the Msg2 sent by the first-level downlink beam during the second round of polling of the first-level downlink beam;
  • Msg3 is sent according to the scheduling information in Msg2; after that, during the third round of polling of the first-level downlink beam, the first-level downlink beam is received.
  • the satellite terminal completes the switch from the first-level beam to the second-level beam according to the service wave position ID carried in the RRC signaling, sends Msg5 on the second-level uplink beam, and starts to use the second-level uplink beam or the second-level The service data transmission process on the downlink beam.
  • the satellite communication device provided by this application will be introduced, and the satellite communication device described below and the satellite communication method described above can be referred to in correspondence.
  • the satellite communication device is applied to a satellite, and the cell covered by the satellite includes a plurality of satellite terminals, and the position range of at least one satellite terminal constitutes the range of a wave position in the cell covered by the satellite, through multiple The wave position completes coverage of the cell covered by the satellite, and the satellite communication device includes: a first coverage module 100 , a first transmission module 200 , a first reception module 300 and a second transmission module 400 .
  • the first coverage module 100 is configured to use a first-level beam to cover all wave positions of the satellite cell in a periodic polling manner, and the coverage of the first-level beam is smaller than the coverage of the satellite cell;
  • the first-level beam includes a first-level uplink beam and a first-level downlink beam
  • the first transmission module 200 is configured to transmit a downlink control message to the satellite terminal through the first-level downlink beam when the first-level downlink beam polls the wave position where the satellite terminal is located;
  • the first receiving module 300 is configured to receive an uplink control message sent by the satellite terminal through the first-level uplink beam when the first-level uplink beam polls the wave position where the satellite terminal is located;
  • the second transmission module 400 is configured to enable the satellite to enable a second-level beam to cover the wave position where the satellite terminal is located when the satellite terminal has business data transmission with the satellite, and transmit the business data.
  • the coverage of the secondary beam is smaller than the coverage of the satellite cell; wherein, the secondary beam includes at least one secondary uplink beam and/or at least one secondary downlink beam.
  • the size and bandwidth of the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink beam may be determined in the following manner:
  • the maximum SINR demodulation threshold value of the signal that the satellite needs to receive on the uplink beam determines the first-level downlink beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink Beam size and bandwidth, including:
  • the above-mentioned maximum SINR demodulation threshold value of the signal that the satellite needs to receive is input into the relational expression ⁇ P-10 ⁇ log10(TBW)- ⁇ TLS-Sti ⁇ SINR target to obtain the first-level downlink the size and bandwidth of the beam, the second-level downlink beam, the first-level uplink beam, and the second-level uplink beam;
  • the N is the number of wave positions covered by the first-level downlink beam, the second-level downlink beam, the first-level uplink beam or the second-level uplink beam
  • P represents the number of wave positions on the beam of the satellite
  • the maximum transmission power, the TWB represents the beam bandwidth, the TLS represents the loss during signal transmission, Sti represents the interference during signal transmission, and the SINR target represents the first-level downlink beam or the second-level downlink beam
  • the maximum SINR demodulation threshold value of the signal that the uplink terminal needs to receive, and the maximum SINR demodulation threshold value of the signal that the satellite needs to receive on the first-level uplink beam or the second-level uplink beam, ⁇ Indicates the variation of channel attenuation during spatial propagation.
  • the first transmission module 200 can specifically be used for:
  • the downlink control information includes a plurality of sub-downlink control information, respectively determine the sub-dwelling time for the first-level downlink beam to transmit each sub-downlink control information in the sub-area
  • the sub-area is the The area covered by the first-level downlink beam dwelling once during polling, the sub-area includes at least one wave position, and the sum of multiple sub-dwelling times constitutes the first-level downlink beam. Dwell time in the area;
  • Each of the sub-downlink control information is transmitted to the satellite terminal on the first-level downlink beam within each of the sub-dwell times respectively.
  • the first transmission module 200 can specifically be used for:
  • each of the sub-downlink control information into multiple segments to obtain a plurality of target sub-downlink control information, and transmit each of the sub-downlink control information to the satellite terminal on the first-level downlink beam within the sub-dwell time Target sub-downlink control information;
  • the first transmission module 200 can specifically be used for:
  • the first receiving module 300 can specifically be used for:
  • the first covering module 100 can specifically be used for:
  • the first level of downlink beam polling covers the wave position where the satellite terminal is located, and after the first set time after the dwell, the first level of uplink beam polling covers the wave position;
  • the first set time is the maximum interval before sending the uplink control message after the satellite terminal finishes receiving the downlink control message during the downlink synchronization process.
  • the first transmission module 200 can specifically be used for:
  • the satellite transmits different downlink control messages to the satellite terminal through the first-level downlink beam;
  • receiving the uplink control message sent by the satellite terminal through the first-level uplink beam includes:
  • the satellite receives different uplink control messages sent by the satellite terminal through the first-level uplink beam.
  • the first transmission module 200 can also be used for:
  • the control message transmitted to the satellite terminal carries the paired second-level downlink beam ID and the second-level uplink beam ID, so that enabling the satellite terminal to complete switching from the first-level beam to the second-level beam to perform service data transmission.
  • another satellite communication device which is applied to a satellite terminal.
  • the satellite cell where the satellite terminal is located includes multiple satellite terminals, and the location range of at least one satellite terminal constitutes the location range of the satellite cell.
  • the second receiving module is configured to receive the downlink control message sent by the satellite when the first level downlink beam covers the wave position where the satellite terminal is located in a periodic polling manner;
  • a sending module configured to send an uplink control message to the satellite when the first-level uplink beam covers the wave position where the satellite terminal is located in a periodic polling manner;
  • the first-level downlink beam and the first-level uplink beam cover all wave positions of the satellite cell in a periodic polling manner, and the coverage ranges of the first-level downlink beam and the first-level uplink beam are less than the coverage area of the satellite cell;
  • the third transmission module is configured to switch the satellite terminal from the first-level beam to the second-level beam to transmit the service data when the satellite terminal has service data to transmit, and the coverage of the second-level beam is smaller than the The coverage area of the satellite cell.
  • the second receiving module can specifically be used for:
  • the sending module can be used specifically for:
  • the third transmission module can specifically be used for:
  • a satellite including: a processor, a memory, and a data bus, where the processor and the memory communicate through the data bus;
  • the memory is used to store programs
  • the processor is configured to implement the steps of the satellite communication method as introduced in any one of the method embodiments 1-5 when executing the program.
  • each embodiment focuses on the difference from other embodiments, and the same and similar parts of the various embodiments can be referred to each other.
  • the description is relatively simple, and for related parts, please refer to part of the description of the method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种基于波束分级的星地一体化通信方法和装置,通过将宽波束划分为多个窄波束,然后对窄波束分级,其中第一级波束完成系统控制功能,第二级波束完成业务数据的传输,并在各级波束上通过改进的消息信号发送方式来进一步增强信号接收性能,同时通过上下行波束时间轮询差的设计来减少终端接入时延,一方面满足了星地一体化通信的信号接收性能,另外一方面保证了卫星对地面波位的覆盖,以及通信的可靠性。

Description

一种卫星通信方法、装置及卫星 技术领域
本申请涉及低轨卫星通信技术领域,特别涉及一种卫星通信方法及卫星。
背景技术
在星地一体化系统中,由于卫星个数的限制导致单个卫星需要发射宽波束,覆盖较大的范围,但是过大的卫星发射功率会对其他通信系统造成干扰,导致卫星的发射功率受限,从而导致宽波束上的信号在到达接收端时,信号质量不能够满足信号解调的要求,通信的可靠性不高。
因此,目前亟需一种即能够保证卫星对地面的覆盖范围,又能够提高星地一体化系统的通信可靠性的方法。
发明内容
为解决上述技术问题,本申请实施例提供一种卫星通信方法、装置及卫星,以达到提高星地一体化系统的通信可靠性的目的,技术方案如下:
一种卫星通信方法,应用于卫星,所述卫星覆盖的小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星覆盖的小区中的一个波位的范围,通过多个所述波位完成对所述卫星覆盖的小区的范围覆盖,所述方法包括:
使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围;
其中,所述第一级波束包括第一级上行波束和第一级下行波束;
在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息;
在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息;
当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束 覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围;其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
可选的,所述第一级下行波束、第二级下行波束、第一级上行波束和所述第二级上行波束的大小和带宽通过以下方式确定:
分别获取在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值;
分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽。
可选的,所述分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽,包括:
分别将在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,输入到关系式α×P-10×log10(TBW)-β×TLS-Sti≥SINR target中,分别得到所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽;
其中,所述
Figure PCTCN2021133072-appb-000001
N为所述第一级下行波束、所述第二级下行波束、所述第一级上行波束或所述第二级上行波束所覆盖的波位个数,P表示所述卫星的波束上的最大发射功率,所述TWB表示波束带宽,所述TLS表示信号传输过程中的损耗,Sti表示信号传输过程中的干扰,SINR target表示在所述第一级 下行波束或所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束或所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,β表示空间传播过程中信道衰减的变化量。
可选的,所述在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制信息,包括:
在下行控制信息包含多个子下行控制信息的情况下,分别确定所述第一级下行波束在子区域用于传输每个所述子下行控制信息的子驻留时间,所述子区域为所述第一级下行波束在轮询时一次驻留所覆盖的区域,所述子区域包括至少一个波位,多个子驻留时间的总和构成所述第一级下行波束轮询时驻留所述子区域的驻留时间;
分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制信息。
可选的,所述分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制信息,包括:
分别将各个所述子下行控制信息划分为多段,得到多个目标子下行控制信息,在所述子驻留时间内,在所述第一级下行波束上分别向所述卫星终端传输各个所述目标子下行控制信息;
或,分别在所述子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述子下行控制信息。
可选的,所述分别确定所述第一级下行波束在子区域用于传输每个所述子下行控制信息的子驻留时间,包括:
基于每个所述子下行控制信息的比特数和所述卫星终端的接收性能,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间。
可选的,所述通过所述第一级上行波束接收所述卫星终端发送的上行控制信息,包括:
在所述第一级上行波束上接收所述卫星终端传输的多个子上行控制信息,所述多个子上行控制信息为将上行控制信息划分为多段得到的;
或,在所述第一级上行波束中接收所述卫星终端连续传输多次的上行控制 信息。
可选的,所述卫星使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,包括:
在所述第一级下行波束轮询覆盖到所述卫星终端所在的波位,结束驻留后的第一设定时间之后,所述第一级上行波束轮询覆盖到所述波位;
所述第一设定时间为所述卫星终端在下行同步过程中完成接收下行控制消息之后发送上行控制消息之前的最大间隔时间。
可选的,所述在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息,包括:
所述第一级下行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级下行波束向所述卫星终端传输不同的下行控制消息;
在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息,包括:
所述第一级上行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级上行波束接收所述卫星终端发送的不同上行控制消息。
可选的,所述方法还包括:
所述第一级下行波束在一次轮询到所述卫星终端所在的波位时,所述卫星向所述卫星终端传输携带配对的第二级下行波束ID和第二级上行波束ID的控制消息,以使所述卫星终端完成从所述第一级波束到所述第二级波束的切换,进行业务数据传输。
一种卫星通信方法,应用于卫星终端,所述卫星终端所在卫星小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星小区中的一个波位范围,通过多个波位完成对所述卫星小区的范围覆盖,所述方法包括:
在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息;
在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息;
其中,所述第一级下行波束、第一级上行波束都是以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级下行波束、第一级上行波束覆盖范围均小于所述卫星小区的覆盖范围;
当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
可选的,所述在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息包括:
在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的不同下行控制消息;
所述在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息包括:
在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送的不同上行控制消息;
所述当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据包括:
当所述卫星终端有业务数据传输时,所述卫星终端接收所述第一级下行波束最后一次轮询到所述卫星终端所在的波位时,所述卫星发送的携带第二级波束ID的控制消息,并根据所述波束ID完成从第一级下行波束切换到第二级波束,再在第二级波束上所述业务数据。
一种卫星通信装置,应用于卫星,该装置包括:
第一覆盖模块,用于使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围;
其中,所述第一级波束包括第一级上行波束和第一级下行波束;
第一传输模块,用于在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息;
第一接收模块,用于在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息;
第二传输模块,用于当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围;其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
一种卫星通信装置,应用于卫星终端,该装置包括:
第二接收模块,用于在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息;
发送模块,用于在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息;
其中,所述第一级下行波束、第一级上行波束都是以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级下行波束、第一级上行波束覆盖范围均小于所述卫星小区的覆盖范围;
第三传输模块,用于当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
一种卫星,包括:处理器、存储器和数据总线,所述处理器和所述存储器通过所述数据总线通信;
所述存储器,用于存放程序;
所述处理器,用于在执行所述程序时实现如上述任意一项所述通信方法的各步骤。
与现有技术相比,本申请的有益效果为:
提出一种基于波束分级的星地一体化通信方法和装置,通过将宽波束划分为多个窄波束,然后对窄波束分级,其中第一级波束完成系统控制功能,第二级波束完成业务数据的传输,并在各级波束上通过改进的消息信号发送方式来进一步增强信号接收性能,同时通过上下行波束时间轮询差的设计来减少终端接入时延,一方面满足了星地一体化通信的信号接收性能,另外一方面保证了卫星对地面波位的覆盖,以及通信的可靠性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1提供的一种卫星通信方法的流程示意图;
图2是本申请提供的一种第一级下行波束的轮询示意图;
图3是本申请实施例2提供的一种传输下行控制信息的流程示意图;
图4是本申请提供的第一级下行波束传输的一种下行控制信息的示意图;
图5是本申请提供的第一级下行波束传输的另一种下行控制信息的示意图;
图6是本申请提供的第一级上行波束传输的一种上行控制信息的示意图;
图7是本申请实施例5提供的一种卫星通信方法的流程示意图;
图8是本申请实施例6提供的一种卫星通信方法的流程示意图;
图9是本申请提供的一种卫星通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1,为本申请实施例1提供的一种卫星通信方法的流程示意图,实施例提供的卫星通信方法应用于卫星,所述卫星覆盖的小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星覆盖的小区中的一个波位的范围,通过多个所述波位完成对所述卫星覆盖的小区的范围覆盖。所述卫星包括第一级波束和第二级波束。第一级波束主要完成系统控制功能,包括终端的驻留和初始接入、时频同步、用户移动性管理等;第二级波束主要完成业务数据的传输。具体地,第一级波束可以包括:第一级下行波束、第一级上行波束;第二级波束可以包括:至少一个第二级下行波束和至少一个第二级上行波束,所述第一级下行波束用于传输下行控制信息,所述第一级上行波束,用于传输上行控制信息,所述第二级下行波束用于传输下行业务数据,所述第二级上行 波束用于传输上行业务数据,所述第一级下行波束、所述第一级上行波束、所述第二级下行波束和所述第二级上行波束各自的覆盖范围均小于包含卫星小区的所有波位的范围。
本实施例中,所述第一级下行波束、第二级下行波束、第一级上行波束和所述第二级上行波束的大小和带宽可以通过以下方式确定:
S101、分别获取在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值。
本实施例中,获取在所述第一级下行波束上终端需要接收的信号的最大SINR解调门限值的过程,可以包括但不局限于:获取在所述第一级下行波束上传输的SSB的解调SINR门限值,及调度在所述第一级下行波束上传输的SIB1(System Information Block1,系统消息块1)、Paging(寻呼)、Msg2(即,基站接收到Msg1消息回复的ACK)和Msg4(即,基站发送给终端的RRC建立或重建命令)的PDCCH(物理下行控制信道)和PDSCH(物理下行共享信道)解调SINR门限值;
将在所述第一级下行波束上传输的SSB的解调SINR门限值,及调度在所述第一级下行波束上传输的SIB1、Paging、Msg2和Msg4的PDCCH(物理下行控制信道)和PDSCH(物理下行共享信道)解调SINR门限值中的最大值作为在所述第一级下行波束上终端需要接收的信号的最大SINR解调门限值。
获取在所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值的过程,可以包括:
将用于下行业务数据传输可用的最小MCS的PDSCH解调SINR门限值作为在所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值。
本实施例中,获取在所述第一级上行波束上所述卫星需要接收的信号的最大SINR解调门限值的过程,可以包括:
获取Msg1(Msg1用于指示开环功控,终端逐步提升功率发探针的过程)的解调SINR门限值及调度Msg3(即,终端发送的RRC(无线资源控制层,Radio Resource Conctrol)建立请求或重建请求)的PUSCH(物理上行共享信 道)解调SINR门限值;
将Msg1的解调SINR门限值及调度Msg3的PUSCH解调SINR门限值中的最大值作为在所述第一级上行波束上所述卫星需要接收的信号的最大SINR解调门限值。
本实施例中,获取在所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值的过程,可以包括:
将用于上行业务数据传输可用的最小MCS的PUSCH解调SINR门限值作为在所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值。
S102、分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽。
本实施例中,所述分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽,可以包括:
分别将在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,输入到关系式α×P-10×log10(TBW)-β×TLS-Sti≥SINR target中,分别得到所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽;
其中,所述
Figure PCTCN2021133072-appb-000002
N为所述第一级下行波束、所述第二级下行波束、所述第一级上行波束或所述第二级上行波束所覆盖的波位个数,P表示所述卫星的波束上的最大发射功率,所述TWB表示波束带宽,所述TLS表示信号传输 过程中的损耗,Sti表示信号传输过程中的干扰,SINR target表示在所述第一级下行波束或所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束或所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,β表示空间传播过程中信道衰减的变化量。
β的取值范围可以为[0,1],其中,可以随着信道质量动态调整β。
基于上述介绍的卫星的波束,如图1所示,该方法可以包括但并不局限于以下步骤:
步骤S11、使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围,其中,所述第一级波束包括第一级上行波束和第一级下行波束。
第一级下行波束以周期轮询方式覆盖所述卫星小区的所有波位,第一级下行波束每次覆盖的波位的个数为N1,每一次驻留时间为Tstop(用slot个数表示),轮询一圈的时间为
Figure PCTCN2021133072-appb-000003
(M表示一个卫星小区的总的覆盖范围,用波位来表示)。其中,第一级下行波束周期轮询方式覆盖波位的过程可以参见图2。
第一级上行波束以周期轮询方式覆盖所述卫星小区的所有波位,卫星通过第一级上线波束轮询接收各个波位上发送的上行控制信息。若第一级上行波束每次覆盖的波位的个数由N3表示,第一级上行波束每一次驻留时间为Tul(用slot个数表示),则轮询一圈的时间为
Figure PCTCN2021133072-appb-000004
步骤S12、在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息。
本实施例中,所述在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息,可以包括:
所述第一级下行波束每次轮询到所述卫星终端所在的波位时,所述卫星通 过所述第一级下行波束向所述卫星终端传输不同的下行控制消息。
卫星终端在接收到卫星通过第一级下行波束传输的下行控制信息的情况下,卫星终端可以利用下行控制信息进行下行同步。
步骤S13、在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息。
本实施例中,在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息,包括:
所述第一级上行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级上行波束接收所述卫星终端发送的不同上行控制消息。
卫星在通过第一级上行波束接收到卫星终端发送的上行控制信息的情况下,卫星可以利用上行控制信息控制卫星终端完成上行同步。
步骤S14、当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
具体地,在第二级上行波束覆盖所述卫星终端所在的波位的情况下,在第二级上行波束上接收卫星终端传输的上行业务数据;在第二级下行波束覆盖所述卫星终端所在的波位的情况下,在第二级下行波束上传输下行业务数据给卫星终端。
本实施例中,在业务数据传输结束后,卫星关闭该卫星终端所在波位的第二级波束,即第二级波束是卫星基于终端的传输业务调度的,业务结束则关闭第二级波束,有业务则为该终端调度第二级波束到终端所在的波位,第二级波束可以基于下行调度算法在波位间跳变到所述卫星终端所在的波位。
本实施例中,通过将宽波束划分为多个窄波束,然后对窄波束分级,其中第一级波束完成系统控制功能,第二级波束完成业务数据的传输,并在各级波束上通过改进的消息信号发送方式来进一步增强信号接收性能,同时通过上下行波束时间轮询差的设计来减少终端接入时延,一方面满足了星地一体化通信的信号接收性能,另外一方面保证了卫星对地面波位的覆盖,以及通信的可靠性。
作为本申请另一可选实施例,参照图3,为本申请实施例2提供的一种传输下行控制信息的流程图,本实施例主要是对实施例1中所述在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制信息的细化方案,如图3所示,该方法可以包括但并不局限于以下步骤:
步骤S111、在所述第一级下行波束轮询到所述卫星终端所在的波位时,在所述下行控制信息包含多个子下行控制信息的情况下,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间,所述子区域包括至少一个波位,多个子驻留时间的总和构成所述第一级下行波束轮询时驻留所述子区域的驻留时间。
本实施例中,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间,可以包括但不局限于:
基于每个所述子下行控制信息的比特数和所述卫星终端的接收性能,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间。
当子下行控制信息的接收性能较差或比特数较多时可以增加所述第一级下行波束在子区域传输所述子下行控制信息的子驻留时间,保证使用更多的时域资源来传输所述子下行控制信息,进一步保证子下行控制信息传输的可靠性。
在多个所述子下行控制信息包括:SSB、SIB1和Paging及Msg的情况下,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间,包括:
确定所述第一级下行波束在子区域传输SSB的第一子驻留时间;
确定所述第一级下行波束在子区域传输SIB1的第二子驻留时间;
确定所述第一级下行波束在子区域传输Paging的第三子驻留时间;
确定所述第一级下行波束在子区域传输Msg的第四子驻留时间。
步骤S112、分别在各个所述子驻留时间内,在所述第一级下行波束上向 所述卫星终端传输各个所述子下行控制信息。
在多个所述子下行控制信息包括:SSB、SIB1和Paging及Msg的情况下,分别在各个所述子驻留时间内,在所述第一级下行波束上传输各个所述子下行控制信息可以包括:
在所述第一子驻留时间的每个单位时间内,在所述第一级下行波束上传输多个所述SSB;
在所述第二子驻留时间内,在所述第一级下行波束上传输所述SIB1;
在所述第三子驻留时间内,在所述第一级下行波束上传输所述Paging;
在所述第四子驻留时间内,在所述第一级下行波束上传输所述Msg。
所述Msg可以包括:Msg2或Msg4。如图4所示,在第一级下行波束轮询的次数为偶数时,在所述第一子驻留时间(T1)的每个单位时间内,在所述第一级下行波束上传输多个所述SSB,在所述第二子驻留时间(T2)内,在所述第一级下行波束上传输所述SIB1,在所述第三子驻留时间(T3)内,在所述第一级下行波束上传输所述Paging,在所述第四子驻留时间(T4)内,在所述第一级下行波束上传输所述Msg4。
如图5所示,在第一级下行波束轮询的次数为奇数时,在所述第一子驻留时间的每个单位时间内,在所述第一级下行波束上传输多个所述SSB,在所述第二子驻留时间内,在所述第一级下行波束上传输所述SIB1,在所述第三子驻留时间内,在所述第一级下行波束上传输所述Paging,在所述第四子驻留时间内,在所述第一级下行波束上传输所述Msg2。
本实施例中,所述分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制信息,可以包括:
S1121、分别将各个所述子下行控制信息划分为多段,得到多个目标子下行控制信息,在所述子驻留时间内,在所述第一级下行波束上分别向所述卫星终端传输各个所述目标子下行控制信息。
对应多个所述子下行控制信息包括:SSB、SIB1和Paging及Msg,分别将各个所述子下行控制信息划分为多段,得到多个目标子下行控制信息,,可以包括:
将所述SIB1划分为多段,得到多个子SIB1,在所述第二子驻留时间内,在所述第一级下行波束上分别传输各个所述子SIB1;
所述在所述第三子驻留时间内,在所述第一级下行波束上传输所述Paging,包括:
将所述Paging划分为多段,得到多个子Paging,在所述第三子驻留时间内,在所述第一级下行波束上分别传输各个所述子Paging;
所述在所述第四子驻留时间内,在所述第一级下行波束上传输所述Msg,包括:
将所述Msg划分为多段,得到多个子Msg,在所述第四子驻留时间内,在所述第一级下行波束上分别传输各个所述子Msg。
本实施例中,在第一级下行波束上分段传输下行控制信息,可以保证下行控制信息传输的可靠性。
当然,所述分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制信息,也可以包括:
S1122、分别在所述子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述子下行控制信息。
对应多个所述子下行控制信息包括:SSB、SIB1和Paging及Msg,分别在所述子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述子下行控制信息,可以包括:
在所述第二子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述SIB1;
或,在所述第三子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述Paging;
或,在所述第四子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述Msg。
本实施例中,在第一级下行波束上连续传输多次下行控制信息,可以保证下行控制信息传输的可靠性。
作为本申请另一可选实施例3,主要是对实施例1中所述通过所述第一级上行波束接收所述卫星终端发送的上行控制信息的细化方案,该方法可以包括但并不局限于以下步骤:
S113、在所述第一级上行波束上接收所述卫星终端传输的多个子上行控制信息,所述多个子上行控制信息为将上行控制信息划分为多段得到的。
本实施例中,在第一级上行波束上通过分段传输上行控制信息,可以保证上行控制信息传输的可靠性。
当然,通过所述第一级上行波束接收所述卫星终端发送的上行控制信息,也可以包括:
S114、在所述第一级上行波束中接收所述卫星终端连续传输多次的上行控制信息。
本实施例中,在第一级上行波束上通过连续传输上行控制信息,可以保证上行控制信息传输的可靠性。
本实施例中,所述上行控制信息可以包括:Msg1或Msg3。相应地,在所述第一级上行波束上接收所述目标区域内的终端发送的上行控制信息可以包括:
确定第一级上行波束在子区域用于传输Msg1的第五子驻留时间及第一级上行波束在子区域用于传输Msg3的第六子驻留时间,所述子区域包括至少一个波位,多个子驻留时间的总和构成所述第一级上行波束轮询时驻留所述子区域的驻留时间;
在第五子驻留时间内,在所述第一级上行波束上接收所述卫星终端发送的Msg1;
在第六子驻留时间内,在所述第一级上行波束上接收所述卫星终端发送的Msg3。
其中,确定第一级上行波束在子区域用于传输Msg1的第五子驻留时间及第一级上行波束在子区域用于传输Msg3的第六子驻留时间,可以包括:
基于Msg1的接收性能,确定第一级上行波束在子区域用于传输Msg1的第五子驻留时间;
基于Msg3的接收性能,确定第一级上行波束在子区域用于传输Msg3的第六子驻留时间。
需要说明的是,当星地一体化系统中第一次发送第一级上行波束时,在第六子驻留时间内不发送Msg3。
如图6所示,在第五子驻留时间(T5)内,在所述第一级上行波束上接收 所述目标区域内的终端发送的Msg1,在第六子驻留时间(T6)内,在所述第一级上行波束上接收所述卫星终端发送的Msg3。
作为本申请另一可选实施例4,主要是对实施例1中所述卫星使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位的细化方案,该方法可以包括但并不局限于以下步骤:
S115、在所述第一级下行波束轮询覆盖到所述卫星终端所在的波位,结束驻留后的第一设定时间之后,所述第一级上行波束轮询覆盖到所述波位;
所述第一设定时间为所述卫星终端在下行同步过程中完成接收下行控制消息之后发送上行控制消息之前的最大间隔时间。
在所述上行控制信息包括Msg1或Msg3的情况下,所述第一设定时间可以通过以下方式确定:
S1151、计算所述卫星终端在所述第一级上行波束上发送所述Msg1的时刻与所述卫星终端在所述第一级下行波束上接收完所述SIB1的时刻的差值,得到第一差值;
S1152、计算所述卫星终端在所述第一级上行波束上发送所述Msg3的时刻与所述卫星终端在所述第一级下行波束上接收完Msg2的时刻的差值,得到第二差值;
S1153、将所述第一差值和所述第二差值中的最大值,作为第一设定时间。
通过S1151-S1153确定第一级下行波束和第一级上行波束的轮询时间差,可以保证卫星终端上行同步的时延最小化。
作为本申请另一可选实施例5,主要是对实施例1中卫星通信方法的细化方案,请参见图7,该方法可以包括但并不局限于以下步骤:
步骤S21、所述卫星使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围,其中,所述第一级波束包括第一级上行波束和第一级下行波束。
在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一 级下行波束向所述卫星终端传输下行控制消息;
在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息。
步骤S21的详细过程可以参见实施例1中步骤S11的相关介绍,在此不再赘述。
步骤S22、所述第一级下行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级下行波束向所述卫星终端传输不同的下行控制消息。
步骤S23、所述第一级上行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级上行波束接收所述卫星终端发送的不同上行控制消息。
步骤S24、所述第一级下行波束在一次轮询到所述卫星终端所在的波位时,所述卫星向所述卫星终端传输携带配对的第二级下行波束ID和第二级上行波束ID的控制消息,以使所述卫星终端完成从所述第一级波束到所述第二级波束的切换,进行业务数据传输。
卫星终端可以基于控制信息中的第二级下行波束ID和第二级上行波束ID,完成从第一级波束到第二级波束的切换。
具体地,所述卫星可以向卫星终端传输的Msg4中携带配对的第二级下次波束ID和第二级上行波束ID。
步骤S25、当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围;其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
步骤S25的详细过程可以参见实施例1中步骤S14的相关介绍,在此不再赘述。
作为本申请另一可选实施例6,提供一种卫星通信方法,应用于卫星终端,所述卫星终端所在卫星小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星小区中的一个波位范围,通过多个波位完成对所述卫星小区的范围覆盖,请参见图8,该方法可以包括但并不局限于以下步骤:
步骤S31、在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息。
本实施例中,所述在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息,可以包括:
在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的不同下行控制消息。
步骤S32、在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息。
其中,所述第一级下行波束、第一级上行波束都是以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级下行波束、第一级上行波束覆盖范围均小于所述卫星小区的覆盖范围。
本实施例中,在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息,可以包括:
在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送的不同上行控制消息。
步骤S33、当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
本实施例中,第一级波束包括上述第一级下行波束和/或上述第一级上行波束;
第二级波束可以包括至少一个第二级上行波束和/或至少一个第二级下行波束。
其中,所述当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,可以包括:
当所述卫星终端有业务数据传输时,所述卫星终端接收所述第一级下行波束最后一次轮询到所述卫星终端所在的波位时,所述卫星发送的携带第二级波束ID的控制消息,并根据所述波束ID完成从第一级下行波束切换到第二级波束,再在第二级波束上所述业务数据。
现以具体的上行控制信息为例对卫星终端进行业务数据传输的过程进行说明,例如,卫星终端在接收完SIB1消息之后,在第一级上行波束第1次轮 询到所述卫星终端所在的波位时,卫星终端根据SIB1消息中携带的随机接入相关配置参数向卫星发送Msg1消息,在第一级下行波束的第2圈轮询时,接收到第一级下行波束上下发的Msg2;之后,在第一级上行波束的第2圈轮询时,根据Msg2中的调度信息发送Msg3;之后,在第一级下行波束的第3圈轮询时,接收第一级下行波束上下发的Msg4,卫星终端根据RRC信令中携带的业务波位ID完成从第一级波束到第二级波束的切换,在第二级上行波束上发送Msg5,开始在第二级上行波束或第二级下行波束上的业务数据传输过程。
接下来对本申请提供的卫星通信装置进行介绍,下文介绍的卫星通信装置与上文介绍的卫星通信方法可相互对应参照。
请参见图9,卫星通信装置应用于卫星,所述卫星覆盖的小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星覆盖的小区中的一个波位的范围,通过多个所述波位完成对所述卫星覆盖的小区的范围覆盖,卫星通信装置包括:第一覆盖模块100、第一传输模块200、第一接收模块300和第二传输模块400。
第一覆盖模块100,用于使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围;
其中,所述第一级波束包括第一级上行波束和第一级下行波束;
第一传输模块200,用于在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息;
第一接收模块300,用于在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息;
第二传输模块400,用于当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围;其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
本实施例中,所述第一级下行波束、第二级下行波束、第一级上行波束和所述第二级上行波束的大小和带宽可以通过以下方式确定:
分别获取在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行 波束上所述卫星需要接收的信号的最大SINR解调门限值;
分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽。
所述分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽,包括:
分别将在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,输入到关系式α×P-10×log10(TBW)-β×TLS-Sti≥SINR target中,分别得到所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽;
其中,所述
Figure PCTCN2021133072-appb-000005
N为所述第一级下行波束、所述第二级下行波束、所述第一级上行波束或所述第二级上行波束所覆盖的波位个数,P表示所述卫星的波束上的最大发射功率,所述TWB表示波束带宽,所述TLS表示信号传输过程中的损耗,Sti表示信号传输过程中的干扰,SINR target表示在所述第一级下行波束或所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束或所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,β表示空间传播过程中信道衰减的变化量。
本实施例中,第一传输模块200,具体可以用于:
在下行控制信息包含多个子下行控制信息的情况下,分别确定所述第一级 下行波束在子区域用于传输每个所述子下行控制信息的子驻留时间,所述子区域为所述第一级下行波束在轮询时一次驻留所覆盖的区域,所述子区域包括至少一个波位,多个子驻留时间的总和构成所述第一级下行波束轮询时驻留所述子区域的驻留时间;
分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制信息。
本实施例中,第一传输模块200,具体可以用于:
分别将各个所述子下行控制信息划分为多段,得到多个目标子下行控制信息,在所述子驻留时间内,在所述第一级下行波束上分别向所述卫星终端传输各个所述目标子下行控制信息;
或,分别在所述子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述子下行控制信息。
本实施例中,第一传输模块200,具体可以用于:
基于每个所述子下行控制信息的比特数和所述卫星终端的接收性能,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间。
本实施例中,第一接收模块300,具体可以用于:
在所述第一级上行波束上接收所述卫星终端传输的多个子上行控制信息,所述多个子上行控制信息为将上行控制信息划分为多段得到的;
或,在所述第一级上行波束中接收所述卫星终端连续传输多次的上行控制信息。
本实施例中,第一覆盖模块100,具体可以用于:
在所述第一级下行波束轮询覆盖到所述卫星终端所在的波位,结束驻留后的第一设定时间之后,所述第一级上行波束轮询覆盖到所述波位;
所述第一设定时间为所述卫星终端在下行同步过程中完成接收下行控制消息之后发送上行控制消息之前的最大间隔时间。
本实施例中,第一传输模块200,具体可以用于:
所述第一级下行波束每次轮询到所述卫星终端所在的波位时,所述卫星通 过所述第一级下行波束向所述卫星终端传输不同的下行控制消息;
在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息,包括:
所述第一级上行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级上行波束接收所述卫星终端发送的不同上行控制消息。
本实施例中,第一传输模块200,还可以用于:
所述第一级下行波束在一次轮询到所述卫星终端所在的波位时,向所述卫星终端传输的控制消息中携带配对的第二级下行波束ID和第二级上行波束ID,以使所述卫星终端完成从所述第一级波束到所述第二级波束的切换,进行业务数据传输。
在本申请的另一个实施例中,提供另外一种卫星通信装置,应用于卫星终端,所述卫星终端所在卫星小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星小区中的一个波位范围,通过多个波位完成对所述卫星小区的范围覆盖,卫星通信装置,包括:
第二接收模块,用于在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息;
发送模块,用于在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息;
其中,所述第一级下行波束、第一级上行波束都是以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级下行波束、第一级上行波束覆盖范围均小于所述卫星小区的覆盖范围;
第三传输模块,用于当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
本实施例中,第二接收模块,具体可以用于:
在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的不同下行控制消息;
发送模块,具体可以用于:
在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送的不同上行控制消息;
第三传输模块,具体可以用于:
当所述卫星终端有业务数据传输时,接收所述第一级下行波束最后一次轮询到所述卫星终端所在的波位时,所述卫星发送的携带第二级波束ID的控制消息,并根据所述波束ID完成从第一级下行波束切换到第二级波束,再在第二级波束上所述业务数据。
在本申请的另一个实施例中,提供一种卫星,包括:处理器、存储器和数据总线,所述处理器和所述存储器通过所述数据总线通信;
所述存储器,用于存放程序;
所述处理器,用于在执行所述程序时实现如方法实施例1-5中任意一个实施例所介绍的卫星通信方法的各步骤。
需要说明的是,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设 备中还存在另外的相同要素。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。
以上对本申请所提供的一种卫星通信方法、装置及卫星进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种卫星通信方法,其特征在于,应用于卫星,所述卫星覆盖的小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星覆盖的小区中的一个波位的范围,通过多个所述波位完成对所述卫星覆盖的小区的范围覆盖,所述方法包括:
    使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围;
    其中,所述第一级波束包括第一级上行波束和第一级下行波束;
    在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息;
    在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息;
    当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围;其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一级下行波束、第二级下行波束、第一级上行波束和所述第二级上行波束的大小和带宽通过以下方式确定:
    分别获取在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值;
    分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽。
  3. 根据权利要求2所述的方法,其特征在于,所述分别基于在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的 信号的最大SINR解调门限值,确定所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽,包括:
    分别将在所述第一级下行波束和所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束和所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,输入到关系式α×P-10×log10(TBW)-β×TLS-Sti≥SINR target中,分别得到所述第一级下行波束、所述第二级下行波束、所述第一级上行波束和所述第二级上行波束的大小和带宽;
    其中,所述
    Figure PCTCN2021133072-appb-100001
    N为所述第一级下行波束、所述第二级下行波束、所述第一级上行波束或所述第二级上行波束所覆盖的波位个数,P表示所述卫星的波束上的最大发射功率,所述TWB表示波束带宽,所述TLS表示信号传输过程中的损耗,Sti表示信号传输过程中的干扰,SINR target表示在所述第一级下行波束或所述第二级下行波束上终端需要接收的信号的最大SINR解调门限值,及在所述第一级上行波束或所述第二级上行波束上所述卫星需要接收的信号的最大SINR解调门限值,β表示空间传播过程中信道衰减的变化量。
  4. 根据权利要求1所述的方法,其特征在于,所述在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制信息,包括:
    在下行控制信息包含多个子下行控制信息的情况下,分别确定所述第一级下行波束在子区域用于传输每个所述子下行控制信息的子驻留时间,所述子区域为所述第一级下行波束在轮询时一次驻留所覆盖的区域,所述子区域包括至少一个波位,多个子驻留时间的总和构成所述第一级下行波束轮询时驻留所述子区域的驻留时间;
    分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制信息。
  5. 根据权利要求4所述的方法,其特征在于,所述分别在各个所述子驻留时间内,在所述第一级下行波束上向所述卫星终端传输各个所述子下行控制 信息,包括:
    分别将各个所述子下行控制信息划分为多段,得到多个目标子下行控制信息,在所述子驻留时间内,在所述第一级下行波束上分别向所述卫星终端传输各个所述目标子下行控制信息;
    或,分别在所述子驻留时间内,在所述第一级下行波束上连续向所述卫星终端传输多次所述子下行控制信息。
  6. 根据权利要求4所述的方法,其特征在于,所述分别确定所述第一级下行波束在子区域用于传输每个所述子下行控制信息的子驻留时间,包括:
    基于每个所述子下行控制信息的比特数和所述卫星终端的接收性能,分别确定所述第一级下行波束在子区域传输每个所述子下行控制信息的子驻留时间。
  7. 根据权利要求1所述的方法,其特征在于,所述通过所述第一级上行波束接收所述卫星终端发送的上行控制信息,包括:
    在所述第一级上行波束上接收所述卫星终端传输的多个子上行控制信息,所述多个子上行控制信息为将上行控制信息划分为多段得到的;
    或,在所述第一级上行波束中接收所述卫星终端连续传输多次的上行控制信息。
  8. 根据权利要求1所述的方法,其特征在于,所述卫星使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,包括:
    在所述第一级下行波束轮询覆盖到所述卫星终端所在的波位,结束驻留后的第一设定时间之后,所述第一级上行波束轮询覆盖到所述波位;
    所述第一设定时间为所述卫星终端在下行同步过程中完成接收下行控制消息之后发送上行控制消息之前的最大间隔时间。
  9. 根据权利要求1所述的方法,其特征在于,所述在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息,包括:
    所述第一级下行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级下行波束向所述卫星终端传输不同的下行控制消息;
    在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息,包括:
    所述第一级上行波束每次轮询到所述卫星终端所在的波位时,所述卫星通过所述第一级上行波束接收所述卫星终端发送的不同上行控制消息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一级下行波束在一次轮询到所述卫星终端所在的波位时,所述卫星向所述卫星终端传输携带配对的第二级下行波束ID和第二级上行波束ID的控制消息,以使所述卫星终端完成从所述第一级波束到所述第二级波束的切换,进行业务数据传输。
  11. 一种卫星通信方法,其特征在于,应用于卫星终端,所述卫星终端所在卫星小区包括多个卫星终端,至少一个卫星终端所在的位置范围构成所述卫星小区中的一个波位范围,通过多个波位完成对所述卫星小区的范围覆盖,所述方法包括:
    在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息;
    在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息;
    其中,所述第一级下行波束、第一级上行波束都是以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级下行波束、第一级上行波束覆盖范围均小于所述卫星小区的覆盖范围;
    当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
  12. 根据权利要求11所述的方法,其特征在于,所述在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息包括:
    在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的不同下行控制消息;
    所述在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息包括:
    在第一级下行波束每次以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送的不同上行控制消息;
    所述当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据包括:
    当所述卫星终端有业务数据传输时,所述卫星终端接收所述第一级下行波束最后一次轮询到所述卫星终端所在的波位时,所述卫星发送的携带第二级波束ID的控制消息,并根据所述波束ID完成从第一级下行波束切换到第二级波束,再在第二级波束上所述业务数据。
  13. 一种卫星通信装置,其特征在于,应用于卫星,该装置包括:
    第一覆盖模块,用于使用第一级波束以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级波束覆盖范围小于所述卫星小区的覆盖范围;
    其中,所述第一级波束包括第一级上行波束和第一级下行波束;
    第一传输模块,用于在所述第一级下行波束轮询到所述卫星终端所在的波位时,通过所述第一级下行波束向所述卫星终端传输下行控制消息;
    第一接收模块,用于在所述第一级上行波束轮询到所述卫星终端所在的波位时,通过所述第一级上行波束接收所述卫星终端发送的上行控制消息;
    第二传输模块,用于当所述卫星终端与所述卫星有业务数据传输时,所述卫星启用第二级波束覆盖所述卫星终端所在的波位,传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围;其中,所述第二级波束包括至少一个第二级上行波束和/或至少一个第二级下行波束。
  14. 一种卫星通信装置,其特征在于,应用于卫星终端,该装置包括:
    第二接收模块,用于在第一级下行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,接收卫星发送的下行控制消息;
    发送模块,用于在第一级上行波束以周期轮询的方式覆盖到所述卫星终端所在的波位时,向所述卫星发送上行控制消息;
    其中,所述第一级下行波束、第一级上行波束都是以周期轮询的方式覆盖所述卫星小区的所有波位,所述第一级下行波束、第一级上行波束覆盖范围均小于所述卫星小区的覆盖范围;
    第三传输模块,用于当所述卫星终端有业务数据传输时,所述卫星终端从第一级波束切换到第二级波束传输所述业务数据,所述第二级波束覆盖范围小于所述卫星小区的覆盖范围。
  15. 一种卫星,其特征在于,包括:处理器、存储器和数据总线,所述处理器和所述存储器通过所述数据总线通信;
    所述存储器,用于存放程序;
    所述处理器,用于在执行所述程序时实现如权利要求1-10任意一项所述通信方法的各步骤。
PCT/CN2021/133072 2021-11-25 2021-11-25 一种卫星通信方法、装置及卫星 WO2023092376A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133072 WO2023092376A1 (zh) 2021-11-25 2021-11-25 一种卫星通信方法、装置及卫星

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133072 WO2023092376A1 (zh) 2021-11-25 2021-11-25 一种卫星通信方法、装置及卫星

Publications (1)

Publication Number Publication Date
WO2023092376A1 true WO2023092376A1 (zh) 2023-06-01

Family

ID=86538494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133072 WO2023092376A1 (zh) 2021-11-25 2021-11-25 一种卫星通信方法、装置及卫星

Country Status (1)

Country Link
WO (1) WO2023092376A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204854A1 (en) * 2010-05-02 2016-07-14 Viasat, Inc. Flexible capacity satellite communications system
US20170289822A1 (en) * 2016-03-29 2017-10-05 Space Systems/Loral, Llc Satellite system using time domain beam hopping
CN112202490A (zh) * 2020-12-04 2021-01-08 南京凯瑞得信息科技有限公司 一种卫星通信系统的高效接入与通信方法及系统
CN112583471A (zh) * 2020-12-15 2021-03-30 中国空间技术研究院 一种卫星通信资源调度方法及装置
CN112910541A (zh) * 2021-01-20 2021-06-04 华力智芯(成都)集成电路有限公司 一种应用于卫星移动通信系统的卫星用户侧波束设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204854A1 (en) * 2010-05-02 2016-07-14 Viasat, Inc. Flexible capacity satellite communications system
US20170289822A1 (en) * 2016-03-29 2017-10-05 Space Systems/Loral, Llc Satellite system using time domain beam hopping
CN112202490A (zh) * 2020-12-04 2021-01-08 南京凯瑞得信息科技有限公司 一种卫星通信系统的高效接入与通信方法及系统
CN112583471A (zh) * 2020-12-15 2021-03-30 中国空间技术研究院 一种卫星通信资源调度方法及装置
CN112910541A (zh) * 2021-01-20 2021-06-04 华力智芯(成都)集成电路有限公司 一种应用于卫星移动通信系统的卫星用户侧波束设计方法

Similar Documents

Publication Publication Date Title
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
RU2667145C2 (ru) Способ и оборудование обработки для реализации высокочастотной связи и устройство
CN111769853B (zh) 通信装置和通信方法
RU2486707C1 (ru) Способ, устройство и система для распределения мощности нисходящей линии связи
CN107071796B (zh) 一种基于beam的传输控制方法及其设备
US20230022225A1 (en) Methods and systems for managing reflecting surface
CN107454645B (zh) 基于波束的毫米波通信系统中的方法、基站以及用户设备
CN108024385A (zh) 随机接入的方法、网络设备和用户设备
WO2018028470A1 (zh) 一种波束管理方法和相关设备
WO2015135338A1 (zh) 一种资源分配方法及基站控制器
CN111867034A (zh) 一种定位探测参考信号的配置方法、装置及设备
KR20160082925A (ko) 통신 시스템에서의 랜덤 접속 방법 및 장치
US20220256360A1 (en) Communication method and communication apparatus
CN103945555A (zh) 多点协作传输下的资源调度方法和设备
WO2018019253A1 (zh) 通信信道的传输方法及装置、系统
WO2017143810A1 (zh) 一种波束间协同传输方法、装置及系统、设备、存储介质
CN102711258B (zh) 避免小区间干扰的方法和装置
WO2023092376A1 (zh) 一种卫星通信方法、装置及卫星
JP7164713B2 (ja) マルチtrpシステムの干渉を管理するための方法及びシステム
EP3579639B1 (en) Random access resource indication method, base station and terminal
CN113454921A (zh) 用于在nr物理信道上适配波束的波束宽度的方法和系统
JP6223661B2 (ja) 無線端末、無線通信システム、及びコンピュータプログラム
WO2018059597A1 (zh) 一种广播覆盖的方法和装置
WO2022027681A1 (zh) 无线通信方法和设备
TWI686060B (zh) 基地台及其波束調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE