WO2018019253A1 - 通信信道的传输方法及装置、系统 - Google Patents

通信信道的传输方法及装置、系统 Download PDF

Info

Publication number
WO2018019253A1
WO2018019253A1 PCT/CN2017/094480 CN2017094480W WO2018019253A1 WO 2018019253 A1 WO2018019253 A1 WO 2018019253A1 CN 2017094480 W CN2017094480 W CN 2017094480W WO 2018019253 A1 WO2018019253 A1 WO 2018019253A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
control channel
data blocks
data
configuration information
Prior art date
Application number
PCT/CN2017/094480
Other languages
English (en)
French (fr)
Inventor
弓宇宏
鲁照华
张淑娟
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018019253A1 publication Critical patent/WO2018019253A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device, and system for transmitting a communication channel.
  • the 5G communication system is also referred to as a "post 4G network” or a “post LTE (Long Term Evolution) system.
  • 5G communication systems are considered to be implemented in higher frequency bands (eg, above 3 GHz) in order to achieve higher data rates.
  • the characteristics of high-frequency communication are that it has relatively serious path loss and penetration loss, and its spatial transmission is closely related to the atmosphere. Due to the extremely short wavelength of the high-frequency signal, a large number of small antenna arrays can be applied, so that the beamforming technology can obtain a more accurate beam direction, and the advantages of the narrow beam technology can improve the coverage of the high-frequency signal and compensate for the transmission loss.
  • transmit beamforming and/or receive beamforming is used.
  • Transmit beamforming is generally a technique that uses multiple antennas to concentrate the signals transmitted by each antenna in a particular direction.
  • the combination of the plurality of antennas is referred to as an array antenna, and each antenna included in the array antenna is referred to as an antenna element.
  • the propagation of the signal is increased by the use of transmit beamforming, and since almost no signal is received in directions other than the relevant direction, interference to other users is significantly reduced.
  • Receive beamforming is a technique in which the reception of radio waves is concentrated in a specific direction by using a receiving antenna array in a receiver.
  • the signal sensitivity of the incoming signal in the relevant direction is increased by the use of receive beamforming, but the incoming signal in the direction other than the relevant direction is removed from the received signal, thereby preventing the interference signal.
  • the terminal may firstly perform the PDCCH decoding delay.
  • the PDSCH is received and saved, and can be used for decoding of the PDSCH after the PDCCH decoding is completed.
  • a terminal in a communication system using beamforming, a terminal often receives a downlink control channel and a data channel by using a beam. Since the control channel and the data channel have different transmission performance requirements, for example, the control channel often requires high transmission robustness. However, the data channel often requires higher transmission efficiency, and accordingly, the transmission scheme and the transmission/reception beam of the control channel and the data channel are not completely identical.
  • the channel corresponds to the control channel decoding delay in different receiving beams.
  • the control channel (PDCCH) is received by the beam 1
  • the data channel (PDSCH) scheduled by the control channel is received by the beam 2. Since there is only one data channel and one control channel, and one-to-one control, in this case, since the terminal cannot judge the receiving beam of the data channel before the control channel is completely decoded, the data channel cannot be blocked during the control channel decoding delay. Accurately received questions.
  • the 5G or the future communication system also puts forward higher requirements on the reliability and real-time performance of the link communication.
  • One control channel in the related art corresponds to one data channel, and obviously cannot cope.
  • Embodiments of the present invention provide a method, an apparatus, and a system for transmitting a communication channel, so as to at least solve the problem of poor reliability and real-time performance when transmitting data using a control channel and a data channel in the related art.
  • a method for transmitting a communication channel including: a first device transmitting N control channels to a second device, wherein the N control channels are used to indicate transmission of M data blocks Configuration information, M and / or N is a positive integer greater than one.
  • At least one primary control channel is included in the N control channels.
  • one or more slave control channels are further included in the N control channels.
  • the primary control channel indicates at least one of the following information to the second device:
  • At least one of public transmission configuration information of the M data blocks At least one of public transmission configuration information of the M data blocks
  • a transmission direction of the at least one of the M data blocks where the transmission direction of the data block includes: being sent by the first device to the second device or sent by the second device to the first device;
  • the transmission class of the control channel includes: the control channel is transmission configuration information used to indicate a data block sent by the first device to the second device Or it is transmission configuration information for indicating a data block transmitted by the second device to the first device.
  • the slave control channel is located after the at least one primary control channel in the time domain.
  • the method further includes: the slave control channel and the primary control channel adopt the same sending manner; or, the sending manner of the slave control channel has a corresponding relationship with the sending manner of the primary control channel; or The transmission mode of the slave control channel is pre-agreed by the first device and the second device; or the transmission mode of the slave control channel is indicated to the second device by using the primary control channel.
  • the coding rate of the primary control channel is less than or equal to an encoding rate of the secondary control channel.
  • the N control channels include N 1 primary control channels, and the N 1 primary control channels are N 1 copies of the same primary control channel, and N 1 is a positive integer less than or equal to N.
  • the N 1 repeated transmissions are repeated transmissions on N 1 different transmission beams; or the N 1 repeated transmissions are on N 1 different time domain and/or frequency domain resources. Repeatedly sent.
  • the method further includes: configuring a first demodulation reference signal resource for the primary control channel, and/or configuring a second demodulation reference signal resource for the secondary control channel.
  • the first demodulation reference signal is located in front of the main control channel or in a time domain start position of the main control channel in a time domain; and/or, the second demodulation reference signal is in time The domain is located before the slave control channel or at the time domain start position of the slave control channel.
  • the N control channels include a L-type control channel, where L is a positive integer less than or equal to N, and the i-th control channel in the L-type control channel includes L i control channels, where i is less than or equal to L Positive integer, L i is a positive integer less than or equal to N, and
  • the L i control channels are repeatedly transmitted for the L i shares of the same control channel.
  • the L i N 1 repeated transmission is repeated transmission on L i different transmission beams; or the L i repeated transmission is in L i different time domain and/or frequency domain resources Repeated transmission on.
  • the L-type control channel is used to indicate transmission configuration information of the M data blocks, where the i-th control channel in the L-type control channel is when the value of L is equal to M And transmission configuration information indicating an i-th data block of the M data blocks.
  • the L-type control channel is used to indicate different components of the transmission configuration information of the M data blocks, where the i-th control channel in the L-type control channel is used to indicate the M The i-th part of the data block transmits configuration information.
  • the transmission configuration information of the M data blocks includes L different components, where The intersection between the transmission configuration information of any two of the L different components is empty, and the union of the L partial transmission configuration information is the transmission configuration information of the M data blocks.
  • the i-th control channel in the L-type control channel is a control channel configured to configure an ith demodulation reference signal resource.
  • the ith demodulation reference signal is located in the time domain before the i-th type control channel or the time domain start position of the i-th type control.
  • the transmission configuration information includes at least one of the following:
  • a transmission scheme of the data block where the transmission scheme of the data block includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the modulation level used for data block transmission is the modulation level used for data block transmission
  • the coding level used for data block transmission is the coding level used for data block transmission
  • the public transmission configuration information of the M data blocks includes the same transmission configuration information in the transmission configuration information of each of the M data blocks.
  • the public transmission configuration information of the M data blocks includes at least one of the following information:
  • a transmission scheme of the M data blocks where the transmission scheme includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the M data blocks transmit demodulation reference signals used.
  • the M data blocks include one of the following:
  • the M data blocks correspond to one data channel or correspond to multiple data channels.
  • the M data blocks correspond to M components of one data channel or corresponding to M sub-data channels.
  • the M data blocks respectively correspond to M data channels.
  • the sub-data channel has the capability of being independently decoded.
  • the method further includes one of the following:
  • Demodulating reference signal resources are respectively configured for the M data blocks, wherein the jth demodulation reference signal resource is configured for the jth data block, and j is a positive integer.
  • the demodulation reference signal resource includes at least one of the following:
  • the demodulation reference signal resource when configured for the M data blocks, the demodulation reference signal resource is located in front of the M data blocks or in the M data blocks in the time domain.
  • the jth demodulation reference signal resource is located before the jth data block in the time domain or at a time domain start position of the jth data block.
  • the method further includes: transmitting the M devices between the first device and the second device according to the transmission configuration information. data block.
  • the M data blocks have the same transmission mode, where the transmission mode includes a transmission mode.
  • the sending manner includes at least one of the following:
  • the transmission scheme includes: single antenna transmission, transmission diversity, open loop multiple input multiple output MIMO, closed loop MIMO;
  • another method for transmitting a communication channel comprising: a second device receiving N control channels from a first device; and a second device acquiring M devices from the N control channels Transmission configuration information of the data block, where M and/or N is a positive integer greater than one.
  • receiving, by the second device, the N control channels from the first device includes: receiving at least one primary control channel from the N control channels.
  • receiving, by the second device, the N control channels from the first device includes: receiving one or more slave control channels from the N control channels.
  • the primary control channel is configured to indicate at least one of the following information of the second device:
  • Time-frequency resource location from the control channel
  • At least one of public transmission configuration information of the M data blocks At least one of public transmission configuration information of the M data blocks
  • a transmission direction of the at least one of the M data blocks where the transmission direction of the data block includes: being sent by the first device to the second device, and sent by the second device to the first device;
  • the type of the slave control channel includes: the slave control channel is used to indicate transmission configuration information sent by the first device to the second device or Used to indicate transmission configuration information sent by the second device to the first device.
  • receiving, by the second device, the N control channels from the first device comprises: receiving the slave control channel after receiving at least one of the primary control channels.
  • the method further includes one of the following:
  • the receiving mode is used to receive the slave control channel.
  • the second device receives the N control channels from the first device, including one of the following:
  • the second device receives a primary control channel from N 1 transmit beams
  • the second device receives the primary control channel on N 1 time domain and/or frequency domain resources.
  • the receiving, by the second device, the N control channels from the first device includes: receiving a first demodulation reference signal, estimating channel information of the main control channel according to the first demodulation reference signal, and receiving and demodulating the main control And receiving a second demodulation reference signal, estimating channel information from the control channel according to the second demodulation reference signal, and receiving and demodulating the slave control channel.
  • the receiving, by the second device, the N control channels from the first device includes: the second device receiving the L-type control information from the N control channels, where the L i controls from the N control channels Obtaining i-type control information in the channel, L is a positive integer less than or equal to N, i is a positive integer less than or equal to L, and L i is a positive integer less than or equal to N, and
  • the receiving, by the second device, the L-type control information from the N control channels respectively: acquiring, by using the i-th type control information in the L-type control information, the transmission configuration information of the i-th data block, where The value of L is equal to M.
  • the receiving, by the second device, the L-type control information from the N control channels includes: acquiring, by using the i-th type control information in the L-type control information, the transmission configuration information of the M data blocks, respectively.
  • the i part transmits configuration information.
  • intersection of any two types of control information in the L-type control information is empty, and the union of the L-type control information is transmission configuration information of the M data blocks.
  • the acquiring, by the second device, the transmission configuration information of the M data blocks from the N control channels includes: acquiring at least one of the following transmission configuration information from the N control channels:
  • a transmission scheme of the data block where the transmission scheme of the data block includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the modulation level used for data block transmission is the modulation level used for data block transmission
  • the coding level used for data block transmission is the coding level used for data block transmission
  • the transmission configuration information is used to receive and demodulate the data block.
  • the public transmission configuration information of the M data blocks acquired from the primary control channel includes at least one of the following information:
  • a transmission scheme of the M data blocks where the transmission scheme includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the public transmission configuration information is used to receive and demodulate the data block.
  • the transmitting configuration information that the second device acquires the M data blocks from the N control channels includes one of the following:
  • the second device acquires, from the N control channels, the Q data blocks sent by the first device to the second device and the transmission of the MQ data blocks sent by the second device to the first device Configuration information;
  • the second device acquires, from the N control channels, transmission configuration information of data blocks transmitted between different two of the second devices, where Q is a positive integer smaller than M.
  • the M data blocks correspond to one data channel or correspond to multiple data channels.
  • the M data blocks are M components or M sub-data channels of one data channel.
  • the sub-data channel has the capability of being independently decoded.
  • the M data blocks are respectively M data channels.
  • the second device receives and demodulates the M data blocks.
  • the method further includes: receiving the M data blocks according to the transmission configuration information.
  • the M data blocks are received in the same receiving manner.
  • the M data blocks have the same receiving manner, and the receiving manner includes at least one of the following:
  • the receiving scheme includes: single antenna receiving, multiple antenna diversity receiving, single beam receiving, multiple beam receiving, wide beam receiving, narrow beam receiving, single RF link receiving, and multiple RF link receiving.
  • a transmission device for a communication channel which is applied to a network side device, and includes: a sending module, configured to send N control channels to a second device, where the N controls The channel is used to indicate the transmission configuration information of M data blocks, M and/or N Is a positive integer greater than one.
  • At least one primary control channel is included in the N control channels.
  • one or more slave control channels are further included in the N control channels.
  • the primary control channel indicates at least one of the following information to the second device:
  • At least one of public transmission configuration information of the M data blocks At least one of public transmission configuration information of the M data blocks
  • a transmission direction of the at least one of the M data blocks where the transmission direction of the data block includes: being sent by the first device to the second device or sent by the second device to the first device;
  • the transmission class of the control channel includes: the control channel is transmission configuration information used to indicate a data block sent by the first device to the second device Or it is transmission configuration information for indicating a data block transmitted by the second device to the first device.
  • the slave control channel is located after the at least one primary control channel in the time domain.
  • the slave control channel and the primary control channel adopt the same sending manner; or, the sending manner of the slave control channel has a corresponding relationship with the sending manner of the primary control channel; or, the slave control The way the channel is sent is pre-agreed by the first device and the second device.
  • the transmission mode of the slave control channel is indicated to the second device by using the primary control channel.
  • the coding rate of the primary control channel is less than or equal to an encoding rate of the secondary control channel.
  • the N control channels include N 1 primary control channels, where the N 1 primary control channels are N 1 copies of the same primary control channel, and N 1 is equal to or less than N. Integer.
  • the N 1 repeated transmissions are repeated transmissions on N 1 different transmission beams; or the N 1 repeated transmissions are on N 1 different time domain and/or frequency domain resources. Repeatedly sent.
  • the apparatus is further configured to: configure a first demodulation reference signal resource for the primary control channel, and/or configure a second demodulation reference signal resource for the secondary control channel.
  • the first demodulation reference signal is located in front of the main control channel or in a time domain start position of the main control channel in a time domain; and/or, the second demodulation reference signal is in time The domain is located before the slave control channel or at the time domain start position of the slave control channel.
  • the N control channels include a L-type control channel, where L is a positive integer less than or equal to N, and the i-th control channel in the L-type control channel includes L i control channels, where i is less than or equal to L Positive integer, L i is a positive integer less than or equal to N, and
  • the L i control channels are repeatedly transmitted for the L i shares of the same control channel.
  • the L i N 1 repeated transmission is repeated transmission on L i different transmission beams; or the L i repeated transmission is in L i different time domain and/or frequency domain resources Repeated transmission on.
  • the L-type control channel is used to indicate transmission configuration information of the M data blocks, where the i-th control channel in the L-type control channel is when the value of L is equal to M And transmission configuration information indicating an i-th data block of the M data blocks.
  • the L-type control channels are respectively used to indicate a transmission configuration of the M data blocks. Different components of the information, wherein the i-th control channel in the L-type control channel is used to indicate the ith portion of the M-data transmission configuration information.
  • the transmission configuration information of the M data blocks includes L different components, where an intersection between any two parts of the L different component transmission configuration information is empty, and the L part transmits the union of the configuration information. Configuring configuration information for the transmission of the M data blocks.
  • the i-th control channel in the L-type control channel is a control channel configured to configure an ith demodulation reference signal resource.
  • the ith demodulation reference signal is located in the time domain before the i-th type control channel or the time domain start position of the i-th type control.
  • the transmission configuration information includes at least one of the following:
  • a transmission scheme of the data block where the transmission scheme of the data block includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the modulation level used for data block transmission is the modulation level used for data block transmission
  • the coding level used for data block transmission is the coding level used for data block transmission
  • the public transmission configuration information of the M data blocks includes the same transmission configuration information in the transmission configuration information of each of the M data blocks.
  • the public transmission configuration information of the M data blocks includes at least one of the following information:
  • a transmission scheme of the M data blocks where the transmission scheme includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the M data blocks transmit demodulation reference signals used.
  • the M data blocks include one of the following:
  • the M data blocks correspond to one data channel or correspond to multiple data channels.
  • the M data blocks correspond to M components of one data channel or corresponding to M sub-data channels.
  • the M data blocks respectively correspond to M data channels.
  • the sub-data channel has the capability of being independently decoded.
  • the apparatus is further configured to perform at least one of the following:
  • Demodulating reference signal resources are respectively configured for the M data blocks, wherein the jth demodulation reference signal resource is configured for the jth data block, and j is a positive integer.
  • the demodulation reference signal resource includes at least one of the following:
  • the demodulation reference signal resource when configured for the M data blocks, the demodulation reference signal resource is located in front of the M data blocks or in the M data blocks in the time domain. a domain start location; or, when the reference signal resources are separately configured for the M data blocks, the jth demodulation reference signal resource is located in front of the jth data block or in the jth time in the time domain The time domain start position of the data block.
  • the apparatus is further configured to: after the N control channels are sent to the second device, transmit the M data blocks between the first device and the second device according to the transmission configuration information. .
  • the M data blocks have the same transmission mode, and the transmission mode includes a transmission mode.
  • the sending manner includes at least one of the following:
  • the transmission scheme includes: single antenna transmission, transmission diversity, open loop multiple input multiple output MIMO, closed loop MIMO;
  • a transmission apparatus for another communication channel which is applied to a terminal side device, and includes: a receiving module configured to receive N control channels from the first device; and an acquiring module configured to Transmitting configuration information of M data blocks is obtained from the N control channels, where M and/or N is a positive integer greater than one.
  • receiving, by the second device, the N control channels from the first device includes: receiving at least one primary control channel from the N control channels.
  • the primary control channel is configured to indicate at least one of the following information of the second device:
  • Time-frequency resource location from the control channel
  • At least one of public transmission configuration information of the M data blocks At least one of public transmission configuration information of the M data blocks
  • a transmission direction of the at least one of the M data blocks where the transmission direction of the data block includes: being sent by the first device to the second device, and sent by the second device to the first device;
  • the type of the slave control channel includes: the slave control channel is used to indicate transmission configuration information sent by the first device to the second device or Used to indicate transmission configuration information sent by the second device to the first device.
  • receiving, by the second device, the N control channels from the first device comprises: receiving the slave control channel after receiving at least one of the primary control channels.
  • the device is further configured to perform one of the following operations:
  • the receiving mode is used to receive the slave control channel.
  • the second device receives the N control channels from the first device, including one of the following:
  • the second device receives a primary control channel from N 1 transmit beams
  • the second device receives the primary control channel on N 1 time domain and/or frequency domain resources.
  • the receiving module is further configured to: receive the first demodulation reference signal, estimate channel information of the main control channel according to the first demodulation reference signal, receive and demodulate the main control channel; and receive the second demodulation reference And receiving, according to the second demodulation reference signal, channel information from the control channel, and receiving and demodulating the slave control channel.
  • the receiving module is further configured to: receive L type control information from the N control channels, where the i th type control information is obtained from the L i control channels of the N control channels, where L is less than a positive integer equal to N, i is a positive integer less than or equal to L, and L i is a positive integer less than or equal to N, and
  • the receiving, by the receiving module, the L-type control information from the N control channels includes: acquiring, by using the i-th type control information in the L-type control information, transmission configuration information of the i-th data block, where The value is equal to M.
  • the receiving, by the receiving module, the L-type control information from the N control channels includes: acquiring an ith of the transmission configuration information of the M data blocks from the i-th type control information in the L-type control information, respectively. Partial transfer of configuration information.
  • intersection of any two types of control information in the L-type control information is empty, and the union of the L-type control information is transmission configuration information of the M data blocks.
  • the receiving by the receiving module, the L-type control information from the N control channels, where the second device receives the ith reference signal, and estimates channel information of the i-th control channel according to the ith reference signal; Adjust the i-th control channel.
  • the obtaining module is further configured to: at least one of the following transmission configuration information obtained from the N control channels:
  • a transmission scheme of a data block wherein the transmission scheme of the data block includes: single antenna transmission, Transmission diversity, open-loop MIMO, closed-loop MIMO;
  • the modulation level used for data block transmission is the modulation level used for data block transmission
  • the coding level used for data block transmission is the coding level used for data block transmission
  • the transmission configuration information is used to receive and demodulate the data block.
  • the public transmission configuration information of the M data blocks acquired from the primary control channel includes at least one of the following information:
  • a transmission scheme of the M data blocks where the transmission scheme includes: single antenna transmission, transmission diversity, open loop MIMO, closed loop MIMO;
  • the public transmission configuration information is used to receive and demodulate the data block.
  • the transmitting configuration information that the second device acquires the M data blocks from the N control channels includes one of the following:
  • the second device acquires, from the N control channels, the Q data blocks sent by the first device to the second device and the transmission of the MQ data blocks sent by the second device to the first device Configuration information;
  • the second device acquires, from the N control channels, transmission configuration information of data blocks transmitted between different two of the second devices, where Q is a positive integer smaller than M.
  • the M data blocks correspond to one data channel or correspond to multiple data channels.
  • the M data blocks are M components or M sub-data channels of one data channel.
  • the sub-data channel has the capability of being independently decoded.
  • the receiving module is further configured to: receive a data channel demodulation reference signal, and estimate channel information of the M data blocks according to the data channel demodulation reference signal; and the second device receives and demodulates the M Data blocks.
  • the apparatus is further configured to: after the acquiring module acquires the transmission configuration information of the M data blocks from the N control channels, receive the M data blocks according to the transmission configuration information.
  • the M data blocks have the same receiving manner, and the receiving manner includes at least one of the following:
  • the receiving scheme includes: single antenna receiving, multiple antenna diversity receiving, single beam receiving, multiple beam receiving, wide beam receiving, narrow beam receiving, single RF link receiving, and multiple RF link receiving.
  • a transmission system for a communication channel including: a first device, a second device, where the first device includes: a sending module, configured to be a second device
  • the N devices are configured to send N control channels, where the N control channels are used to indicate transmission configuration information of M data blocks, and M and/or N are positive integers greater than 1.
  • the second device includes: a receiving module, The method is configured to receive N control channels from the first device; and the acquiring module is configured to acquire transmission configuration information of M data blocks from the N control channels.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • N control channels Sending N control channels to the second device, where the N control channels are used to indicate transmission configuration information of M data blocks, and M and/or N is a positive integer greater than 1.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the first device sends N control channels to the second device, where the N control channels are used to indicate transmission configuration information of the M data blocks, and M and/or N are positive integers greater than 1. Since more than one control channel between the first device and the second device can indicate that data is transmitted in different data channels, parallel management of multiple control channels to multiple data channels is implemented, so that the related art can be solved.
  • the problem of poor reliability and real-time performance when transmitting data using control channels and data channels improves the reliability of data transmission and provides lower latency control and data channels.
  • FIG. 1 is a schematic diagram of a control channel decoding delay in a control channel and a data channel corresponding to different receive beams according to the related art of the present invention
  • FIG. 2 is a flowchart of a method for transmitting a communication channel according to an embodiment of the present invention
  • FIG. 3 is a flow chart of another method of transmitting a communication channel according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a transmission apparatus for a communication channel according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a transmission system of a communication channel according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of scheduling N data channels by N control channels in an embodiment of the present invention.
  • N control channels 7 is a schematic diagram of a correspondence between N control channels and N data channels in a case where N control channels respectively schedule N data channels according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing another correspondence between N control channels and N data channels in a case where N control channels respectively schedule N data channels according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of scheduling one data channel by N control channels in an embodiment of the present invention.
  • 10 is a schematic diagram of scheduling M data channels by N control channels in an embodiment of the present invention.
  • 11 is a schematic diagram of scheduling M data channels by one control channel in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a control channel scheduling M data channels and M data channels having the same transmit beam in an embodiment of the present invention
  • 13 is a schematic diagram of scheduling one M data channel and M data channels having different transmit beams in one control channel according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of scheduling M data channels for a class L control channel in N control channels according to an embodiment of the present invention
  • 15 is a first schematic diagram showing a configuration of demodulation reference signals of M data blocks of N control channels in an embodiment of the present invention
  • 16 is a second schematic diagram of a demodulation reference signal configuration of M data blocks of N control channels in an embodiment of the present invention
  • 17 is a third schematic diagram of a demodulation reference signal configuration of M data blocks of N control channels in an embodiment of the present invention.
  • FIG. 19 is a fifth schematic diagram showing a configuration of a demodulation reference signal of M data blocks of N control channels according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for transmitting a communication channel according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 The first device sends N control channels to the second device, where the N control channels are used to indicate transmission configuration information of the M data blocks, where M and/or N is a positive integer greater than 1.
  • the first device sends N control channels to the second device, where N control channels are used to indicate transmission configuration information of M data blocks, and M and/or N are positive integers greater than 1. Since more than one control channel between the first device and the second device can indicate that data is transmitted in different data channels, parallel management of multiple control channels to multiple data channels is implemented, so that the related art can be solved.
  • the problem of poor reliability and real-time performance when transmitting data using control channels and data channels. Improves the reliability of data transmission and provides lower latency control and data channels.
  • the first device of the foregoing step may be one end of data transmission, and may be a network side device, such as a base station, but may also be a terminal, etc., but is not limited thereto.
  • FIG. 3 is a flowchart of another method for transmitting a communication channel according to an embodiment of the present invention, such as As shown in Figure 3, the process includes the following steps:
  • Step S302 the second device receives N control channels from the first device
  • Step S304 the second device acquires transmission configuration information of M data blocks from N control channels, where M and/or N is a positive integer greater than 1.
  • the second device of the foregoing step may be the other end of the data transmission, and may be a terminal device, but may be a base station or the like, but is not limited thereto.
  • the solution of the present embodiment can be applied to various wireless communication systems, such as a high frequency communication system, and is also applicable to other communication systems using beamforming.
  • the “beam” mentioned in the solution in this embodiment may be replaced by other description forms such as “precoding weight” or “beamforming weight”, and may also be identified by an identifier (identity, referred to as ID).
  • ID an identifier
  • different beam IDs are used to distinguish between different transmit beams or different transmit and receive beam pairs.
  • This embodiment provides a control channel transmission method, including the following steps:
  • the first device sends N control channels to the second device, and is used to indicate, to the second device, transmission configuration information of the M data blocks.
  • M and/or N are positive integers.
  • the first device is a sending end of the control channel
  • the second device is a receiving end of the control channel.
  • the first device is a base station
  • the second device is a terminal.
  • the first device is the base station 1 and the second device is the base station 2.
  • the N control channels of the present invention are only for one receiving end, and the M data blocks carry data services of the receiving end.
  • the relationship between the N control channels includes the following two modes:
  • N control channels include N 1 main control channels and NN 1 slave control channels, where N 1 is a positive integer less than or equal to N.
  • the N control channels may also include a primary control channel and a slave control. Other resources outside the channel.
  • At least one primary control channel is included in the N control channels, and the primary control channel is repeatedly transmitted by the first device with the same beam/precoding weight/beamforming weight or different beam/precoding weight/beam shaping weight
  • the number of times the primary control channel is repeatedly transmitted is N 1 times, and the N control channels include N 1 primary control channels, and the N 1 primary control channels are N 1 copies of the same primary control channel.
  • N 1 is a positive integer less than or equal to N, N 1 repeated transmissions are repeated transmissions on N 1 different transmission beams; or N 1 repeated transmissions are in N 1 different time domains and/or frequency domains Repeated delivery on resources.
  • the slave control channel is located after the at least one primary control channel in the time domain.
  • the control channel adopts the same transmission mode and/or reception mode as the main control channel, or the base station and the terminal pre-agreed the transmission mode and/or reception mode of the control channel, or the transmission mode and/or reception mode and the main mode of the control channel.
  • the transmission mode and/or the reception mode of the control channel have a fixed binding relationship, or the transmission mode and/or the reception mode adopted by the control channel are indicated by the main control channel.
  • the transmission mode includes a transmit beam/precoding weight/beamforming weight of the control channel, and a transmission scheme (single antenna transmission/transmission diversity/open-loop multiple input multiple output (MIMO)/closed loop At least one of MIMO), a modulation coding level, and a demodulation reference signal
  • the reception mode includes a receive beam of the control channel/(receive) precoding weight/(receive) beamforming weight, a receiving scheme (single antenna reception, multiple At least one of antenna diversity reception, single beam reception, multi-beam reception, wide beam reception, narrow beam reception, single RF radio link, and multiple RF radio link.
  • the coding rate of the primary control channel is less than or equal to the coding rate of the control channel, which has the advantage of making the transmission of the primary control channel more robust.
  • the transmission configuration information of the M data blocks indicated by the control channel includes a transmission scheme of M data blocks (single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), and a transmission/reception beam/pre-set adopted by M data blocks Encoding weight/beamforming weight, time domain resource occupied by M data block transmission, frequency domain resource occupied by M data block transmission, modulation level used for M data block transmission (eg quadrature phase shift) Keying (Quadrature Phase Shift Keying, QPSK for short), 16 Quadrature Amplitude Modulation (QAM), 64QAM, etc.), coding level used for M data block transmission (eg coding scheme, coding efficiency, etc.) ), demodulation reference signals used by M data blocks (eg, demodulation reference signal sequence) Column, demodulation reference signal port, time-frequency resource position of demodulation reference signal, etc.).
  • M data blocks eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • the main control channel may indicate, to the second device, the transmission resource information of the data block, or the second device, whether the N control channels include at least one slave control channel, the number of control channels from the N control channels, and the slave device.
  • the time-frequency resource location of the control channel, the number of repeated transmissions from the control channel, the number of repeated transmissions of the primary control channel, the number of times of repeated transmission of the number of repeated transmissions of the primary control channel, and the transmission of at least one of the M data blocks At least one of configuration information, public transmission configuration information of M data blocks, value of data block number M, value of control channel data N, modulation level from control channel, coding level of control channel, slave control channel And demodulating the reference signal, the transmission direction of at least one of the M data blocks, and at least one of the types of the control channels.
  • the public transmission configuration information refers to the same or common transmission configuration information of the M data block transmission configurations, including the transmission scheme of the M data blocks (single antenna transmission/transmission diversity/open loop/closed loop MIMO), and M data block transmission.
  • the transmit/receive beam/precoding weight/beamforming weight used, the modulation level used for M data block transmission, the coding level used for M data block transmission, and the solution used for M data block transmission Adjusting the reference signal, the transmission direction of the data block is sent by the first device to the second device or sent by the second device to the first device, and the slave control channel type includes the slave control channel for indicating that the second device is sent to the second device.
  • the transmission configuration information of the device is or is used to indicate transmission configuration information sent by the second device to the first device.
  • the N control channels are independent and juxtaposed, that is, there is no question of who or who controls who, and there is no concept of the primary control channel and the secondary control channel.
  • the N parallel control channels indicate the transmission configuration information of the M data blocks to the second device.
  • the M data blocks have the following characteristics:
  • the M data blocks may be M data blocks sent by the first device to the second device, or M data blocks sent by the second device to the first device, or M transmitted between different two second devices.
  • the data blocks, or the M data blocks include the Q data blocks sent by the first device to the second device and the MQ data blocks sent by the second device to the first device, where Q is a positive integer smaller than M.
  • the M data blocks can adopt the same transmission side.
  • the transmission method can be a transmission method or a reception method.
  • the M data blocks correspond to one data channel or a plurality of data channels.
  • the M data blocks are M components or M sub-data channels of one data channel, or the M data blocks are respectively M data channels.
  • the intersection between the M components of one data channel is empty and is set as one data channel.
  • the sub-data channel has the capability of being able to be independently decoded. After receiving the sub-data channel, the receiving end can directly decode the sub-data channel to obtain the content of the partial data block without waiting for other sub-data channels to be received. It can be decoded.
  • the M sub-data channels have the same transmission mode and/or reception mode.
  • the transmission mode includes a transmission beam/precoding weight/beam shaping weight used for transmission of the sub data channel, a transmission scheme (single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), modulation coding level, and demodulation
  • At least one of the reference signals includes receiving beam/(receiving) precoding weight/(receiving) beamforming weight used for receiving the sub data channel, and receiving scheme (single antenna receiving/multi-antenna diversity receiving, single) At least one of beam reception/multibeam reception, wide beam reception/narrow beam reception.
  • the M sub-data channels may also have different transmission modes and/or reception modes.
  • the transmission mode includes a transmission beam/precoding weight/beam shaping weight used for transmission of the sub data channel, a transmission scheme (single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), modulation coding level, and demodulation
  • At least one of the reference signals includes receiving beam/(receiving) precoding weight/(receiving) beamforming weight used for receiving the sub data channel, and receiving scheme (single antenna receiving/multi-antenna diversity receiving, single) At least one of beam reception/multibeam reception, wide beam reception/narrow beam reception.
  • the relationship between the N control channels and the M data blocks has the following characteristics:
  • the N control channels include a L-type control channel, where L is a positive integer less than or equal to N, and the i-th control channel in the L-type control channel includes L i control channels, where i is a positive integer less than or equal to L, L i is a positive integer less than or equal to N, and
  • the L i control channels are repeatedly transmitted for the L i of the same control channel.
  • the L i repeated transmission is repeated transmission on L i different transmission beams; or, the L i repeated transmission is repeated transmission on L i different time domain and/or frequency domain resources.
  • Different transmit beams are characterized by different beam identification IDs
  • the L-type control channels are respectively used to indicate transmission configuration information of M data blocks, wherein when the value of L is equal to M, the i-th control channel in the L-type control channel is used to indicate the ith of the M data blocks.
  • the transmission configuration information of the data block is not limited to M.
  • the L-type control channels are respectively used to indicate different components of the transmission configuration information of the M data blocks, where the i-th control channel in the L-type control channel is used to indicate the ith transmission of the M data blocks.
  • Configuration information The transmission configuration information of the M data blocks includes L different components, wherein the intersection between the transmission configuration information of any two of the L different components is empty, and the union of the L partial transmission configuration information is M data blocks. Transfer configuration information.
  • the i-th control channel in the L-type control channel may be a control channel configured with the ith demodulation reference signal resource.
  • the ith demodulation reference signal is located in the time domain before the i-th control channel or the time domain start position of the i-th type control.
  • the demodulation reference signal resources of the N control channels include the following configurations:
  • demodulation reference signal resources are separately configured for the primary control channel and the secondary control channel, that is, the primary control channel and the secondary control channel are respectively configured. Demodulating the reference signal resource and the second reference signal resource.
  • the first demodulation reference signal resource is located before the main control channel in the time domain
  • the second demodulation reference signal is located before the slave control channel in the time domain.
  • the demodulation reference signal resource includes a demodulation reference signal port, a demodulation reference signal sequence, a parameter for generating a demodulation reference signal sequence, a time domain resource occupied by the demodulation reference signal, and a frequency domain resource occupied by the demodulation reference signal. At least one of them.
  • the receiving end estimates the channels of the primary control channel and the secondary control channel according to the received first reference signal resource and the second reference signal resource, respectively, and receives and demodulates the primary control channel and the secondary control channel.
  • an independent demodulation reference signal resource is configured for the L-type control, that is, the ith demodulation reference signal resource is configured for the i-th control channel in the L-type control channel.
  • the ith demodulation reference signal resource is located before the i-th control channel in the time domain.
  • the demodulation reference signal resource includes a demodulation reference signal port, a demodulation reference signal sequence, a parameter for generating a demodulation reference signal sequence, a time domain resource occupied by the demodulation reference signal, and at least a frequency domain resource occupied by the demodulation reference signal.
  • the receiving end estimates the channel of the i-th control channel according to the ith demodulation reference signal, and receives and demodulates the i-th control channel.
  • the independent demodulation reference signal resources are respectively configured for the N control, that is, the kth demodulation reference signal resource is configured for the kth control channel of the N control channels.
  • the kth demodulation reference signal resource is located before the kth control channel in the time domain.
  • the demodulation reference signal resource includes a demodulation reference signal port, a demodulation reference signal sequence, a parameter for generating a demodulation reference signal sequence, a time domain resource occupied by the demodulation reference signal, and at least a frequency domain resource occupied by the demodulation reference signal. one.
  • the receiving end estimates the channel of the kth control channel according to the kth demodulation reference signal, and receives and demodulates the kth control channel.
  • the demodulation reference signal resources of the M data blocks include the following configurations:
  • a demodulation reference signal resource is configured for M data blocks, that is, the M data blocks share the same demodulation reference signal resource.
  • the demodulation reference signal resource is located before the M data blocks in the time domain.
  • the demodulation reference signal resource includes a demodulation reference signal port, a demodulation reference signal sequence, a parameter for generating a demodulation reference signal sequence, a time domain resource occupied by the demodulation reference signal, and at least a frequency domain resource occupied by the demodulation reference signal.
  • the receiving end estimates the channel of the M data blocks according to the demodulation reference signal resource, and receives and demodulates the M data blocks.
  • the demodulation reference signal resource includes a demodulation reference signal port, a demodulation reference signal sequence, a parameter for generating a demodulation reference signal sequence, a time domain resource occupied by the demodulation reference signal, and at least a frequency domain resource occupied by the demodulation reference signal.
  • the receiving end estimates the channel of the jth data block according to the jth demodulation reference signal resource, and receives and demodulates the jth data block.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a transmission device and a system for the communication channel are also provided, which are used to implement the foregoing embodiments and preferred embodiments, and are not described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the embodiment further provides a structural block diagram of a transmission device of a communication channel, which can be set and applied in the first device, the device includes: a sending module 40, configured to send N control channels to the second device, where, N The control channels are used to indicate transmission configuration information of M data blocks, and M and/or N are positive integers greater than one.
  • FIG. 4 is a structural block diagram of a transmission apparatus for a communication channel according to an embodiment of the present invention, Can be set and applied in the second device, as shown in Figure 4, including:
  • the receiving module 40 is configured to receive N control channels from the first device
  • the obtaining module 42 is configured to acquire transmission configuration information of the M data blocks from the N control channels, where M and/or N is a positive integer greater than 1.
  • FIG. 5 is a structural block diagram of a transmission system of a communication channel according to an embodiment of the present invention.
  • the method includes: a first device 50 and a second device 52.
  • the first device 50 includes: a sending module. 502. Set, to send, to the second device, N control channels, where the N control channels are used to indicate transmission configuration information of M data blocks, where M and/or N is a positive integer greater than 1.
  • the second device 52 includes: a receiving module 522 configured to receive N control channels from the first device; and an obtaining module 524 configured to acquire transmission configuration information of M data blocks from the N control channels .
  • the N control channels include N 1 primary control channels and N 2 secondary control channels, where N 1 and N 2 are positive integers equal to or less than N.
  • the primary control channel indicates at least one of the following information to the second device: whether there is at least one secondary control channel among the N control channels; the number of secondary control channels present in the N control channels; Time-frequency resource location of the channel; number of repeated transmissions from the control channel; number of repeated transmissions of the primary control channel; value of the current number of transmission counters in the number of repeated transmissions of the primary control channel; transmission configuration of at least one of the M data blocks Information; at least one of the public transmission configuration information of the M data blocks; the assignment of the number of data blocks M; the assignment of the number N of control channels; the transmission direction of at least one of the M data blocks, wherein the transmission of the data blocks
  • the direction includes: sending by the first device to the second device or from the second device to the first device; at least one of the N control channels from the type of the control channel, where the type of the control channel includes: using the control channel Transmitting configuration information indicating that the first device is sent to the second device or for indicating that the second device is sent to the first device Transport configuration
  • the N control channels include a L-type control channel, where L is a positive integer less than or equal to N, and the i-th control channel in the L-type control channel includes L i control channels, where i is less than or equal to L Positive integer, L i is a positive integer less than or equal to N, and
  • the L-type control channel is used to indicate transmission configuration information of the M data blocks, where the i-th control channel in the L-type control channel is when the value of L is equal to M. And transmission configuration information indicating an i-th data block of the M data blocks.
  • the L-type control channel is used to indicate different components of the transmission configuration information of the M data blocks, where the i-th control channel in the L-type control channel is used to indicate the M The i-th part of the data block transmits configuration information.
  • the M data blocks correspond to one data channel or correspond to multiple data channels.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 6 is a schematic diagram of scheduling N data channels for N control channels in an embodiment of the present invention.
  • the data blocks are respectively transmitted by N data channels, and before the data channel is transmitted, the base station sends N control channels to the terminal for scheduling the N data channels, that is, the N control channels are respectively used to indicate the N to the terminal. Transmission configuration information of data channels.
  • the transmission configuration information includes a transmission scheme of the data block (eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), a transmit/receive beam/precoding weight/beamforming weight used for data block transmission, The time domain resources occupied by the data block transmission, the frequency domain resources occupied by the data block transmission, the modulation level used for data block transmission, the coding level used for data block transmission, and the demodulation reference signal used for data block transmission.
  • a transmission scheme of the data block eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • a transmit/receive beam/precoding weight/beamforming weight used for data block transmission e.g, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • One of the N control channels is the primary control channel, and the remaining control channels are referred to as the secondary control channel.
  • the main control channel is required, there are some cases from the control channel, and some cases are not.
  • the presence or absence of the control channel and the presence of several slave control channels are controlled by the master control channel. That is, the base station notifies the terminal through the main control channel whether there is a slave control channel, there are several slave control channels, a time-frequency resource location of the slave control channel, and the like.
  • the slave control channel is typically located after the primary control channel in the time domain, ie, after the primary control channel is transmitted.
  • PDCCH 1 is a master control channel
  • PDCCH 2 is a slave control channel.
  • the base station indicates to the terminal, by PDCCH 1, a time-frequency resource location having one slave control channel (PDCCH 2) and a slave control channel PDCCH2.
  • the base station instructs the terminal 1 to transmit configuration information of the data channels PDSCH 1 and PDSCH 2 transmitted by the base station to the terminal 1 through the main control channel PDCCH 1 and the control channel PDCCH 2, respectively.
  • the primary control channel PDCCH 1 and the secondary control channel PDCCH 2 respectively indicate the transmission configuration information of the PDSCH 1 and the transmission configuration information of the PDSCH 2, that is, the primary control channel PDCCH 1 to the terminal.
  • 1 indicates all transmission configuration information of the PDSCH 1, and indicates all transmission configuration information of the PDSCH 2 from the control channel PDCCH 2 to the terminal 1.
  • FIG. 7 is a N control in the case where N control channels respectively schedule N data channels in the embodiment of the present invention.
  • FIG. 7 A schematic diagram of a correspondence between a channel and N data channels, as shown in FIG. 7; another manner is that the primary control channel PDCCH 1 indicates common transmission configuration information of the data channels PDSCH 1 and PDSCH 2 and PDSCH 1 Some transmission configuration information, PDCCH 2 only indicates the transmission configuration information unique to the PDSCH 2, and FIG. 8 is between the N control channels and the N data channels when the N control channels respectively schedule N data channels in the embodiment of the present invention.
  • FIG. 8 A schematic diagram of another correspondence, as shown in FIG.
  • the primary control channel PDCCH 1 indicates to the terminal 1 the transmission scheme of the PDSCH 1 (single antenna transmission/transmission diversity) /Open-loop MIMO/closed-loop MIMO), transmit/receive beam/precoding weight/beamforming weight used for PDSCH 1 transmission, modulation coding level used in PDSCH 1, demodulation reference signal used in PDSCH 1, Time-frequency resources occupied by PDSCH 1, and PDCCH 2 is only used to indicate to the terminal 1 the time-frequency resources occupied by the PDSCH 2.
  • the base station transmits other transmission configuration information of the PDSCH 2 (transmission scheme, transmission/reception beam/precoding weight)
  • the beam shaping weight, the modulation coding level, and the demodulation reference signal are configured to be the same as the PDSCH 1, that is, the transmission configuration information is the public transmission configuration information of the PDSCH 1 and the PDSCH 2, and the terminal 1 can receive the PDCCH 1 Obtained
  • the transmission configuration information of the PDSCH 2 is obtained, and the real-time resource location information of the unique transmission configuration information of the PDSCH 2 is obtained by receiving the PDCCH 2, and the PDSCH 1 and the PDSCH 2 are respectively received according to the transmission configuration information.
  • the primary control channel PDCCH 1 and the transmission from the control channel PDCCH 2 have the same transmission mode and reception mode.
  • the transmission method here includes a primary control channel and a transmission beam/precoding weight/beamforming weight used for transmission from the control channel, and a transmission scheme (for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), solution Adjust at least one of the reference signals.
  • the receiving mode here includes the receiving beam/precoding weight/beamforming weight of the primary control channel and the secondary control channel, and the receiving scheme (for example, single antenna receiving/multi-antenna diversity receiving, single beam receiving/multibeam receiving, wide beam) At least one of reception/narrow beam reception).
  • the base station configures the same transmission mode as the primary control channel PDCCH 1 and the control channel PDCCH 2, and the terminal receives the two control channels by default in the same receiving manner. Therefore, there is no problem that the control channel cannot be accurately received due to the decoding delay between the two control channels.
  • the slave control channel may also be sent according to a pre-agreed transmission manner, or may be determined according to a transmission manner of the primary control channel, or The transmission mode of the slave control channel is indicated to the terminal in the master control channel.
  • the terminal assumes that the same reception mode is adopted from the control channel and the main control channel, that is, the terminal will receive the slave control channel in the same reception mode as the main control channel.
  • the slave control channel can employ a higher modulation coding rate than the primary control channel in a predefined manner, a simpler transmission scheme such as transmission according to single antenna or two antenna transmission diversity.
  • the slave control channel may also use a different transmission mode than the primary control channel for transmission, but the transmission mode used is that the base station and the terminal have agreed in advance or have some binding with the transmission mode of the primary control channel.
  • the relationship may be obtained from information in the received primary control channel.
  • the data channel scheduled by the control channel may also be an uplink data channel.
  • the data channel in FIG. 6 may also be a Physical Uplink Shared Channel (PUSCH) for carrying uplink data
  • the downlink control channel in FIG. 6 carries uplink grant information (previously downlink grant information) for End of instruction
  • uplink grant information previously downlink grant information
  • PUSCH uplink data channel
  • PDSCH downlink data channel
  • FIG. 9 is a schematic diagram of scheduling one data channel for N control channels in the embodiment of the present invention.
  • the data service sent by the base station to the terminal 1 (UE1) is transmitted by using one data channel, that is, one PDSCH, and the data channel is used.
  • the transmission configuration information includes a transmission scheme of the data channel (eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), a transmit/receive beam/precoding weight/beamforming weight used for data channel transmission, The time domain resources occupied by the data channel transmission, the frequency domain resources occupied by the data channel transmission, the modulation level used for data channel transmission, the coding level used for data channel transmission, and the demodulation reference signal used for data channel transmission.
  • a transmission scheme of the data channel eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • a transmit/receive beam/precoding weight/beamforming weight used for data channel transmission e.g, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • a transmit/receive beam/precoding weight/beamforming weight used for data channel transmission e.g, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • PDCCH1 is the master control channel
  • PDCCH2 is the slave control channel.
  • the main control channel PDCCH1 indicates the first type of transmission configuration information to the terminal 1, and indicates the second type of transmission configuration information from the control channel PDCCH2 to the terminal 1.
  • the first type of transmission configuration information is convenient for the terminal 1 to receive and buffer the corresponding PDSCH part at least in the data channel area and during the delay caused by the PDCCH2 decoding, so that after the PDCCH2 decoding is completed, the terminal 1 follows the PDCCH1 and the PDCCH2.
  • the PDSCH is received and decoded by the jointly indicated transmission configuration information.
  • the first type of transmission configuration information includes a transmit/receive beam/precoding weight/beamforming weight used by the PDSCH transmission, and a time-frequency resource occupied by the PDSCH transmission
  • the second type of transmission configuration information includes the PDSCH. All transmission configuration information except the first type of transmission configuration information in the transmission configuration information, for example, a transmission scheme including a PDSCH (for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), modulation used for PDSCH transmission Encoding level, demodulation reference signal used for PDSCH transmission, and the like.
  • a transmission scheme including a PDSCH for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • modulation used for PDSCH transmission Encoding level for example, demodulation reference signal used for PDSCH transmission, and the like.
  • the primary control channel may also indicate to the terminal whether there is a secondary control channel, in this embodiment. If the primary control channel indicates to the terminal the presence of the secondary control channel, the base station and the terminal default to only one slave control channel, that is, whether the primary control channel can indicate the primary control channel after the primary control channel by 1 bit, for example, if there is a secondary control channel, such as a bit. When the value is 0, the terminal is instructed to indicate that the number of slave control channels is 0, and when the bit value is 1, the number of slave control channels is indicated to 1.
  • the same transmission mode and reception mode are adopted from the control channel and the main control channel, and the base station transmits the slave control channel by using the same transmission mode as the main control channel, and the terminal assumes that the same transmission mode is used from the control channel and the main control channel.
  • the slave control channel is received using the same receive mode as the primary control channel.
  • the transmission method here includes a primary control channel and a transmission beam/precoding weight/beamforming weight used for transmission from the control channel, and a transmission scheme (for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), solution Adjust at least one of the reference signals.
  • the receiving mode here includes the receiving beam/precoding weight/beamforming weight of the primary control channel and the secondary control channel, and the receiving scheme (for example, single antenna receiving/multi-antenna diversity receiving, single beam receiving/multibeam receiving, wide beam) At least one of reception/narrow beam reception).
  • the receiving scheme for example, single antenna receiving/multi-antenna diversity receiving, single beam receiving/multibeam receiving, wide beam
  • the slave control channel may also perform transmission and reception according to an agreed transmission/reception manner, or may exist between a transmission/reception mode of the control channel and a transmission/reception mode of the main control channel.
  • a certain agreed relationship (or called a binding relationship), or directly from the transmission/reception mode of the control channel through the main control channel.
  • the base station determines the transmission mode of the slave control channel according to the agreement relationship, and the terminal obtains the slave control channel according to the agreed mode.
  • the mode information is transmitted and the receiving mode from the control channel is determined, and the slave control channel is received according to the receiving mode.
  • the data channel scheduled by the control channel may also be an uplink data channel.
  • the data channel in FIG. 9 may also be a physical uplink shared channel (PUSCH) for carrying uplink data
  • the downlink control channel in FIG. 9 carries uplink grant information (previously downlink grant information) for The transmission configuration information indicating the uplink data block sent by the terminal to the base station.
  • PUSCH physical uplink shared channel
  • FIG. 10 is a schematic diagram of scheduling M data channels by N control channels in the embodiment of the present invention.
  • the transmission configuration information of the data channels PDSCH1 to 4 is indicated to the terminal 1 using two control channels.
  • the transmission configuration information of one data channel includes a transmission scheme of the data channel (eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), and a transmit/receive beam/precoding weight/beam used for data channel transmission.
  • a transmission scheme of the data channel eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • a transmit/receive beam/precoding weight/beam used for data channel transmission e.g, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • a transmit/receive beam/precoding weight/beam used for data channel transmission.
  • Shaped weights, time domain resources occupied by data channel transmission, frequency domain resources occupied by data channel transmission, modulation level used for data channel transmission, coding level used for data channel transmission, and solution used for data channel transmission Adjust the reference signal, etc.
  • PDCCH1 is the master control channel
  • PDCCH2 is the slave control channel.
  • All transmission configuration information of the four data channels PDSCH1 to D4 is divided into two parts, and the main control channel PDCCH1 indicates the first partial transmission configuration information to the terminal 1, and the second partial transmission configuration information is instructed from the control channel PDCCH2 to the terminal 1.
  • the intersection between the two pieces of transmission configuration information is empty, and is set to all transmission configuration information of the four data channels PDSCH1 to 4.
  • the first part of the transmission configuration information is the public transmission configuration information of the M data channels
  • the second part of the transmission configuration information is a set of the exclusive transmission configuration information of the M data channels
  • the first part of the transmission configuration information is the M data channels.
  • the public transmission configuration information and the proprietary transmission configuration information of the first data channel, and the second part of the transmission configuration information is the exclusive transmission configuration information of the M-1 data channels of the M data channels except the first data channel. set.
  • the public transmission configuration information includes a data channel transmission scheme (single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), and a transmit/receive beam/precoding weight/beam shaping right used for data channel transmission.
  • the intersection between the respective partial transmission configuration information may not be empty.
  • some important transmission configuration information of the data channel may be repeatedly transmitted on multiple control channels to improve the transmission reliability or robustness of the transmission configuration information. Sex.
  • the primary control channel may also indicate to the terminal whether there is a secondary control channel.
  • the primary control channel indicates the presence of the secondary control channel to the terminal, the base station and the terminal default to only one slave control channel, that is, the primary control channel.
  • the terminal may indicate to the terminal whether there is a slave control channel after 1 bit, for example, when the bit value is 0, the terminal indicates that the number of slave control channels is 0, and when the bit value is 1, the terminal indicates that the number of slave control channels is 1. .
  • the same transmission mode and reception mode are adopted from the control channel and the main control channel, and the base station transmits the slave control channel by using the same transmission mode as the main control channel, and the terminal assumes that the same transmission mode is used from the control channel and the main control channel.
  • the slave control channel is received using the same receive mode as the primary control channel.
  • the transmission method here includes a primary control channel and a transmission beam/precoding weight/beamforming weight used for transmission from the control channel, and a transmission scheme (for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), solution Adjust at least one of the reference signals.
  • the receiving mode here includes the receiving beam/precoding weight/beamforming weight of the primary control channel and the secondary control channel, and the receiving scheme (for example, single antenna receiving/multi-antenna diversity receiving, single beam receiving/multibeam receiving, wide beam) At least one of reception/narrow beam reception).
  • the receiving scheme for example, single antenna receiving/multi-antenna diversity receiving, single beam receiving/multibeam receiving, wide beam
  • the same transmission mode and/or reception mode are adopted between the data channels, and the base station transmits the data channels by using the same transmission mode.
  • the terminal assumes that the M data channels adopt the same transmission mode and uses the same receiving mode. These M data channels are received.
  • the transmission method here includes a transmission beam/precoding weight/beam shaping weight used in data channel transmission, a transmission scheme (for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), and at least a demodulation reference signal. one.
  • the receiving methods here include receiving beam/precoding weight/beamforming weight used in data channel transmission, and receiving scheme (eg single antenna receiving/multi-antenna diversity receiving, single beam receiving/multibeam receiving, wide beam receiving/ At least one of narrow beam reception).
  • the slave control channel may also perform transmission and reception according to an agreed transmission/reception manner, or may exist between a transmission/reception mode of the control channel and a transmission/reception mode of the main control channel.
  • a certain agreed relationship (or called a binding relationship), or directly from the transmission/reception mode of the control channel through the main control channel.
  • the base station determines the transmission mode of the slave control channel according to the agreement relationship, and the terminal according to the agreement party The method obtains the transmission mode information from the control channel and determines the reception mode from the control channel, and receives the slave control channel according to the reception mode.
  • the data channel scheduled by the control channel may also be an uplink data channel.
  • the data channel in FIG. 6 may also be a Physical Uplink Shared Channel (PUSCH) for carrying uplink data
  • the downlink control channel in FIG. 10 carries uplink grant information (previously downlink grant information) for The transmission configuration information indicating the uplink data block sent by the terminal to the base station.
  • uplink grant information previously downlink grant information
  • PDSCH downlink data channel
  • FIG. 11 is a schematic diagram of scheduling M data channels by one control channel in the embodiment of the present invention.
  • the control channel indicates the transmission configuration information of the data channels PDSCH1 to D1 to the terminal 1.
  • the transmission configuration information of each data channel includes a transmission scheme of the data channel (eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), and a transmit/receive beam/precoding weight used for data channel transmission/ Beamforming weight, time domain resources occupied by data channel transmission, frequency domain resources occupied by data channel transmission, modulation level used for data channel transmission, coding level used for data channel transmission, and data channel transmission Demodulation reference signal, etc.
  • a transmission scheme of the data channel eg, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO
  • a transmit/receive beam/precoding weight used for data channel transmission/ Beamforming weight, time domain resources occupied by data channel transmission, frequency domain resources occupied by data channel transmission, modulation level used for data channel transmission, coding level used for data channel transmission, and data channel transmission Demodulation reference signal, etc.
  • the transmission configuration information of the four data channels may have the same or different transmission modes and/or reception modes.
  • FIG. 12 is a schematic diagram of a control channel scheduling M data channels and M data channels having the same transmit beam in the embodiment of the present invention. For example, as shown in FIG. 12, the four data channels are transmitted by using the same transmit beam, FIG. 13 is In the embodiment of the present invention, one control channel schedules M data channels and M data channels have different transmission beams. As shown in FIG. 13, the four data channels are respectively transmitted by using different transmission beams.
  • the transmission mode and reception mode adopted by the control channel may be the same as or different from the transmission/reception mode adopted by the data channel.
  • the control channel is transmitted using the same transmit beam as the data channel, and when the data channels are respectively transmitted using different transmit beams, and the control channel has only one control channel, the control channel can only be transmitted with a wider beam, and the width is wider.
  • the coverage of the beam includes the coverage of the transmit beam of each data channel.
  • the control channel is transmitted using a different transmit beam than the data channel, and the beamwidth of the control channel is wider than the beamwidth of a single data channel.
  • the transmission configuration information of the four data channels is many the same, for example, a transmission scheme of the data channel (for example, single antenna transmission/transmission diversity/open loop MIMO/closed loop MIMO), transmission using data channel transmission/ Receive Beam/Precoding Weight/Beam Shape Weight Data
  • the control channel only needs four pairs.
  • the data channel transmits a set of transmission parameter configuration information, and only the transmission configuration information independently of the four data channels is separately indicated. For example, at least the time-frequency resources of the four data channels need to be independently indicated.
  • the UE1 can separately decode the four data channels independently, The first transmitted data channel will be decoded first, without having to wait until all data channels have been received before decoding begins.
  • the data channel scheduled by the control channel may also be an uplink data channel.
  • the data channel in FIG. 10 may also be a Physical Uplink Shared Channel (PUSCH) for carrying uplink data
  • the downlink control channel in FIG. 10 carries uplink grant information (previously downlink grant information) for The transmission configuration information indicating the uplink data block sent by the terminal to the base station.
  • uplink grant information previously downlink grant information
  • PDSCH downlink data channel
  • FIG. 14 is a flowchart of scheduling M data for a class L control channel in N control channels according to an embodiment of the present invention.
  • the first three control channels are repeatedly transmitted by the same beam or different beams three times for the PDCCH1, and the last three control channels are repeatedly transmitted by the same beam or different beams three times for the PDCCH2.
  • the transmission configuration information of the M data channels preferably refers to a union of respective transmission configuration information of the M data channels; the transmission configuration information of the M data channels is divided into two parts, wherein the two parts transmit configuration information. The intersection between the two is empty and is set as the transmission configuration information of the M data channels.
  • the receiving end may receive different receiving beams to improve the receiving performance.
  • the receiving may be the same or different. Receiving beam reception, at which time the transmission robustness and coverage of the control channel are improved by repeated transmission at the transmitting end.
  • demodulation reference signal resources are separately configured for the primary control channel and the secondary control channel, that is, the primary control channel and the secondary control channel are respectively configured. Demodulating the reference signal resource and the second reference signal resource.
  • the first demodulation reference signal resource is located before the primary control channel in the time domain
  • the second demodulation reference signal is located before the secondary control channel in the time domain.
  • 15 is a first schematic diagram of a demodulation reference signal configuration of M data blocks of N control channels in the embodiment of the present invention
  • FIG. 16 is a second configuration of demodulation reference signals of M data blocks of N control channels in the embodiment of the present invention. For example, as shown in FIG.
  • PDCCH1 is the primary control channel of UE1
  • PDCCH2 is the secondary control channel of UE1.
  • PDCCH1 and PDCCH2 respectively have demodulated reference signal resources configured independently, and the demodulation reference signals are respectively located in front of the corresponding control channel in the time domain.
  • the first reference signal of the control channel is located before PDCCH1.
  • the second reference signal resource of the control channel is located before PDCCH2.
  • the receiving end first receives the demodulation reference signal resource, estimates the PDCCH1 transmission channel information through the control channel demodulation reference signal, and receives and demodulates the PDCCH1, and similarly estimates the PDCCH2 transmission channel information through the control channel demodulation reference signal, and compares the PDCCH2 to the PDCCH2.
  • Receive and demodulate Typically, the control channel uses the same transmit beam/precoding weight/beamforming weight as the corresponding demodulation reference signal resource.
  • an independent demodulation reference signal resource is configured for the L-type control, that is, the ith demodulation reference signal resource is configured for the i-th control channel in the L-type control channel.
  • the ith demodulation reference signal resource is located before the i-th type control channel in the time domain.
  • a type of control channel (3 PDCCH1) and a second type of control channel (3 PDCCH2) respectively configure independent demodulation reference signal resources, that is, a control channel first reference signal and a control channel second reference signal resource, all of which are first
  • the class control channel shares the first reference signal resource, and all the second type of control channels share the second reference signal resource, the first reference signal resource of the control channel is located before the first type of control channel, and the second reference signal of the control channel is located in the second type of control Before the channel.
  • the receiving end first receives the received reference signal resource, and estimates the transmission channel information of the first type of control channel by using the control channel demodulation reference signal, and A type of control channel performs reception and demodulation.
  • the control channel demodulates the reference signal to estimate the transmission channel information of the second type of control channel, and receives and demodulates the second type of control channel.
  • the transmit beams of the demodulation reference signals configured for the control channels are the same as those of the control channels.
  • the control channels in the class need to be configured with independent reference signal resources, and FIG.
  • the fifth schematic diagram of the demodulation reference signal configuration of the M data blocks of the N control channels is as shown in FIG. 19, and each control channel is configured with an independent demodulation reference signal resource, that is, the i-th control channel configuration control channel i Referring to the signal resource, and the location of the reference signal resource in the time domain is located before the corresponding control channel, such as the first reference signal resource is located before the first control channel (the first PDCCH1), and the second reference signal resource is located in the second Before the control channel (the second PDCCH1), the third reference signal resource is located before the third control channel (the third PDCCH1), and the fourth reference signal resource is located before the fourth control channel (the first PDCCH2) analogy.
  • the i-th control channel configuration control channel i Referring to the signal resource, and the location of the reference signal resource in the time domain is located before the corresponding control channel, such as the first reference signal resource is located before the first control channel (the first PDCCH1), and the second reference signal resource is located in the second Before the control
  • a demodulation reference signal resource is configured for the M data block/data channel, that is, the M data block/data channels share the same demodulation reference signal resource.
  • the demodulation reference signal resource is located before the M data block/data channel in the time domain.
  • two data channels PDSCH1 and PDSCH2 of UE1 share one demodulation reference signal resource, that is, only one demodulation reference signal resource is configured for two data channels of UE1, and the reference signal resource is in the time domain. The upper one is located before these two data channels.
  • the UE1 first receives the data channel demodulation reference signal resource, estimates the transmission channel of the two data channels through the demodulation reference signal resource, and receives and demodulates the two data channels.
  • the two data channels have the same transmit beam, and the transmit beam of the demodulation reference signal is identical to the transmit beams of the two data channels.
  • Arranging independent demodulation reference signal resources for the M data block/data channel allocation that is, configuring a jth demodulation reference signal resource for the jth data block/data channel of the M data blocks/data channels.
  • the jth demodulation reference signal resource is located before the jth data block/data channel in the time domain.
  • two data channels PDSCH1 of UE1 The PDSCH2 is configured with a demodulation reference signal resource, and the data channel first reference signal resource is configured for the PDSCH1, and the data channel second reference signal resource is configured for the PDSCH2, and the data channel first reference signal resource is located before the PDSCH1, and the data channel is the second reference.
  • the signal resource is located before PDSCH2.
  • the UE1 first receives the reference signal resource, estimates the transmission channel of the PDSCH1 according to the received first reference signal resource, and performs reception and demodulation on the PDSCH1, and estimates the transmission channel of the PDSCH2 according to the received second reference signal resource.
  • the two data channels have different transmit beams, the transmit beam of the first reference signal resource of the data channel is the same as the transmit beam of the PDSCH1, and the transmit beam of the second reference signal resource of the data channel is the same as the transmit beam of the PDSCH.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs to send N control channels to the second device according to the stored program code in the storage medium, where the N control channels are used to indicate transmission configuration of the M data blocks.
  • Information, M and/or N is a positive integer greater than one.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device Execution, and in some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of The integrated circuit module is implemented. Thus, the invention is not limited to any specific combination of hardware and software.
  • a method, apparatus, and system for transmitting a communication channel provided by an embodiment of the present invention have the following beneficial effects: since there are more than one control channel between the first device and the second device, the data may be indicated in different data.
  • the transmission in the channel realizes parallel management of multiple control channels by multiple control channels, and thus can solve the problem of poor reliability and real-time performance when transmitting data using the control channel and the data channel in the related art. Improves the reliability of data transmission and provides lower latency control and data channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例中提供了一种通信信道的传输方法及装置、系统。其中,该方法包括:第一设备向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。通过本发明实施例,解决了相关技术中在使用控制信道和数据信道传输数据时可靠性和实时性差的问题。

Description

通信信道的传输方法及装置、系统 技术领域
本发明涉及通信领域,具体而言,涉及一种通信信道的传输方法及装置、系统。
背景技术
为了满足自4G(第4代)通信系统的部署一来增加的对无线数据业务的需求,已经进行努力来开发改善的5G(第5代)通信系统。5G通信系统也被称为“后4G网络”或“后LTE(Long Term Evolution,长期演进)系统”。
5G通信系统被认为是在更高频带(例如3GHz以上)中实施,以便完成更高的数据速率。高频通信的特点在于具有比较严重的路损、穿透损耗,在空间传播与大气关系密切。由于高频信号的波长极短,可以应用大量小型天线阵,以使得波束成形技术能够获得更为精确的波束方向,以窄波束技术优势提高高频信号的覆盖能力,弥补传输损耗,是高频通信的一大特点。
在使用波束成形技术的通信系统中,发送波束形成和/或接收波束形成被使用。发送波束形成一般而言是一种使用多个天线将每个天线发送的信号集中在特定方向上的技术。该多个天线的组合被称为阵列天线,并且阵列天线中包括的每个天线被称为天线元素。信号的传播由于使用发送波束成形而增大,并且因为除了相关方向以外的其它方向上几乎接收不到信号,所以对其它用户的干扰显著降低。接收波束成形是一种在接收器中通过使用接收天线阵列将对无线电波的接收集中在特定方向上的技术。在相关方向上进入的信号的信号灵敏度由于使用接收波束成形而增大,但在除了相关方向以外的方向上进入的信号被从接收信号中除去,从而阻止了干扰信号。
长期演进LTE系统中,由于终端对物理下行控制信道(PDCCH,Physical Downlink Control Channel)和物理下行共享信道(PDSCH,Physical Downlink Shared Channel)均采用全向接收,因此在PDCCH解码时延期间终端可以先将PDSCH接收并保存下来,待PDCCH解码完成后即可以用于PDSCH的解码。然而,在使用波束成形的通信系统中,终端往往采用波束的方式接收下行控制信道和数据信道,由于控制信道和数据信道对传输性能的要求不同,例如控制信道往往要求较高的传输鲁棒性,而数据信道则往往要求更高的传输效率,因此对应地,控制信道和数据信道的传输方案或发送/接收波束存在不完全相同的情况,图1是根据本发明相关技术的控制信道和数据信道对应不同接收波束下的控制信道解码时延示意图,如图1所示,控制信道(PDCCH)采用波束1进行接收,而由该控制信道调度的数据信道(PDSCH)却采用波束2进行接收。由于数据信道和控制信道都只有一个,并且是一对一控制的,这种情况下,由于控制信道未完全解码之前终端无法判断数据信道的接收波束,将造成控制信道解码时延期间数据信道无法准确接收的问题。
另外,5G或未来通信系统对链路通信的可靠性、实时性也提出了更高的要求,相关技术中的一个控制信道对应一个数据信道的方案,明显不能应对。
针对相关技术中的存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种通信信道的传输方法及装置、系统,以至少解决相关技术中在使用控制信道和数据信道传输数据时可靠性和实时性差的问题。
根据本发明的一个实施例,提供了一种通信信道的传输方法,包括:第一设备向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
可选地,所述N个控制信道中至少包括一个主控制信道。
可选地,所述N个控制信道中还包括一个或多个从控制信道。
可选地,所述主控制信道向第二设备指示以下信息中的至少之一:
所述N个控制信道中是否包括至少一个从控制信道;
所述N个控制信道中从控制信道的数目;
所述从控制信道的时频资源位置;
所述从控制信道的重复发送次数;
主控制信道的重复发送次数;
主控制信道的重复发送次数中当前发送次数计数器的值;
所述M个数据块中至少一个数据块的传输配置信息;
所述M个数据块的公有传输配置信息中的至少一项;
所述数据块数目M的赋值;
所述控制信道数目N的赋值;
所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备或者由第二设备发送给第一设备;
所述N个控制信道中至少一个控制信道的传输类别,其中,所述控制信道的传输类别包括:所述控制信道为用于指示由第一设备发送给第二设备的数据块的传输配置信息或者为用于指示由第二设备发送给第一设备的数据块的传输配置信息。
可选地,所述从控制信道在时域上位于至少一个主控制信道之后。
可选地,还包括:所述从控制信道和所述主控制信道采用相同的发送方式;或者,所述从控制信道的发送方式与所述主控制信道的发送方式存在对应关系;或者,所述从控制信道的发送方式是由第一设备和第二设备预先约定好的;或者,所述从控制信道的发送方式是通过主控制信道向第二设备指示的。
可选地,所述主控制信道的编码码率小于等于所述从控制信道的编码码率。
可选地,所述N个控制信道中,包含N1个主控制信道,所述N1个主控制信道为同一主控制信道的N1份重复发送,N1为小于等于N的正整数。
可选地,所述N1份重复发送是在N1个不同发送波束上的重复发送;或者,所述N1份重复发送是在N1个不同的时域和/或频域资源上的重复发送。
可选地,所述方法还包括:为所述主控制信道配置第一解调参考信号资源,和/或,为所述从控制信道配置第二解调参考信号资源。
可选地,所述第一解调参考信号在时域上位于所述主控制信道之前或者位于所述主控制信道的时域开始位置;和/或,所述第二解调参考信号在时域上位于所述从控制信道之前或者位于所述从控制信道的时域开始位置。
可选地,所述N个控制信道包括L类控制信道,其中,L为小于等于N的正整数,L类控制信道中第i类控制信道中包含Li个控制信道,i为小于等于L的正整数,Li为小于等于N的正整数,且
Figure PCTCN2017094480-appb-000001
可选地,所述Li个控制信道为同一控制信道的Li份重复发送。
可选地,所述Li N1份重复发送是在Li个不同发送波束上的重复发送;或者,所述Li份重复发送是在Li个不同的时域和/或频域资源上的重复发送。
可选地,所述L类控制信道分别用于指示所述M个数据块的传输配置信息,其中,在所述L的值等于M时,所述L类控制信道中的第i类控制信道用于指示所述M个数据块中的第i个数据块的传输配置信息。
可选地,所述L类控制信道分别用于指示所述M个数据块的传输配置信息的不同组成部分,其中,所述L类控制信道中的第i类控制信道用于指示所述M个数据块的第i部分传输配置信息。
可选地,所述M个数据块的传输配置信息包括L个不同组成部分,其 中,L个不同组成部分中任意两部分传输配置信息之间的交集为空,L部分传输配置信息的并集为所述M个数据块的传输配置信息。
可选地,为所述L类控制信道中的第i类控制信道为配置第i解调参考信号资源的控制信道。
可选地,所述第i解调参考信号在时域上位于所述第i类控制信道之前或者第i类控制控制的时域开始位置。
可选地,所述传输配置信息包括以下至少之一:
数据块的传输方案,其中,所述数据块的传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
数据块传输所采用的发送和/或接收波束;
数据块传输所采用的的发送和/或接收预编码权值;
数据块传输所采用的发送和/或接收波束赋形权值;
数据块传输所占用的时域资源;
数据块传输所占用的频域资源;
数据块传输所采用的调制等级;
数据块传输所采用的编码等级;
数据块传输所采用的解调参考信号。
可选地,所述M个数据块的公有传输配置信息包括所述M个数据块中每个数据块的传输配置信息中的相同的传输配置信息。
可选地,所述M个数据块的公有传输配置信息包括以下信息至少之一:
所述M个数据块的传输方案,其中,所述传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
所述M个数据块传输所采用的发送和/或接收波束;
所述M个数据块传输所采用的调制等级;
所述M个数据块传输所采用的编码等级;
所述M个数据块传输所采用的解调参考信号。
可选地,所述M个数据块包括以下之一:
所述第一设备向所述第二设备发送的M个数据块;
所述第二设备向所述第一设备发送的M个数据块;
所述第一设备向所述第二设备发送的Q个数据块和所述第二设备向所述第一设备发送的M-Q个数据块,其中,Q为小于M的正整数;两个不同的所述第二设备之间传输的M个数据块。
可选地,所述M个数据块对应一个数据信道或者对应多个数据信道。
可选地,所述M个数据块对应一个数据信道的M个组成部分或对应M个子数据信道。
可选地,所述M个数据块分别对应M个数据信道。
可选地,所述子数据信道具有被独立解码的能力。
可选地,所述方法还包括以下之一:
为所述M个数据块配置一个解调参考信号资源;
为所述M个数据块分别配置解调参考信号资源,其中,为第j个数据块配置第j解调参考信号资源,j为正整数。
可选地,所述解调参考信号资源包括以下至少之一:
解调参考信号端口;
解调参考信号序列;
产生所述解调参考信号序列的参数;
解调参考信号占用的时域资源;
解调参考信号占用的频域资源。
可选地,在为所述M个数据块配置一个解调参考信号资源时,所述解调参考信号资源在时域上位于所述M个数据块之前或者位于所述M个数据块的时域开始位置;或,在为所述M个数据块分别配置参考信号资源时, 所述第j解调参考信号资源在时域上位于所述第j个数据块之前或者位于所述第j个数据块的时域开始位置。
可选地,在第一设备向第二设备发送N个控制信道之后,所述方法还包括:根据所述传输配置信息在所述第一设备和所述第二设备之间传输所述M个数据块。
可选地,所述M个数据块具有相同的传输方式,其中,所述传输方式包括发送方式。
可选地,所述发送方式包括以下至少之一:
发送波束;
发送预编码权值;
发送波束赋形权值;
发送方案,其中,所述发送方案包括:单天线传输、传输分集、开环多入多出MIMO、闭环MIMO;
调制和/或编码等级;
解调参考信号。
根据本发明的一个实施例,提供了另一种通信信道的传输方法,包括:第二设备接收来自第一设备的N个控制信道;所述第二设备从所述N个控制信道获取M个数据块的传输配置信息,其中,M和/或N为大于1的正整数。
可选地,第二设备接收来自第一设备的N个控制信道包括:从所述N个控制信道中至少接收一个主控制信道。
可选的,第二设备接收来自第一设备的N个控制信道包括:从所述N个控制信道中接收一个或多个从控制信道。
可选地,所述主控制信道用于指示所述第二设备以下信息至少之一:
所述N个控制信道中是否至少一个从控制信道;
所述N个控制信道中从控制信道的数目;
从控制信道的时频资源位置;
从控制信道的重复发送次数;
主控制信道的重复发送次数;
主控制信道的重复发送次数中当前发送次数计数器的值;
所述M个数据块中至少一个数据块的传输配置信息;
所述M个数据块的公有传输配置信息中的至少一项;
所述数据块数目M的值;
所述控制信道数目N的值;
所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备、由第二设备发送给第一设备;
所述N个控制信道中至少一个从控制信道的类型,其中,所述从控制信道的类型包括:所述从控制信道为用于指示由第一设备发送给第二设备的传输配置信息或者为用于指示由第二设备发送给第一设备的传输配置信息。
可选地,第二设备接收来自第一设备的N个控制信道包括:在至少接收一个所述主控制信道之后,接收所述从控制信道。
可选地,所述方法还包括以下之一:
约定所述从控制信道和所述主控制信道采用相同的接收方式;
按照从控制信道的接收方式与所述主控制信道的接收方式之间的对应关系确定所述从控制信道的接收方式;
按照预先约定的方式确定所述从控制信道的接收方式;
通过接收主控制信道的指示获得所述从控制信道的接收方式;
其中,所述接收方式用于接收所述从控制信道。
可选地,第二设备接收来自第一设备的N个控制信道包括以下之一:
所述第二设备从N1个发送波束上接收主控制信道;
所述第二设备在N1个时域和/或频域资源上接收所述主控制信道。
可选地,第二设备接收来自第一设备的N个控制信道包括:接收第一解调参考信号,根据所述第一解调参考信号估计主控制信道的信道信息,接收并解调主控制信道;以及接收第二解调参考信号,根据所述第二解调参考信号估计从控制信道的信道信息,接收并解调从控制信道。
可选地,第二设备接收来自第一设备的N个控制信道包括:第二设备从所述N个控制信道中接收L类控制信息,其中,从所述N个控制信道中Li个控制信道中获得第i类控制信息,L为小于等于N的正整数,i为小于等于L的正整数,Li为小于等于N的正整数,且
Figure PCTCN2017094480-appb-000002
可选地,第二设备从所述N个控制信道中接收L类控制信息包括:分别从所述L类控制信息中的第i类控制信息中获取第i个数据块的传输配置信息,其中L的值等于M。
可选地,第二设备从所述N个控制信道中接收L类控制信息包括:分别从所述L类控制信息中的第i类控制信息获取所述M个数据块的传输配置信息的第i部分传输配置信息。
可选地,所述L类控制信息中的任意两类控制信息的交集为空,所述L类控制信息的并集为所述M个数据块的传输配置信息。
可选地,第二设备从所述N个控制信道中接收L类控制信息包括:第二设备接收第i参考信号,根据所述第i参考信号估计第i类控制信道的信道信息;接收并解调第i类控制信道。
可选地,所述第二设备从所述N个控制信道获取M个数据块的传输配置信息包括:从所述N个控制信道中获取的以下传输配置信息至少之一:
数据块的传输方案,其中,所述数据块的传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
数据块传输所采用的发送和/或接收波束;
数据块传输所采用的发送和/或接收预编码权值;
数据块传输所采用的发送和/或接收波束赋形权值;
数据块传输所占用的时域资源;
数据块传输所占用的频域资源;
数据块传输所采用的调制等级;
数据块传输所采用的编码等级;
数据块传输所采用的解调参考信号;
其中,所述传输配置信息用于接收和解调所述数据块。
可选地,从所述主控制信道获取的所述M个数据块的公有传输配置信息包括以下信息至少之一:
所述M个数据块的传输方案,其中,所述传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
所述M个数据块传输所采用的发送和/或接收波束;
所述M个数据传输所采用的发送和/或接收预编码权值;
所述M个数据传输所采用的发送和/或接收波束赋形权值;
所述M个数据块传输所采用的调制等级;
所述M个数据块传输所采用的编码等级;
所述M个数据块传输所采用的解调参考信号;
其中,所述公有传输配置信息用于接收和解调所述数据块。
可选地,所述第二设备从所述N个控制信道获取M个数据块的传输配置信息包括以下之一:
所述第二设备从所述N个控制信道获取获得所述第一设备向所述第二设备发送的M个数据块的传输配置信息;
所述第二设备从所述N个控制信道获取所述第二设备向所述第一设备发送的M个数据块的传输配置信息;
所述第二设备从所述N个控制信道获取所述第一设备发送给所述第二设备的Q个数据块和所述第二设备发送给所述第一设备的M-Q个数据块的传输配置信息;
所述第二设备从所述N个控制信道获取不同的两个所述第二设备之间传输的数据块的传输配置信息,其中Q为小于M的正整数。
可选地,所述M个数据块对应一个数据信道或者对应多个数据信道。
可选地,所述M个数据块为一个数据信道的M个组成部分或M个子数据信道。
可选地,所述子数据信道具有被独立解码的能力。
可选的,所述M个数据块分别为M个数据信道。
可选地,第二设备接收来自第一设备的N个控制信道包括:第二设备接收数据信道解调参考信号,根据所述数据信道解调参考信号估计所述M个数据块的信道信息;所述第二设备接收并解调所述M个数据块。
可选地,在所述第二设备从所述N个控制信道获取M个数据块的传输配置信息之后,所述方法还包括:根据所述传输配置信息接收所述M个数据块。
可选的,按照相同的接收方式接收所述M个数据块。
可选地,所述M个数据块具有相同的接收方式,其中,所述接收方式包括以下至少之一:
接收波束或预编码权值或波束赋形权值;
接收方案,其中,所述接收方案包括:单天线接收、多天线分集接收、单波束接收、多波束接收、宽波束接收、窄波束接收、单RF链路接收、多RF链路接收。
根据本发明的另一个实施例,提供了一种通信信道的传输装置,应用在网络侧设备中,包括:发送模块,设置为向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N 为大于1的正整数。
可选地,所述N个控制信道中至少包括一个主控制信道。
可选地,所述N个控制信道中还包括一个或多个从控制信道。
可选地,所述主控制信道向第二设备指示以下信息中的至少之一:
所述N个控制信道中是否包括至少一个从控制信道;
所述N个控制信道中从控制信道的数目;
所述从控制信道的时频资源位置;
所述从控制信道的重复发送次数;
主控制信道的重复发送次数;
主控制信道的重复发送次数中当前发送次数计数器的值;
所述M个数据块中至少一个数据块的传输配置信息;
所述M个数据块的公有传输配置信息中的至少一项;
所述数据块数目M的赋值;
所述控制信道数目N的赋值;
所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备或者由第二设备发送给第一设备;
所述N个控制信道中至少一个控制信道的传输类别,其中,所述控制信道的传输类别包括:所述控制信道为用于指示由第一设备发送给第二设备的数据块的传输配置信息或者为用于指示由第二设备发送给第一设备的数据块的传输配置信息。
可选地,所述从控制信道在时域上位于至少一个主控制信道之后。
可选地,所述从控制信道和所述主控制信道采用相同的发送方式;或者,所述从控制信道的发送方式与所述主控制信道的发送方式存在对应关系;或者,所述从控制信道的发送方式是由第一设备和第二设备预先约定 好的;或者,所述从控制信道的发送方式是通过主控制信道向第二设备指示的。
可选地,所述主控制信道的编码码率小于等于所述从控制信道的编码码率。
可选地,所述N个控制信道中,包含N1个主控制信道,其中,所述N1个主控制信道为同一主控制信道的N1份重复发送,N1为小于等于N的正整数。
可选地,所述N1份重复发送是在N1个不同发送波束上的重复发送;或者,所述N1份重复发送是在N1个不同的时域和/或频域资源上的重复发送。
可选地,所述装置还设置为:为所述主控制信道配置第一解调参考信号资源,和/或,为所述从控制信道配置第二解调参考信号资源。
可选地,所述第一解调参考信号在时域上位于所述主控制信道之前或者位于所述主控制信道的时域开始位置;和/或,所述第二解调参考信号在时域上位于所述从控制信道之前或者位于所述从控制信道的时域开始位置。
可选地,所述N个控制信道包括L类控制信道,其中,L为小于等于N的正整数,L类控制信道中第i类控制信道中包含Li个控制信道,i为小于等于L的正整数,Li为小于等于N的正整数,且
Figure PCTCN2017094480-appb-000003
可选地,所述Li个控制信道为同一控制信道的Li份重复发送。
可选地,所述Li N1份重复发送是在Li个不同发送波束上的重复发送;或者,所述Li份重复发送是在Li个不同的时域和/或频域资源上的重复发送。
可选地,所述L类控制信道分别用于指示所述M个数据块的传输配置信息,其中,在所述L的值等于M时,所述L类控制信道中的第i类控制信道用于指示所述M个数据块中的第i个数据块的传输配置信息。
可选地,所述L类控制信道分别用于指示所述M个数据块的传输配置 信息的不同组成部分,其中,所述L类控制信道中的第i类控制信道用于指示所述M个数据块的第i部分传输配置信息。
可选地,所述M个数据块的传输配置信息包括L个不同组成部分,其中,L个不同组成部分中任意两部分传输配置信息之间的交集为空,L部分传输配置信息的并集为所述M个数据块的传输配置信息。
可选地,为所述L类控制信道中的第i类控制信道为配置第i解调参考信号资源的控制信道。
可选地,所述第i解调参考信号在时域上位于所述第i类控制信道之前或者第i类控制控制的时域开始位置。
可选地,所述传输配置信息包括以下至少之一:
数据块的传输方案,其中,所述数据块的传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
数据块传输所采用的发送和/或接收波束;
数据块传输所采用的的发送和/或接收预编码权值;
数据块传输所采用的发送和/或接收波束赋形权值;
数据块传输所占用的时域资源;
数据块传输所占用的频域资源;
数据块传输所采用的调制等级;
数据块传输所采用的编码等级;
数据块传输所采用的解调参考信号。
可选地,所述M个数据块的公有传输配置信息包括所述M个数据块中每个数据块的传输配置信息中的相同的传输配置信息。
可选地,所述M个数据块的公有传输配置信息包括以下信息至少之一:
所述M个数据块的传输方案,其中,所述传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
所述M个数据块传输所采用的发送和/或接收波束;
所述M个数据块传输所采用的调制等级;
所述M个数据块传输所采用的编码等级;
所述M个数据块传输所采用的解调参考信号。
可选地,所述M个数据块包括以下之一:
所述第一设备向所述第二设备发送的M个数据块;
所述第二设备向所述第一设备发送的M个数据块;
所述第一设备向所述第二设备发送的Q个数据块和所述第二设备向所述第一设备发送的M-Q个数据块,其中,Q为小于M的正整数;
两个不同的所述第二设备之间传输的M个数据块。
可选地,所述M个数据块对应一个数据信道或者对应多个数据信道。
可选地,所述M个数据块对应一个数据信道的M个组成部分或对应M个子数据信道。
可选地,所述M个数据块分别对应M个数据信道。
可选地,所述子数据信道具有被独立解码的能力。
可选地,所述装置还设置为执行以下操作至少之一:
为所述M个数据块配置一个解调参考信号资源;
为所述M个数据块分别配置解调参考信号资源,其中,为第j个数据块配置第j解调参考信号资源,j为正整数。
可选地,所述解调参考信号资源包括以下至少之一:
解调参考信号端口;
解调参考信号序列;
产生所述解调参考信号序列的参数;
解调参考信号占用的时域资源;
解调参考信号占用的频域资源。
可选地,在为所述M个数据块配置一个解调参考信号资源时,所述解调参考信号资源在时域上位于所述M个数据块之前或者位于所述M个数据块的时域开始位置;或,在为所述M个数据块分别配置参考信号资源时,所述第j解调参考信号资源在时域上位于所述第j个数据块之前或者位于所述第j个数据块的时域开始位置。
可选地,所述装置还设置为:在向第二设备发送N个控制信道之后,根据所述传输配置信息在所述第一设备和所述第二设备之间传输所述M个数据块。
可选地,所述M个数据块具有相同的传输方式,所述传输方式包括发送方式。
可选地,所述发送方式包括以下至少之一:
发送波束;
发送预编码权值;
发送波束赋形权值;
发送方案,其中,所述发送方案包括:单天线传输、传输分集、开环多入多出MIMO、闭环MIMO;
调制和/或编码等级;
解调参考信号。
根据本发明的另一个实施例,提供了另一种通信信道的传输装置,应用在终端侧设备中,包括:接收模块,设置为接收来自第一设备的N个控制信道;获取模块,设置为从所述N个控制信道获取M个数据块的传输配置信息,其中,M和/或N为大于1的正整数。
可选地,第二设备接收来自第一设备的N个控制信道包括:从所述N个控制信道中至少接收一个主控制信道。
可选地,所述主控制信道用于指示所述第二设备以下信息至少之一:
所述N个控制信道中是否包括至少一个从控制信道;
所述N个控制信道中从控制信道的数目;
从控制信道的时频资源位置;
从控制信道的重复发送次数;
主控制信道的重复发送次数;
主控制信道的重复发送次数中当前发送次数计数器的值;
所述M个数据块中至少一个数据块的传输配置信息;
所述M个数据块的公有传输配置信息中的至少一项;
所述数据块数目M的值;
所述控制信道数目N的值;
所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备、由第二设备发送给第一设备;
所述N个控制信道中至少一个从控制信道的类型,其中,所述从控制信道的类型包括:所述从控制信道为用于指示由第一设备发送给第二设备的传输配置信息或者为用于指示由第二设备发送给第一设备的传输配置信息。
可选地,第二设备接收来自第一设备的N个控制信道包括:在至少接收一个所述主控制信道之后,接收所述从控制信道。
可选地,所述装置还设置为执行以下操作之一:
约定所述从控制信道和所述主控制信道采用相同的接收方式;
按照从控制信道的接收方式与所述主控制信道的接收方式之间的对应关系确定所述从控制信道的接收方式;
按照预先约定的方式确定所述从控制信道的接收方式;
通过接收主控制信道的指示获得所述从控制信道的接收方式;
其中,所述接收方式用于接收所述从控制信道。
可选地,第二设备接收来自第一设备的N个控制信道包括以下之一:
所述第二设备从N1个发送波束上接收主控制信道;
所述第二设备在N1个时域和/或频域资源上接收所述主控制信道。
可选地,接收模块还设置为:接收第一解调参考信号,根据所述第一解调参考信号估计主控制信道的信道信息,接收并解调主控制信道;以及接收第二解调参考信号,根据所述第二解调参考信号估计从控制信道的信道信息,接收并解调从控制信道。
可选地,接收模块还设置为:从所述N个控制信道中接收L类控制信息,其中,从所述N个控制信道中Li个控制信道中获得第i类控制信息,L为小于等于N的正整数,i为小于等于L的正整数,Li为小于等于N的正整数,且
Figure PCTCN2017094480-appb-000004
可选地,接收模块从所述N个控制信道中接收L类控制信息包括:分别从所述L类控制信息中的第i类控制信息中获取第i个数据块的传输配置信息,其中L的值等于M。
可选地,接收模块从所述N个控制信道中接收L类控制信息包括:分别从所述L类控制信息中的第i类控制信息获取所述M个数据块的传输配置信息的第i部分传输配置信息。
可选地,所述L类控制信息中的任意两类控制信息的交集为空,所述L类控制信息的并集为所述M个数据块的传输配置信息。
可选地,接收模块从所述N个控制信道中接收L类控制信息包括:第二设备接收第i参考信号,根据所述第i参考信号估计第i类控制信道的信道信息;接收并解调第i类控制信道。
可选地,获取模块还设置为:从所述N个控制信道中获取的以下传输配置信息至少之一:
数据块的传输方案,其中,所述数据块的传输方案包括:单天线传输、 传输分集、开环MIMO、闭环MIMO;
数据块传输所采用的发送和/或接收波束;
数据块传输所采用的发送和/或接收预编码权值;
数据块传输所采用的发送和/或接收波束赋形权值;
数据块传输所占用的时域资源;
数据块传输所占用的频域资源;
数据块传输所采用的调制等级;
数据块传输所采用的编码等级;
数据块传输所采用的解调参考信号;
其中,所述传输配置信息用于接收和解调所述数据块。
可选地,从所述主控制信道获取的所述M个数据块的公有传输配置信息包括以下信息至少之一:
所述M个数据块的传输方案,其中,所述传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
所述M个数据块传输所采用的发送和/或接收波束;
所述M个数据传输所采用的发送和/或接收预编码权值;
所述M个数据传输所采用的发送和/或接收波束赋形权值;
所述M个数据块传输所采用的调制等级;
所述M个数据块传输所采用的编码等级;
所述M个数据块传输所采用的解调参考信号;
其中,所述公有传输配置信息用于接收和解调所述数据块。
可选地,所述第二设备从所述N个控制信道获取M个数据块的传输配置信息包括以下之一:
所述第二设备从所述N个控制信道获取获得所述第一设备向所述第二 设备发送的M个数据块的传输配置信息;
所述第二设备从所述N个控制信道获取所述第二设备向所述第一设备发送的M个数据块的传输配置信息;
所述第二设备从所述N个控制信道获取所述第一设备发送给所述第二设备的Q个数据块和所述第二设备发送给所述第一设备的M-Q个数据块的传输配置信息;
所述第二设备从所述N个控制信道获取不同的两个所述第二设备之间传输的数据块的传输配置信息,其中Q为小于M的正整数。
可选地,所述M个数据块对应一个数据信道或者对应多个数据信道。
可选地,所述M个数据块为一个数据信道的M个组成部分或M个子数据信道。
可选地,所述子数据信道具有被独立解码的能力。
可选地,接收模块还设置为:接收数据信道解调参考信号,根据所述数据信道解调参考信号估计所述M个数据块的信道信息;所述第二设备接收并解调所述M个数据块。
可选地,所述装置还设置为:在获取模块从所述N个控制信道获取M个数据块的传输配置信息之后,根据所述传输配置信息接收所述M个数据块。
可选地,所述M个数据块具有相同的接收方式,其中,所述接收方式包括以下至少之一:
接收波束或预编码权值或波束赋形权值;
接收方案,其中,所述接收方案包括:单天线接收、多天线分集接收、单波束接收、多波束接收、宽波束接收、窄波束接收、单RF链路接收、多RF链路接收。
根据本发明的又一个实施例,提供了一种通信信道的传输系统,包括:第一设备、第二设备,所述第一设备中包括:发送模块,设置为向第二设 备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数;所述第二设备中包括:接收模块,设置为接收来自所述第一设备的N个控制信道;获取模块,设置为从所述N个控制信道获取M个数据块的传输配置信息。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本发明实施例,第一设备向第二设备发送N个控制信道,其中,N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。由于第一设备和第二设备之间的控制信道多于一个,可以指示数据在不同的数据信道中传输,实现了多个控制信道对多个数据信道的并行管理,因此可以解决相关技术中在使用控制信道和数据信道传输数据时可靠性和实时性差的问题。提高了数据传输的可靠性,提供了更低时延的控制和数据信道。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明相关技术的控制信道和数据信道对应不同接收波束下的控制信道解码时延示意图;
图2是根据本发明实施例的一种通信信道的传输方法的流程图;
图3是根据本发明实施例的另一种通信信道的传输方法的流程图;
图4是根据本发明实施例的一种通信信道的传输装置的结构框图;
图5是根据本发明实施例的一种通信信道的传输系统的结构框图;
图6是本发明实施例中N个控制信道分别调度N个数据信道的示意图;
图7是本发明实施例中N个控制信道分别调度N个数据信道情况下N个控制信道与N个数据信道之间的一种对应关系的示意图;
图8是本发明实施例中N个控制信道分别调度N个数据信道情况下N个控制信道与N个数据信道之间的另一种对应关系的示意图;
图9是本发明实施例中N个控制信道调度一个数据信道的示意图;
图10是本发明实施例中N个控制信道调度M个数据信道的示意图;
图11是本发明实施例中一个控制信道调度M个数据信道的示意图;
图12是本发明实施例中一个控制信道调度M个数据信道且M个数据信道具有相同的发送波束的示意图;
图13是本发明实施例中一个控制信道调度M个数据信道且M个数据信道具有不同的发送波束的示意图;
图14是本发明实施例中N个控制信道中L类控制信道调度M个数据信道的示意图;
图15是本发明实施例中N个控制信道M个数据块的解调参考信号配置第一示意图;
图16是本发明实施例中N个控制信道M个数据块的解调参考信号配置第二示意图;
图17是本发明实施例中N个控制信道M个数据块的解调参考信号配置第三示意图;
图18是本发明实施例中N个控制信道M个数据块的解调参考信号配 置第四示意图;
图19是本发明实施例中N个控制信道M个数据块的解调参考信号配置第五示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种通信信道的传输方法,图2是根据本发明实施例的一种通信信道的传输方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,第一设备向第二设备发送N个控制信道,其中,N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
通过上述步骤,第一设备向第二设备发送N个控制信道,其中,N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。由于第一设备和第二设备之间的控制信道多于一个,可以指示数据在不同的数据信道中传输,实现了多个控制信道对多个数据信道的并行管理,因此可以解决相关技术中在使用控制信道和数据信道传输数据时可靠性和实时性差的问题。提高了数据传输的可靠性,提供了更低时延的控制和数据信道。
可选地,上述步骤的执行主体第一设备可以为数据传输的一端,可以是网络侧设备,如基站,但也可以是终端等,但不限于此。
图3是根据本发明实施例的另一种通信信道的传输方法的流程图,如 图3所示,该流程包括如下步骤:
步骤S302,第二设备接收来自第一设备的N个控制信道;
步骤S304,第二设备从N个控制信道获取M个数据块的传输配置信息,其中,M和/或N为大于1的正整数。
可选地,上述步骤的执行主体第二设备可以为数据传输的另一端,可以是终端侧设备,但也可以是基站等,但不限于此。
可选地,本实施例的方案可以适用于各种无线通信系统,例如高频通信系统,同时也适用于其它使用波束成形的通信系统中。
可选地,本实施例方案中所提到的“波束”可以通过“预编码权值”或“波束赋形权值”等其它描述形式来替代,还可以通过波束标识(identity,简称为ID)来表征,优选地,不同的波束ID用于区分不同的发送波束或者不同的发送和接收波束对。
本实施例提出一种控制信道传输方法,包括以下步骤:
第一设备向第二设备发送N个控制信道,用于向第二设备指示M个数据块的传输配置信息。其中,M和/或N为正整数。
可选的,第一设备为控制信道的发送端,第二设备为控制信道的接收端。例如在蜂窝网通信系统下,第一设备为基站,第二设备为终端。又如在无线回程(backhual)通信中,第一设备为基站1,第二设备为基站2。
优选地,本发明N个控制信道仅针对一个接收端,M个数据块承载的也是该接收端的数据业务。
在本实施例中,N个控制信道之间的关系包括以下两种方式:
方式一:N个控制信道中包括N1个主控制信道和N-N1个从控制信道,其中N1为小于等于N的正整数,当然,N个控制信道中也可以包括主控制信道和从控制信道之外的其他资源。N个控制信道中包括至少一个主控制信道,该主控制信道被第一设备以相同波束/预编码权值/波束赋形权值或者不同波束/预编码权值/波束赋形权值重复发送给第二设备,该主控制信 道被重复发送的次数为N1次,N个控制信道中,包含N1个主控制信道,N1个主控制信道为同一主控制信道的N1份重复发送,N1为小于等于N的正整数,N1份重复发送是在N1个不同发送波束上的重复发送;或者,N1份重复发送是在N1个不同的时域和/或频域资源上的重复发送。
优选地,从控制信道在时域上位于至少一个主控制信道之后。
从控制信道采用与主控制信道相同的发送方式和/或接收方式,或者基站和终端预先约定从控制信道的发送方式和/或接收方式,或者从控制信道的发送方式和/或接收方式和主控制信道的发送方式和/或接收方式存在固定的某种绑定关系,或者从控制信道所采用的发送方式和/或接收方式通过主控制信道来指示。其中,发送方式包括控制信道的发送波束/预编码权值/波束赋形权值、发送方案(单天线传输/传输分集/开环多输入多输出(Multiple Input Multiple Output,简称为MIMO)/闭环MIMO)、调制编码等级、解调参考信号中至少之一,接收方式包括控制信道的接收波束/(接收)预编码权值/(接收)波束赋形权值、接收方案(单天线接收、多天线分集接收、单波束接收、多波束接收、宽波束接收、窄波束接收、单RF射频链路、多RF射频链路)中至少之一。
可选地,从控制信道和主控制信道可以采用不同的编码方案、编码效率、调制等级等。优选地,主控制信道的编码码率小于等于从控制信道的编码码率,这样做的好处是,使得主控制信道的传输鲁棒性更高一些。
控制信道所指示的M个数据块的传输配置信息包括M个数据块的传输方案(单天线传输/传输分集/开环MIMO/闭环MIMO)、M个数据块所采用的发送/接收波束/预编码权值/波束赋形权值、M个数据块传输所占用的时域资源、M个数据块传输所占用的频域资源、M个数据块传输所采用的调制等级(例如正交相移键控(Quadrature Phase Shift Keying,简称为QPSK)、16正交振幅调制(Quadrature Amplitude Modulation,简称为QAM)、64QAM等)、M个数据块传输所采用的编码等级(例如编码方案、编码效率等)、M个数据块所采用的解调参考信号(例如解调参考信号序 列、解调参考信号端口、解调参考信号的时频资源位置等)。
主控制信道除了向第二设备指示数据块的传输资源信息之外,还可以向第二设备指示N个控制信道中是否包括至少一个从控制信道、N个控制信道中从控制信道的数目、从控制信道的时频资源位置、从控制信道的重复发送次数、主控制信道的重复发送次数、主控制信道的重复发送次数中当前发送次数计数器的值、M个数据块中至少一个数据块的传输配置信息、M个数据块的公有传输配置信息中的至少一项、数据块数目M的值、控制信道数据N的值、从控制信道的调制等级、从控制信道的编码等级、从控制信道的解调参考信号、M个数据块中至少一个数据块的传输方向、N个控制信道中至少一个从控制信道的类型中至少其中一项信息。其中,公有传输配置信息指M个数据块传输配置一样的或者共同的传输配置信息,包括M个数据块的传输方案(单天线传输/传输分集/开环/闭环MIMO)、M个数据块传输所采用的发送/接收波束/预编码权值/波束赋形权值、M个数据块传输所采用的调制等级、M个数据块传输所采用的编码等级、M个数据块传输所采用的解调参考信号,数据块的传输方向包括由第一设备发送给第二设备或者由第二设备发送给第一设备,从控制信道类型包括从控制信道为用于指示由第一设备发送给第二设备的传输配置信息或者为用于指示由第二设备发送给第一设备的传输配置信息。
方式二:N个控制信道之间是独立且并列的关系,即不存在谁通知谁或者谁控制谁的问题,不存在主控制信道和从控制信道的概念。这N个并列的控制信道向第二设备指示M个数据块的传输配置信息。
可选的,M个数据块具有以下特征:
M个数据块可能是第一设备发送给第二设备的M个数据块,或者是第二设备发送给第一设备的M个数据块,或者是不同的两个第二设备之间传输的M个数据块,或者M个数据块中同时包括了第一设备发送给第二设备的Q个数据块和第二设备发送给第一设备的M-Q个数据块,其中Q为小于M的正整数。可选的,所述M个数据块可以采用相同的传输方 式,传输方式可以是发送方式或接收方式。
M个数据块对应一个数据信道或者多个数据信道。具体地,M个数据块为一个数据信道的M个组成部分或者M个子数据信道,或者M个数据块分别为M个数据信道。其中,一个数据信道的M个组成部分之间交集为空,并集为一个数据信道。子数据信道具有能够被独立解码的能力,即接收端接收到一个子数据信道之后就可以直接对其进行解码,获得该部分数据块的内容,而不需要等待其他的子数据信道都接收完之后才能对其解码。
优选地,M个子数据信道具有相同的发送方式和/或接收方式。其中,发送方式包括子数据信道发送所采用的发送波束/预编码权值/波束赋形权值、发送方案(单天线传输/传输分集/开环MIMO/闭环MIMO)、调制编码等级、解调参考信号中至少之一,接收方式包括接收子数据信道所采用的接收波束/(接收)预编码权值/(接收)波束赋形权值、接收方案(单天线接收/多天线分集接收、单波束接收/多波束接收、宽波束接收/窄波束接收)中至少之一。
当然,作为本实施例的另一个实施方式,M个子数据信道之间也可以具有不同的发送方式和/或接收方式。其中,发送方式包括子数据信道发送所采用的发送波束/预编码权值/波束赋形权值、发送方案(单天线传输/传输分集/开环MIMO/闭环MIMO)、调制编码等级、解调参考信号中至少之一,接收方式包括接收子数据信道所采用的接收波束/(接收)预编码权值/(接收)波束赋形权值、接收方案(单天线接收/多天线分集接收、单波束接收/多波束接收、宽波束接收/窄波束接收)中至少之一。
可选的,N个控制信道与M个数据块之间的关系具有以下特征:
所述N个控制信道包括L类控制信道,其中,L为小于等于N的正整数,L类控制信道中第i类控制信道中包含Li个控制信道,i为小于等于L的正整数,Li为小于等于N的正整数,且
Figure PCTCN2017094480-appb-000005
可选的,Li个控制信道为同一控制信道的Li份重复发送。Li份重复发送是在Li个不同发送波束 上的重复发送;或者,Li份重复发送是在Li个不同的时域和/或频域资源上的重复发送。不同发送波束通过不同的波束标识ID进行表征
L类控制信道分别用于指示M个数据块的传输配置信息,其中,在L的值等于M时,L类控制信道中的第i类控制信道用于指示M个数据块中的第i个数据块的传输配置信息。
可选的,L类控制信道分别用于指示M个数据块的传输配置信息的不同组成部分,其中,L类控制信道中的第i类控制信道用于指示M个数据块的第i部分传输配置信息。M个数据块的传输配置信息包括L个不同组成部分,其中,L个不同组成部分中任意两部分传输配置信息之间的交集为空,L部分传输配置信息的并集为M个数据块的传输配置信息。
可选的,还可以为L类控制信道中的第i类控制信道为配置第i解调参考信号资源的控制信道。
可选的,第i解调参考信号在时域上位于第i类控制信道之前或者第i类控制控制的时域开始位置。
优选地,N个控制信道的解调参考信号资源包括以下几种配置方式:
方式一:
当N个控制信道包括N1个主控制信道和N-N1个从控制信道时,分别为主控制信道和从控制信道独立配置解调参考信号资源,即分别为主控制信道和从控制信道配置第一解调参考信号资源和第二参考信号资源。优选地,第一解调参考信号资源在时域上位于主控制信道之前,第二解调参考信号在时域上位于从控制信道之前。其中,这里的解调参考信号资源包括解调参考信号端口、解调参考信号序列、产生解调参考信号序列的参数、解调参考信号占用的时域资源、解调参考信号占用的频域资源中至少之一。
接收端分别根据接收到第一参考信号资源和第二参考信号资源对主控制信道和从控制信道的信道进行估计,接收并解调主控制信道和从控制信道。
方式二:
当N个控制包括L类控制信道时,分别为L类控制配置独立的解调参考信号资源,即为L类控制信道中第i类控制信道配置第i解调参考信号资源。优选地,第i解调参考信号资源在时域上位于第i类控制信道之前。这里的解调参考信号资源包括解调参考信号端口、解调参考信号序列、产生解调参考信号序列的参数、解调参考信号占用的时域资源、解调参考信号占用的频域资源中至少之一。
接收端根据第i解调参考信号对第i类控制信道的信道进行估计,接收并解调第i类控制信道。
方式三:
为N个控制分别配置独立的解调参考信号资源,即为N个控制信道中第k个控制信道配置第k解调参考信号资源。优选地,第k解调参考信号资源在时域上位于第k个控制信道之前。这里的解调参考信号资源包括解调参考信号端口、解调参考信号序列、产生解调参考信号序列的参数、解调参考信号占用的时域资源、解调参考信号占用的频域资源中至少之一。
接收端根据第k解调参考信号对第k个控制信道的信道进行估计,接收并解调第k个控制信道。
优选地,M个数据块的解调参考信号资源包括以下几种配置方式:
方式一:
为M个数据块配置一个解调参考信号资源,即这M个数据块共享同一个解调参考信号资源。优选地,解调参考信号资源在时域上位于M个数据块之前。这里的解调参考信号资源包括解调参考信号端口、解调参考信号序列、产生解调参考信号序列的参数、解调参考信号占用的时域资源、解调参考信号占用的频域资源中至少之一。
接收端根据该解调参考信号资源,对M个数据块的信道进行估计,接收并解调M个数据块。
方式二:
为M个数据块分配配置独立的解调参考信号资源,即为M个数据块中的第j个数据块配置第j解调参考信号资源。优选地,第j解调参考信号资源在时域上位于第j个数据块之前。这里的解调参考信号资源包括解调参考信号端口、解调参考信号序列、产生解调参考信号序列的参数、解调参考信号占用的时域资源、解调参考信号占用的频域资源中至少之一。
接收端根据第j解调参考信号资源,对第j个数据块的信道进行估计,接收并解调第j个数据块。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种通信信道的传输装置、系统,用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本实施例还提供了一种通信信道的传输装置的结构框图,可以设置和应用在第一设备中,该装置包括:发送模块40,设置为向第二设备发送N个控制信道,其中,N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
图4是根据本发明实施例的一种通信信道的传输装置的结构框图, 可以设置和应用在第二设备中,如图4所示,包括:
接收模块40,设置为接收来自第一设备的N个控制信道;
获取模块42,设置为从N个控制信道获取M个数据块的传输配置信息,其中,M和/或N为大于1的正整数。
图5是根据本发明实施例的一种通信信道的传输系统的结构框图,如图5所示,包括::第一设备50、第二设备52,所述第一设备50中包括:发送模块502,设置为向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数;
所述第二设备52中包括:接收模块522,设置为接收来自所述第一设备的N个控制信道;获取模块524,设置为从所述N个控制信道获取M个数据块的传输配置信息。
可选的,N个控制信道中包括N1个主控制信道和N2个从控制信道,其中,N1和N2为小于等于N的正整数。
在本实施例中,主控制信道向第二设备指示以下信息中的至少之一:N个控制信道中是否存在至少一个从控制信道;N个控制信道中存在的从控制信道的数目;从控制信道的时频资源位置;从控制信道的重复发送次数;主控制信道的重复发送次数;主控制信道的重复发送次数中当前发送次数计数器的值;M个数据块中至少一个数据块的传输配置信息;M个数据块的公有传输配置信息中的至少一项;数据块数目M的赋值;控制信道数目N的赋值;M个数据块中至少一个数据块的传输方向,其中,数据块的传输方向包括:由第一设备发送给第二设备或者由第二设备发送给第一设备;N个控制信道中至少一个从控制信道的类型,其中,从控制信道的类型包括:从控制信道为用于指示由第一设备发送给第二设备的传输配置信息或者为用于指示由第二设备发送给第一设备的传输配置信息。
可选的,所述N个控制信道包括L类控制信道,其中,L为小于等于N的正整数,L类控制信道中第i类控制信道中包含Li个控制信道,i为小 于等于L的正整数,Li为小于等于N的正整数,且
Figure PCTCN2017094480-appb-000006
可选的,所述L类控制信道分别用于指示所述M个数据块的传输配置信息,其中,在所述L的值等于M时,所述L类控制信道中的第i类控制信道用于指示所述M个数据块中的第i个数据块的传输配置信息。
可选的,所述L类控制信道分别用于指示所述M个数据块的传输配置信息的不同组成部分,其中,所述L类控制信道中的第i类控制信道用于指示所述M个数据块的第i部分传输配置信息。
可选的,所述M个数据块对应一个数据信道或者对应多个数据信道。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例包括多个具体实施例,用于结合不同的场景对本申请进行详细说明:
具体实施例1
图6是本发明实施例中N个控制信道分别调度N个数据信道的示意图,如图6所示,基站向终端1(UE1)发送的数据业务被划分为N(图中N=2)个数据块,分别用N个数据信道传输,并且在数据信道传输之前,基站向终端发送N个控制信道分别用于调度上述N个数据信道,即这N个控制信道分别用于向终端指示这N个数据信道的传输配置信息。其中,传输配置信息包括数据块的传输方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、数据块传输所采用的发送/接收波束/预编码权值/波束赋形权值、数据块传输所占用的时域资源、数据块传输所占用的频域资源、数据块传输所采用的调制等级、数据块传输所采用的编码等级、数据块传输所采用的解调参考信号等。
N个控制信道中有一个是主控制信道,剩余的控制信道被称为从控制信道。主控制信道是必需的,从控制信道有些情况下有,有些情况下没有, 从控制信道的是否存在以及存在几个从控制信道受到主控制信道的控制。即基站通过主控制信道向终端通知是否存在从控制信道、存在几个从控制信道、从控制信道的时频资源位置等。从控制信道通常在时域上位于主控制信道之后,即通过在主控制信道发送之后才发送从控制信道。例如图6中,PDCCH 1为主控制信道,PDCCH 2为从控制信道,基站通过PDCCH 1向终端指示了具有1个从控制信道(PDCCH 2)以及从控制信道PDCCH2的时频资源位置等。
基站通过主控制信道PDCCH 1和从控制信道PDCCH 2分别向终端1指示基站向终端1发送的数据信道PDSCH 1和PDSCH 2的传输配置信息。具体地这里可能有两种方式,一种方式是主控制信道PDCCH 1和从控制信道PDCCH 2各分别独立指示PDSCH 1的传输配置信息和PDSCH 2的传输配置信息,即主控制信道PDCCH 1向终端1指示PDSCH 1的全部传输配置信息,从控制信道PDCCH 2向终端1指示PDSCH 2的全部传输配置信息,图7是本发明实施例中N个控制信道分别调度N个数据信道情况下N个控制信道与N个数据信道之间的一种对应关系的示意图,如图7所示;另一种方式是主要控制信道PDCCH 1指示数据信道PDSCH 1和PDSCH 2的公共的传输配置信息和PDSCH 1独有的传输配置信息,PDCCH 2仅指示PDSCH 2独有的传输配置信息,图8是本发明实施例中N个控制信道分别调度N个数据信道情况下N个控制信道与N个数据信道之间的另一种对应关系的示意图,如图8所示,例如主控制信道PDCCH 1向终端1指示PDSCH 1的传输方案(单天线传输/传输分集/开环MIMO/闭环MIMO)、PDSCH 1传输所采用的发送/接收波束/预编码权值/波束赋形权值、PDSCH 1所采用的调制编码等级、PDSCH 1所采用的解调参考信号、PDSCH 1所占用的时频资源,而PDCCH 2仅用于向终端1指示PDSCH 2所占用的时频资源,基站将PDSCH 2的其它传输配置信息(传输方案、发送/接收波束/预编码权值/波束赋形权值、调制编码等级、解调参考信号)配置成与PDSCH 1是相同的,即这些传输配置信息是PDSCH 1和PDSCH 2的公有传输配置信息,终端1通过接收PDCCH 1就可以获 得PDSCH 2的这些传输配置信息,再通过接收PDCCH 2获得PDSCH 2的独有的传输配置信息即时频资源位置信息,进而按照这些传输配置信息分别对PDSCH 1和PDSCH 2进行接收。
主控制信道PDCCH 1和从控制信道PDCCH 2的传输具有相同的发送方式和接收方式。这里的发送方式包括主控制信道和从控制信道传输所采用的发送波束/预编码权值/波束赋形权值、发送方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、解调参考信号中至少之一。这里的接收方式包括主控制信道和从控制信道的接收波束/预编码权值/波束赋形权值、接收方案(例如单天线接收/多天线分集接收、单波束接收/多波束接收、宽波束接收/窄波束接收)中至少之一。基站为主控制信道PDCCH 1和从控制信道PDCCH 2配置相同的发送方式,终端默认按照相同的接收方式接收这两种控制信道。因而,这两种控制信道之间不存在解码延迟带来的从控制信道不能准确接收的问题。
作为本发明实施例的又一种实现方式,主控制信道发送之后,从控制信道也可以按照预先约定的发送方式进行发送,或者根据主控制信道的发送方式可以确定从控制信道的发送方式,或者主控制信道中向终端指示了从控制信道的发送方式。终端假设从控制信道和主控制信道采用相同的接收方式,即终端将采用与主控制信道相同的接收方式去接收从控制信道。例如,为了节省从控制信道所占用的资源,从控制信道可以按照预先定义的方式采用比主控制信道更高的调制编码速率、更简单的发送方案例如按照单天线或两天线传输分集进行发送。总的来说,从控制信道也可以采用与主控制信道不同的发送方式进行发送,但所采用的发送方式是基站和终端预先约定好的、或者跟主控制信道的发送方式有某种绑定关系、或者可以从接收到的主控制信道中的信息获得。
作为本发明实施例的又一种实现方式,控制信道所调度的数据信道也可以是上行数据信道。例如图6中的数据信道也可以是用于承载上行数据的物理上行共享信道(PUSCH,Physical Uplink Shared Channel),图6中的下行控制信道承载上行授权信息(前面是下行授权信息),用于指示终 端发送给基站的上行数据块的传输配置信息。或者N个控制信道所调度的N个数据信道中,既存在上行数据信道(PUSCH)又存在下行数据信道(PDSCH)。
具体实施例2
图9是本发明实施例中N个控制信道调度一个数据信道的示意图,如图9所示,基站向终端1(UE1)发送的数据业务用一个数据信道即一个PDSCH传输,并且在该数据信道传输之前,基站向终端1发送N(图9中N=2)个控制信道(即图9中PDCCH1和PDCCH2)用于调度该数据信道PDSCH,即基站使用2个控制信道向终端1指示数据信道PDSCH的传输配置信息。其中,传输配置信息包括数据信道的传输方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、数据信道传输所采用的发送/接收波束/预编码权值/波束赋形权值、数据信道传输所占用的时域资源、数据信道传输所占用的频域资源、数据信道传输所采用的调制等级、数据信道传输所采用的编码等级、数据信道传输所采用的解调参考信号等。
2个控制信道中PDCCH1为主控制信道,PDCCH2为从控制信道。主控制信道PDCCH1向终端1指示第一类传输配置信息,从控制信道PDCCH2向终端1指示第二类传输配置信息。其中,第一类传输配置信息便于终端1在数据信道区域并且在PDCCH2解码造成的延时期间至少能够先将对应的PDSCH部分接收并缓存起来,以便在PDCCH2解码完成之后,终端1按照PDCCH1和PDCCH2共同所指示的传输配置信息对PDSCH进行接收和解码。例如第一类传输配置信息中包括PDSCH传输所采用的发送/接收波束/预编码权值/波束赋形权值、PDSCH传输所占用的时频资源,而第二类传输配置信息中包括PDSCH的全部传输配置信息中的除第一类传输配置信息之外的剩余传输配置信息,例如包括PDSCH的传输方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、PDSCH传输所采用的调制编码等级、PDSCH传输所采用的解调参考信号等。
主控制信道中还可以向终端指示是否存在从控制信道,在本实施例中 若主控制信道向终端指示了从控制信道的存在,基站和终端默认为从控制信道只有1个,即主控制信道中可以通过1比特向终端指示主控制信道之后是否存在从控制信道,例如比特值为0时向终端指示从控制信道个数为0,比特值为1时向终端指示从控制信道个数为1。
优选地,从控制信道和主控制信道采用相同的发送方式和接收方式,基站使用与主控制信道相同的发送方式发送从控制信道,终端假设从控制信道和主控制信道使用了相同的发送方式并使用与主控制信道相同的接收方式接收从控制信道。这里的发送方式包括主控制信道和从控制信道传输所采用的发送波束/预编码权值/波束赋形权值、发送方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、解调参考信号中至少之一。这里的接收方式包括主控制信道和从控制信道的接收波束/预编码权值/波束赋形权值、接收方案(例如单天线接收/多天线分集接收、单波束接收/多波束接收、宽波束接收/窄波束接收)中至少之一。
作为本发明实施例的又一种实现方式,从控制信道也可以按照约定的发送/接收方式进行发送和接收,或者从控制信道的发送/接收方式和主控制信道的发送/接收方式之间存在某种约定的关系(或者称为绑定关系),或者从控制信道的发送/接收方式直接通过主控制信道去指示。当从控制信道的发送/接收方式和主控制信道的发送/接收方式之间存在某种约定的关系,基站根据该约定关系确定从控制信道的发送方式,终端根据该约定方式获得从控制信道的发送方式信息并确定从控制信道的接收方式,按照该接收方式接收从控制信道。
作为本发明实施例的有一种实现方式,控制信道所调度的数据信道也可以是上行数据信道。例如图9中的数据信道也可以是用于承载上行数据的物理上行共享信道(PUSCH,Physical Uplink Shared Channel),图9中的下行控制信道承载上行授权信息(前面是下行授权信息),用于指示终端发送给基站的上行数据块的传输配置信息。
具体实施例3
图10是本发明实施例中N个控制信道调度M个数据信道的示意图,如图10所示,基站向终端1(UE1)发送的数据业务用M(图10中M=4)个数据信道(PDSCH1~4)传输,并且在数据信道传输之前,基站向终端1发送N(图10中N=2)个控制信道(即图10中PDCCH1和PDCCH2)用于调度4个数据信道,即基站使用2个控制信道向终端1指示数据信道PDSCH1~4的传输配置信息。其中,一个数据信道的传输配置信息包括该数据信道的传输方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、数据信道传输所采用的发送/接收波束/预编码权值/波束赋形权值、数据信道传输所占用的时域资源、数据信道传输所占用的频域资源、数据信道传输所采用的调制等级、数据信道传输所采用的编码等级、数据信道传输所采用的解调参考信号等。
两个控制信道中PDCCH1为主控制信道,PDCCH2为从控制信道。将四个数据信道PDSCH1~4的所有传输配置信息划分为两部分,主控制信道PDCCH1向终端1指示第一部分传输配置信息,从控制信道PDCCH2向终端1指示第二部分传输配置信息。其中,这两部分传输配置信息之间交集为空,并集为四个数据信道PDSCH1~4的所有传输配置信息。例如,第一部分传输配置信息为M个数据信道的公有传输配置信息,第二部分传输配置信息为M个数据信道的专有传输配置信息的集合,或者第一部分传输配置信息为M个数据信道的公有传输配置信息和第一个数据信道的专有传输配置信息,第二部分传输配置信息为M个数据信道中除第一数据信道之外的M-1个数据信道的专有传输配置信息的集合。其中,所述公有传输配置信息包括数据信道的传输方案(单天线传输/传输分集/开环MIMO/闭环MIMO)、数据信道传输所采用的发送/接收波束/预编码权值/波束赋形权值、数据信道传输所采用调制等级、数据信道信道传输所采用的编码等级、数据信道传输所采用的解调参考信号中至少其中一项信息。
优选地,各个部分传输配置信息之间的交集也可以不为空,例如数据信道的一些重要传输配置信息可以在多个控制信道上重复传输,以提高这些传输配置信息的传输可靠性或鲁棒性。
主控制信道中还可以向终端指示是否存在从控制信道,在本实施例中若主控制信道向终端指示了从控制信道的存在,基站和终端默认为从控制信道只有1个,即主控制信道中可以通过1比特向终端指示主控制信道之后是否存在从控制信道,例如比特值为0时向终端指示从控制信道个数为0,比特值为1时向终端指示从控制信道个数为1。
优选地,从控制信道和主控制信道采用相同的发送方式和接收方式,基站使用与主控制信道相同的发送方式发送从控制信道,终端假设从控制信道和主控制信道使用了相同的发送方式并使用与主控制信道相同的接收方式接收从控制信道。这里的发送方式包括主控制信道和从控制信道传输所采用的发送波束/预编码权值/波束赋形权值、发送方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、解调参考信号中至少之一。这里的接收方式包括主控制信道和从控制信道的接收波束/预编码权值/波束赋形权值、接收方案(例如单天线接收/多天线分集接收、单波束接收/多波束接收、宽波束接收/窄波束接收)中至少之一。
优选地,各个数据信道之间采用相同的发送方式和/或接收方式,基站将使用相同的发送方式发送各个数据信道,终端假设M个数据信道采用相同的发送方式,并使用相同的接收方式对这M个数据信道进行接收。这里的发送方式包括数据信道传输所采用的发送波束/预编码权值/波束赋形权值、发送方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、解调参考信号中至少之一。这里的接收方式包括数据信道传输所采用的接收波束/预编码权值/波束赋形权值、接收方案(例如单天线接收/多天线分集接收、单波束接收/多波束接收、宽波束接收/窄波束接收)中至少之一。
作为本发明实施例的又一种实现方式,从控制信道也可以按照约定的发送/接收方式进行发送和接收,或者从控制信道的发送/接收方式和主控制信道的发送/接收方式之间存在某种约定的关系(或者称为绑定关系),或者从控制信道的发送/接收方式直接通过主控制信道去指示。当从控制信道的发送/接收方式和主控制信道的发送/接收方式之间存在某种约定的关系,基站根据该约定关系确定从控制信道的发送方式,终端根据该约定方 式获得从控制信道的发送方式信息并确定从控制信道的接收方式,按照该接收方式接收从控制信道。
作为本发明实施例的有一种实现方式,控制信道所调度的数据信道也可以是上行数据信道。例如图6中的数据信道也可以是用于承载上行数据的物理上行共享信道(PUSCH,Physical Uplink Shared Channel),图10中的下行控制信道承载上行授权信息(前面是下行授权信息),用于指示终端发送给基站的上行数据块的传输配置信息。或者M个数据信道中,既存在上行数据信道(PUSCH)又存在下行数据信道(PDSCH)。
具体实施例4
图11是本发明实施例中一个控制信道调度M个数据信道的示意图,如图11所示,基站向终端1(UE1)发送的数据业务用M(图11中M=4)个数据信道(PDSCH1~4)传输,并且在数据信道传输之前,基站向终端1发送N(图11中N=1)个控制信道(即图11中PDCCH)用于调度4个数据信道,即基站使用1个控制信道向终端1指示数据信道PDSCH1~4的传输配置信息。
其中,每个数据信道的传输配置信息包括该数据信道的传输方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、数据信道传输所采用的发送/接收波束/预编码权值/波束赋形权值、数据信道传输所占用的时域资源、数据信道传输所占用的频域资源、数据信道传输所采用的调制等级、数据信道传输所采用的编码等级、数据信道传输所采用的解调参考信号等。
这四个数据信道的传输配置信息可能具有相同或不同的发送方式和/或接收方式。图12是本发明实施例中一个控制信道调度M个数据信道且M个数据信道具有相同的发送波束的示意图,例如图12所示,这四个数据信道采用相同的发送波束发送,图13是本发明实施例中一个控制信道调度M个数据信道且M个数据信道具有不同的发送波束的示意图,而如图13所示,这四个数据信道分别采用不同的发送波束发送。
控制信道所采用的发送方式和接收方式可能跟数据信道所采用的发送/接收方式相同,也可能不同。例如图12中,控制信道采用与数据信道相同的发送波束发送,而当数据信道分别采用不同的发送波束发送,而控制信道只有一个时,控制信道只能采用更宽的波束发送,而且该宽波束的覆盖范围包括每个数据信道的发送波束的覆盖范围,例如图13中,控制信道采用与数据信道不同的发送波束发送,而且控制信道的波束宽度要比单个数据信道的波束宽度宽。
优选地,若这四个数据信道的传输配置信息很多都是一样的,例如数据信道的传输方案(例如单天线传输/传输分集/开环MIMO/闭环MIMO)、数据信道传输所采用的发送/接收波束/预编码权值/波束赋形权值数据信道传输所采用的调制等级、数据信道传输所采用的编码等级、数据信道传输所采用的解调参考信号等,控制信道只需要对四个数据信道传输一套传输参数配置信息即可,只是将四个数据信道独立所具有的传输配置信息再分别进行指示,例如至少需要对四个数据信道的时频资源需要独立进行指示。
在接收端,由于UE1的数据业务被划分为四个数据信道进行传输(PDSCH1~4),UE1在接收到控制信道(PDCCH)的指示信息之后,可以分别对四个数据信道独立进行解码,因此先传输的数据信道将先被解码出来,而不必等到所有的数据信道都被接收到才开始进行解码。
作为本发明实施例的有一种实现方式,控制信道所调度的数据信道也可以是上行数据信道。例如图10中的数据信道也可以是用于承载上行数据的物理上行共享信道(PUSCH,Physical Uplink Shared Channel),图10中的下行控制信道承载上行授权信息(前面是下行授权信息),用于指示终端发送给基站的上行数据块的传输配置信息。或者M个数据信道中,既存在上行数据信道(PUSCH)又存在下行数据信道(PDSCH)。
具体实施例5
图14是本发明实施例中N个控制信道中L类控制信道调度M个数据 信道的示意图,如图14所示,基站向终端1(UE1)发送的数据业务被划分为M(图14中M=2)个数据信道,用N(N=6)个控制信道传输。其中,6个控制信道中共包含两类控制信道,前N/2(=3)个控制信道为第一类控制信道,后N/2(=3)个控制信道为第二类控制信道。优选地,前3个控制信道为PDCCH1以相同波束或不同波束重复发送了3次,后3个控制信道为PDCCH2以相同波束或不同波束重复发送了3次。在本发明实施例中,前N/2(=3)个控制信道用于向UE1指示其第一个数据信道的传输配置信息,后N/2(=3)个控制信道用于向UE1指示其第二个数据信道的传输配置信息。
作为本发明的实施例的又一种实现方式,前N/2(=3)个控制信道也可以用于指示M个数据信道的传输配置信息中的第一部分传输配置信息,后N/2(=3)个控制信道用于指示这M个数据信道的传输配置信息中的第二部分传输配置信息。其中,这M个数据信道的传输配置信息优选地指这M个数据信道各自的传输配置信息的并集;这M个数据信道的传输配置信息被划分为了两部分,其中这两部分传输配置信息之间交集为空,并集为这M个数据信道的传输配置信息。本发明实施例中的第一类控制信道(前N/2(=3)个控制信道)向终端指示这M个数据信道的第一部分传输配置信息,第二类控制信道(后N/2(=3)个控制信道)向终端指示这M个数据系电脑的第二部分传输配置信息。
当前/后3个控制信道以相同波束重复发送时,接收端可以采用不同的接收波束接收,以提高接收性能;当前/后3个控制信道以不同波束重复发送时,接收可以采用相同或不同的接收波束接收,这时控制信道的传输鲁棒性、覆盖范围通过在发送端的重复发送获得了提升。
具体实施例6
当N个控制信道包括N1个主控制信道和N-N1个从控制信道时,分别为主控制信道和从控制信道独立配置解调参考信号资源,即分别为主控制信道和从控制信道配置第一解调参考信号资源和第二参考信号资源。优选 地,所述第一解调参考信号资源在时域上位于主控制信道之前,所述第二解调参考信号在时域上位于从控制信道之前。图15是本发明实施例中N个控制信道M个数据块的解调参考信号配置第一示意图,图16是本发明实施例中N个控制信道M个数据块的解调参考信号配置第二示意图,例如图15/16所示,N=2且N1=1,假设PDCCH1为UE1的主控制信道,PDCCH2为UE1的从控制信道。则PDCCH1和PDCCH2分别具有独立配置的解调参考信号资源,并且解调参考信号在时域上分别位于对应的控制信道的前面,例如图15/16中,控制信道第一参考信号位于PDCCH1之前,而控制信道第二参考信号资源位于PDCCH2之前。接收端首先接收解调参考信号资源,通过控制信道解调参考信号估计PDCCH1传输信道信息,并对PDCCH1进行接收和解调,同理通过控制信道解调参考信号估计PDCCH2传输信道信息,并对PDCCH2进行接收和解调。通常控制信道与对应的解调参考信号资源采用相同的发送波束/预编码权值/波束赋形权值。
当N个控制包括L类控制信道时,分别为L类控制配置独立的解调参考信号资源,即为L类控制信道中第i类控制信道配置第i解调参考信号资源。优选地,第i解调参考信号资源在时域上位于所述第i类控制信道之前。图17是本发明实施例中N个控制信道M个数据块的解调参考信号配置第三示意图,图18是本发明实施例中N个控制信道M个数据块的解调参考信号配置第四示意图,例如图17/18所示,N=6且L=2,假设PDCCH1为第一类控制信道中的任意一个控制信道,PDCCH2为第二类控制信道中的任意一个控制信道,则为第一类控制信道(3个PDCCH1)和第二类控制信道(3个PDCCH2)分别配置独立的解调参考信号资源,即控制信道第一参考信号和控制信道第二参考信号资源,所有的第一类控制信道共享第一参考信号资源,所有的第二类控制信道共享第二参考信号资源,控制信道第一参考信号资源位于第一类控制信道之前,控制信道第二参考信号位于第二类控制信道之前。接收端首先接收接收参考信号资源,通过控制信道解调参考信号估计第一类控制信道的传输信道信息,并对第 一类控制信道进行接收和解调,同理通过控制信道解调参考信号估计第二类控制信道的传输信道信息,并对第二类控制信道进行接收和解调。优选地,同一类控制信道中的所有控制信道以相同波束进行发送时,为该类控制信道配置的解调参考信号的发送波束与该类控制信道的相同。作为本发明实施例的又一种实施方式,当位于同一类控制信道的所有控制信道以不同波束进行发送时,该类中的控制信道需要配置独立的参考信号资源,图19是本发明实施例中N个控制信道M个数据块的解调参考信号配置第五示意图,如图19所示,每个控制信道分别配置独立的解调参考信号资源,即第i个控制信道配置控制信道第i参考信号资源,且参考信号资源在时域上的位置位于对应的控制信道之前,如第一参考信号资源位于第一个控制信道(第一个PDCCH1)之前,第二参考信号资源位于第二个控制信道(第二个PDCCH1)之前,第三参考信号资源位于第三个控制信道(第三个PDCCH1)之前,第四参考信号资源位于第四个控制信道(第一个PDCCH2)之前,以此类推。
为所述M个数据块/数据信道配置一个解调参考信号资源,即这M个数据块/数据信道共享同一个解调参考信号资源。优选地,所述解调参考信号资源在时域上位于所述M个数据块/数据信道之前。例如图15/17所示,UE1的两个数据信道PDSCH1和PDSCH2共享一个解调参考信号资源,即仅为UE1的两个数据信道配置一个解调参考信号资源,且该参考信号资源在时域上位于这两个数据信道之前。UE1首先接收数据信道解调参考信号资源,通过该解调参考信号资源对这两个数据信道的传输信道进行估计,并对这两个数据信道进行接收和解调。优选地,这两个数据信道具有相同的发送波束,且该解调参考信号的发送波束与这两个数据信道的发送波束相同。
为所述M个数据块/数据信道分配配置独立的解调参考信号资源,即为所述M个数据块/数据信道中的第j个数据块/数据信道配置第j解调参考信号资源。优选地,所述第j解调参考信号资源在时域上位于所述第j个数据块/数据信道之前。例如图17/18所示,UE1的两个数据信道PDSCH1 和PDSCH2配置独立的解调参考信号资源,为PDSCH1配置数据信道第一参考信号资源,为PDSCH2配置数据信道第二参考信号资源,且数据信道第一参考信号资源位于PDSCH1之前,数据信道第二参考信号资源位于PDSCH2之前。UE1首先接收参考信号资源,根据接收到的第一参考信号资源对PDSCH1的传输信道进行估计,并对PDSCH1进行接收和解调,根据接收到的第二参考信号资源对PDSCH2的传输信道进行估计,并对PDSCH2进行接收和解调。优选地,这两个数据信道具有不同的发送波束,数据信道第一参考信号资源的发送波束与PDSCH1的发送波束相同,数据信道第二参考信号资源的发送波束与PDSCH的发送波束相同。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来 执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种通信信道的传输方法及装置、系统具有以下有益效果:由于第一设备和第二设备之间的控制信道多于一个,可以指示数据在不同的数据信道中传输,实现了多个控制信道对多个数据信道的并行管理,因此可以解决相关技术中在使用控制信道和数据信道传输数据时可靠性和实时性差的问题。提高了数据传输的可靠性,提供了更低时延的控制和数据信道。

Claims (71)

  1. 一种通信信道的传输方法,包括:
    第一设备向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
  2. 根据权利要求1所述的方法,其中,所述N个控制信道中至少包括一个主控制信道。
  3. 根据权利要求2所述的方法,其中,所述N个控制信道中还包括一个或多个从控制信道。
  4. 根据权利要求2所述的方法,其中,所述主控制信道向第二设备指示以下信息中的至少之一:
    所述N个控制信道中是否包括至少一个从控制信道;
    所述N个控制信道中从控制信道的数目;
    所述从控制信道的时频资源位置;
    所述从控制信道的重复发送次数;
    主控制信道的重复发送次数;
    主控制信道的重复发送次数中当前发送次数计数器的值;
    所述M个数据块中至少一个数据块的传输配置信息;
    所述M个数据块的公有传输配置信息中的至少一项;
    所述数据块数目M的赋值;
    所述控制信道数目N的赋值;
    所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备或者由第二设备发送给第一设备;
    所述N个控制信道中至少一个控制信道的传输类别,其中,所述控制信道的传输类别包括:所述控制信道为用于指示由第一设备发送给第二设备的数据块的传输配置信息或者为用于指示由第二设备发送给第一设备的数据块的传输配置信息。
  5. 基于权利要求3所述的方法,其中,所述从控制信道在时域上位于至少一个主控制信道之后。
  6. 基于权利要求3所述的方法,其中,还包括:
    所述从控制信道和所述主控制信道采用相同的发送方式;或者
    所述从控制信道的发送方式与所述主控制信道的发送方式存在对应关系;或者
    所述从控制信道的发送方式是由第一设备和第二设备预先约定好的;或者
    所述从控制信道的发送方式是通过主控制信道向第二设备指示的。
  7. 基于权利要求3所述的方法,其中,所述主控制信道的编码码率小于等于所述从控制信道的编码码率。
  8. 基于权利要求2所述的方法,其中,所述N个控制信道中,包含N1个主控制信道,其中,所述N1个主控制信道为同一主控制信道的N1份重复发送,N1为小于等于N的正整数。
  9. 基于权利要求8所述的方法,其中,所述N1份重复发送是在N1个不同发送波束上的重复发送;或者,所述N1份重复发送是在N1个不同的时域和/或频域资源上的重复发送。
  10. 基于权利要求3所述的方法,其中,所述方法还包括:
    为所述主控制信道配置第一解调参考信号资源,和/或,为所述从控制信道配置第二解调参考信号资源。
  11. 基于权利要求10所述的方法,其中,
    所述第一解调参考信号在时域上位于所述主控制信道之前或者位于所述主控制信道的时域开始位置;和/或
    所述第二解调参考信号在时域上位于所述从控制信道之前或者位于所述从控制信道的时域开始位置。
  12. 基于权利要求1所述的方法,其中,所述N个控制信道包括L类控制信道,其中,L为小于等于N的正整数,L类控制信道中第i类控制信道中包含Li个控制信道,i为小于等于L的正整数,Li为小于等于N的正整数,且
    Figure PCTCN2017094480-appb-100001
  13. 基于权利要求12所述的方法,其中,所述Li个控制信道为同一控制信道的Li份重复发送。
  14. 基于权利要求13所述的方法,其中,所述Li份重复发送是在Li个不同发送波束上的重复发送;或者,所述Li份重复发送是在Li个不同的时域和/或频域资源上的重复发送。
  15. 基于权利要求12所述的方法,其中,所述L类控制信道分别用于指示所述M个数据块的传输配置信息,其中,在所述L的值等于M时,所述L类控制信道中的第i类控制信道用于指示所述M个数据块中的第i个数据块的传输配置信息。
  16. 基于权利要求12所述的方法,其中,所述L类控制信道分别用于指示所述M个数据块的传输配置信息的不同组成部分,其中,所述L类控制信道中的第i类控制信道用于指示所述M个数据块的第i部分传输配置信息。
  17. 基于权利要求16所述的方法,其中,所述M个数据块的传 输配置信息包括L个不同组成部分,其中,L个不同组成部分中任意两部分传输配置信息之间的交集为空,L部分传输配置信息的并集为所述M个数据块的传输配置信息。
  18. 基于权利要求12所述的方法,其中,为所述L类控制信道中的第i类控制信道为配置第i解调参考信号资源的控制信道。
  19. 基于权利要求18所述的方法,其中,所述第i解调参考信号在时域上位于所述第i类控制信道之前或者第i类控制控制的时域开始位置。
  20. 基于权利要求1所述的方法,其中,所述传输配置信息包括以下至少之一:
    数据块的传输方案,其中,所述数据块的传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
    数据块传输所采用的发送和/或接收波束;
    数据块传输所采用的的发送和/或接收预编码权值;
    数据块传输所采用的发送和/或接收波束赋形权值;
    数据块传输所占用的时域资源;
    数据块传输所占用的频域资源;
    数据块传输所采用的调制等级;
    数据块传输所采用的编码等级;
    数据块传输所采用的解调参考信号。
  21. 基于权利要求4所述的方法,其中,所述M个数据块的公有传输配置信息包括所述M个数据块中每个数据块的传输配置信息中的相同的传输配置信息。
  22. 基于权利要求21所述的方法,其中,所述M个数据块的公有传输配置信息包括以下信息至少之一:
    所述M个数据块的传输方案,其中,所述传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
    所述M个数据块传输所采用的发送和/或接收波束;
    所述M个数据块传输所采用的调制等级;
    所述M个数据块传输所采用的编码等级;
    所述M个数据块传输所采用的解调参考信号。
  23. 基于权利要求1所述的方法,其中,所述M个数据块包括以下之一:
    所述第一设备向所述第二设备发送的M个数据块;
    所述第二设备向所述第一设备发送的M个数据块;
    所述第一设备向所述第二设备发送的Q个数据块和所述第二设备向所述第一设备发送的M-Q个数据块,其中,Q为小于M的正整数;
    两个不同的所述第二设备之间传输的M个数据块。
  24. 基于权利要求1所述的方法,其中,所述M个数据块对应一个数据信道或者对应多个数据信道。
  25. 基于权利要求24所述的方法,其中,所述M个数据块对应一个数据信道的M个组成部分或对应M个子数据信道。
  26. 基于权利要求24所述的方法,其中,所述M个数据块分别对应M个数据信道。
  27. 基于权利要求25所述的方法,其中,所述子数据信道具有被独立解码的能力。
  28. 基于权利要求1所述的方法,其中,在第一设备向第二设备发送N个控制信道之后,所述方法还包括:
    根据所述传输配置信息在所述第一设备和所述第二设备之间传输所述M个数据块。
  29. 基于权利要求28所述的方法,其中,所述M个数据块具有相同的传输方式,其中所述传输方式包括发送方式。
  30. 基于权利要求28所述的方法,其中,所述方法还包括以下之一:
    为所述M个数据块配置一个解调参考信号资源;
    为所述M个数据块分别配置解调参考信号资源,其中,为第j个数据块配置第j解调参考信号资源,j为正整数。
  31. 基于权利要求30所述的方法,其中,在为所述M个数据块配置一个解调参考信号资源时,所述解调参考信号资源在时域上位于所述M个数据块之前或者位于所述M个数据块的时域开始位置;或,在为所述M个数据块分别配置参考信号资源时,所述第j解调参考信号资源在时域上位于所述第j个数据块之前或者位于所述第j个数据块的时域开始位置。
  32. 基于权利要求6或29所述的方法,其中,所述发送方式包括以下至少之一:
    发送波束;
    发送预编码权值;
    发送波束赋形权值;
    发送方案,其中,所述发送方案包括:单天线传输、传输分集、开环多入多出MIMO、闭环MIMO;
    调制和/或编码等级;
    解调参考信号。
  33. 基于权利要求10、18、30、31中任一项所述的方法,其中,所述解调参考信号资源包括以下至少之一:
    解调参考信号端口;
    解调参考信号序列;
    产生所述解调参考信号序列的参数;
    解调参考信号占用的时域资源;
    解调参考信号占用的频域资源。
  34. 一种通信信道的传输方法,包括:
    第二设备接收来自第一设备的N个控制信道;
    所述第二设备从所述N个控制信道获取M个数据块的传输配置信息,其中,M和/或N为大于1的正整数。
  35. 基于权利要求34所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括:
    从所述N个控制信道中至少接收一个主控制信道。
  36. 基于权利要求35所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括:
    从所述N个控制信道中接收一个或多个从控制信道。
  37. 基于权利要求35所述的方法,其中,所述主控制信道用于指示所述第二设备以下信息至少之一:
    所述N个控制信道中是否包括至少一个从控制信道;
    所述N个控制信道中从控制信道的数目;
    从控制信道的时频资源位置;
    从控制信道的重复发送次数;
    主控制信道的重复发送次数;
    主控制信道的重复发送次数中当前发送次数计数器的值;
    所述M个数据块中至少一个数据块的传输配置信息;
    所述M个数据块的公有传输配置信息中的至少一项;
    所述数据块数目M的值;
    所述控制信道数目N的值;
    所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备、由第二设备发送给第一设备;
    所述N个控制信道中至少一个从控制信道的类型,其中,所述从控制信道的类型包括:所述从控制信道为用于指示由第一设备发送给第二设备的传输配置信息或者为用于指示由第二设备发送给第一设备的传输配置信息。
  38. 基于权利要求36所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括:
    在至少接收一个所述主控制信道之后,接收所述从控制信道。
  39. 基于权利要求36所述的方法,其中,所述方法还包括以下之一:
    约定所述从控制信道和所述主控制信道采用相同的接收方式;
    按照从控制信道的接收方式与所述主控制信道的接收方式之间的对应关系确定所述从控制信道的接收方式;
    按照预先约定的方式确定所述从控制信道的接收方式;
    通过接收主控制信道的指示获得所述从控制信道的接收方式;
    其中,所述接收方式用于接收所述从控制信道。
  40. 基于权利要求35所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括以下之一:
    所述第二设备从N1个发送波束上接收主控制信道;
    所述第二设备在N1个时域和/或频域资源上接收所述主控制信道。
  41. 基于权利要求36所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括:
    接收第一解调参考信号,根据所述第一解调参考信号估计主控制信道的信道信息,接收并解调主控制信道;以及接收第二解调参考信号,根据所述第二解调参考信号估计从控制信道的信道信息,接收并解调从控制信道。
  42. 基于权利要求34所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括:
    第二设备从所述N个控制信道中接收L类控制信息,其中,从所述N个控制信道中Li个控制信道中获得第i类控制信息,L为小于等于N的正整数,i为小于等于L的正整数,Li为小于等于N的正整数,且
    Figure PCTCN2017094480-appb-100002
  43. 基于权利要求42所述的方法,其中,第二设备从所述N个控制信道中接收L类控制信息包括:
    分别从所述L类控制信息中的第i类控制信息中获取第i个数据块的传输配置信息,其中L的值等于M。
  44. 基于权利要求42所述的方法,其中,第二设备从所述N个控制信道中接收L类控制信息包括:
    分别从所述L类控制信息中的第i类控制信息获取所述M个数据块的传输配置信息的第i部分传输配置信息。
  45. 基于权利要求44所述的方法,其中,所述L类控制信息中的任意两类控制信息的交集为空,所述L类控制信息的并集为所述M个数据块的传输配置信息。
  46. 基于权利要求42所述的方法,其中,第二设备从所述N个 控制信道中接收L类控制信息包括:
    第二设备接收第i参考信号,根据所述第i参考信号估计第i类控制信道的信道信息;
    接收并解调第i类控制信道。
  47. 基于权利要求34所述的方法,其中,所述第二设备从所述N个控制信道获取M个数据块的传输配置信息包括:
    从所述N个控制信道中获取的以下传输配置信息至少之一:
    数据块的传输方案,其中,所述数据块的传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
    数据块传输所采用的发送和/或接收波束;
    数据块传输所采用的发送和/或接收预编码权值;
    数据块传输所采用的发送和/或接收波束赋形权值;
    数据块传输所占用的时域资源;
    数据块传输所占用的频域资源;
    数据块传输所采用的调制等级;
    数据块传输所采用的编码等级;
    数据块传输所采用的解调参考信号;
    其中,所述传输配置信息用于接收和解调所述数据块。
  48. 基于权利要求36所述的方法,其中,从所述主控制信道获取的所述M个数据块的公有传输配置信息包括以下信息至少之一:
    所述M个数据块的传输方案,其中,所述传输方案包括:单天线传输、传输分集、开环MIMO、闭环MIMO;
    所述M个数据块传输所采用的发送和/或接收波束;
    所述M个数据传输所采用的发送和/或接收预编码权值;
    所述M个数据传输所采用的发送和/或接收波束赋形权值;
    所述M个数据块传输所采用的调制等级;
    所述M个数据块传输所采用的编码等级;
    所述M个数据块传输所采用的解调参考信号;
    其中,所述公有传输配置信息用于接收和解调所述数据块。
  49. 基于权利要求34所述的方法,其中,所述第二设备从所述N个控制信道获取M个数据块的传输配置信息包括以下之一:
    所述第二设备从所述N个控制信道获取获得所述第一设备向所述第二设备发送的M个数据块的传输配置信息;
    所述第二设备从所述N个控制信道获取所述第二设备向所述第一设备发送的M个数据块的传输配置信息;
    所述第二设备从所述N个控制信道获取所述第一设备发送给所述第二设备的Q个数据块和所述第二设备发送给所述第一设备的M-Q个数据块的传输配置信息;
    所述第二设备从所述N个控制信道获取不同的两个所述第二设备之间传输的数据块的传输配置信息,其中Q为小于M的正整数。
  50. 基于权利要求34所述的方法,其中,所述M个数据块对应一个数据信道或者对应多个数据信道。
  51. 基于权利要求50所述的方法,其中,所述M个数据块为一个数据信道的M个组成部分或M个子数据信道。
  52. 基于权利要求51所述的方法,其中,所述子数据信道具有被独立解码的能力。
  53. 基于权利要求50所述的方法,其中,所述M个数据块分别为M个数据信道。
  54. 基于权利要求34所述的方法,其中,第二设备接收来自第一设备的N个控制信道包括:
    第二设备接收数据信道解调参考信号,根据所述数据信道解调参 考信号估计所述M个数据块的信道信息;
    所述第二设备接收并解调所述M个数据块。
  55. 基于权利要求34所述的方法,其中,在所述第二设备从所述N个控制信道获取M个数据块的传输配置信息之后,所述方法还包括:
    根据所述传输配置信息接收所述M个数据块。
  56. 基于权利要求55所述的方法,其中,按相同的接收方式接收所述M个数据块。
  57. 基于权利要求39或56所述的方法,其中,所述M个数据块具有相同的接收方式,其中,所述接收方式包括以下至少之一:
    接收波束或预编码权值或波束赋形权值;
    接收方案,其中,所述接收方案包括:单天线接收、多天线分集接收、单波束接收、多波束接收、宽波束接收、窄波束接收、单RF链路接收、多RF链路接收。
  58. 一种通信信道的传输装置,应用在网络侧设备中,包括:
    发送模块,设置为向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数。
  59. 根据权利要求58所述的装置,其中,所述N个控制信道中至少包括一个主控制信道。
  60. 根据权利要求59所述的装置,其中,所述N个控制信道中还包括一个或多个从控制信道。
  61. 根据权利要求59所述的装置,其中,所述主控制信道向第二设备指示以下信息中的至少之一:
    所述N个控制信道中是否包括至少一个从控制信道;
    所述N个控制信道中从控制信道的数目;
    所述从控制信道的时频资源位置;
    所述从控制信道的重复发送次数;
    主控制信道的重复发送次数;
    主控制信道的重复发送次数中当前发送次数计数器的值;
    所述M个数据块中至少一个数据块的传输配置信息;
    所述M个数据块的公有传输配置信息中的至少一项;
    所述数据块数目M的赋值;
    所述控制信道数目N的赋值;
    所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备或者由第二设备发送给第一设备;
    所述N个控制信道中至少一个控制信道的传输类别,其中,所述控制信道的传输类别包括:所述控制信道为用于指示由第一设备发送给第二设备的数据块的传输配置信息或者为用于指示由第二设备发送给第一设备的数据块的传输配置信息。
  62. 基于权利要求58所述的装置,其中,所述N个控制信道包括L类控制信道,其中,L为小于等于N的正整数,L类控制信道中第i类控制信道中包含Li个控制信道,i为小于等于L的正整数,Li为小于等于N的正整数,且
    Figure PCTCN2017094480-appb-100003
  63. 基于权利要求62所述的装置,其中,所述L类控制信道分 别用于指示所述M个数据块的传输配置信息,其中,在所述L的值等于M时,所述L类控制信道中的第i类控制信道用于指示所述M个数据块中的第i个数据块的传输配置信息。
  64. 基于权利要求62所述的装置,其中,所述L类控制信道分别用于指示所述M个数据块的传输配置信息的不同组成部分,其中,所述L类控制信道中的第i类控制信道用于指示所述M个数据块的第i部分传输配置信息。
  65. 基于权利要求58所述的装置,其中,所述M个数据块对应一个数据信道或者对应多个数据信道。
  66. 一种通信信道的传输装置,应用在终端侧设备中,包括:
    接收模块,设置为接收来自第一设备的N个控制信道;
    获取模块,设置为从所述N个控制信道获取M个数据块的传输配置信息,其中,M和/或N为大于1的正整数。
  67. 基于权利要求66所述的装置,其中,接收模块包括:
    接收单元,设置为从所述N个控制信道中至少接收一个主控制信道。
  68. 基于权利要求67所述的装置,其中,所述主控制信道用于指示所述第二设备以下信息至少之一:
    所述N个控制信道中是否包括至少一个从控制信道;
    所述N个控制信道中从控制信道的数目;
    从控制信道的时频资源位置;
    从控制信道的重复发送次数;
    主控制信道的重复发送次数;
    主控制信道的重复发送次数中当前发送次数计数器的值;
    所述M个数据块中至少一个数据块的传输配置信息;
    所述M个数据块的公有传输配置信息中的至少一项;
    所述数据块数目M的值;
    所述控制信道数目N的值;
    所述M个数据块中至少一个数据块的传输方向,其中,所述数据块的传输方向包括:由第一设备发送给第二设备、由第二设备发送给第一设备;
    所述N个控制信道中至少一个从控制信道的类型,其中,所述从控制信道的类型包括:所述从控制信道为用于指示由第一设备发送给第二设备的传输配置信息或者为用于指示由第二设备发送给第一设备的传输配置信息。
  69. 基于权利要求66所述的装置,其中,接收模块包括:
    接收单元,设置为从所述N个控制信道中接收L类控制信息,其中,从所述N个控制信道中Li个控制信道中获得第i类控制信息,L为小于等于N的正整数,i为小于等于L的正整数,Li为小于等于N的正整数,且
    Figure PCTCN2017094480-appb-100004
  70. 一种通信信道的传输系统,包括:第一设备、第二设备,
    所述第一设备中包括:
    发送模块,设置为向第二设备发送N个控制信道,其中,所述N个控制信道用于指示M个数据块的传输配置信息,M和/或N为大于1的正整数;
    所述第二设备中包括:
    接收模块,设置为接收来自所述第一设备的N个控制信道;
    获取模块,设置为从所述N个控制信道获取M个数据块的传输 配置信息。
  71. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至57中任一项所述的方法。
PCT/CN2017/094480 2016-07-27 2017-07-26 通信信道的传输方法及装置、系统 WO2018019253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610603106.XA CN107666682B (zh) 2016-07-27 2016-07-27 通信信道的传输方法及装置、系统
CN201610603106.X 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018019253A1 true WO2018019253A1 (zh) 2018-02-01

Family

ID=61015512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094480 WO2018019253A1 (zh) 2016-07-27 2017-07-26 通信信道的传输方法及装置、系统

Country Status (2)

Country Link
CN (1) CN107666682B (zh)
WO (1) WO2018019253A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019227404A1 (zh) * 2018-05-31 2019-12-05 富士通株式会社 控制信息的传输方法及装置
CN110611956B (zh) * 2018-06-15 2022-05-17 成都华为技术有限公司 重复传输方法和通信装置
EP3911088A4 (en) * 2019-01-08 2022-08-10 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR RECEIVING DOWNLINK DATA, METHOD AND DEVICE FOR TRANSMITTING DOWNLINK DATA, AND STORAGE MEDIUM
KR102581022B1 (ko) * 2019-01-08 2023-09-21 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 다운 링크 데이터 수신 방법, 송신 방법, 장치 및 저장 매체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186251A (zh) * 2011-04-29 2011-09-14 中兴通讯股份有限公司 下行控制信息的传输方法及系统
WO2012036479A1 (en) * 2010-09-15 2012-03-22 Lg Electronics Inc. Apparatus for transmitting control information in a wireless communication system and method thereof
CN102573094A (zh) * 2012-01-17 2012-07-11 电信科学技术研究院 一种传输dci的方法及装置
CN103081550A (zh) * 2011-07-25 2013-05-01 日本电气株式会社 在移动通信系统的扩展载波上提供波束赋形的物理下行链路控制信道(pdcch)
CN103929266A (zh) * 2013-01-15 2014-07-16 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端
CN104737487A (zh) * 2012-11-02 2015-06-24 联发科技(新加坡)私人有限公司 解码多个子帧中控制信道的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253421A1 (en) * 2006-05-01 2007-11-01 Motorola, Inc. Selective reception of multi user joint coded packets
EP2789141A1 (en) * 2011-12-09 2014-10-15 Telefonaktiebolaget LM Ericsson (PUBL) Initializing reference signal generation in wireless networks
CN104396340A (zh) * 2013-05-06 2015-03-04 华为技术有限公司 多个系统的协作通信方法、装置及通信节点
CN104580034B (zh) * 2013-10-25 2018-04-10 华为技术有限公司 一种上行信道估计的方法、发送装置及接收装置
EP2903365B1 (en) * 2014-01-30 2018-03-07 Alcatel Lucent Changing an existing service provided to a group of users via wireless communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036479A1 (en) * 2010-09-15 2012-03-22 Lg Electronics Inc. Apparatus for transmitting control information in a wireless communication system and method thereof
CN102186251A (zh) * 2011-04-29 2011-09-14 中兴通讯股份有限公司 下行控制信息的传输方法及系统
CN103081550A (zh) * 2011-07-25 2013-05-01 日本电气株式会社 在移动通信系统的扩展载波上提供波束赋形的物理下行链路控制信道(pdcch)
CN102573094A (zh) * 2012-01-17 2012-07-11 电信科学技术研究院 一种传输dci的方法及装置
CN104737487A (zh) * 2012-11-02 2015-06-24 联发科技(新加坡)私人有限公司 解码多个子帧中控制信道的方法
CN103929266A (zh) * 2013-01-15 2014-07-16 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端

Also Published As

Publication number Publication date
CN107666682B (zh) 2023-05-02
CN107666682A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
US20220094399A1 (en) Low overhead channel state information (csi) feedback for multi-transmission point (trp) transmission
CN108111280B (zh) 参考信号配置、信息的发送、信息的接收方法及装置
US11088796B2 (en) Method and device for indicating uplink reference signal information, and storage medium
US20190081740A1 (en) Enhancing monitoring of multiple physical downlink control channels in beam based system
US9320042B2 (en) Wireless communication system with multiple base stations cooperating to transmit data
JP7228693B2 (ja) Pdschダイバーシティをシグナリングするためのシステム及び方法
CN114844608A (zh) 多传输节点传输方法及通信装置
CN109478925B (zh) 用于高频无线通信的ue特定波束管理的系统和方法
CN104285466A (zh) 在无线通信装置中的无线电链路监视
US11502806B2 (en) Method and apparatus for sending and receiving uplink control information
WO2018019253A1 (zh) 通信信道的传输方法及装置、系统
JP2020512731A (ja) 無線通信システムにおいてリソースバンドルに基づくプリコーダの適用方法及びそのための装置
EP3860091B1 (en) Information receiving method and device and information sending method and device
US11601169B2 (en) Method and apparatus for port selection in wireless communication systems
US11018725B2 (en) Data transmission method, apparatus, and system
WO2020087472A1 (en) Resource allocation for feedback in groupcast communication
US11284302B2 (en) Apparatus and method for providing service in wireless communication system
CN111279627A (zh) 无线电接入网的波束选择和合并
CN107888255B (zh) 上行参考信号的发送方法、装置及系统,基站和终端
US9313783B2 (en) Enhancing coordinated multi-point processing transmission through resource element muting
WO2018233568A1 (zh) 一种波束训练方法及发起方设备、响应方设备
CN112567640B (zh) 极化信息共享的方法和通信设备
US8374554B2 (en) Communication system for adjusting mode of collecting interference channel information
US11616562B1 (en) Multi-link establishment for sidelink enhancement
JP6976920B2 (ja) 無線通信装置、無線通信システム、無線通信方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833556

Country of ref document: EP

Kind code of ref document: A1